Science.gov

Sample records for ni shape memory

  1. The combustion synthesis of Ni-Ti shape memory alloys

    SciTech Connect

    Moore, J.J.; Yi, H.C. )

    1990-08-01

    Combustion synthesis of Ni-Ti-series shape-memory alloys yields both time and energy savings over conventional production methods. The solidified combustion synthesis process products have been cold-rolled into plates which exhibit the shape-memory effect, and it was noted that shape-memory transition temperatures may be tailored over a -78 to 460 C temperature range through the substitution of a third element for Ni; this element may be Pd or Fe. Accounts are given of the experimental combustion syntheses of Ni-Ti-Fe and Ti-Ni-Pd. 24 refs.

  2. Shape memory effect of laser welded NiTi plates

    NASA Astrophysics Data System (ADS)

    Oliveira, J. P.; Fernandes, F. M. Braz; Schell, N.; Miranda, R. M.

    2015-07-01

    Laser welding is a suitable joining technique for shape memory alloys (SMAs). This paper reports the existence of shape memory effect (SME) on laser welded NiTi joints, subjected to bending tests, and correlates this effect with the microstructural analysis performed with X-ray diffraction (XRD). All welded samples were able to recover their initial shape after bending to 180°, which is a remarkable result for industrial applications of NiTi involving laser welding.

  3. Shape Memory Behavior of Porous NiTi Alloy

    NASA Astrophysics Data System (ADS)

    Kaya, Mehmet; Çakmak, Ömer

    2016-04-01

    Shape memory behavior of porous NiTi alloy is dependent on the phases, and mechanical or thermal background. The phases change with solution heat treatment and aging. Fully reversible shape memory behavior was observed during thermal cycling, and recoverable strains increased with the increasing stress from 2 to 50 MPa. The porous NiTi sample shows recoverable transformation strain response under lower constant load.

  4. Nondestructive evaluation of Ni-Ti shape memory alloy

    SciTech Connect

    Meir, S.; Gordon, S.; Karsh, M.; Ayers, R.; Olson, D. L.; Wiezman, A.

    2011-06-23

    The nondestructive evaluation of nickel titanium (Ni-Ti) alloys for applications such as heat treatment for biomaterials applications (dental) and welding was investigated. Ni-Ti alloys and its ternary alloys are valued for mechanical properties in addition to the shape memory effect. Two analytical approaches were perused in this work. Assessment of the microstructure of the alloy that determines the martensitic start temperature (Ms) of Ni-Ti alloy as a function of heat treatment, and secondly, an attempt to evaluate a Friction Stir Welding, which involves thermo-mechanical processing of the alloy.

  5. Shape memory characteristics of cold drawn Ti-Ni wires

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Otsuka, K.; Yoshida, H.; Nagai, H.; Oishi, R.; Horikawa, H.; Kishi, T.

    2003-10-01

    With the aim of the applications for smart composite, the influence of cold drawing on the shape systematically. It was found that the reverse transformation temperatures increased significantly, while the martensitic transformation temperatures decreased with increasing amount of cold drawing. Both the temperature range for reverse and martenistic transformations became larger with increasing amount of cold drawing. A recovery strain above 2% and a recovery stress up to 300MPa can be obtained in cold drawn wires. A two-way shape memory effect was observed in as-cold drawn TiNi wires. These results indicate that cold drawn TiNi wires have many unique shape memory properties which can be applicable for smart composites.

  6. Corrosion resistance tests on NiTi shape memory alloy.

    PubMed

    Rondelli, G

    1996-10-01

    The corrosion performances of NiTi shape memory alloys (SMA) in human body simulating fluids were evaluated in comparison with other implant materials. As for the passivity current in potentiostatic conditions, taken as an index of ion release, the values are about three times higher for NiTi than for Ti6Al4V and austenitic stainless steels. Regarding the localized corrosion, while plain potentiodynamic scans indicated for NiTi alloy good resistance to pitting attack similar to Ti6Al4V, tests in which the passive film is abruptly damaged (i.e. potentiostatic scratch test and modified ASTM F746) pointed out that the characteristics of the passive film formed on NiTi alloy (whose strength can be related to the alloy's biocompatibility) are not as good as those on Ti6Al4V but are comparable or inferior to those on austenitic stainless steels. PMID:8894095

  7. Powder metallurgy technology of NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, J. M.; Maziarz, W.; Czeppe, T.; Lityńska, L.; Nowacki, W. K.; Gadaj, S. P.; Luckner, J.; Pieczyska, E. A.

    2008-05-01

    Powder metallurgy technology was elaborated for consolidation of shape memory NiTi powders. The shape memory alloy was compacted from the prealloyed powder delivered by Memry SA. The powder shows Ms = 10°C and As = -34°C as results from DSC measurements. The samples were hot pressed in the as delivered spherical particle's state. The hot compaction was performed in a specially constructed vacuum press, at temperature of 680°C and pressure of 400 MPa. The alloy powder was encapsulated in copper capsules prior to hot pressing to avoid oxidation or carbides formation. The alloy after hot vacuum compaction at 680°C (i.e. within the B2 NiTi stability range) has shown similar transformation range as the powder. The porosity of samples compacted in the as delivered state was only 1%. The samples tested in compression up to ɛ = 0.06 have shown partial superelastic effect due to martensitic reversible transform- ation which started at the stress above 300 MPa and returned back to ɛ = 0.015 after unloading. They have shown also a high ultimate compression strength of 1600 MPa. Measurements of the samples temperature changes during the process allowed to detect the temperature increase above 12°C for the strain rate 10-2 s-1 accompanied the exothermic martensite transformation during loading and the temperature decrease related to the reverse endothermic transformation during unloading.

  8. Spray forming of NiTi and NiTiPd shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Smith, Ronald; Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-03-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  9. Spray Forming of NiTi and NiTiPd Shape-Memory Alloys

    NASA Technical Reports Server (NTRS)

    Mabe, James; Ruggeri, Robert; Noebe, Ronald

    2008-01-01

    In the work to be presented, vacuum plasma spray forming has been used as a process to deposit and consolidate prealloyed NiTi and NiTiPd powders into near net shape actuators. Testing showed that excellent shape memory behavior could be developed in the deposited materials and the investigation proved that VPS forming could be a means to directly form a wide range of shape memory alloy components. The results of DSC characterization and actual actuation test results will be presented demonstrating the behavior of a Nitinol 55 alloy and a higher transition temperature NiTiPd alloy in the form of torque tube actuators that could be used in aircraft and aerospace controls.

  10. Thermopower behavior for the shape memory alloy NiTi

    SciTech Connect

    Lee, J. Y.; McIntosh, G. C.; Kaiser, A. B.; Park, Y. W.; Kaack, M.; Pelzl, J.; Kim, Chul Koo; Nahm, Kyun

    2001-06-01

    We report thermopower measurements for the nickel titanium shape memory alloy Ni{sub 0.507}Ti{sub 0.493}. Our measurements reveal abrupt changes in the temperature dependence of thermopower, which correlate well with the structural phase transition between the austenitic and martensitic phases. These transition effects in thermopower are more clearly defined than in the resistivity, which is also reported. In the martensitic phase, thermopower exhibits standard metallic diffusion behavior with a nonlinearity, which is consistent with either a small peak in the density of states just below the Fermi level, as calculated by Kulkova, Egorushkin, and Kalchikhin [Solid State Commun. 77, 667 (1991)], or else electron{endash}phonon mass enhancement. For thermally or mechanically treated samples, the magnitude of the transition effects in thermopower are reduced. {copyright} 2001 American Institute of Physics.

  11. Texture memory and strain-texture mapping in a NiTi shape memory alloy

    SciTech Connect

    Ye, B.; Majumdar, B. S.; Dutta, I.

    2007-08-06

    The authors report on the near-reversible strain hysteresis during thermal cycling of a polycrystalline NiTi shape memory alloy at a constant stress that is below the yield strength of the martensite. In situ neutron diffraction experiments are used to demonstrate that the strain hysteresis occurs due to a texture memory effect, where the martensite develops a texture when it is cooled under load from the austenite phase and is thereafter ''remembered.'' Further, the authors quantitatively relate the texture to the strain by developing a calculated strain-texture map or pole figure for the martensite phase, and indicate its applicability in other martensitic transformations.

  12. High Work Output Ni-Ti-Pt High Temperature Shape Memory Alloys and Associated Processing Methods

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D. (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Garg, Anita (Inventor)

    2009-01-01

    According to the invention, compositions of Ni-Ti-Pt high temperature, high force, shape memory alloys are disclosed that have transition temperatures above 100 C.; have narrow hysteresis; and produce a high specific work output.

  13. Oxide Scales Formed on NiTi and NiPtTi Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Garg, Anita; Rogers, Richard B.; Noebe, Ronald D.

    2011-01-01

    Ni-49Ti and Ni-30Pt-50Ti (at.%) shape memory alloys were oxidized isothermally in air over the temperature range of 500 to 900 C. The microstructure, composition, and phase content of the scales were studied by SEM, EDS, XRD, and metallography. Extensive plan view SEM/EDS identified various features of intact or spalled scale surfaces. The outer surface of the scale was a relatively pure TiO2 rutile structure, typified by a distinct highly striated and faceted crystal morphology. Crystal size increased significantly with temperature. Spalled regions exhibited some porosity and less distinct features. More detailed information was obtained by correlation of SEM/EDS studies of 700 C/100 hr cross-sections with XRD analyses of serial or taper-polishing of plan surfaces. Overall, multiple layers exhibited graded mixtures of NiO, TiO2, NiTiO3, Ni(Ti) or Pt(Ni,Ti) metal dispersoids, Ni3Ti or Pt3Ti depletion zones, and substrate, in that order. The NiTi alloy contained a 3 at.% Fe impurity that appeared in embedded localized Fe-Ti-rich oxides, while the NiPtTi alloy contained a 2 v/o dispersion of TiC that appeared in lower layers. The oxidation kinetics of both alloys (in a previous report) indicated parabolic growth and an activation energy (250 kJ/mole) near those reported in other Ti and NiTi studies. This is generally consistent with TiO2 existing as the primary scale constituent, as described here.

  14. Mixed-sputter deposition of Ni-Ti-Cu shape memory films

    SciTech Connect

    Krulevitch, P.; Ramsey, P.B.; Makowiecki, D.M.; Lee, A.P.; Northrup, M.A.; Johnson, G.C.

    1994-05-01

    Ni-Ti-Cu shape memory films were mixed-sputter deposited from separate nickel, titanium, and copper targets, providing increased compositional flexibility. Shape memory characteristics, examined for films with 7 at. % Cu and 41--51 at. % Tl, were determined with temperature controlled substrate curvature measurements, and microstructure was studied with transmission electron microscopy. The Ni-Ti-Cu films were found to have shape memory properties comparable to bulk materials, with transformation temperatures between 20 and 62{degree}C, a 10--13{degree}C hysteresis, and up to 330 MPa recoverable stress.

  15. Electrochemical and corrosion behaviors of sputtered TiNi shape memory films

    NASA Astrophysics Data System (ADS)

    Li, K.; Huang, X.; Zhao, Z. S.; Li, Y.; Fu, Y. Q.

    2016-03-01

    Electrochemical and corrosion behaviors of TiNi-based shape memory thin films were explored using electrochemical impedance spectroscopy (EIS) and polarization methods in phosphate buffered saline solutions at 37 °C. Compared with those of electro-polished and passivated bulk NiTi shape memory alloys, the break-down potentials of the sputter-deposited amorphous TiNi films were much higher. After crystallization, the break-down potentials of the TiNi films were comparable with that of the bulk NiTi shape memory alloy. Additionally, variation of composition of the TiNi films showed little influence on their corrosion behavior. The EIS data were fitted using a parallel resistance-capacitance circuit associated with passive oxide layer on the tested samples. The thickness of the oxide layer for the TiNi thin films was found much thinner than that of bulk NiTi shape memory alloy. During electrochemical testing, the oxide thickness of the bulk alloy reached its maximum at a voltage of 0.6-0.8 V, whereas those of TiNi films were increased continuously up to a voltage of 1.2 V.

  16. Functionally grading the shape memory response in NiTi films: Laser irradiation

    NASA Astrophysics Data System (ADS)

    Birnbaum, A. J.; Satoh, G.; Yao, Y. L.

    2009-08-01

    A new process and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film structures. This technique is shown to effectively control the martensitic phase transformation temperature and exhibits control over aspects of the mechanical and shape memory responses as well. Specifically, the martensitic phase transformation temperature decreases with incident laser energy density. Concomitant modifications are observed in both the mechanical and shape memory responses in laser processed films. Analysis and characterization are performed via temperature controlled optical microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation.

  17. Functionally grading the shape memory response in NiTi films: Laser irradiation

    SciTech Connect

    Birnbaum, A. J.; Satoh, G.; Yao, Y. L.

    2009-08-15

    A new process and mechanism are presented for controlling the shape memory response spatially within monolithic NiTi thin film structures. This technique is shown to effectively control the martensitic phase transformation temperature and exhibits control over aspects of the mechanical and shape memory responses as well. Specifically, the martensitic phase transformation temperature decreases with incident laser energy density. Concomitant modifications are observed in both the mechanical and shape memory responses in laser processed films. Analysis and characterization are performed via temperature controlled optical microscopy, x-ray diffraction, atomic force microscopy, and nanoindentation.

  18. Surface corrosion enhancement of passive films on NiTi shape memory alloy in different solutions.

    PubMed

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-06-01

    The corrosion behaviors of NiTi shape memory alloy in NaCl solution, H2SO4 solution and borate buffer solution were investigated. It was found that TiO2 in passive film improved the corrosion resistance of NiTi shape memory. However, low corrosion resistance of passive film was observed in low pH value acidic solution due to TiO2 dissolution. Moreover, the corrosion resistance of NiTi shape memory alloy decreased with the increasing of passivated potential in the three solutions. The donor density in passive film increased with the increasing of passivated potential. Different solutions affect the semiconductor characteristics of the passive film. The reducing in the corrosion resistance was attributed to the more donor concentrations in passive film and thinner thickness of the passive film. PMID:27040211

  19. Corrosion Behavior of Ti-55Ni-1.2Co High Stiffness Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Norwich, Dennis W.; Ehrlinspiel, Michael

    2014-07-01

    The corrosion behavior of high stiffness nominal Ti-55Ni-1.2Co (wt.%) shape memory alloys (SMAs) was systematically investigated in the present study including straight wires, wire-formed stents, and laser-cut stents. It was found that the corrosion behavior of Ti-55Ni-1.2Co alloys is comparable with those of binary NiTiNol counterparts, which is attributed to the small alloying amount of cobalt. Additionally, the corrosion resistance of high stiffness Ti-55Ni-1.2Co SMAs is independent of the stent-forming method. To explore the galvanic corrosion susceptibility between Ti-55Ni-1.2Co and binary NiTiNol alloys, a NiTiNol sleeve was laser welded to the Ti-55Ni-1.2Co stent. Interestingly, there is no galvanic corrosion observed in this NiTiCo-NiTiNol component, even after immersion of the component in phosphate-buffered saline solution at 37 °C for three months. This study will shed some light on the industrial applications of high stiffness Ti-55Ni-1.2Co shape memory alloys.

  20. A Low Hysteresis NiTiFe Shape Memory Alloy Based Thermal Conduction Switch

    NASA Astrophysics Data System (ADS)

    Lemanski, J. L.; Krishnan, V. B.; Manjeri, R. Mahadevan; Notardonato, W. U.; Vaidyanathan, R.

    2006-03-01

    Shape memory alloys possess the ability to return to a preset shape by undergoing a solid state phase transformation at a particular temperature. This work reports on the development and testing of a low temperature thermal conduction switch that incorporates a NiTiFe shape memory element for actuation. The switch was developed to provide a variable conductive pathway between liquid methane and liquid oxygen dewars in order to passively regulate the temperature of methane. The shape memory element in the switch undergoes a rhombohedral or R-phase transformation that is associated with a small hysteresis (typically 1-2 degrees C) and offers the advantage of precision control over a set temperature range. For the NiTiFe alloy used, its thermomechanical processing, subsequent characterization using dilatometry, differential scanning calorimetry and implementation in the conduction switch configuration are addressed.

  1. Biopsy applications of Ti50Ni41Cu9 shape memory films for wireless capsule endoscope

    NASA Astrophysics Data System (ADS)

    Du, Hejun; Fu, Yongqing; Zhang, S.; Luo, Jack K.; Flewitt, Andrew J.; Milne, William I.

    2004-02-01

    Wireless capsule endoscopy (WCE) is a new technology to evaluate the patient with obscure gastrointestinal bleeding. However, there is still some deficiency existing in the current WCE, for example, lack of ability to biopsy and precisely locate the pathology. This study aimed to prepare and characterize TiNiCu shape memory alloy thin films for developing microgripper for biopsy (tissue sampling and tagging) applications. Ti50Ni41Cu9 thin films were prepared by co-sputtering of TiNi and Cu targets, and their transformation temperatures were slightly above that of human body. Results from differential scanning calorimetry, in-situ X-ray diffraction, curvature and electrical resistance measurement revealed clearly martensitic transformation of the deposited TiNiCu films upon heating and cooling. The biocompatibility of the TiNiCu films in the simulated gastric and intestinal solutions was also studied. Results showed the release of Ni and Cu ions is much less than the toxic level and the film did not lose shape memory effect even after 10-day immersion in the simulated solutions. TiNiCu/Si micro-cantilevers with and without electrodes were fabricated using the conventional micromachining methods and apparent shape memory effect upon heating and cooling was demonstrated.

  2. Potential High-Temperature Shape-Memory Alloys Identified in the Ti(Ni,Pt) System

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Biles, Tiffany A.; Garg, Anita; Nathal, Michael V.

    2004-01-01

    "Shape memory" is a unique property of certain alloys that, when deformed (within certain strain limits) at low temperatures, will remember and recover to their original predeformed shape upon heating. It occurs when an alloy is deformed in the low-temperature martensitic phase and is then heated above its transformation temperature back to an austenitic state. As the material passes through this solid-state phase transformation on heating, it also recovers its original shape. This behavior is widely exploited, near room temperature, in commercially available NiTi alloys for connectors, couplings, valves, actuators, stents, and other medical and dental devices. In addition, there are limitless applications in the aerospace, automotive, chemical processing, and many other industries for materials that exhibit this type of shape-memory behavior at higher temperatures. But for high temperatures, there are currently no commercial shape-memory alloys. Although there are significant challenges to the development of high-temperature shape-memory alloys, at the NASA Glenn Research Center we have identified a series of alloy compositions in the Ti-Ni-Pt system that show great promise as potential high-temperature shape-memory materials.

  3. Fast Response Shape Memory Effect Titanium Nickel (TiNi) Foam Torque Tubes

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2014-01-01

    Shape Change Technologies has developed a process to manufacture net-shaped TiNi foam torque tubes that demonstrate the shape memory effect. The torque tubes dramatically reduce response time by a factor of 10. This Phase II project matured the actuator technology by rigorously characterizing the process to optimize the quality of the TiNi and developing a set of metrics to provide ISO 9002 quality assurance. A laboratory virtual instrument engineering workbench (LabVIEW'TM')-based, real-time control of the torsional actuators was developed. These actuators were developed with The Boeing Company for aerospace applications.

  4. Shape-memory properties in Ni-Ti sputter-deposited film

    NASA Technical Reports Server (NTRS)

    Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.

    1990-01-01

    A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.

  5. A Study of Thermo-mechanically Processed High Stiffness NiTiCo Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Manjeri, R. M.; Norwich, D.; Sczerzenie, F.; Huang, X.; Long, M.; Ehrlinspiel, M.

    2016-03-01

    This work investigates a vacuum induction melted-vacuum arc re-melted (VIM-VAR) and thermo-mechanically processed ternary NiTiCo shape memory alloy. The NiTiCo ingot was hot processed to 6.35-mm-diameter coiled wire. The coiled wire was subsequently cold drawn to a final wire diameter of 0.53 mm, with interpass anneals. The wires were shape set at 450 °C for 3.5 min. After electropolishing, the wires were subjected to microstructural, thermal, and mechanical characterization studies. Microstructural analysis was performed by transmission electron microscope (TEM), thermal analyses by differential scanning calorimeter (DSC), and bend-free recovery and mechanical testing by uniaxial tensile testing. TEM did not reveal Ni-rich precipitates—either at the grain boundary or in the grain interior. Energy dispersive x-ray spectroscopy showed a uniform distribution of Ni, Ti, and Co in the sample. The DSC results on the shape set wire showed a single-step transformation between the austenite and the R-phase, in the forward and reverse directions. Cyclic tensile tests of the shape set wire, processed under optimum conditions, showed minimum residual strain and a stable upper plateau stress. Further, the fatigue behavior of NiTi and NiTiCo alloys was studied by rotating beam testing. The results showed that the fatigue properties of NiTiCo, under zero mean strain, are equivalent to that of binary NiTi in the high-cycle and medium-cycle regimes, taking into account the higher stiffness of NiTiCo. The above analyses helped in establishing the processing-structure-property correlation in a VIM-VAR-melted NiTiCo shape memory alloy.

  6. Issues Concerning the Oxidation of Ni(Pt)Ti Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Smialek, James

    2011-01-01

    The oxidation behavior of the Ni-30Pt-50Ti high temperature shape memory alloy is compared to that of conventional NiTi nitinol SMAs. The oxidation rates were 1/4 those of NiTi under identical conditions. Ni-Ti-X SMAs are dominated by TiO2 scales, but, in some cases, the activation energy diverges for unexplained reasons. Typically, islands of metallic Ni or Pt(Ni) particles are embedded in lower scale layers due to rapid selective growth of TiO2 and low oxygen potential within the scale. The blocking effect of Pt-rich particles and lower diffusivity of Pt-rich depletion zones are proposed to account for the reduction in oxidation rates.

  7. Ion beam sputter deposition of TiNi shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Davies, Sam T.; Tsuchiya, Kazuyoshi

    1999-08-01

    The development of functional or smart materials for integration into microsystem is of increasing interest. An example is the shape memory effect exhibited by certain metal alloys which, in principle, can be exploited in the fabrication of micro-scale manipulators or actuators, thereby providing on-chip micromechanical functionality. We have investigated an ion beam sputter deposition process for the growth of TiNi shape memory alloy thin films and demonstrated the required control to produce equiatomic composition, uniform coverage and atomic layer-by-layer growth rates on engineering surfaces. The process uses argon ions at intermediate energy produced by a Kaufman-type ion source to sputter non-alloyed targets of high purity titanium and nickel. Precise measurements of deposition rates allows compositional control during thin film growth. As the sputtering targets and substrates are remote from the discharge plasma, deposition occurs under good vacuum of approximately 10-6 mtorr thus promoting high quality films. Furthermore, the ion beam energetics allow deposition at relatively low substrate temperatures of < 150 degrees C with as-deposited films exhibiting shape memory properties without post-process high temperature annealing. Thermal imagin is used to monitor changes which are characteristic of the shape memory effect and is indicative of changes in specific heat capacity and thermal conductivity as the TiNi shape memory alloy undergoes martensitic to austenitic phase transformations.

  8. Neutron diffraction study of NiTi during compressive deformation and after shape-memory recovery

    SciTech Connect

    Dunand, D.C.; Mari, D.; Bourke, M.A.M.; Goldstone, J.A.

    1995-09-01

    Neutron diffraction measurements of internal elastic strains and texture were performed during compressive deformation of martensitic NiTi deforming by twinning. Rietveld refinement of the diffraction spectrum was performed in order to obtain lattice parameter variations and preferred orientation of martensitic variants. The elastic internal strains, are proportional to the externally applied stress but strongly dependent on crystallographic orientation. Plastic deformation by matrix twinning is consistent with type I (1-1-1) twinning, whereby (100) and (011) planes tend to align perpendicular and parallel to the stress axis, respectively. The preferred orientation ratio r according to the model by March and Dollase is proportional to the macroscopic plastic strain for (100) and (011) planes for loading, unloading and shape-memory recovery. To the best of our knowledge, this is the first in situ bulk measurement of reversible twinning in NiTi. Finally, shape-memory recovery results in a marked change of NiTi cell parameters.

  9. Nanostructured Nb reinforced NiTi shape memory alloy composite with high strength and narrow hysteresis

    NASA Astrophysics Data System (ADS)

    Hao, Shijie; Cui, Lishan; Jiang, Daqiang; Yu, Cun; Jiang, Jiang; Shi, Xiaobin; Liu, Zhenyang; Wang, Shan; Wang, Yandong; Brown, Dennis E.; Ren, Yang

    2013-06-01

    An in-situ nanostructured Nb reinforced NiTi shape-memory alloy composite was fabricated by mechanical reduction of an as-cast Nb-NiTi eutectic alloy. The composite exhibits large elastic strain, high strength, narrow hysteresis, and high mechanical energy storage density and efficiency during tensile cycling. In situ synchrotron high-energy X-ray diffraction revealed that these superior properties were attributed to the strong coupling between nanostructured Nb and NiTi matrix during deformation. Furthermore, this study offers a good understanding of the deformation behavior of the nanoscale reinforcement embedded in the metal matrix deformed by stress-induced phase transformation.

  10. Nitride coating enhances endothelialization on biomedical NiTi shape memory alloy.

    PubMed

    Ion, Raluca; Luculescu, Catalin; Cimpean, Anisoara; Marx, Philippe; Gordin, Doina-Margareta; Gloriant, Thierry

    2016-05-01

    Surface nitriding was demonstrated to be an effective process for improving the biocompatibility of implantable devices. In this study, we investigated the benefits of nitriding the NiTi shape memory alloy for vascular stent applications. Results from cell experiments indicated that, compared to untreated NiTi, a superficial gas nitriding treatment enhanced the adhesion of human umbilical vein endothelial cells (HUVECs), cell spreading and proliferation. This investigation provides data to demonstrate the possibility of improving the rate of endothelialization on NiTi by means of nitride coating. PMID:26952473

  11. Microstructure and shape memory characteristics of gas-atomized TiNi powders

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Jeon, Kyeong-Su; Yun, Young-Mok; Nam, Tae-Hyun

    2010-05-01

    For the fabrication of bulk near-net-shape shape memory alloys and porous metallic biomaterials, consolidation of TiNi alloy powders is more useful than that of elemental powders of Ti and Ni. In the present study, TiNi shape memory alloy powders were prepared by inert gas atomization, and martensitic transformation temperatures and microstructures of those powders were investigated as a function of powder size. The size distribution of the powders was measured by conventional sieving, and sieved powders with the specific size range of 0-200 μm were chosen for this examination. XRD analysis showed that the B2-B19' martensitic transformation occurred in powders smaller than 200 μm. In DSC curves of the as-atomized Ti50Ni50 powders as a function of powder size, only one clear peak was found on each cooling and heating curve. The martensitic transformation start temperature (Ms) of the 0-20 μm powders was 21.9 °C. The Ms increased with increasing powder size, and the difference in Ms between 0 and 20 μm powders and 150-200 μm powders is only 1 °C. The typical microstructure of the rapidly solidified TiNi powders showed cellular/dendrite morphology and exhibited a small volume fraction of Ti2Ni phase, which is located in interdendritic/intercellular regions.

  12. Stress-strain behavior and shape memory effect in powder metallurgy TiNi alloys

    SciTech Connect

    Kato, H.; Koyari, T.; Miura, S. . Dept. of Engineering Science); Tokizane, M. . Dept. of Mechanical Engineering)

    1994-04-01

    The shape memory properties of the TiNi alloy produced by a powder metallurgical method have been evaluated from tensile stress-strain curves. The contamination of the powders during atomization can be suppressed by applying the Plasma Rotating Electrode Process (P-REP), so that the compact made by Hot Isostatic Pressing (HIP) is expected to exhibit the shape memory effect identical to the typical alloy grown from melt. The fracture behavior of the P/M alloy is also studied, and the improvement of fracture strength of the P/M alloy is attempted.

  13. Characteristic of TiNi(Cu) shape memory thin film based on micropump

    NASA Astrophysics Data System (ADS)

    Zhang, Huijun; Qiu, Chengjun

    2009-07-01

    Shape memory thin films offer a unique combination of novel properties and have the potential to become a primary actuating mechanism for micropumps. In this study, a micropump driven by TiNiCu shape memory thin film is designed and fabricated. The micropump is composed of a TiNiCu/Si bimorph driving membrane, a pump chamber and two inlet and outlet check valves. The property of TiNiCu films and driving capacity of TiNiCu/Si bimorph driving membrane are investigated. By using the recoverable force of TiNiCu thin film and biasing force of silicon membrane, the actuation diaphragm realizes reciprocating motion effectively. Experimental results show that the film surface appears a smooth and featureless morphology without any cracks, and the hysteresis width ΔT of TiNiCu film is about 2-3°C, the micropump driving by TiNiCu film has good performance, such as high pumping yield, high working frequency, stable driving capacity, and long fatigue life time.

  14. Cu-Al-Ni Shape Memory Single Crystal Wires with High Transformation Temperature

    NASA Technical Reports Server (NTRS)

    Hautcoeur, Alain; Fouché, Florian; Sicre, Jacques

    2016-01-01

    CN-250X is a new material with higher performance than Nickel-Titanium Shape Memory Alloy (SMA). For space mechanisms, the main disadvantage of Nickel-Titanium Shape Memory Alloy is the limited transformation temperature. The new CN-250X Nimesis alloy is a Cu-Al-Ni single crystal wire available in large quantity because of a new industrial process. The triggering of actuators made with this Cu-Al-Ni single crystal wire can range from ambient temperature to 200 C in cycling and even to 250 C in one-shot mode. Another advantage of CN-250X is a better shape recovery (8 to 10%) than Ni-Ti (6 to 7%). Nimesis is the first company able to produce this type of material with its new special industrial process. A characterization study is presented in this work, including the two main solicitation modes for this material: tensile and torsion. Different tests measure the shape recovery of Cu-Al-Ni single crystals wires during heating from room temperature to a temperature higher than temperature of end of martensitic transformation.

  15. Porous NiTi shape memory alloys produced by SHS: microstructure and biocompatibility in comparison with Ti2Ni and TiNi3.

    PubMed

    Bassani, Paola; Panseri, Silvia; Ruffini, Andrea; Montesi, Monica; Ghetti, Martina; Zanotti, Claudio; Tampieri, Anna; Tuissi, Ausonio

    2014-10-01

    Shape memory alloys based on NiTi have found their main applications in manufacturing of new biomedical devices mainly in surgery tools, stents and orthopedics. Porous NiTi can exhibit an engineering elastic modulus comparable to that of cortical bone (12-17 GPa). This condition, combined with proper pore size, allows good osteointegration. Open cells porous NiTi was produced by self propagating high temperature synthesis (SHS), starting from Ni and Ti mixed powders. The main NiTi phase is formed during SHS together with other Ni-Ti compounds. The biocompatibility of such material was investigated by single culture experiment and ionic release on small specimen. In particular, NiTi and porous NiTi were evaluated together with elemental Ti and Ni reference metals and the two intermetallic TiNi3, Ti2Ni phases. This approach permitted to clearly identify the influence of secondary phases in porous NiTi materials and relation with Ni-ion release. The results indicated, apart the well-known high toxicity of Ni, also toxicity of TiNi3, whilst phases with higher Ti content showed high biocompatibility. A slightly reduced biocompatibility of porous NiTi was ascribed to combined effect of TiNi3 presence and topography that requires higher effort for the cells to adapt to the surface. PMID:24928669

  16. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa

    PubMed Central

    Pataky, Garrett J.; Ertekin, Elif; Sehitoglu, Huseyin

    2015-01-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress–strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1] PMID:26380838

  17. Infrared thermography videos of the elastocaloric effect for shape memory alloys NiTi and Ni2FeGa.

    PubMed

    Pataky, Garrett J; Ertekin, Elif; Sehitoglu, Huseyin

    2015-12-01

    Infrared thermogrpahy was utilized to record the temperature change during tensile loading cycles of two shape memory alloy single crystals with pseudoelastic behavior. During unloading, a giant temperature drop was measured in the gage section due to the elastocaloric effect. This data article provides a video of a [001] oriented Ni2FeGa single crystal, including the corresponding stress-strain curve, shows the temperature drop over one cycle. The second video of a [148] oriented NiTi single crystal depicts the repeatability of the elastocaloric effect by showing two consecutive cycles. The videos are supplied in this paper. For further analysis and enhanced discussion of large temperature change in shape memory alloys, see Pataky et al. [1]. PMID:26380838

  18. X-ray diffraction study of the phase transformations in NiTi shape memory alloy

    SciTech Connect

    Uchil, J.; Fernandes, F.M. Braz . E-mail: kkmahesh@rediffmail.com

    2007-03-15

    The phase transformations occurring in heat-treated NiTi shape memory alloys have been studied through the analysis of variation in integrated peak area (integrated intensity) with temperature, under the XRD peak profiles in the transformation temperature range. For this purpose, integrated peak area under the prominent peak corresponding to (110) plane of the austenitic phase has been chosen. The results so obtained are compared with those got from the DSC method. The XRD method is found to be more sensitive.

  19. LACBED characterization of dislocations in Cu-Al-Ni shape memory alloys processed by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Rodriguez, P. P.; Ibarra, A.; San Jean, J.; Morniro, J. P.; No, M. L.

    2003-10-01

    Powder metallurgy Cu-AI-Ni shape memory alloys show excellent thermomechanical properties, being the fracture behavior close to the one observed in single crystals. However, the microstructural mechanisms responsible of such behavior are still under study. In this paper we present the characterization of the dislocations present in these alloys by Large Angle Convergent Beam Electron Diffraction (LACBED) in two different stages of the elaboration process: after HIP compaction and after hot rolling.

  20. Fabrication of porous NiTi shape memory alloy structures using laser engineered net shaping.

    PubMed

    Krishna, B Vamsi; Bose, Susmita; Bandyopadhyay, Amit

    2009-05-01

    Porous NiTi alloy samples were fabricated with 12-36% porosity from equiatomic NiTi alloy powder using laser engineered net shaping (LENS). The effects of processing parameters on density and properties of laser-processed NiTi alloy samples were investigated. It was found that the density increased rapidly with increasing the specific energy input up to 50 J/mm(3). Further increase in the energy input had small effect on density. High cooling rates associated with LENS processing resulted in higher amount of cubic B2 phase, and increased the reverse transformation temperatures of porous NiTi samples due to thermally induced stresses and defects. Transformation temperatures were found to be independent of pore volume, though higher pore volume in the samples decreased the maximum recoverable strain from 6% to 4%. Porous NiTi alloy samples with 12-36% porosity exhibited low Young's modulus between 2 and 18 GPa as well as high compressive strength and recoverable strain. Because of high open pore volume between 36% and 62% of total volume fraction porosity, these porous NiTi alloy samples can potentially accelerate the healing process and improve biological fixation when implanted in vivo. Thus porous NiTi is a promising biomaterial for hard tissue replacements. PMID:18937263

  1. Crystal size induced reduction in thermal hysteresis of Ni-Ti-Nb shape memory thin films

    NASA Astrophysics Data System (ADS)

    Li, K.; Li, Y.; Yu, K. Y.; Liu, C.; Gibson, D.; Leyland, A.; Matthews, A.; Fu, Y. Q.

    2016-04-01

    Ni41.7Ti38.8Nb19.5 shape memory alloy films were sputter-deposited onto silicon substrates and annealed at various temperatures. A narrow thermal hysteresis was obtained in the Ni-Ti-Nb films with a grain size of less than 50 nm. The small grain size, which means an increase in the volume fraction of grain boundaries, facilitates the phase transformation and reduces the hysteresis. The corresponding less transformation friction and lower heat transfer during the shear process, as well as reduced spontaneous lattice distortion, are responsible for this reduction of the thermal hysteresis.

  2. Tribological characteristics of ceramic conversion treated NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Ju, X.; Dong, H.

    2007-09-01

    NiTi shape memory alloys are very attractive for medical implants and devices (such as orthopaedic and orthodontic implants) and various actuators. However, wear is a major concern for such applications and a novel surface engineering process, ceramic conversion treatment, has recently been developed to address this problem. In this study, the tribological characteristics of ceramic conversion treated NiTi alloy have been systematically investigated under dry unidirectional wear, reciprocating-corrosion wear and fretting-corrosion wear condition. Based on the experimental results, the wear behaviour under different conditions is compared and wear mechanisms involved are discussed.

  3. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2010-01-01

    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  4. Electrochemical characteristic of TiNi shape memory alloy in artificial body fluids.

    PubMed

    Liang, Chenghao; Huang, Naibao

    2009-04-01

    In this work, the electrochemical characteristic of TiNi shape memory alloy (SMA) in Hank's solution was studied. The results indicated that low potential active dissolution of TiNi SMA occurred at a potential range of 150-250 mV during anodic polarizing. Its corrosion resistance was not affected by temperature, but was deeply affected by pH and Cl- ion concentration. Decreasing pH and improving Cl- ion concentration made the pitting broken potential (Eb) move toward negative and increased the sensitivity to pitting corrosion. Electro-probe microanalyzer and scanning electron microscope analysis showed that low potential active dissolution resulted in forming Ti2Ni precipitation phase in the hole, which enriched Ti and deficient Ni, became the sensitive position to pitting corrosion. PMID:18491391

  5. Improving the bioactivity of NiTi shape memory alloy by heat and alkali treatment

    NASA Astrophysics Data System (ADS)

    Qiang, Wei; Zhen-duo, Cui; Xian-jin, Yang; Jie, Shi

    2008-11-01

    TiO 2 films were formed on an NiTi alloy surface by heat treatment in air at 600 °C. Heat treated NiTi shape memory alloys were subsequently alkali treated with 1 M, 3 M and 5 M NaOH solutions respectively, to improve their bioactivity. Then treated NiTi samples were soaked in 1.5SBF to evaluate their in vitro performance. The results showed that the 3 M NaOH treatment is the most appropriate method. A large amount of apatite formed within 1 day's soaking in 1.5SBF, after 7 day's soaking TiO 2/HA composite layer formed on the NiTi surface. SEM, XRD, FT-IR and TEM results showed that the morphology and microstructure are similar to the human bone apatite.

  6. Preparing TiNiNb shape memory alloy powders by hydriding–dehydriding process

    NASA Astrophysics Data System (ADS)

    Shao, Yang; Cui, Lishan; Jiang, Xiaohua; Guo, Fangmin; Liu, Yinong; Hao, Shijie

    2016-07-01

    High-quality TiNiNb shape memory alloy (SMA) powders were prepared by hydrogenation of cold-worked TiNiNb SMA wire composed of amorphous and nancrystalline microstructure, by mechanical pulverization and vacuum dehydrogenation. It is revealed that abundant structural defects introduced by cold-work greatly promoted hydrogen diffusion, which significantly decreased hydriding temperature and shortened hydriding time. After hydrogenation, the hydrogenated sample composed of TiNiH and NbH with high brittleness can be easily ground into ultra-fine powers. The TiNiNb powers obtained by following vacuum dehydrogenation exhibit almost the same reversible phase transformation behavior as that of the original TiNiNb SMA before cold-work. Moreover, a TiNiNb part was obtained by hot-pressure sintering the hydrogenated powders, where sintering and dehydrogenation are carried out in one single step. The sintered TiNiNb part shows most the same reversible phase transformation behaviors as that of the original TiNiNb SMA and there is no visible additional brittle phase appearance.

  7. Ferromagnetic interactions and martensitic transformation in Fe doped Ni-Mn-In shape memory alloys

    SciTech Connect

    Lobo, D. N.; Priolkar, K. R.; Emura, S.; Nigam, A. K.

    2014-11-14

    The structure, magnetic, and martensitic properties of Fe doped Ni-Mn-In magnetic shape memory alloys have been studied by differential scanning calorimetry, magnetization, resistivity, X-ray diffraction (XRD), and EXAFS. While Ni{sub 2}MnIn{sub 1−x}Fe{sub x} (0 ≤ x ≤ 0.6) alloys are ferromagnetic and non martensitic, the martensitic transformation temperature in Ni{sub 2}Mn{sub 1.5}In{sub 1−y}Fe{sub y} and Ni{sub 2}Mn{sub 1.6}In{sub 1−y}Fe{sub y} increases for lower Fe concentrations (y ≤ 0.05) before decreasing sharply for higher Fe concentrations. XRD analysis reveals presence of cubic and tetragonal structural phases in Ni{sub 2}MnIn{sub 1−x}Fe{sub x} at room temperature with tetragonal phase content increasing with Fe doping. Even though the local structure around Mn and Ni in these Fe doped alloys is similar to martensitic Mn rich Ni-Mn-In alloys, presence of ferromagnetic interactions and structural disorder induced by Fe affect Mn-Ni-Mn antiferromagnetic interactions resulting in suppression of martensitic transformation in these Fe doped alloys.

  8. Nanoscale compositional analysis of NiTi shape memory alloy films deposited by DC magnetron sputtering

    SciTech Connect

    Sharma, S. K.; Mohan, S.; Bysakh, S.; Kumar, A.; Kamat, S. V.

    2013-11-15

    The formation of surface oxide layer as well as compositional changes along the thickness for NiTi shape memory alloy thin films deposited by direct current magnetron sputtering at substrate temperature of 300 °C in the as-deposited condition as well as in the postannealed (at 600 °C) condition have been thoroughly studied by using secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, and scanning transmission electron microscopy-energy dispersive x-ray spectroscopy techniques. Formation of titanium oxide (predominantly titanium dioxide) layer was observed in both as-deposited and postannealed NiTi films, although the oxide layer was much thinner (8 nm) in as-deposited condition. The depletion of Ti and enrichment of Ni below the oxide layer in postannealed films also resulted in the formation of a graded microstructure consisting of titanium oxide, Ni{sub 3}Ti, and B2 NiTi. A uniform composition of B2 NiTi was obtained in the postannealed film only below a depth of 200–250 nm from the surface. Postannealed film also exhibited formation of a ternary silicide (Ni{sub x}Ti{sub y}Si) at the film–substrate interface, whereas no silicide was seen in the as-deposited film. The formation of silicide also caused a depletion of Ni in the film in a region ∼250–300 nm just above the film substrate interface.

  9. Elucidation of microstructures produced in Ni51Fe22Ga27 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Murakami, Y.; Yano, T.; Shindo, D.; Kainuma, R.; Oikawa, K.; Ishida, K.

    2010-02-01

    Both the magnetic and crystallographic microstructures in the ferromagnetic shape memory alloy Ni51Fe22Ga27 were extensively studied by electron holography, electron diffraction, dark-field image observations, and the phenomenological crystallographic theory of martensitic transformations. This study elucidated anomalies that were observed in the magnetic flux pattern before the onset of the martensitic transformation. Furthermore, the observations clarified the relationship between the magnetization vectors and the shape strain directions in the martensite variants that formed a self-accommodation group.

  10. [NiTi shape-memory alloy cramp used in repair of skull defect].

    PubMed

    Wang, Z; Zhou, S; Tian, F

    1998-11-01

    Fixation of silicon-polyester fiber network on skull defect was usually difficult to handle and the fixation was unstable. In order to solve these problems, NiTi shape-memory alloy cramp was adopted and 101 patients with skull defects were selected for this clinical trial. Among them, there were 79 males and 22 females, and the age ranged from 12-55 years old. The area of skull defect ranged from 3 cm x 4 cm to 10 cm x 16 cm. All of these patients received repairing of the skull defects by silicon-polyester fiber network which was fixed by NiTi memory alloy cramps. After operation, there was no complication. One hundred patients were followed up for 1-8 years, in which 97 cases returned to their normal work, and only 2 cases had a transient dysfunction of frontal muscle for 2 months. In addition, There were no loosening of the cramps, displacement of plastic network and malignant degeneration. The NiTi shape-memory alloy cramps had the following advantages: 1. Simple operative procedure; 2. Rigid fixation; 3. Mild postoperative tissue reaction; 4. Few postoperative complication; 5. Favorable effect of skull repair; 6. No interference with CT and MRI image; 7. No carcinogenicity. PMID:10437089

  11. Characterization of NiTi Shape Memory Damping Elements designed for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Clipa, Victor; Gheorghita, Viorel; Gümpel, Paul

    2014-07-01

    Actuator elements made of NiTi shape memory material are more and more known in industry because of their unique properties. Due to the martensitic phase change, they can revert to their original shape by heating when subjected to an appropriate treatment. This thermal shape memory effect (SME) can show a significant shape change combined with a considerable force. Therefore such elements can be used to solve many technical tasks in the field of actuating elements and mechatronics and will play an increasing role in the next years, especially within the automotive technology, energy management, power, and mechanical engineering as well as medical technology. Beside this thermal SME, these materials also show a mechanical SME, characterized by a superelastic plateau with reversible elongations in the range of 8%. This behavior is based on the building of stress-induced martensite of loaded austenite material at constant temperature and facilitates a lot of applications especially in the medical field. Both SMEs are attended by energy dissipation during the martensitic phase change. This paper describes the first results obtained on different actuator and superelastic NiTi wires concerning their use as damping elements in automotive safety systems. In a first step, the damping behavior of small NiTi wires up to 0.5 mm diameter was examined at testing speeds varying between 0.1 and 50 mm/s upon an adapted tensile testing machine. In order to realize higher testing speeds, a drop impact testing machine was designed, which allows testing speeds up to 4000 mm/s. After introducing this new type of testing machine, the first results of vertical-shock tests of superelastic and electrically activated actuator wires are presented. The characterization of these high dynamic phase change parameters represents the basis for new applications for shape memory damping elements, especially in automotive safety systems.

  12. Static critical phenomena in Co-Ni-Ga ferromagnetic shape memory alloy

    SciTech Connect

    Sethi, Brahmananda Sarma, S. Srinivasan, A. Santra, S. B.

    2014-04-24

    Ferromagnetic shape memory alloys are smart materials because they exhibit temperature driven shape memory effect and magnetic field induced strain. Thus two types of energy, i.e. thermal and magnetic, are used to control their shape memory behaviour. Study of critical phenomenon in such materials has received increased experimental and theoretical attention for better understanding of the magnetic phase transition behavior as well as further development of ferromagnetic shape memory materials. In the present study we report the preparation and characterization of bulk Co{sub 45}Ni{sub 25}Ga{sub 30} alloy, prepared by a sequence of arc melting technique followed by homogenization at 1150 °C for 24 hours and ice-water quenching. Structural and magnetic properties of the alloys were studied by means of X-ray diffraction and vibrating sample magnetometer in an applied field range of ±18 kOe equipped with a high temperature oven. We have determined the critical temperature T{sub C} (∼375.5 K) and the critical exponents viz; β=0.40, γ=1.68 and δ=5.2. Asymptotic critical exponents β, γ, and δ obey Widom scaling relation, γ+β=βδ, and the magnetization data satisfy the scaling equation of state for second-order phase transition in the asymptotic critical region.

  13. Preparation of single crystal of TiNi alloy and its shape memory performance

    NASA Astrophysics Data System (ADS)

    Li, Chonghe; Guo, Ziming; Zhu, Ming; Lu, Xionggang; Ye, Xiaosu; Zhang, Panxin; Zhai, Qijie

    2009-07-01

    The unidirectional solidification equipment based on Bridgman method with high temperature gradient was designed, and the single crystal of Ti-50.0at%Ni alloy was successfully fabricated by this equipment as well as a selective growing zigzag-shaped crystallizer and a steady growth container that were made of electro graphite. The microstructure of single crystal sample was studied by means of Optical Microscopy (OM), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectrometer (EDS); the orientation of single crystal was measured by X-ray technology; the phase transformation points were determined by Differential Scanning Calorimetry (DSC). It is resulted that, the single crystal of TiNi shape memory alloy (SMA) can be prepared with a set of suitable process parameters; the microstructure of the single crystal obtained in this study is dendritic, there is Ti2Ni intermetallic between the dendrites, the angle between the orientation of single crystal and [111] plane is about 15 degree; the shape memory performances are improved obviously and the maximum recoverable strain reaches 10%.

  14. Microstructure and Shape Memory Characteristics of Powder-Metallurgical-Processed Ti-Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Chung, Young-Soo; Choi, Eunsoo; Nam, Tae-Hyun

    2012-08-01

    Even though Ti-Ni-Cu alloys have attracted a lot of attention because of their high performance in shape memory effect and decrease in thermal and stress hysteresis compared with Ti-Ni binary alloys, their poor workability restrains the practical applications of Ti-Ni-Cu shape memory alloys. Consolidation of Ti-Ni-Cu alloy powders is useful for the fabrication of bulk near-net-shape shape memory alloy. Ti50Ni30Cu20 shape memory alloy powders were prepared by gas atomization, and the sieved powders with the specific size range of 25 to 150 μm were chosen for this study. The evaluation of powder microstructures was based on a scanning electron microscope (SEM) examination of the surface and the polished and etched powder cross sections. The typical images showed cellular/dendrite morphology and high population of small shrinkage cavities at intercellular regions. Differential scanning calorimetry (DSC) and X-ray diffraction (XRD) analysis showed that a B2-B19 one-step martensitic transformation occurred in the as-atomized powders. The martensitic transformation start temperature (Ms) of powders ranging between 25 and 50 μm was 304.5 K (31.5 °C). The Ms increased with increasing powder size. However, the difference of Ms in the as-atomized powders ranging between 25 and 150 μm was only 274 K (1 °C). A dense cylindrical specimen of 10 mm diameter and 15 mm length were fabricated by spark plasma sintering (SPS) at 1073 K (800 °C) and 10 MPa for 20 minutes. Then, this bulk specimen was heat treated for 60 minutes at 1123 K (850 °C) and quenched in ice water. The Ms of the SPS specimen was 310.5 K (37.5 °C) whereas the Ms of conventionally cast ingot is found to be as high as 352.7 K (79.7 °C). It is considered that the depression of the Ms in rapidly solidified powders is ascribed to the density of dislocations and the stored energy produced by rapid solidification.

  15. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    SciTech Connect

    Pramanick, S.; Giri, S.; Majumdar, S.; Chatterjee, S.

    2014-09-15

    Present work reports on the observation of large magnetoresistance (∼−30% at 80 kOe) and magnetocaloric effect (∼12 J·kg{sup −1}·K{sup −1} for 0–50 kOe) near room temperature (∼290 K) on the Ni-excess ferromagnetic shape memory alloy Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56}. The sample can be thought of being derived from the parent Ni{sub 2}Mn{sub 1.4}Sn{sub 0.6} alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni{sub 2.04}Mn{sub 1.4}Sn{sub 0.56} it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  16. Excess Ni-doping induced enhanced room temperature magneto-functionality in Ni-Mn-Sn based shape memory alloy

    NASA Astrophysics Data System (ADS)

    Pramanick, S.; Chatterjee, S.; Giri, S.; Majumdar, S.

    2014-09-01

    Present work reports on the observation of large magnetoresistance (˜-30% at 80 kOe) and magnetocaloric effect (˜12 J.kg-1.K-1 for 0-50 kOe) near room temperature (˜290 K) on the Ni-excess ferromagnetic shape memory alloy Ni2.04Mn1.4Sn0.56. The sample can be thought of being derived from the parent Ni2Mn1.4Sn0.6 alloy, where excess Ni was doped at the expense of Sn. Such Ni doping enhances the martensitic transition temperature and for the Ni2.04Mn1.4Sn0.56 it is found to be optimum (288 K). The doped alloy shows enhanced magneto-functional properties as well as reduced saturation magnetization as compared to the undoped counterpart at low temperature. A probable increment of antiferromagnetic correlation between Mn-atoms on Ni substitution can be accounted for the enhanced magneto-functional properties as well as reduction in saturation moment.

  17. Experimental Investigation on the Mechanical Instability of Superelastic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Xiao, Yao; Zeng, Pan; Lei, Liping

    2016-06-01

    In this paper, primary attention is paid to the mechanical instability of superelastic NiTi shape memory alloy (SMA) during localized forward transformation at different temperatures. By inhibiting the localized phase transformation, we can obtain the up-down-up mechanical response of NiTi SMA, which is closely related to the intrinsic material softening during localized martensitic transformation. Furthermore, the material parameters of the up-down-up stress-strain curve are extracted, in such a way that this database can be utilized for simulation and validation of the theoretical analysis. It is found that during forward transformation, the upper yield stress, lower yield stress, Maxwell stress, and nucleation stress of NiTi SMA exhibit linear dependence on temperature. The relation between nucleation stress and temperature can be explained by the famous Clausius-Clapeyron equation, while the relation between upper/lower yield stress and temperature lacks theoretical study, which needs further investigation.

  18. Fatigue properties of NiTi shape-memory alloy thin plates

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroshi; Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Saito, Makoto

    2013-04-01

    The mechanical and fatigue characteristics of superelastic NiTi thin plates in the large strain area were obtained by tensile and pulsating 4-point bending tests to establish the design guidelines for the ferromagnetic shape memory alloy (FSMA) composite actuator and its fatigue life. The stress-strain curves of NiTi thin plates were found to be strain rate dependent. The finite element analysis (FEA) result using the stress-strain curve measured by tensile test is in good agreement with the experimental results of the 4-point bending tests. The relationship between the maximum bending strain and the number of cycles to failure in pulsating 4-point bending fatigue tests was obtained as well as an analysis of the fatigue fracture surfaces of NiTi thin plates.

  19. Wear Properties of Porous NiTi Orthopedic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Wu, Shuilin; Liu, Xiangmei; Yeung, K. W. K.; Xu, Z. S.; Chung, C. Y.; Chu, Paul K.

    2012-12-01

    Porous NiTi shape memory alloy (SMA) scaffolds have great potential to be used as orthopedic implants because of their porous structure and superior physical properties. Its metallic nature provides it with better mechanical properties and Young's modulus close to that of natural bones. Besides allowing tissue ingrowth and transfer of nutrients, porous SMA possesses unique pseudoelastic properties compatible to natural hard tissues like bones and tendons, thus expediting in vivo osseointegration. However, the nickel release from debris and the metal surface may cause osteocytic osteolysis at the interface between the artificial implants and bone tissues. Subsequent mobilization may finally lead to implant failure. In this study, the wear properties of porous NiTi with different porosities processed at different treatment temperatures are determined. The results of the study show that the porosity, phase transformation temperature, and annealing temperature are major factors influencing the wear characteristics of porous NiTi SMA.

  20. Cytocompatibility evaluation of NiMnSn meta-magnetic shape memory alloys for biomedical applications.

    PubMed

    Guiza-Arguello, Viviana R; Monroe, James A; Karaman, Ibrahim; Hahn, Mariah S

    2016-07-01

    Recently, magnetic shape memory alloys (MSMAs) have emerged as an interesting extension to conventional shape memory alloys (SMAs) due to their capacity to undergo reversible deformation in response to an externally applied magnetic field. Meta-magnetic SMAs (M-MSMAs) are a class of MSMAs that are able to transform magnetic energy to mechanical work by harnessing a magnetic-field induced phase transformation, and thus have the capacity to impose up to 10 times greater stress than conventional MSMAs. As such, M-MSMAs may hold substantial promise in biomedical applications requiring extracorporeal device activation. In the present study, the cytotoxicity and ion release from an Ni50 Mn36 Sn14 atomic percent composition M-MSMA were evaluated using NIH/3T3 fibroblasts. Initial studies showed that the viability of cells exposed to NiMnSn ion leachants was 60 to 67% of tissue culture polystyrene (TCP) controls over 10 to 14 days of culture. This represents a significant improvement in cytocompatibility relative to NiMnGa alloys, one of the most extensively studied MSMA systems, which have been reported to induce 80% cell death in only 48 h. Furthermore, NiMnSn M-MSMA associated cell viability was increased to 80% of TCP controls following layer-by-layer alloy coating with poly(allylamine hydrochloride)/poly(acrylic acid) [PAH/PAA]. Ion release measures revealed that the PAH/PAA coatings decreased total Sn and Mn ion release by 50% and 25%, respectively, and optical microscopy evaluation indicated that the coatings reduced NiMnSn surface oxidation. To our knowledge, this study presents the first cytotoxicity evaluation of NiMnSn M-MSMAs and lays the groundwork for their further biological evaluation. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 853-863, 2016. PMID:25953682

  1. Corrosion behavior of titanium nitride coated Ni-Ti shape memory surgical alloy.

    PubMed

    Starosvetsky, D; Gotman, I

    2001-07-01

    Nickel-titanium (NiTi, nitinol) shape memory alloy was nitrided using an original powder immersion reaction assisted coating (PIRAC) method in order to modify its surface properties. PIRAC nitriding method is based on annealing the samples in the atmosphere of highly reactive nitrogen supplied by decomposition of unstable nitride powders or, alternatively, by selective diffusion of the atmospheric nitrogen to the sample surface. Being a non-line-of-sight process, PIRAC nitriding allows uniform treatment of complex shape surgical implants. Hard two-layer titanium nitride (TiN)/Ti2, Ni coatings were obtained on NiTi surface after PIRAC anneals at 900 and 1000 degrees C. PIRAC coating procedure was found to considerably improve the corrosion behavior of NiTi alloy in Ringer's solution. In contrast to untreated nitinol, no pitting was observed in the samples PIRAC nitrided at 1000 degrees C, 1 h up to 1.1 V. The coated samples were also characterized by very low anodic currents in the passive region and by an exceedingly low metal ion release rate. The research results suggest that PIRAC nitriding procedure could improve the in vivo performance of NiTi alloys implanted into the human body. PMID:11396890

  2. Effects of Ni content on the shape memory properties and microstructure of Ni-rich NiTi-20Hf alloys

    NASA Astrophysics Data System (ADS)

    Saghaian, S. M.; Karaca, H. E.; Tobe, H.; Pons, J.; Santamarta, R.; Chumlyakov, Y. I.; Noebe, R. D.

    2016-09-01

    Shape memory properties and microstructure of four Ni-rich NiTiHf alloys (Ni50.3Ti29.7Hf20, Ni50.7Ti29.3Hf20, Ni51.2Ti28.8Hf20, and Ni52Ti28Hf20 (at.%)) were systematically characterized in the furnace cooled condition. H-phase precipitates were formed during furnace cooling in compositions with greater than 50.3Ni and the driving force for nucleation increased with Ni content. Alloy strength increased while recoverable strain decreased with increasing Ni content due to changes in precipitate characteristics. When the precipitates were small (∼5–15 nm), they were readily absorbed by martensite plates, which resulted in maximum recoverable strain of 2% in Ni50.7Ti29.3Hf20. With increasing Ni content, the size (>100 nm) and volume fraction of precipitates increased and the growth of martensite plates was constrained between the precipitates when the Ni concentration was greater than 50.7 at.%. Near perfect dimensional stability with negligible irrecoverable strain was observed at stress levels as high as 2 GPa in the Ni52Ti28Hf20 alloy, though the recoverable strain was rather small. In general, strong local stress fields were created at precipitate/matrix interphases, which lead to high stored elastic energy during the martensitic transformation.

  3. Microstructure and shape recovery characteristics in a TIG-welded Fe-Mn-Si-Cr-Ni shape memory alloy

    NASA Astrophysics Data System (ADS)

    Qiao, Zhixia; Li, Lianjin; Wang, Dongai; Li, Zongmin

    2007-07-01

    Microstructure of an Fe-Mn-Si-Cr-Ni shape memory alloy (SMA) after being TIG (tungsten-insert gas welding) welded was investigated using scanning electron microscope (SEM) and X-ray diffractometer. The results show that dendrite crystals composed of cellular sub-structures form in the weld zone due to remelting. There is no obvious change in microstructure of the heat-affected zone (HAZ) except for some degree of growth of austenite grains. Since both the weld zone and HAZ consist of single phase of austenite (γ), pre-strain can still induce the γ-->ɛ martensite transformation in welding joints of the alloy. Effect of TIG welding on shape recovery characteristics of the alloy was examined by bending tests and it was found that the TIG-welded Fe-Mn-Si-Cr-Ni alloy exhibits almost the same excellent SME as the base material.

  4. Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems

    NASA Astrophysics Data System (ADS)

    Strittmatter, Joachim; Gümpel, Paul

    2011-07-01

    In automotive a lot of electromagnetically, pyrotechnically or mechanically driven actuators are integrated to run comfort systems and to control safety systems in modern passenger cars. Using shape memory alloys (SMA) the existing systems could be simplified, performing the same function through new mechanisms with reduced size, weight, and costs. A drawback for the use of SMA in safety systems is the lack of materials knowledge concerning the durability of the switching function (long-time stability of the shape memory effect). Pedestrian safety systems play a significant role to reduce injuries and fatal casualties caused by accidents. One automotive safety system for pedestrian protection is the bonnet lifting system. Based on such an application, this article gives an introduction to existing bonnet lifting systems for pedestrian protection, describes the use of quick changing shape memory actuators and the results of the study concerning the long-time stability of the tested NiTi-wires. These wires were trained, exposed up to 4 years at elevated temperatures (up to 140 °C) and tested regarding their phase change temperatures, times, and strokes. For example, it was found that A P-temperature is shifted toward higher temperatures with longer exposing periods and higher temperatures. However, in the functional testing plant a delay in the switching time could not be detected. This article gives some answers concerning the long-time stability of NiTi-wires that were missing till now. With this knowledge, the number of future automotive applications using SMA can be increased. It can be concluded, that the use of quick changing shape memory actuators in safety systems could simplify the mechanism, reduce maintenance and manufacturing costs and should be insertable also for other automotive applications.

  5. Structure Analysis of a Precipitate Phase in an Ni-Rich High Temperature NiTiHf Shape Memory Alloy

    SciTech Connect

    Yang, Fan; Coughlin, D. R.; Phillips, Patrick J.; Yang, L.; Devaraj, Arun; Kovarik, Libor; Noebe, Ronald D.; Mills, M. J.

    2013-03-22

    Thermal aging of the high temperature shape memory alloy 50.3Ni-29.7Ti-20Hf (at.%) introduces a novel precipitate phase, which plays an important role in improving shape memory properties. The precipitate phase was investigated by conventional electron diffraction, high resolution scanning transmission electron microscopy (STEM) and three dimensional atom probe tomography. An unrelaxed orthorhombic atomic structural model is proposed based on these observations. This model was subsequently relaxed by ab initio calculations. As a result of the relaxation, atom shuffle displacements occur, which in turn yields improved agreement with the STEM images. The relaxed structure, which is termed the “H-phase”, has also been verified to be thermodymanically stable at 0 K.

  6. In vitro investigation of NiTiW shape memory alloy as potential biomaterial with enhanced radiopacity.

    PubMed

    Li, Huafang; Cong, Ying; Zheng, Yufeng; Cui, Lishan

    2016-03-01

    In the present study, a novel kind of NiTiW shape memory alloy with chemical composition of Ni43.5Ti45.5W11 (at.%) has been successfully developed with excellent X-ray radiopacity by the introduction of pure W precipitates into the NiTi matrix phase. Its microstructure, X-ray radiopacity, mechanical properties, corrosion resistance in simulated body fluid, hemocompatibility and in vitro cytocompatibility were systematically investigated. The typical microstructural feature of NiTiW alloy at room temperature was tiny pure W particles randomly distributing in the NiTi matrix phase. The presence of W precipitates was found to result in enhanced radiopacity and microhardness of NiTiW alloy in comparison to that of NiTi binary alloy. NiTiW alloy exhibits excellent shape memory effect, and a maximum shape recovery ratio of about 30% was obtained with a total prestrain of 8% for the NiTiW alloy sample. In the electrochemical test, NiTiW alloy presented an excellent corrosion resistance in simulated body fluid, comparable to that of NiTi alloy. Hemocompatibility tests indicated that the NiTiW alloy has quite low hemolysis (lower than 0.5%) and the adherent platelet showed round shape without pseudopod. Besides, in vitro cell viability tests demonstrated that the cell viability is all above 90%, and the cells spread well on the NiTiW alloy, having polygon or spindle healthy morphology. The hemocompatibility tests, in vitro cell viability tests and morphology observation indicated that the NiTiW shape memory alloys have excellent biocompatibility. The excellent X-ray radiopacity makes the NiTiW alloys show obvious advantages in orthopedic, stomatological, neurological and cardiovascular domains where radiopacity is quite important factor in order to guarantee successful implantation. PMID:26706563

  7. Shape Memory Effect in Cast Versus Deformation-Processed NiTiNb Alloys

    NASA Astrophysics Data System (ADS)

    Hamilton, Reginald F.; Lanba, Asheesh; Ozbulut, Osman E.; Tittmann, Bernhard R.

    2015-06-01

    The shape memory effect (SME) response of a deformation-processed NiTiNb shape memory alloy is benchmarked against the response of a cast alloy. The insoluble Nb element ternary addition is known to widen the hysteresis with respect to the binary NiTi alloy. Cast microstructures naturally consist of a cellular arrangement of characteristic eutectic microconstituents surrounding primary matrix regions. Deformation processing typically aligns the microconstituents such that the microstructure resembles discontinuous fiber-reinforced composites. Processed alloys are typically characterized for heat-to-recover applications and thus deformed at constant temperature and subsequently heated for SME recovery, and the critical stress levels are expected to facilitate plastic deformation of the microconstituents. The current work employs thermal cycling under constant bias stresses below those critical levels. This comparative study of cast versus deformation-processed NiTiNb alloys contrasts the strain-temperature responses in terms of forward Δ T F = M s - M f and reverse Δ T R = A f - A s temperature intervals, the thermal hysteresis, and the recovery ratio. The results underscore that the deformation-processed microstructure inherently promotes irreversibility and differential forward and reverse transformation pathways.

  8. Thermal and structural characterization of Cu-Al-Mn-X (Ti, Ni) shape memory alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Genc, Z. Karagoz; Sekerci, M.

    2014-05-01

    In this study, the Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys at the range of 10-12 at.% of aluminum and 4-5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu-Al-Mn-X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu-Al-Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu-Al-Mn-Ni sample is martensite, and due to the low solubility of the Ti, the Cu-Al-Mn-Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu-Al-Mn, Cu-Al-Mn-Ni and Cu-Al-Mn-Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.

  9. Shape memory characteristics of powder metallurgy processed Ti50Ni50 alloy

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-wook; Jeon, Kyung-su

    Ti50Ni50 shape memory alloy powders were prepared by inert gas atomization and the powders were consolidated by spark plasma sintering (SPS) to fabricated dense bulk samples. Martensitic transformation temperatures and microstructures of the asatomized powders and the consolidated disks were investigated. DSC and XRD analysis showed that the B2-B19' martensitic transformation occurred in the powders and the disks. The martensitic transformation start temperature (Ms) of the powders was 22.9∘ C. However, the Ms of the SPS disk was 65.9∘ C. It is considered that this increase in transformation temperature is ascribed to the microstructural change during SPS processing.

  10. Multiscale twin hierarchy in NiMnGa shape memory alloys with Fe and Cu

    DOE PAGESBeta

    Barabash, Rozaliya I.; Barabash, Oleg M.; Popov, Dmitry; Shen, Guoyin; Park, Changyong; Yang, Wenge

    2015-01-31

    X-ray microdiffraction and scanning electron microscopy studies reveal 10 M martensitic structure with a highly correlated multiscale twin hierarchy organization in NiMnGaFeCu shape memory alloys. In this paper, high compatibility is found at the twin interfaces resulting in a highly correlated twinned lattice orientation across several laminate levels. The lattice unit cell is described as monoclinic I-centered with a = 4.28 Å, b = 4.27 Å, c = 5.40 Å, γ = 78.5°. The modulation is found parallel to the b axis. Finally, thin tapered needle-like lamellae and branching are observed near the twin boundaries.

  11. Precipitation Effects on the Martensitic Transformation in a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Suru, Marius-Gabriel; Lohan, Nicoleta-Monica; Pricop, Bogdan; Mihalache, Elena; Mocanu, Mihai; Bujoreanu, Leandru-Gheorghe

    2016-04-01

    This paper describes the effects of precipitation of α-phase on a Cu-Al-Ni shape memory alloy (SMA) with chemical composition bordering on β region. By differential scanning calorimetry, a series of reproducible heat flow fluctuations was determined on heating a hot-rolled martensitic Cu-Al-Ni SMA, which was associated with the precipitation of α-phase. Two heat treatments were given to the SMA so as to "freeze" its states before and after the thermal range for precipitation, respectively. The corresponding microstructures of the two heat-treated states were observed by optical and scanning electron microscopy and were compared with the initial martensitic state. Energy dispersive spectroscopy experiments were carried out to determine the chemical compositions of the different phases formed in heat-treated specimens. The initial as well as the heat-treated specimens with a lamellar shape were further comparatively investigated by dynamic mechanical analysis and two-way shape memory effect (TWSME) tests comprising heating-cooling cycles under a bending load. Temperature scans were applied to the three types of specimens (initial and heat-treated states), so as to bring out the effects of heat treatment. The storage modulus increased, corresponding to the reversion of thermoelastic martensite and disappeared with the formation of precipitates. These features are finally discussed in association with TWSME under bending.

  12. Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy

    NASA Astrophysics Data System (ADS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Bigelow, G.; Gaydosh, D.

    2015-12-01

    The work output capacity of the two-way shape memory effect (TWSME) in a Ni50.3Ti29.7Hf20 (at%) high-temperature shape memory alloy (HTSMA) was investigated and compared to that of binary Ni49.9Ti50.1 (at%). TWSME was induced through a training procedure of 100 thermomechanical cycles under different tensile stresses. It was observed that TWSME in as-extruded and trained Ni50.3Ti29.7Hf20 could produce 0.7% strain against a compressive stress of 100 MPa, corresponding to a maximum work output of 0.08 J g-1, compared to a maximum value of 0.06 J g-1 for binary NiTi. A peak aging heat treatment of 3 h at 550 °C, which previously has been shown to result in near-perfect functional stability in Ni50.3Ti29.7Hf20 during isobaric thermal cycling, did not improve the TWSME and actually resulted in a decrease in the magnitude and stability of the TWSME and its work output capacity. Nevertheless, the magnitude of TWSM behavior of Ni50.3Ti29.7Hf20, in the absence of an aging heat treatment, renders it an attractive candidate for high-temperature TWSM actuation.

  13. Enhanced Sintering of TiNi Shape Memory Foams under Mg Vapor Atmosphere

    NASA Astrophysics Data System (ADS)

    Aydoğmuş, Tarik; Bor, Şakir

    2012-12-01

    TiNi alloy foams are promising candidates for biomaterials to be used as artificial orthopedic implant materials for bone replacement applications in biomedical sector. However, certain problems exist in their processing routes, such as formation of unwanted secondary intermetallic phases leading to brittleness and deterioration of shape memory and superelasticity characteristics; and the contamination during processing resulting in oxides and carbonitrides which affect mechanical properties negatively. Moreover, the eutectic reaction present in Ti-Ni binary system at 1391 K (1118 °C) prevents employment of higher sintering temperatures (and higher mechanical properties) even when equiatomic prealloyed powders are used because of Ni enrichment of TiNi matrix as a result of oxidation. It is essential to prevent oxidation of TiNi powders during processing for high-temperature (>1391 K i.e., 1118 °C) sintering practices. In the current study, magnesium powders were used as space holder material to produce TiNi foams with the porosities in the range of 40 to 65 pct. It has been found that magnesium prevents secondary phase formation and contamination. It also prevents liquid phase formation while enabling employment of higher sintering temperatures by two-step sintering processing: holding the sample at 1373 K (1100 °C) for 30 minutes, and subsequently sintering at temperatures higher than the eutectic temperature, 1391 K (1118 °C). By this procedure, magnesium may allow sintering up to temperatures close to the melting point of TiNi. TiNi foams produced with porosities in the range of 40 to 55 pct were found to be acceptable as implant materials in the light of their favorable mechanical properties.

  14. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  15. Composition of sputtered NiTiX shape-memory and superelastic thin films

    NASA Astrophysics Data System (ADS)

    Grummon, D. S.; Lagrange, T.

    2003-10-01

    Obtaining desired mechanical and transformational properties in shape-memory and superelastic alloys in the NiTiX system (X=Cu, Hf, Pd, Pt, etc.) requires very tight control of alloy composition. While this is not difficult to achieve in melt-solidification, the sputtering process involves a number of mechanisms, such as preferential resputtering, or species-dependent divergence of the sputter flux, which may cause film composition to deviate from that of the sputter cathode. Of particular concern is the tendency for composition to vary with position on the substrate, and to drift over time as the sputter cathode erodes. Neither problem can be addressed by simple adjustment of the cathode composition. In this paper we consider the often-observed tendency for sputtered TiNi films to be deficient in Ti relative to the cathode composition. A preliminary model is presented which simulates the effect of differential angular distribution of the sputter flux between Ti and Ni by adopting a modified cosine law [1] in which the elemental flux is proportional to \\cosθ/(ρ_i sin^2θ+\\cos^2θ). It is found that different species-dependent values of ρ_i, for Ni and Ti respectively, have only modest effect on in-plane composition gradients and time-evolution of composition, but that a systematic Ti deficiency is readily produced by setting ρ_Ti<ρ_Ni.

  16. SmartFlex® NiTi Wires for Shape Memory Actuators

    NASA Astrophysics Data System (ADS)

    Fumagalli, L.; Butera, F.; Coda, A.

    2009-08-01

    Shape memory alloys (SMAs) are active metallic materials classified nowadays as “smart” or “intelligent” materials. One of their main areas of interest is that of actuators. The use of SMAs in actuators offers the opportunity to develop robust, simple, and lightweight elements that can represent an alternative to electro-magnetic actuators commonly used in several fields of industrial applications, such as automotive, appliances, etc. SAES Getters S.p.A. thanks to its vertically integrated process and to the scientific and quality approach, developed a NiTi-based wires family which can represent a solution for shape memory actuators. In this paper, the mechanical, thermal, and electrical response of these shape memory wires, with diameters ranging from 20 to 500 μm, will be examined and discussed, with particular focus on the design of the actuator. The thermo-mechanical properties have been investigated and measured by several methods. The most common and useful tests for these commercially available wires will be also described.

  17. Magnetic and mechanical properties of Ni-Mn-Ga/Fe-Ga ferromagnetic shape memory composite

    NASA Astrophysics Data System (ADS)

    Tan, Chang-Long; Zhang, Kun; Tian, Xiao-Hua; Cai, Wei

    2015-05-01

    A ferromagnetic shape memory composite of Ni-Mn-Ga and Fe-Ga was fabricated by using spark plasma sintering method. The magnetic and mechanical properties of the composite were investigated. Compared to the Ni-Mn-Ga alloy, the threshold field for magnetic-field-induced strain in the composite is clearly reduced owing to the assistance of internal stress generated from Fe-Ga. Meanwhile, the ductility has been significantly improved in the composite. A fracture strain of 26% and a compressive strength of 1600 MPa were achieved. Projects supported by the National Natural Science Foundation of China (Grant Nos. 51271065 and 51301054), the Program for New Century Excellent Talents in Heilongjiang Provincial Education Department, China (Grant No. 1253-NCET-009), the Youth Academic Backbone in Heilongjiang Provincial Education Department, China (Grant No. 1251G022), the Projects of Heilongjiang, China, and China Postdoctoral Science Foundation.

  18. Fracture modes during severe plastic deformation of NiTi shape memory alloys

    NASA Astrophysics Data System (ADS)

    Craciunescu, C. M.; Silva, R. J. C.; Fernandes, F. M. Braz

    2015-07-01

    The effects of severe plastic deformation on the surface micro-structural characteristics of NiTi shape memory alloys were observed after one single pass using the equal channel angular pressure technique. The analysis of the deformation and fracture showed distinct features related to the composition of the alloys, the temperature of the process, and the surface effects during the relative sliding in the die. In samples deformed at room temperature, the cracks initiated at the surface under tensile stress are amplified during the extrusion in the concurrent channel. The multiple cracks that develop during the friction process between the surfaces of the sample and channels of the die are the main cause for the fracture, even in materials that are less brittle, incorporating a smaller fraction of Ti2Ni precipitates and showing ductile fracture. A differential state of stress appears to exist in the deformed alloys starting from one surface to the other.

  19. NiTi shape memory via solid-state nudge-elastic band

    NASA Astrophysics Data System (ADS)

    Zarkevich, Nikolai A.; Johnson, Duane D.

    2014-03-01

    We determine atomic mechanisms of the shape memory effect in NiTi from a generalized solid-state nudge elastic band (SSNEB) method. We consider transformation between the austenite B2 and the ground-state base-centered orthorhombic (BCO) structures. In these pathways we obtain the R-phase and discuss its structure. We confirm that BCO is the ground state, and determine the pathways to BCO martensite, which dictate transition barriers. While ideal B2 is unstable, we find a B2-like NiTi high-temperature solid phase with significant local displacement disorder, which is B2 on average. This B2-like phase appears to be entropically stabilized. This work is supported by the U.S. Department of Energy, Office of Basic Energy Science, Division of Materials Science and Engineering. Ames Laboratory is operated for the U.S. DOE by Iowa State University under contract DE-AC02-07CH11358.

  20. Characterization of Ternary NiTiPt High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Rios, Orlando; Noebe, Ronald; Biles, Tiffany; Garg, Anita; Palczer, Anna; Scheiman, Daniel; Seifert, Hans Jurgen; Kaufman, Michael

    2005-01-01

    Pt additions substituted for Ni in NiTi alloys are known to increase the transformation temperature of the alloy but only at fairly high Pt levels. However, until now only ternary compositions with a very specific stoichiometry, Ni50-xPtxTi50, have been investigated and then only to very limited extent. In order to learn about this potential high-temperature shape memory alloy system, a series of over twenty alloys along and on either side of a line of constant stoichiometry between NiTi and TiPt were arc melted, homogenized, and characterized in terms of their microstructure, transformation temperatures, and hardness. The resulting microstructures were examined by scanning electron microscopy and the phase compositions quantified by energy dispersive spectroscopy."Stoichiometric" compositions along a line of constant stoichiometry between NiTi to TiPt were essentially single phase but by any deviations from a stoichiometry of (Ni,Pt)50Ti50 resulted in the presence of at least two different intermetallic phases, depending on the overall composition of the alloy. Essentially all alloys, whether single or two-phase, still under went a martensitic transformation. It was found that the transformation temperatures were depressed with initial Pt additions but at levels greater than 10 at.% the transformation temperature increased linearly with Pt content. Also, the transformation temperatures were relatively insensitive to alloy stoichiometry within the range of alloys examined. Finally, the dependence of hardness on Pt content for a series of Ni50-xPtxTi50 alloys showed solution softening at low Pt levels, while hardening was observed in ternary alloys containing more than about 10 at.% Pt. On either side of these "stoichiometric" compositions, hardness was also found to increase significantly.

  1. Thermomechanical behavior of NiTiPdPt high temperature shape memory alloy springs

    NASA Astrophysics Data System (ADS)

    Nicholson, D. E.; Padula, S. A., II; Noebe, R. D.; Benafan, O.; Vaidyanathan, R.

    2014-12-01

    Transformation strains in high temperature shape memory alloys (HTSMAs) are generally smaller than for conventional NiTi alloys and can be purposefully limited in cases where stability and repeatability at elevated temperatures are desired. Yet such alloys can still be used in actuator applications that require large strokes when used in the form of springs. Thus there is a need to understand the thermomechanical behavior of shape memory alloy spring actuators, particularly those consisting of alternative alloys. In this work, a modular test setup was assembled with the objective of acquiring stroke, stress, temperature, and moment data in real time during joule heating and forced convective cooling of Ni19.5Ti50.5Pd25Pt5 HTSMA springs. The spring actuators were subjected to both monotonic axial loading and thermomechanical cycling. The role of rotational constraints (i.e., by restricting rotation or allowing for free rotation at the ends of the springs) on stroke performance was also assessed. Finally, recognizing that evolution in the material microstructure can result in changes in HTSMA spring geometry, the effect of material microstructural evolution on spring performance was examined. This was done by taking into consideration the changes in geometry that occurred during thermomechanical cycling. This work thus provides insight into designing with HTSMA springs and predicting their thermomechanical performance.

  2. Behavior of a Ni-Ti shape memory alloy under cyclic proportional and nonproportional loading

    NASA Astrophysics Data System (ADS)

    Lim, Tzishing Jesse

    Ni-Ti shape memory alloy behaves pseudoelastically above the austenite finish temperature, Af, due to stress-induced austenite-martensite phase transformation. In this work, novel multiaxial proportional and nonproportional loading experiments were conducted on a Ni-Ti shape memory alloy above the Af temperature. Several features of pseudoelasticity were highlighted, namely, the tension-compression asymmetry, near symmetry in both senses of shear, apparent strain rate dependence and relaxation (thermo-mechanical effects) and nonconformity to J2--J3 theory of phase transformation under nonproportional loading. Both a simplified representative volume element (RVE) numerical scheme and finite element (FE) modeling based on a micromechanical constitutive model were conducted in order to study the mechanics of phase transformation, interaction between different martensite variants, and intergranular interactions in a polycrystalline structure. In simulations, the austenite to martensite phase transformation can be quite accurately predicted for different modes of loading. Strain rate effects can also be quite accurately modeled; specimen heating/cooling due to latent heat generation/absorption during phase transformation is the primary cause of strain rate dependence.

  3. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-06-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  4. TiNi shape memory alloy coated with tungsten: a novel approach for biomedical applications.

    PubMed

    Li, Huafang; Zheng, Yufeng; Pei, Y T; De Hosson, J Th M

    2014-05-01

    This study explores the use of DC magnetron sputtering tungsten thin films for surface modification of TiNi shape memory alloy (SMA) targeting for biomedical applications. SEM, AFM and automatic contact angle meter instrument were used to determine the surface characteristics of the tungsten thin films. The hardness of the TiNi SMA with and without tungsten thin films was measured by nanoindentation tests. It is demonstrated that the tungsten thin films deposited at different magnetron sputtering conditions are characterized by a columnar microstructure and exhibit different surface morphology and roughness. The hardness of the TiNi SMA was improved significantly by tungsten thin films. The ion release, hemolysis rate, cell adhesion and cell proliferation have been investigated by inductively coupled plasma atomic emission spectrometry, CCK-8 assay and alkaline phosphatase activity test. The experimental findings indicate that TiNi SMA coated with tungsten thin film shows a substantial reduction in the release of nickel. Therefore, it has a better in vitro biocompatibility, in particular, reduced hemolysis rate, enhanced cell adhesion and differentiation due to the hydrophilic properties of the tungsten films. PMID:24481534

  5. Surface characterizations of laser modified biomedical grade NiTi shape memory alloys.

    PubMed

    Pequegnat, A; Michael, A; Wang, J; Lian, K; Zhou, Y; Khan, M I

    2015-05-01

    Laser processing of shape memory alloys (SMAs) promises to enable the multifunctional capabilities needed for medical device applications. Prior to clinical implementation, the surface characterisation of laser processed SMA is essential in order to understand any adverse biological interaction that may occur. The current study systematically investigated two Ni-49.8 at.% Ti SMA laser processed surface finishes, including as-processed and polished, while comparing them to a chemically etched parent material. Spectrographic characterisation of the surface included; X-ray photoelectron spectroscopy (XPS), auger electron spectroscopy (AES), and Raman spectroscopy. Corrosion performance and Ni ion release were also assessed using potentiodynamic cyclic polarization testing and inductively coupled plasma optical emission spectroscopy (ICP-OES), respectively. Results showed that surface defects, including increased roughness, crystallinity and presence of volatile oxide species, overshadowed any possible performance improvements from an increased Ti/Ni ratio or inclusion dissolution imparted by laser processing. However, post-laser process mechanical polishing was shown to remove these defects and restore the performance, making it comparable to chemically etched NiTi material. PMID:25746282

  6. Effect of Deformation Mode on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yan, Lina; Liu, Yong

    2016-05-01

    Owing to good biocompatibility, good fatigue resistance, and excellent superelasticity, various types of bio-medical devices based on NiTi shape memory alloy (SMA) have been developed. Due to the complexity in deformation mode in service, for example NiTi implants, accurate assessment/prediction of the surface wear process is difficult. This study aims at providing a further insight into the effect of deformation mode on the wear behavior of NiTi SMA. In the present study, two types of wear testing modes were used, namely sliding wear mode and reciprocating wear mode, to investigate the effect of deformation mode on the wear behavior of NiTi SMA in both martensitic and austenitic states. It was found that, when in martensitic state and under high applied loads, sliding wear mode resulted in more surface damage as compared to that under reciprocating wear mode. When in austenitic state, although similar trends in the coefficient of friction were observed, the coefficient of friction and surface damage in general is less under reciprocating mode than under sliding mode. These observations were further discussed in terms of different deformation mechanisms involved in the wear tests, in particular, the reversibility of martensite variant reorientation and stress-induced phase transformation, respectively.

  7. Mechanical behavior and phase stability of NiAl-based shape memory alloys

    SciTech Connect

    George, E.P.; Liu, C.T.; Horton, J.A.; Kunsmann, H.; King, T.; Kao, M.

    1993-12-31

    NiAl-based shape memory alloys (SMAs) can be made ductile by alloying with 100--300 wppm B and 14--20 at.% Fe. The addition of Fe has the undesirable effect that it lowers the temperature (A{sub p}) of the martensite {yields} austenite phase transformation. Fortunately, however, A can be raised by lowering the ``equivalent`` amount of Al in the alloy. In this way a high A{sub p} temperature of {approximately}190 C has been obtained without sacrificing ductility. Furthermore, a recoverable strain of 0.7% has been obtained in a Ni-Al-Fe alloy with A{sub p} temperature of {approximately}140 C. Iron additions do not suppress the aging-induced embrittlement that occurs in NiAl alloys at 300--500 C as a result of Ni{sub 5}Al{sub 3} precipitation. Manganese additions (up to 10 at.%) have the effect of lowering A{sub p}, degrading hot workability, and decreasing room-temperature ductility.

  8. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    SciTech Connect

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, but unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.

  9. Shape-memory transformations of NiTi: Minimum-energy pathways between austenite, martensites, and kinetically limited intermediate states

    DOE PAGESBeta

    Zarkevich, N. A.; Johnson, D. D.

    2014-12-24

    NiTi is the most used shape-memory alloy, nonetheless, a lack of understanding remains regarding the associated structures and transitions, including their barriers. Using a generalized solid-state nudge elastic band (GSSNEB) method implemented via density-functional theory, we detail the structural transformations in NiTi relevant to shape memory: those between body-centered orthorhombic (BCO) groundstate and a newly identified stable austenite (“glassy” B2-like) structure, including energy barriers (hysteresis) and intermediate structures (observed as a kinetically limited R-phase), and between martensite variants (BCO orientations). All results are in good agreement with available experiment. We contrast the austenite results to those from the often-assumed, butmore » unstable B2. Furthermore, these high- and low-temperature structures and structural transformations provide much needed atomic-scale detail for transitions responsible for NiTi shape-memory effects.« less

  10. Effect of Pre-straining on the Shape Recovery of Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Maji, Bikas C.; Krishnan, Madangopal; Verma, Amit; Basu, R.; Samajdar, I.; Ray, Ranjit K.

    2015-02-01

    The effect of pre-straining on the shape recovery behavior of Fe-14Mn-6Si-9Cr-5Ni (wt pct) shape memory alloy (SMA) has been studied. The shape recovery associated with the reverse ɛ martensitic transformation, i.e., ɛ → γ, was characterized by dilatometry using specimens which were pre-strained to different extent (0 to 14 pct). Dilatometric studies revealed that in Fe-Mn-Si-Cr-Ni SMA, the shape recovery takes place in two stages: (i) in the first stage, the unpinned fraction of stress-induced ɛ martensite reverts back to parent phase γ in the temperature regime of 353 K to 653 K (80 °C to 380 °C) and (ii) in the second stage the remaining "pinned" ɛ martensite is unpinned by the decomposition of deformation-induced α' martensite in the temperature range of 743 K to 893 K (470 °C to 620 °C). The amount of recovery in the first stage decreases with pre-strain, whereas it increases in the second stage. The ɛ → γ transformation finish temperature, A f, increases with increase in pre-strain amount, though the reverse transformation start temperature, A S, remains unaffected. Microstructural characterization revealed that the amount of deformation-induced α' martensite depends on the mode of straining and the crystallographic texture of the starting material. The reversion of α' martensite is seen to occur by the precipitation of Fe5Ni3Si2-type intermetallic π-phase within these plates.

  11. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-06-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  12. Microstructural Evolution and Functional Properties of Fe-Mn-Al-Ni Shape Memory Alloy Processed by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Niendorf, Thomas; Brenne, Florian; Krooß, Philipp; Vollmer, Malte; Günther, Johannes; Schwarze, Dieter; Biermann, Horst

    2016-03-01

    In the current study, a Fe-Mn-Al-Ni shape memory alloy is processed by additive manufacturing for the first time. Microstructural evolution upon processing is strongly affected by thermal gradients and solidification velocity and, thus, by processing parameters and the actual specimen geometry. By single-step solutionizing heat treatment pronounced grain growth is initiated leading to microstructures showing good reversibility. The compressive stress-strain response revealed maximum reversible pseudo-elastic strain of about 7.5 pct. Critical steps toward further optimization of additively manufactured Fe-Mn-Al-Ni shape memory alloys are discussed.

  13. Effect of Thermal Treatments on Ni-Mn-Ga and Ni-Rich Ni-Ti-Hf/Zr High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Santamarta, Ruben; Evirgen, Alper; Perez-Sierra, Aquilina M.; Pons, Jaume; Cesari, Eduard; Karaman, Ibrahim; Noebe, Ron D.

    2015-11-01

    Among all the promising high-temperature shape memory alloys (HTSMAs), the Ni-Mn-Ga and the Ni-Ti-Hf/Zr systems exhibit interesting shape memory and superelastic properties that may place them in a good position for potential applications. The present work shows that thermal treatments play a crucial role in controlling the martensitic phase transformation characteristics of both systems, but in different ways. On one hand, the equilibrium phase diagram of the Ni-Mn-Ga family allows selecting compositions with high transformation temperatures and outstanding thermal stability at relatively high temperatures in air, showing no significant changes in the transformation behavior for continuous aging up to ˜5 years at 500 °C. Moreover, the excellent thermal stability correlates with a good thermal cyclic stability and an exceptional oxidation resistance of the parent phase. On the other hand, precipitation processes controlled by thermal treatments are needed to manipulate the transformation temperatures, mechanical properties, and thermal stability of Ni-rich Ni-Ti-Hf/Zr alloys to become HTSMAs. These changes in the functional properties are a consequence of the competition between the mechanical and compositional effects of the precipitates on the martensitic transformation.

  14. Influence of volume magnetostriction on the thermodynamic properties of Ni-Mn-Ga shape memory alloys

    SciTech Connect

    Kosogor, Anna; L'vov, Victor A.; Cesari, Eduard

    2015-10-07

    In the present article, the thermodynamic properties of Ni-Mn-Ga ferromagnetic shape memory alloys exhibiting the martensitic transformations (MTs) above and below Curie temperature are compared. It is shown that when MT goes below Curie temperature, the elastic and thermal properties of alloy noticeably depend on magnetization value due to spontaneous volume magnetostriction. However, the separation of magnetic parts from the basic characteristics of MT is a difficult task, because the volume magnetostriction does not qualitatively change the transformational behaviour of alloy. This problem is solved for several Ni-Mn-Ga alloys by means of the quantitative theoretical analysis of experimental data obtained in the course of stress-strain tests. For each alloy, the entropy change and the transformation heat evolved in the course of MT are evaluated, first, from the results of stress-strain tests and, second, from differential scanning calorimetry data. For all alloys, a quantitative agreement between the values obtained in two different ways is observed. It is shown that the magnetic part of transformation heat exceeds the non-magnetic one for the Ni-Mn-Ga alloys undergoing MTs in ferromagnetic state, while the elevated values of transformation heat measured for the alloys undergoing MTs in paramagnetic state are caused by large MT strains.

  15. NiTiCu Shape Memory Alloy Characterization Through Microhardness Tests

    NASA Astrophysics Data System (ADS)

    Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2014-07-01

    NiTiCu alloys are one of the most investigated shape memory alloys (SMAs) because of their better performance as SMA actuators in a variety of industrial and engineering applications. However, NiTiCu alloys are strongly influenced by thermomechanical cycling (TMC), which causes degradation depending on the stress and strain level applied. Since heat treatment (HT) and TMC are essential for NiTiCu alloys, understanding how hardness evolves at different levels of TMC and different HT temperatures is a useful tool for characterizing the material. The aim of this paper is to investigate the relationship between hardness and different HT temperatures and different TMCs. All the microhardness tests were done below martensite finish temperature (Mf) because the apparent material hardness measured below Mf fairly reflects the relative strengthening of SMAs without involving martensitic transformation artifacts. Resistivity and break tensile tests were carried out as a first step in order to understand the effect of different HT temperatures. Microstructure was also examined to provide a basis for a mechanistic understanding of the effect of different HT temperatures. Next, the degradation of mechanical properties (functional fatigue) at different levels of TMC was evaluated to assess their relationship to the evolution of hardness. Finally, an attempt was made to establish a link between the increase in hardness and different HT temperatures with different levels of TMC.

  16. Dissimilar laser welding of NiTi shape memory alloy and copper

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Panton, B.; Oliveira, J. P.; Han, A.; Zhou, Y. N.

    2015-12-01

    This work is the first investigation of joining NiTi and copper. The successful Nd:YAG laser welding of NiTi to copper achieved in this work enables new methods of connecting shape memory alloys to electro-mechanical systems. Joints made with an optimum peak power of 2.2 kW accommodated pseudoelastic deformation of NiTi, proving their use with high strength actuators. Fracture occurred through the cross section of these defect-free joints. A lower peak power of 1.8 kW created weak joints with limited weld penetration of the copper sheet. This lack of bonding resulted in fracture occurring across the small disconnected joint areas. Joints made with a higher peak power of 2.6 kW had significant cracking in the fusion zone. Two regions of distinct Cu composition were found in the fusion zone, and cracking occurred at the interface between these regions because of their different physical properties. Failure initiated at this cracking and propagated through the fusion zone that had been embrittled by mixing with over 20 at.% Cu.

  17. Oxidation Kinetics of a NiPtTi High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Humphrey, Donald L.; Noebe, Ronald D.

    2007-01-01

    A high temperature shape memory alloy (HTSMA), Ni30Pt50Ti, with an M(sub s) near 600 C, was isothermally oxidized in air for 100 hr over the temperature range of 500 to 900 C. Parabolic kinetics were confirmed by log-log and parabolic plots and showed no indication of fast transient oxidation. The overall behavior could be best described by the Arrhenius relationship: k(sub p) = 1.64 x 10(exp 12)[(-250 kJ/mole)/RT] mg(sup 2)/cm(sup 4)hr. This is about a factor of 4 reduction compared to values measured here for a binary Ni47Ti commercial SMA. The activation energy agreed with most literature values for TiO2 scale growth measured for elemental Ti and other NiTi alloys. Assuming uniform alloy depletion of a 20 mil (0.5 mm) dia. HTSMA wire, approx. 1 percent Ti reduction is predicted after 20,000 hr oxidation at 500 C, but becomes much more serious at higher temperatures.

  18. Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys

    DOE PAGESBeta

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-01-22

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amountsmore » of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. As a result, the unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.« less

  19. Mechanical and Functional Behavior of High-Temperature Ni-Ti-Pt Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buchheit, Thomas E.; Susan, Donald F.; Massad, Jordan E.; McElhanon, James R.; Noebe, Ronald D.

    2016-04-01

    A series of Ti-rich Ni-Ti-Pt ternary alloys with 13 to 18 at. pct Pt were processed by vacuum arc melting and characterized for their transformation behavior to identify shape memory alloys (SMA) that undergo transformation between 448 K and 498 K (175 °C and 225 °C) and achieve recoverable strain exceeding 2 pct. From this broader set of compositions, three alloys containing 15.5 to 16.5 at. pct Pt exhibited transformation temperatures in the vicinity of 473 K (200 °C), thus were targeted for more detailed characterization. Preliminary microstructural evaluation of these three compositions revealed a martensitic microstructure with small amounts of Ti2(Ni,Pt) particles. Room temperature mechanical testing gave a response characteristic of martensitic de-twinning followed by a typical work-hardening behavior to failure. Elevated mechanical testing, performed while the materials were in the austenitic state, revealed yield stresses of approximately 500 MPa and 3.5 pct elongation to failure. Thermal strain recovery characteristics were more carefully investigated with unbiased incremental strain-temperature tests across the 1 to 5 pct strain range, as well as cyclic strain-temperature tests at 3 pct strain. The unbiased shape recovery results indicated a complicated strain recovery path, dependent on prestrain level, but overall acceptable SMA behavior within the targeted temperature and recoverable strain range.

  20. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-07-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  1. Laser and Surface Processes of NiTi Shape Memory Elements for Micro-actuation

    NASA Astrophysics Data System (ADS)

    Nespoli, Adelaide; Biffi, Carlo Alberto; Previtali, Barbara; Villa, Elena; Tuissi, Ausonio

    2014-04-01

    In the current microtechnology for actuation field, shape memory alloys (SMA) are considered one of the best candidates for the production of mini/micro devices thanks to their high power-to-weight ratio as function of the actuator weight and hence for their capability of generating high mechanical performance in very limited spaces. In the microscale the most suitable conformation of a SMA actuator is given by a planar wavy formed arrangement, i.e., the snake-like shape, which allows high strokes, considerable forces, and devices with very low sizes. This uncommon and complex geometry becomes more difficult to be realized when the actuator dimensions are scaled down to micrometric values. In this work, micro-snake-like actuators are laser machined using a nanosecond pulsed fiber laser, starting from a 120- μm-thick NiTi sheet. Chemical and electrochemical surface polishes are also investigated for the removal of the thermal damages of the laser process. Calorimetric and thermo-mechanical tests are accomplished to assess the NiTi microdevice performance after each step of the working process. It is shown that laser machining has to be followed by some post-processes in order to obtain a micro-actuator with good thermo-mechanical properties.

  2. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-06-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  3. Twinning-Induced Elasticity in NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Birk, Thorsten; Biswas, Somjeet; Frenzel, Jan; Eggeler, Gunther

    2016-03-01

    Pseudoelasticity (PE) in shape memory alloys relies on the formation of stress-induced martensite during loading and on the reverse transformation during unloading. PE yields reversible strains of up to 8 % and is applied in applications such as medical implants, flexible eye glass frames, damping elements, and others. Unfortunately, PE shows a strong temperature dependence and thus can only be exploited within a relatively narrow temperature window. The present work focuses on a related process, which we refer to as twinning-induced elasticity (TIE). It involves the growth and shrinkage of martensite variants which are stabilized by dislocations, which are introduced by appropriate cold work. TIE yields reversible strains of the order of 3 %. The TIE effect does not suffer from the strong temperature dependence of PE. The weak temperature dependence of mechanical TIE properties makes TIE attractive for applications where temperature fluctuations are large. In the present work, we study the TIE effect focusing on Ni50Ti50 shape memory alloy wires. The degree of plastic pre-deformation of the initial material represents a key parameter of the ingot metallurgy processing route. It governs the exploitable recoverable strain, the apparent Young's modulus, and the widths of the mechanical hysteresis. Dynamic mechanical analysis is used to study the effects of pre-deformation on elementary microstructural processes which govern TIE.

  4. Avalanches in compressed Ti-Ni shape-memory porous alloys: An acoustic emission study.

    PubMed

    Soto-Parra, Daniel; Zhang, Xiaoxin; Cao, Shanshan; Vives, Eduard; Salje, Ekhard K H; Planes, Antoni

    2015-06-01

    Mechanical avalanches during compression of martensitic porous Ti-Ni have been characterized by high-frequency acoustic emission (AE). Two sequences of AE signals were found in the same sample. The first sequence is mainly generated by detwinning at the early stages of compression while fracture dominates the later stages. Fracture also determines the catastrophic failure (big crash). For high-porosity samples, the AE energies of both sequences display power-law distributions with exponents ɛ≃2 (twinning) and 1.7 (fracture). The two power laws confirm that twinning and fracture both lead to avalanche criticality during compression. As twinning precedes fracture, the observation of twinning allows us to predict incipient fracture of the porous shape memory material as an early warning sign (i.e., in bone implants) before the fracture collapse actually happens. PMID:26172646

  5. Magneto-optical spectroscopy of ferromagnetic shape-memory Ni-Mn-Ga alloy

    SciTech Connect

    Veis, M. Beran, L.; Zahradnik, M.; Antos, R.; Straka, L.; Kopecek, J.; Fekete, L.; Heczko, O.

    2014-05-07

    Magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy in martensite and austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. At room temperature, the sample was in modulated 10M martensite phase and transformed to cubic austenite at 323 K. Spectral dependence of polar magneto-optical Kerr effect was obtained by generalized magneto-optical ellipsometry with rotating analyzer in the photon energy range from 1.2 to 4 eV, and from room temperature to temperature above the Curie point. The Kerr rotation spectra exhibit prominent features typical for complexes containing Mn atoms. Significant spectral changes during transformation to austenite can be explained by different optical properties caused by changes in density of states near the Fermi energy.

  6. Structural and magnetic dynamics in the magnetic shape-memory alloy Ni2MnGa

    NASA Astrophysics Data System (ADS)

    Mariager, S. O.; Dornes, C.; Johnson, J. A.; Ferrer, A.; Grübel, S.; Huber, T.; Caviezel, A.; Johnson, S. L.; Eichhorn, T.; Jakob, G.; Elmers, H. J.; Beaud, P.; Quitmann, C.; Ingold, G.

    2014-10-01

    Magnetic shape-memory Heusler alloys are multiferroics stabilized by the correlations between electronic, magnetic, and structural order. To study these correlations we use time-resolved x-ray diffraction and magneto-optical Kerr effect experiments to measure the laser induced dynamics in a Heusler alloy Ni2MnGa film and reveal a set of time scales intrinsic to the system. We observe a coherent phonon which we identify as the amplitudon of the modulated structure and an ultrafast phase transition leading to a quenching of the incommensurate modulation within 300 fs with a recovery time of a few ps. The thermally driven martensitic transition to the high temperature cubic phase proceeds via nucleation within a few ps and domain growth limited by the speed of sound. The demagnetization time is 320 fs, which is comparable to the quenching of the structural modulation.

  7. Effect of Manganese on Microstructures and Solidification Modes of Cast Fe-Mn-Si-Cr-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wen, Yuhua; Du, Yangyang; Yu, Qinxu; Yang, Qin

    2013-10-01

    We investigated microstructures and solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys to clarify whether Mn was an austenite former during solidification. Furthermore, we examined whether the Creq/Nieq equations (Delong, Hull, Hammer and WRC-1992 equations) and Thermo-Calc software® together with database TCFE6 were valid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni shape memory alloys. The results have shown that the solidification modes of Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni alloys changed from the F mode to the FA mode with increasing the Mn concentration. Mn is an austenite former during the solidification for the cast Fe-Mn-Si-Cr-Ni shape memory alloys. The Delong, Hull, Hammer, and WRC-1992 equations as well as Thermo-Calc software® together with database TCFE6 are invalid to predict the solidification modes of cast Fe-(13-27)Mn-5.5Si-8.5Cr-5Ni SMAs. To predict the solidification modes of cast Fe-Mn-Si-Cr-Ni alloys, a new Creq/Nieq equation should be developed or the thermodynamic database of Thermo-Calc software® should be corrected.

  8. Gradation of Nanostructures in Cold-Rolled and Annealed Ti-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S.; Brailovski, V.; Dubinskiy, S.; Inaekyan, K.; Kreitcberg, A.

    2016-03-01

    Nanostructures formed in Ti-50.26 at.%Ni shape memory alloy as a result of post-deformation annealing (PDA) at 400 °C (1 h) after cold rolling (CR) in the e = 0.3-1.9 true strain range are classified and quantitatively studied. The statistical quantitative transmission electron microscopy analysis of bright and dark field images and selected area diffraction patterns reveal the following regularities. Two types of nanostructure form in B2-austenite as a result of PDA after CR: (a) a nanosubgrained structure, which consists of subgrains formed as a result of polygonization of the initially highly dislocated substructure; (b) a nanocrystalline structure, which represents a combination of the deformation-induced nano-grains grown during PDA and new nano-grains formed during crystallization of the amorphous phase. After moderate CR (e = 0.3), mainly nanosubgrained structure forms as a result of PDA. After CR of moderate-to-high intensity (e = 0.5-1.0) followed by PDA, the structure is mixed (nanosubgrained+nanocrystalline). After high-intensity CR (e = 1.2-1.9) and PDA, the structure is mainly nanocrystalline. This nanostructure identification allows adequate analysis of the nature of the parent phase boundaries in the thermomechanically processed Ti-Ni alloys and of their effect on the transformation and mechanical behaviors.

  9. Influence of Dynamic Compression on Phase Transformation of Martensitic NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Qiu, Ying; Young, Marcus L.; Nie, Xu

    2015-10-01

    Shape memory alloys (SMAs) exhibit high damping capacity in both austenitic and martensitic phases, due to either a stress-induced martensite phase transformation or a stress-induced martensite variant reorientation, making them ideal candidates for vibration suppression devices to protect structural components from damage due to external forces. In this study, both quasi-static and dynamic compression was conducted on a martensitic NiTi SMA using a mechanical loading frame and on a Kolsky compression bar, respectively, to examine the relationship between microstructure and phase transformation characteristics of martensitic NiTi SMAs. Both endothermic and exothermic peaks disappear completely after experiencing deformation at a strain rate of 103 s-1 and to a strain of about 10 pct. The phase transformation peaks reappear after the deformed specimens were annealed at 873 K (600 °C) for 30 minutes. As compared to samples from quasi-static loading, where a large amount of twinning is observed with a small amount of grain distortion and fracture, samples from dynamic loading show much less twinning with a larger amount of grain distortion and fracture.

  10. Effects of Annealing Temperature on Thermomechanical Properties of Cu-Al-Ni Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Canbay, C. Aksu; Karagoz, Z.

    2013-07-01

    The effects of the annealing temperature on structural properties and the phase transformation of a Cu-14.1Al-3.9Ni (mass %) shape memory alloy (SMA) have been investigated. The annealing process was carried out at temperatures in the range of to . The structural changes of the as-quenched and annealed samples were studied by optical microscope and X-ray diffraction measurements. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The activation energy and thermodynamic parameters of the samples were determined. It was found that the heat treatment has an effect on the characteristic transformation temperatures and on thermodynamic parameters such as enthalpy, entropy, and activation energy. The crystallite size of the as-quenched and annealed samples were determined. Vickers hardness measurements of the as-quenched and annealed samples were also carried out. It is evaluated that the transformation parameters of a CuAlNi SMA can be controlled by heat treatment.

  11. Pulsed field actuation of Ni-Mn-Ga ferromagnetic shape memory alloy single crystal

    NASA Astrophysics Data System (ADS)

    Marioni, M.; Bono, D.; Banful, A. B.; del Rosario, M.; Rodriguez, E.; Peterson, B. W.; Allen, S. M.; O'Handley, R. C.

    2003-10-01

    Ferromagnetic Shape Memory Alloy Ni-Mn-Ga has twin boundaries in the martensitic phase that move when a suitable magnetic field is applied. In this fashion strains of up to 6% have been observed for static fields in single crystals [1]. Recently 2.5% strain has been demonstrated [2] in Ni-Mn-Ga single crystals for oscillating fields up to frequencies of 75 Hz (150 Hz actuation). This work studies the actuation of single crystals when pulsed fields are applied. Fields in the 0.4-1.5MA/m-range were generated in an air coil with rise times of the order of 1ms and below. The elongation of the samples is measured with a light beam reflected off the tip of the crystal. Single twin boundaries have been observed to advance 0.16 mm during 600 μsec-ong pulses. Actuation has been shown to be possible at least up to frequencies of 1700 Hz.

  12. Atomistic modeling of ternary additions to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt and Ni-Ti-Hf shape memory alloys

    NASA Astrophysics Data System (ADS)

    Mosca, H. O.; Bozzolo, G.; del Grosso, M. F.

    2012-08-01

    The behavior of ternary and quaternary additions to NiTi shape memory alloys is investigated using a quantum approximate method for the energetics. Ternary additions X to NiTi and quaternary additions to Ni-Ti-Pd, Ni-Ti-Pt, and Ni-Ti-Hf alloys, for X=Au, Pt, Ir, Os, Re, W, Ta,Ag, Pd, Rh, Ru, Tc, Mo, Nb, Zr, Zn, Cu, Co, Fe, Mn, V, Sc, Si, Al and Mg are considered. Bulk properties such as lattice parameter, energy of formation, and bulk modulus of the B2 alloys are studied for variations due to the presence of one or two simultaneous additives.

  13. Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron

    NASA Astrophysics Data System (ADS)

    Yen, Fu-Cheng; Hwang, Kuen-Shyang

    2012-02-01

    Ti51Ni49 compacts consolidated with persistent liquid-phase sintering usually contain Ti2Ni networks at the grain boundaries, which cause adverse effects on mechanical properties. With 0.5 and 1.0 at pct B additions, fine TiB forms during heating and sintering and acts as a nucleation site for Ti2Ni to precipitate within the grain during cooling. The resultant uniform distribution of TiB and Ti2Ni impedes grain growth and prevents the formation of continuous Ti2Ni precipitates at grain boundaries. As a result, a significant increase in tensile elongation, and not a decrease, as in most as-cast titanium alloys, is obtained because of these changes. The tensile strength also increases, without deterioration of the shape memory characteristics. The tensile strength and elongation are close to those of wrought TiNi alloys.

  14. Prediction of precipitate evolution and martensite transformation in Ti-Ni-Cu shape memory alloys by computational thermodynamics

    NASA Astrophysics Data System (ADS)

    Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.

    2016-04-01

    Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.

  15. Atomic and magnetic order in the shape memory alloy Mn2NiGa

    NASA Astrophysics Data System (ADS)

    Brown, P. J.; Kanomata, T.; Neumann, K.; Neumann, K. U.; Ouladdiaf, B.; Sheikh, A.; Ziebeck, K. R. A.

    2010-12-01

    Magnetization and high resolution neutron powder diffraction measurements on the magnetic shape memory alloy Mn2NiGa have confirmed that it is ferromagnetic with a Curie temperature above 500 K. The compound undergoes a broad structural phase transformation ΔT ~ 90 K with a mean transition temperature TM ~ 270 K. The high temperature parent phase is cubic (a = 5.937 Å) and has a modified L 21 structure. At 500 K the ordered magnetic moment essentially all on the 4a site is 1.35 μB/Mn. The low temperature martensite has space group I4/mmm and is related to the cubic phase through a Bain transformation atet = (acub + bcub)/2, btet = (acub - bcub) and ctet = ccub in which the change in cell volume is < 2.6%. In this structure at 5 K the ordered moment of ≈2.3 μB is again found to be confined to the sites with full Mn occupation and is aligned parallel to c. Neutron diffraction patterns obtained at 5 K suggested the presence of a weak incommensurate antiferromagnetic phase characterized by either a (\\frac 13 0 \\frac 13) or (0 0 \\frac 13) propagation vector.

  16. Texture and grain neighborhood effects on Ni-Ti shape memory alloy performance

    NASA Astrophysics Data System (ADS)

    Paranjape, Harshad; Anderson, Peter M.

    2014-10-01

    This work demonstrates how the statistical pseudoelastic performance of individual grains is affected by the local grain neighborhood in polycrystalline shape memory alloys (SMAs). This is achieved using a microstructural finite element (FE) model calibrated to homogenized Ti-50.9 at% Ni SMA. The results show a three-fold variation in the grain level axial transformation strain pT in randomly textured polycrystals, and a ˜20-30% reduction in average pT if plastically predeformed. A key outcome is a performance function to predict pT of a grain, based on the orientations of the grain and its neighbors. Two key strategies to improve polycrystalline SMA performance are identified. The first is to minimize the number of grain boundaries between high-and low-performing grains: plate and bamboo geometries achieve this. The second is to employ high-symmetry orientation relationships between these grains. The results draw on recent experimental studies of grain level performance and provide a theoretical framework to interpret future diffraction tomography studies.

  17. Large reversible magnetocaloric effect in a Ni-Co-Mn-In magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2016-01-01

    Reversibility of the magnetocaloric effect in materials with first-order magnetostructural transformation is of vital significance for practical magnetic refrigeration applications. Here, we report a large reversible magnetocaloric effect in a Ni49.8Co1.2Mn33.5In15.5 magnetic shape memory alloy. A large reversible magnetic entropy change of 14.6 J/(kg K) and a broad operating temperature window of 18 K under 5 T were simultaneously achieved, correlated with the low thermal hysteresis (˜8 K) and large magnetic-field-induced shift of transformation temperatures (4.9 K/T) that lead to a narrow magnetic hysteresis (1.1 T) and small average magnetic hysteresis loss (48.4 J/kg under 5 T) as well. Furthermore, a large reversible effective refrigeration capacity (76.6 J/kg under 5 T) was obtained, as a result of the large reversible magnetic entropy change, broad operating temperature window, and small magnetic hysteresis loss. The large reversible magnetic entropy change and large reversible effective refrigeration capacity are important for improving the magnetocaloric performance, and the small magnetic hysteresis loss is beneficial to reducing energy dissipation during magnetic field cycle in potential applications.

  18. Structural and dynamical fluctuations in off-stoichiometric NiMnGa shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Barabash, R. I.; Barabash, O. M.; Karapetrova, E. A.; Manley, M. E.

    2014-06-01

    Measurements and modeling of the 3D diffuse scattering from off-stoichiometric NiMnGa shape memory alloys reveal evidence of structural and dynamical precursors to the phase transition. A model of the diffuse scattering in the high temperature cubic L21 phase indicates that at temperatures tens of degrees higher than transition temperature, Tc, the lattice exhibits tetragonally distorted local regions that are clear precursors to the phase transition. The model also accounts for lattice deformation caused by precursor nanoregions of the martensite phase and thermal scattering from phonons and agrees well with the observed diffuse scattering maps in reciprocal space. A distinctive feature of the diffuse scattering is that it is highly anisotropic: Around (H0H) reflections, the diffuse scattering is strongly compressed along the [H0H] and enhanced along the [-H0H] direction. Additionally, localized intensity maxima associated with phasons are observed at temperatures 30-50 K above Tc. They clearly demonstrate that each phason corresponds to an individual point in reciprocal space, which is consistent with dynamical phase fluctuations of a well-formed charge density wave resulting from Peierls instability.

  19. Processing of Ni30Pt20Ti50 High-Temperature Shape-Memory Alloy Into Thin Rod Demonstrated

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Biles, Tiffany A.; Leonhardt, Todd

    2005-01-01

    High-temperature shape-memory alloys (HTSMAs) based on nickel-titanium (NiTi) with significant ternary additions of palladium (Pd), platinum (Pt), gold (Au), or hafnium (Hf) have been identified as potential high-temperature actuator materials for use up to 500 C. These materials provide an enabling technology for the development of "smart structures" used to control the noise, emissions, or efficiency of gas turbine engines. The demand for these high-temperature versions of conventional shape-memory alloys also has been growing in the automotive, process control, and energy industries. However these materials, including the NiPtTi alloys being developed at the NASA Glenn Research Center, will never find widespread acceptance unless they can be readily processed into useable forms.

  20. Extended investigation of intermartensitic transitions in Ni-Mn-Ga magnetic shape memory alloys: A detailed phase diagram determination

    SciTech Connect

    Çakir, Asli; Aktürk, Selçuk; Righi, Lara

    2013-11-14

    Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.

  1. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    SciTech Connect

    Heczko, O. Drahokoupil, J.; Straka, L.

    2015-05-07

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni{sub 50.0}Mn{sub 28.5}Ga{sub 21.5} single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  2. Enhanced magnetic hysteresis in Ni-Mn-Ga single crystal and its influence on magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Heczko, O.; Drahokoupil, J.; Straka, L.

    2015-05-01

    Enhanced magnetic hysteresis due to boron doping in combination with magnetic shape memory effect in Ni-Mn-Ga single crystal results in new interesting functionality of magnetic shape memory (MSM) alloys such as mechanical demagnetization. In Ni50.0Mn28.5Ga21.5 single crystal, the boron doping increased magnetic coercivity from few Oe to 270 Oe while not affecting the transformation behavior and 10 M martensite structure. However, the magnetic field needed for MSM effect also increased in doped sample. The magnetic behavior is compared to undoped single crystal of similar composition. The evidence from the X-ray diffraction, magnetic domain structure, magnetization loops, and temperature evolution of the magnetic coercivity points out that the enhanced hysteresis is caused by stress-induced anisotropy.

  3. Fabrication and static characterization of carbon-fiber-reinforced polymers with embedded NiTi shape memory wire actuators

    NASA Astrophysics Data System (ADS)

    de Araújo, C. J.; Rodrigues, L. F. A.; Coutinho Neto, J. F.; Reis, R. P. B.

    2008-12-01

    In this work, unidirectional carbon-fiber-reinforced polymers (CFRP) with embedded NiTi shape memory alloy (SMA) wire actuators were manufactured using a universal testing machine equipped with a thermally controlled chamber. Beam specimens containing cold-worked, annealed and trained NiTi SMA wires distributed along their neutral plane were fabricated. Several tests in a three-point bending mode at different constant temperatures were performed. To verify thermal buckling effects, electrical activation of the specimens was realized in a cantilevered beam mode and the influence of the SMA wire actuators on the tip deflection of the composite is demonstrated.

  4. Long-term superelastic cycling at nano-scale in Cu-Al-Ni shape memory alloy micropillars

    SciTech Connect

    San Juan, J. Gómez-Cortés, J. F.

    2014-01-06

    Superelastic behavior at nano-scale has been studied along cycling in Cu-Al-Ni shape memory alloy micropillars. Arrays of square micropillars were produced by focused ion beam milling, on slides of [001] oriented Cu-Al-Ni single crystals. Superelastic behavior of micropillars, due to the stress-induced martensitic transformation, has been studied by nano-compression tests during thousand cycles, and its evolution has been followed along cycling. Each pillar has undergone more than thousand cycles without any detrimental evolution. Moreover, we demonstrate that after thousand cycles they exhibit a perfectly reproducible and completely recoverable superelastic behavior.

  5. Structure and properties of nitrided surface layer produced on NiTi shape memory alloy by low temperature plasma nitriding

    NASA Astrophysics Data System (ADS)

    Czarnowska, Elżbieta; Borowski, Tomasz; Sowińska, Agnieszka; Lelątko, Józef; Oleksiak, Justyna; Kamiński, Janusz; Tarnowski, Michał; Wierzchoń, Tadeusz

    2015-04-01

    NiTi shape memory alloys are used for bone and cardiological implants. However, on account of the metallosis effect, i.e. the release of the alloy elements into surrounding tissues, they are subjected to various surface treatment processes in order to improve their corrosion resistance and biocompatibility without influencing the required shape memory properties. In this paper, the microstructure, topography and morphology of TiN surface layer on NiTi alloy, and corrosion resistance, both before and after nitriding in low-temperature plasma at 290 °C, are presented. Examinations with the use of the potentiodynamic and electrochemical impedance spectroscopy methods were carried out and show an increase of corrosion resistance in Ringer's solution after glow-discharge nitriding. This surface titanium nitride layer also improved the adhesion of platelets and the proliferation of osteoblasts, which was investigated in in vitro experiments with human cells. Experimental data revealed that nitriding NiTi shape memory alloy under low-temperature plasma improves its properties for bone implant applications.

  6. Laser welding of NiTi shape memory alloy wires and tubes for multi-functional design applications

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi; Yang, Mao; Oliveira, João Pedro; Song, Di; Peng, Bei

    2016-08-01

    Welding and joining of NiTi shape memory alloys is essential for their integration into an increasing variety of applications. Almost all manufacturers and a significant number of researchers focus their investigation on welding NiTi, which can present both pseudoelasticity (PE) and shape memory effect. Integration of these materials would provide increased flexibility in terms of smart design, in particular for multi-functional systems. The current work investigates the mechanical, physical and phase transformation properties of similar (base materials (BMs) with the same composition) and dissimilar (BMs with different compositions) NiTi welded shape memory wires. The similar and dissimilar welded joints were successfully achieved by laser welding, which can reach up to 88.4% and 67.5% of the wire BM ductility. The joint break force of the similar and dissimilar joints were of 77.2% and 71.4% of the wire BM, respectively. Moreover, laser welding was found to effectively preserve the PE on the similar welded structures. The residual plastic strain variation of the dissimilar welded specimens at different temperatures during the cycling test may be helpful for design of multi-functional or flexible monolithic structures.

  7. Experimental and numerical analysis of recovery stress in Ni47Ti44Nb9 shape memory alloys: application to tightening

    NASA Astrophysics Data System (ADS)

    Piotrowski, Boris; Zineb, Tarak Ben; Patoor, Etienne; Eberhardt, Andre

    Ni47Ti44Nb9 Shape Memory Alloys (SMA) are widely considered for tightening applications. The most common one are shape memory rings whose diameter decreases during heating. The alloy is composed of a NiTi matrix containing niobium precipitates. A specific thermomechanical treatment increases by more than one hundred degrees the transformation temperature hysteresis, what increases the range of use and improves the tightening efficiency. Tightening pressures exhibited by Ni47Ti44Nb9 rings with two various thicknesses are experimentally investigated. The test bed is composed of an Inconel 718 pipe instrumented by strain gauges sensors. Measured strains lead to the tightening pressure thanks to the large elastic resistance of Inconel. Evolutions with temperature are recorded. A thermo-mechanical constitutive law, specific for Ni47Ti44Nb9, has been developed. It is based on the Mori-Tanaka scale transition technique by considering the precipitates as elastic-plastic inclusions embedded in the SMA matrix. Its behavior is described by the Chemisky, Duval et al. constitutive model. The elastic-plastic constitutive law for inclusion is a classical one proposed by Simo and Hughes. The resulting effective law is implemented, and validated in ABAQUS via UMAT subroutine. The developed approach is adopted for the simulation of the experimental tests on Ni47Ti44Nb9 rings, and comparisons are performed.

  8. Experimental characterization and micromechanical modeling of superelastic response of a porous NiTi shape-memory alloy

    NASA Astrophysics Data System (ADS)

    Nemat-Nasser, Sia; Su, Yu; Guo, Wei-Guo; Isaacs, Jon

    2005-10-01

    Porous shape-memory alloys are usually brittle due to the presence of various nickel-titanium intermetallic compounds that are produced in the course of most commonly used synthesizing techniques. We consider here a porous NiTi shape-memory alloy (SMA), synthesized by spark-plasma sintering, that is ductile and displays full shape-memory effects over the entire appropriate range of strains. The porosity however is only 12% but the basic synthesizing technique has potential for producing shape-memory alloys with greater porosity that still are expected to display superelasticity and shape-memory effects. The current material has been characterized experimentally using quasi-static and dynamic tests at various initial temperatures, mostly within the superelastic strain range, but also into the plastic deformation regime of the stress-induced martensite phase. To obtain a relatively constant strain rate in the high strain-rate tests, a novel pulse-shaping technique is introduced. The results of the quasi-static experiments are compared with the predictions by a model that can be used to calculate the stress-strain response of porous NiTi shape-memory alloys during the austenite-to-martensite and reverse phase transformations in uniaxial quasi-static loading and unloading at constant temperatures. In the austenite-to-martensite transformation, the porous shape-memory alloy is modeled as a three-phase composite with the parent phase (austenite) as the matrix and the product phase (martensite) and the voids as the embedded inclusions, reversing the roles of austenite and martensite during the reverse transformation from fully martensite to fully austenite phase. The criterion of the stress-induced martensitic transformation and its reversal is based on equilibrium thermodynamics, balancing the thermodynamic driving force for the phase transformation, associated with the reduction of Gibbs' free energy, with the resistive force corresponding to the required energy to

  9. Shape-memory NiTi foams produced by replication of NaCl space-holders.

    PubMed

    Bansiddhi, A; Dunand, D C

    2008-11-01

    NiTi foams were created with a structure (32-36% open pores 70-400 microm in size) and mechanical properties (4-25 GPa stiffness, >1000 MPa compressive strength, >42% compressive ductility, and shape-memory strains up to 4%) useful for bone implant applications. A mixture of NiTi and NaCl powders was hot-isostatically pressed at 950 and 1065 degrees C and the NaCl phase was then dissolved in water. The resulting NiTi foams show interconnected pores that replicate the shape and size of the NaCl powders, indicating that NiTi powders densified significantly before NaCl melted at 801 degrees C. Densifying NiTi or other metal powders above the melting point of the space-holder permits the use of NaCl, with the following advantages compared with higher-melting, solid space-holders such as oxides and fluorides used to date: (i) no temperature limit for densification; (ii) lower cost; (iii) greater flexibility in powder (and thus pore) shape; (iv) faster dissolution; (v) reduced metal corrosion during dissolution; (vi) lower toxicity if space-holder residues remain in the foam. PMID:18678532

  10. Modeling of the Stress-Strain-Resistance Behaviour of Ni-Ti and Ni-Ti-Cu Shape Memory Alloys for use in Sensorless Actuator Position Control

    NASA Astrophysics Data System (ADS)

    Lynch, Brian

    Shape memory alloys have become increasingly popular for use in many engineering fields, including aerospace, robotics, and biomechanics. A major research focus is the application of Nitinol shape memory alloy wire as an actuator. While position and force control of shape memory alloy actuator wires has been successfully demonstrated in the past, most control algorithms have been developed using position feedback. Recently, it has been shown that there exists a significant correlation between the electrical resistance and strain of the material. This correlation has been used to model the strain as a function of the electrical resistance for use in predicting the actuator position for control purposes. However, the influence of applied stress as well as the presence of a third microstructure phase (R-phase) make modeling of the resistance-strain correlation difficult since hysteretic effects become more substantial. This thesis presents new models of the resistance-stress-strain behaviour of shape memory alloy for use in actuator position control. Characterization of the material behaviour was performed through experimental analysis, and used to develop the models based on empirical curve fitting. The models were then validated through simulation as well as application in a simple PID position control algorithm. Furthermore, two different alloys were investigated: a Ni-Ti alloy called Flexinol which exhibits significant hysteresis due to the presence of R-phase, as well as a Ni-Ti-Cu alloy which shows negligible hysteresis.

  11. Effects of Stoichiometry on Transformation Temperatures and Actuator-Type Performance of NiTiPd and NiTiPdX High-Temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Gaydosh, Darrell; Garg, Anita; Padula, Santo A., II; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory NiTiPd and NiTiPdX (X=Au, Pt, Hf) alloys were produced with titanium equivalent (Ti+Hf) compositions of 50.5, 50.0, 49.5, and 49.0 at.%. Thermo-mechanical testing in compression was used to evaluate the transformation temperatures, transformation strain, work output, and permanent deformation behavior of each alloy to study the effects of quaternary alloying and stoichiometry on high-temperature shape memory alloy behavior. Microstructural evaluation showed the presence of second phases for all alloy compositions. No load transformation temperatures in the stoichiometric alloys were relatively unchanged by Au and Pt substitutions, while the substitution of Hf for Ti causes a drop in transformation temperatures. The NiTiPd, NiTiPdAu and NiTiPdHf alloys exhibited transformation temperatures that were highest in the Ti-rich compositions, slightly lower at stoichiometry, and significantly reduced when the Ti equivalent composition was less than 50 at.%. For the NiTiPdPt alloy, transformation temperatures were highest for the Ti-rich compositions, lowest at stoichiometry, and slightly higher in the Ni-rich composition. When thermally cycled under constant stresses of up to 300 MPa, all of the alloys had transformation strains, and therefore work outputs, which increased with increasing stress. In each series of alloys, the transformation strain and thus work output was highest for stoichiometric or Ti-rich compositions while permanent strain associated with the constant-load thermal cycling was lowest for alloys with Ni-equivalent-rich compositions. Based on these results, basic rules for optimizing the composition of NiTiPd alloys for actuator performance will be discussed.

  12. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystalline Ni49.9Ti50.1 (at. %) shape memory alloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situ neutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocation activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni49.9Ti50.1.

  13. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    DOE PAGESBeta

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  14. Unoccupied electronic structure of Ni2MnGa ferromagnetic shape memory alloy

    SciTech Connect

    Maniraj, M.; D׳Souza, S. W.; Rai, Abhishek; Schlagel, D. L.; Lograsso, T. A.; Chakrabarti, Aparna; Barman, S. R.

    2015-08-20

    Momentum resolved inverse photoemission spectroscopy measurements show that the dispersion of the unoccupied bands of Ni2MnGa is significant in the austenite phase. Furthermore, in the martensite phase, it is markedly reduced, which is possibly related to the structural transition to an incommensurate modulated state in the martensite phase. Finally, based on the first principle calculations of the electronic structure of Ni–Mn–Ga, we show that the modification of the spectral shape with surface composition is related to change in the hybridization between the Mn 3d and Ni 3d-like states that dominate the unoccupied conduction band.

  15. Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys

    NASA Astrophysics Data System (ADS)

    Dağdelen, Fethi; Malkoç, Türkan; Kök, Mediha; Ercan, Ercan

    2016-06-01

    In this study, two-phase Co-Ni-Al shape memory alloys that have drawn attention recently due to their technological applications were investigated. Co-Ni-Al and Co-Ni-Al-Cr alloys were produced by melting method in an arc-melter furnace and physical properties between alloys were compared. At the end of experimental measurements it was observed that chromium addition did not change the crystal structure of the Co-Ni-Al alloy, but decreased the martensitic transformation temperature, the most significant property of shape memory alloys. Moreover, there was no significant change in the microstructure of the Co-Ni-Al alloy with chromium addition, and the presence of the two phases determined by X-ray analysis was also determined by optical microscopy. There was no significant change in micro hardness values of the alloys, while important changes in the magnetic properties were determined. It was observed that the Curie temperature decreased by approximately 500 {}^{circ}C with chromium addition and a considerable decrease in the magnetic saturation value was also determined.

  16. Comparison of the transformation temperature, microstructure and magnetic properties of Co-Ni-Al and Co-Ni-Al-Cr shape memory alloys

    NASA Astrophysics Data System (ADS)

    Dağdelen, Fethi; Malkoç, Türkan; Kök, Mediha; Ercan, Ercan

    2016-06-01

    In this study, two-phase Co-Ni-Al shape memory alloys that have drawn attention recently due to their technological applications were investigated. Co-Ni-Al and Co-Ni-Al-Cr alloys were produced by melting method in an arc-melter furnace and physical properties between alloys were compared. At the end of experimental measurements it was observed that chromium addition did not change the crystal structure of the Co-Ni-Al alloy, but decreased the martensitic transformation temperature, the most significant property of shape memory alloys. Moreover, there was no significant change in the microstructure of the Co-Ni-Al alloy with chromium addition, and the presence of the two phases determined by X-ray analysis was also determined by optical microscopy. There was no significant change in micro hardness values of the alloys, while important changes in the magnetic properties were determined. It was observed that the Curie temperature decreased by approximately 500°C with chromium addition and a considerable decrease in the magnetic saturation value was also determined.

  17. Influence of Chemical Composition and Melting Process on Hot Rolling of NiTiHf Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Belbasi, Majid; Salehi, Mohammad T.

    2014-07-01

    NiTiHf high-temperature shape memory alloy ingots with transformation temperatures above 100 °C were produced by vacuum induction melting (VIM) and vacuum arc melting (VAM). The effects of melting process and compositional changes were investigated on hot rolling of cast samples. The amount of (Ti,Hf)2Ni second phase which was formed during solidification and the (Ti,Hf)C formed due to graphite crucible using in VIM have significantly affected the microstructure of the cast sample due to poor coherency, which affected the hot-rolling behavior. Optical microscopy, scanning electron microscopy, and energy dispersive spectroscopy were used to inspect the observed cracks in the microstructure after the hot-rolling process. The results displayed that the formation of (Ti,Hf)C and the existence of (Ti,Hf)2Ni second phase had harmful effects on the workability of the cast specimen due to the feeble coherency of (Ti,Hf)C and (Ti,Hf)2 Ni with the matrix, which caused a failure in the hot-rolled specimen. The Ni50Ti40Hf10 alloy produced by VAM shows better workability in hot rolling due to lower amount of (Ti,Hf)2Ni, (Ti,Hf)C phases.

  18. Thermomechanical properties of Ni-Ti shape memory wires containing nanoscale precipitates induced by stress-assisted ageing.

    PubMed

    Cong, D Y; Saha, G; Barnett, M R

    2014-12-01

    This paper systematically examines the thermomechanical properties and phase transformation behaviour of slightly Ni-rich Ni-Ti biomedical shape memory wires containing homogeneously distributed nanoscale precipitates induced by stress-assisted ageing. In contrast to previous studies, particular attention is paid to the role of precipitates in impeding twin boundary movement (TBM) and its underlying mechanisms. The size and volume fraction of precipitates are altered by changing the ageing time. The martensitic transformation temperatures increase with prolonged ageing time, whereas the R-phase transformation temperature remains relatively unchanged. The stress-strain behaviour in different phase regions during both cooling and heating is comprehensively examined, and the underlying mechanisms for the temperature- and thermal-history-dependent behaviour are elucidated with the help of the established stress-temperature phase diagram. The effect of precipitates on TBM is explored by mechanical testing at 133K. It is revealed that the critical stress for TBM (σcr) increases with increasing ageing time. There is a considerable increase of 104MPa in σcr in the sample aged at 773K for 120min under 70MPa compared with the solution-treated sample, owing to the presence of precipitates. The Orowan strengthening model of twinning dislocations is insufficient to account for this increase in σcr. The back stress generation is the predominant mechanism for the interactions between precipitates and twin boundaries during TBM that give rise to the increase in σcr. Such results provide new insights into the thermomechanical properties of precipitate containing Ni-Ti biomedical shape memory wires, which are instructive for developing high-performance biomedical shape memory alloys. PMID:25159371

  19. Effect of platinum substitution on the structural and magnetic properties of Ni2MnGa ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.

    2016-04-01

    Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .

  20. Design and development of NiTi-based precipitation-strengthened high-temperature shape memory alloys for actuator applications

    NASA Astrophysics Data System (ADS)

    Hsu, Derek Hsen Dai

    As a vital constituent in the field of smart materials and structures, shape memory alloys (SMAs) are becoming ever-more important due to their wide range of commercial and industrial applications such as aircraft couplings, orthodontic wires, and eyeglasses frames. However, two major obstacles preventing SMAs from fulfilling their potential as excellent actuator materials are: 1) the lack of commercially-viable SMAs that operate at elevated temperatures, and 2) the degradation of mechanical properties and shape memory behavior due to thermal cyclic fatigue. This research utilized a thermodynamically-driven systems design approach to optimize the desired properties by controlling the microstructure and processing of high-temperature SMAs (HTSMAs). To tackle the two aforementioned problems with HTSMAs, the introduction of Ni2TiAl coherent nanoprecipitates in a Ni-Ti-Zr/Hf HTSMA matrix is hypothesized to strengthen the martensite phase while simultaneously increasing the transformation temperature. Differential scanning calorimetry (DSC) was used to determine the transformation temperatures and thermal cyclic stability of each alloy. Also, microstructural characterization was performed using X-ray diffraction (XRD), optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atom probe tomography (APT). Lastly, compression testing was used to assess the mechanical behavior of the alloys. From the investigation of the first set of Ni48.5Ti31.5-X Zr20AlX (X = 0, 1, 2, 3) prototype alloys, Al addition was found to decrease the transformation temperatures, decrease the thermal cyclic stability, but also increase the strength due to the nucleation and growth of embrittling NiTi2 and NiTiZr Laves phases. However, the anticipated Heusler phase precipitation did not occur. The next study focused on Ni50Ti30-XHf20Al X (X = 0, 1, 2, 3, 4, 5) prototype alloys which replaced Zr with Hf to avoid the formation of brittle Laves phases

  1. Effects of Al2O3 Nanopowders on the Wear Behavior of NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Şahin, Y.; Öksüz, K. Emre

    2014-01-01

    TiNi shape memory alloy and its composite using δ-Al2O3 nanosize particles were prepared by the powder metallurgy method, and some mechanical properties like hardness, wear, and corrosion behavior were investigated. The experimental results exhibited that the lower wear rate was obtained for the nano-Al2O3-reinforced Ti alloy composite due to increased hardness, but the wear rate increased considerably with increasing the load over 25 N for Ti alloy. However, the best corrosion resistance was obtained for the base alloy, which is very important for implant applications.

  2. Shape memory polymers

    DOEpatents

    Wilson, Thomas S.; Bearinger, Jane P.

    2015-06-09

    New shape memory polymer compositions, methods for synthesizing new shape memory polymers, and apparatus comprising an actuator and a shape memory polymer wherein the shape memory polymer comprises at least a portion of the actuator. A shape memory polymer comprising a polymer composition which physically forms a network structure wherein the polymer composition has shape-memory behavior and can be formed into a permanent primary shape, re-formed into a stable secondary shape, and controllably actuated to recover the permanent primary shape. Polymers have optimal aliphatic network structures due to minimization of dangling chains by using monomers that are symmetrical and that have matching amine and hydroxyl groups providing polymers and polymer foams with clarity, tight (narrow temperature range) single transitions, and high shape recovery and recovery force that are especially useful for implanting in the human body.

  3. Remarkable Improvement of Shape-Memory Effect in a Co-31Ni-3Si Alloy by Ausforming

    NASA Astrophysics Data System (ADS)

    Sun, Jiangwei; Wang, Shanling; Yan, Zhiwei; Peng, Huabei; Wen, Yuhua

    2015-04-01

    In order to improve the shape-memory effect (SME) in Co-Ni alloys, the influence of ausforming temperature on the SME, microstructures, and mechanical behavior in a Co-31Ni-3Si alloy was studied. The results show that the ausforming at 1073 K (800 °C) could remarkably improve the SME in Co-31Ni-3Si alloy. A large recovery strain of 2.3 pct was obtained after bent by 3.7 pct at 77 K (-196 °C). The increase of yield strength and the decrease of the critical stress for the stress-induced gamma to epsilon martensitc transformation are responsible for the remarkable improvement of SME. The results indirectly showed that the SME in Co-Ni alloys results from the stress-induced gamma to epsilon martensitic transformation, and their low yield strength account for their poor SME. It can be expected that the strengthening of matrix by other methods, such as solution, dispersion, and grain refinement hardening, will improve the SME of Co-Ni alloys.

  4. Undercooling growth and magnetic characterization of ferromagnetic shape memory alloy Ni2FeGa single crystals

    NASA Astrophysics Data System (ADS)

    Qian, J. F.; Zhang, H. G.; Chen, J. L.; Wang, W. H.; Wu, G. H.

    2014-02-01

    Ni2FeGa single crystals have been grown in undercooling conditions provided by a glass-purification method. It has been found that trace amounts of γ phase embededin the single crystalline matrix preferentially orients in the <1 0 0> orientation along the growth direction. This γ phase generates directional residual stress and results in an anisotropic two-way shape memory effect. Large strains of -2.5% in the [0 0 1] and 1.5% in the [0 1 0] directions have been observed. This trace γ phase also improves the ductility of the material, thus the crystals could be plastically deformed at room temperature in the parent phase. The <1 1 0> and <1 1 1> orientations in Ni2FeGa alloy were identified as the easy and hard magnetization directions, respectively, in the parent phase by using low field M-T measurements.

  5. Structural and Magnetic Properties of Sputter-Deposited Polycrystalline Ni-Mn-Ga Ferromagnetic Shape-Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Vinodh Kumar, S.; Seenithurai, S.; Manivel Raja, M.; Mahendran, M.

    2015-10-01

    Polycrystalline Ni-Mn-Ga ferromagnetic shape-memory thin films have been deposited on Si (100) substrates using a direct-current magnetron sputtering technique. The microstructure and the temperature dependence of magnetic properties of the films have been investigated by x-ray diffraction, scanning electron microscopy, and thermomagnetic measurements. As-deposited Ni50.2Mn30.6Ga19.2 film showed quasi-amorphous structure with paramagnetic nature at room temperature. When annealed at 873 K, the quasi-amorphous film attained crystallinity and possessed L21 cubic ordering with high magnetic transition temperature. Saturation magnetization and coercivity values for the annealed film were found to be 220 emu/cm3 and 70 Oe, respectively, indicating soft ferromagnetic character with low magnetocrystalline anisotropy. The magnetic transitions of the film deposited at 100 W were above room temperature, making this a potential candidate for use in microelectromechanical system devices.

  6. Experimental Studies on Dynamic Vibration Absorber using Shape Memory Alloy (NiTi) Springs

    SciTech Connect

    Kumar, V. Raj; Kumar, M. B. Bharathi Raj; Kumar, M. Senthil

    2011-10-20

    Shape memory alloy (SMA) springs have been used as actuators in many applications although their use in the vibration control area is very recent. Since shape memory alloys differ from conventional alloy materials in many ways, the traditional design approach for springs is not completely suitable for designing SMA springs. Some vibration control concepts utilizing unique characteristics of SMA's will be presented in this paper.A dynamic vibration absorber (DVA) using shape memory alloy (SMA) actuator is developed for attenuation of vibration in a cantilever beam. The design procedure of the DVA is presented. The system consists of a cantilever beam which is considered to generate the real-time vibration using shaker. A SMA spring is used with a mass attached to its end. The stiffness of the SMA spring is dynamically varied in such a way to attenuate the vibration. Both simulation and experimentation are carried out using PID controller. The experiments were carried out by interfacing the experimental setup with a computer using LabVIEW software, Data acquisition and control are implemented using a PCI data acquisition card. Standard PID controllers have been used to control the vibration of the beam. Experimental results are used to demonstrate the effectiveness of the controllers designed and the usefulness of the proposed test platform by exciting the structure at resonance. In experimental setup, an accelerometer is used to measure the vibration which is fed to computer and correspondingly the SMA spring is actuated to change its stiffness to control the vibration. The results obtained illustrate that the developed DVA using SMA actuator is very effective in reducing structural response and have great potential to be an active vibration control medium.

  7. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  8. Development of a self-stressing NiTiNb shape memory alloy (SMA)/fiber reinforced polymer (FRP) patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.; Song, G.

    2015-06-01

    The objective of this research is to develop a self-stressing patch using a combination of shape memory alloys (SMAs) and fiber reinforced polymer (FRP) composites. Prestressed carbon FRP patches are emerging as a promising alternative to traditional methods to repair cracked steel structures and civil infrastructure. However, prestressing these patches typically requires heavy and complex fixtures, which is impractical in many applications. This paper presents a new approach in which the prestressing force is applied by restraining the shape memory effect of NiTiNb SMA wires. The wires are subsequently embedded in an FRP overlay patch. This method overcomes the practical challenges associated with conventional prestressing. This paper presents the conceptual development of the self-stressing patch with the support of experimental observations. The bond between the SMA wires and the FRP is evaluated using pull-out tests. The paper concludes with an experimental study that evaluates the patch response during activation subsequent monotonic tensile loading. The results demonstrate that the self-stressing patch with NiTiNb SMA is capable of generating a significant prestressing force with minimal tool and labor requirements.

  9. Influence of Test Procedures on the Thermomechanical Properties of a 55NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-01-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA s are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cu cm (290 in!lbf/cu in). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  10. Influence of test procedures on the thermomechanical properties of a 55NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Padula, Santo A., II; Gaydosh, Darrell J.; Noebe, Ronald D.; Bigelow, Glen S.; Garg, Anita; Lagoudas, Dimitris; Karaman, Ibrahim; Atli, Kadri C.

    2008-03-01

    Over the past few decades, binary NiTi shape memory alloys have received attention due to their unique mechanical characteristics, leading to their potential use in low-temperature, solid-state actuator applications. However, prior to using these materials for such applications, the physical response of these systems to mechanical and thermal stimuli must be thoroughly understood and modeled to aid designers in developing SMA-enabled systems. Even though shape memory alloys have been around for almost five decades, very little effort has been made to standardize testing procedures. Although some standards for measuring the transformation temperatures of SMA's are available, no real standards exist for determining the various mechanical and thermomechanical properties that govern the usefulness of these unique materials. Consequently, this study involved testing a 55NiTi alloy using a variety of different test methodologies. All samples tested were taken from the same heat and batch to remove the influence of sample pedigree on the observed results. When the material was tested under constant-stress, thermal-cycle conditions, variations in the characteristic material responses were observed, depending on test methodology. The transformation strain and irreversible strain were impacted more than the transformation temperatures, which only showed an affect with regard to applied external stress. In some cases, test methodology altered the transformation strain by 0.005-0.01mm/mm, which translates into a difference in work output capability of approximately 2 J/cm 3 (290 in•lbf/in 3). These results indicate the need for the development of testing standards so that meaningful data can be generated and successfully incorporated into viable models and hardware. The use of consistent testing procedures is also important when comparing results from one research organization to another. To this end, differences in the observed responses will be presented, contrasted and

  11. Correlation between Mechanical Behavior and Actuator-type Performance of Ni-Ti-Pd High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A., II; Garg, Anita; Noebe, Ronald D.

    2007-01-01

    High-temperature shape memory alloys in the NiTiPd system are being investigated as lower cost alternatives to NiTiPt alloys for use in compact solid-state actuators for the aerospace, automotive, and power generation industries. A range of ternary NiTiPd alloys containing 15 to 46 at.% Pd has been processed and actuator mimicking tests (thermal cycling under load) were used to measure transformation temperatures, work behavior, and dimensional stability. With increasing Pd content, the work output of the material decreased, while the amount of permanent strain resulting from each load-biased thermal cycle increased. Monotonic isothermal tension testing of the high-temperature austenite and low temperature martensite phases was used to partially explain these behaviors, where a mismatch in yield strength between the austenite and martensite phases was observed at high Pd levels. Moreover, to further understand the source of the permanent strain at lower Pd levels, strain recovery tests were conducted to determine the onset of plastic deformation in the martensite phase. Consequently, the work behavior and dimensional stability during thermal cycling under load of the various NiTiPd alloys is discussed in relation to the deformation behavior of the materials as revealed by the strain recovery and monotonic tension tests.

  12. Role of B19' martensite deformation in stabilizing two-way shape memory behavior in NiTi

    DOE PAGESBeta

    Benafan, O.; Padula, S. A.; Noebe, R. D.; Sisneros, T. A.; Vaidyanathan, R.

    2012-11-01

    Deformation of a B19' martensitic, polycrystallineNi49.9Ti50.1 (at. %) shape memoryalloy and its influence on the magnitude and stability of the ensuing two-way shape memory effect (TWSME) was investigated by combined ex situ mechanical experimentation and in situneutron diffraction measurements at stress and temperature. The microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were captured and compared to the bulk macroscopic response of the alloy. With increasing uniaxial strain, it was observed that B19' martensite deformed by reorientation and detwinning with preferred selection of the (1¯50)M and (010)M variants, (201¯)B19' deformation twinning, and dislocationmore » activity. These mechanisms were indicated by changes in bulk texture from the neutron diffraction measurements. Partial reversibility of the reoriented variants and deformation twins was also captured upon load removal and thermal cycling, which after isothermal deformation to strains between 6% and 22% resulted in a strong TWSME. Consequently, TWSME functional parameters including TWSME strain, strain reduction, and transformation temperatures were characterized and it was found that prior martensite deformation to 14% strain provided the optimum condition for the TWSME, resulting in a stable two-way shape memory strain of 2.2%. Thus, isothermal deformation of martensite was found to be a quick and efficient method for creating a strong and stable TWSME in Ni₄₉.₉Ti₅₀.₁.« less

  13. Thermal Behavior of Mechanically Alloyed Powders Used for Producing an Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pricop, B.; Söyler, U.; Lohan, N. M.; Özkal, B.; Bujoreanu, L. G.; Chicet, D.; Munteanu, C.

    2012-11-01

    In order to produce shape memory rings for constrained-recovery pipe couplings, from Fe-14 Mn-6 Si-9 Cr-5 Ni (mass%) powders, the main technological steps were (i) mechanical alloying, (ii) sintering, (iii) hot rolling, (iv) hot-shape setting, and (v) thermomechanical training. The article generally describes, within its experimental-procedure section, the last four technological steps of this process the primary purpose of which has been to accurately control both chemical composition and the grain size of shape memory rings. Details of the results obtained in the first technological step, on raw powders employed both in an initial commercial state and in a mixture state of commercial and mechanically alloyed (MA) powders, which were subjected to several heating-cooling cycles have been reported and discussed. By means of differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and X-ray diffraction (XRD), the thermal behaviors of the two sample powders have been analyzed. The effects of the heating-cooling cycles, on raw commercial powders and on 50% MA powders, respectively, were argued from the point of view of specific temperatures and heat variations, of elemental diffusion after thermal cycling and of crystallographic parameters, determined by DSC, SEM, and XRD, respectively.

  14. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  15. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  16. Processing and properties of TiNi shape memory fiber-reinforced 6061 aluminum matrix composite made by spark plasma sintering

    NASA Astrophysics Data System (ADS)

    Mizuuchi, Kiyoshi; Inoue, Kanryu; Hamada, K.; Sugioka, M.; Itami, M.; Okanda, Y.; Kawahara, M.

    2000-08-01

    Aluminum alloy matrix composite reinforced by continuous TiNi shape memory allow (SMA) fiber was fabricated by Spark Plasma Sintering (SPS) process of A1 alloy powder with 20 vol. % of the TiNi SMA fiber, and its microstructure and mechanical properties were examined. The A1 alloy powder with the TiNi fiber was readily consolidated into composite at temperatures between 633K and 873K. The relative packing density of the composite fabricated increased with increasing sintering temperature. Reaction occurred at the boundary between A1 alloy matrix and TiNi fiber and the interfacial reaction is considered to consist of three intermetallic phases, Ni3Ti (next to TiNI), Ni2Ti and Al3Ni (next to A1 matrix). The tensile yield stress of the composite deformed in tension at 373K was higher by about 40MPa than at 293K.

  17. Shape memory heat engines

    NASA Astrophysics Data System (ADS)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  18. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  19. Stress transfer during different deformation stages in a nano-precipitate-strenthened Ni-Ti shape memory alloy

    DOE PAGESBeta

    Dong, Y. H.; Cong, D. Y.; Nie, Z. H.; He, Z. B.; Wang, Z. L.; Ren, Yang; Wang, Y. D.; Li, L. F.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni4Ti3 precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drasticallymore » increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ~520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. Lastly, it is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.« less

  20. Stress transfer during different deformation stages in a nano-precipitate-strengthened Ni-Ti shape memory alloy

    SciTech Connect

    Dong, Y. H.; Cong, D. Y. He, Z. B.; Li, L. F.; Wang, Y. D.; Nie, Z. H.; Wang, Z. L.; Ren, Y.

    2015-11-16

    Understanding the role of fine coherent precipitates in the micromechanical behavior of precipitate-strengthened shape memory alloys (SMAs), which still remains a mystery heretofore, is of crucial importance to the design of advanced SMAs with optimal functional and mechanical properties. Here, we investigate the lattice strain evolution of, and the stress partition between the nanoscale Ni{sub 4}Ti{sub 3} precipitates and the matrix in a precipitate-strengthened Ni-Ti SMA during different deformation stages by in-situ synchrotron high-energy X-ray diffraction technique. We found that, during R-phase reorientation and stress-induced martensitic transformation, which both involve the shear deformation process, the lattice strain of the nanoscale precipitates drastically increases by a magnitude of 0.5%, which corresponds to an abrupt increase of ∼520 MPa in internal stress. This indicates that stress repartition occurs and most of the stress is transferred to the precipitates during the shear deformation of the matrix. It is further revealed that the nanoscale precipitates which only have a low volume fraction bear a considerable amount of applied stress during all deformation stages investigated, implying that the nanoscale precipitates play an important role in the deformation behavior of the precipitate-strengthened Ni-Ti SMAs.

  1. Macroscopic and Microstructural Aspects of the Transformation Behavior in a Polycrystalline NiTi Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane; Noebe, Ronald D.; Padula, Santo A., II; Lerch, Bradley A.; Bigelow, Glen S.; Gaydosh, Darrell J.; Garg, Anita; An, Ke; Vaidyanathan, Raj

    2013-01-01

    The mechanical and microstructural behavior of a polycrystalline Ni(49.9)Ti(50.1) (at.%) shape memory alloy was investigated as a function of temperature around the transformation regime. The bulk macroscopic responses, measured using ex situ tensile deformation and impulse excitation tests, were compared to the microstructural evolution captured using in situ neutron diffraction. The onset stress for inelastic deformation and dynamic Young's modulus were found to decrease with temperature, in the martensite regime, reaching a significant minimum at approximately 80 C followed by an increase in both properties, attributed to the martensite to austenite transformation. The initial decrease in material compliance during heating affected the ease with which martensite reorientation and detwinning could occur, ultimately impacting the stress for inelastic deformation prior to the start of the reverse transformation.

  2. Mechanical behavior of an Ni-Ti shape memory alloy under axial-torsional proportional and nonproportional loading

    SciTech Connect

    Lim, T.J.; McDowell, D.L.

    1999-01-01

    Several biaxial proportional and nonproportional loading experiments are reported for thin-wall tubes of a pseudoelastic Ni-Ti shape memory alloy (SMA). In addition to the mechanical behavior, temperature was measured during the experiments. It is shown that the phase transformation exhibits asymmetrical behavior in the case of tension-compression cycling. The transformation strain rate is determined for selected histories by numerical differentiation of data. Under nonproportional loading, the rate of phase transformation does not follow a generalized J{sub 2}-J{sub 3} criteria based on results of micromechanical simulations for proportional loading. The role of simultaneous forward and reverse transformations on the nonproportional transformation response is examined using a simple micromechanical model, and the direction of the inelastic strain rate is adequately predicted. Load- and strain-controlled experiments at different strain rates, with and without hold times, are reported and coupled thermomechanical effects are studied.

  3. Phase Transformation Evolution in NiTi Shape Memory Alloy under Cyclic Nanoindentation Loadings at Dissimilar Rates

    PubMed Central

    Amini, Abbas; Cheng, Chun; Kan, Qianhua; Naebe, Minoo; Song, Haisheng

    2013-01-01

    Hysteresis energy decreased significantly as nanocrystalline NiTi shape memory alloy was under triangular cyclic nanoindentation loadings at high rate. Jagged curves evidenced discrete stress relaxations. With a large recovery state of maximum deformation in each cycle, this behavior concluded in several nucleation sites of phase transformation in stressed bulk. Additionally, the higher initial propagation velocity of interface and thermal activation volume, and higher levels of phase transition stress in subsequent cycles explained the monotonic decreasing trend of dissipated energy. In contrast, the dissipated energy showed an opposite increasing trend during triangular cyclic loadings at a low rate and 60 sec holding time after each unloading stage. Due to the isothermal loading rate and the holding time, a major part of the released latent heat was transferred during the cyclic loading resulting in an unchanged phase transition stress. This fact with the reorientation phenomenon explained the monotonic increasing trend of hysteresis energy. PMID:24336228

  4. Experimental characterization of Ni-Ti shape memory alloy wires under complex loading conditions

    NASA Astrophysics Data System (ADS)

    Prahlad, Harsha; Chopra, Inderjit

    1999-06-01

    Shape memory alloys (SMAs) have shown promise as high-force, high displacement actuators. Critical issues such as path- dependence, predictability and sensitivity to testing conditions, however, need to be addressed in order to design controllable actuators using SMAs. This paper presents research aimed at addressing some of design issues involving application of SMAs, particularly at actuators. Quasistatic experiments at constant stress, strain and temperature are consolidated on a critical stress-temperature diagram to delineate the regions of stability of the various phases of the material. The critical points from these quasistatic tests are found to be in excellent agreement with each other, and correlate relatively well with the constitutive models for SMA thermomechanical behavior. It is also observed that the state of the material is not unique at points along the transformation, and is dependent on the history of the material before the start of the test, individual test involved, the method of loading, and loading rates. Significant variation of the state of the material with different rates and conditions of loading are shown to further illustrate this point. This behavior is likely to be decisive in determining the dynamic behavior of the material, and underscores the need for approaches incorporating these issues for design of repeatable actuators.

  5. X-ray Diffraction Investigations of Shape Memory NiTi Wire

    NASA Astrophysics Data System (ADS)

    Honarvar, Mohammad; Konh, Bardia; Podder, Tarun K.; Dicker, Adam P.; Yu, Yan; Hutapea, Parsaoran

    2015-08-01

    Outstanding properties of nitinol, known as shape memory and superelasticity, make them suitable alternatives in several biomedical, aerospace, and civil applications. For instance, nitinol wires have been used as the actuator components in many innovative medical devices aiming to make surgical tasks less invasive and more efficient. In most of these applications, it is desired to have a consistent strain response of nitinol wires; therefore, it is necessary to investigate the internal phase transformations from microstructural point of view. In this study, the effect of influencing factors such as biased stress during thermal cycle, the maximum temperature wires experienced during heating part of thermal cycle, and also wire diameters on the amount of unrecovered strain occurred between the first and the second thermal cycles has been investigated. The generation of different phase compositions in the same thermomechanical condition for different wire diameters has been discussed using x-ray diffraction (XRD) method. The location and intensity of characteristic peaks were studied prior and after the loading cycles. It was observed that nitinol wires of diameters less than 0.19 mm exhibit unrecovered strain while heated to the range of 70-80 °C in a thermal cycle, whereas no unrecovered strain was found in wires with larger diameter. The observation was supported by the XRD patterns where the formation of R-phase instead of martensite was shown in wire diameters of less than 0.19 mm after cooling back to room temperature.

  6. A new mechanical characterization method for thin film microactuators and its application to NiTiCi shape memory alloy

    SciTech Connect

    Seward, K P

    1999-06-01

    In an effort to develop a more full characterization tool of shape memory alloys, a new technique is presented for the mechanical characterization of microactuators and applied to SMA thin films. A test instrument was designed to utilize a spring-loaded transducer in measuring displacements with resolution of 1.5 pm and forces with resolution of 0.2 mN. Employing an out-of-plane loading method for freestanding SMA thin films, strain resolution of 30{mu}{epsilon} and stress resolution of 2.5 MPa were achieved. This new testing method is presented against previous SMA characterization methods for purposes of comparison. Four mm long, 2 {micro}m thick NiTiCu ligaments suspended across open windows were bulk micromachined for use in the out-of-plane stress and strain measurements. The fabrication process used to micromachine the ligaments is presented step-by-step, alongside methods of fabrication that failed to produce testable ligaments. Static analysis showed that 63% of the applied strain was recovered while ligaments were subjected to tensile stresses of 870 MPa. In terms of recoverable stress and recoverable strain, the ligaments achieved maximum recovery of 700 MPa and 3.0% strain. No permanent deformations were seen in any ligament during deflection measurements. Maximum actuation forces and displacements produced by the 4 mm ligaments situated on 1 cm square test chips were 56 mN and 300 {micro}m, respectively. Fatigue analysis of the ligaments showed degradation in recoverable strain from 0.33% to 0.24% with 200,000 cycles, corresponding to deflections of 90 {micro}m and forces of 25 mN. Cycling also produced a wavering shape memory effect late in ligament life, leading to broad inconsistencies of as much as 35% deviation from average. Unexpected phenomena like stress-induced martensitic twinning that leads to less recoverable stress and the shape memory behavior of long life devices are addressed. Finally, a model for design of microactuators using shape

  7. TECHNICAL NOTE: Active control for stress intensity of crack-tips under mixed mode by shape memory TiNi fiber epoxy composites

    NASA Astrophysics Data System (ADS)

    Shimamoto, A.; Zhao, H.; Azakami, T.

    2007-06-01

    The paper presented the effectiveness of a shape memory alloy hybrid composite. It was designed to actively suppress stress intensity in the vicinity of a crack-tip. A shape memory alloy (SMA) TiNi fiber reinforced epoxy composite was fabricated based on the proposed design concept and its material and mechanical properties were investigated by photoelastic examinations. The stress intensity factors, KI and KII, at a crack-tip decreased temperatures greater than Af under mixed mode. The phenomenon was caused by the recovery force of the TiNi fiber. The relationship of the stress intensity factors with the prestrain in the SMA fiber as well as with the ambient temperature in an isothermal furnace was clarified. On this basis, the active control for stress intensity by a shape memory composite was discussed.

  8. Shape Memory Effect and Superelasticity in [001] Single Crystals of Fe-Ni-Co-Al-Nb(B) Ferromagnetic Alloy

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kuts, O. A.; Panchenko, M. Yu.; Karaka, É.; Maier, H. J.

    2015-11-01

    Shape memory effect (SME) and superelasticity (SE) during thermoelastic martensitic transformation (MT) from the FCC high-temperature γ-phase to the BCT α'-martensite are investigated in Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Nb (Nb) and Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Nb - 0.05% B (NbB) (at.%) single crystals oriented for tension along the [001] direction after aging at 973 K for 10 h. Non-equiaxial (NiAl) β-phase particles with thickness d and length l equal to 60-80 and 340-500 nm, respectively, and volume fraction f ≥ 3-5% are precipitated in Nb crystals during aging simultaneously with the (FeNiCo)3(AlNb) γ´-phase with sizes d = 12.5-16.5 nm. It is shown that precipitation of the β-phase with f ≤ 3-5% in the crystal volume does not reduce the crystal plasticity, and SME of 4.2% and SE up to 6.5% under loading are observed during thermoelastic γ-α' MT in single crystals in a wide range of temperatures from 77 to 293 K. The β-phase is not detected in NbB crystals during aging. It is established that boron in NbB crystals slows down the aging processes: the γ'-phase particles have sizes 6.5-8 nm. The SME of 4.2% and SE up to 4.0% are observed in NbB crystals at temperatures from 77 to 243 K.

  9. Influence of roll and solution treatment processing on shape memory effect of Fe-14Mn-5Si-9Cr-5Ni alloy

    SciTech Connect

    Li, C.L.; Jin, Z.H.

    1998-10-01

    The shape memory effect was studied in an Fe-14Mn-5Si-9Cr-5Ni alloy rerolled at 1123 K after hot rolling at 1423 K, followed by solution treatment at different temperatures. It was found that the alloy exhibits a maximum degree of shape recovery in a bending test and a complete recovery tensile strain of 2.2% in samples that were solution heated at 973 K for 600 s and then quenched in water. The rerolled processing at 1123 K after hot rolling at 1423 K and the microstructure under solution treatment state are important for obtaining a good shape memory effect in the alloy.

  10. Improvement of the functional properties of nanostructured Ti-Ni shape memory alloys by means of thermomechanical processing

    NASA Astrophysics Data System (ADS)

    Kreitcberg, Alena

    Severe plastic deformation (SPD) is commonly used for nanostructure formation in Ti-Ni shape memory alloys (SMAs), but it increases the risk of damage during processing and, consequently, negatively affects functional fatigue resistance of these materials. The principal objective of this project is, therefore, to study the interrelations between the processing conditions, damageability during processing, microstructure and the functional properties of Ti-Ni SMAs with the aim of improving long-term functional performances of these materials by optimizing their processing conditions. First, microstructure and fatigue properties of Ti-Ni SMAs were studied after thermomechanical treatment (TMT) with different combinations of severe cold and warm rolling (CR and WR), as well as intermediate and post-deformation annealing (IA and PDA) technological steps. It was shown that either when WR and IA were introduced into the TMT schedule, or CR intensity was decreased, the fatigue life was improved as a consequence of less processing-induced damage and higher density of the favorable B2-austenite texture. This improvement was reached, however, at a price of a lower multi-cycle functional stability of these materials, the latter being a direct consequence of the microstructure coarsening after higher-temperature lower-intensity processing. At the end of this study, however, it was not possible to distinguish between contributions to the functional performances of Ti-Ni SMAs from different processing-related features: a) grain/subgrain size; b) texture; and c) level of rolling-induced defects. To be capable of separating contributions to the functional properties of Ti-Ni alloys from grain/subgrain size and from texture, the theoretical crystallographic resource of recovery strain after different TMTs and, therefore, different textures, were calculated and compared with the experiment. The comparative analysis showed that the structural factors (grain/subgrain size) strongly

  11. Shape Memory Effects in TiNi-based Alloys Subjected to Electroplastic Rolling

    NASA Astrophysics Data System (ADS)

    Potapova, A. A.; Resnina, N. N.; Stolyarov, V. V.

    2014-07-01

    One of the prospective methods for structure refinement is electroplastic rolling (EPR). The use of an electric current pulse during cold rolling enhances deformability (1.5-3 times for TiNi-based alloys). It was shown that EPR ( e > 1) with post-deformation annealing at 450-500 °C leads to nanostructure formation with a grain size of 60-120 nm. Also, EPR leads to an increase in functional properties of TiNi-based alloys. So, the recovery coefficient was revealed as being better than the undeformed alloy (90-96% for Ti49,2Ni50,8 and 75-80% for Ti50,0Ni50,0). In the Ti50,0Ni50,0 subjected to EPR up to strain 3.6 and subsequent annealing at 450 °C for 1 h, the superelasticity effect is found.

  12. Wafer-level integration of NiTi shape memory alloy on silicon using Au-Si eutectic bonding

    NASA Astrophysics Data System (ADS)

    Gradin, Henrik; Bushra, Sobia; Braun, Stefan; Stemme, Göran; van der Wijngaart, Wouter

    2013-01-01

    This paper reports on the wafer level integration of NiTi shape memory alloy (SMA) sheets with silicon substrates through Au-Si eutectic bonding. Different bond parameters, such as Au layer thicknesses and substrate surface treatments were evaluated. The amount of gold in the bond interface is the most important parameter to achieve a high bond yield; the amount can be determined by the barrier layers between the Au and Si or by the amount of Au deposition. Deposition of a gold layer of more than 1 μm thickness before bonding gives the most promising results. Through patterning of the SMA sheet and by limiting bonding to small areas, stresses created by the thermal mismatch between Si and NiTi are reduced. With a gold layer of 1 μm thickness and bond areas between 200 × 200 and 800 × 800 μm2 a high bond strength and a yield above 90% is demonstrated.

  13. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    DOE PAGESBeta

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore,more » good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.« less

  14. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    SciTech Connect

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-07

    Optical and magneto-optical properties of single crystal of Ni{sub 50.1}Mn{sub 28.4}Ga{sub 21.5} magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along (100) planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  15. Optical and magneto-optical studies of martensitic transformation in Ni-Mn-Ga magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Beran, L.; Cejpek, P.; Kulda, M.; Antos, R.; Holy, V.; Veis, M.; Straka, L.; Heczko, O.

    2015-05-01

    Optical and magneto-optical properties of single crystal of Ni50.1Mn28.4Ga21.5 magnetic shape memory alloy during its transformation from martensite to austenite phase were systematically studied. Crystal orientation was approximately along {100} planes of parent cubic austenite. X-ray reciprocal mapping confirmed modulated 10 M martensite phase. Temperature depended measurements of saturation magnetization revealed the martensitic transformation at 335 K during heating. Magneto-optical spectroscopy and spectroscopic ellipsometry were measured in the sample temperature range from 297 to 373 K and photon energy range from 1.2 to 6.5 eV. Magneto-optical spectra of polar Kerr rotation as well as the spectra of ellipsometric parameter Ψ exhibited significant changes when crossing the transformation temperature. These changes were assigned to different optical properties of Ni-Mn-Ga in martensite and austenite phases due to modification of electronic structure near the Fermi energy during martensitic transformation.

  16. Shape memory Ni-Ti alloy swan-like bone connector for treatment of humeral shaft nonunion

    PubMed Central

    Su, Jia-can; Liu, Xin-wei; Yu, Bao-qing; Li, Zhuo-dong

    2009-01-01

    From August 1990 to December 2007, 156 patients with humeral shaft nonunion were treated with our patented Ni-Ti shape memory alloy swan-like memory pressure connector (SMC). The SMC device cooled with ice before implantation was warmed to 40–50°C after implantation to produce balanced axial and compression forces to stabilise the fracture three-dimensionally. This combined with autologous bone grafting achieved bone tissue regeneration in the fracture and promoted smooth recovery of joint function, with a nonunion healing rate of 98.7% after a single SMC implantation. Failure of nonunion healing occurred in only two cases but was successfully managed by a further operation. Complications were not found in any of these patients apart from four with pre-existing radial nerve injuries. These results demonstrate the effectiveness of the SMC device for the management of humeral shaft nonunion. The device provides continuous compression of the fracture with minimal trauma to the local blood supply. PMID:19198838

  17. Radiopaque Shape Memory Alloys: NiTi-Er with Stable Superelasticity

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Carr, Shane; Butler, James; Gandhi, Abbasi A.; O'Donoghue, Lisa; McNamara, Karrina; Carlson, James M.; Lavelle, Shay; Tiernan, Peter; Biffi, Carlo A.; Bassani, Paola; Tofail, Syed A. M.

    2016-06-01

    Binary NiTi alloy is one of the most important biomaterials currently used in minimally invasive procedures and indwelling devices. The poor visibility of intermetallic NiTi under X-ray could be an unsatisfactory feature especially for developing low-dimensional implantable devices for the body. It is a matter of fact that the alloying of a third radiopaque element, such as noble or heavy metals, in NiTi can significantly enhance the alloy's radiopacity. Recently, it was demonstrated that the addition of a rare earth element such as Erbium has led to an equivalent radiopacity at a much lower cost than the equivalent addition of noble metals. This work reviews the main physical aspects related to the radiopacity of NiTi alloys and compares the radiopacity of NiTi-Er compositions with other NiTi-based alloys containing Pd, Pt, W and Cr. Furthermore, a NiTi-6Er alloy is produced by spark plasma sintering, and successfully processed by conventional hot and cold working procedures to a continuous wire showing stable superelastic behaviour (up to 4 % in strain), suitable for developing biomedical devices.

  18. Radiopaque Shape Memory Alloys: NiTi-Er with Stable Superelasticity

    NASA Astrophysics Data System (ADS)

    Tuissi, Ausonio; Carr, Shane; Butler, James; Gandhi, Abbasi A.; O'Donoghue, Lisa; McNamara, Karrina; Carlson, James M.; Lavelle, Shay; Tiernan, Peter; Biffi, Carlo A.; Bassani, Paola; Tofail, Syed A. M.

    2016-03-01

    Binary NiTi alloy is one of the most important biomaterials currently used in minimally invasive procedures and indwelling devices. The poor visibility of intermetallic NiTi under X-ray could be an unsatisfactory feature especially for developing low-dimensional implantable devices for the body. It is a matter of fact that the alloying of a third radiopaque element, such as noble or heavy metals, in NiTi can significantly enhance the alloy's radiopacity. Recently, it was demonstrated that the addition of a rare earth element such as Erbium has led to an equivalent radiopacity at a much lower cost than the equivalent addition of noble metals. This work reviews the main physical aspects related to the radiopacity of NiTi alloys and compares the radiopacity of NiTi-Er compositions with other NiTi-based alloys containing Pd, Pt, W and Cr. Furthermore, a NiTi-6Er alloy is produced by spark plasma sintering, and successfully processed by conventional hot and cold working procedures to a continuous wire showing stable superelastic behaviour (up to 4 % in strain), suitable for developing biomedical devices.

  19. Plasma Arc Melting (PAM) and Corrosion Resistance of Pure NiTi Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Tuissi, A.; Rondelli, G.; Bassani, P.

    2015-03-01

    Plasma arc melting (PAM) as a suitable non-contaminating melting route for manufacturing high-quality NiTi alloy was successfully examined. The corrosion resistance of PAM Nitinol was evaluated by both potentiodynamic and potentiostatic tests and compared with lower purity NiTi produced by vacuum induction melting (VIM). For the electro-polished surfaces, excellent corrosion resistance of NiTi comparable with the Ti alloys was found with no pitting up to 800 mV versus saturated calomel electrode in simulated body fluid at 37 °C. Potentiostatic results of PAM Nitinol indicate slightly better corrosion resistance than the lower quality VIM alloy.

  20. Crystallographic, magnetic, and electronic structures of ferromagnetic shape memory alloys Ni2XGa (X=Mn,Fe,Co) from first-principles calculations

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2011-01-01

    The crystallographic, magnetic and electronic structures of the ferromagnetic shape memory alloys Ni2XGa (X=Mn, Fe, and Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The lattice parameters of both austenitic and martensitic phases in Ni2MnGa have been calculated. The formation energies of the cubic phase of Ni2XGa are estimated, and show a destabilization tendency if Mn atom is substituted by Fe or Co. From Ni2MnGa to Ni2CoGa, the down spin total density of states (DOS) at Fermi level is gradually increasing, whereas that of the up spin part remains almost unchanged. This is the main origin of the difference of the magnetic moment in these alloys. The partial DOS is dominated by the Ni and Mn 3d states in the bonding region below EF. There are two bond types existing in Ni2XGa: one is between neighboring Ni atoms in Ni2MnGa; the other is between Ni and X atoms in Ni2FeGa and Ni2CoGa alloys.

  1. Empirical Study of the Multiaxial, Thermomechanical Behavior of NiTiHf Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Shukla, Dhwanil; Noebe, Ronald D.; Stebner Aaron P.

    2013-01-01

    An empirical study was conducted to characterize the multiaxial, thermomechanical responses of new high temperature NiTiHf alloys. The experimentation included loading thin walled tube Ni(sub 50.3)Ti(sub 29.7)Hf(sub 20) alloy samples along both proportional and nonproportional axial-torsion paths at different temperatures while measuring surface strains using stereo digital image correlation. A Ni(sub 50.3)Ti(sub 33.7)Hf(sub 16) alloy was also studied in tension and compression to document the effect of slightly depleting the Hf content on the constitutive responses of NiTiHf alloys. Samples of both alloys were made from nearly texture free polycrystalline material processed by hot extrusion. Analysis of the data shows that very small changes in composition significantly alter NiTiHf alloy properties, as the austenite finish (Af) temperature of the 16-at Hf alloy was found to be approximately 60 C less than the 20-at Hf alloy (approximately 120 C vs. 180 C). In addition, the 16-at Hf alloy exhibited smaller compressive transformation strains (2 vs. 2.5 percent). Multi-axial characterization of the 20-at % Hf alloy showed that while the random polycrystal transformation strains in tension (4 percent) and compression (2.5 percent) are modest in comparison with binary NiTi (6 percent, 4 percent), the torsion performance is superior (7 vs. 4 shear strain width to the pseudoelastic plateau).

  2. Fiber laser micromachining of thin NiTi tubes for shape memory vascular stents

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Li, Dong Bo; Tong, Yi Fei; Zhu, Yu Fu

    2016-07-01

    Nickel titanium (NiTi) alloy has widely been used in the vascular stent manufacturing due to its excellent properties. Neodymium-doped yttrium aluminum garnet (Nd:YAG) laser is commonly used for the preparation of metal vascular stents. Recently, fiber lasers have been used for stent profiling for better cutting quality. To investigate the cutting-kerf characters of NiTi vascular stents fabricated by fiber laser cutting, laser cutting experiments with thin NiTi tubes were conducted in this study, while NiTi sheets were used in other fiber laser cutting studies. Different with striation topography, new topographies such as layer topography and topography mixed with layers and striations were observed, and the underlying reason for new topographies was also discussed. Comparative research on different topographies was conducted through analyzing the surface roughness, kerf width, heat-affected zone (HAZ) and dross formation. Laser cutting process parameters have a comprehensive influence on the cutting quality; in this study, the process parameters' influences on the cutting quality were studied from the view of power density along the cutting direction. The present research provides a guideline for improving the cutting quality of NiTi vascular stents.

  3. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-04-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  4. A Novel Training-Free Processed Fe-Mn-Si-Cr-Ni Shape Memory Alloy Undergoing δ → γ Phase Transformation

    NASA Astrophysics Data System (ADS)

    Peng, Huabei; Wang, Gaixia; Du, Yangyang; Wang, Shanling; Chen, Jie; Wen, Yuhua

    2016-07-01

    We not only suppress the formation of twin boundaries but also introduce a high density of stacking faults by taking advantage of δ → γ phase transformation in a processed Fe-19.38Mn-5.29Si-8.98Cr-4.83Ni shape memory alloy. As a result, its shape memory effect is remarkably improved after heating at 1533 K (1260 °C) (single-phase region of δ ferrite) and air cooling due to δ → γ phase transformation.

  5. Constitutive model for the dynamic response of a NiTi shape memory alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohong; Zeng, Xiangguo; Chen, Huayan

    2016-07-01

    In this paper, based on irreversible thermodynamic theory, the Helmholtz free energy function, was selected to deduce both the master equations and evolution equations of the constitutive model of a NiTi alloy under high strain. The Helmholtz free energy function contains the parameters of the reflecting phase transition and plastic property. The constitutive model for a NiTi alloy was implemented using a semi-implicit stress integration algorithm. Four successive stages can be differentiated and simulated: parent phase elasticity, martensitic phase transition, martensitic elasticity, and dislocation yield. The simulation results are in good agreement with the experimental results.

  6. Machining and Phase Transformation Response of Room-Temperature Austenitic NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf

    2014-09-01

    This experimental work reports the results of a study addressing tool wear, surface topography, and x-ray diffraction analysis for the finish cutting process of room-temperature austenitic NiTi alloy. Turning operation of NiTi alloy was conducted under dry, minimum quantity lubrication (MQL) and cryogenic cooling conditions at various cutting speeds. Findings revealed that cryogenic machining substantially reduced tool wear and improved surface topography and quality of the finished parts in comparison with the other two approaches. Phase transformation on the surface of work material was not observed after dry and MQL machining, but B19' martensite phase was found on the surface of cryogenically machined samples.

  7. Mechanical properties of NiTi-TiC shape-memory composites

    SciTech Connect

    Dunand, D.C.; Fukami-Ushiro, K.L.; Mari, D.; Roberts, J.A.; Bourke, M.A.

    1997-12-31

    This paper reviews recent work on the mechanical behavior of martensitic NiTi composites reinforced with 10--20 vol.% TiC particulates. The behavior of the composites is compared to that of unreinforced NiTi, so as to elucidate the effect of mismatch due to matrix transformation, thermal expansion, twinning or slip, in the presence of purely elastic particles. The twinning and subsequent thermal recovery of deformed composites, measured both macroscopically (by compressive testing and by dilatometry) and microscopically (by neutron diffraction), are summarized.

  8. Nanostructured Ti-Ni Shape Memory Alloys Produced by Thermomechanical Processing

    NASA Astrophysics Data System (ADS)

    Prokoshkin, S.; Brailovski, V.; Inaekyan, K.; Demers, V.; Kreitcberg, A.

    2015-06-01

    This article describes the evolution of structural and functional properties of Ti-Ni SMA as a result of thermomechanical processing combining cold/warm deformation ranging from moderate to severe and post-deformation annealing at different temperatures. This study results in the development of an original thermomechanical processing route capable of producing truly nanocrystalline Ti-Ni SMA with grain size ranging from 40 to 80 nm. These structures are mainly a result of crystallization at moderate temperatures of the alloys subjected to severe "amorphizing" cold rolling. A clear demonstration is made that the nanocrystalline structures are the most favorable structures, compared to their recrystallized and polygonized counterparts, for the practical application of Ti-Ni alloys from the viewpoint of their static and dynamic functional characteristics. Despite the fact that these results were obtained on relatively small-sized samples (0.2…0.7 mm thick, 3…5 mm wide cold/warm-rolled ribbons), they bring a clear understanding of the underlying processing-structure-properties interrelations, and, therefore, pave the way for the oncoming production of large-size nanocrystalline Ti-Ni SMA with a radically improved combination of functional characteristics.

  9. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    SciTech Connect

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; Liu, Weilong; Yang, Hong; Jiang, Xiaohua; Ren, Yang; Cui, Lishan

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, which means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.

  10. Deformation behavior of Nb nanowires in TiNiCu shape memory alloy matrix

    DOE PAGESBeta

    Jiang, Daqiang; Liu, Yinong; Yu, Cun; Liu, Weilong; Yang, Hong; Jiang, Xiaohua; Ren, Yang; Cui, Lishan

    2015-08-18

    An in-situ nanowire Nb/TiNiCu composite is fabricated based on the concept of strain under-matching between a phase transforming matrix and high strength nanomaterials. The deformation behavior of the Nb nanowire was investigated by means of in-situ synchrotron X-ray diffraction when the TiNiCu matrix underwent different deformation modes. The maximum lattice strain of the Nb nanowires was about 5% when the matrix deformed via martensitic transformation or 1% when deforming plastically by dislocation slip. As a result, the Nb nanowires showed a lattice strain of 3.5% when the matrix deformed in the mixed mode of plastic deformation and martensitic transformation, whichmore » means that the occurrence of plastic deformation does not impede load transfer from the matrix to the nanowires.« less

  11. Microstructure, Cyclic Deformation and Corrosion Behavior of Laser Welded NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Kermanpur, A.; Saatchi, A.; Sadrnezhaad, S. K.; Soleymani, A. P.

    2015-09-01

    The present paper reports the effects of Nd:YAG laser welding on the microstructure, phase transformation, cyclic deformation behavior, and corrosion resistance of Ti-55 wt.% Ni wire. The results showed that the laser welding altered the microstructure of the weld metal which mainly composed of columnar dendrites grown epitaxially from the fusion line. DSC results indicated that the onset of the transformation temperatures of the weld metal differed from that of the base metal. Cyclic stress-strain behavior of laser-welded NiTi wire was comparable to the as-received material; while a little reduction in the pseudo-elastic property was noted. The weld metal exhibited higher corrosion potential, lower corrosion current density, higher breakdown potential and wider passive region than the base metal. The weld metal was therefore more resistant to corrosion than the base metal.

  12. Hot Deformation Behavior of NiTiHf Shape Memory Alloy Under Hot Compression Test

    NASA Astrophysics Data System (ADS)

    Belbasi, Majid; Salehi, Mohammad T.; Mousavi, Seyed Ali Asghar Akbari

    2012-12-01

    In this study, the hot deformation behavior of Ni49Ti36Hf15 alloy was investigated. Compression tests were carried out at temperatures ranging from 800 to 1100 °C and at the strain rates of 0.001-1/s. The peak stress decreases with increasing deformation temperature and decreasing strain rate, a behavior which can be described by plotting the Zener-Hollomon parameter as a function of stress. It was realized that dynamic recrystallization (DRX) was responsible for flow softening. Most of the samples exhibited typical DRX stress-strain curves with a single peak stress followed by a gradual fall down stress. Microstructure evolution showed that new recrystallized grains formed in the vicinity of grain boundaries. The hyperbolic-sine-type constitutive model of Ni49Ti36Hf15 alloy was obtained to provide basic data for determining reasonable hot-forming process. The activation energy for hot deformation of the Ni49Ti36Hf15 alloy was close to 410 kJ/mol.

  13. Surface characteristics of sterilized electropolished NiTi shape memory alloy as biomaterials

    NASA Astrophysics Data System (ADS)

    Tabrizian, Maryam; Thierry, Benjamin; Savadogo, Omarou; Yahia, L'Hocine

    1999-05-01

    As a potential biomaterial for many medical applications, NiTi alloy derives its good biocompatibility and corrosion resistance from a homogeneous and protective oxide layer, mainly composed of TiO2, with little concentration of nickel. However, during corrosion testing at high potential, NiTi is susceptible to pitting corrosion, which may affect the amount of ions (nickel and titanium) released by the alloy and thus, may affect its biocompatibility. As a passivating treatment, electropolishing (EP) was demonstrated to decrease the amount of nickel on the surface and to remarkably improve the corrosion behavior of the alloy. After sterilization by ethylene oxide (EO), no modification of the promising corrosion behavior of electropolished NiTi were observed, although some surface modifications were reported. The corrosion resistance of ethylene oxide sterilized and electropolished samples ranked between that of the commonly used Ti6A14V and 316L (0.4 less than 1 less than 1.4 mV/SCE) implant alloys.

  14. Shape memory characteristics and mechanical properties of powder metallurgy processed Ti50Ni40Cu10 alloy.

    PubMed

    Kim, Yeon-Wook

    2014-10-01

    Ti-Ni-Cu alloy powders were prepared by gas atomization and porous bulk specimens were fabricated by spark plasma sintering (SPS). The microstructure of as-solidified powders exhibited a cellular structure and they contained a high density of nano-sized porosities which were located in the intercellular regions. XRD analysis showed that one-step martensitic transformation of B2-B19 occurred in all alloy powders and SPS specimens. When the martensitic transformation start temperature (M(s)) and austenite transformation finish temperature (A(f)) were determined in order to analyze the dependence of powder size on transformation temperatures, the M(s) increased slightly from -17.5 degrees C to - 14.6 degrees C as increasing the powder size ranging from between 25 and 50 μm to ranging between 100 and 150 μm. However, the M(s) and A(f) of the as-atomized powders is much smaller than those of SPS specimens and the M(s) of porous specimen was about 10.9 degrees C. Loading-unloading compressive tests were carried out to investigate the mechanical properties of porous Ti-Ni-Cu specimen. The specimen was compressed to the strain of 6% at a temperature higher than A,. After unloading, the residual strain was 2.1%. After the compressed specimen was heated to 60 degrees C and held for 30 minutes and then cooled to room temperature, the changes in the length of the specimens were measured. Then it was found that the recovered strain ascribed to shape memory effect was 1.5%. PMID:25942923

  15. Micro-processing of NiMnGa shape memory alloy by using a nanosecond fiber laser

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2016-04-01

    The interest on Ferromagnetic Shape Memory Alloys (FSMAs), such as NiMnGa, is growing up, thanks to their functional properties to be employed in a new class of micro-devices. The most evident critical issue, limiting the use of these systems in the production of industrial devices, is the brittleness of the bulk material; its workability by using convectional processing methods is very limited. Thus, alternative processing methods, including laser processing, are encouraged for the manufacture of FSMAs based new devices. In this work, the effect of the nanosecond laser microprocessing on Ni45Mn33Ga22 [at%] has been studied. Linear grooves were realized by a nanosecond 30 W fiber laser; the machined surfaces were analyzed with scanning electron microscopy, coupled with energetic dispersion spectroscopy for the composition analysis. The morphology of the grooves was affected by the laser scanning velocity and the number of laser pulses while the measured material removal rate appeared to be influenced mainly by the number of laser pulses. Compositional modification, associated to the loss of Ga content, was detected only for the lower scanning velocity, because of the high fluence. On the contrary, by increasing the velocity up to 1000 mm/s no Ga loss can be seen, making possible the laser processing of this functional alloy without its chemical modification. The use of short pulses allowed also to reduce the amount of recast material and the compositional change with respect to long pulses. Finally, the calorimetric analysis indicated that laser nanosecond microprocessing could affect the functional properties of this alloy: a larger decrease of the characteristic temperatures of the martensitic transformation was observed in correspondence of the low scanning velocity.

  16. Shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Santo, Loredana

    2016-02-01

    Recent advances in shape memory polymer (SMP) foam research are reviewed. The SMPs belong to a new class of smart polymers which can have interesting applications in microelectromechanical systems, actuators and biomedical devices. They can respond to specific external stimulus changing their configuration and then remember the original shape. In the form of foams, the shape memory behaviour can be enhanced because they generally have higher compressibility. Considering also the low weight, and recovery force, the SMP foams are expected to have great potential applications primarily in aerospace. This review highlights the recent progress in characterization, evaluation, and proposed applications of SMP foams mainly for aerospace applications.

  17. Composition, Compatibility, and the Functional Performances of Ternary NiTiX High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Bucsek, Ashley N.; Hudish, Grant A.; Bigelow, Glen S.; Noebe, Ronald D.; Stebner, Aaron P.

    2016-03-01

    A general procedure to optimize shape memory alloys (SMAs) for specific engineering performance metrics is outlined and demonstrated through a study of ternary, NiTiX high-temperature SMAs, where X = Pd, Hf, Zr. Transformation strains are calculated using the crystallographic theory of martensite and compared to the cofactor conditions, both requiring only lattice parameters as inputs. Measurements of transformation temperatures and hysteresis provide additional comparisons between microstructural-based and transformation properties. The relationships between microstructural-based properties and engineering performance metrics are then thoroughly explored. Use of this procedure demonstrates that SMAs can be tuned for specific applications using relatively simple, fast, and inexpensive measurements and theoretical calculations. The results also indicate an overall trade-off between compatibility and strains, suggesting that alloys may be optimized for either minimal hysteresis or large transformation strains and work output. However, further analysis of the effects of aging shows that better combinations of uncompromised properties are possible through solid solution strengthening.

  18. Defect pinning of interface motion in thermoelastic structural transitions of Cu-Al-Ni shape-memory alloy

    SciTech Connect

    Perez-Landazabal, J. I.; Recarte, V.; Sanchez-Alarcos, V.; Agosta, D. S.; Leisure, R. G.

    2006-06-01

    The high mobility of austenite-martensite interfaces is a characteristic of a thermoelastic martensitic transformation. Internal friction and elastic constants are very suitable probes to analyze this mobility. In this work, resonant ultrasound spectroscopy, differential scanning calorimetry, and neutron powder diffraction have been employed to analyze the role of defects in a first-order transformation. An anomalous behavior associated with the martensitic transformation in a Cu-Al-Ni shape-memory alloy has been observed; the internal friction peak measured during cooling completely disappears on heating. The elastic constants also show different behavior on heating and cooling. The different mobility of defects in the two phases, and the simultaneous occurrence of both the defect recovery processes and the martensitic transformation in the same temperature range, are the origin of the observed behavior. These effects show an exceptional influence of defects on thermoelastic equilibrium during a first-order structural transition. The proposed mechanism is general and may apply to other transitions than the one reported in this paper.

  19. Phase Transformation and Creep Behavior in Ti50Pd30Ni20 High Temperature Shape Memory Alloy in Compression

    NASA Technical Reports Server (NTRS)

    Kumar, Parikshith K.; Desai, Uri; Monroe, James; Lagoudas, Dimitris C.; Karaman, Ibrahim; Noebe, Ron; Bigelow, Glenn

    2010-01-01

    The creep behavior and the phase transformation of Ti50Pd30Ni20 High Temperature Shape Memory Alloy (HTSMA) is investigated by standard creep tests and thermomechanical tests. Ingots of the alloy are induction melted, extruded at high temperature, from which cylindrical specimens are cut and surface polished. A custom high temperature test setup is assembled to conduct the thermomechanical tests. Following preliminary monotonic tests, standard creep tests and thermally induced phase transformation tests are conducted on the specimen. The creep test results suggest that over the operating temperatures and stresses of this alloy, the microstructural mechanisms responsible for creep change. At lower stresses and temperatures, the primary creep mechanism is a mixture of dislocation glide and dislocation creep. As the stress and temperature increase, the mechanism shifts to predominantly dislocation creep. If the operational stress or temperature is raised even further, the mechanism shifts to diffusion creep. The thermally induced phase transformation tests show that actuator performance can be affected by rate independent irrecoverable strain (transformation induced plasticity + retained martensite) as well as creep. The rate of heating and cooling can adversely impact the actuators performance. While the rate independent irrecoverable strain is readily apparent early in the actuators life, viscoplastic strain continues to accumulate over the lifespan of the HTSMA. Thus, in order to get full actuation out of the HTSMA, the heating and cooling rates must be sufficiently high enough to avoid creep.

  20. Superelasticity of Cu-Ni-Al shape-memory fibers prepared by melt extraction technique

    NASA Astrophysics Data System (ADS)

    Li, Dong-yue; Zhang, Shu-ling; Liao, Wei-bing; Geng, Gui-hong; Zhang, Yong

    2016-08-01

    In the paper, a melt extraction method was used to fabricate Cu-4Ni-14Al (wt%) fiber materials with diameters between 50 and 200 μm. The fibers exhibited superelasticity and temperature-induced martensitic transformation. The microstructures and superelasticity behavior of the fibers were studied via scanning electron microscopy (SEM) and a dynamic mechanical analyzer (DMA), respectively. Appropriate heat treatment further improves the plasticity of Cu-based alloys. The serration behavior observed during the loading process is due to the multiple martensite phase transformation.

  1. Shock-wave response of Ti-Ni shape memory alloys in the transformation temperature range

    NASA Astrophysics Data System (ADS)

    Razorenov, Sergey V.; Garkushin, Gennady V.; Kanel, Gennady I.; Popov, Nikolay N.

    2009-06-01

    The behavior of Ti51.1Ni48.9 and Ti49.4Ni50.6 alloys under shock wave loading was investigated to observe their martensitic transformations. Tested samples had the grain sizes ˜30 μm and 0.05 to 0.3 μm. Reduction of the grain size was done by means of severe plastic deformation methods. In the experiments, the VISAR velocity histories were recorded over the test temperatures range from 193 K to 415 K which involves the temperatures of thermoelastic martensitic transformations of the alloys. Waveforms demonstrate temperature dependences of the Hugoniot elastic limits which is controlled by the critical stress for inducing martensitic transformation, phase transformation without expected so called plateau, and in some cases signatures of pseudo-elastic behavior. The reduction of the material grain size has led to rise in both the HEL values and transformation rates and decrease of the spall strength over whole temperature range.

  2. Microstructural Evolution and Magnetic Properties of Aged CoNiGaAl Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    El-Bagoury, N.; Rashad, M. M.

    2016-05-01

    A study on the influence of aging heat treatment conditions at 823 K for 3 h, 24 h, and 120 h, on microstructure, martensitic transformation, and magnetic and mechanical properties of Co50Ni23Ga27- X Al X alloys ( X = 0 and 1 at.%) was performed by using x-ray diffraction (XRD) analysis, optical microscopy (OM), energy-dispersive spectrometer (EDS), differential scanning calorimeter (DSC), and vibrating sample magnetometer (VSM). The results show that the microstructure of both aged alloys consists of martensite and fcc second γ phase in addition to ordered cubic gamma prime ( γ') phase precipitates in martensite. The martensitic transformation temperature peak ( M p) elevates with prolonging aging time and decreasing valence electron concentration ( e v/ a). Saturation magnetization ( M s) decreases, whereas both remanence magnetization ( M r) and coercivity ( H c) increase with aging time. Meanwhile, the aging time enhances the hardness property ( H v) of the investigated alloys.

  3. Martensitic transformation behaviors of Ti49+xNi21-xCu30 (x=0,1,2,3) shape memory alloy strips

    NASA Astrophysics Data System (ADS)

    Kim, Yeon-Wook; Kim, Hyun-Jin; Nam, Tae-Hyun

    2010-05-01

    Four batches of Ti-Ni-Cu strips (Ti49Ni21Cu30, Ti50Ni20Cu30, Ti51Ni19Cu30 and Ti52Ni18Cu30) were prepared by an arc melt overflow technique. The microstructure of as-cast strips exhibited columnar grains normal to the strip surface. XRD analysis showed that B2-B19 martensitic transformation occurred in all alloy strips. The martensitic transformation start temperature (Ms) of the Ti49Ni21Cu30 strip was 54.6 °C and continued to increase with increasing Ti-content. During cycle deformation with an applied stress of 120 MPa, transformation hysteresis and elongation associated with the B2-B19 transformation were observed to be 4.1 °C and 1.84% in the Ti49Ni21Cu30 strip. The transformation hysteresis associated with the B2-B19 transformation increased with increasing Ti-content, while the elongation decreased with increasing Ti-content. Even though it is known that Ti-Ni-Cu alloys with high Cu-content (more than 13 at % Cu) are too brittle to deform plastically, the rapidly solidified Ti-Ni-Cu alloy strips, which contain 30 at % Cu, have excellent shape memory characteristics and mechanical properties.

  4. Microstructure and Properties of Deformation Processed Polycrystalline Ni47Ti44Nb9 Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Yin, XiangQian; Mi, Xujun; Li, Yanfeng; Gao, Baodong

    2012-12-01

    The objective of this work was to investigate the relationships between process and microstructure and property in polycrystalline Ni47Ti44Nb9 alloy. Three processes: (1) hot-forged, (2) cold-drawn, and (3) cold-rolled were investigated. The microstructure was tested by means of optical microscope, x-ray diffraction, and electron backscatter diffraction, and then crystalline orientation distribution functions and inverse pole figures were measured. The results indicated that hot-forging eliminated dendritic microstructure and fined the eutectic structure. It also induced a <113> fiber texture, which paralleled to the axial direction. The cold drawing and cold-rolling had a further effect in grain refinement. And the cold-drawn specimens contained a strong <111> fiber texture paralleling to the deformation direction, while the cold-rolled tubes formed <111> crystalline directions paralleling the axial direction and <110> crystalline directions of crystalline arranged along the circumferential direction. The notably distinctive recoverability of different processed materials was observed and discussed.

  5. Magnetic and transport properties of (β+γ) Ni35Co35Al30 ferromagnetic shape memory alloy across the martensitic transition

    NASA Astrophysics Data System (ADS)

    Sokhey, Kanwaljeet S.; Manekar, Meghmalhar; Chattopadhyay, M. K.; Kaul, Rakesh; Roy, S. B.; Chaddah, P.

    2003-06-01

    The results of dc-magnetization, resistivity and ac-susceptibility studies performed on (β+γ) Ni35Co35Al30 magnetic shape memory alloy are presented highlighting the transition between two equilibrium lattice configurations of austenite and martensite phases. The first order nature of this martensitic transition is emphasized by highlighting the presence of thermal hysteresis and phase co-existence. This transition is apparently broadened with the introduction of γ-phase in the pure β-phase Ni35Co35Al30 alloy giving rise to a relatively large thermal hysteresis.

  6. Reversible shape memory

    NASA Astrophysics Data System (ADS)

    Sheiko, Sergei; Zhou, Jing; White, Sarah; Ashby, Valerie

    2012-02-01

    An ``Achilles' heel'' of shape memory materials is that shape transformations triggered by an external stimulus are usually irreversible. Here we present a new concept of reversible transitions between two well-defined shapes by controlling hierarchic crystallization of a dual-network elastomer. The reversibility was demonstrated for different types of shape transformations including rod bending, winding of a helical coil, and widening an aperture. The distinct feature of the reversible shape alterations is that both counter-shapes are infinitely stable at a temperature of exploitation. Shape reversibility is highly desirable property in many practical applications such as non-surgical removal of a previously inserted catheter and handfree wrapping up of an earlier unraveled solar sail on a space shuttle.

  7. Shape memory polymer medical device

    DOEpatents

    Maitland, Duncan; Benett, William J.; Bearinger, Jane P.; Wilson, Thomas S.; Small, IV, Ward; Schumann, Daniel L.; Jensen, Wayne A.; Ortega, Jason M.; Marion, III, John E.; Loge, Jeffrey M.

    2010-06-29

    A system for removing matter from a conduit. The system includes the steps of passing a transport vehicle and a shape memory polymer material through the conduit, transmitting energy to the shape memory polymer material for moving the shape memory polymer material from a first shape to a second and different shape, and withdrawing the transport vehicle and the shape memory polymer material through the conduit carrying the matter.

  8. Challenges and Progress in the Development of High-Temperature Shape Memory Alloys Based on NiTiX Compositions for High-Force Actuator Applications

    NASA Technical Reports Server (NTRS)

    Padula, Santo, II; Bigelow, Glen; Noebe, Ronald; Gaydosh, Darrell; Garg, Anita

    2006-01-01

    Interest in high-temperature shape memory alloys (HTSMA) has been growing in the aerospace, automotive, process control, and energy industries. However, actual materials development has seriously lagged component design, with current commercial NiTi alloys severely limited in their temperature capability. Additions of Pd, Pt, Au, Hf, and Zr at levels greater than 10 at.% have been shown to increase the transformation temperature of NiTi alloys, but with few exceptions, the shape memory behavior (strain recovery) of these NiTiX systems has been determined only under stress free conditions. Given the limited amount of basic mechanical test data and general lack of information regarding the work attributes of these materials, a program to investigate the mechanical behavior of potential HTSMAs, with transformation temperatures between 100 and 500 C, was initiated. This paper summarizes the results of studies, focusing on both the practical temperature limitations for ternary TiNiPd and TiNiPt systems based on the work output of these alloys and the ability of these alloys to undergo repeated thermal cycling under load without significant permanent deformation or "walking". These issues are ultimately controlled by the detwinning stress of the martensite and resistance to dislocation slip of the individual martensite and austenite phases. Finally, general rules that govern the development of useful, high work output, next-generation HTSMA materials, based on the lessons learned in this work, will be provided

  9. Reversible Shape Memory

    NASA Astrophysics Data System (ADS)

    Zhou, Jing; Li, Qiaoxi; Turner, Sara; Brosnan, Sarah; Tippets, Cary; Carrillo, Jan-Michael; Nykypnachuk, Dmytro; Gang, Oleg; Dobrynin, Andrey; Lopez, Rene; Ashby, Valerie; Sheiko, Sergei

    2014-03-01

    Reversible shape memory has been achieved on various shapes, e.g. hairpin, origami, coil, robotic gripper and flow rate control device, allowing for multiple switching between encoded shapes without applying any external force. Also, the reversible photonic structure molded in dielectric elastomers has been designed. Maximum reversibility can be achieved by tuning the crosslinking density and the degree of crystallinity of semi-crystalline elastomers. Different crystallization protocols including isothermal and cooling crystallization have been applied to develop a universal picture integrating different shape memory (SM) behaviors: conventional one-way SM, two-way reversible SM, and one-way reversible SM. Acknowledge financial support from the NSF DMR-1122483, DMR- 1004576, and DMR-1206957.

  10. Laser welding of NiTi shape memory alloy: Comparison of the similar and dissimilar joints to AISI 304 stainless steel

    NASA Astrophysics Data System (ADS)

    Mirshekari, G. R.; Saatchi, A.; Kermanpur, A.; Sadrnezhaad, S. K.

    2013-12-01

    The unique properties of NiTi alloy, such as its shape memory effect, super-elasticity and biocompatibility, make it ideal material for various applications such as aerospace, micro-electronics and medical device. In order to meet the requirement of increasing applications, great attention has been given to joining of this material to itself and to other materials during past few years. Laser welding has been known as a suitable joining technique for NiTi shape memory alloy. Hence, in this work, a comparative study on laser welding of NiTi wire to itself and to AISI 304 austenitic stainless steel wire has been made. Microstructures, mechanical properties and fracture morphologies of the laser joints were investigated using optical microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction analysis (XRD), Vickers microhardness (HV0.2) and tensile testing techniques. The results showed that the NiTi-NiTi laser joint reached about 63% of the ultimate tensile strength of the as-received NiTi wire (i.e. 835 MPa) with rupture strain of about 16%. This joint also enabled the possibility to benefit from the pseudo-elastic properties of the NiTi component. However, tensile strength and ductility decreased significantly after dissimilar laser welding of NiTi to stainless steel due to the formation of brittle intermetallic compounds in the weld zone during laser welding. Therefore, a suitable modification process is required for improvement of the joint properties of the dissimilar welded wires.

  11. Shape memory polyurethane nanocomposites

    NASA Astrophysics Data System (ADS)

    Cao, Feina

    Shape memory polymers are smart materials which can remember their original shapes. However, the low recovery stress and low mechanical strength limit the commercial applications of shape memory polymers. In this study, nanoclays were introduced to shape memory polyurethanes (SMPU) to augment these properties by enhance the network of SMPU. Several factors which influence the shape recovery stress were evaluated, including the nature of polymer chain by using different monomers, type of clay particles, extent of filler dispersion, clay content and deformation conditions. It was found that only reactive clay particles were well dispersed into polyurethane matrix by the tethering between --CH2CH 2OH functional groups in clay surfactants and polyurethane chains. Two different shape memory polyurethanes (Systems I & II) prepared by bulk polymerization were compared. The shape memory effect of System I was triggered by melting of the soft segment crystals, while that of System II was by glass transition of the soft segments. It was seen that the reactive clay particles dispersed well in both polyurethane matrices and augmented the recovery stress, e.g., 20% increase with 1 wt % nanoclay in System I and 40% increase with 5 wt % nanoclay in System II were observed. In System I, clay particles interfered with soft segment crystallization, and promoted phase mixing between the hard and soft segments, thus affecting the fixity and recovery ratio. Nevertheless, the soft segment crystallinity was still enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. The higher loading of clay particles accelerated the stress relaxation, resulting in reduction of recovery stress. In System II, no significant effect of clay particles in phase separation was observed, so there was no influence of clay on shape fixity and recovery ratio. The recovery stress increased with reactive nanoclay content. It was also found that the recovery

  12. Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization

    NASA Astrophysics Data System (ADS)

    Hartl, D. J.; Lagoudas, D. C.; Calkins, F. T.; Mabe, J. H.

    2010-01-01

    A shape memory alloy (SMA) with a composition of Ni60Ti40 (wt%) was chosen for the fabrication of active beam elements intended for use as cyclic actuators and incorporated into a morphing aerospace structure. The active structure is a variable-geometry chevron (VGC) designed to reduce jet engine noise in the take-off flight regime while maintaining efficiency in the cruise regime. This two-part work addresses the training, characterization and derived material properties of the new nickel-rich composition, the assessment of the actuation properties of the active beam actuator and the accurate analysis of the VGC and its subcomponents using a model calibrated from the material characterization. The characterization performed in part I of this work was intended to provide quantitative information used to predict the response of SMA beam actuators of the same composition and with the same heat treatment history. Material in the form of plates was received and ASTM standard tensile testing coupons were fabricated and tested. To fully characterize the material response as an actuator, various thermomechanical experiments were performed. Properties such as actuation strain and transformation temperatures as a function of applied stress were of primary interest. Results from differential scanning calorimetry, monotonic tensile loading and constant stress thermal loading for the as-received, untrained material are first presented. These show lower transformation temperatures, higher elastic stiffnesses (60-90 GPa) and lower recoverable transformation strains (≈1.5%) when compared to equiatomic NiTi (Nitinol). Stabilization (training) cycles were applied to the tensile specimens and characterization tests were repeated for the stable (trained) material. The effects of specimen training included the saturation of cyclically generated irrecoverable plastic strains and a broadening of the thermal transformation hysteresis. A set of final derived material properties for this

  13. A Novel Powder Metallurgy Processing Approach to Prepare Fine-Grained Cu-Al-Ni Shape-Memory Alloy Strips from Elemental Powders

    NASA Astrophysics Data System (ADS)

    Vajpai, S. K.; Dube, R. K.; Chatterjee, P.; Sangal, S.

    2012-07-01

    The current work describes the experimental results related to the successful preparation of fine-grained, Cu-Al-Ni, high-temperature shape-memory alloy (SMA) strips from elemental Cu, Al, and Ni powders via a novel powder metallurgy (P/M) processing approach. This route consists of short time period ball milling of elemental powder mixture, preform preparation from milled powder, sintering of preforms, hot-densification rolling of unsheathed sintered powder preforms under protective atmosphere, and postconsolidation homogenization treatment of the hot-rolled strips. It has been shown that it is possible to prepare chemically homogeneous Cu-Al-Ni SMA strips consisting of equiaxed grains of average size approximately 6 μm via the current processing approach. It also has been shown that fine-grained microstructure in the finished Cu-Al-Ni SMA strips resulted from the pinning effect of nanosized alumina particles present on the grain boundaries. The finished SMA strips were almost fully martensitic in nature, consisting of a mixture of β1^' } - and γ1^' } -type martensites. The Cu-Al-Ni SMA strips had 677 MPa average fracture strength, coupled with 13 pct average fracture strain. The fractured surfaces of the specimens exhibited primarily dimpled ductile type of fracture, together with some transgranular mode of fracture. The Cu-Al-Ni strips exhibited an almost 100 pct one-way shape recovery after bending followed by unconstrained heating at 1, 2, and 4 pct applied deformation prestrain. The two-way shape-memory strain was found approximately 0.35 pct after 15 training cycles at 4 pct applied training prestrain.

  14. Microstructural Response During Isothermal and Isobaric Loading of a Precipitation-Strengthened Ni-29.7Ti-20Hf High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Padula, S. A.; Vaidyanathan, R.

    2012-12-01

    A stable Ni-rich Ni-29.7Ti-20Hf (at. pct) shape memory alloy, with relatively high transformation temperatures, was shown to exhibit promising properties at lower raw material cost when compared to typical NiTi-X (X = Pt, Pd, Au) high-temperature shape memory alloys (HTSMAs). The excellent dimensional stability and high work output for this alloy were attributed to a coherent, nanometer size precipitate phase observed using transmission electron microscopy. To establish an understanding of the role of these precipitates on the microstructure and ensuing stability of the NiTiHf alloy, a detailed study of the micromechanical and microstructural behaviors was performed. In-situ neutron diffraction at stress and temperature was used to obtain quantitative information on phase-specific internal strain, texture, and phase volume fractions during both isothermal and isobaric testing of the alloy. During isothermal testing, the alloy exhibited low isothermal strains due to limited detwinning, consistent with direct measurements of the bulk texture through neutron diffraction. This limited detwinning was attributed to the pinning of twin and variant boundaries by the dispersion of fine precipitates. During isobaric thermal cycling at 400 MPa, the high work output and near-perfect dimensional stability was attributed to the presence of the precipitates that act as homogeneous sources for the nucleation of martensite throughout the material, while providing resistance to irrecoverable processes such as plastic deformation.

  15. Effect of thermal oxidation on the surface characteristics and corrosion behavior of a Ta-implanted Ti-50.6Ni shape memory alloy

    NASA Astrophysics Data System (ADS)

    Wang, Sheng-nan; Li, Yan; Zhao, Ting-ting

    2012-12-01

    A NiTi shape memory alloy (SMA) modified by Ta ion implantation was subjected to oxidation treatment in air at 723 and 873 K. Atomic force microscopy (AFM), Auger electron spectroscopy (AES), and grazing incidence X-ray diffraction (GIXRD) measurements were conducted to investigate the surface characteristics, including surface topography, elemental depth profiles, and surface phase structures. The surface roughness of the Ta-implanted NiTi increases after oxidation, and the higher the oxidation temperature is, the larger the value is. The surface of the Ta-implanted NiTi oxidized at 723 K is a nanolayer mainly composed of TiO2/Ta2O5 and TiO with depressed Ni content. The Ta-implanted NiTi oxidized at 873 K is mainly covered by rutile TiO2 in several micrometers of thickness. Potentiodynamic polarization tests indicated that the corrosion resistance of the Ta-implanted NiTi was improved after thermal oxidation at 723 K, but a negative impact was found for the Ta-implanted NiTi oxidized at 873 K.

  16. Damage-based life prediction model for uniaxial low-cycle stress fatigue of super-elastic NiTi shape memory alloy microtubes

    NASA Astrophysics Data System (ADS)

    Song, Di; Kang, Guozheng; Kan, Qianhua; Yu, Chao; Zhang, Chuanzeng

    2015-08-01

    Based on the experimental observations for the uniaxial low-cycle stress fatigue failure of super-elastic NiTi shape memory alloy microtubes (Song et al 2015 Smart Mater. Struct. 24 075004) and a new definition of damage variable corresponding to the variation of accumulated dissipation energy, a phenomenological damage model is proposed to describe the damage evolution of the NiTi microtubes during cyclic loading. Then, with a failure criterion of Dc = 1, the fatigue lives of the NiTi microtubes are predicted by the damage-based model, the predicted lives are in good agreement with the experimental ones, and all of the points are located within an error band of 1.5 times.

  17. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  18. PIIID-formed (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti coatings on NiTi shape memory alloy for medical applications.

    PubMed

    Sun, Tao; Wang, Lang-Ping; Wang, Min; Tong, Ho-Wang; Lu, William W

    2012-08-01

    (Ti, O)/Ti, (Ti, N)/Ti and (Ti, O, N)/Ti composite coatings were fabricated on NiTi shape memory alloy via plasma immersion ion implantation and deposition (PIIID). Surface morphology of samples was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). Cross-sectional morphology indicated that the PIIID-formed coatings were dense and uniform. X-ray diffraction (XRD) was used to characterize the phase composition of samples. X-ray photoelectron spectroscopy (XPS) results showed that the surface of coated NiTi SMA samples was Ni-free. Nanoindentation measurements and pin-on-disc tests were carried out to evaluate mechanical properties and wear resistance of coated NiTi SMA, respectively. For the in vitro biological assessment of the composite coatings in terms of cell morphology and cell viability, osteoblast-like SaOS-2 cells and breast cancer MCF-7 cells were cultured on NiTi SMA samples, respectively. SaOS-2 cells attached and spread better on coated NiTi SMA. Viability of MCF-7 cells showed that the PIIID-formed composite coatings were noncytotoxic and coated samples were more biocompatible than uncoated samples. PMID:24364947

  19. Investigations on the influence of composition in the development of Ni-Ti shape memory alloy using laser based additive manufacturing

    NASA Astrophysics Data System (ADS)

    Shiva, S.; Palani, I. A.; Mishra, S. K.; Paul, C. P.; Kukreja, L. M.

    2015-06-01

    Among the various shaped memory alloys (SMA), nitinol (Ni-Ti alloy) finds applications in automotive, aerospace, biomedical and robotics. The conventional route of fabrication of SMA has several limitations, like formation of stable secondary phases, fabrication of simple geometries, etc. This paper reports a novel method of fabricating SMA using a laser based additive manufacturing technique. Three different compositions of Ni and Ti powders (Ni-45% Ti-55%; Ni-50% Ti-50%; Ni-55% Ti45%) were pre-mixed using ball-milling and laser based additive manufacturing system was employed to fabricate circular rings. The material properties of fabricated rings were evaluated using Scanning Electron Microscopy (SEM), Differential scanning calorimeter (DSC), X-ray diffraction (XRD) system and micro-hardness test. All the characterized results showed that SMA could be manufactured using the laser based additive manufacturing process. The properties of laser additive manufactured SMA (Ni-50% Ti-50%) were found to be close to that of conventionally processed SMA.

  20. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, Mohsen; Martinez, David R.

    1998-01-01

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  1. Determining Recoverable and Irrecoverable Contributions to Accumulated Strain in a NiTiPd High-Temperature Shape Memory Alloy During Thermomechanical Cycling

    NASA Technical Reports Server (NTRS)

    Monroe, J. A.; Karaman, I.; Lagoudas, D. C.; Bigelow, G.; Noebe, R. D.; Padula, S., II

    2011-01-01

    When Ni(29.5)Ti(50.5)Pd30 shape memory alloy is thermally cycled under stress, significant strain can accumulate due to elasticity, remnant oriented martensite and plasticity. The strain due to remnant martensite can be recovered by further thermal cycling under 0 MPa until the original transformation-induced volume change and martensite coefficient of thermal expansion are obtained. Using this technique, it was determined that the 8.15% total accumulated strain after cycling under 200 MPa consisted of 0.38%, 3.97% and 3.87% for elasticity, remnant oriented martensite and creep/plasticity, respectively.

  2. Assessing the morphology of selective laser melted NiTi-scaffolds for a three-dimensional quantification of the one-way shape memory effect

    NASA Astrophysics Data System (ADS)

    Bormann, Therese; de Wild, Michael; Beckmann, Felix; Müller, Bert

    2013-04-01

    NiTi is promising for the use as bone scaffold, because the pseudoelasticity or the one- and two-way shape memory effect in the physiological window can mechanically stimulate the adherent cells. Such stimuli can enhance osseointegration and might reduce stress shielding associated with load bearing implants. The present study is based on the additive manufacturing technique of selective laser melting (SLM) to fabricate three-dimensional NiTi scaffolds. We demonstrate that the morphology of the scaffolds can be quantified using synchrotron radiation-based micro computed tomography (SRμCT) and sophisticated registration software. Comparing the CAD file with the SLM scaffolds, quality factors are derived. With respect to the CAD file, the overlap corresponds to (92.5 +/- 0.6) %. (7.4 +/- 0.42) % of material was missing and (48.9 +/- 2.3) % of excess material found. This means that the actual scaffold is less porous than expected, a fact that has to be considered for the scaffold design. In order to quantify the shape memory effect during the shape recovery process, we acquired radiographs rotating an initially deformed scaffold in angular steps of 0.2 degree during controlled heating. The continuously acquired radiographs were combined to tomography data, showing that the quality factors evolved with temperature as the scaffold height, measured by conventional thermo-mechanical analysis. Furthermore, the data comprise the presence of compressive and tensile local strains in the three-dimensional scaffolds to be compared with the physiological situation.

  3. Technical Seminar "Shape Memory Alloys"

    NASA Video Gallery

    Shape memory alloys are a unique group of materials that remember their original shape and return to that shape after being strained. How could the aerospace, automotive, and energy exploration ind...

  4. Shape memory actuated release devices

    NASA Astrophysics Data System (ADS)

    Carpenter, Bernie F.; Clark, Cary R.; Weems, Weyman

    1996-05-01

    Spacecraft require a variety of separation and release devices to accomplish mission related functions. Current off-the-shelf devices such as pyrotechnics, gas-discharge systems, paraffin wax actuators, and other electro-mechanical devices may not be able to meet future design needs. The use of pyrotechnics on advanced lightweight spacecraft, for example, will expose fragile sensors and electronics to high shock levels and sensitive optics might be subject to contamination. Other areas of consideration include reliability, safety, and cost reduction. Shape memory alloys (SMA) are one class of actuator material that provides a solution to these design problems. SMA's utilize a thermally activated reversible phase transformation to recover their original heat treated shape (up to 8% strain) or to generate high recovery stresses (> 700 Mpa) when heated above a critical transition temperature. NiTiCu alloy actuators have been fabricated to provide synchronized, shockless separation within release mechanisms. In addition, a shape memory damper has been incorporated to absorb the elastic energy of the preload bolt and to electrically reset the device during ground testing. Direct resistive heating of the SMA actuators was accomplished using a programmable electric control system. Release times less than 40 msec have been determined using 90 watt-sec of power. Accelerometer data indicate less than 500 g's of shock were generated using a bolt preload of 1350 kgs.

  5. Inverse magnetocaloric effect in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys

    SciTech Connect

    Singh, Sanjay Barman, S. R.; Esakki Muthu, S.; Arumugam, S.; Senyshyn, A.; Rajput, P.; Suard, E.

    2014-02-03

    Inverse magnetocaloric effect is demonstrated in Mn{sub 2}NiGa and Mn{sub 1.75}Ni{sub 1.25}Ga magnetic shape memory alloys. The entropy change at the martensite transition is larger in Mn{sub 1.75}Ni{sub 1.25}Ga, and it increases linearly with magnetic field in both the specimens. Existence of inverse magnetocaloric effect is consistent with the observation that magnetization in the martensite phase is smaller than the austenite phase. Although the Mn content is smaller in Mn{sub 1.75}Ni{sub 1.25}Ga, from neutron diffraction, we show that the origin of inverse magnetocaloric effect is the antiferromagnetic interaction between the Mn atoms occupying inequivalent sites.

  6. Porous Shape Memory Polymers

    PubMed Central

    Hearon, Keith; Singhal, Pooja; Horn, John; Small, Ward; Olsovsky, Cory; Maitland, Kristen C.; Wilson, Thomas S.; Maitland, Duncan J.

    2013-01-01

    Porous shape memory polymers (SMPs) include foams, scaffolds, meshes, and other polymeric substrates that possess porous three-dimensional macrostructures. Porous SMPs exhibit active structural and volumetric transformations and have driven investigations in fields ranging from biomedical engineering to aerospace engineering to the clothing industry. The present review article examines recent developments in porous SMPs, with focus given to structural and chemical classification, methods of characterization, and applications. We conclude that the current body of literature presents porous SMPs as highly interesting smart materials with potential for industrial use. PMID:23646038

  7. Drastic change in density of states upon martensitic phase transition for metamagnetic shape memory alloy Ni2Mn(1+x)In(1-x).

    PubMed

    Zhu, Siyuan; Ye, Mao; Shirai, Kaito; Taniguchi, Masaki; Ueda, Shigenori; Miura, Yoshio; Shirai, Masafumi; Umetsu, Rie Yamauchi; Kainuma, Ryosuke; Kanomata, Takeshi; Kimura, Akio

    2015-09-16

    We have unravelled the electronic structure of a class of metamagnetic shape memory alloy Ni2Mn1+x In1-x by combining bulk-sensitive hard x-ray photoelectron spectroscopy and first-principles density-functional calculations. A sharp drop in the Ni 3d e(g) density of states forming a pseudogap in the martensitic phase transition (MPT) for x   =   0.36 has been observed near the Fermi level. As a feature of MPT, hysteretic behaviour of this drop has been confirmed in both cooling and warming. This pseudogap is responsible for the giant negative magnetoresistance. The experimental result is well reproduced by the first principle calculation. We have also clarified theoretically that the MPT is linked to a competition of ferromagnetic and anti-ferromagnetic coupling between ordinary and anti-site Mn atoms. PMID:26289060

  8. Constant-Strain Thermal Cycling of a Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Halsmer, T. J.; Padula, S. A.; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.

    2016-06-01

    The effect of various pre-straining routines on the recovery stresses of a Ni-rich Ni50.3Ti29.7Hf20 high-temperature shape memory alloy was investigated in tension and compression. The recovery stresses, obtained by means of constant-strain thermal cycling, were evaluated after isothermal (up to ±2 % applied strain at room temperature) or after isobaric thermal cycling at stress levels between ±100 and 400 MPa. The material exhibited high force generation capability with recovery stresses of nearly 1.5 GPa on the first cycle under particular pre-strain conditions. The recovery stresses are shown to decay during subsequent cycles using an upper cycle temperature of 300 °C with a saturated stress level nearing 1.1 GPa in compression.

  9. Constant-Strain Thermal Cycling of a Ni50.3Ti29.7Hf20 High-Temperature Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Benafan, O.; Noebe, R. D.; Halsmer, T. J.; Padula, S. A.; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.

    2016-04-01

    The effect of various pre-straining routines on the recovery stresses of a Ni-rich Ni50.3Ti29.7Hf20 high-temperature shape memory alloy was investigated in tension and compression. The recovery stresses, obtained by means of constant-strain thermal cycling, were evaluated after isothermal (up to ±2 % applied strain at room temperature) or after isobaric thermal cycling at stress levels between ±100 and 400 MPa. The material exhibited high force generation capability with recovery stresses of nearly 1.5 GPa on the first cycle under particular pre-strain conditions. The recovery stresses are shown to decay during subsequent cycles using an upper cycle temperature of 300 °C with a saturated stress level nearing 1.1 GPa in compression.

  10. Shape Memory effect and Superelasticity in the [001] Single crystals of a FeNiCoAlTa Alloy with γ-α'-Thermoelastic Martensitic Transformations

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Kretinina, I. V.; Keinikh, K. S.; Kuts, O. A.; Kirillov, V. A.; Karaman, I.; Maier, H.

    2013-12-01

    Using single crystals of a Fe - 28% Ni - 17% Co - 11.5% Al - 25% Ta (аt.%) alloy, oriented for tensile loading along the [001] direction, the shape-memory (SME) and superelasticity (SE) effects caused by reversible thermoelastic martensitic transformations (MTs) from a high-temperature fcc-phase into a bctmartensite are investigated. It is demonstrated that the conditions necessary for the thermoelastic MTs to occur are achieved by aging at 973 K within the time interval (t) from 0.5 to 7.0 hours, which is accompanied by precipitation of the γ'-phase particles, (FeNiCo)3(AlTa), whose d < 8-12 nm. When the size of the γ'-precipitates becomes as large as d ≥ 8-12 nm, the MT becomes partially reversible. The physical causes underlying the kinetics of thermoelstic reversible fcc-bct MTs are discussed.

  11. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    PubMed Central

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques. PMID:27138030

  12. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy.

    PubMed

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-01-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques. PMID:27138030

  13. Mechanical Behaviour of Umbrella-Shaped, Ni-Ti Memory Alloy Femoral Head Support Device during Implant Operation: A Finite Element Analysis Study

    PubMed Central

    Yi, Wei; Tian, Qing; Dai, Zhipeng; Liu, Xiaohu

    2014-01-01

    A new instrument used for treating femoral head osteonecrosis was recently proposed: the umbrella-shaped, Ni-Ti memory femoral head support device. The device has an efficacy rate of 82.35%. Traditional radiographic study provides limited information about the mechanical behaviour of the support device during an implant operation. Thus, this study proposes a finite element analysis method, which includes a 3-step formal head model construction scheme and a unique material assignment strategy for evaluating mechanical behaviour during an implant operation. Four different scenarios with different constraints, initial positions and bone qualities are analyzed using the simulation method. The max radium of the implanted device was consistent with observation data, which confirms the accuracy of the proposed method. To ensure that the device does not unexpectedly open and puncture the femoral head, the constraint on the impact device should be strong. The initial position of sleeve should be in the middle to reduce the damage to the decompression channel. The operation may fail because of poor bone quality caused by severe osteoporosis. The proposed finite element analysis method has proven to be an accurate tool for studying the mechanical behaviour of umbrella-shaped, Ni-Ti memory alloy femoral head support device during an implant operation. The 3-step construct scheme can be implemented with any kind of bone structure meshed with multiple element types. PMID:24960038

  14. Giant and reversible room-temperature elastocaloric effect in a single-crystalline Ni-Fe-Ga magnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Li, Yang; Zhao, Dewei; Liu, Jian

    2016-05-01

    Good mechanical properties and large adiabatic temperature change render Heusler-type Ni2FeGa-based magnetic shape memory alloys as a promising candidate material for solid-state mechanical cooling application at ambient conditions. Superelastic behavior and associated elastocaloric effect strongly reply on deformation conditions (e.g. applied strain rate and strain level) of stress-induced martensitic transformations. With the aim of developing high-performance elastic cooling materials, in this work, we have carried out a systematic study on a Ni54Fe19Ga27 [420]-oriented single crystal by exploring the interaction between dynamic deformation parameters and thermal response. A giant and reversible adiabatic temperature change of ±7.5 K triggered by a low stress of 30 MPa was achieved. Such a high specific cooling performance thus offers the great advantage for the small scale solid-state mechanical cooling applications. Besides, a significant temporary residual strain effect has been observed at high strain rate, which is unfavorable for reversible elastocaloric effect but can be overcome by reducing stress hysteresis, and/or by elevating initial environmental temperature. The established criterion for the desirable reversible elastocaloric properties goes beyond the present system, and can be applicable for other shape memory alloys used for elastic cooling techniques.

  15. Characterization of Ni19.5Ti50.5Pd25Pt5 High-Temperature Shape Memory Alloy Springs and their Potential Application in Aeronautics

    NASA Technical Reports Server (NTRS)

    Stebner, Aaron; Padula, Santo A.; Noebe, Ronald D.

    2008-01-01

    Shape memory alloys (SMAs) have been used as actuators in many different industries since the discovery of the shape memory effect, but the use of SMAs as actuation devices in aeronautics has been limited due to the temperature constraints of commercially available materials. Consequently, work is being done at NASA's Glenn Research Center to develop new SMAs capable of being used in high temperature environments. One of the more promising high-temperature shape memory alloys (HTSMAs) is Ni19.5Ti50.5Pd25Pt5. Recent work has shown that this material is capable of being used in operating environments of up to 250 C. This material has been shown to have very useful actuation capabilities, demonstrating repeatable strain recoveries up to 2.5% in the presence of an externally applied load. Based on these findings, further work has been initiated to explore potential applications and alternative forms of this alloy, such as springs. Thus, characterization of Ni19.5Ti50.5Pd25Pt5 springs, including their mechanical response and how variations in this response correlate to changes in geometric parameters, are discussed. The effects of loading history, or training, on spring behavior were also investigated. A comparison of the springs with wire actuators is made and the benefits of using one actuator form as opposed to the other discussed. These findings are used to discuss design considerations for a surge-control mechanism that could be used in the centrifugal compressor of a T-700 helicopter engine.

  16. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  17. Shape memory thermal conduction switch

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Rajan (Inventor); Krishnan, Vinu (Inventor); Notardonato, William U. (Inventor)

    2010-01-01

    A thermal conduction switch includes a thermally-conductive first member having a first thermal contacting structure for securing the first member as a stationary member to a thermally regulated body or a body requiring thermal regulation. A movable thermally-conductive second member has a second thermal contacting surface. A thermally conductive coupler is interposed between the first member and the second member for thermally coupling the first member to the second member. At least one control spring is coupled between the first member and the second member. The control spring includes a NiTiFe comprising shape memory (SM) material that provides a phase change temperature <273 K, a transformation range <40 K, and a hysteresis of <10 K. A bias spring is between the first member and the second member. At the phase change the switch provides a distance change (displacement) between first and second member by at least 1 mm, such as 2 to 4 mm.

  18. A lightweight shape-memory magnesium alloy.

    PubMed

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-22

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)-, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at -150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries. PMID:27463668

  19. A lightweight shape-memory magnesium alloy

    NASA Astrophysics Data System (ADS)

    Ogawa, Yukiko; Ando, Daisuke; Sutou, Yuji; Koike, Junichi

    2016-07-01

    Shape-memory alloys (SMAs), which display shape recovery upon heating, as well as superelasticity, offer many technological advantages in various applications. Those distinctive behaviors have been observed in many polycrystalline alloy systems such as nickel titantium (TiNi)–, copper-, iron-, nickel-, cobalt-, and Ti-based alloys but not in lightweight alloys such as magnesium (Mg) and aluminum alloys. Here we present a Mg SMA showing superelasticity of 4.4% at –150°C and shape recovery upon heating. The shape-memory properties are caused by reversible martensitic transformation. This Mg alloy includes lightweight scandium, and its density is about 2 grams per cubic centimeter, which is one-third less than that of practical TiNi SMAs. This finding raises the potential for development and application of lightweight SMAs across a number of industries.

  20. Influence of partial shape memory deformation on the burst character of its recovery in heated Ni-Fe-Ga-Co alloy crystals

    NASA Astrophysics Data System (ADS)

    Nikolaev, V. I.; Yakushev, P. N.; Malygin, G. A.; Averkin, A. I.; Pulnev, S. A.; Zograf, G. P.; Kustov, S. B.; Chumlyakov, Yu. I.

    2016-04-01

    Room-temperature stress-strain curves of Ni49Fe18Ga27Co6 alloy single crystals possessing shape memory (SM) have been studied. Specific features of these diagrams are revealed upon compressive loading of these single crystals in the [110] A direction. The influence of preliminary SM deformation on the process of its recovery during the reverse martensite transformation has been studied. It is established that SM deformation above 4.2% leads to a sharp increase in the shape recovery on heating and the process exhibits a burst character, involving motion of the entire crystal. The experimental data are analyzed and stress-strain curves are simulated in the framework of the theory of diffuse martensitic transitions.

  1. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    SciTech Connect

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-08

    The effect of Nb substitution for Ni in Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni{sub 45}Co{sub 5}Mn{sub 40}Sn{sub 10} alloys potential candidates for solid state refrigeration near room temperature.

  2. Martensitic transformation and phase stability of In-doped Ni-Mn-Sn shape memory alloys from first-principles calculations

    SciTech Connect

    Xiao, H. B.; Yang, C. P. Wang, R. L.; Luo, X.; Marchenkov, V. V.

    2014-05-28

    The effect of the alloying element Indium (In) on the martensitic transition, magnetic properties, and phase stabilities of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} shape memory alloys has been investigated using the first-principles pseudopotential plane-wave method based on density functional theory. The energy difference between the austenitic and martensitic phases was found to increase with increasing In content, which implies an enhancement of the martensitic phase transition temperature (T{sub M}). Moreover, the formation energy results indicate that In-doping increases the relative stability of Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} both in austenite and martensite. This results from a reduction in density of states near the Fermi level regions caused by Ni-3d–In-5p hybridization when Sn is replaced by In. The equilibrium equation of state results show that the alloys Ni{sub 8}Mn{sub 6}Sn{sub 2−x}In{sub x} exhibit an energetically degenerated effect for an In content of x = ∼1.5. This implies the coexistence of antiparallel and parallel configurations in the austenite.

  3. Effect of niobium addition on the martensitic transformation and magnetocaloric effect in low hysteresis NiCoMnSn magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Emre, Baris; Bruno, Nickolaus M.; Yuce Emre, Suheyla; Karaman, Ibrahim

    2014-12-01

    The effect of Nb substitution for Ni in Ni45Co5Mn40Sn10 magnetic shape memory alloys on their magnetic properties, martensitic transformation characteristics, transformation hysteresis, and magnetocaloric properties was studied using wavelength-dispersive X-ray spectroscopy, differential scanning calorimetry, and the temperature and field dependence of the magnetization. Ni45Co5Mn40Sn10 alloy has a very low transformation hysteresis; however, the martensitic transformation temperatures are notably above room temperature, which is not desirable for magnetic refrigeration applications. In this study, small quantities of Nb substitution were shown to drastically shift the transformation temperatures to lower temperatures, at a rate of 68 K/at. % Nb, which is needed for household refrigeration. The austenite Curie temperature also decreased with increasing Nb content. However, a decrease in the latent heat of the martensitic transition was observed, which negatively affects the magnetic field-induced adiabatic temperature change capability. Still, the relatively large transformation entropy and the low transformation hysteresis make the Nb-doped Ni45Co5Mn40Sn10 alloys potential candidates for solid state refrigeration near room temperature.

  4. Shape memory alloy thaw sensors

    DOEpatents

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  5. Surface shape memory in polymers

    NASA Astrophysics Data System (ADS)

    Mather, Patrick

    2012-02-01

    Many crosslinked polymers exhibit a shape memory effect wherein a permanent shape can be prescribed during crosslinking and arbitrary temporary shapes may be set through network chain immobilization. Researchers have extensively investigated such shape memory polymers in bulk form (bars, films, foams), revealing a multitude of approaches. Applications abound for such materials and a significant fraction of the studies in this area concern application-specific characterization. Recently, we have turned our attention to surface shape memory in polymers as a means to miniaturization of the effect, largely motivated to study the interaction of biological cells with shape memory polymers. In this presentation, attention will be given to several approaches we have taken to prepare and study surface shape memory phenomenon. First, a reversible embossing study involving a glassy, crosslinked shape memory material will be presented. Here, the permanent shape was flat while the temporary state consisted of embossed parallel groves. Further the fixing mechanism was vitrification, with Tg adjusted to accommodate experiments with cells. We observed that the orientation and spreading of adherent cells could be triggered to change by the topographical switch from grooved to flat. Second, a functionally graded shape memory polymer will be presented, the grading being a variation in glass transition temperature in one direction along the length of films. Characterization of the shape fixing and recovery of such films utilized an indentation technique that, along with polarizing microscopy, allowed visualization of stress distribution in proximity to the indentations. Finally, very recent research concerning shape memory induced wrinkle formation on polymer surfaces will be presented. A transformation from smooth to wrinkled surfaces at physiological temperatures has been observed to have a dramatic effect on the behavior of adherent cells. A look to the future in research and

  6. Effects of Palladium Content, Quaternary Alloying, and Thermomechanical Processing on the Behavior of Ni-Ti-Pd Shape Memory Alloys for Actuator Applications

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen

    2008-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently driving research in high-temperature shape memory alloys (HTSMA) having transformation temperatures above 100 C. One of the basic high temperature systems under investigation to fill this need is NiTiPd. Prior work on this alloy system has focused on phase transformations and respective temperatures, no-load shape memory behavior (strain recovery), and tensile behavior for selected alloys. In addition, a few tests have been done to determine the effect of boron additions and thermomechanical treatment on the aforementioned properties. The main properties that affect the performance of a solid state actuator, namely work output, transformation strain, and permanent deformation during thermal cycling under load have mainly been neglected. There is also no consistent data representing the mechanical behavior of this alloy system over a broad range of compositions. For this thesis, ternary NiTiPd alloys containing 15 to 46 at.% palladium were processed and the transformation temperatures, basic tensile properties, and work characteristics determined. However, testing reveals that at higher levels of alloying addition, the benefit of increased transformation temperature begins to be offset by lowered work output and permanent deformation or "walking" of the alloy during thermal cycling under load. In response to this dilemma, NiTiPd alloys have been further alloyed with gold, platinum, and hafnium additions to solid solution strengthen the martensite and parent austenite phases in order to improve the thermomechanical behavior of these materials. The tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared and discussed. In addition, the benefits of more advanced thermomechanical processing or training on the dimensional stability of

  7. Cyclic Degradation of Co49Ni21Ga30 High-Temperature Shape Memory Alloy: On the Roles of Dislocation Activity and Chemical Order

    NASA Astrophysics Data System (ADS)

    Krooß, P.; Kadletz, P. M.; Somsen, C.; Gutmann, M. J.; Chumlyakov, Y. I.; Schmahl, W. W.; Maier, H. J.; Niendorf, T.

    2016-03-01

    Conventional shape memory alloys (SMAs), such as binary Ni-Ti, are typically limited to service temperatures below 100 °C. Recent studies on Co-Ni-Ga high-temperature SMAs revealed the potential that these alloys can be used up to temperatures of about 400 °C. Analysis of the cyclic functional properties showed that degradation in these alloys is mainly triggered by intensive dislocation motion. However, data on the cyclic stress-strain response and the mechanisms leading to functional degradation of Co-Ni-Ga above 300 °C were missing in open literature. Current results reveal that above 300 °C diffusion-controlled mechanisms, e.g., precipitation of secondary phases and changes in the chemical degree of order, seem to dictate cyclic instability. Detailed neutron and transmission electron microscopy analyses following superelastic cycling in a temperature range of 200-400 °C were employed to characterize the changes in degradation behavior above 300 °C.

  8. Effect of the M(s) transformation temperature on the wear behaviour of NiTi shape memory alloys for articular prosthesis.

    PubMed

    Peña, J; Solano, E; Mendoza, A; Casals, J; Planell, J A; Gil, F J

    2005-01-01

    The main objective of this work has been the characterisation and correlation of the wear behaviour of the NiTi shape memory alloys in their different phases. The weight losses for the different alloys in function of the present phase, and of the M(s) transformation temperature are studied. Adhesive wear tests, Pin-on-Disk, according to the ASTM-G99 standard have been carried out. The thermoelastic martensitic transformations that cause the super-elastic effect, the reorientation and coalescence of martensitic plates and the damping effect promotes a high ability to accommodate large deformations without generating permanent damages that causes the wear. The resulting plastic deformation may be accumulated during wear process without generating fracture. The results show that the wear resistance is mainly dependent of the M(s) transformation temperature for both alloys. For the NiTi alloys also the Ni atomic percentage and the hardness of the alloys are important parameters in the wear behavior. PMID:16010037

  9. Influence of Tin Additions on the Phase-Transformation Characteristics of Mechanical Alloyed Cu-Al-Ni Shape-Memory Alloy

    NASA Astrophysics Data System (ADS)

    Saud, Safaa N.; Hamzah, E.; Abubakar, T.; Bakhsheshi-Rad, H. R.; Mohammed, M. N.

    2016-07-01

    The influence of the addition of Sn to Cu-Al-Ni alloy as a fourth element with different percentages of 0.5, 1.0, and 1.5 wt pct on the microstructure, phase-transformation temperatures, mechanical properties, and corrosion behaviors was investigated. The modified and unmodified alloys were fabricated by mechanical alloying followed by microwave sintering. The sintered and homogenized alloys of Cu-Al-Ni-xSn shape-memory alloys had a refined particle structure with an average particle size of 40 to 50 µm associated with an improvement in the mechanical properties and corrosion resistance. With the addition of Sn, the porosity density tends to decrease, which can also lead to improvements in the properties of the modified alloys. The minimum porosity percentage was observed in the Cu-Al-Ni-1.0 wt pct Sn alloy, which resulted in enhancing the ductility, strain recovery, and corrosion resistance. Further increasing the Sn addition to 1.5 wt pct, the strength of the alloy increased because the highest volume fraction of precipitates was formed. Regarding the corrosion behavior, addition of Sn up to 1 wt pct increased the corrosion resistance of the base SMA from 2.97 to 19.20 kΩ cm2 because of formation of a protective film that contains hydrated tin oxyhydroxide, aluminum dihydroxychloride, and copper chloride on the alloy. However, further addition of Sn reduced the corrosion resistance.

  10. Effect of heat treatment on the crystal structure, martensitic transformation and magnetic properties of Mn53Ni25Ga22 ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Dong, G. F.; Gao, Z. Y.

    2016-02-01

    In this study, the effect of heat treatment on crystal structure, martensitic transformation, thermodynamic behavior and magnetic properties of polycrystalline Mn53Ni25Ga22 ferromagnetic shape memory alloy was systematically investigated. The results show that the heat treatment has obvious effect on martensitic transformation temperatures, crystal structure and hysteresis loops. Heat treatment greatly effects on transformation temperatures due to modified composition of the matrix. Martensitic transformation temperature, saturation magnetization decreased with the increase heat treatment temperature, reaching their minimum values at the heat treatment temperature of 1173 K for 12 h. Curie temperature of maximum values obtained at solution-treated of 1173 K for 12 h. In other word, increasing heat treatment temperature and time has an effect on Curie temperature. In addition, the annealed alloy Mn53Ni25Ga22 may completely dissolve in vacuum tubes at 1173 K for 12 h. It is found that the studied alloys have some (Mn,Ni)4 Ga-type compound precipitates, which can be seen dispersing both in grain interiors and on grain boundaries at other heat treatment process. Lastly, Rietveld analysis shows the good agreement between experiment and calculated data of XRD patterns.

  11. Electronic structure and elastic properties of single crystal of shape memory alloys TiNi(1-x)Cux: An ab initio study

    NASA Astrophysics Data System (ADS)

    Fathi, M. B.; Kanjouri, F.; Farhadi, G.

    2015-07-01

    Nitinol as a superelastic shape memory alloy (SMA) has been the focus of physical-chemical studies in recent decades in respect to functionality of biocompatibility in the body. Superelastic properties of nitinol are the direct results of the electronic structure of this material while dealing with the ab initio behavior of microstructure. In the present work, the elastic properties and electronic structure of B2-phase binary TiNi(1-x)Cux (x = 0, 0.25 and 0.75) shape memory alloys are discussed aiming at understanding of the physical properties underlying superelastic behavior. The calculations have been performed with the program package WIEN2K, in the framework of first-principle, all-electron density functional theory (DFT) within the scheme of the generalized gradient approximation (GGA). The optimized lattice parameters and independent elastic constants are obtained for use in the calculation of the bulk and shear moduli, Young modulus, Poisson ratio and Zener anisotropy parameter. For different alloying fractions x, the tetragonal (C‧) and trigonal (C44) shear constants are calculated and brittle/ductile behavior of these compounds is discussed. Finally, a qualitative discussion of dependence of elastic behavior of these compounds upon the electronic density of states (DOS) is presented.

  12. Deployment shock attenuation of a solar array tape hinge by means of the Martensite detwinning of NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Ho; Jeong, Ju-Won; Kim, Young-Jin; Lee, Jung-Ju

    2016-03-01

    This paper presents a new tape hinge for attenuating the deployment shock of a satellite solar array. This hinge uses the Martensite detwinning of Shape Memory Alloy (SMA). To attenuate the deployment shock, a NiTi SMA strip is assembled between two curved steel strips. The attenuation performance of the hinge is analyzed using a SMA detwinning constitutive equation. A prototype of the hinge is manufactured and its characteristics are measured in a bending test and in a deployment test. Finally, the deployment performance of the prototype hinge is investigated on a satellite model. It is shown that the new SMA damped tape hinge can effectively minimize the deployment shock and dynamic perturbation while also maintaining suitable deployment performance.

  13. Deployment shock attenuation of a solar array tape hinge by means of the Martensite detwinning of NiTi Shape Memory Alloy.

    PubMed

    Lee, Chang-Ho; Jeong, Ju-Won; Kim, Young-Jin; Lee, Jung-Ju

    2016-03-01

    This paper presents a new tape hinge for attenuating the deployment shock of a satellite solar array. This hinge uses the Martensite detwinning of Shape Memory Alloy (SMA). To attenuate the deployment shock, a NiTi SMA strip is assembled between two curved steel strips. The attenuation performance of the hinge is analyzed using a SMA detwinning constitutive equation. A prototype of the hinge is manufactured and its characteristics are measured in a bending test and in a deployment test. Finally, the deployment performance of the prototype hinge is investigated on a satellite model. It is shown that the new SMA damped tape hinge can effectively minimize the deployment shock and dynamic perturbation while also maintaining suitable deployment performance. PMID:27036816

  14. Internal variable model for magneto-mechanical behaviour of ferromagnetic shape memory alloys Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Hirsinger, L.; Lexcellent, C.

    2003-10-01

    In this paper, a predictive model of field-induced strain in Ferromagnetic Shape Memory Alloy (FSMA) is proposed. This phenomenological scalar magneto-mechanical model is built in the frame of thermodynamic of irreversible process. The strain mechanism corresponds to the reorientation process of twinned martensite platelets at constant temperature. In this model, physical microstructure parameters are chosen as variables: volume fraction z of one martensite variant and ratio α of magnetic domain width. Pure mechanical behaviour of FSMA is supposed to be decomposed in reversible (or anhysteretic) part and irreversible one. From dissipation, a yield function written in terms of energy, has been introduced to determine when reorientation of twinned martensite platelets (via internal variable z) could occur. Pure magnetic behaviour is supposed to be non-liner reversible. The coupling between magnetism and mechanics is introduced in the expression of magnetisation via microstructure parameters z and a. The good prediction capability of the proposed model is shown by an identification made on experiments performed by O'Handley & Murray: simulations of strain induced by pure mechanical loading or by applied magnetic field under constant compressive stress, are presented and compared with these experiments. These first results are very promising.

  15. Effects of Loading and Constraining Conditions on the Thermomechanical Fatigue Life of NiTi Shape Memory Wires

    NASA Astrophysics Data System (ADS)

    Scirè Mammano, G.; Dragoni, E.

    2014-07-01

    The availability of engineering strength data on shape memory alloys (SMAs) under cyclic thermal activation (thermomechanical fatigue) is central to the rational design of smart actuators based on these materials. Test results on SMAs under thermomechanical fatigue are scarce in the technical literature, and even the few data that are available are mainly limited to constant-stress loading. Since the SMA elements used within actuators are normally biased by elastic springs or by antagonist SMA elements, their stress states are far from being constant in operation. The mismatch between actual working conditions and laboratory settings leads to suboptimal designs and undermines the prediction of the actuator lifetime. This paper aims at bridging the gap between experiment and reality by completing an experimental campaign involving four fatigue test conditions, which cover most of the typical situations occurring in practice: constant stress, constant-strain, constant stress with limited maximum strain, and linear stress-strain variation with limited maximum strain. The results from the first three test settings, recovered from the previously published works, are critically reviewed and compared with the outcome of the newly performed tests under the fourth arrangement (linear stress-strain variation). General design recommendations emerging from the experimental data are put forward for engineering use.

  16. Shape memory in nanostructured metallic alloys

    NASA Astrophysics Data System (ADS)

    Guda Vishnu, Karthik

    Materials with nanoscale dimensions show mechanical and structural properties different to those at the macro scale and engineering their nanostructure opens up potential avenues for designing materials tailored for a specific application. This work is focused on shape memory materials, an important class of active materials with wide variety of applications in medical, aerospace and automobile industries, due to their two important properties of super-elasticity and shape memory. These unique properties originate from a solid-solid transformation called martensite transformation and the main objectives of this research are to i) study the atomic mechanisms of the martensite transformation, ii) study the effect of nano-structure on shape memory behavior and iii) computationally explore avenues through which their performance is optimized. A combination of density functional theory (DFT) and molecular dynamics (MD) simulations is used to achieve this. This approach gives an atomic level description and the effects of size, surfaces and interfaces are explicitly described. Detailed analysis of the atomic mechanisms of the martensite transformation in NiTi using DFT revealed a new phase transformation (B19'-B19'') that sheds light on why the theoretically predicted ground state (BCO) is not observed experimentally and that the experimentally observed martensite phase (B19') can be stabilized by internal stresses. This finding is very important as the theoretically predicted ground state does not allow for shape memory in nanoscale NiTi samples. The size effects caused by the presence of free surfaces and the role of nanostructure in martensite transformation have been investigated in thin NiTi slabs. Surface energies of B2 phase (austenite), B19 (orthorhombic), B19' (martensite) and the body centered orthorhombic phase (BCO) are calculated using DFT. (110)B2 surfaces with in-plane atomic displacements stabilize the austenite phase with respect to B19' and BCO, thus

  17. Influence of the presence of pre-existing thermal [var epsilon]-martensite on the formation of stress-induced [var epsilon]-martensite and on the shape memory effect of a Fe-Mn-Cr-Si-Ni shape memory alloy

    SciTech Connect

    Federzoni, L.; Guenin, G. )

    1994-07-01

    At present, many investigations are done on Fe-Mn-based shape memory alloys because of their particularly good one-way type shape memory effect and their low cost. With addition of Cr and Ni, it is possible to reach a good corrosion resistance, which confers to this type of alloys a commercial significance. The shape memory effect is associated with the formation of stress-induced [var epsilon]-martensite by deformation of an austenitic ([gamma]) sample. The reversion by heating of the [var epsilon]-martensite provides the shape memory effect. It is generally admitted that the presence of thermal [var epsilon]-martensite before deformation has a negative influence on the formation of the stress-induced martensite and on the shape memory effect. The authors' purpose is to evaluate the real influence of the pre-existing thermal [var epsilon]-martensite on the formation of the stress-induced [var epsilon]-martensite, its recovery and on the shape memory effect.

  18. Precipitation Hardenable High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald Dean (Inventor); Draper, Susan L. (Inventor); Nathal, Michael V. (Inventor); Crombie, Edwin A. (Inventor)

    2010-01-01

    A composition of the invention is a high temperature shape memory alloy having high work output, and is made from (Ni+Pt+Y),Ti(100-x) wherein x is present in a total amount of 49-55 atomic % Pt is present in a total amount of 10-30 atomic %, Y is one or more of Au, Pd. and Cu and is present in a total amount of 0 to 10 atomic %. The alloy has a matrix phase wherein the total concentration of Ni, Pt, and the one or more of Pd. Au, and Cu is greater than 50 atomic %.

  19. Combinatorial investigation of ferromagnetic shape memory materials

    NASA Astrophysics Data System (ADS)

    Famodu, Olugbenga O.

    2005-07-01

    Combinatorial synthesis is research methodology which allows one to systemically study a large number of compositionally varying samples simultaneously. We apply this technique to the investigation of multifunctional materials. Different designs of combinatorial libraries and various characterization tools are implemented in order to rapidly map composition-structure-property relationships in a variety of materials systems. In this thesis, I will discuss combinatorial investigation of various shape memory alloys. We have utilized the combinatorial magnetron co-sputtering deposition technique for fabricating composition spreads of ternary alloy systems containing ferromagnetic shape memory alloys (FSMAs) and thermoelastic shape memory alloys (SMAs). Magnetic properties of the composition spreads were rapidly characterized using a room temperature scanning semiconducting quantum interference device (SQUID) microscope which provides mapping of the magnetic field emanating from different parts of the composition spreads. By applying the inversion technique to the mapping of the magnetic field distribution, we have mapped the magnetic phase diagram of the Ni-Mn-Ga and Ni-Mn-Al systems whose Heusler compositions Ni2MnGa and Ni2MnAl are well known ferromagnetic shape memory alloys (FSMAs). In addition, a rapid visual inspection technique was developed for detection of reversible martensites using arrays of micromachined cantilevers. A large, previously unexplored compositional region of FSMAs outside the Heusler composition was found. In search of novel FSMAs, we have also investigated a number of other ternary alloys systems. These systems included Ni-Mn-In, Gd-Ge-Si, Co-Mn-Ga, Ni-Fe-Al, and Co-Ni-Ga. A summary of the results from the investigation of these systems is presented. We have used the combinatorial technique to search for "ideal" SMAs with minimal hysteresis. For pursuing this, we had first set out to verify the geometric non-linear theory of martensites which

  20. Temperature variations at nano-scale level in phase transformed nanocrystalline NiTi shape memory alloys adjacent to graphene layers.

    PubMed

    Amini, Abbas; Cheng, Chun; Naebe, Minoo; Church, Jeffrey S; Hameed, Nishar; Asgari, Alireza; Will, Frank

    2013-07-21

    The detection and control of the temperature variation at the nano-scale level of thermo-mechanical materials during a compression process have been challenging issues. In this paper, an empirical method is proposed to predict the temperature at the nano-scale level during the solid-state phase transition phenomenon in NiTi shape memory alloys. Isothermal data was used as a reference to determine the temperature change at different loading rates. The temperature of the phase transformed zone underneath the tip increased by ∼3 to 40 °C as the loading rate increased. The temperature approached a constant with further increase in indentation depth. A few layers of graphene were used to enhance the cooling process at different loading rates. Due to the presence of graphene layers the temperature beneath the tip decreased by a further ∼3 to 10 °C depending on the loading rate. Compared with highly polished NiTi, deeper indentation depths were also observed during the solid-state phase transition, especially at the rate dependent zones. Larger superelastic deformations confirmed that the latent heat transfer through the deposited graphene layers allowed a larger phase transition volume and, therefore, more stress relaxation and penetration depth. PMID:23744099

  1. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure. PMID:23556847

  2. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  3. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  4. Observation on the transformation domains of super-elastic NiTi shape memory alloy and their evolutions during cyclic loading

    NASA Astrophysics Data System (ADS)

    Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao

    2016-04-01

    The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.

  5. The relation between lattice parameters and very low twinning stress in Ni50Mn25+x Ga25-x magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Straka, L.; Drahokoupil, J.; Pacherová, O.; Fabiánová, K.; Kopecký, V.; Seiner, H.; Hänninen, H.; Heczko, O.

    2016-02-01

    In search of the origins of the extraordinary low twinning stress of Ni-Mn-Ga 10M martensite, we studied the temperature induced changes in lattice parameters of Ni50Mn25+x Ga25-x (x = 2.7-3.9) single crystal samples and compared them with twinning stress dependences. The alloys exhibited transformation to five-layered (10M) martensite structure (cubic to monoclinic) between 297 to 328 K and exhibited the magnetic shape memory effect in martensite. The structural changes were monitored using x-ray diffraction in the temperature range 200-343 K. The 10M structure was approximated by monoclinic lattice, a = b > c, γ > 90° with the coordinates derived from the cubic unit cell of the parent L21 phase. The lattice parameters γ and c/a correlate well with the universal linear increase of twinning stress of type 1 twins with decreasing temperature. On the contrary, the twinning stress is not affected by differences between a and b and thus a/b twins seem to play no role in a - c twin boundary motion resulting in magnetically induced reorientation.

  6. The Influence of Hydrogen on Shape Memory Effect and Superelasticity in [001]-Oriented FeNiCoAlTi Single Crystals

    NASA Astrophysics Data System (ADS)

    Chumlyakov, Yu. I.; Kireeva, I. V.; Platonova, Yu. N.

    2016-04-01

    Using [001]-oriented single crystals of an iron-based alloy (Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti at.%), which were aged at 973 K for 7 h, the influence of hydrogen on the axial-stress temperature response σ0.1(T), the values of shape-memory effect (SME) and superelasticity (SE) is investigated during thermoelastic γ-α'-martensitic transformation (MT) (γ-FCC - face centered lattice, α'-BCT - body centered tetragonal lattice) under tensile conditions. It is found that saturation of [001]-oriented single crystals of the Fe - 28% Ni - 17% Co - 11.5% Al - 2.5% Ti alloy with hydrogen within 2 h at T = 300 K and current density j = 50 mA/cm2 results in lower starting temperature, Ms, of a forward MT during cooling and Md temperature, increased strength properties of the high-temperature phase at Md temperature and wider temperature range of SE observation compared to hydrogen-free crystals. It is shown that hydrogen affects but only slightly the SME and SE values, the temperature and stress hysteresis under the above saturation mode. In [001]-oriented crystals aged at 973 K for 7 h, which are saturated with hydrogen and hydrogen-free, the SME and SE values are found to be equal to 7.8-8 and 6.5-6.9%, respectively.

  7. Effects of the interplay between atomic and magnetic order on the properties of metamagnetic Ni-Co-Mn-Ga shape memory alloys

    SciTech Connect

    Seguí, C.

    2014-03-21

    Ni-Co-Mn-Ga ferromagnetic shape memory alloys show metamagnetic behavior for a range of Co contents. The temperatures of the structural and magnetic transitions depend strongly on composition and atomic order degree, in such a way that combined composition and thermal treatment allows obtaining martensitic transformation between any magnetic state of austenite and martensite. This work presents a detailed analysis of the effect of atomic order on Ni-Co-Mn-Ga alloys through the evolution of structural and magnetic transitions after quench from high temperatures and during post-quest ageing. It is found that the way in which the atomic order affects the martensitic transformation temperatures and entropy depends on the magnetic order of austenite and martensite. The results can be explained assuming that improvement of atomic order decreases the free energy of the structural phases according to their magnetic order. However, it is assumed in this work that changes in the slope—that is, the entropy—of the Gibbs free energy curves are also decisive to the stability of the two-phase system. The experimental transformation entropy values have been compared with a phenomenological model, based on a Bragg–Williams approximation, accounting for the magnetic contribution. The excellent agreement obtained corroborates the magnetic origin of changes in transformation entropy brought about by atomic ordering.

  8. Ultralow-fatigue shape memory alloy films

    NASA Astrophysics Data System (ADS)

    Chluba, Christoph; Ge, Wenwei; Lima de Miranda, Rodrigo; Strobel, Julian; Kienle, Lorenz; Quandt, Eckhard; Wuttig, Manfred

    2015-05-01

    Functional shape memory alloys need to operate reversibly and repeatedly. Quantitative measures of reversibility include the relative volume change of the participating phases and compatibility matrices for twinning. But no similar argument is known for repeatability. This is especially crucial for many future applications, such as artificial heart valves or elastocaloric cooling, in which more than 10 million transformation cycles will be required. We report on the discovery of an ultralow-fatigue shape memory alloy film system based on TiNiCu that allows at least 10 million transformation cycles. We found that these films contain Ti2Cu precipitates embedded in the base alloy that serve as sentinels to ensure complete and reproducible transformation in the course of each memory cycle.

  9. Shape memory composite deformable mirrors

    NASA Astrophysics Data System (ADS)

    Riva, M.; Bettini, P.; Di Landro, L.; Sala, G.

    2009-03-01

    This paper deals with some of the critical aspects regarding Shape Memory Composite (SMC) design: firstly some technological aspects concerning embedding technique and their efficiency secondarily the lack of useful numerical tools for this peculiar design. It has been taken into account as a possible application a deformable panel which is devoted to act as a substrate for a deformable mirror. The activity has been mainly focused to the study of embedding technologies, activation and authority. In detail it will be presented the "how to" manufacturing of some smart panels with embedded NiTiNol wires in order to show the technology developed for SMC structures. The first part of the work compares non conventional pull-out tests on wires embedded in composites laminates (real condition of application), with standard pull-out in pure epoxy resin blocks. Considering the numerical approach some different modeling techniques to be implemented in commercial codes (ABAQUS) have been investigated. The Turner's thermo-mechanical model has been adopted for the modeling of the benchmark: A spherical panel devoted to work as an active substrate for a Carbon Fiber Reinforced Plastic (CFRP) deformable mirror has been considered as a significant technological demonstrator and possible future application (f=240mm, r.o.c.=1996mm).

  10. The Effect of Active Phase of the Work Material on Machining Performance of a NiTi Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Kaynak, Yusuf; Karaca, Haluk E.; Noebe, Ronald D.; Jawahir, I. S.

    2015-06-01

    Poor machinability with conventional machining processes is a major shortcoming that limits the manufacture of NiTi components. To better understand the effects of phase state on the machining performance of NiTi alloys, cutting temperature, tool-wear behavior, cutting force components, tool-chip contact length, chip thickness, and machined surface quality data were generated from a NiTi alloy using precooled cryogenic, dry, minimum quantity lubrication (MQL), and preheated machining conditions. Findings reveal that machining NiTi in the martensite phase, which was achieved through precooled cryogenic machining, profoundly improved the machining performance by reducing cutting force components, notch wear, and surface roughness. Machining in the austenite state, achieved through preheating, did not provide any benefit over dry and MQL machining, and these processes were, in general, inferior to cryogenic machining in terms of machining performance, particularly at higher cutting speeds.

  11. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    NASA Astrophysics Data System (ADS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-05-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures.

  12. Shape Memory Response of Polycrystalline NiTi12.5Hf Alloy: Transformation at Small Scales

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Patriarca, L.; Li, G.; Sehitoglu, H.; Soejima, Y.; Ito, T.; Nishida, M.

    2015-09-01

    The transformation behavior of NiTiHf alloys is intriguing. In NiTiHf alloys, the experimental transformation strains have been reported to be considerably lower than theoretical transformation strains. In this study, the transformation strain is established with very careful strain measurements at small scales in isobaric and isothermal experiments. Because of the heterogeneity of strain distributions, the results depend on the sub-region considered. The measured local transformation strain can be as high as 6.0 % in compression which is in very good agreement with theoretical calculations for NiTi12.5Hf. The comprehension of NiTi12.5Hf alloy was furthered upon extensive microstructural characterization including high-resolution electron microscopy, establishing the volume fractions of precipitates and twin type. The volume fraction of precipitates is similar to that of Ni-rich binary NiTi alloys. Meanwhile, the twinning modes in the martensite are compound and Type I twins which were used in the theoretical calculations of transformation strains. This material also generates a high work output and represents a foundation for understanding higher Hf compositions.

  13. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy.

    PubMed

    Thierry, B; Tabrizian, M; Trepanier, C; Savadogo, O; Yahia, L

    2000-09-15

    Nickel-titanium (NiTi) alloy derives its biocompatibility and good corrosion resistance from a homogeneous oxide layer mainly composed of TiO(2), with a very low concentration of nickel. In this article, we described the corrosion behavior of NiTi alloys after mechanical polishing, electropolishing, and sterilization processes using cyclic polarization and atomic absorption. As a preparative surface treatment, electropolishing decreased the amount of nickel on the surface and remarkably improved the corrosion behavior of the alloy by increasing the mean breakdown potential value and the reproducibility of the results (0.99 +/- 0.05 V/SCE vs. 0.53 +/- 0. 42). Ethylene oxide and Sterrad(R) sterilization techniques did not modify the corrosion resistance of electropolished NiTi, whereas a steam autoclave and, to a lesser extent, peracetic acid sterilization produced scattered breakdown potential. In comparing the corrosion resistance of common biomaterials, NiTi ranked between 316L stainless steel and Ti6A14V even after sterilization. Electropolished NiTi and 316L stainless-steel alloys released similar amounts of nickel after a few days of immersion in Hank's solution. Measurements by atomic absorption have shown that the amount of released nickel from passive dissolution was below the expected toxic level in the human body. Auger electron spectroscopy analyses indicated surface contamination by Ca and P on NiTi during immersion, but no significant modification in oxide thickness was observed. PMID:10880117

  14. On the Recovery Stress of a Ni50.3Ti29.7Hf20 High Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Benafan, O.; Noebe, R. D.; Padula, S. A., II; Bigelow, G. S.; Gaydosh, D. J.; Garg, A.; Halsmer, T. J.

    2015-01-01

    Recovery stress in shape memory alloys (SMAs), also known as blocking stress, is an important property generally obtained during heating under a dimensional constraint as the material undergoes the martensitic phase transformation. This property has been instinctively utilized in most SMA shape-setting procedures, and has been used in numerous applications such as fastening and joining, rock splitting, safety release mechanisms, reinforced composites, medical devices, and many other applications. The stress generation is also relevant to actuator applications where jamming loads (e.g., in case the actuator gets stuck and is impeded from moving) need to be determined for proper hardware sizing. Recovery stresses in many SMA systems have been shown to reach stresses in the order of 800 MPa, achieved via thermo-mechanical training such as pre-straining, heat treatments or other factors. With the advent of high strength, high temperature SMAs, recovery stress data has been rarely probed, and there is no information pertinent to the magnitudes of these stresses. Thus, the purpose of this work is to investigate the recovery stress capability of a precipitation strengthened, Ni50.3Ti29.7Hf20 (at.) high temperature SMA in uniaxial tension and compression. This material has been shown to exhibit outstanding strength and stability during constant-stress, thermal cycling, but no data exists on constant-strain thermal cycling. Several training routines were implemented as part of this work including isothermal pre-straining, isobaric thermal cycling, and isothermal cyclic training routines. Regardless of the training method used, the recovery stress was characterized using constant-strain (strain-controlled condition) thermal cycling between the upper and lower cycle temperatures. Preliminary results indicate recovery stresses in excess of 1.5 GPa were obtained after a specific training routine. This stress magnitude is significantly higher than conventional NiTi stress

  15. Fretting behavior of NiTi shape memory alloy against long bone in the imitated human physiological solution

    NASA Astrophysics Data System (ADS)

    Yin, Y.; Xu, Y. T.; Xia, T. D.; Da, G. Z.

    2007-07-01

    The environment of orthopaedic implants sometimes induces vibrations at the contact of the modular prostheses components. In this paper the fretting behavior of NiTi SMAs against human bones in the imitated human physiological solution was studied at various displacement amplitudes and Ph value. Surface micrograph after fretting was observed by MEF3 microscope. Appearance of fretting scar was measured by 2206 roughness tester. The result shows that the friction coefficient between the bone and NiTi SMAs pairs declined due to the lubrication effect of Hank's solution, and which increased when Ph value of fluid was not 7.2 due to the corrosion. So the friction coefficient at acid and alkali Hank's solution is higher than those at the neutral solution and ambient air condition. Generally speaking, the friction coefficient between the bone and NiTi SMAs tend to be stable with the increasing amplitude at all test conditions. It is because that the surface was oxidized to restrain the forming of wear debris and the further development of fretting scars. Although the length and width of the wear scars in simulation body fluid are smaller than that at ambient air condition, the surface of NiTi SMAs damaged is characterized by deep scratches with debris particles within the contact area. Fretting regime of NiTi/bones pairs exhibits the mixed regime at ambient air condition and the slip regime in the Hank's solution.

  16. Effect of Isothermal Aging on the Physical Properties of Mn53Ni23Ga22 Ferromagnetic Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Dong, G. F.; Gao, Z. Y.

    2016-07-01

    The effect of isothermal aging on the physical properties of Mn53Ni25Ga22 alloy has been systematically investigated. The results showed that the (Mn,Ni)4Ga-type precipitates are observed in all isothermal aged samples. However, second phases tended to align into grains and had two preferred orientations. The martensitic transformation temperatures decreased remarkably with the increase of aging time, while structure of the alloy gradually changed from five-layer tetragonal martensite to austenite. Additionally, we found that the appropriate aging-treated alloys can significantly enhance the saturation magnetization of Mn53Ni25Ga22 alloy. However, the Curie temperatures decreased remarkably with increased aging time due to the variation of the composition of the alloy.

  17. Shape memory polymer foams for endovascular therapies

    SciTech Connect

    Wilson, Thomas S.; Maitland, Duncan J.

    2015-05-26

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  18. Shape memory polymer foams for endovascular therapies

    DOEpatents

    Wilson, Thomas S.; Maitland, Duncan J.

    2012-03-13

    A system for occluding a physical anomaly. One embodiment comprises a shape memory material body wherein the shape memory material body fits within the physical anomaly occluding the physical anomaly. The shape memory material body has a primary shape for occluding the physical anomaly and a secondary shape for being positioned in the physical anomaly.

  19. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  20. Structure and thermoelastic martensitic transformations in ternary Ni-Ti-Hf alloys with a high-temperature shape memory effect

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Pushin, A. V.; Uksusnikov, A. N.; Kourov, N. I.

    2016-07-01

    The effect of alloying by 12-20 at % Hf on the structure, the phase composition, and the thermoelastic martensitic transformations in ternary alloys of the quasi-binary NiTi-NiHf section is studied by transmission electron microscopy, scanning electron microscopy, electron diffraction, and X-ray diffraction. The electrical resistivity is measured at various temperatures to determine the critical transformation temperatures. The data on phase composition are used to plot a full diagram for the high-temperature thermoelastic B2 ↔ B19' martensitic transformations, which occur in the temperature range 320-600 K when the hafnium content increases from 12 to 20 at %. The lattice parameters of the B2 and B19' phases are measured, and the microstructure of the B19' martensite is analyzed.

  1. Specific features of the electronic properties of Ti50Ni50- x Cu x alloys with the shape memory effect

    NASA Astrophysics Data System (ADS)

    Kourov, N. I.; Korolev, A. V.; Kuranova, N. N.; Pushin, V. G.

    2016-06-01

    The magnetic susceptibility, electrical resistivity, and thermoelectric power of Ti50Ni50‒ x Cu x alloys with copper concentrations x ⩽ 25 at % have been measured in the temperature range of 2-500 K. The change in the electronic band structure near the Fermi level upon thermoelastic martensitic transformations, such as B2 ↔ B19', B2 ↔ B19 ↔ B19', and B2 ↔ B19, has been considered.

  2. Nickel release behavior and surface characteristics of porous NiTi shape memory alloy modified by different chemical processes.

    PubMed

    Wu, Shuilin; Liu, Xiangmei; Chan, Y L; Chu, Paul K; Chung, C Y; Chu, Chenglin; Yeung, Kelvin W K; Lu, W W; Cheung, Kenneth M C; Luk, K D K

    2009-05-01

    As a non-line-of-sight surface modification technique, chemical treatment is an effective method to treat porous NiTi with complex surface morphologies and large exposed areas due to its liquidity and low temperature. In the work described here, three different chemical processes are used to treat porous NiTi alloys. Our results show that H(2)O(2) treatment, NaOH treatment, and H(2)O(2) pre-treatment plus subsequent NaOH treatment can mitigate leaching of nickel from the alloy. The porous NiTi samples modified by the two latter processes favor deposition of a layer composed of Ca and P due to the formation of bioactive Na(2)TiO(3) on the surface. Among the three processes, H(2)O(2) pre-treatment plus subsequent NaOH modification is the most effective in suppressing nickel release. Small area X-ray photoelectron spectroscopy reveals that the surfaces treated by different chemical processes have different structures and compositions. The sample modified by the H(2)O(2) treatment is composed of rough TiO(2) on the outer surface and an oxide transition layer underneath whereas the sample treated by NaOH comprises a surface layer of titanium oxide and Na(2)TiO(3) together with a transition layer. The sample processed by the H(2)O(2) and NaOH treatment has a pure Na(2)TiO(3) layer on the surface and a transition layer underneath. These results help to elucidate the different nickel release behavior and bioactivity of porous NiTi alloys processed by different methods. PMID:18431757

  3. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O`Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the ``memory`` of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  4. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O'Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the memory'' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  5. Residual stress induced stabilization of martensite phase and its effect on the magnetostructural transition in Mn-rich Ni-Mn-In/Ga magnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; Kushwaha, Pallavi; Scheibel, F.; Liermann, Hanns-Peter; Barman, S. R.; Acet, M.; Felser, C.; Pandey, Dhananjai

    2015-07-01

    The irreversibility of the martensite transition in magnetic shape memory alloys (MSMAs) with respect to the external magnetic field is one of the biggest challenges that limits their application as giant caloric materials. This transition is a magnetostructural transition that is accompanied with a steep drop in magnetization (i.e.,Δ M ) around the martensite start temperature (Ms) due to the lower magnetization of the martensite phase. In this Rapid Communication, we show that Δ M around Ms in Mn-rich Ni-Mn-based MSMAs gets suppressed by two orders of magnitude in crushed powders due to the stabilization of the martensite phase at temperatures well above Ms and the austenite finish (Af) temperatures due to residual stresses. Analysis of the intensities and the FWHM of the x-ray powder-diffraction patterns reveals stabilized martensite phase fractions as 97 % , 75 % , and 90 % with corresponding residual microstrains as 5.4 % , 5.6 % , and 3 % in crushed powders of the three different Mn-rich Ni-Mn alloys, namely, M n1.8N i1.8I n0.4 , M n1.75N i1.25Ga , and M n1.9N i1.1Ga , respectively. Even after annealing at 773 K, the residual stress stabilized martensite phase does not fully revert to the equilibrium cubic austenite phase as the magnetostructural transition is only partially restored with a reduced value of Δ M . Our results have a very significant bearing on the application of such alloys as inverse magnetocaloric and barocaloric materials.

  6. Development and Characterization of Improved NiTiPd High-Temperature Shape-Memory Alloys by Solid-Solution Strengthening and Thermomechanical Processing

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen; Noebe, Ronald; Padula, Santo, II; Garg, Anita; Olson, David

    2006-01-01

    The need for compact, solid-state actuation systems for use in the aerospace, automotive, and other transportation industries is currently motivating research in high-temperature shape-memory alloys (HTSMA) with transformation temperatures greater than 100 C. One of the basic high-temperature alloys investigated to fill this need is Ni(19.5)Ti(50.5)Pd30. Initial testing has indicated that this alloy, while having acceptable work characteristics, suffers from significant permanent deformation (or ratcheting) during thermal cycling under load. In an effort to overcome this deficiency, various solid-solution alloying and thermomechanical processing schemes were investigated. Solid-solution strengthening was achieved by substituting 5at% gold or platinum for palladium in Ni(19.5)Ti(50.5)Pd30, the so-called baseline alloy, to strengthen the martensite and austenite phases against slip processes and improve thermomechanical behavior. Tensile properties, work behavior, and dimensional stability during repeated thermal cycling under load for the ternary and quaternary alloys were compared. The relative difference in yield strength between the martensite and austenite phases and the dimensional stability of the alloy were improved by the quaternary additions, while work output was only minimally impacted. The three alloys were also thermomechanically processed by cycling repeatedly through the transformation range under a constant stress. This so-called training process dramatically improved the dimensional stability in these samples and also recovered the slight decrease in work output caused by quaternary alloying. An added benefit of the solid-solution strengthening was maintenance of enhanced dimensional stability of the trained material to higher temperatures compared to the baseline alloy, providing a greater measure of over-temperature capability.

  7. Functional properties of ‘Ti50Ni50-Ti49.3Ni50.7’ shape memory composite produced by explosion welding

    NASA Astrophysics Data System (ADS)

    Belyaev, S.; Rubanik, V.; Resnina, N.; Rubanik, V., Jr.; Lomakin, I.

    2014-08-01

    A bimetal composite, Ti50Ni50-Ti49.3Ni50.7, was produced by explosion welding, causing a Martensitic transformation. The functional properties of these objects were studied. It was found that explosion welding partially depressed the Martensitic transformation; however, a subsequent annealing resulted in the recovery of the kinetics of Martensitic transformations. Moreover, a variation in the annealing temperature allowed the control of a sequence of Martensitic transformations in the Ni-rich layer. The influence of the ratio of the equiatomic TiNi layer thickness to the total thickness of the bimetal composite on the recoverable strain was studied, and it was found that the maximum recoverable strain was observed when the thickness of the equiatomic TiNi layer was approximately equal to 55% of the total thickness of the sample. Functional properties were studied in the bimetal composite using the optimal ratio of the layer’s thickness. It was found that the value of the recoverable strain depended on the value of the residual strain as well as the sequence of the Martensitic transformations that occurred in the Ni-rich TiNi layer.

  8. Constitutive Models for Shape Memory Alloy Polycrystals

    NASA Technical Reports Server (NTRS)

    Comstock, R. J., Jr.; Somerday, M.; Wert, J. A.

    1996-01-01

    Shape memory alloys (SMA) exhibiting the superelastic or one-way effects can produce large recoverable strains upon application of a stress. In single crystals this stress and resulting strain are very orientation dependent. We show experimental stress/strain curves for a Ni-Al single crystal for various loading orientations. Also shown are model predictions; the open and closed circles indicate recoverable strains obtained at various stages in the transformation process. Because of the strong orientation dependence of shape memory properties, crystallographic texture can be expected to play an important role in the mechanical behavior of polycrystalline SMA. It is desirable to formulate a constitutive model to better understand and exploit the unique properties of SMA.

  9. Use of time history speckle pattern and pulsed photoacoustic techniques to detect the self-accommodating transformation in a Cu-Al-Ni shape memory alloy

    SciTech Connect

    Sanchez-Arevalo, F.M.; Aldama-Reyna, W.; Lara-Rodriguez, A.G.; Garcia-Fernandez, T.; Pulos, G.; Trivi, M.; Villagran-Muniz, M.

    2010-05-15

    Continuous and pulsed electromagnetic radiation was used to detect the self-accommodation mechanism on a polycrystalline Cu-13.83 wt.%Al-2.34 wt.%Ni shape memory alloy. Rectangular samples of this alloy were mechanically polished to observe the austenite and martensite phases. The samples were cooled in liquid nitrogen prior to the experiments to obtain the martensite phase. Using a dynamic speckle technique with a continuous wave laser we obtained the time history of the speckle pattern image and monitored the surface changes caused by the self-accommodation mechanism during the inverse (martensitic to austenitic) transformation. Using a photoacoustic technique based on a pulsed laser source it was also possible to detect the self-accommodation phenomena in a bulk sample. For comparison purposes, we used differential scanning calorimetry (DSC) to detect the critical temperatures of transformation and use these as reference to evaluate the performance of the optical and photoacoustical techniques. In all cases, the same range of temperature was obtained during the inverse transformation. From these results, we conclude that time history speckle pattern (THSP) and pulsed photoacoustic are complementary techniques; they are non-destructive and useful to detect surface and bulk martensitic transformation induced by a temperature change.

  10. Effects of film thickness and composition on the structure and martensitic transition of epitaxial off-stoichiometric Ni-Mn-Ga magnetic shape memory films

    NASA Astrophysics Data System (ADS)

    Luo, Yuansu; Leicht, Philipp; Laptev, Aleksej; Fonin, Mikhail; Rüdiger, Ulrich; Laufenberg, Markus; Samwer, Konrad

    2011-01-01

    Epitaxial Ni-Mn-Ga magnetic shape memory films with varied thickness and variable stoichiometry were prepared by magnetron sputtering on MgO(001) substrates and investigated by using x-ray diffraction (XRD), scanning tunneling microscopy (STM) and scanning electron microscopy (SEM). The results demonstrate that the structure of the films is either a non-modulated martensite or a seven-layer-modulated martensite. At small film thicknesses, we observe a preferential alignment of the {110} twin planes titled 45° from the substrate surface, which gives rise to the surface corrugation, whereas at large thicknesses, twin planes align additionally along the perpendicular planes. The biaxial tensile stress due to the film-substrate lattice mismatch is shown to have an important role in the selection of the possible twinning planes. An exponential relation between the stress and the film thickness is identified. In contrast, the magnetic properties of the films are found to be independent of the stress. A resistance maximum is measured close to the Curie temperature, which can be attributed to the relaxation of the lattice distortion induced by magnetoelastic coupling.

  11. The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Huang, X. F.; Xie, H. M.; Lou, X. H.; Du, H.

    2011-12-01

    The basic principle of the artificial periodic lattice phase analysis method on the basis of an artificial periodic lattice was thoroughly introduced in this investigation. The improved technique is intended to expand from nanoscale to micro- and macroscopic realms on the test field of experimental mechanics in combination with a submicron grid, which is produced by a focused ion beam (FIB). Phase information can be obtained from the filtered images after fast Fourier transform (FFT) and inverse FFT. Thus, the in-plane displacement fields as well as the local strain distributions related to the phase information will be evaluated. The application scope of the technique was obtained by the simulation experiment. The displacement fields as well as strain distributions of porous TiNi shape memory alloy were calculated by the technique after compressive loading in micro scale. The specimen grid was directly fabricated on the tested flat surface by employing a FIB. The evolution rule of shear zones in micro area near porous has been discovered. The obtained results indicate that the technique not only could be well applied to measuring full field deformation, but also, more significantly, is available to present mechanical properties in micro scale.

  12. Effect of Nano CeO2 Addition on the Microstructure and Properties of a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Jain, Ashish Kumar; Hussain, Shahadat; Sampath, V.; Dasgupta, Rupa

    2016-05-01

    This article deals with the effect of adding nano CeO2 to act as a grain pinner/refiner to a known Cu-Al-Ni shape memory alloy. Elements were taken in a predefined ratio to prepare 300 g alloy per batch and melted in an induction furnace. Casting was followed by homogenization at 1173 K (900 °C) and rolling to make sheets of 0.5-mm thickness. Further, samples were characterized for microstructure using optical and electron microscope, hardness, and different phase studies by X-ray and transformation temperatures by differential scanning calorimetry. X-ray peak broadenings and changes were investigated to estimate the crystallite size, lattice strain, and phase changes due to different processing steps. A nearly uniform distribution of CeO2 and better martensitic structure were observed with increasing CeO2. The addition of CeO2 also shows a visible effect on the transformation temperature and phase formation.

  13. Magnetocaloric properties of as-quenched Ni50.4Mn34.9In14.7 ferromagnetic shape memory alloy ribbons

    NASA Astrophysics Data System (ADS)

    Sánchez Llamazares, J. L.; García, C.; Hernando, B.; Prida, V. M.; Baldomir, D.; Serantes, D.; González, J.

    2011-06-01

    The temperature dependences of magnetic entropy change and refrigerant capacity have been calculated for a maximum field change of Δ H=30 kOe in as-quenched ribbons of the ferromagnetic shape memory alloy Ni50.4Mn34.9In14.7 around the structural reverse martensitic transformation and magnetic transition of austenite. The ribbons crystallize into a single-phase austenite with the L21-type crystal structure and Curie point of 284 K. At 262 K austenite starts its transformation into a 10-layered structurally modulated monoclinic martensite. The first- and second-order character of the structural and magnetic transitions was confirmed by the Arrott plot method. Despite the superior absolute value of the maximum magnetic entropy change obtained in the temperature interval where the reverse martensitic transformation occurs (|\\varDelta SM^{max}|=7.2 J kg^{-1} K^{-1}) with respect to that obtained around the ferromagnetic transition of austenite (|\\varDelta SM^{max}|=2.6 J kg^{-1} K^{-1}), the large average hysteretic losses due to the effect of the magnetic field on the phase transformation as well as the narrow thermal dependence of the magnetic entropy change make the temperature interval around the ferromagnetic transition of austenite of a higher effective refrigerant capacity (RC^{magn}_{eff}=95J kg^{-1} versus RC^{struct}_{eff}=60J kg^{-1}).

  14. Simulations of Self-Expanding Braided Stent Using Macroscopic Model of NiTi Shape Memory Alloys Covering R-Phase

    NASA Astrophysics Data System (ADS)

    Frost, M.; Sedlák, P.; Kruisová, A.; Landa, M.

    2014-07-01

    Self-expanding stents or stentgrafts made from Nitinol superelastic alloy are widely used for a less invasive treatment of disease-induced localized flow constriction in the cardiovascular system. The therapy is based on insertion of a stent into a blood vessel to maintain the inner diameter of the vessel; it provides highly effective results at minimal cost and with reduced hospital stays. However, since stent is an external mechanical healing tool implemented into human body for quite a long time, information on the mechanical performance of it is of fundamental importance with respect to patient's safety and comfort. Advantageously, computational structural analysis can provide valuable information on the response of the product in an environment where in vivo experimentation is extremely expensive or impossible. With this motivation, a numerical model of a particular braided self-expanding stent was developed. As a reasonable approximation substantially reducing computational demands, the stent was considered to be composed of a set of helical springs with specific constrains reflecting geometry of the structure. An advanced constitutive model for NiTi-based shape memory alloys including R-phase transition was employed in analysis. Comparison to measurements shows a very good match between the numerical solution and experimental results. Relation between diameter of the stent and uniform radial pressure on its surface is estimated. Information about internal phase and stress state of the material during compression loading provided by the model is used to estimate fatigue properties of the stent during cyclic loading.

  15. Effect of Nano CeO2 Addition on the Microstructure and Properties of a Cu-Al-Ni Shape Memory Alloy

    NASA Astrophysics Data System (ADS)

    Pandey, Abhishek; Jain, Ashish Kumar; Hussain, Shahadat; Sampath, V.; Dasgupta, Rupa

    2016-08-01

    This article deals with the effect of adding nano CeO2 to act as a grain pinner/refiner to a known Cu-Al-Ni shape memory alloy. Elements were taken in a predefined ratio to prepare 300 g alloy per batch and melted in an induction furnace. Casting was followed by homogenization at 1173 K (900 °C) and rolling to make sheets of 0.5-mm thickness. Further, samples were characterized for microstructure using optical and electron microscope, hardness, and different phase studies by X-ray and transformation temperatures by differential scanning calorimetry. X-ray peak broadenings and changes were investigated to estimate the crystallite size, lattice strain, and phase changes due to different processing steps. A nearly uniform distribution of CeO2 and better martensitic structure were observed with increasing CeO2. The addition of CeO2 also shows a visible effect on the transformation temperature and phase formation.

  16. Theoretical investigation of the magnetic and structural transitions of Ni-Co-Mn-Sn metamagnetic shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Li, Chun-Mei; Hu, Qing-Miao; Yang, Rui; Johansson, Börje; Vitos, Levente

    2015-07-01

    The composition-dependent crystal structure, elastic modulus, phase stability, and magnetic property of Ni2 -xCoxMn1.60Sn0.40 (0 ≤x ≤0.50 ) are studied by using first-principles calculations in combination with atomistic spin dynamics method. It is shown that the present lattice parameters and Curie temperature (TC) are in agreement with the available experimental data. The martensitic phase transformation (MPT) occurs for x <0.43 , where the austenite is in the ferromagnetic (FM) state whereas the martensite is in the antiferromagnetic (AFM) one at 0 K. The x dependence of the lattice parameter, elastic modulus, and energy difference between the FM austenite and the AFM martensite well accounts for the decrease of the MPT temperature (TM) with the Co addition. With increasing x , the increase of the magnetic excitation energy between the paramagnetic and FM austenite of these alloys is in line with the TC˜x . The Ni 3 d as well as the Co 3 d electronic states near the Fermi level are confirmed mainly dominating the phase stability of the studied alloys.

  17. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  18. Understanding the Shape-Memory Alloys Used in Orthodontics

    PubMed Central

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  19. Understanding the shape-memory alloys used in orthodontics.

    PubMed

    Fernandes, Daniel J; Peres, Rafael V; Mendes, Alvaro M; Elias, Carlos N

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed to allow dental displacements. The aim of this paper is to discuss the physical, metallurgical, and mechanical properties of NiTi used in Orthodontics in order to analyze the shape memory properties, super-elasticity, and thermomechanical characteristics of SMA. PMID:21991455

  20. Final Technical Report: Nanostructured Shape Memory ALloys

    SciTech Connect

    Wendy Crone; Walter Drugan; Arthur Ellis; John Perepezko

    2005-07-28

    With this grant we explored the properties that result from combining the effects of nanostructuring and shape memory using both experimental and theoretical approaches. We developed new methods to make nanostructured NiTi by melt-spinning and cold rolling fabrication strategies, which elicited significantly different behavior. A template synthesis method was also used to created nanoparticles. In order to characterize the particles we created, we developed a new magnetically-assisted particle manipulation technique to manipulate and position nanoscale samples for testing. Beyond characterization, this technique has broader implications for assembly of nanoscale devices and we demonstrated promising applications for optical switching through magnetically-controlled scattering and polarization capabilities. Nanoparticles of nickel-titanium (NiTi) shape memory alloy were also produced using thin film deposition technology and nanosphere lithography. Our work revealed the first direct evidence that the thermally-induced martensitic transformation of these films allows for partial indent recovery on the nanoscale. In addition to thoroughly characterizing and modeling the nanoindentation behavior in NiTi thin films, we demonstrated the feasibility of using nanoindentation on an SMA film for write-read-erase schemes for data storage.

  1. FOREWORD: Shape Memory and Related Technologies

    NASA Astrophysics Data System (ADS)

    Liu, Yong

    2005-10-01

    The International Symposium on Shape Memory and Related Technologies (SMART2004) successfully took place in Singapore from November 24 to 26, 2004. SMART2004 aimed to provide a forum for presenting and discussing recent developments in the processing, characterization, application and performance prediction of shape memory materials, particularly shape memory alloys and magnetic shape memory materials. In recent years, we have seen a surge in the research and application of shape memory materials. This is due on the one hand to the successful applications of shape memory alloys (SMAs), particularly NiTi (nitinol), in medical practices and, on the other hand, to the discovery of magnetic shape memory (MSM) materials (or, ferromagnetic shape memory alloys, FSMAs). In recent years, applications of SMAs in various engineering practices have flourished owing to the unique combination of novel properties including high power density related to shape recovery, superelasticity with tunable hysteresis, high damping capacity combined with good fatigue resistance, excellent wear resistance due to unconventional deformation mechanisms (stress-induced phase transformation and martensite reorientation), and excellent biocompatibility and anticorrosion resistance, etc. In~the case of MSMs (or FSMAs), their giant shape change in a relatively low magnetic field has great potential to supplement the traditional actuation mechanisms and to have a great impact on the world of modern technology. Common mechanisms existing in both types of materials, namely thermoelastic phase transformation, martensite domain switching and their controlling factors, are of particular interest to the scientific community. Despite some successful applications, some fundamental issues remain unsatisfactorily understood. This conference hoped to link the fundamental research to engineering practices, and to further identify remaining problems in order to further promote the applications of shape memory

  2. Modelling Shape-Memory Effects in Ferromagnetic Alloys

    NASA Astrophysics Data System (ADS)

    Gebbia, Jonathan F.; Lloveras, Pol; Castán, Teresa; Saxena, Avadh; Planes, Antoni

    2015-09-01

    We develop a combined Ginzburg-Landau/micromagnetic model dealing with conventional and magnetic shape-memory properties in ferromagnetic shape-memory materials. The free energy of the system is written as the sum of structural, magnetic and magnetostructural contributions. We first analyse a mean field linearized version of the model that does not take into account long-range terms arising from elastic compatibility and demagnetization effects. This model can be solved analytically and in spite of its simplicity allows us to understand the role of the magnetostructural term in driving magnetic shape-memory effects. Numerical simulations of the full model have also been performed. They show that the model is able to reproduce magnetostructural microstructures reported in magnetic shape-memory materials such as Ni2MnGa as well as conventional and magnetic shape-memory behaviour.

  3. Shape Memory Effect and Superelasticity in a Strain Glass Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Ren, Xiaobing; Otsuka, Kazuhiro

    2006-12-01

    The shape memory effect and superelasticity are usually found in alloys exhibiting spontaneous martensitic transformation. Thus it is hard to imagine that such interesting effects can appear in a system without a martensitic transformation. In this Letter we show shape memory and the superelasticity effect in a nonmartensitic Ti48.5Ni51.5 alloy, which has no martensitic transformation but undergoes a “strain glass” transition. In situ x-ray diffraction experiment showed that the shape memory and superelasticity in strain glass stem from a stress-induced strain glass to martensite transformation and its reverse transformation. The new shape memory and superelasticity in strain glass extends the regime of the shape memory effect and superelasticity and may lead to novel applications.

  4. Structural and phase transformations in quasi-binary TiNi-TiCu alloys with thermomechanical shape-memory effects

    NASA Astrophysics Data System (ADS)

    Pushin, V. G.; Kuranova, N. N.; Makarov, V. V.; Pushin, A. V.; Korolev, A. V.; Kourov, N. I.

    2015-12-01

    The structure, thermoelastic martensitic transformations, and physical properties of the usual microcrystalline and rapidly quenched submicrocrystalline ternary alloys of the quasi-binary TiNi-TiCu section with a copper content to 35 at % have been studied in a wide temperature range. The fine structure of the alloys has been investigated by the methods of the analytical transmission and scanning electron microscopy, and selected-area electron diffraction, including the in situ heating and cooling in the column of the microscope. The main specific features of the premartensitic state of the B2 austenite, the morphology, and the fine structure of the B19 and B19' martensitic phases have been established, and their evolution upon the alloying with copper and upon grain refinement and cooling and heating in situ have been studied. According to the data of the temperature measurements of electrical resistance, magnetic susceptibility, and XRD analysis, generalized complete diagrams of the B2 ↔ B19', B2 ↔ B19 ↔ B19' and B2↔ B19 martensitic transformations that occur upon cooling in these alloys with an increase in the copper concentration in the limits of 0-8, 8-15, and 15-35 at %, respectively, have been constructed.

  5. Shape memory alloy/shape memory polymer tools

    DOEpatents

    Seward, Kirk P.; Krulevitch, Peter A.

    2005-03-29

    Micro-electromechanical tools for minimally invasive techniques including microsurgery. These tools utilize composite shape memory alloy (SMA), shape memory polymer (SMP) and combinations of SMA and SMP to produce catheter distal tips, actuators, etc., which are bistable. Applications for these structures include: 1) a method for reversible fine positioning of a catheter tip, 2) a method for reversible fine positioning of tools or therapeutic catheters by a guide catheter, 3) a method for bending articulation through the body's vasculature, 4) methods for controlled stent delivery, deployment, and repositioning, and 5) catheters with variable modulus, with vibration mode, with inchworm capability, and with articulated tips. These actuators and catheter tips are bistable and are opportune for in vivo usage because the materials are biocompatible and convenient for intravascular use as well as other minimal by invasive techniques.

  6. A nanoscale shape memory oxide.

    PubMed

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I; Minor, Andrew M; Chu, Ying-Hao; Van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-01-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm(-3) can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems. PMID:24253399

  7. A nanoscale shape memory oxide

    NASA Astrophysics Data System (ADS)

    Zhang, Jinxing; Ke, Xiaoxing; Gou, Gaoyang; Seidel, Jan; Xiang, Bin; Yu, Pu; Liang, Wen-I.; Minor, Andrew M.; Chu, Ying-Hao; van Tendeloo, Gustaaf; Ren, Xiaobing; Ramesh, Ramamoorthy

    2013-11-01

    Stimulus-responsive shape-memory materials have attracted tremendous research interests recently, with much effort focused on improving their mechanical actuation. Driven by the needs of nanoelectromechanical devices, materials with large mechanical strain, particularly at nanoscale level, are therefore desired. Here we report on the discovery of a large shape-memory effect in bismuth ferrite at the nanoscale. A maximum strain of up to ~14% and a large volumetric work density of ~600±90 J cm-3 can be achieved in association with a martensitic-like phase transformation. With a single step, control of the phase transformation by thermal activation or electric field has been reversibly achieved without the assistance of external recovery stress. Although aspects such as hysteresis, microcracking and so on have to be taken into consideration for real devices, the large shape-memory effect in this oxide surpasses most alloys and, therefore, demonstrates itself as an extraordinary material for potential use in state-of-art nanosystems.

  8. Reversible Shape Memory Optical Gratings

    NASA Astrophysics Data System (ADS)

    Li, Qiaoxi; Tippets, Cary; Fu, Yulan; Donev, Eugene; Turner, Sara; Ashby, Valerie; Lopez, Rene; Sheiko, Sergei

    2015-03-01

    Recent advancements in the understanding of the mechanisms that control shape memory in semi-crystalline polymers, has led to the development of protocols that allow for reversibility in complex shape transformations. The shifting between two programmable shapes is reversible without applying any external force. This is made possible by thermodynamically driven relaxation of extended polymer chains on heating is then inverted by kinetically preferred pathways of polymer crystallization on cooling. Reversible shapeshifting was applied to modulation of photonic gratings to create hands-free reversibly tunable optical elements. We have fabricated a sub-micron ratio optical square grating that presents reversible magnitude changes of its diffraction intensity (up to about 38% modulation) when subject to changes in temperature. This result is attributed to programmable changes in the grating height due to reversible shape memory and is repeatable over multiple cycles. Besides, roughness-induced variations in scattering signal observed upon heating-cooling cycles may offer another way to monitor kinetics of polymer melting and crystallization. Grants: NSF DMR-1407645,

  9. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2007-11-06

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  10. Shape memory polymer actuator and catheter

    DOEpatents

    Maitland, Duncan J.; Lee, Abraham P.; Schumann, Daniel L.; Matthews, Dennis L.; Decker, Derek E.; Jungreis, Charles A.

    2004-05-25

    An actuator system is provided for acting upon a material in a vessel. The system includes an optical fiber and a shape memory polymer material operatively connected to the optical fiber. The shape memory polymer material is adapted to move from a first shape for moving through said vessel to a second shape where it can act upon said material.

  11. Solvent-driven temperature memory and multiple shape memory effects.

    PubMed

    Xiao, Rui; Guo, Jingkai; Safranski, David L; Nguyen, Thao D

    2015-05-28

    Thermally-activated temperature memory and multiple shape memory effects have been observed in amorphous polymers with a broad glass transition. In this work, we demonstrate that the same shape recovery behaviors can also be achieved through solvent absorption. We investigate the recovery behaviors of programmed Nafion membranes in various solvents and compare the solvent-driven and temperature-driven shape recovery response. The results show that the programming temperature and solvent type have a corresponding strong influence on the shape recovery behavior. Specifically, lower programming temperatures induce faster initial recovery rates and larger recovery, which is known as the temperature memory effect. The temperature memory effect can be used to achieve multi-staged and multiple shape recovery of specimens programmed at different temperatures. Different solvents can also induce different shape recovery, analogous to the temperature memory effect, and can also provide a mechanism for multi-staged and multiple shape memory recovery. PMID:25890998

  12. Effect of Thermomechanical Processing on the Microstructure, Properties, and Work Behavior of a Ti50.5 Ni29.5 Pt20 High-Temperature Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Draper, Susan; Gaydosh, Darrell; Garga, Anita; Lerch, Brad; Penney, Nicholas; Begelow, Glen; Padula, Santo, II; Brown, Jeff

    2006-01-01

    TiNiPt shape memory alloys are particularly promising for use as solid state actuators in environments up to 300 C, due to a reasonable balance of properties, including acceptable work output. However, one of the challenges to commercializing a viable high-temperature shape memory alloy (HTSMA) is to establish the appropriate primary and secondary processing techniques for fabrication of the material in a required product form such as rod and wire. Consequently, a Ti(50.5)Ni(29.5)Pt20 alloy was processed using several techniques including single-pass high-temperature extrusion, multiple-pass high-temperature extrusion, and cold drawing to produce bar stock, thin rod, and fine wire, respectively. The effects of heat treatment on the hardness, grain size, room temperature tensile properties, and transformation temperatures of hot- and cold-worked material were examined. Basic tensile properties as a function of temperature and the strain-temperature response of the alloy under constant load, for the determination of work output, were also investigated for various forms of the Ti(50.5)Ni(29.5)Pt20 alloy, including fine wire.

  13. Thermomechanical Modeling of Shape Memory Alloys and Applications

    NASA Astrophysics Data System (ADS)

    Lexcellent, C.; Leclercq, S.

    The aim of the present paper is a general macroscopic description of the thermomechanical behavior of shape memory alloys (SMA). We use for framework the thermodynamics of irreversible processes. This model is efficient for describing the behavior of "smart" structures as a bronchial, a tentacle element and an prosthesis hybrid structure made of Ti Ni SMA wires embedded in a resin epoxy matrix.

  14. Design and application of shape memory actuators

    NASA Astrophysics Data System (ADS)

    Mertmann, M.; Vergani, G.

    2008-05-01

    The use of shape memory alloys in actuators allows the development of robust, simple and lightweight elements for application in a multitude of different industries. Over the years, the intermetallic compound Nickel-Titanium (NiTi or Nitinol) together with its ternary and quaternary derivates has gained general acceptance as a standard alloy. Even though as many as 99% of all shape memory actuator applications make use of Nitinol there are certain properties of this alloy system which require further research in order to find improvements and new markets: • Lack of higher transformation temperatures in the available alloys in order to open the field of automotive applications (Mf temperature > 80 °C) • Non-linearity in the electrical resistivity in order to improve the controllability of the actuator, • Wide hysteresis in the temperature-vs.-strain behaviour, which has a signi-ficant effect on both, the dynamics of the actuator and its controllability. Hence, there is a constant strive in the field towards an improvement of the related properties. However, these improvements are not always just alloy composition related. There is also a tremendous potential in the thermomechanical treatment of the material and in the design of the actuator. Significant improvement steps are already possible if the usage of the existent materials is optimized for the projected application and if the actuator system is designed in the most efficient way. This paper provides an overview about existent designs, applications and alloys for use in actuators, as well as examples of new shape memory actuator application with improved performance. It also gives an overview about general design rules and reflects about the strengths of the material and the related opportunities for its application.

  15. Shape memory alloys: New materials for future engineering

    NASA Technical Reports Server (NTRS)

    Hornbogen, E.

    1988-01-01

    Shape memory is a new material property. An alloy which experiences relative severe plastic deformation resumes its original shape again after heating by 10 to 100 C. Besides simple shape memory, in similar alloys there is the second effect where the change in shape is caused exclusively by little temperature change. In pseudo-elasticity, the alloy exhibits a rubber-like behavior, i.e., large, reversible deformation at little change in tension. Beta Cu and beta NiTi alloys have been used in practice. The probability is that soon alloys based on Fe will become available. Recently increasing applications for this alloy were found in various areas of technology, even medical technology. A review with 24 references is given, including properties, production, applications and fundamental principles of the shape memory effect.

  16. The Corrosion Resistance of Composite Arch Wire Laser-Welded By NiTi Shape Memory Alloy and Stainless Steel Wires with Cu Interlayer in Artificial Saliva with Protein

    PubMed Central

    Zhang, Chao; Sun, Xinhua; Hou, Xu; Li, Hongmei; Sun, Daqian

    2013-01-01

    In this paper, the corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different concentrations of protein was studied. It was found that protein addition had a significant influence on the corrosion behavior of CoAW. Low concentration of protein caused the corrosion resistance of CoAW decrease in electrochemical corrosion and immersion corrosion tests. High concentration of protein could reduce this effect. PMID:23801895

  17. Testing system for ferromagnetic shape memory microactuators.

    PubMed

    Ganor, Y; Shilo, D; Messier, J; Shield, T W; James, R D

    2007-07-01

    Ferromagnetic shape memory alloys are a class of smart materials that exhibit a unique combination of large strains and fast response when exposed to magnetic field. Accordingly, these materials have significant potential in motion generation applications such as microactuators and sensors. This article presents a novel experimental system that measures the dynamic magnetomechanical behavior of microscale ferromagnetic shape memory specimens. The system is comprised of an alternating magnetic field generator (AMFG) and a mechanical loading and sensing system. The AMFG generates a dynamic magnetic field that periodically alternates between two orthogonal directions to facilitate martensitic variant switching and to remotely achieve a full magnetic actuation cycle, without the need of mechanical resetting mechanisms. Moreover, the AMFG is designed to produce a magnetic field that inhibits 180 degrees magnetization domain switching, which causes energy loss without strain generation. The mechanical loading and sensing system maintains a constant mechanical load on the measured specimen by means of a cantilever beam, while the displacement is optically monitored with a resolution of approximately 0.1 microm. Preliminary measurements using Ni(2)MnGa single crystal specimens, with a cross section of 100x100 microm(2), verified their large actuation strains and established their potential to become a material of great importance in microactuation technology. PMID:17672773

  18. Combinatorial investigation of ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Takeuchi, Ichiro; Famodu, Olugbenga; Aronova, Maria; Jaworski, Allan; Craciunescu, Corneliu; Wuttig, Manfred; Wellstood, Fred

    2002-03-01

    We have established a comprehensive methodology for rapidly exploring and mapping novel materials phases of ferromagnetic shape memory alloys. A UHV multi-gun magnetron co-sputtering system designed for fabricating composition spreads is used to map out different regions of a variety of ternary phase diagrams on 3 inch Si wafers. A scanning SQUID microscope is used to identify composition regions displaying strong ferromagnetism at room temperature on the spread samples, and magnetization mapping is obtained. In order to quickly characterize the martensitic transition temperatures, composition spreads are directly fabricated on micromachined cantilever libraries. All wafers are deposited at 400 450 C. A novel optical detection method is used to rapidly identify cantilevers undergoing martensitic transitions by visual inspection as a function of temperature. A scanning x-ray microdiffractometer is also used to detect regions displaying structural phase transitions. We have mapped out the ternary phase diagram of the Ni-Mn-Ga system.

  19. Fullerene embedded shape memory nanolens array.

    PubMed

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-Ho; Brenner, Howard; Song, Young Seok

    2013-01-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability. PMID:24253423

  20. Fullerene Embedded Shape Memory Nanolens Array

    PubMed Central

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-ho; Brenner, Howard; Song, Young Seok

    2013-01-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability. PMID:24253423

  1. Fullerene Embedded Shape Memory Nanolens Array

    NASA Astrophysics Data System (ADS)

    Jeon, Sohee; Jang, Jun Young; Youn, Jae Ryoun; Jeong, Jun-Ho; Brenner, Howard; Song, Young Seok

    2013-11-01

    Securing fragile nanostructures against external impact is indispensable for offering sufficiently long lifetime in service to nanoengineering products, especially when coming in contact with other substances. Indeed, this problem still remains a challenging task, which may be resolved with the help of smart materials such as shape memory and self-healing materials. Here, we demonstrate a shape memory nanostructure that can recover its shape by absorbing electromagnetic energy. Fullerenes were embedded into the fabricated nanolens array. Beside the energy absorption, such addition enables a remarkable enhancement in mechanical properties of shape memory polymer. The shape memory nanolens was numerically modeled to impart more in-depth understanding on the physics regarding shape recovery behavior of the fabricated nanolens. We anticipate that our strategy of combining the shape memory property with the microwave irradiation feature can provide a new pathway for nanostructured systems able to ensure a long-term durability.

  2. Shape memory properties of an iron modified nickel aluminide alloy

    SciTech Connect

    Horton, J.A.; Liu, C.T.; George, E.P.

    1994-12-31

    The ordered intermetallic NiAl with aluminum levels near 36% undergoes a B2 to martensite transformation. Shape memory alloys based on NiAl + Fe have the potential for transition temperatures of greater than 150 C. While binary alloys appear inherently brittle, alloying with iron and boron results in two phase alloys with L1{sub 2} and B2 phases and with about 7% room temperature tensile ductility. These alloys show a two-way shape memory effect over a range of transition temperatures with austenite peak temperature, Ap, between 100 to 200 C based on composition. Unfortunately, the B2 phase and its low temperature body centered tetragonal martensitic form are not stable and both can transform to Ni{sub 5}Al{sub 3} with a loss in ductility. These alloys with a constant tensile load show a two way shape recovery of up to 0.6% during temperature cycling between 100 and 200 C. A thorough survey of the shape memory properties of one such alloy with a composition of Ni-25.5 Al-16 Fe-0.12 B (at.%) as a function of prior cold work, tensile loading and other training steps is presented. Nanoindentation was used to independently measure the mechanical properties of the two phases.

  3. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part I. Morphological and crystallographic studies of the variant selection rule

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Nishiura, T.; Kawano, H.; Inamura, T.

    2012-06-01

    The self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Twelve pairs of minimum units consisting of two habit plane variants (HPVs) with V-shaped morphology connected to a ? B19‧ type I variant accommodation twin were observed. Three types of self-accommodation morphologies, based on the V-shaped minimum unit, developed around one of the {111}B2 traces, which were triangular, rhombic and hexangular and consisted of three, four and six HPVs, respectively. In addition, the variant selection rule and the number of possible HPV combinations in each of these self-accommodation morphologies are discussed.

  4. Novel tribological systems using shape memory alloys and thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Yijun

    Shape memory alloys and thin films are shown to have robust indentation-induced shape memory and superelastic effects. Loading conditions that are similar to indentations are very common in tribological systems. Therefore novel tribological systems that have better wear resistance and stronger coating to substrate adhesion can be engineered using indentation-induced shape memory and superelastic effects. By incorporating superelastic NiTi thin films as interlayers between chromium nitride (CrN) and diamond-like carbon (DLC) hard coatings and aluminum substrates, it is shown that the superelasticity can improve tribological performance and increase interfacial adhesion. The NiTi interlayers were sputter deposited onto 6061 T6 aluminum and M2 steel substrates. CrN and DLC coatings were deposited by unbalanced magnetron sputter deposition. Temperature scanning X-ray diffraction and nanoindentation were used to characterize NiTi interlayers. Temperature scanning wear and scratch tests showed that superelastic NiTi interlayers improved tribological performance on aluminum substrates significantly. The two-way shape memory effect under contact loading conditions is demonstrated for the first time, which could be used to make novel tribological systems. Spherical indents in NiTi shape memory alloys and thin films had reversible depth changes that were driven by temperature cycling, after thermomechanical cycling, or one-cycle slip-plasticity deformation training. Reversible surface topography was realized after the indents were planarized. Micro- and nano- scale circular surface protrusions arose from planarized spherical indents in bulk and thin film NiTi alloy; line surface protrusions appeared from planarized scratch tracks. Functional surfaces with reversible surface topography can potentially result in novel tribological systems with reversible friction coefficient. A three dimensional constitutive model was developed to describe shape memory effects with slip

  5. Microstructure and transformation behavior of Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} high temperature shape-memory alloy with Sc micro-addition

    SciTech Connect

    Ramaiah, K.V.; Saikrishna, C.N.; Gouthama; Bhaumik, S.K.

    2015-08-15

    NiTiPd shape-memory alloys (SMAs) are potential functional materials for use as solid-state actuators in the temperature range 100–250 °C. The present study investigates the effect of 1.0 at.% Sc micro-addition to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy, Sc replacing either Ti or Ni. Results show that all the three alloys studied have stable transformation behavior on stress-free thermal cycling and hence, are suitable for cyclic actuation applications. However, the addition of Sc to NiTiPd alloy leads to decrease of transformation temperatures, the magnitude of decrease being greater for the alloy with Sc replacing Ni. The martensite finish (M{sub f}) temperature of 181 °C for the NiTiPd alloy decreased to 139 °C for Sc replacing Ti and 83 °C for Sc replacing Ni. Also, the indentation modulus of NiTiPdSc (Sc replacing Ni) alloy is found to be significantly low compared to the other alloys. Analysis indicates that the observed differences in the alloy properties are related to the solubility of Sc in the NiTiPd matrix. While the quaternary NiTiPdSc alloy, Sc replacing Ti, has a single phase microstructure, the alloy with Sc replacing Ni shows the presence of Sc-rich and TiPd-type second phases in the microstructure. TEM examination revealed that the TiPd-type phase has a distinct rod-like morphology (30–50 nm) arranged in a grid-like structure. The transformation and indentation behavior of the alloys is elucidated using thermodynamic calculations of frictional energy and an electronic structure based analysis. - Highlights: • TEM of Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed distinct grid of TiPd-type phase nanorods < 50 nm. • Stress-free thermal cycling of all the three alloys showed stable transformation behavior. • Ni{sub 24.7}Ti{sub 49.3}Pd{sub 25}Sc{sub 1} and Ni{sub 23.7}Ti{sub 50.3}Pd{sub 25}Sc{sub 1} showed single and multiphase structures. • Sc micro-addition (1 at.%) to Ni{sub 24.7}Ti{sub 50.3}Pd{sub 25} alloy decreased TTs

  6. Microscopic Shape Memory and Superelastic Effects in Shape Memory Alloys and Thin Films Studied by Indentation Techniques

    NASA Astrophysics Data System (ADS)

    Ni, Wangyang; Cheng, Yang-Tse; Grummon, David S.

    2003-03-01

    Although shape memory alloys were discovered more than 50 years ago, there is a growing interest in shape memory thin films and coatings for applications ranging from MEMs to tribology. While the macroscopic shape memory (SM) and superelastic (SE) behavior of NiTi alloys are well known, very few studies have been conducted to investigate the SM and SE effects at the micro- and nano-meter length scales. In this presentation, instrumented indentation experiments with spherical, Vickers, and Berkovich indenters were used to study the mechanical behavior of NiTi alloys and thin films at the micro- and nano- meter scales. The indentation load-displacement curves for the shape memory and superelastic NiTi were obtained under a range of indentation conditions. The SM effect was quantified by the depth recovery ratio of the indents measured by a surface profilometer and atomic force microscope; the SE effect was determined by the ratio of reversible work to total work. We show that SM and SE effects exist under both spherical and pyramidal indenters for a wide range of indentation loads and depths. However, the magnitude of these effects depends strongly on indenter geometry. These observations were rationalized using the concept of representative strain and maximum strain under the spherical and pyramidal indenters. These studies provide new insights into the mechanisms of SM and SE effects at multiple length scales.

  7. Shape Memory Composite Hybrid Hinge

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Im, Eastwood; Lin, John; Scarborough, Stephen

    2012-01-01

    There are two conventional types of hinges for in-space deployment applications. The first type is mechanically deploying hinges. A typical mechanically deploying hinge is usually composed of several tens of components. It is complicated, heavy, and bulky. More components imply higher deployment failure probability. Due to the existence of relatively moving components among a mechanically deploying hinge, it unavoidably has microdynamic problems. The second type of conventional hinge relies on strain energy for deployment. A tape-spring hinge is a typical strain energy hinge. A fundamental problem of a strain energy hinge is that its deployment dynamic is uncontrollable. Usually, its deployment is associated with a large impact, which is unacceptable for many space applications. Some damping technologies have been experimented with to reduce the impact, but they increased the risks of an unsuccessful deployment. Coalescing strain energy components with shape memory composite (SMC) components to form a hybrid hinge is the solution. SMCs are well suited for deployable structures. A SMC is created from a high-performance fiber and a shape memory polymer resin. When the resin is heated to above its glass transition temperature, the composite becomes flexible and can be folded or packed. Once cooled to below the glass transition temperature, the composite remains in the packed state. When the structure is ready to be deployed, the SMC component is reheated to above the glass transition temperature, and it returns to its as-fabricated shape. A hybrid hinge is composed of two strain energy flanges (also called tape-springs) and one SMC tube. Two folding lines are placed on the SMC tube to avoid excessive strain on the SMC during folding. Two adapters are used to connect the hybrid hinge to its adjacent structural components. While the SMC tube is heated to above its glass transition temperature, a hybrid hinge can be folded and stays at folded status after the temperature

  8. High-Speed Behavior of Some Shape Memory Alloys

    SciTech Connect

    Bragov, Anatoly M.; Lomunov, Andrey K.; Sergeichev, Ivan V.

    2006-07-28

    The results of dynamic tests of shape memory alloys Ti-Ni and Cu-Al-Ni are given. Compressive tests of Ti-Ni alloy were carried out at temperatures 293-573K. Considerable influence of temperature on module of elasticity prior to the dislocation plastic flow and dislocation yield limit has been mentioned in temperature interval of reverse martensitic transformation. For Cu-Al-Ni alloy a strain rate influence on phase yield limit, module of elasticity prior to the phase unelastic flow, module of elasticity prior to the dislocation plastic flow was negligible. The method of determination of duration of reverse martensitic transformation has been realized by the example of Cu-Al-Ni alloy.

  9. Post polymerization cure shape memory polymers

    DOEpatents

    Wilson, Thomas S; Hearon, Michael Keith; Bearinger, Jane P

    2014-11-11

    This invention relates to chemical polymer compositions, methods of synthesis, and fabrication methods for devices regarding polymers capable of displaying shape memory behavior (SMPs) and which can first be polymerized to a linear or branched polymeric structure, having thermoplastic properties, subsequently processed into a device through processes typical of polymer melts, solutions, and dispersions and then crossed linked to a shape memory thermoset polymer retaining the processed shape.

  10. Resonant ultrasound spectroscopy - a tool to probe magneto-elastic properties of ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Heczko, Oleg; Seiner, Hanuš; Sedlák, Petr; Kopeček, Jaromír; Kopecký, Vít; Landa, Michal

    2013-02-01

    Resonant ultrasound spectroscopy (RUS) was used to investigate the changes of elastic properties induced by magnetic field in magnetic shape memory alloys Ni-Mn-Ga and Co-Ni-Al. In contrast to large magneto-elastic response of Ni2MnGa austenite, there is only very weak response of Co-Ni-Al. This indicates that the austenite phase of Ni-Mn-Ga can have a privileged position and this may be a reason for the existence of magnetic shape memory effect. In contrast to austenite, the magneto-elastic response in Ni-Mn-Ga martensite is very small with large damping due to existence of twin boundaries. The measurement showed that RUS can be a powerful method to probe magneto-elastic properties of shape memory alloys.

  11. Medical applications of shape memory polymers

    NASA Technical Reports Server (NTRS)

    Sokolowski, Witold M.

    2005-01-01

    Shape memory polymers are described here and major advantages in some applications are identified over other medical materials such as shape memory alloys (SMA). A number of medical applications are anticipated for shape memory polymers. Some simple applications are already utilized in medical world, others are in examination process. Lately, several important applications are being considered for CHEM foams for self-deployable vascular and coronary devices. One of these potential applications, the endovascular treatment of aneurysm was experimentally investigated with encouraging results and is described in this paper as well.

  12. A jumping shape memory alloy under heat.

    PubMed

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  13. A jumping shape memory alloy under heat

    NASA Astrophysics Data System (ADS)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  14. A jumping shape memory alloy under heat

    PubMed Central

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-01-01

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L21 parent before deformation, the 2H martensite stress-induced from L21 parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials. PMID:26880700

  15. New developments in actuator materials as reflected in magnetically controlled shape memory alloys and high-strength shape memory steels

    NASA Astrophysics Data System (ADS)

    Ullakko, Kari; Yakovenko, Peter G.; Gavriljuk, Valentin G.

    1996-05-01

    Shape memory alloys (SMA) are applied as actuator materials in smart structures and in fastening and pre-stressing devices. Shape memory alloys can be divided into three groups: one-way alloys, two-way alloys and magnetically controlled SMAs. The magnetically controlled SMAs recently suggested by one of the present authors are potential actuator materials for smart structures because they may provide rapid strokes with large amplitudes under precise control. The most extensively applied conventional SMAs are Ni-Ti and Cu- based alloys. Iron-based shape memory alloys, especially Fe-Mn-Si steels, are becoming more and more important in engineering applications due to their low price. The properties of Fe- Mn-Si steels have been improved by alloying, for example, with Cr, Ni and Co. Nitrogen alloying was shown to significantly improve shape memory, mechanical and corrosion properties of Fe-Mn-Si-based steels. Tensile strengths over 1500 MPa, recovery stresses of 300 MPa and recoverable strains of 4% have been attained. In fasteners made from these steels, stresses of 700 MPa were reached. The beneficial effect of nitrogen alloying on shape memory and mechanical properties is based on the decrease of stacking fault energy and increase of the strength of austenite caused by nitrogen atoms. Nitrogen alloyed Fe-Mn-Si- based steels are expected to be employed as actuator materials in pre-stressing and fastening applications in many fields of engineering. Nitrogen alloyed shape memory steels possess good manufacturing properties and weldability, and they are economical to process using conventional industrial methods.

  16. Two-dimensional shape memory graphene oxide

    PubMed Central

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  17. Two-dimensional shape memory graphene oxide

    NASA Astrophysics Data System (ADS)

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G.; Yan, Wenyi; Liu, Jefferson Zhe

    2016-06-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

  18. Two-dimensional shape memory graphene oxide.

    PubMed

    Chang, Zhenyue; Deng, Junkai; Chandrakumara, Ganaka G; Yan, Wenyi; Liu, Jefferson Zhe

    2016-01-01

    Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices. PMID:27325441

  19. Shape coexistence in and near 68Ni

    NASA Astrophysics Data System (ADS)

    Suchyta, Scott

    2015-10-01

    The nuclei in the vicinity of 68Ni have been the subject of considerable experimental and theoretical work focused on studying the evolution of nuclear structure. Situated at the Z = 28 proton shell closure and the fragile N = 40 subshell closure, 68Ni is an important nucleus to understand as a progression is made from stable to increasingly exotic nuclei. The nature and decay of the first excited state in 68Ni has been thoroughly investigated in recent years. The first excited state has a spin and parity of 0+, can be described by the excitation of neutrons across the N = 40 gap, and has been interpreted as a moderately oblate-deformed state that coexists with the spherical ground state. A second low-energy excited 0+ state is also known to exist in 68Ni. Based on comparisons with theoretical calculations, the second excited 0+ state has been proposed to be strongly prolate deformed and based primarily on the excitation of protons across the Z = 28 gap, leading to the inference that three different 0+ states with three distinct shapes coexist below 3 MeV in 68Ni. Additional studies suggest that shape coexistence is not unique to 68Ni in this neutron-rich region near Z = 28. For instance, in the neighboring even-even isotope 70Ni, theory predicts that a prolate-deformed minimum in the potential energy surface occurs at even lower energy than in 68Ni, and experimental evidence is consistent with the theoretical prediction. The results of recent experiments studying shape coexistence in the region, particularly investigations of 68,70Ni, will be presented and theoretical interpretations will be discussed.

  20. Reversible surface morphology in shape-memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Huang, W. M.; Fu, Y. Q.; Chollet, F.; Hu, Y. Y.; Cai, M.

    2009-02-01

    Reversible surface morphology can be used for significantly changing many surface properties such as roughness, friction, reflection, surface tension, etc. However, it is not easy to realize atop metals at micron scale around ambient temperature. In this paper, we demonstrate that TiNi and TiNi based (e.g., TiNiCu) shape-memory thin films, which are sputter-deposited atop a silicon wafer, may have different types of thermally-induced reversible surface morphologies. Apart from the well-known surface relief phenomenon, irregular surface trenches may appear in the fully crystallized thin films, but disappear upon heating. On the other hand, in partially crystallized thin films, the crystalline structures (islands) appear in chrysanthemum-shape at high temperature; while at room temperature, the surface morphology within the islands changes to standard martensite striations. Both phenomena are fully repeatable upon thermal cycling. The mechanisms behind these phenomena are investigated.

  1. Thermal and damping behaviour of magnetic shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Glock, Susanne; Michaud, Véronique

    2015-06-01

    Single crystals of ferromagnetic shape memory alloys (MSMA) exhibit magnetic field and stress induced strains via energy dissipating twinning. Embedding single crystalline MSMA particles into a polymer matrix could thus produce composites with enhanced energy dissipation, suitable for damping applications. Composites of ferromagnetic, martensitic or austenitic Ni-Mn-Ga powders embedded in a standard epoxy matrix were produced by casting. The martensitic powder composites showed a crystal structure dependent damping behaviour that was more dissipative than that of austenitic powder or Cu-Ni reference powder composites and than that of the pure matrix. The loss ratio also increased with increasing strain amplitude and decreasing frequency, respectively. Furthermore, Ni-Mn-Ga powder composites exhibited an increased damping behaviour at the martensite/austenite transformation temperature of the Ni-Mn-Ga particles in addition to that at the glass transition temperature of the epoxy matrix, creating possible synergetic effects.

  2. Recent Developments in High-Temperature Shape Memory Thin Films

    NASA Astrophysics Data System (ADS)

    Motemani, Y.; Buenconsejo, P. J. S.; Ludwig, A.

    2015-11-01

    High-temperature shape memory alloy (HTSMA) thin films are candidates for development of microactuators with operating temperatures exceeding 100 °C. This article reviews recent advances and developments in the field of HTSMA thin films during the past decade, with focus on the systems Ti-Ni-X (X = Hf, Zr, Pd, Pt and Au), Ti-Ta, and Au-Cu-Al. These actuator films offer a wide range of transformation temperatures, thermal hysteresis, and recoverable strains suitable for high-temperature applications. Promising alloy compositions in the systems Ti-Ni-Hf, Ti-Ni-Pd, Ti-Ni-Au, and Au-Cu-Al are highlighted for further upscaling and development. The remaining challenges as well as prospects for development of HTSMA thin films are also discussed.

  3. Influence of annealing on martensitic transformation and magnetic entropy change in Ni37.7Co12.7Mn40.8Sn8.8 magnetic shape memory alloy ribbon

    NASA Astrophysics Data System (ADS)

    Chen, F.; Liu, W. L.; Shi, Y. G.; Müllner, P.

    2015-03-01

    The microstructure, martensitic transformation and magnetic properties of Ni37.7Co12.7Mn40.8Sn8.8 high temperature magnetic shape memory ribbon subjected to different annealing temperature were investigated. Annealing up to 1073 K slightly raised the transformation temperatures and the transformation interval, while annealing at 1173 K considerably decreased the transformation temperature and strongly widened the transformation interval due to the formation of a second phase. The as-spun and annealed ribbon at 973 K exhibited giant magnetic entropy changes of around 15 J/kg K under 15 kOe magnetic field above 400 K. Further increasing annealing temperature caused a decrease of the magnetic entropy change. To achieve a large magnetocaloric effect while keeping an elevated transformation temperature, an appropriate annealing parameter should be carefully considered.

  4. Determination of the vibrational contribution to the entropy change at the martensitic transformation in Ni-Mn-Sn metamagnetic shape memory alloys: a combined approach of time-of-flight neutron spectroscopy and ab initio calculations.

    PubMed

    Recarte, V; Zbiri, M; Jiménez-Ruiz, M; Sánchez-Alarcos, V; Pérez-Landazábal, J I

    2016-05-25

    The different contributions to the entropy change linked to the austenite-martensitic transition in a Ni-Mn-Sn metamagnetic shape memory alloy have been determined by combining different experimental techniques. The vibrational contribution has been inferred from the vibrational density of states of both the martensitic and austenite phases. This has been accomplished by combining time-of-flight neutron scattering measurements and ab initio calculations. Further, the electronic part of the entropy change has also been calculated. Since the martensitic transformation takes place between two paramagnetic phases, the magnetic contribution can be neglected and the entropy change can be reduced to the sum of two terms: vibrational and electronic. The obtained value of the vibrational contribution ([Formula: see text]) nearly provides the total entropy change measured by calorimetry ([Formula: see text]), the difference being the electronic contribution within the experimental error. PMID:27120315

  5. Shape memory effect and superelasticity of titanium nickelide alloys implanted with high ion doses

    NASA Astrophysics Data System (ADS)

    Pogrebnjak, A. D.; Bratushka, S. N.; Beresnev, V. M.; Levintant-Zayonts, N.

    2013-12-01

    The state of the art in ion implantation of superelastic NiTi shape memory alloys is analyzed. Various technological applications of the shape memory effect are outlined. The principles and techiques of ion implantation are described. Specific features of its application for modification of surface layers in surface engineering are considered. Key properties of shape memory alloys and problems in utilization of ion implantation to improve the surface properties of shape memory alloys, such as corrosion resistance, friction coefficient, wear resistance, etc. are discussed. The bibliography includes 162 references.

  6. Thermomechanical properties of polyurethane shape memory polymers

    NASA Astrophysics Data System (ADS)

    Airoldi, Graziella; Corsi, Andrea

    1998-10-01

    Segmented polyurethanes containing soft segments with low molecular weight show shape-memorizing properties. In these materials the advantages of polyurethanes are combined with the features of smart material technology. Shape memory polymers can repeatedly transform their shape and hardness. The dependence of thermal and mechanical properties of shape memory polyurethanes on temperature were investigated experimentally by means of differential scanning calorimetry and static mechanical testing. The results show that as the thermal cycles progress, the residual strain increases and the recovery strain decreases even if these changes saturate after a suitable number of thermomechanical cycles. This kind of behavior suggest a possible training procedure in order to have a reproducible mechanical behavior when the shape memory polymer is introduced into an operating device. Some possible applications in the textile machinery are also shown.

  7. Thermomechanical fatigue of shape memory alloys

    NASA Astrophysics Data System (ADS)

    Lagoudas, D. C.; Miller, D. A.; Rong, L.; Kumar, P. K.

    2009-08-01

    As shape memory alloys (SMAs) gain popularity as high energy density actuators, one characteristic that becomes particularly important is the thermomechanical transformation fatigue life, in addition to maximum transformation strain and stability of actuation cycles. In this paper, a novel test frame design and testing protocol are discussed, for investigating the thermally activated transformation fatigue characteristics of SMAs under various applied loads for both complete and partial phase transformation. A Ni50Ti40Cu10 (at.%) SMA was chosen for this investigation and the effects of various heat treatments on the transformation temperatures and the transformation fatigue lives of actuators were studied. For selected heat treatments, the evolution of recoverable and irrecoverable strains up to failure under different applied stress levels was studied in detail. The influence of complete and partial transformation on the fatigue life is also presented. The irrecoverable strain accumulation as a function of the number of cycles to failure for different stress levels is presented by a relationship similar to the Manson-Coffin law for both partial and complete transformations.

  8. High-Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Biffi, C. A.; Tuissi, A.

    2014-10-01

    In this paper, an experimental study of laser micro-processing on a Cu-Zr-based shape memory alloy (SMA), which is suitable for high-temperature (HT) applications, is discussed. A first evaluation of the interaction between a laser beam and Zr50Cu28Ni7Co15 HT SMA is highlighted. Single laser pulses at various levels of power and pulse duration were applied to evaluate their effect on the sample surfaces. Blind and through microholes were produced with sizes on the order of a few hundreds of microns; the results were characterized from the morphological viewpoint using a scanning electron microscope. The high beam quality allows the holes to be created with good circularity and little melted material around the hole periphery. An analysis of the chemical composition was performed using energy dispersive spectroscopy, revealing that compositional changes were limited, while important oxidation occurred on the hole surfaces. Additionally, laser micro-cutting tests were also proposed to evaluate the cut edge morphology and dimensions. The main result of this paper concerned the good behavior of the material upon interaction with the laser beam, which suggests that microfeatures can be successfully produced in this alloy.

  9. Properties of a Ni(sub 19.5)Pd(sub 30)Ti(sub 50.5) high-temperature shape memory alloy in tension and compression

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad

    2006-01-01

    Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.

  10. Simultaneous probing of phase transformations in Ni-Ti thin film shape memory alloy by synchrotron radiation-based X-ray diffraction and electrical resistivity

    SciTech Connect

    Braz Fernandes, F.M.; Silva, R.J.C.

    2013-02-15

    Nickel–Titanium (Ni–Ti) thin film shape memory alloys (SMAs) have been widely projected as novel materials which can be utilized in microdevices. Characterization of their physical properties and its correlation with phase transformations has been a challenging issue. In the present study, X-ray beam diffraction has been utilized to obtain the structural information at different temperatures while cooling. Simultaneously, electrical resistivity (ER) was measured in the phase transformation temperature range. The variation of ER and integral area of the individual diffraction peaks of the different phases as a function of temperature have been compared. A mismatch between the conventional interpretation of ER variation and the results of the XRD data has been clearly identified. - Highlights: ► Phase transformation characterization of Ni–Ti thin film SMA has been carried out. ► Simultaneous monitoring of the XRD and ER with temperature is performed. ► The variation of ER and integral area of the diffraction peaks have been compared. ► A shift of the transformation temperatures obtained by two techniques is discussed.

  11. Memory Formation Shaped by Astroglia.

    PubMed

    Zorec, Robert; Horvat, Anemari; Vardjan, Nina; Verkhratsky, Alexei

    2015-01-01

    Astrocytes, the most heterogeneous glial cells in the central nervous system (CNS), execute a multitude of homeostatic functions and contribute to memory formation. Consolidation of synaptic and systemic memory is a prolonged process and hours are required to form long-term memory. In the past, neurons or their parts have been considered to be the exclusive cellular sites of these processes, however, it has now become evident that astrocytes provide an important and essential contribution to memory formation. Astrocytes participate in the morphological remodeling associated with synaptic plasticity, an energy-demanding process that requires mobilization of glycogen, which, in the CNS, is almost exclusively stored in astrocytes. Synaptic remodeling also involves bidirectional astroglial-neuronal communication supported by astroglial receptors and release of gliosignaling molecules. Astroglia exhibit cytoplasmic excitability that engages second messengers, such as Ca(2+), for phasic, and cyclic adenosine monophosphate (cAMP), for tonic signal coordination with neuronal processes. The detection of signals by astrocytes and the release of gliosignaling molecules, in particular by vesicle-based mechanisms, occurs with a significant delay after stimulation, orders of magnitude longer than that present in stimulus-secretion coupling in neurons. These particular arrangements position astrocytes as integrators ideally tuned to support time-dependent memory formation. PMID:26635551

  12. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  13. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R; Maitland, Duncan J

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  14. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  15. Defect formation energy and magnetic structure of shape memory alloys Ni-X-Ga (X=Mn, Fe, Co) by first principle calculation

    NASA Astrophysics Data System (ADS)

    Bai, J.; Raulot, J. M.; Zhang, Y. D.; Esling, C.; Zhao, X.; Zuo, L.

    2010-09-01

    The crystallographic and magnetic structures of the Ni2XGa (X=Mn, Fe, Co), are systematically investigated by means of the first-principles calculations within the framework of density functional theory using the VIENNA AB INITIO SOFTWARE PACKAGE. The formation energies of several kinds of defects (atomic exchange, antisite, vacancy) are estimated. The Ga atoms stabilize the cubic structure, and the effect of X atoms on the structural stability is opposite. For most cases of the site occupation, the excess atoms of the rich component directly occupy the site(s) of the deficient one(s), except for Ga-rich Ni-deficient type. The magnitude of the variation in Ni moments is much larger than that of Mn in defective Ni2XGa. The value of Ni magnetic moment sensitively depends on the distance between Ni and X. Excess Mn could be ferromagnetic or antiferromagnetic, depending on the distance between the neighboring Mn atoms.

  16. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

    SciTech Connect

    Huang, L.; Cong, D. Y.; Ma, L.; Nie, Z. H.; Wang, M. G.; Wang, Z. L.; Suo, H. L.; Ren, Y.; Wang, Y. D.

    2015-07-02

    A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. Lastly, the combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications.

  17. Development of multifunctional shape memory polymer foams

    NASA Astrophysics Data System (ADS)

    Song, Janice J.; Srivastava, Ijya; Naguib, Hani E.

    2015-05-01

    Shape memory polymers (SMP) are a class of stimuli-responsive materials which are able to respond to external stimulus such as temperature and deformation by changing their shape, and return to their original shape upon reversal or removal of the external stimulus. Although SMP materials have been studied extensively and have been used in a wide range of applications such as medicine, aerospace, and robotics, only few studies have looked at the potential of designing multifunctional SMP foams and blends. In this study, we investigate the feasibility of a design of SMP foam materials and blends. The actuator construct will contain a core SMP epoxy and blend of polylactic acid and polyurethane. The effects of the processing parameters of shape memory polymer (SMP) foams on the shape memory effect (SME) were investigated. The solid state foaming technique was employed to obtain the desired foamed cellular structure. One particular point of interest is to understand how the processing parameters affect the SMP and its glass transition temperature (Tg). By correctly tailoring these parameters it is possible to modify the SMP to have an improved shape memory effect SME.

  18. Damping of High-temperature Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.

    2008-01-01

    Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf

  19. Design principle of actuators based on ferromagnetic shape memory alloy

    NASA Astrophysics Data System (ADS)

    Liang, Yuanchang

    2002-09-01

    Recently, attention has been paid to shape memory alloys with ferromagnetic properties, called ferromagnetic shape memory alloys (FSMAs). This is because the alloys show large and recoverable deformation, i.e. superelasticity and shape memory effect, due to the martensitic transformation. Moreover, the transformation is possibly controlled by an applied magnetic field and the response can be fast. Therefore, FSMAs have been considered as a strong candidate for the fast responsive actuator material. In the present study, NiMnGa and Fe-Pd FSMAs are mainly used. NiMnGa alloys exhibit good shape memory effect with ferromagnetic properties. However, both experimental and analytical results show the magnetic field effect (up to 8 x 105A/m) on the phase transformation of NiMnGa is very small. No martensite structure change can be detected by applying a magnetic field, while the force induced by magnetic field gradient can easily be obtained on the alloys. This force easily induces the martensitic transformation (i.e. decrease of Young's modulus) which leads to large deformation. This process is called "hybrid mechanism" in the present study. The main disadvantage NiMnGa is its brittleness, hence, it is not suitable to be used as an actuator material. On the other hand, shape memory effect and superelasticity of polycrystalline Fe-Pd alloys have been confirmed. The martensite plate has been found consisting of very fine structures. The Young's modulus of the Fe-Pd alloys depends on temperature and has a rapid decline around the transformation temperature. Furthermore, a three dimensional (stress-temperature-magnetic field) phase diagram is constructed to clarify the possible driving mechanisms. Although the results of the present study show that the direct magnetic field effect on the phase transformation and martensite variant change is also very small, the "hybrid mechanism" is still very significant due to the large magnetization of the alloys. A model of stress

  20. Effect of Temperature on the Deformation Behavior of B2 Austenite in a Polycrystalline Ni49.9Ti50.1 (at.Percent) Shape Memory Alloy

    NASA Technical Reports Server (NTRS)

    Garg, A.; Benafan, O.; Noebe, R. D.; Padula, S. A., II; Clausen, B.; Vogel, S.; Vaidyanathan, R.

    2013-01-01

    Superelasticity in austenitic B2-NiTi is of great technical interest and has been studied in the past by several researchers [1]. However, investigation of temperature dependent deformation in B2-NiTi is equally important since competing mechanisms of stress-induced martensite (SIM), retained martensite, plastic and deformation twinning can lead to unusual mechanical behaviors. Identification of the role of various mechanisms contributing to the overall deformation response of B2-NiTi is imperative to understanding and maturing SMA-enabled technologies. Thus, the objective of this work was to study the deformation of polycrystalline Ni49.9Ti50.1 (at. %) above A(sub f) (105 C) in the B2 state at temperatures between 165-440 C, and generate a B2 deformation map showing active deformation mechanisms in different temperature-stress regimes.

  1. Structural and magnetic investigations in the vicinity of first-order transformations in Ni-Mn-Ga-Co ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Satish Kumar, A.; Ramudu, M.; Seshubai, V.

    2012-12-01

    Among the series of alloys derived from Ni50Mn29Ga21 on selective substitution of Co for Ni and Mn, two alloys Ni49.8Mn27.2Ga21.2Co1.8 and Ni46.9Mn28.8Ga21Co3.3 referred to as CoMn-1.8 and CoNi-3.3, respectively, are found to exhibit an additional first-order transformation below their martensitic transformation temperatures. Systematic studies on temperature and field dependence of magnetic properties of these alloys are carried out, through the transformations, to understand their origin. An examination of these results in conjunction with those from structural investigations reveals that the transformation in the CoMn-1.8 alloy is an intermartensitic transformation and has a structural origin, while that in the CoNi-3.3 alloy is not of the structural origin and is attributed to local spin inversion of Co moments, which is of the magnetic origin.

  2. Three-Dimensional Cellular Structures Enhanced By Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Nathal, Michael V.; Krause, David L.; Wilmoth, Nathan G.; Bednarcyk, Brett A.; Baker, Eric H.

    2014-01-01

    This research effort explored lightweight structural concepts married with advanced smart materials to achieve a wide variety of benefits in airframe and engine components. Lattice block structures were cast from an aerospace structural titanium alloy Ti-6Al-4V and a NiTi shape memory alloy (SMA), and preliminary properties have been measured. A finite element-based modeling approach that can rapidly and accurately capture the deformation response of lattice architectures was developed. The Ti-6-4 and SMA material behavior was calibrated via experimental tests of ligaments machined from the lattice. Benchmark testing of complete lattice structures verified the main aspects of the model as well as demonstrated the advantages of the lattice structure. Shape memory behavior of a sample machined from a lattice block was also demonstrated.

  3. Magnetic and magneto-transport studies of substrate effect on the martensitic transformation in a NiMnIn shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrei; Kirianov, Eugene; Zlenko, Albina; Quetz, Abdiel; Aryal, Anil; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad; Al-Aqtash, Nabil; Sabirianov, Renat

    2016-05-01

    The effect of substrates on the magnetic and transport properties of Ni2Mn1.5In0.5 ultra-thin films were studied theoretically and experimentally. High quality 8-nm films were grown by laser-assisted molecular beam epitaxy deposition. Magneto-transport measurements revealed that the films undergo electronic structure transformation similar to those of bulk materials at the martensitic transformation. The temperature of the transformation depends strongly on lattice parameters of the substrate. To explain this behavior, we performed DFT calculations on the system and found that different substrates change the relative stability of the ferromagnetic (FM) austenite and ferrimagnetic (FiM) martensite states. We conclude that the energy difference between the FM austenite and FiM martensite states in Ni2Mn1.5In0.5 films grown on MgO (001) substrates is ΔE = 0.20 eV per NiMnIn f.u, somewhat lower compared to ΔE = 0.24 eV in the bulk material with the same lattice parameters. When the lattice parameters of Ni2Mn1.5In0.5 film have values close to those of the MgO substrate, the energy difference becomes ΔE = 0.08 eV per NiMnIn f.u. These results suggest the possibility to control the martensitic transition in thin films through substrate engineering.

  4. Shape Memory Polymer Therapeutic Devices for Stroke

    SciTech Connect

    Wilson, T S; Small IV, W; Benett, W J; Bearinger, J P; Maitland, D J

    2005-10-11

    Shape memory polymers (SMPs) are attracting a great deal of interest in the scientific community for their use in applications ranging from light weight structures in space to micro-actuators in MEMS devices. These relatively new materials can be formed into a primary shape, reformed into a stable secondary shape, and then controllably actuated to recover their primary shape. The first part of this presentation will be a brief review of the types of polymeric structures which give rise to shape memory behavior in the context of new shape memory polymers with highly regular network structures recently developed at LLNL for biomedical devices. These new urethane SMPs have improved optical and physical properties relative to commercial SMPs, including improved clarity, high actuation force, and sharper actuation transition. In the second part of the presentation we discuss the development of SMP based devices for mechanically removing neurovascular occlusions which result in ischemic stroke. These devices are delivered to the site of the occlusion in compressed form, are pushed through the occlusion, actuated (usually optically) to take on an expanded conformation, and then used to dislodge and grip the thrombus while it is withdrawn through the catheter.

  5. Influence of boron on the microstructural and mechanical properties of Ni53.5Mn26.0Ga20.5 shape memory alloy

    NASA Astrophysics Data System (ADS)

    Ramudu, M.; Kumar, A. Satish; Seshubai, V.; Rajasekharan, T.

    2014-04-01

    Boron addition to Ni53.5Mn26.0Ga20.5 alloy is found to modify the microstructure and mechanical properties substantially. Studies on (Ni53.5Mn26.0Ga20.5)Bx alloys reveal that boron addition causes grain refinement which led to an increase in compressive strength in x=0.5 alloy which also retained multimode twinning. Substantial second phase segregation rich in Ni was seen at grain boundaries, the extent of which increased with boron content. This led to a compositional shift in the matrix phase which resulted in a reduction in the martensitic transformation temperature and which in turn caused an easy deformation at low stresses and suppression of multimode twinning in x=1.0 alloy.

  6. The impact of substrate stimulated functional interface on magnetic and magneto-transport signature of martensitic transformation in NiMnIn shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sabirianov, R.; Sokolov, A.; Kirianov, E.; Zlenko, A.; Quetz, A.; Aryal, A.; Pandey, S.; Dubenko, I.; Ali, N.; Stadler, S.; Al-Aqtash, N.

    We study the impact of the substrate on the martensite transformation of Ni-Mn-In thin films by Hall resistance measurements and discuss it using density functional theory calculations. Similarly to the bulk systems, thin films grown on MgO exhibit the martensitic transformation accompanied by large magnetoresistance and a sign reversal of the ordinary as well as anomalous Hall coefficient. Martensite transition temperature of films grown on (100) surface of MgO is near 170K, while the films grown on (111) surface of MgO show the change of Hall coefficient at 110K. The calculated total energy difference between FM austenite and FiM martensite states in Ni2Mn1.5In0.5 film on MgO (001) substrate (with Ni/MgO interface) is 0.20eV per NiMnIn f.u, compared to 0.24eV in the bulk at the same equilibrium lattice parameters, i.e. when film is ``unstrained''. When lattice parameters of Ni2Mn1.5In0.5/MgO are of those of MgO substrate, i.e. when the film experiences strong bi-axial tensile strain Δa / a = 2.4%, the energy difference is 0.08eV per NiMnIn f.u. These results clearly indicate strong interplay between lattice strain/stress and the relative stability martensite and austenite phase The work is supported by NSF.

  7. Effect of Ti addition on the structural, mechanical and damping properties of magnetron sputtered Ni-Mn-Sn ferromagnetic shape memory alloy thin films

    NASA Astrophysics Data System (ADS)

    Choudhary, Nitin; Kaur, Davinder

    2012-12-01

    Titanium (Ti) co-sputtered Ni50.4Mn34.7Sn14.9 films deposited by magnetron sputtering onto Si(1 0 0) substrates at 823 K were investigated. X-ray diffraction profiles revealed the formation of highly (2 2 0)-oriented Ni-Mn-Sn-Ti austenite phase with significant decrease in grain size with increasing Ti power. Hardness (H), elastic modulus (Er), damping (tan δ), figure of merit (FOM) and coefficient of restitution (e) of the films were evaluated using nanoindentation tests. A significant improvement in the hardness (10.5 GPa) and toughness H^3/E_r^2 (0.040) was observed in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite film as compared with pure Ni50.4Mn34.7Sn14.9films. An impact model, which incorporates material behaviour, is presented that predicts the experimentally observed material quantities, including energy dissipation metrics such as the coefficient of restitution e with high accuracy. The highest damping factor (tan δ = 0.061), high FOM (0.79) with low coefficient of restitution (e = 0.28) quantifies excellent energy dissipation capacity in the Ni51.0Mn28.2Sn11.0Ti9.7 nanocomposite. Temperature dependence of magnetization (M-T) curves showed an increase in martensitic transformation temperatures with increasing Ti content. The Ni-Mn-Sn-Ti composite films exhibit ferromagnetic behaviour at room temperature.

  8. Fatigue Crack Growth Fundamentals in Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Wu, Y.; Ojha, A.; Patriarca, L.; Sehitoglu, H.

    2015-03-01

    In this study, based on a regression of the crack tip displacements, the stress intensity range in fatigue is quantitatively determined for the shape memory alloy Ni2FeGa. The results are compared to the calculated stress intensity ranges with a micro-mechanical analysis accounting for the transformation-induced tractions. The effective stress intensity ranges obtained with both methods are in close agreement. Also, the fatigue crack closure levels were measured as 30 % of the maximum load using virtual extensometers along the crack flanks. This result is also in close agreement with the regression and micro-mechanical modeling findings. The current work pointed to the importance of elastic moduli changes and the residual transformation strains playing a role in the fatigue crack growth behavior. Additional simulations are conducted for two other important shape memory alloys, NiTi and CuZnAl, where the reductions in stress intensity range were found to be lower than Ni2FeGa.

  9. Thermomechanical indentation of shape memory polymers.

    SciTech Connect

    Long, Kevin N.; Nguyen, Thao D.; Castro, Francisco; Qi, H. Jerry; Dunn, Martin L.; Shandas, Robin

    2007-04-01

    Shape memory polymers (SMPs) are receiving increasing attention because of their ability to store a temporary shape for a prescribed period of time, and then when subjected to an environmental stimulus, recover an original programmed shape. They are attractive candidates for a wide range of applications in microsystems, biomedical devices, deployable aerospace structures, and morphing structures. In this paper we investigate the thermomechanical behavior of shape memory polymers due to instrumented indentation, a loading/deformation scenario that represents complex multiaxial deformation. The SMP sample is indented using a spherical indenter at a temperature T{sub 1} (>T{sub g}). The temperature is then lowered to T{sub 2} (Shape memory is then activated by increasing the temperature to T{sub 1} (>T{sub g}) during free recovery the indentation impression disappears and the surface of the SMP recovers to its original profile. A recently-developed three-dimensional finite deformation constitutive model for the thermomechanical behavior of SMPs is then used with the finite element method to simulate this process. Measurement and simulation results are compared for cases of free and constrained recovery and good agreement is obtained, suggesting the appropriateness of the simulation approach for complex multiaxial loading/deformations that are likely to occur in applications.

  10. Shape-Memory PVDF Exhibiting Switchable Piezoelectricity.

    PubMed

    Hoeher, Robin; Raidt, Thomas; Novak, Nikola; Katzenberg, Frank; Tiller, Joerg C

    2015-12-01

    In this study, a material is designed which combines the properties of shape-memory and electroactive polymers. This is achieved by covalent cross-linking of polyvinylidene fluoride. The resulting polymer network exhibits excellent shape-memory properties with a storable strain of 200%, and fixity as well as recovery values of 100%. Programming upon rolling induces the transformation from the nonelectroactive α-phase to the piezoelectric β-phase. The highest β-phase content is found to be 83% for a programming strain of 200% affording a d33 value of -30 pm V(-1). This is in good accordance with literature known values for piezoelectric properties. Thermal triggering this material does not only result in a shape change but also renders the material nonelectroactive. PMID:26332996

  11. Effect of Sn and Sb element on the magnetism and functional properties of Ni-Mn-Al ferromagnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Agarwal, Sandeep; Mukhopadhyay, P. K.

    2016-03-01

    We have replaced Al partially with Sb and Sn in Ni-Mn-Al systems and investigated its effect on magnetism, entropy change and magnetoresistance in the vicinity of martensitic transformation. Both the samples had identical lattice parameters and Mn contents, which are mostly responsible for magnetism in these systems, yet there were marked changes in magnetic and functional properties of these systems. It was found that the magnetization increased in Sb alloy, while entropy change and magnetoresistance decreased as compared to Sn alloy. These changes are attributed to the change in antiferromagnetic interaction as a result of variation in the Ni d-Mn d hybridization arising due to presence of different sp elements.

  12. Applications of the directional solidification in magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Huang, Y. J.; Liu, J.; Hu, Q. D.; Liu, Q. H.; Karaman, I.; Li, J. G.

    2016-03-01

    A zone melting liquid metal cooling (ZMLMC) method of directional solidification was applied to prepare highly-oriented Ni52Fe17Ga27Co4 magnetic shape memory alloys. At high temperature gradient and low growth velocity, the well-developed preferred orientation for coarse columnar crystals was obtained. Such a structure leads to a large complete pseudoelastic recovery of 5% at 348 K. Moreover, the pseudoelastic behaviours and the kinetics of the martensitic transformation (MT) are significantly affected by the intersection angle between the loading direction and the grain boundaries.

  13. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    SciTech Connect

    Meisner, L. L. Meisner, S. N.; Markov, A. B. Ozur, G. E. Yakovlev, E. V.; Rotshtein, V. P.; Gudimova, E. Yu.

    2015-10-27

    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density E{sub s} was varied from 1 to 5 J/cm{sup 2}, pulse duration was 2.5–3.0 μs, the number of pulses n = 1–128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  14. Formation of microcraters and hierarchically-organized surface structures in TiNi shape memory alloy irradiated with a low-energy, high-current electron beam

    NASA Astrophysics Data System (ADS)

    Meisner, L. L.; Markov, A. B.; Rotshtein, V. P.; Ozur, G. E.; Meisner, S. N.; Yakovlev, E. V.; Gudimova, E. Yu.

    2015-10-01

    The regularities of surface cratering in TiNi alloy irradiated with a low-energy, high-current electron beam (LEHCEB) in dependence on energy density and number of pulses are studied. LEHCEB processing of TiNi samples was carried out using RITM-SP facility. Energy density Es was varied from 1 to 5 J/cm2, pulse duration was 2.5-3.0 μs, the number of pulses n = 1-128. The dominant role of non-metallic inclusions [mainly, TiC(O)] in the nucleation of microcraters was found. It was revealed that at small number of pulses (n = 2), an increase in energy density leads both to increasing average diameter and density of microcraters. An increase in the number of pulses leads to a monotonic decrease in density of microcraters, and, therefore, that of the proportion of the area occupied by microcraters, as well as a decrease in the surface roughness. The multiple LEHCEB melting of TiNi alloy in crater-free modes enables to form quasi-periodical, hierarchically-organized microsized surface structures.

  15. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  16. Characterization of a New Phase and Its Effect on the Work Characteristics of a Near-Stoichiometric Ni30Pt20Ti50 High-Temperature Shape Memory Alloy (HTSMA)

    NASA Technical Reports Server (NTRS)

    Garg, A.; Gaydosh, D.; Noebe, R.D.; Padula II, Santo; Bigelow, G.S.; Kaufman, M.; Kovarik, L.; Mills, M.J.; Diercks, D.; McMurray, S.

    2008-01-01

    A new phase observed in a nominal Ni30Pt20Ti50 (at.%) high temperature shape memory alloy has been characterized using transmission electron microscopy and 3-D atom probe tomography. This phase forms homogeneously in the B2 austenite matrix by a nucleation and growth mechanism and results in a concomitant increase in the martensitic transformation temperature of the base alloy. Although the structure of this phase typically contains a high density of faults making characterization difficult, it appears to be trigonal (-3m point group) with a(sub o) approx. 1.28 nm and c(sub o) approx. 1.4 nm. Precipitation of this phase increases the microhardness of the alloy substantially over that of the solution treated and quenched single-phase material. The effect of precipitation strengthening on the work characteristics of the alloy has been explored through load-biased strain-temperature testing in the solution-treated condition and after aging at 500 C for times ranging from 1 to 256 hours. Work output was found to increase in the aged alloy as a result of an increase in transformation strain, but was not very sensitive to aging time. The amount of permanent deformation that occurred during thermal cycling under load was small but increased with increasing aging time and stress. Nevertheless, the dimensional stability of the alloy at short aging times (1-4 hours) was still very good making it a potentially useful material for high-temperature actuator applications.

  17. Precipitate Phases in Several High Temperature Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Fan

    Initiated by the aerospace industry, there has been a great interest to develop high temperature shape memory alloys (HTSMAs) for actuator type of application at elevated temperatures. Several NiTi based ternary systems have been shown to be potential candidates for HTSMAs and this work focuses on one or more alloys in the TiNiPt, TiNiPd, NiTiHf, NiPdTiHf systems. The sheer scope of alloys of varying compositions across all four systems suggests that the questions raised and addressed in this work are just the tip of the iceberg. This work focuses on materials characterization and aims to investigate microstructural evolution of these alloys as a function of heat treatment. The information gained through the study can serve as guidance for future alloy processing. The emphasis of this work is to describe novel precipitate phases that are formed under aging in the ternary systems and one quaternary system. Employing conventional transmission electron microscopy (TEM), high resolution high angle annular dark field (HAADF) scanning transmission electron microscopy (STEM), 3D atom probe tomography (3D APT), as well as ab initio calculations, the complete description of the unit cell for the new precipitates was determined. The methodology is summarized in the appendix to help elucidate some basics of such a process.

  18. Shakedown response of conditioned shape memory alloy wire

    NASA Astrophysics Data System (ADS)

    Churchill, Christopher B.; Shaw, John A.

    2008-03-01

    A series of experiments is presented examining the thermo-electro-mechanical response of commercially-available, conditioned, shape memory alloy (SMA) wires (Flexinol, from Dynalloy, Corp.) during cyclic thermomechanical loading. A specialized experimental setup enables temperature control via a thermoelectric/heatsink in thermal contact with the wire specimen during various modes of testing. It allows simultaneous measurement of elongation, load, strain and resistivity in a selected gage length. It also allows full-field optical and infrared imaging to be performed during testing. A moderately high transition temperature NiTi-based shape memory wire (90C Flexinol) is characterized first by differential scanning calorimetry and a series of isothermal experiments over a range of temperatures. Subsequent experiments examine the shakedown behavior over a range of dead loading temperature cycles. Results show a significant two-way shape memory effect, suggesting that both residual stresses and locked-in oriented Martensite are considerable in this commercial alloy. Repeatable behavior (little shakedown) is confirmed at relatively low stress levels, but significant evolution in the response (shakedown behavior) exists at higher stress levels during the first several temperature cycles.

  19. Precipitation-Strengthened, High-Temperature, High-Force Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Noebe, Ronald D.; Draper, Susan L.; Nathal, Michael V.; Crombie, Edwin A.

    2008-01-01

    Shape memory alloys (SMAs) are an enabling component in the development of compact, lightweight, durable, high-force actuation systems particularly for use where hydraulics or electrical motors are not practical. However, commercial shape memory alloys based on NiTi are only suitable for applications near room temperature, due to their relatively low transformation temperatures, while many potential applications require higher temperature capability. Consequently, a family of (Ni,Pt)(sub 1-x)Ti(sub x) shape memory alloys with Ti concentrations ranging from about 15 to 25 at.% have been developed for applications in which there are requirements for SMA actuators to exert high forces at operating temperatures higher than those of conventional binary NiTi SMAs. These alloys can be heat treated in the range of 500 C to produce a series of fine precipitate phases that increase the strength of alloy while maintaining a high transformation temperature, even in Ti-lean compositions.

  20. Electromagnetic heating of a shape memory alloy translator

    NASA Astrophysics Data System (ADS)

    Giroux, E.-A.; Maglione, M.; Gueldry, A.; Mantoux, J.-L.

    1996-03-01

    The active part of a linear translator is a shape memory alloy (SMA) made of nickel and titanium (NiTi) wire which is to be thermally cycled. We have achieved heating using electromagnetic radiation with a magnetic sheath and low-frequency waves at 8 kHz and without magnetic sheath and radio frequency waves at 28 MHz. The heating is equivalent for these two arrangements. In vitro experiments have been confirmed by computer simulations of the radiation distribution within the implant. We thus show that electromagnetic radiation could specifically heat a NiTi wire inside a stainless steel tube without heating the tube. An application could be a femoral prosthesis for the lengthening of the bone.

  1. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications

    PubMed Central

    Pan, Qiang; Cho, Chongdu

    2007-01-01

    Some shape memory alloys like NiTi show noticeable high damping property in pseudoelastic range. Due to its unique characteristics, a NiTi alloy is commonly used for passive damping applications, in which the energy may be dissipated by the conversion from mechanical to thermal energy. This study presents a shape memory alloy based micro-damper, which exploits the pseudoelasticity of NiTi wires for energy dissipation. The mechanical model and functional principle of the micro-damper are explained in detail. Moreover, the mechanical behavior of NiTi wires subjected to various temperatures, strain rates and strain amplitudes is observed. Resulting from those experimental results, the damping properties of the micro-damper involving secant stiffness, energy dissipation and loss factor are analyzed. The result indicates the proposed NiTi based micro-damper exhibits good energy dissipation ability, compared with conventional materials damper.

  2. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O.

    2016-05-01

    The complexity of Ni-Mn-Ga single crystal originates from the interplay between ferromagnetic domain structure and ferroelastic twinned microstructure. Magnetic domain structure in the vicinity of single twin boundary was studied using magneto-optical indicator film and magnetic force microscopy technique. The single twin boundary of Type I was formed mechanically and an initial magnetization state in both variants were restored by local application of magnetic field (≈40 kA/m). The differently oriented variants exhibited either stripe or labyrinth magnetic domain pattern in agreement with the uniaxial magnetocrystalline anisotropy of the martensite. The twin boundary was then moved by compressive or tensile stress. The passage of the boundary resulted in the formation of granular or rake domains, respectively. Additionally, the specific magnetic domains pattern projected by twin boundary gradually vanished during twin boundary motion.

  3. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Successive phase transformation in ferromagnetic shape memory alloy Co37Ni34Al29 melt-spun ribbons

    NASA Astrophysics Data System (ADS)

    Meng, Fan-Bin; Guo, Hong-Jun; Liu, Guo-Dong; Liu, He-Yan; Dai, Xue-Fang; Luo, Hong-Zhi; Li, Yang-Xian; Chen, Jing-Lan; Wu, Guang-Heng

    2009-07-01

    The martensitic transformation in Co37Ni34Al29 ribbon is characterized in detail by means of in-situ thermostatic x-ray diffraction and magnetic measurements. The results show a structural transition from the body-centred cubic to martensite with a tetragonal structure during cooling. Comparison between the results of the diffraction intensity with the magnetic susceptibility measurements indicates that the martensitic transformation takes place in several different steps during cooling from 273 to 163 K. During heating from 313 to 873 K, the peak width becomes very wide and the intensity turns very low. The γ-phase (face-centred cubic structure) emerges and increases gradually with temperature increasing from 873 to 1073 K.

  4. Microstructure and martensitic transformation in the Fe-Mn-Al-Ni shape memory alloy with B2-type coherent fine particles

    NASA Astrophysics Data System (ADS)

    Omori, T.; Nagasako, M.; Okano, M.; Endo, K.; Kainuma, R.

    2012-12-01

    Microstructure and martensitic transformation yielding a magnetic change were investigated for Fe43.5Mn34Al15Ni7.5 alloy with B2-type fine precipitates. Thermoelastic martensitic transformation from the ferromagnetic parent phase to the weak magnetic martensite with a nano-twinned fcc structure was confirmed. High-angle annular dark-field scanning transmission electron microscopic observation revealed that a β particle of about 10 nm maintains coherency with the matrix martensite phase, even though distorted due to the martensitic transformation. The martensitic transformation temperatures decreased about 75 K by application of a magnetic field of 70 kOe and magnetic field-induced reverse martensitic transformation was confirmed.

  5. High-Temperature Shape Memory Polymers

    NASA Technical Reports Server (NTRS)

    Yoonessi, Mitra; Weiss, Robert A.

    2012-01-01

    physical conformation changes when exposed to an external stimulus, such as a change in temperature. Such materials have a permanent shape, but can be reshaped above a critical temperature and fixed into a temporary shape when cooled under stress to below the critical temperature. When reheated above the critical temperature (Tc, also sometimes called the triggering or switching temperature), the materials revert to the permanent shape. The current innovation involves a chemically treated (sulfonated, carboxylated, phosphonated, or other polar function group), high-temperature, semicrystalline thermoplastic poly(ether ether ketone) (Tg .140 C, Tm = 340 C) mix containing organometallic complexes (Zn++, Li+, or other metal, ammonium, or phosphonium salts), or high-temperature ionic liquids (e.g. hexafluorosilicate salt with 1-propyl-3- methyl imidazolium, Tm = 210 C) to form a network where dipolar or ionic interactions between the polymer and the low-molecular-weight or inorganic compound forms a complex that provides a physical crosslink. Hereafter, these compounds will be referred to as "additives". The polymer is semicrystalline, and the high-melt-point crystals provide a temporary crosslink that acts as a permanent crosslink just so long as the melting temperature is not exceeded. In this example case, the melting point is .340 C, and the shape memory critical temperature is between 150 and 250 C. PEEK is an engineering thermoplastic with a high Young fs modulus, nominally 3.6 GPa. An important aspect of the invention is the control of the PEEK functionalization (in this example, the sulfonation degree), and the thermal properties (i.e. melting point) of the additive, which determines the switching temperature. Because the compound is thermoplastic, it can be formed into the "permanent" shape by conventional plastics processing operations. In addition, the compound may be covalently cross - linked after forming the permanent shape by S-PEEK by applying ionizing

  6. Crack initiation and propagation in 50.9 at. pct Ni-Ti pseudoelastic shape-memory wires in bending-rotation fatigue

    NASA Astrophysics Data System (ADS)

    Sawaguchi, Tak Ahiro; Kausträter, Gregor; Yawny, Alejandro; Wagner, Martin; Eggeler, Gunther

    2003-12-01

    The structural fatigue of pseudoelastic Ni-Ti wires (50.9 at. pct Ni) was investigated using bending-rotation fatigue (BRF) tests, where a bent and otherwise unconstrained wire was forced to rotate at different rotational speeds. The number of cycles to failure ( N f ) was measured for different bending radii and wire thicknesses (1.0, 1.2, and 1.4 mm). The wires consisted of an alloy with a 50-nm grain size, no precipitates, and some TiC inclusions. In BRF tests, the surface of the wire is subjected to tension-compression cycles, and fatigue lives can be related to the maximum tension and compression strain amplitudes ( ɛ a ) in the wire surface. The resulting ɛ a - N f curves can be subdivided into three regimes. At ɛ a > 1 pct rupture occurs early (low N f ) and the fatigue-rupture characteristics were strongly dependent on ɛ a and the rotational speed (regime 1). For 0.75 pct < ɛ a < 1 pct, fatigue lives strongly increase and are characterized by a significant statistical scatter (regime 2). For ɛ a < 0.75 pct, no fatigue rupture occurs up to cycle numbers of 106 (regime 3). Using scanning electron microscopy (SEM), it was shown that surface cracks formed in regions with local stress raisers (such as inclusions and/or scratches). The growth of surface cracks during fatigue loading produced striations on the rupture surface; during final rupture, ductile voids form. The microstructural details of fatigue-damage accumulation during BRF testing are described and discussed.

  7. Guide wire extension for shape memory polymer occlusion removal devices

    DOEpatents

    Maitland, Duncan J.; Small, IV, Ward; Hartman, Jonathan

    2009-11-03

    A flexible extension for a shape memory polymer occlusion removal device. A shape memory polymer instrument is transported through a vessel via a catheter. A flexible elongated unit is operatively connected to the distal end of the shape memory polymer instrument to enhance maneuverability through tortuous paths en route to the occlusion.

  8. Aging effects of epoxy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Dasharathi, Kannan; Shaw, John A.

    2013-04-01

    In this paper, experimental results are reported to study the influence of high-temperature aging on the thermo-mechanical behavior of a commercially-available, thermo-responsive shape memory polymer (SMP), Veri ex-E™ (glass transition temperature, Tg = 90-105 °C). To achieve a shape memory effect in high Tg SMPs such as this, high temperature cycles are required that can result in macromolecular scission and/or crosslinking, which we term thermo-mechanical aging (or chemo-rheological degradation). This process results in mechanical property changes and possible permanent set of the material that can limit the useful life of SMPs in practice. We compare experimental results of shape memory recovery with and without aging. Similar to the approach originated by Tobolsky in the 1950's, a combination of uniaxial constant stress and intermittent stretch experiments are also used in high temperature creep-recovery experiments to deduce the kinetics of scission of the original macromolecular network and the generation of newly formed networks having different reference configurations. The macroscopic effects of thermo-mechanical aging, in terms of the evolution of residual strains and change in elastic response, are quantified.

  9. Relationship among grain size, annealing twins and shape memory effect in Fe–Mn–Si based shape memory alloys

    NASA Astrophysics Data System (ADS)

    Wang, Gaixia; Peng, Huabei; Zhang, Chengyan; Wang, Shanling; Wen, Yuhua

    2016-07-01

    In order to clarify the relationship among grain size, annealing twins and the shape memory effect in Fe–Mn–Si based shape memory alloys, the Fe–21.63Mn–5.60Si–9.32Cr–5.38Ni (weight %) alloy with a grain size ranging from 48.9 μm–253.6 μm was obtained by adjusting the heating temperature or heating time after 20% cold-rolling. The densities of grain boundaries and annealing twins increase with a decrease in grain size, whereas the volume fraction and width of stress-induced ε martensite after 9% deformation at Ms + 10 K decrease. This result indicates that grain refinement raises the constraint effects of grain boundaries and annealing twins upon martensitic transformation. In this case, the ability to suppress the plastic deformation and facilitate the stress-induced ε martensite transformation deteriorates after grain refinement owing to the enhancement of the constraint effects. It is demonstrated by the result that the difference at Ms + 10 K between the critical stress for plastic yielding and that for inducing martensitic transformation is smaller for the specimen with a grain size of 48.9 μm than for the specimen with a grain size of 253.6 μm. Therefore, the shape memory effect declined by decreasing the grain size.

  10. Fast-Response-Time Shape-Memory-Effect Foam Actuators

    NASA Technical Reports Server (NTRS)

    Jardine, Peter

    2010-01-01

    Bulk shape memory alloys, such as Nitinol or CuAlZn, display strong recovery forces undergoing a phase transformation after being strained in their martensitic state. These recovery forces are used for actuation. As the phase transformation is thermally driven, the response time of the actuation can be slow, as the heat must be passively inserted or removed from the alloy. Shape memory alloy TiNi torque tubes have been investigated for at least 20 years and have demonstrated high actuation forces [3,000 in.-lb (approximately equal to 340 N-m) torques] and are very lightweight. However, they are not easy to attach to existing structures. Adhesives will fail in shear at low-torque loads and the TiNi is not weldable, so that mechanical crimp fits have been generally used. These are not reliable, especially in vibratory environments. The TiNi is also slow to heat up, as it can only be heated indirectly using heater and cooling must be done passively. This has restricted their use to on-off actuators where cycle times of approximately one minute is acceptable. Self-propagating high-temperature synthesis (SHS) has been used in the past to make porous TiNi metal foams. Shape Change Technologies has been able to train SHS derived TiNi to exhibit the shape memory effect. As it is an open-celled material, fast response times were observed when the material was heated using hot and cold fluids. A methodology was developed to make the open-celled porous TiNi foams as a tube with integrated hexagonal ends, which then becomes a torsional actuator with fast response times. Under processing developed independently, researchers were able to verify torques of 84 in.-lb (approximately equal to 9.5 Nm) using an actuator weighing 1.3 oz (approximately equal to 37 g) with very fast (less than 1/16th of a second) initial response times when hot and cold fluids were used to facilitate heat transfer. Integrated structural connections were added as part of the net shape process, eliminating

  11. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part 2; Effect of Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This paper is the first report on the effect prior low temperature creep on the thermal cycling behavior of NiTi. The isothermal low temperature creep behavior of near-stoichiometric NiTi between 300 and 473 K was discussed in Part I. The effect of temperature cycling on its creep behavior is reported in the present paper (Part II). Temperature cycling tests were conducted between either 300 or 373 K and 473 K under a constant applied stress of either 250 or 350 MPa with hold times lasting at each temperature varying between 300 and 700 h. Each specimen was pre-crept either at 300 or at 473 K for several months under an identical applied stress as that used in the subsequent thermal cycling tests. Irrespective of the initial pre-crept microstructures, the specimens exhibited a considerable increase in strain with each thermal cycle so that the total strain continued to build-up to 15 to 20 percent after only 5 cycles. Creep strains were immeasurably small during the hold periods. It is demonstrated that the strains in the austenite and martensite are linearly correlated. Interestingly, the differential irrecoverable strain, in the material measured in either phase decreases with increasing number of cycles, similar to the well-known Manson-Coffin relation in low cycle fatigue. Both phases are shown to undergo strain hardening due to the development of residual stresses. Plots of true creep rate against absolute temperature showed distinct peaks and valleys during the cool-down and heat-up portions of the thermal cycles, respectively. Transformation temperatures determined from the creep data revealed that the austenitic start and finish temperatures were more sensitive to the pre-crept martensitic phase than to the pre-crept austenitic phase. The results are discussed in terms of a phenomenological model, where it is suggested that thermal cycling between the austenitic and martensitic phase temperatures or vice versa results in the deformation of the austenite and

  12. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys. Part III. Analysis of habit plane variant clusters by the geometrically nonlinear theory

    NASA Astrophysics Data System (ADS)

    Inamura, T.; Nishiura, T.; Kawano, H.; Hosoda, H.; Nishida, M.

    2012-06-01

    Competition between the invariant plane (IP) condition at the habit plane, the twin orientation relation (OR) and the kinematic compatibility (KC) at the junction plane (JP) of self-accommodated B19‧ martensite in Ti-Ni was investigated via the geometrically nonlinear theory to understand the habit plane variant (HPV) clusters presented in Parts I and II of this work. As the IP condition cannot be satisfied simultaneously with KC, an additional rotation Q is necessary to form compatible JPs for all HPV pairs. The rotation J necessary to form the exact twin OR between the major correspondence variants (CVs) in each HPV was also examined. The observed HPV cluster was not the cluster with the smallest Q but the one satisfying Q = J with a { ? 1}B19‧ type I twin at JP. Both Q and J are crucial to understanding the various HPV clusters in realistic transformations. Finally, a scheme for the ideal HPV cluster composed of six HPVs is also proposed.

  13. Self-accommodation of B19' martensite in Ti-Ni shape memory alloys - Part II. Characteristic interface structures between habit plane variants

    NASA Astrophysics Data System (ADS)

    Nishida, M.; Okunishi, E.; Nishiura, T.; Kawano, H.; Inamura, T.; S., Ii; Hara, T.

    2012-06-01

    Four characteristic interface microstructures between habit plane variants (HPVs) in the self-accommodation morphologies of B19‧ martensite in Ti-Ni alloys have been investigated by scanning transmission electron microscopy (STEM). The straight interface of a ? B19‧ type I twin is present at interface I. The relaxation of the transformation strain at interface II is achieved by a volume reduction of the minor correspondence variants (CVs) in the relevant habit plane variants (HPVs). The relaxation of the transformation strain at interface III is mainly due to the formation of a ? B19‧ type I twin between the two major CVs. Subsequently, local strain around the tips of the minor CVs perpendicular to the interface is released by the formation of micro-twins with the ⟨011⟩B19‧ type II and/or ? B19‧ type I relation. The major and minor CVs in each HPV are alternately connected through fine variants with the ? B19‧ type I twin relation parallel to interface IV. The results are compared with macroscopic observations and the predictions of PTMC analysis.

  14. Release mechanism utilizing shape memory polymer material

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    2000-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  15. Triple shape memory effect of star-shaped polyurethane.

    PubMed

    Yang, Xifeng; Wang, Lin; Wang, Wenxi; Chen, Hongmei; Yang, Guang; Zhou, Shaobing

    2014-05-14

    In this study, we synthesized one type of star-shaped polyurethane (SPU) with star-shaped poly(ε-caprolactone) (SPCL) containing different arm numbers as soft segment and 4,4'-diphenyl methane diisocyanate (MDI) as well as chain extender 1,4-butylene glycol (BDO) as hard segment. Proton nuclear magnetic resonance (1H-NMR) confirmed the chemical structure of the material. Differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA) results indicated that both the melting temperature (Tm) and transition temperature (Ttrans) of SPU decreased with the hard segment composition increase. X-ray diffraction (XRD) results demonstrated that the increase of the crystallinity of SPU following the raised arm numbers endowed a high shape fixity of six-arm star-shaped polyurethane (6S-PU) and a wide melting temperature range, which resulted in an excellent triple-shape memory effect of 6S-PU. The in vitro cytotoxicity assay evaluated with osteoblasts through Alamar blue assay demonstrates that this copolymer possessed good cytocompatibility. This material can be potentially used as a new smart material in the field of biomaterials. PMID:24617646

  16. Phenomenological Modeling of Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Buravalla, Vidyashankar; Khandelwal, Ashish

    2008-07-01

    Shape memory alloys exhibit two characteristic effects, viz., shape memory and superelasticity or pseudoelasticity, due to a reversible solid-solid transformation brought about by either temperature or stress or both. The two important aspects involved in modeling the macroscopic SMA behavior are the constitutive equation describing the stress-strain-temperature relationship and the evolution kinetics describing the phase transformation as a function of the driving forces. Phenomenological models for macroscopic behavior of SMAs are frequently used wherein the aforementioned aspects of SMA behavior are treated independently. Using empirical data, a phase diagram is constructed to describe evolution of martensitic phase fraction (ξ) as a function of stress and temperature. A constitutive equation is derived using the appropriate form of free energy. In this paper, salient aspects in phenomenological models are discussed and a robust model for SMA behavior is presented. Using a distance based memory parameter, rate based kinetics is provided along with a differential form of constitutive equation. Also, several critical issues in phenomenological modeling like prescribing consistent kinetics and catering to arbitrary thermomechanical loading are highlighted. Through numerical studies, it is shown that the proposed model provides consistent kinetics and caters to arbitrary thermomechanical loading.

  17. Design of energy absorbing materials and composite structures based on porous shape memory alloys (SE)

    NASA Astrophysics Data System (ADS)

    Zhao, Ying

    Recently, attention has been paid to porous shape memory alloys. This is because the alloys show large and recoverable deformation, i.e. superelasticity and shape memory effect. Due to their light weight and potential large deformations, porous shape memory alloys have been considered as excellent candidates for energy absorption materials. In the present study, porous NiTi alloy with several different porosities are processed by spark plasma sintering (SPS). The compression behavior of the porous NiTi is examined with an aim of using it for a possible high energy absorbing material. Two models for the macroscopic compression behavior of porous shape memory alloy (SMA) are presented in this work, where Eshelby's inhomogeneous inclusion method is used to predict the effective elastic and superelastic behavior of a porous SMA based on the assumption of stress-strain curve. The analytical results are compared with experimental data for porous NiTi with 13% porosity, resulting in a reasonably good agreement. Based on the study upon porous NiTi, an energy absorbing composite structure made of a concentric NiTi spring and a porous NiTi rod is presented in this PhD dissertation. Both NiTi spring and porous NiTi rod are of superelastic grade. Ductile porous NiTi cylindrical specimens are fabricated by spark plasma sintering. The composite structure exhibits not only high reversible force-displacement behavior for small to intermediate loading but also high energy absorbing property when subjected to large compressive loads. A model for the compressive force-displacement curve of the composite structure is presented. The predicted curve is compared to the experimental data, resulting in a reasonably good agreement.

  18. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  19. Advances in shape-memory polymer actuation

    NASA Astrophysics Data System (ADS)

    Leng, Jinsong; Liu, Yanju; Lan, Xin

    2009-03-01

    Shape memory polymer (SMP) is a promising smart material, which is able to perform a large deformation upon applying an external stimulus, such as heat, light and moisture, etc. In recent years, many investigations have been advanced in thermo-responsive SMP actuation, and several novel actuations have been applied in SMP. In this paper, the mechanism and demonstration of three types of SMP actuations (infrared laser, physical swelling effect and electricity) are presented. These novel actuation approaches may help SMP to fully reach its potential application. Firstly, for the infrared laser-activated SMP, it is concerned about the drive of SMP by infrared light. The infrared laser, transmitted through the optical fiber embedded in the SMP matrix, was chosen to drive the SMP. The working frequency of infrared laser was installed in 3-4μm. Moreover, this paper presents a study on the effects of solution on the glass transition temperature (Tg). It shows that the hydrogen bonding of SMP was aroused by the absorbed solution that significantly reduces transition temperature of polymer. In this way, the shape memory effect (SME) can undergo solution-driven shape recovery. Finally, the actuation of two types of electro-active SMP composites filled with electrically conductive powders (carbon black, nickel powers) have been carried out, and the SMP composite can be driven by applying a relatively low voltage.

  20. Strategies for Self-Repairing Shape Memory Alloy Actuators

    NASA Astrophysics Data System (ADS)

    Langbein, Sven; Czechowicz, Alexander Jaroslaw; Meier, Horst

    2011-07-01

    Shape memory alloys (SMAs) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape by the means of thermal activation, they are suitable as actuators for microsystems and, within certain limitations, macroscopic systems. A commonly used shape memory actuator type is an alloy of nickel and titanium (NiTi), which starts to transform its inner phase from martensitic to austenitic structure at a certain austenite start temperature. Retransformation starts at martensitic start temperature after running a hysteresis cycle. Most SMA-systems use straight wire actuators because of their simple integration, the occurring cost reduction and the resulting miniaturization. Unfortunately, SMA-actuators are only seldom used by constructors and system developers. This is due to occurring functional fatigue effects which depend on boundary conditions like system loads, strains, and number of cycles. The actuating stroke does not reduce essentially during the first thousand cycles. Striking is the elongation of the wire while maintaining the stroke during cycling (walking). In order to create a system which adjusts and repairs itself, different concepts to solve this problem are presented. They vary from smart control methods to constructive solutions with calibration systems. The systems are analyzed due to their effective, life cycle, and system costs showing outstanding advantages in comparison to commonly used SMA actuators.

  1. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  2. Improving of Mechanical and Shape-Memory Properties in Hyperbranched Epoxy Shape-Memory Polymers

    NASA Astrophysics Data System (ADS)

    Santiago, David; Fabregat-Sanjuan, Albert; Ferrando, Francesc; De la Flor, Silvia

    2016-03-01

    A series of shape-memory epoxy polymers were synthesized using an aliphatic amine and two different commercial hyperbranched poly(ethyleneimine)s with different molecular weights as crosslinking agents. Thermal, mechanical, and shape-memory properties in materials modified with different hyperbranched polymers were analyzed and compared in order to establish the effect of the structure and the molecular weight of the hyperbranched polymers used. The presence of hyperbranched polymers led to more heterogeneous networks, and the crosslinking densities of which increase as the hyperbranched polymer content increases. The transition temperatures can be tailored from 56 to 117 °C depending on the molecular weight and content of the hyperbranched polymer. The mechanical properties showed excellent values in all formulations at room temperature and, specially, at T_{g}^{{E^' with stress at break as high as 15 MPa and strain at break as high as 60 %. The shape-memory performances revealed recovery ratios around 95 %, fixity ratios around 97 %, and shape-recovery velocities as high as 22 %/min. The results obtained in this study reveal that hyperbranched polymers with different molecular weights can be used to enhance the thermal and mechanical properties of epoxy-based SMPs while keeping excellent shape-memory properties.

  3. Actuator Response of Improved Two-Way Memory TiNi Wires Evaluated by Weight Fraction Diagrams

    NASA Astrophysics Data System (ADS)

    Urbina, C.; De la Flor, S.; Gispert-Guirado, F.; Ferrando, F.

    2014-05-01

    This paper experimentally studies the improvement in the actuator response of TiNi shape memory wires brought about by thermal treatments. Heat-treated TiNi wires were thermally cycled at zero stress before being trained by constant stress to develop the two-way shape memory effect. Subsequently, the work output of these two-way memory TiNi shape memory alloys are measured during repeated thermomechanical cycling under various levels of constant stress. Changes in the phase transformation behavior in two-way memory and thermomechanically cycled TiNi shape memory alloy wires are quantified by x-ray diffraction as a function of temperature. The weight fraction diagrams of TiNi wires thermally cycled at zero stress before they were trained suggests that during constant stress training they develop a lower quantity of R-phase than samples that have not been thermally cycled at zero stress before being trained. This gives thermally cycled TiNi samples higher levels of transformation strain and work output during thermomechanical cycling than samples that have not been thermally cycled before training. These results suggest that for the best material performance—that is, significant transformation strain and, consequently, substantial work output—the TiNi wire should be thermally cycled at zero stress before training.

  4. Carbon plasma immersion ion implantation of nickel-titanium shape memory alloys.

    PubMed

    Poon, R W Y; Yeung, K W K; Liu, X Y; Chu, P K; Chung, C Y; Lu, W W; Cheung, K M C; Chan, D

    2005-05-01

    Nickel-titanium (NiTi) shape memory alloys possess super-elasticity in addition to the well-known shape memory effect and are potentially suitable for orthopedic implants. However, a critical concern is the release of harmful Ni ions from the implants into the living tissues. We propose to enhance the corrosion resistance and other surface and biological properties of NiTi using carbon plasma immersion ion implantation and deposition (PIII&D). Our corrosion and simulated body fluid tests indicate that either an ion-mixed amorphous carbon coating fabricated by PIII&D or direct carbon PIII can drastically improve the corrosion resistance and block the out-diffusion of Ni from the materials. Our tribological tests show that the treated surfaces are mechanically more superior and cytotoxicity tests reveal that both sets of plasma-treated samples favor adhesion and proliferation of osteoblasts. PMID:15585228

  5. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Friske, Warren H.; Schwartzbart, Harry

    1982-10-08

    Rockwell International's Energy Systems Group, under contract to Brookhaven National Laboratory, has completed a 2-year program to develop a novel temperature-actuated seal concept for geothermal applications. This seal concept uses the unique properties of a shape memory alloy (Nitinol) to perform the sealing function. The several advantages of the concept are discussed in the paper. Demonstration tests of both face and shaft seals have shown that leaktight seals are feasible. Supporting materials studies have included corrosion tests in geothermal fluids, elevated temperature tensile tests, experimental electroplating and metallographic evaluations of microstructures.

  6. Shape-Memory Polymers for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Yakacki, Christopher M.; Gall, Ken

    Shape-memory polymers (SMPs) are a class of mechanically functional "smart" materials that have generated substantial interest for biomedical applications. SMPs offer the ability to promote minimally invasive surgery, provide structural support, exert stabilizing forces, elute therapeutic agents, and biodegrade. This review focuses on several areas of biomedicine including vascular, orthopedic, and neuronal applications with respect to the progress and potential for SMPs to improve the standard of treatment in these areas. Fundamental studies on proposed biomedical SMP systems are discussed with regards to biodegradability, tailorability, sterilization, and biocompatibility. Lastly, a proposed research and development pathway for SMP-based biomedical devices is proposed based on trends in the recent literature.

  7. Fastening apparatus having shape memory alloy actuator

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  8. Shape memory alloy seals for geothermal applications

    SciTech Connect

    Not Available

    1985-09-15

    A shape memory radial seal was fabricated with a ''U'' cross section. Upon heating the seal recovered its original ''V'' shape and produced a high pressure seal. The sealing pressure which can be developed is approximately 41 MPa (60,000 psi), well in excess of the pressure which can be produced in conventional elastomeric seals. The low modulus martensite can conform readily to the sealing surface, and upon recovery produce a seal capable of high pressure fluid or gas confinement. The corrosion resistance of nickel-titanium in a broad range of aggressive fluids has been well established and, as such, there is little doubt that, had time permitted, a geothermal pump of flange fluid tried would have been successful.

  9. Superelastic behavior modeling in shape memory alloys

    NASA Astrophysics Data System (ADS)

    Arbab Chirani, S.; Aleong, D.; Dumont, C.; McDowell, D.; Patoor, E.

    2003-10-01

    The superelastic behavior of shape memory alloys is useful for several industrial applications. To dimension the SMA structures, the development of specified phenomenological constitutive models are necessary. In this case the identification of a transformation criterion is required. Unfortunately, accurate determination of the loading surface which characterizes the behavior during the martensitic transformation is experimentally difficult. A numerical simulation of this surface is proposed from a micromechanical model based on the self-consistent scale transition method. The effect of the various crystallographic textures on the shape of these surfaces is studied in CuZnAl alloys. The obtained results permit to choose the best texture according to the loading type. The validity of the normality law has been verified during the transformation procedure for studied textures.

  10. High performance shape memory effect in nitinol wire for actuators with increased operating temperature range

    NASA Astrophysics Data System (ADS)

    Casati, Riccardo; Biffi, Carlo Alberto; Vedani, Maurizio; Tuissi, Ausonio

    2014-07-01

    In this research, the high performance shape memory effect (HP-SME) is experimented on a shape memory NiTi wire, with austenite finish temperature higher than room temperature. The HP-SME consists in the thermal cycling of stress induced martensite and it allows achieving mechanical work higher than that produced by conventional shape memory actuators based on the heating/cooling of detwinned martensite. The Nitinol wire was able to recover about 5.5% of deformation under a stress of 600 MPa and to withstand about 5000 cycles before failure. HP-SME path increased the operating temperature of the shape memory actuator wire. Functioning temperatures higher than 100°C was reached.

  11. Synthesis and electrochemical behavior of nanostructured cauliflower-shape Co-Ni/Co-Ni oxides composites

    SciTech Connect

    Gupta, Vinay Kawaguchi, Toshikazu; Miura, Norio

    2009-01-08

    Nanostructured Co-Ni/Co-Ni oxides were electrochemically deposited onto stainless steel electrode by electrochemical method and characterized for their structural and supercapacitive properties. The SEM images indicated that the obtained Co-Ni/Co-Ni oxides had cauliflower-type nanostructure. The X-ray diffraction pattern showed the formation of Co{sub 3}O{sub 4}, NiO, Co and Ni. The EDX elemental mapping images indicated that Ni, Co and O are distributed uniformly. The deposited Co-Ni/Co-Ni oxides showed good supercapacitive characteristics with a specific capacitance of 331 F/g at 1 mA/cm{sup 2} current density in 1 M KOH electrolyte. A mechanism of the formation of cauliflower-shape Co-Ni/Co-Ni oxides was proposed. A variety of promising applications in the fields such as energy storage devices and sensors can be envisioned from Co-Ni/Co-Ni oxides.

  12. Shape memory alloy film for deployment and control of membrane apertures

    NASA Astrophysics Data System (ADS)

    Hill, Lisa R.; Carman, Greg; Lee, Dong-Gun; Patrick, Brian

    2004-02-01

    Nickel Titanium (NiTi) film shape memory alloy (SMA) is integrated with space-qualified polymer and mesh materials for potential use as deployment mechanisms and actuation of flexible space apertures. SMA thin film is successfully applied to Astromesh metal mesh, Kapton, Upilex, and CP-1 polymer films. Sputter deposition of NiTi onto the substrate is used to validate the material system process and demonstrate the NiTi deployment capability. Although successful, the relatively high processing temperatures required to crystallize NiTi onto the substrates requires care. A second approach is demonstrated that deposits NiTi onto a silicon substrate, followed by coating the NiTi with the desired polymer, e.g. CP-1. Micro-electro-mechanical (MEMS) processing steps are then used to remove the silicon substrate beneath the NiTi, thus freeing up the composite membrane (i.e. NiTi + CP-1). Using MEMS fabrication techniques, a hot-shaped small dome shape structure is shaped into the NiTi before deposition of the CP-1 polymer. Activation of the integrated SMA/CP-1 produces deformation of this composite structure without damage. The test articles demonstrate the feasibility to both grossly deploy and locally actuate space-qualified polymer materials.

  13. Recent Advances in Shape Memory Soft Materials for Biomedical Applications.

    PubMed

    Chan, Benjamin Qi Yu; Low, Zhi Wei Kenny; Heng, Sylvester Jun Wen; Chan, Siew Yin; Owh, Cally; Loh, Xian Jun

    2016-04-27

    Shape memory polymers (SMPs) are smart and adaptive materials able to recover their shape through an external stimulus. This functionality, combined with the good biocompatibility of polymers, has garnered much interest for biomedical applications. In this review, we discuss the design considerations critical to the successful integration of SMPs for use in vivo. We also highlight recent work on three classes of SMPs: shape memory polymers and blends, shape memory polymer composites, and shape memory hydrogels. These developments open the possibility of incorporating SMPs into device design, which can lead to vast technological improvements in the biomedical field. PMID:27018814

  14. Multiresponsive Shape Memory Blends and Nanocomposites Based on Starch.

    PubMed

    Sessini, Valentina; Raquez, Jean-Marie; Lo Re, Giada; Mincheva, Rosica; Kenny, José Maria; Dubois, Philippe; Peponi, Laura

    2016-08-01

    Smart multiresponsive bionanocomposites with both humidity- and thermally activated shape-memory effects, based on blends of ethylene-vinyl acetate (EVA) and thermoplastic starch (TPS) are designed. Thermo- and humidity-mechanical cyclic experiments are performed in order to demonstrate the humidity- as well as thermally activated shape memory properties of the starch-based materials. In particular, the induced-crystallization is used in order to thermally activate the EVA shape memory response. The shape memory results of both blends and their nanocomposites reflect the excellent ability to both humidity- and thermally activated recover of the initial shape with values higher than 80 and 90%, respectively. PMID:27434018

  15. Thermomechanical analysis of shape memory devices.

    PubMed

    Trochu, F; Brailovski, V; Meunier, M A; Terriault, P; Qian, Y Y

    1996-01-01

    Shape memory alloys (SMA) are being increasingly used in various industrial applications as actuators, connectors, or damping materials. In the medical field, superelastic devices such as eyeglass frames, stents or guide catheters have come to market in the recent years. The design of SMA devices has usually been based on trial and error, since until recently no general simulation model was available to assist application engineers. The purpose of this article is to describe the computational methodology developed, validated and used for several industrial projects at Ecole Polytechnique of Montréal to simulate the thermomechanical behavior of shape memory materials. This new approach includes three main stages: experimental characterization, construction of a nonlinear material law based on dual kriging interpolation and finally, calculation of the thermomechanical response of SMA devices. For complex geometry, finite element analysis is used, but for simple devices such as springs or electrically activated SMA wires, simplified calculation methods are satisfactory. Validation results recently obtained will also be presented, and examples of industrial applications briefly reviewed. PMID:9138650

  16. Methods of Making and Using Shape Memory Polymer Composite Patches

    NASA Technical Reports Server (NTRS)

    Hood, Patrick J.

    2011-01-01

    A method of repairing a composite component having a damaged area including: laying a composite patch over the damaged area: activating the shape memory polymer resin to easily and quickly mold said patch to said damaged area; deactivating said shape memory polymer so that said composite patch retains the molded shape; and bonding said composite patch to said damaged part.

  17. Experimental characterization of shape memory alloy actuator cables

    NASA Astrophysics Data System (ADS)

    Biggs, Daniel B.; Shaw, John A.

    2016-04-01

    Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.

  18. Thermal energy conversion by coupled shape memory and piezoelectric effects

    NASA Astrophysics Data System (ADS)

    Zakharov, Dmitry; Lebedev, Gor; Cugat, Orphee; Delamare, Jerome; Viala, Bernard; Lafont, Thomas; Gimeno, Leticia; Shelyakov, Alexander

    2012-09-01

    This work gives experimental evidence of a promising method of thermal-to-electric energy conversion by coupling shape memory effect (SME) and direct piezoelectric effect (DPE) for harvesting quasi-static ambient temperature variations. Two original prototypes of thermal energy harvesters have been fabricated and tested experimentally. The first is a hybrid laminated composite consisting of TiNiCu shape memory alloy (SMA) and macro fiber composite piezoelectric. This composite comprises 0.1 cm3 of active materials and harvests 75 µJ of energy for each temperature variation of 60 °C. The second prototype is a SME/DPE ‘machine’ which uses the thermally induced linear strains of the SMA to bend a bulk PZT ceramic plate through a specially designed mechanical structure. The SME/DPE ‘machine’ with 0.2 cm3 of active material harvests 90 µJ over a temperature increase of 35 °C (60 µJ when cooling). In contrast to pyroelectric materials, such harvesters are also compatible with both small and slow temperature variations.

  19. Apparatus for loading shape memory gripper mechanisms

    DOEpatents

    Lee, Abraham P.; Benett, William J.; Schumann, Daniel L.; Krulevitch, Peter A.; Fitch, Joseph P.

    2001-01-01

    A method and apparatus for loading deposit material, such as an embolic coil, into a shape memory polymer (SMP) gripping/release mechanism. The apparatus enables the application of uniform pressure to secure a grip by the SMP mechanism on the deposit material via differential pressure between, for example, vacuum within the SMP mechanism and hydrostatic water pressure on the exterior of the SMP mechanism. The SMP tubing material of the mechanism is heated to above the glass transformation temperature (Tg) while reshaping, and subsequently cooled to below Tg to freeze the shape. The heating and/or cooling may, for example, be provided by the same water applied for pressurization or the heating can be applied by optical fibers packaged to the SMP mechanism for directing a laser beam, for example, thereunto. At a point of use, the deposit material is released from the SMP mechanism by reheating the SMP material to above the temperature Tg whereby it returns to its initial shape. The reheating of the SM material may be carried out by injecting heated fluid (water) through an associated catheter or by optical fibers and an associated beam of laser light, for example.

  20. Memory trace replay: the shaping of memory consolidation by neuromodulation

    PubMed Central

    Atherton, Laura A.; Dupret, David; Mellor, Jack R.

    2015-01-01

    The consolidation of memories for places and events is thought to rely, at the network level, on the replay of spatially tuned neuronal firing patterns representing discrete places and spatial trajectories. This occurs in the hippocampal-entorhinal circuit during sharp wave ripple events (SWRs) that occur during sleep or rest. Here, we review theoretical models of lingering place cell excitability and behaviorally induced synaptic plasticity within cell assemblies to explain which sequences or places are replayed. We further provide new insights into how fluctuations in cholinergic tone during different behavioral states might shape the direction of replay and how dopaminergic release in response to novelty or reward can modulate which cell assemblies are replayed. PMID:26275935

  1. Thermal response of novel shape memory polymer-shape memory alloy hybrids

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2014-03-01

    Shape memory polymers (SMP) and shape memory alloys (SMA) have both been proven important smart materials in their own fields. Shape memory polymers can be formed into complex three-dimensional structures and can undergo shape programming and large strain recovery. These are especially important for deployable structures including those for space applications and micro-structures such as stents. Shape memory alloys on the other hand are readily exploitable in a range of applications where simple, silent, light-weight and low-cost repeatable actuation is required. These include servos, valves and mobile robotic artificial muscles. Despite their differences, one important commonality between SMPs and SMAs is that they are both typically activated by thermal energy. Given this common characteristic it is important to consider how these two will behave when in close environmental proximity, and hence exposed to the same thermal stimulus, and when they are incorporated into a hybrid SMA-SMP structure. In this paper we propose and examine the operation of SMA-SMP hybrids. The relationship between the two temperatures Tg, the glass transition temperature of the polymer, and Ta, the nominal austenite to martensite transition temperature of the alloy is considered. We examine how the choice of these two temperatures affects the thermal response of the hybrid. Electrical stimulation of the SMA is also considered as a method not only of actuating the SMA but also of inducing heating in the surrounding polymer, with consequent effects on actuator behaviour. Likewise by varying the rate and degree of thermal stimulation of the SMA significantly different actuation and structural stiffness can be achieved. Novel SMP-SMA hybrid actuators and structures have many ready applications in deployable structures, robotics and tuneable engineering systems.

  2. Effect of intrinsic damping on vibration transmissibility of nickel-titanium shape memory alloy springs

    SciTech Connect

    Graesser, E.J.

    1995-11-01

    A research study was undertaken to measure the transmissibility of nickel-titanium (NI-Ti) shape memory alloy (SMA) springs and to compare the results to corresponding data on steel and IN-CONEL springs. It was motivated by interest in an effective metal alternative to rubber-based machinery isolation mounts, with possible active control features. Ni-Ti was used due to its well-known properties of shape memory and high intrinsic damping. Acceleration transmissibility was measured on a spring-mass system. Due to the distributed mass in the spring oils, standing waves occurred at high frequencies. However, due to the high intrinsic damping in Ni-Ti, the standing wave resonance peaks were as much as 20 dB lower than corresponding peaks in steel and INCONEL springs. Thus, the capability of Ni-Ti springs for high frequency acoustic isolation is significantly better than that of steel or INCONEL. Also, it is judged that the Ni-Ti material could be used in a variety of other isolation mount designs with a high likelihood for further improvement in passive isolation properties. In addition, it may be possible to use the shape memory effect (SME) in active control concepts.

  3. Titanium-nickel shape memory alloy foams for bone tissue engineering.

    PubMed

    Xiong, J Y; Li, Y C; Wang, X J; Hodgson, P D; Wen, C E

    2008-07-01

    Titanium-nickel (TiNi) shape memory alloy (SMA) foams with an open-cell porous structure were fabricated by space-holder sintering process and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The mechanical properties and shape memory properties of the TiNi foam samples were investigated using compressive test. Results indicate that the plateau stresses and elastic moduli of the foams under compression decrease with the increase of their porosities. The plateau stresses and elastic moduli are measured to be from 1.9 to 38.3 MPa and from 30 to 860 MPa for the TiNi foam samples with porosities ranged from 71% to 87%, respectively. The mechanical properties of the TiNi alloy foams can be tailored to match those of bone. The TiNi alloy foams exhibit shape memory effect (SME), and it is found that the recoverable strain due to SME decreases with the increase of foam porosity. PMID:19627791

  4. Shape memory polymers with high and low temperature resistant properties

    PubMed Central

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-01-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to −150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed. PMID:26382318

  5. Shape memory polymers with high and low temperature resistant properties

    NASA Astrophysics Data System (ADS)

    Xiao, Xinli; Kong, Deyan; Qiu, Xueying; Zhang, Wenbo; Liu, Yanju; Zhang, Shen; Zhang, Fenghua; Hu, Yang; Leng, Jinsong

    2015-09-01

    High temperature shape memory polymers that can withstand the harsh temperatures for durable applications are synthesized, and the aromatic polyimide chains with flexible linkages within the backbone act as reversible phase. High molecular weight (Mn) is demanded to form physical crosslinks as fixed phase of thermoplastic shape memory polyimide, and the relationship between Mn and glass transition temperature (Tg) is explored. Thermoset shape memory polyimide shows higher Tg and storage modulus, better shape fixity than thermoplastic counterpart due to the low-density covalent crosslinking, and the influence of crosslinking on physical properties are studied. The mechanism of high temperature shape memory effects based on chain flexibility, molecular weight and crosslink density is proposed. Exposure to thermal cycling from +150 °C to -150 °C for 200 h produces negligible effect on the properties of the shape memory polyimide, and the possible mechanism of high and low temperature resistant property is discussed.

  6. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, John G.

    1985-01-01

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with "cold" matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  7. Method for fabricating uranium alloy articles without shape memory effects

    DOEpatents

    Banker, J.G.

    1980-05-21

    Uranium-rich niobium and niobium-zirconium alloys possess a characteristic known as shape memory effect wherein shaped articles of these alloys recover their original shape when heated. The present invention circumvents this memory behavior by forming the alloys into the desired configuration at elevated temperatures with cold matched dies and maintaining the shaped articles between the dies until the articles cool to ambient temperature.

  8. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between the reorientation of structural variants and the rearrangement of magnetic domains. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the reorientation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the twin boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  9. Hysteresis in magnetic shape memory composites: Modeling and simulation

    NASA Astrophysics Data System (ADS)

    Conti, Sergio; Lenz, Martin; Rumpf, Martin

    2016-04-01

    Magnetic shape memory alloys are characterized by the coupling between a structural phase transition and magnetic one. This permits to control the shape change via an external magnetic field, at least in single crystals. Composite materials with single-crystalline particles embedded in a softer matrix have been proposed as a way to overcome the blocking of the transformation at grain boundaries. We investigate hysteresis phenomena for small NiMnGa single crystals embedded in a polymer matrix for slowly varying magnetic fields. The evolution of the microstructure is studied within the rate-independent variational framework proposed by Mielke and Theil (1999). The underlying variational model incorporates linearized elasticity, micromagnetism, stray field and a dissipation term proportional to the volume swept by the phase boundary. The time discretization is based on an incremental minimization of the sum of energy and dissipation. A backtracking approach is employed to approximately ensure the global minimality condition. We illustrate and discuss the influence of the particle geometry (volume fraction, shape, arrangement) and the polymer elastic parameters on the observed hysteresis and compare with recent experimental results.

  10. Magnetically Controlled Shape Memory Behaviour—Materials and Applications

    NASA Astrophysics Data System (ADS)

    Gandy, A. P.; Sheikh, A.; Neumann, K.; Neumann, K.-U.; Pooley, D.; Ziebeck, K. R. A.

    2008-06-01

    For most metals a microscopic change in shape occurs above the elastic limit by the irreversible creation and movement of dislocations. However a large number of metallic systems undergo structural, martensitic, phase transformations which are diffusionless, displacive first order transitions from a high-temperature phase to one of lower symmetry below a certain temperature TM. These transitions which have been studied for more than a century are of vital importance because of their key role in producing shape memory phenomena enabling the system to reverse large deformations in the martensitic phase by heating into the austenite phase. In addition to a change in shape (displacement) the effect can also produce a force or a combination of both. Materials having this unique property are increasing being used in medical applications—scoliosis correction, arterial clips, stents, orthodontic wire, orthopaedic implants etc. The structural phase transition essential for shape memory behaviour is usually activated by a change in temperature or applied stress. However for many applications such as for actuators the transformation is not sufficiently rapid. Poor energy conversion also limits the applicability of many shape memory alloys. In medicine a change of temperature or pressure is often inappropriate and new ferromagnetic materials are being considered in which the phenomena can be controlled by an applied magnetic field at constant temperature. In order to achieve this, it is important to optimise three fundamental parameters. These are the saturation magnetisation σs, the Curie temperature Tc and the martensitic temperature TM. Here, σs is important because the magnetic pressure driving the twin boundary motion is 2σsH. Furthermore the material must be in the martensitic state at the operating temperature which should be at or above room temperature. This may be achieved by alloying or controlling the stoichiometry. Recently new intermetallic compounds based

  11. One-dimensional shape memory alloy models for use with reinforced composite structures

    NASA Astrophysics Data System (ADS)

    Zak, A. J.; Cartmell, M. P.; Ostachowicz, W. M.; Wiercigroch, M.

    2003-06-01

    In this paper three models of the shape memory alloy behaviour have been presented and re-investigated. The models are attributed to Tanaka, Liang and Rogers, and Brinson, and have been used extensively in the literature for studying the static or dynamic performance of different composite material structures with embedded shape memory alloy components. The major differences and similarities between these models have been emphasised and examined in the paper. A simple experimental rig was designed and manufactured to gain additional insight into the main mechanics governing the shape memory alloy (SMA) mechanical properties. Data obtained from the experimental measurements on Ni-Ti wires have been used in the numerical simulation for validation purposes. It has been found that the three models all agree well in their predictions of the superelastic behaviour at higher temperatures, above the austenite finish temperature when shape memory alloys stay in the fully austenitic phase. However, at low temperatures, when the alloys stay in the fully martensitic phase, some difficulties may be encountered. The model developed by Brinson introduces two new state variables and therefore two different mechanisms for the instigation of stress-induced and temperature-induced martensite. This enables more accurate predictions of the superelastic behaviour. In general, it can be recommended that for investigations of the shape memory and superelastic behaviour of shape memory alloy components the Brinson model, or refinements based on the Brinson model, should be applied.

  12. New shape memory effects in semicrystalline polymeric networks

    NASA Astrophysics Data System (ADS)

    Chung, Taekwoong

    Shape memory polymers (SMPs) have attracted much research interest as a type of smart material that possesses the capacity to undergo rapid changes of their shape and size under a specific or tailored environment. Herein, we prepared semicrystalline polymers-based networks such as poly (cyclooctene) (PCO), poly (e-caprolactone) (PCL) and poly (ethylene glycol) (PEG) networks in order to explore their shape memory effects and thermomechanical properties as well as the possibilities for their applications. Interestingly, besides so-called one-shape memory effect that can be manipulated and fixed to a temporary shape under specific conditions of temperature and stress, and subsequently relax to the original shape on heating, the semicrystalline polymer networks exhibit a reversible two-way shape memory effect, revealing crystallization-induced elongation on cooling and melting-induced contraction on heating. These thermally induced reversible two-way shape memory effects were systematically explored with respect to the crosslinking density of networks and the applied stress. In order to develop a shape memory network with temperature sensing capability, we incorporated appropriately tailored chromogenic cyano-OPVs into cross-linked PCO via guest-diffusion to create phase-separated blends in which the dye's emission properties are dominated by excimer fluorescence. Heatng to the temperature above melting temperature and cooling below the crystallization temperature of PCO led to reversible optical changes through dissolution or agregation of the dye molecules. These optical changes happened in conjuction with shape changes of PCO networks. For an application of shape memory network in bone tissue engineering, we fabricated novel shape memory nanocomposite scaffolds base on PCL and nano-hydroxyapatite (nano-HAP) using thiol-ene photopolymerization and salt leaching technique. The shape memory property, morphologies and biomineralization of the scaffolds were

  13. Distinct processes shape flashbulb and event memories.

    PubMed

    Tinti, Carla; Schmidt, Susanna; Testa, Silvia; Levine, Linda J

    2014-05-01

    In the present study, we examined the relation between memory for a consequential and emotional event and memory for the circumstances in which people learned about that event, known as flashbulb memory. We hypothesized that these two types of memory have different determinants and that event memory is not necessarily a direct causal determinant of flashbulb memory. Italian citizens (N = 352) described their memories of Italy's victory in the 2006 Football World Cup Championship after a delay of 18 months. Structural equation modeling showed that flashbulb memory and event memory could be clearly differentiated and were determined by two separate pathways. In the first pathway, importance predicted emotional intensity, which, in turn, predicted the frequency of overt and covert rehearsal. Rehearsal was the only direct determinant of vivid and detailed flashbulb memories. In the second pathway, importance predicted rehearsal by media exposure, which enhanced the accuracy and certainty of event memory. Event memory was also enhanced by prior knowledge. These results have important implications for the debate concerning whether the formation of flashbulb memory and event memory involve different processes and for understanding how flashbulb memory can be simultaneously so vivid and so error-prone. PMID:24217894

  14. Residual stresses in injection molded shape memory polymer parts

    NASA Astrophysics Data System (ADS)

    Katmer, Sukran; Esen, Huseyin; Karatas, Cetin

    2016-03-01

    Shape memory polymers (SMPs) are materials which have shape memory effect (SME). SME is a property which has the ability to change shape when induced by a stimulator such as temperature, moisture, pH, electric current, magnetic field, light, etc. A process, known as programming, is applied to SMP parts in order to alter them from their permanent shape to their temporary shape. In this study we investigated effects of injection molding and programming processes on residual stresses in molded thermoplastic polyurethane shape memory polymer, experimentally. The residual stresses were measured by layer removal method. The study shows that injection molding and programming process conditions have significantly influence on residual stresses in molded shape memory polyurethane parts.

  15. On the practical efficiency of shape memory engines

    SciTech Connect

    Mc Comick, P.G.

    1987-02-01

    An important potential application of the shape memory effect is for the conversion of low grade thermal energy into mechanical power. In view of the relatively low temperature differences involved, the conversion efficiency is of considerable practical as well as theoretical importance. The purpose of this work is to evaluate the effect of non-ideal behaviour on the efficiency of shape memory engines.

  16. AC Electric Field Activated Shape Memory Polymer Composite

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho; Siochi, Emilie J.; Penner, Ronald K.; Turner, Travis L.

    2011-01-01

    Shape memory materials have drawn interest for applications like intelligent medical devices, deployable space structures and morphing structures. Compared to other shape memory materials like shape memory alloys (SMAs) or shape memory ceramics (SMCs), shape memory polymers (SMPs) have high elastic deformation that is amenable to tailored of mechanical properties, have lower density, and are easily processed. However, SMPs have low recovery stress and long response times. A new shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive fillers to enhance its thermo-mechanical characteristics. A new composition of shape memory thermosetting polymer nanocomposite (LaRC-SMPC) was synthesized with conductive functionalized graphene sheets (FGS) to enhance its thermo-mechanical characteristics. The elastic modulus of LaRC-SMPC is approximately 2.7 GPa at room temperature and 4.3 MPa above its glass transition temperature. Conductive FGSs-doped LaRC-SMPC exhibited higher conductivity compared to pristine LaRC SMP. Applying an electric field at between 0.1 Hz and 1 kHz induced faster heating to activate the LaRC-SMPC s shape memory effect relative to applying DC electric field or AC electric field at frequencies exceeding1 kHz.

  17. Influence of microstructure on the shape memory properties of two titanium-lean, nickel-titanium-platinum high temperature shape memory alloys

    NASA Astrophysics Data System (ADS)

    Hudish, Grant A.

    Because of NiTi's superior properties (work output, strength, ductility, recoverable strain, etc.) it is the base system of choice for development of derivative high-temperature shape memory alloys (HTSMAs). Ternary additions of Hf, Zr, Pt, Pd, and Au can be made, in quantities greater than ≈ 10 at.%, to increase the transformation temperature of Ni-Ti based SMAs. Pt as an alloying addition is attractive because of (1) its efficiency in raising the martensitic transformation temperature, (2) the relatively stable properties during thermal cycling of Pt-containing Nitinol (NiTi), and (3) the high work outputs of Ni-Ti-Pt alloys relative to other HTSMAs. Platinum containing samples of NiTi were thermally processed to explore the utility of Ti-lean precipitates for matrix strengthening and stabilization of shape memory properties during thermomechanical cycling. Two alloys, Ti48.5Ni30.5Pt 21 and Ti49.5Ni29.5Pt21, were heat treated for 1, 5, 24 and 100h at 500, 550, 600, 650, and 700°C and examined using SEM, EDS, DTA, XRD and TEM techniques. Two relevant precipitate phases, the PL and Ti2(Ni,Pt)3 phases, were identified, characterized and the thermodynamic stability and relevant behavior during thermal processing determined. Samples were then subjected to thermomechanical testing that consisted of two parts, (1) two thermal cycles (75°C to 500°C to 75°C) each at stresses of 0, 50, 100, 150, 200, 250, and 300MPa, and (2) 100 thermal cycles at 200MPa. With this combination of systematic microstructural characterization and isobaric thermal cycling, the link between microstructure and shape memory performance was made. The influence the PL and Ti2(Ni,Pt)3 phases have on properties such as martensitic transformation temperatures, transformation strain, and accumulated irrecoverable strain are explained and discussed. Specifically, it was found that the P L-phase suppresses transformation temperatures and strains through a matrix strengthening effect, but also

  18. SHADE: A Shape-Memory-Activated Device Promoting Ankle Dorsiflexion

    NASA Astrophysics Data System (ADS)

    Pittaccio, S.; Viscuso, S.; Rossini, M.; Magoni, L.; Pirovano, S.; Villa, E.; Besseghini, S.; Molteni, F.

    2009-08-01

    Acute post-stroke rehabilitation protocols include passive mobilization as a means to prevent contractures. A device (SHADE) that provides repetitive passive motion to a flaccid ankle by using shape memory alloy actuators could be of great help in providing this treatment. A suitable actuator was designed as a cartridge of approximately 150 × 20 × 15 mm, containing 2.5 m of 0.25 mm diameter NiTi wire. This actuator was activated by Joule’s effect employing a 7 s current input at 0.7 A, which provided 10 N through 76 mm displacement. Cooling and reset by natural convection took 30 s. A prototype of SHADE was assembled with two thermoplastic shells hinged together at the ankle and strapped on the shin and foot. Two actuators were fixed on the upper shell while an inextensible thread connected each NiTi wire to the foot shell. The passive ankle motion (passive range of motion, PROM) generated by SHADE was evaluated optoelectronically on three flaccid patients (58 ± 5 years old); acceptability was assessed by a questionnaire presented to further three flaccid patients (44 ± 11.5 years old) who used SHADE for 5 days, 30 min a day. SHADE was well accepted by all patients, produced good PROM, and caused no pain. The results prove that suitable limb mobilization can be produced by SMA actuators.

  19. Biomedical Applications of Thermally Activated Shape Memory Polymers

    SciTech Connect

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  20. Biomedical applications of thermally activated shape memory polymers†

    PubMed Central

    Small, Ward; Singhal, Pooja; Wilson, Thomas S.

    2011-01-01

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs. PMID:21258605

  1. Stress analysis of shape memory alloy composites

    NASA Astrophysics Data System (ADS)

    Wang, Yulong; Zhou, Limin; Wang, Zhenqing; Huang, Haitao; Ye, Lin

    2009-07-01

    Shape memory alloys (SMAs), when in the form of wires or short fibers, can be embedded into a host material to form SMA-composite for satisfying a wide variety of engineering requirements. Due to the weak interface strength between the SMA wire and the matrix, the interface debonding often happens when the SMA composites act by external force or actuation temperature or combination of them. It is, therefore, very important to understand the stress transfers between the SMA fibers and matrix and the distributions of internal stresses in the SMA composite in order to improve its properties. In this paper, a theoretical model incorporated with Brinson's constitutive law of SMA for the prediction of internal stresses has been successfully developed. The assumed stress functions which satisfy equilibrium equations in the fiber and matrix respectively and the principle of minimum complementary energy are utilized to analyze the internal stress distributions during fiber pull-out and/or thermal loading processes. The complete axisymmetric states of stresses in the SMA fiber and matrix have been developed. A finite element analysis has been also conducted to compare with the theoretical results.

  2. Strain intermittency in shape-memory alloys

    NASA Astrophysics Data System (ADS)

    Balandraud, Xavier; Barrera, Noemi; Biscari, Paolo; Grédiac, Michel; Zanzotto, Giovanni

    2015-05-01

    We study experimentally the intermittent progress of the mechanically induced martensitic transformation in a Cu-Al-Be single crystal through a full-field measurement technique: the grid method. We utilize an in-house, specially designed gravity-based device, wherein a system controlled by water pumps applies a perfectly monotonic uniaxial load through very small force increments. The sample exhibits hysteretic superelastic behavior during the forward and reverse cubic-monoclinic transformation, produced by the evolution of the strain field of the phase microstructures. The in-plane linear strain components are measured on the sample surface during the loading cycle, and we characterize the strain intermittency in a number of ways, showing the emergence of power-law behavior for the strain avalanching over almost six decades of magnitude. We also describe the nonstationarity and the asymmetry observed in the forward versus reverse transformation. The present experimental approach, which allows for the monitoring of the reversible martensitic transformation both locally and globally in the crystal, proves useful and enhances our capabilities in the analysis and possible control of transition-related phenomena in shape-memory alloys.

  3. Mechanocaloric effects in shape memory alloys.

    PubMed

    Mañosa, Lluís; Planes, Antoni

    2016-08-13

    Shape memory alloys (SMA) are a class of ferroic materials which undergo a structural (martensitic) transition where the associated ferroic property is a lattice distortion (strain). The sensitiveness of the transition to the conjugated external field (stress), together with the latent heat of the transition, gives rise to giant mechanocaloric effects. In non-magnetic SMA, the lattice distortion is mostly described by a pure shear and the martensitic transition in this family of alloys is strongly affected by uniaxial stress, whereas it is basically insensitive to hydrostatic pressure. As a result, non-magnetic alloys exhibit giant elastocaloric effects but negligible barocaloric effects. By contrast, in a number of magnetic SMA, the lattice distortion at the martensitic transition involves a volume change in addition to the shear strain. Those alloys are affected by both uniaxial stress and hydrostatic pressure and they exhibit giant elastocaloric and barocaloric effects. The paper aims at providing a critical survey of available experimental data on elastocaloric and barocaloric effects in magnetic and non-magnetic SMA.This article is part of the themed issue 'Taking the temperature of phase transitions in cool materials'. PMID:27402931

  4. Memory for shape reactivates the lateral occipital complex.

    PubMed

    Karanian, Jessica M; Slotnick, Scott D

    2015-04-01

    Memory is thought to be a constructive process in which the cortical regions associated with processing event features are reactivated during retrieval. Although there is evidence for non-detailed cortical reactivation during retrieval (e.g., memory for visual or auditory information reactivates the visual or auditory processing regions, respectively), there is limited evidence that memory can reactivate cortical regions associated with processing detailed, feature-specific information. Such evidence is critical to our understanding of the mechanisms of episodic retrieval. The present functional magnetic resonance imaging (fMRI) study assessed whether the lateral occipital complex (LOC), a region that preferentially processes shape, is associated with retrieval of shape information. During encoding, participants were presented with colored abstract shapes that were either intact or scrambled. During retrieval, colored disks were presented and participants indicated whether the corresponding shape was previously "intact" or "scrambled". To assess whether conscious retrieval of intact shapes reactivated LOC, we conducted a conjunction of shape perception/encoding and accurate versus inaccurate retrieval of intact shapes, which produced many activations in LOC. To determine whether activity in LOC was specific to intact shapes, we conducted a conjunction of shape perception/encoding and intact versus scrambled shapes, which also produced many activations in LOC. Furthermore, memory for intact shapes in each hemifield produced contralateral activity in LOC (e.g., memory for left visual field intact shapes activated right LOC), which reflects the specific reinstatement of perception/encoding activity. The present results extend previous feature-specific memory reactivation evidence and support the view that memory is a constructive process. PMID:25623846

  5. Modeling shape-memory behavior of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Xiao, Rui

    2016-04-01

    In this study, we present a constitutive model to couple the shape memory and dielectric behaviors of polymers. The model adopted multiple relaxation processes and temperature-dependent relaxation time to describe the glass transition behaviors. The model was applied to simulate the thermal-mechanical-electrical behaviors of the dielectric elastomer VHB 4905. We investigated the influence of deformation temperature, voltage rate, relaxation time on the electromechanical and shape-memory behavior of dielectric elastomers. This work provides a method for combining the shape-memory properties and electroactive polymers, which can expand the applications of these soft active materials.

  6. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators

  7. The quintuple-shape memory effect in electrospun nanofiber membranes

    NASA Astrophysics Data System (ADS)

    Zhang, Fenghua; Zhang, Zhichun; Liu, Yanju; Lu, Haibao; Leng, Jinsong

    2013-08-01

    Shape memory fibrous membranes (SMFMs) are an emerging class of active polymers, which are capable of switching from a temporary shape to their permanent shape upon appropriate stimulation. Quintuple-shape memory membranes based on the thermoplastic polymer Nafion, with a stable fibrous structure, are achieved via electrospinning technology, and possess a broad transition temperature. The recovery of multiple temporary shapes of electrospun membranes can be triggered by heat in a single triple-, quadruple-, quintuple-shape memory cycle, respectively. The fiber morphology and nanometer size provide unprecedented design flexibility for the adjustable morphing effect. SMFMs enable complex deformations at need, having a wide potential application field including smart textiles, artificial intelligence robots, bio-medical engineering, aerospace technologies, etc in the future.

  8. Thermo-mechanical Response and Damping Behavior of Shape Memory Alloy-MAX Phase Composites

    NASA Astrophysics Data System (ADS)

    Kothalkar, Ankush Dilip; Benitez, Rogelio; Hu, Liangfa; Radovic, Miladin; Karaman, Ibrahim

    2014-05-01

    NiTi/Ti3SiC2 interpenetrating composites that combine two unique material systems—a shape memory alloy (SMA) and a MAX phase—demonstrating two different pseudoelastic mechanisms, were processed using spark plasma sintering. The goal of mixing these two material systems was to enhance the damping behavior and thermo-mechanical response of the composite by combining two pseudoelastic mechanisms, i.e., reversible stress-induced martensitic transformation in SMA and reversible incipient kink band formation in MAX phase. Equal volume fractions of equiatomic NiTi and Ti3SiC2 were used. Microstructural characterization was conducted using scanning electron microscopy to study the distribution of NiTi, Ti3SiC2, and remnant porosity in the composite. Thermo-mechanical testing in the form of thermal cycles under constant stress levels was performed in order to characterize shape memory behavior and thereby introducing residual stresses in the composites. Evolution of two-way shape memory effect was studied and related to the presence of residual stresses in the composites. Damping behavior, implying the energy dissipation per loading-unloading cycle under increasing compressive stresses, of pure NiTi, pure Ti3SiC2, as-sintered, and thermo-mechanically cycled (TC) NiTi/Ti3SiC2 composites, was investigated and compared to the literature data. In this study, the highest energy dissipation was observed for the TC composite followed by the as-sintered (AS) composite, pure NiTi, and pure Ti3SiC2 when compared at the same applied stress levels. Both the AS and TC composites showed higher damping up to 200 MPa stress than any of the metal—MAX phase composites reported in the literature to date. The ability to enhance the performance of the composite by controlling the thermo-mechanical loading paths was further discussed.

  9. Wireless and passive temperature indicator utilizing the large hysteresis of magnetic shape memory alloys

    NASA Astrophysics Data System (ADS)

    Bergmair, Bernhard; Liu, Jian; Huber, Thomas; Gutfleisch, Oliver; Suess, Dieter

    2012-07-01

    An ultra-low cost, wireless magnetoelastic temperature indicator is presented. It comprises a magnetostrictive amorphous ribbon, a Ni-Mn-Sn-Co magnetic shape memory alloy with a highly tunable transformation temperature, and a bias magnet. It allows to remotely detect irreversible changes due to transgressions of upper or lower temperature thresholds. Therefore, the proposed temperature indicator is particularly suitable for monitoring the temperature-controlled supply chain of, e.g., deep frozen and chilled food or pharmaceuticals.

  10. Multi-range force sensors utilizing shape memory alloys

    DOEpatents

    Varma, Venugopal K.

    2003-04-15

    The present invention provides a multi-range force sensor comprising a load cell made of a shape memory alloy, a strain sensing system, a temperature modulating system, and a temperature monitoring system. The ability of the force sensor to measure contact forces in multiple ranges is effected by the change in temperature of the shape memory alloy. The heating and cooling system functions to place the shape memory alloy of the load cell in either a low temperature, low strength phase for measuring small contact forces, or a high temperature, high strength phase for measuring large contact forces. Once the load cell is in the desired phase, the strain sensing system is utilized to obtain the applied contact force. The temperature monitoring system is utilized to ensure that the shape memory alloy is in one phase or the other.

  11. Rubber-like electrically conductive polymeric materials with shape memory

    NASA Astrophysics Data System (ADS)

    Cui, H. P.; Song, C. L.; Huang, W. M.; Wang, C. C.; Zhao, Y.

    2013-05-01

    This paper presents a heating-responsive shape memory polymeric material, which is not only rubber-like at room temperature and above its shape recovery temperature, but also electrically conductive. This polymeric material is made of silicone, melting glue (MG), and carbon black (CB). The influence of volume fractions of MG and CB on the elasticity, electrical resistivity, and shape memory effect of the polymeric material is systematically investigated. The feasibility of Joule heating for shape recovery is experimentally demonstrated with an electric power of 31 V.

  12. [Design of minimally invasive surgery wrist institution actuated by shape memory alloy].

    PubMed

    Zhang, Zhenhua; Cao, Tong; Chen, Hua; Liu, Da; Shi, Zhenyun; Ma, Chen

    2013-06-01

    The rapid development of minimally invasive surgery technology requires higher flexibility of surgical treatment and small volume of medical instrument. This paper proposed a new type of minimally invasive surgery wrist institution actuated by TiNi shape memory alloy (SMA) wire. The wrist institution has some advantages such as compact structure, flexible function, light weight, big movement space, and high output position precision. The paper briefly introduces the properties of TiNi SMA and describes the configuration of wrist institution. We also carried out mechanism simulation analysis to the mechanics model and set up kinematics equations, and finally presented the workspace of the institution. PMID:23865329

  13. A molecular dynamics investigation of the deformation mechanism and shape memory effect of epoxy shape memory polymers

    NASA Astrophysics Data System (ADS)

    Yang, Hua; Wang, ZhengDao; Guo, YaFang; Shi, XingHua

    2016-03-01

    Following deformation, thermally induced shape memory polymers (SMPs) have the ability to recover their original shape with a change in temperature. In this work, the thermomechanical properties and shape memory behaviors of three types of epoxy SMPs with varying curing agent contents were investigated using a molecular dynamics (MD) method. The mechanical properties under uniaxial tension at different temperatures were obtained, and the simulation results compared reasonably with experimental data. In addition, in a thermomechanical cycle, ideal shape memory effects for the three types of SMPs were revealed through the shape frozen and shape recovery responses at low and high temperatures, respectively, indicating that the recovery time is strongly influenced by the ratio of E-51 to 4,4'-Methylenedianiline.

  14. Basic Properties of Magnetic Shape-Memory Materials from First-Principles Calculations

    NASA Astrophysics Data System (ADS)

    Entel, Peter; Dannenberg, Antje; Siewert, Mario; Herper, Heike C.; Gruner, Markus E.; Comtesse, Denis; Elmers, Hans-Joachim; Kallmayer, Michael

    2012-08-01

    The mutual influence of phase transformations, magnetism, and electronic properties of magnetic-shape memory Heusler materials is a basic issue of electronic structure calculations based on density functional theory. In this article, we show that these calculations can be pursued to finite temperatures, which allows to derive on a first-principles basis the temperature versus composition phase diagram of the pseudo-binary Ni-Mn-(Ga, In, Sn, Sb) system. The free energy calculations show that the phonon contribution stabilizes the body-centered-cubic (bcc)-like austenite structure at elevated temperatures, whereas magnetism favors the low-temperature martensite phase with body-centered-tetragonal (bct) or rather face-centered-tetragonal (fct) structure. The calculations also allow to make predictions of magnetostructural and magnetic field induced properties of other (new) magnetic Heusler alloys not based on NiMn such as Co-Ni-(Ga-Zn) and Fe-Co-Ni-(Ga-Zn) intermetallic compounds.

  15. Magnetic and conventional shape memory behavior of Mn–Ni–Sn and Mn–Ni–Sn(Fe) alloys

    NASA Astrophysics Data System (ADS)

    Turabi, A. S.; Lázpita, P.; Sasmaz, M.; Karaca, H. E.; Chernenko, V. A.

    2016-05-01

    Magnetic and conventional shape memory properties of Mn49Ni42Sn9(at.%) and Mn49Ni39Sn9Fe3(at.%) polycrystalline alloys exhibiting martensitic transformation from ferromagnetic austenite into weakly magnetic martensite are characterized under compressive stress and magnetic field. Magnetization difference between transforming phases drastically increases, while transformation temperature decreases with the addition of Fe. Both Mn49Ni42Sn9 and Mn49Ni39Sn9Fe3 alloys show remarkable superelastic and shape memory properties with recoverable strain of 4% and 3.5% under compression at room temperature, respectively. These characteristics can be counted as extraordinary among the polycrystalline NiMn-based magnetic shape memory alloys. Critical stress for phase transformation was increased by 34 MPa in Mn49Ni39Sn9Fe3 and 21 MPa in Mn49Ni42Sn9 at 9 T, which can be qualitatively understood in terms of thermodynamic Clausius–Clapeyron relationships and in the framework of the suggested physical concept of a volume magnetostress.

  16. Periodic Cellular Structure Technology for Shape Memory Alloys

    NASA Technical Reports Server (NTRS)

    Chen, Edward Y.

    2015-01-01

    Shape memory alloys are being considered for a wide variety of adaptive components for engine and airframe applications because they can undergo large amounts of strain and then revert to their original shape upon heating or unloading. Transition45 Technologies, Inc., has developed an innovative periodic cellular structure (PCS) technology for shape memory alloys that enables fabrication of complex bulk configurations, such as lattice block structures. These innovative structures are manufactured using an advanced reactive metal casting technology that offers a relatively low cost and established approach for constructing near-net shape aerospace components. Transition45 is continuing to characterize these structures to determine how best to design a PCS to better exploit the use of shape memory alloys in aerospace applications.

  17. Dynamic Optical Gratings Accessed by Reversible Shape Memory.

    PubMed

    Tippets, Cary A; Li, Qiaoxi; Fu, Yulan; Donev, Eugenii U; Zhou, Jing; Turner, Sara A; Jackson, Anne-Martine S; Ashby, Valerie Sheares; Sheiko, Sergei S; Lopez, Rene

    2015-07-01

    Shape memory polymers (SMPs) have been shown to accurately replicate photonic structures that produce tunable optical responses, but in practice, these responses are limited by the irreversibility of conventional shape memory processes. Here, we report the intensity modulation of a diffraction grating utilizing two-way reversible shape changes. Reversible shifting of the grating height was accomplished through partial melting and recrystallization of semicrystalline poly(octylene adipate). The concurrent variations of the grating shape and diffraction intensity were monitored via atomic force microscopy and first order diffraction measurements, respectively. A maximum reversibility of the diffraction intensity of 36% was repeatable over multiple cycles. To that end, the reversible shape memory process is shown to broaden the functionality of SMP-based optical devices. PMID:26081101

  18. Thermomechanical Modeling of Stress Relaxation in Shape Memory Alloy Wires

    NASA Astrophysics Data System (ADS)

    Zare, Fateme; Kadkhodaei, Mahmoud; Salafian, Iman

    2015-04-01

    When a shape memory alloy (SMA) is subjected to a mechanical load, especially at high strain rates, its temperature varies due to thermomechanical coupling in the response of these materials. Thus, if strain is kept constant during the transformation, temperature change will cause stress to decrease during loading and to increase during unloading. A decrease in stress under constant strain indicates stress relaxation, and an increase in stress indicates stress recovery, i.e., reverse stress relaxation. In this paper, a fully coupled thermomechanical model is developed in a continuum framework to study stress relaxation and stress recovery in SMA wires. Numerical simulations at different ambient temperatures, applied strain rates, wire radii, and relaxation intervals are done to show the abilities of the proposed model in predicting relaxation phenomena in various conditions where strain remains constant during loading or unloading. Relaxation experiments were also performed on NiTi wires, and the numerical and empirical results are shown to be in a good agreement.

  19. Shape Memory Alloy (SMA)-Based Launch Lock

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-01-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing shaft's free motion which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  20. Shape Memory Alloy (SMA)-based launch lock

    NASA Astrophysics Data System (ADS)

    Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph

    2014-04-01

    Most NASA missions require the use of a launch lock for securing moving components during the launch or securing the payload before release. A launch lock is a device used to prevent unwanted motion and secure the controlled components. The current launch locks are based on pyrotechnic, electro mechanically or NiTi driven pin pullers and they are mostly one time use mechanisms that are usually bulky and involve a relatively high mass. Generally, the use of piezoelectric actuation provides high precession nanometer accuracy but it relies on friction to generate displacement. During launch, the generated vibrations can release the normal force between the actuator components allowing free motion of the shaft, which could result in damage to the actuated structures or instruments. This problem is common to other linear actuators that consist of a ball screw mechanism. The authors are exploring the development of a novel launch lock mechanism that is activated by a shape memory alloy (SMA) material ring, a rigid element and an SMA ring holding flexure. The proposed design and analytical model will be described and discussed in this paper.

  1. Thermomechanical characterization of nickel-titanium-copper shape memory alloy films

    SciTech Connect

    Seward, K P; Ramsey, P B; Krulevitch, P

    2000-10-31

    In an effort to develop a more extensive model for the thermomechanical behavior of shape memory alloy (SMA) films, a novel characterization method has been developed. This automated test has been tailored to characterize films for use in micro-electromechanical system (MEMS) actuators. The shape memory effect in NiTiCu is seen in the solid-state phase transformation from an easily deformable low-temperature state to a 'shape remembering' high-temperature state. The accurate determination of engineering properties for these films necessitates measurements of both stress and strain in microfabricated test structures over the full range of desired deformation. Our various experimental methods (uniaxial tensile tests, bimorph curvature tests and diaphragm bulge tests) provide recoverable stress and strain data and the stress-strain relations for these films. Tests were performed over a range of temperatures by resistive heating or ambient heating. These measurements provide the results necessary for developing active SMA structural film design models.

  2. The morphing properties of a vascular shape memory composite

    NASA Astrophysics Data System (ADS)

    Cortes, P.; Terzak, J.; Kubas, G.; Phillips, D.; Baur, J. W.

    2014-01-01

    This work investigates the fabrication, experimentation, testing, and modeling of shape memory composites consisting of two-way shape memory alloy (SMA) tubes embedded in a shape memory polymer (SMP) matrix. The hybrid system here investigated is thermally activated via internal transport of thermal fluids through the SMA vascular system. The resulting shape memory composite (SMC) combines the high modulus and high specific actuation force of SMAs with the strong shape fixing and variable stiffness of SMPs to create a light-weight composite capable of controllably and rapidly achieving two shape memory states. Specifically, a 25° thermally induced out-of-plane bending state is achieved with a 2% volume fraction of SMA in the composite after 2 min of being activated by an internal thermal fluid. Here, while the thermal structural design of the SMC was not optimized and the thermal cycling was significantly restricted by the low thermal conduction of the SMP, the deflection of the composite was within 20% of the expected value modeled by the thermal-mechanical finite element analysis (FEA) here performed. The close agreement between the experimental performance and the modeled composite response suggests that morphing composites based on SMAs and SMPs are promising structures for adaptive applications.

  3. Memory Attributions for Choices: How Beliefs Shape Our Memories

    ERIC Educational Resources Information Center

    Henkel, Linda A.; Mather, Mara

    2007-01-01

    When remembering past choices, people tend to attribute positive features to chosen options and negative features to rejected options. The present experiments reveal the important role beliefs play in memory reconstruction of choices. In Experiment 1, participants who misremembered which option they chose favored their believed choice in their…

  4. Processing and Characterization of Nickel-Manganese-Gallium Shape-Memory Fibers and Foams

    NASA Astrophysics Data System (ADS)

    Zheng, Peiqi-Paige

    Ferromagnetic Ni-Mn-Ga shape memory alloys with large magnetic field-induced strains are promising candidates for actuators. Magnetic shape memory alloys display magnetic-field-induced strain (MFIS) of up to 10%, as single crystals. Polycrystalline materials are much easier to create but display a near-zero MFIS because twinning of neighboring grains introduces strain incompatibility leading to high internal stresses. Pores reduce these incompatibilities between grains and thus increase the MFIS of polycrystalline Ni-Mn-Ga which after training (thermo-magneto-mechanical cycling) exhibits MFIS as high as 8.7%. In this thesis, a systematic study of the effect of porosity on the magneto-mechanical properties of polycrystalline Ni-Mn-Ga foams is presented. The MFIS increased with increasing porosity, demonstrating that removal of constraints by addition of porosity is responsible for the high MFIS in polycrystalline foams. Ni-Mn-Ga foams with 57 volume percent of 355-500 micrometers open pores, with and without directional solidification were cast replicated. One directional solidified foam specimen showed a maximum magnetic-field induced strain of 0.65%, which is twice the value displayed by other foam specimens without directional solidification. This improvement is consistent with a reduction of incompatibility stresses under magnetic field from the reduced crystallographic misorientation between neighboring grains. Polycrystalline Ni-Mn-Ga foam displays ˜1% MFIS after the hermo-magnetic training. To show this effect in this highly textured sample, neutron diffraction texture measurements were conducted with a magnetic field applied at various orientations to the sample, demonstrating that selection of martensite variants takes place during cooling. Oligocrystalline Ni-Mn-Ga foams with an open porosity of 63.5?0.7% were created by a sintering replication process using NaCl space-holders. The high surface/volume ratio and mechanical stability under cyclic strain

  5. A biodegradable shape-memory nanocomposite with excellent magnetism sensitivity

    NASA Astrophysics Data System (ADS)

    Yu, Xiongjun; Zhou, Shaobing; Zheng, Xiaotong; Guo, Tao; Xiao, Yu; Song, Botao

    2009-06-01

    This paper reports a kind of biodegradable nanocomposite which can show an excellent shape-memory property in hot water or in an alternating magnetic field with f = 20 kH and H = 6.8 kA m-1. The nanocomposite is composed of crosslinked poly(ɛ-caprolactone) (c-PCL) and Fe3O4 nanoparticles. The crosslinking reaction in PCL with linear molecular structure was realized using benzoyl peroxide (BPO) as an initiator. The biocompatible Fe3O4 magnetite nanoparticles with an average size of 10 nm were synthesized according to a chemical coprecipitation method. The initial results from c-PCL showed crosslinking modification had brought about a large enhancement in shape-memory effect for PCL. Then a series of composites made of Fe3O4 nanoparticles and c-PCL were prepared and their morphological properties, mechanical properties, thermodynamic properties and shape-memory effect were investigated in succession. Significantly, the photos of the shape-memory process confirmed the anticipatory magnetically responsive shape-recovery effect of the nanocomposites because inductive heat from Fe3O4 can be utilized to actuate the c-PCL vivification from their frozen temporary shape. All the results imply a very feasible method to fabricate shape-memory PCL-based nanocomposites since just a simple modification is required. Additionally, this modification would endow an excellent shape-memory effect to all other kinds of polymers so that they could broadly serve in various fields, especially in medicine.

  6. Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Robertson, Jaimee M.; Mu, Xiaoming; Mather, Patrick T.; Jerry Qi, H.

    2015-12-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape upon activation by an external stimulus. Most SMPs require programming at above their transition temperatures, normally well above the room temperature. In addition, most SMPs are programmed into shapes that are affine to the high temperature deformation. Recently, a cold-programmed anisotropic shape memory elastomeric composite was developed and showed interesting low temperature stretching induced shape memory behavior. There, simple, uniaxial stretching at low temperature transformed the composites into curled temporary shapes upon unloading. The exact geometry of the curled state depended on the microstructure of the composite, and the curled shape showed no affinity to the deformed shape. Heating the sample recovered the sample back to its original shape. This new composite consisted of an elastomeric matrix reinforced by aligned amorphous polymer fibers. By utilizing the plastic-like behavior of the amorphous polymer phase at low temperatures, a temporary shape could be fixed upon unloading since the induced plastic-like strain resists the recovery of the elastomer matrix. After heating to a high temperature, the permanent shape was recovered when the amorphous polymer softened and the elastomer matrix contracted. To set a theoretical foundation for capturing the cold-programmed shape memory effects and the dramatic non-affine shape change of this composite, a 3D anisotropic thermoviscoelastic constitutive model is developed in this paper. In this model, the matrix is modeled as a hyperelastic solid, and the amorphous phase of the fibrous mat is considered as a nonlinear thermoviscoplastic solid, whose viscous flow resistance is sensitive to both temperature and stress. The plastic-deformation like behavior demonstrated in the fiber is treated as nonlinear viscoplasticity with extremely high viscosity or long relaxation time at zero-stress state at low temperature. The

  7. Thermomechanical Analysis of Shape-Memory Composite Tape Spring

    NASA Astrophysics Data System (ADS)

    Yang, H.; Wang, L. Y.

    2013-06-01

    Intelligent materials and structures have been extensively applied for satellite designs in order to minimize the mass and reduce the cost in the launch of the spacecraft. Elastic memory composites (EMCs) have the ability of high-strain packaging and shape-memory effect, but increase the parts and total weight due to the additional heating system. Shape-memory sandwich structures Li and Wang (J. Intell. Mater. Syst. Struct. 22(14), 1605-1612, 2011) can overcome such disadvantage by using the metal skin acting as the heating element. However, the high strain in the micro-buckled metal skin decreases the deployment efficiency. This paper aims to present an insight into the folding and deployment behaviors of shape-memory composite (SMC) tape springs. A thermomechanical process was analyzed, including the packaging deformation at an elevated temperature, shape frozen at the low temperature and shape recovery after reheating. The result shows that SMC tape springs can significantly decrease the strain concentration in the metal skin, as well as exhibiting excellent shape frozen and recovery behaviors. Additionally, possible failure modes of SMC tape springs were also analyzed.

  8. Thermoplastic shape-memory polyurethanes based on natural oils

    NASA Astrophysics Data System (ADS)

    Saralegi, Ainara; Foster, E. Johan; Weder, Christoph; Eceiza, Arantxa; Corcuera, Maria Angeles

    2014-02-01

    A new family of segmented thermoplastic polyurethanes with thermally activated shape-memory properties was synthesized and characterized. Polyols derived from castor oil with different molecular weights but similar chemical structures and a corn-sugar-based chain extender (propanediol) were used as starting materials in order to maximize the content of carbon from renewable resources in the new materials. The composition was systematically varied to establish a structure-property map and identify compositions with desirable shape-memory properties. The thermal characterization of the new polyurethanes revealed a microphase separated structure, where both the soft (by convention the high molecular weight diol) and the hard phases were highly crystalline. Cyclic thermo-mechanical tensile tests showed that these polymers are excellent candidates for use as thermally activated shape-memory polymers, in which the crystalline soft segments promote high shape fixity values (close to 100%) and the hard segment crystallites ensure high shape recovery values (80-100%, depending on the hard segment content). The high proportion of components from renewable resources used in the polyurethane formulation leads to the synthesis of bio-based polyurethanes with shape-memory properties.

  9. Effects of additions of small amounts of fourth elements on structure, crystal structure and shape recovery of Cu-Zn-Al shape memory alloys

    SciTech Connect

    Zhang, M.R. |; Yang, D.Z.; Tadaki, T.; Hirotsu, Y.

    1997-01-15

    Cu-based shape memory alloys (SMAs) are particularly interesting, compared to Ni-Ti SMAs because of their low cost and relatively ease process. However, there are important problems to be solved, such as intergranular fracture due to large grain size, stabilization of martensite, etc. In the present work, the influences of additions only less than 1 mass% of several fourth elements, such as Mn, Fe, Co, Ni, and Y, to two kinds of Cu-Zn-Al SMAs, i.e., Cu-30Zn-4Al and Cu-25Zn-7Al on their structure, crystal structure and shape recovery have been examined in order to know what elements are the most effective for the thermal stability of the parent and martensite phases and the shape memory capacity.

  10. The Applications of Shape Memory Gel as a Smart Material

    NASA Astrophysics Data System (ADS)

    Hasnat Kabir, M.; Gong, Jin; Watanabe, Yosuke; Makino, Masato; Furukawa, Hidemitsu

    The research to find a suitable future new material is a big challenge nowadays. The material for biocompatible or biodegradable is an important issue in human life. The environment friendly materials or in other words green materials are required for future applications. The gels are soft and wet material having several unique properties such as high water absorbent, extremely low friction, softness, shape memory, high ductility and so on. The gel consists with a large amount of solvent and a small amount of cross-linker. Due to the high water content, for instants, more than 90%, this material becomes as an environment friendly green material. The shape memory gel (SMG) is one kind of soft materials among them which bears some interesting characteristics. This gel, a smart material, can be used as lens, eyeball, artificial muscle or artificial blood vessel, smart button and so on. In this paper, we have briefly discussed the different applications of the shape memory gel.

  11. Method of preparing a two-way shape memory alloy

    DOEpatents

    Johnson, A.D.

    1984-03-06

    A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases are disclosed. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress. 8 figs.

  12. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, II, Santo A (Inventor)

    2013-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  13. Blocked Shape Memory Effect in Negative Poisson's Ratio Polymer Metamaterials.

    PubMed

    Boba, Katarzyna; Bianchi, Matteo; McCombe, Greg; Gatt, Ruben; Griffin, Anselm C; Richardson, Robert M; Scarpa, Fabrizio; Hamerton, Ian; Grima, Joseph N

    2016-08-10

    We describe a new class of negative Poisson's ratio (NPR) open cell PU-PE foams produced by blocking the shape memory effect in the polymer. Contrary to classical NPR open cell thermoset and thermoplastic foams that return to their auxetic phase after reheating (and therefore limit their use in technological applications), this new class of cellular solids has a permanent negative Poisson's ratio behavior, generated through multiple shape memory (mSM) treatments that lead to a fixity of the topology of the cell foam. The mSM-NPR foams have Poisson's ratio values similar to the auxetic foams prior their return to the conventional phase, but compressive stress-strain curves similar to the ones of conventional foams. The results show that by manipulating the shape memory effect in polymer microstructures it is possible to obtain new classes of materials with unusual deformation mechanisms. PMID:27377708

  14. Shape-memory starch for resorbable biomedical devices.

    PubMed

    Beilvert, A; Chaubet, F; Chaunier, L; Guilois, S; Pavon-Djavid, G; Letourneur, D; Meddahi-Pellé, A; Lourdin, D

    2014-01-01

    Shape-memory resorbable materials were obtained by extrusion-cooking of potato starch with 20% glycerol under usual conditions. They presented an efficient shape-memory with a high recovery ratio (Rr>90%). Their recovery could be triggered at 37°C in water. After water immersion at 37°C, the modulus decreased from 1GPa to 2.4MPa and remained almost constant over 21 days. Gamma-ray sterilization did not have a dramatic impact on their mechanical properties, despite a large decrease of molecular mass analyzed by asymmetrical flow field-flow fractionation coupled with multi-angle laser light scattering (AFFFF-MALLS). Samples implanted in a rat model exhibited normal tissue integration with a low inflammatory response. Thus, as previously investigated in the case of shape-memory synthetic polymers, natural starch, without chemical grafting, can now be considered for manufacturing innovative biodegradable devices for less-invasive surgery. PMID:24274502

  15. Thermomechanical Methodology for Stabilizing Shape Memory Alloy (SMA) Response

    NASA Technical Reports Server (NTRS)

    Padula, Santo A., II (Inventor)

    2016-01-01

    Methods and apparatuses for stabilizing the strain-temperature response for a shape memory alloy are provided. To perform stabilization of a second sample of the shape memory alloy, a first sample of the shape memory alloy is selected for isobaric treatment and the second sample is selected for isothermal treatment. When applying the isobaric treatment to the first sample, a constant stress is applied to the first sample. Temperature is also cycled from a minimum temperature to a maximum temperature until a strain on the first sample stabilizes. Once the strain on the first sample stabilizes, the isothermal treatment is performed on the second sample. During isothermal treatment, different levels of stress on the second sample are applied until a strain on the second sample matches the stabilized strain on the first sample.

  16. Method of preparing a two-way shape memory alloy

    DOEpatents

    Johnson, Alfred D.

    1984-01-01

    A two-way shape memory alloy, a method of training a shape memory alloy, and a heat engine employing the two-way shape memory alloy to do external work during both heating and cooling phases. The alloy is heated under a first training stress to a temperature which is above the upper operating temperature of the alloy, then cooled to a cold temperature below the zero-force transition temperature of the alloy, then deformed while applying a second training stress which is greater in magnitude than the stress at which the alloy is to be operated, then heated back to the hot temperature, changing from the second training stress back to the first training stress.

  17. Realization of multifunctional shape-memory ferromagnets in all-d-metal Heusler phases

    SciTech Connect

    Wei, Z. Y.; Liu, E. K. Chen, J. H.; Xi, X. K.; Zhang, H. W.; Wang, W. H.; Wu, G. H.; Li, Y.; Liu, G. D.; Luo, H. Z.

    2015-07-13

    Heusler ferromagnetic shape-memory alloys (FSMAs) normally consist of transition-group d-metals and main-group p-elements. Here, we report the realization of FSMAs in Heusler phases that completely consist of d metals. By introducing the d-metal Ti into NiMn alloys, cubic B2-type Heusler phase is obtained and the martensitic transformation temperature is decreased efficiently. Strong ferromagnetism is established by further doping Co atoms into the B2-type antiferromagnetic Ni-Mn-Ti austenite. Based on the magnetic-field-induced martensitic transformations, collective multifunctional properties are observed in Ni(Co)-Mn-Ti alloys. The d metals not only facilitate the formation of B2-type Heusler phases but also establish strong ferromagnetic coupling and offer the possibility to tune the martensitic transformation.

  18. Modeling the transformation stress of constrained shape memory alloy single crystals

    SciTech Connect

    Comstock, R.J. Jr.; Buchheit, T.E.; Somerday, M.; Wert, J.A.

    1996-09-01

    Shape memory alloys (SMA) are a unique class of engineering materials that can be further exploited with accurate polycrystal constitutive models. Previous investigators have modeled stress-induced martensite formation in unconstrained single crystals. Understanding stress-induced martensite formation in constrained single crystals is the next step towards the development of a constitutive model for textured polycrystalline SMA. Such models have been previously developed for imposition of axisymmetric strain on a polycrystal with random crystal orientation; the present paper expands the constrained single crystal SMA model to encompass arbitrary imposed strains. To evaluate the model, axisymmetric tension and compression strains and pure shear strain are imposed on three SMA: NiTi, Cu-Al-Ni ({beta}{sub 1}{yields}{gamma}{prime}{sub 1}) and Ni-Al. Model results are then used to understand the anisotropy and asymmetry of transformation stress in the three SMA considered. Finally, the impact of the present results on polycrystal behavior is addressed.

  19. Modeling the stress-induced transformation behavior of shape memory alloy single crystals

    SciTech Connect

    Buchheit, T.E.; Kumpf, S.L.; Wert, J.A.

    1995-11-01

    The phenomenological theory of martensite crystallography has been used to determine habit plane/shear direction combinations for stress-induced transformation of NiTi, Cu-Ni-Al and NiAl shape memory alloys (SMA) to twin-related martensite correspondence variant pairs. By considering the habit plane/shear direction combinations as unidirectional shear systems, generalized Schmid`s law is then used to predict the mechanical response of unconstrained single crystals of each SMA. Model results include axial transformation strain, and plane stress transformation surfaces as a function of crystal orientation. Comparison of the predicted mechanical response results with the habit plane/shear direction combinations reveals a link between the anisotropy and asymmetry of the mechanical response of SMA single crystals, and the crystallography of the martensitic transformation.

  20. Microthermodynamics analysis of the shape memory effect in composite materials

    SciTech Connect

    Boyd, J.G.; Lagoudas, D.C.

    1994-12-31

    The shape memory effect and pseudoelasticity due to phase transformation in shape memory alloy (SMA) composites is modeled using a two part procedure. First, phenomenological constitutive equations are proposed for the monolithic polycrystalline SMA material. The equations are of the generalized standard material type, in which the response is given by a convex free energy function and a dissipation potential. Second, a micromechanics analysis of a SMA composite material is performed to derive its free energy, transformation strain rate, and Clausius-Clapeyron equation. Specific results are given for a Nitinol SMA fiber/elastomer matrix composite.

  1. Thermoelectric control of shape memory alloy microactuators: a thermal model

    NASA Astrophysics Data System (ADS)

    Abadie, J.; Chaillet, Nicolas; Lexcellent, Christian; Bourjault, Alain

    1999-06-01

    Microtechnologies and microsystems engineering use new active materials. These materials are interesting to realize microactuators and microsensors. In this category of materials, Shape Memory Alloys (SMA) are good candidates for microactuation. SMA wires, or thin plates, can be used as active material in microfingers. These microstructures are able to provide very important forces, but have low dynamic response, especially for cooling, in confined environment. The control of the SMA phase transformations, and then the mechanical power generation, is made by the temperature. The Joule effect is an easy and efficiency way to heat the SMA wires, but cooling is not so easy. The dynamic response of the actuator depends on cooling capabilities. The thermal convection and conduction are the traditional ways to cool the SMA, but have limitations for microsystems. We are looking for a reversible way of heating and cooling SMA microactuators, based on the thermoelectric effects. Using Peltier effect, a positive or a negative electrical courant is able to pump or produce heat, in the SMA actuator. A physical model based on thermal exchanges between a Nickel/Titanium (NiTi) SMA, and Bismuth/Telluride (Te3Bi2) thermoelectric material has been developed. For simulation, we use a numerical resolution of our model, with finite elements, which takes into account the Peltier effect, the Joule effect, the convection, the conduction and the phase transformation of the SMA. We have also developed the corresponding experimental system, with two thermoelectric junctions, where the SMA actuator is one of the element of each junction. In this paper, the physical model and its numerical resolution are given, the experimental system used to validate the model is described, and experimental results are shown.

  2. Shape memory polymer network with thermally distinct elasticity and plasticity

    PubMed Central

    Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao

    2016-01-01

    Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077

  3. Tension, compression, and bending of superelastic shape memory alloy tubes

    NASA Astrophysics Data System (ADS)

    Reedlunn, Benjamin; Churchill, Christopher B.; Nelson, Emily E.; Shaw, John A.; Daly, Samantha H.

    2014-02-01

    While many uniaxial tension experiments of shape memory alloys (SMAs) have been published in the literature, relatively few experimental studies address their behavior in compression or bending, despite the prevalence of this latter deformation mode in applications. In this study, superelastic NiTi tubes from a single lot of material were characterized in tension, compression, and pure bending, which allowed us to make direct comparisons between the deformation modes for the first time. Custom built fixtures were used to overcome some long-standing experimental difficulties with performing well-controlled loading and accurate measurements during uniaxial compression (avoiding buckling) and large-rotation bending. In all experiments, the isothermal, global, mechanical responses were measured, and stereo digital image correlation (DIC) was used to measure the evolution of the strain fields on the tube's outer surface.As is characteristic of textured NiTi, our tubes exhibited significant tension-compression asymmetry in their uniaxial responses. Stress-induced transformations in tension exhibited flat force plateaus accompanied by strain localization and propagation. No such localization, however, was observed in compression, and the stress "plateaus" during compression always maintained a positive tangent modulus. While our uniaxial results are similar to the observations of previous researchers, the DIC strain measurements provided details of localized strain behavior with more clarity and allowed more quantitative measurements to be made. Consistent with the tension-compression asymmetry, our bending experiments showed a significant shift of the neutral axis towards the compression side. Furthermore, the tube exhibited strain localization on the tension side, but no localization on the compression side during bending. This is a new observation that has not been explored before. Detailed analysis of the strain distribution across the tube diameter revealed that the

  4. Energetic shape recovery associated with martensitic transformation in shape-memory alloys

    SciTech Connect

    Golestaneh, A.A.

    1980-01-01

    The present paper contains an investigation of the mechanical energy associated with the transformation of the stress-induced martensite, ..beta..', to the parent phase, ..beta.., during the shape recovery (SR) of a deformed shape-memory (SM) material. We describe a heat-mechanical energy converter, or solid-state engine, which operates by this SR phenomenon. The energy output of such an engine is expressed in terms of a fraction ..cap alpha.. of the latent heat ..delta..H of the martensitic reaction. This ..cap alpha.. is found to depend on two parameters. One is the difference between the ..delta..H of the ..beta..' ..-->.. ..beta.. reaction and the ..delta..H of the transformation of the quench-induced martensite, ..gamma..', to ..beta.., the other is the fraction of ..gamma..' which can be transformed via the channel ..gamma..' ..-->.. ..beta..' ..-->.. ..beta.. instead of the direct channel ..gamma..' ..-->.. ..beta... Moreover, it is shown that within certain ranges of temperature T and applied strain epsilon, the heat-mechanical energy balance equation leads to an expression identical in form to the Clapeyron-Clausius equation, which is usually valid for a first-order transition. Within these epsilon and T ranges the coefficient ..cap alpha.. is also found to be equal to log (T/sub csigma//T/sub c/) where T/sub csigma/ and T/sub c/ are the SR critical temperatures with and without the presence of an applied stress sigma, respectively. We discuss the role of the ..gamma..' martensite in this process and explain the so-called two-way SR phenomenon. In addition, the parameters that limit the output of the SR energy are evaluated. This output depends sensitively on both ..cap alpha.. and the material characteristic temperature h = C/sup -1/..delta..H, where C is the specific heat. For a solid-state engine made with the Ni-Ti SM alloy, the efficiency is found to be limited to about 5%.

  5. Molecular beam epitaxial growth and characterization of single crystal ferromagnetic shape memory nickel-manganese-gallium films

    NASA Astrophysics Data System (ADS)

    Dong, Jianwei

    In this thesis, single-crystal ferromagnetic shape memory Ni2MnGa thin films have been grown by molecular beam epitaxy (MBE) on GaAs substrates. The properties of the as-grown and free-standing Ni2MnGa films have been thoroughly investigated. It is demonstrated for the first time that the free-standing Ni2MnGa films can be deformed macroscopically by an external magnetic field, which strongly supports the idea of developing Ni2MnGa-based ferromagnetic micro-electro-mechanical-system (MEMS) actuators to realize both large strain and fast response. The MBE growth of Ni2MnGa thin films was carried out using GaAs (001) substrates. The effects of NiGa and ScErAs interlayers, alternate layer epitaxy, and growth temperatures on the structural and magnetic properties of the epitaxial Ni2MnGa films have been studied to optimize the growth. Three MBE-stabilized tetragonal phases as well as two martensite structures have been confirmed. The films are ferromagnetic at room temperature and have Curie temperatures ˜340 K. Free-standing patterned Ni2MnGa films were processed using bulk micro-machining techniques in both bridge and cantilever forms with dimensions ranging from 100 to 400 mum. Tent-like configurations have been observed in released bridges at room temperature (RT) in a film with a composition of ˜Ni50Mn30Ga20. Magnetic measurements confirmed that the film was in the martensitic phase at RT with enhanced magnetic anisotropy. In a free-standing cantilever, repeatable martensitic phase transformation and a unique two-way shape memory effect have been observed by polarized light microscopy. Magnetic field induced strain in a free-standing stoichiometric Ni 2MnGa film was studied at low temperatures. When a magnetic field was applied perpendicularly to the film surface at 135--150 K, dramatic shape change has been observed in free-standing bridges. The shape change saturated at ˜1.2 Tesla. Heating the film up to ˜200 K reverted the sample to the austenite phase and

  6. Microscopic mechanisms of the shape memory effect in crosslinked polymers

    NASA Astrophysics Data System (ADS)

    Davidson, Jacob D.; Goulbourne, N. C.

    2015-05-01

    In this work we perform coarse-grained molecular dynamics (MD) simulations to study the molecular origins of the thermal shape memory effect in crosslinked polymer materials. Thermal shape memory polymers (SMPs) are materials able to hold a deformed shape when cooled below the glass transition temperature, and subsequently recover the initial shape when heated. To use SMPs in various applications requires materials which reliably hold and recover their shapes; this has sparked recent synthesis work to create new SMP materials with optimized properties. Here we use coarse-grained MD simulations with different polymer chain models to determine which parameters affect relevant SMP behavior and to investigate the molecular mechanisms at the level of individual chains during temperature cycling. The simulations show how temperature-dependent chain mobility leads to shape memory polymer behavior. In particular, we demonstrate the importance of attractive monomer interactions in leading to ‘good’ SMP behavior. The results suggest promising routes for material development. Additionally, the mechanisms identified with the simple simulation model can be used to inform multi-scale models of SMP material behavior.

  7. Surface Form Memory in NiTi: Energy Density of Constrained Recovery During Indent Replication

    NASA Astrophysics Data System (ADS)

    Fei, Xueling; O'Connell, Corey J.; Grummon, David S.; Cheng, Yang-Tse

    2009-08-01

    Spherical indentation of NiTi shape memory alloys (SMA) to depths greater than about 3% of the indenter radius results in two-way shape-memory training in a deformation zone beneath the indent. If deep spherical or cylindrical indents are subsequently machined away just sufficiently to remove traces of the original indent (in the martensitic condition), a thermally induced and cyclically reversible flat-to-protruded surface topography is enabled. We term the phenomenon surface form memory. The amplitude of cyclic protrusions, or ‘exdents’, is related to the existence of a subsurface deformation zone in which indentation has resulted in plastic strains beyond that which can be accomplished by martensite detwinning reactions. Dislocation generation in this zone is thought to underlie the observed two-way shape-memory (TWSME) training effect. In this article, we show that these cyclic exdents can perform appreciable mechanical work when displacing under load against a base-metal substrate (constrained recovery). This “non-Hertzian” indentation, which appears to be able to exert the full energy density of SMA actuation, may have use for assembly of micromachines, bond-release, microforging, microjoining, electrical switching, microconnectors, and variable heat transfer devices, among many other potential applications.

  8. Modeling thermomechanical processes in shape memory polymers under finite deformations

    NASA Astrophysics Data System (ADS)

    Rogovoi, A. A.; Stolbova, O. S.

    2015-11-01

    A model taking into account finite deformations is constructed for the behavior of a shape memory polymer which undergoes a transition from the highly elastic to the vitreous state and back during deformation and temperature change. The obtained relations are tested on problems which have experimental support.

  9. The precision of visual memory for a complex contour shape measured by a freehand drawing task.

    PubMed

    Osugi, Takayuki; Takeda, Yuji

    2013-03-01

    Contour information is an important source for object perception and memory. Three experiments examined the precision of visual short-term memory for complex contour shapes. All used a new procedure that assessed recall memory for holistic information in complex contour shapes: Participants studied, then reproduced (without cues), a contoured shape by freehand drawing. In Experiment 1 memory precision was measured by comparing Fourier descriptors for studied and reproduced contours. Results indicated survival of lower (holistic) frequency information (i.e., ⩽5cycles/perimeter) and loss of higher (detail) frequency information. Secondary tasks placed demands on either verbal memory (Experiment 2) or visual spatial memory (Experiment 3). Neither secondary task interfered with recall of complex contour shapes, suggesting that the memory system maintaining holistic shape information was independent of both the verbal memory system and the visual spatial memory subsystem of visual short-term memory. The nature of memory for complex contour shape is discussed. PMID:23296198

  10. Assessment of Shape Memory Alloys - From Atoms To Actuators - Via In Situ Neutron Diffraction

    NASA Technical Reports Server (NTRS)

    Benafan, Othmane

    2014-01-01

    As shape memory alloys (SMAs) become an established actuator technology, it is important to identify the fundamental mechanisms responsible for their performance by understanding microstructure performance relationships from processing to final form. Yet, microstructural examination of SMAs at stress and temperature is often a challenge since structural changes occur with stress and temperature and microstructures cannot be preserved through quenching or after stress removal, as would be the case for conventional materials. One solution to this dilemma is in situ neutron diffraction, which has been applied to the investigation of SMAs and has offered a unique approach to reveal the fundamental micromechanics and microstructural aspects of bulk SMAs in a non-destructive setting. Through this technique, it is possible to directly correlate the micromechanical responses (e.g., internal residual stresses, lattice strains), microstructural evolutions (e.g., texture, defects) and phase transformation properties (e.g., phase fractions, kinetics) to the macroscopic actuator behavior. In this work, in situ neutron diffraction was systematically employed to evaluate the deformation and transformation behavior of SMAs under typical actuator conditions. Austenite and martensite phases, yield behavior, variant selection and transformation temperatures were characterized for a polycrystalline NiTi (49.9 at. Ni). As the alloy transforms under thermomechanical loading, the measured textures and lattice plane-level variations were directly related to the cyclic actuation-strain characteristics and the dimensional instability (strain ratcheting) commonly observed in this alloy. The effect of training on the shape memory characteristics of the alloy and the development of two-way shape memory effect (TWSME) were also assessed. The final conversion from a material to a useful actuator, typically termed shape setting, was also investigated in situ during constrained heatingcooling and

  11. The implantation of a Nickel-Titanium shape memory alloy ameliorates vertebral body compression fractures: a cadaveric study

    PubMed Central

    Chen, Bo; Zheng, Yue-Huang; Zheng, Tao; Sun, Chang-Hui; Lu, Jiong; Cao, Peng; Zhou, Jian-Hua

    2015-01-01

    Objective: To evaluate the effect of a Nickel-Titanium (Ni-Ti) shape memory alloy in the treatment of vertebral body compression fractures. Methods: The experimental thoracic-lumbar fracture units were made with adult human fresh-frozen vertebral specimens. A total of 30 fresh-frozen vertebral units were randomly assigned to 3 experimental groups: control group, percutaneous kyphoplasty group (PKP group), and percutaneous Ni-Ti shape memory alloys implant group (Ni-Ti implant group). Vertebral height and ultimate compression load of the vertebral body before and after procedures were measured to determine the restoration of vertebral heights and compressive strength, respectively. Results: The Ni-Ti implant group achieved a vertebrae endplate reduction effect comparable to the PKP group. The vertebral height of the PKP group was restored from 2.01±0.21 cm to 2.27±0.18 cm after procedure, whereas that of the Ni-Ti implant group was restored from 2.00±0.18 cm to 2.31±0.17 cm. The ultimate loads of the vertebrae body of the PKP and the Ni-Ti implant groups were 2880.75±126.17 N and 2888.00±144.69 N, respectively, both of which were statistically significantly higher than that of the control group (2017.17±163.71 N). There was no significant difference in ultimate compression load of vertebrae body between the Ni-Ti implant and PKP groups. Conclusions: The implantation of Ni-Ti shape memory alloys of vertebral body induced effective endplate reduction, restored vertebral height, and provided immediate biomechanical spinal stability. PMID:26629241

  12. Development of magnetic shape memory alloy actuators for a swashplateless helicopter rotor

    NASA Astrophysics Data System (ADS)

    Couch, Ronald Newton

    Actuator concepts utilizing NiMnGa, ferromagnetic shape memory alloy are investigated for potential use on a smart rotor for trailing edge flap actuation. With their high energy density, large dynamic stroke, and wide operating bandwidth, ferromagnetic shape memory alloys (FSMA) like NiMnGa, seem like attractive candidates for smart rotor actuators, potentially able to fulfill the requirements for both primary rotor control and vibration suppression. However, because of the recent discovery of the material, current experimental data and analytical tools are limited. To rectify these shortcomings, an extensive set of detailed experiments were conducted on samples of NiMnGa to characterize the response of the alloy for a wide variety of mechanical and magnetic loading conditions. Measurements of the material performance parameters such as power density, damping properties, magneto-mechanical coupling, and transduction efficiency were included. Once characterized, the experimental data were used to develop a series of analytical tools to predict the behavior of the material. A model, developed in parallel to thermal shape memory alloy models is proposed to predict the quasi-static stress-strain behavior. A simple, low frequency, parameter based model was also developed to predict the alloy's dynamic strain response. A method for developing conceptual actuators utilizing NiMnGa as the actuation element was proposed. This approach incorporates experimental data into a process that down-selects a series of possible actuator configurations to obtain a single configuration optimized for volumetric and weight considerations. The proposed actuator was designed to deliver 2 mm of stroke and 60 N of force at an actuation frequency of 50 Hz. However, to generate the 1.0 T magnetic field, the actuator mass was determined to be 2.8 kg and required a minimum of 320 Watts of power for operation. The mass of the NiMnGa element was only 18.3 g. It was concluded that although the Ni

  13. Design of two-way reversible bending actuator based on a shape memory alloy/shape memory polymer composite

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Liang, Yuanchang; Namli, Onur C.; Tamagawa, Hirohisa; Howie, Tucker

    2013-10-01

    The design of a reversible bending actuator based on a SMA/SMP composite is presented. The SMA/SMP composite is made of SMA NiTi wires with a bent ‘U’-shape in the austenite phase embedded in an epoxy SMP matrix which has a memorized flat shape. The bending motion is caused by heating the composite above TAf to activate the NiTi recovery. Upon cooling, the softening from the austenite to R-phase transformation results in a relaxation of the composite towards its original flat shape. In the three-point bending measurement the composite was able to exhibit a reversible deflection of 1.3 mm on a support with a 10 mm span. In addition, a material model for predicting the composite’s deflection is presented and predicts the experimental results reasonably well. The model also estimates the in-plane internal force and the degree of the SMA phase transformation.

  14. Hot Workability of CuZr-Based Shape Memory Alloys for Potential High-Temperature Applications

    NASA Astrophysics Data System (ADS)

    Biffi, Carlo Alberto; Tuissi, Ausonio

    2014-07-01

    The research on high-temperature shape memory alloys has been growing because of the interest of several potential industrial fields, such as automotive, aerospace, mechanical, and control systems. One suitable candidate is given by the CuZr system, because of its relative low price in comparison with others, like the NiTi-based one. In this context, the goal of this work is the study of hot workability of some CuZr-based shape memory alloys. In particular, this study addresses on the effect of hot rolling process on the metallurgical and calorimetric properties of the CuZr system. The addition of some alloying elements (Cr, Co, Ni, and Ti) is taken into account and their effect is also put in comparison with each other. The alloys were produced by means of an arc melting furnace in inert atmosphere under the shape of cigars. Due to the high reactivity of these alloys at high temperature, the cigars were sealed in a stainless steel can before the processing and two different procedures of hot rolling were tested. The characterization of the rolled alloys is performed using discrete scanning calorimetry in terms of evolution of the martensitic transformation and scanning electron microscopy for the microstructural investigations. Additionally, preliminary tests of laser interaction has been also proposed on the alloy more interesting for potential applications, characterized by high transformation temperatures and its good thermal stability.

  15. Effects of memory on the shapes of simple outbreak trees

    PubMed Central

    Plazzotta, Giacomo; Kwan, Christopher; Boyd, Michael; Colijn, Caroline

    2016-01-01

    Genomic tools, including phylogenetic trees derived from sequence data, are increasingly used to understand outbreaks of infectious diseases. One challenge is to link phylogenetic trees to patterns of transmission. Particularly in bacteria that cause chronic infections, this inference is affected by variable infectious periods and infectivity over time. It is known that non-exponential infectious periods can have substantial effects on pathogens’ transmission dynamics. Here we ask how this non-Markovian nature of an outbreak process affects the branching trees describing that process, with particular focus on tree shapes. We simulate Crump-Mode-Jagers branching processes and compare different patterns of infectivity over time. We find that memory (non-Markovian-ness) in the process can have a pronounced effect on the shapes of the outbreak’s branching pattern. However, memory also has a pronounced effect on the sizes of the trees, even when the duration of the simulation is fixed. When the sizes of the trees are constrained to a constant value, memory in our processes has little direct effect on tree shapes, but can bias inference of the birth rate from trees. We compare simulated branching trees to phylogenetic trees from an outbreak of tuberculosis in Canada, and discuss the relevance of memory to this dataset. PMID:26888437

  16. Effects of memory on the shapes of simple outbreak trees.

    PubMed

    Plazzotta, Giacomo; Kwan, Christopher; Boyd, Michael; Colijn, Caroline

    2016-01-01

    Genomic tools, including phylogenetic trees derived from sequence data, are increasingly used to understand outbreaks of infectious diseases. One challenge is to link phylogenetic trees to patterns of transmission. Particularly in bacteria that cause chronic infections, this inference is affected by variable infectious periods and infectivity over time. It is known that non-exponential infectious periods can have substantial effects on pathogens' transmission dynamics. Here we ask how this non-Markovian nature of an outbreak process affects the branching trees describing that process, with particular focus on tree shapes. We simulate Crump-Mode-Jagers branching processes and compare different patterns of infectivity over time. We find that memory (non-Markovian-ness) in the process can have a pronounced effect on the shapes of the outbreak's branching pattern. However, memory also has a pronounced effect on the sizes of the trees, even when the duration of the simulation is fixed. When the sizes of the trees are constrained to a constant value, memory in our processes has little direct effect on tree shapes, but can bias inference of the birth rate from trees. We compare simulated branching trees to phylogenetic trees from an outbreak of tuberculosis in Canada, and discuss the relevance of memory to this dataset. PMID:26888437

  17. Development and experimental evaluation of a novel annuloplasty ring with a shape memory alloy core

    NASA Astrophysics Data System (ADS)

    Purser, Molly Ferris

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring provides comparable mechanical properties as commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8 mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.508 mm diameter NiTi, which is maintained below its M s temperature (24°C) during deployment and suturing. After suturing, the stiffener is heated to its Af temperature (37°C, normal human body temperature) enabling the NiTi to retain its optimal geometry and stiffness characteristics indefinitely. The NiTi core is shape set in a furnace to the appropriate size and optimal geometry during fabrication. The ring is cooled in a saline bath prior to surgery, making it compliant and easy to manipulate. Evaluation of the ring included mechanical testing, robotic evaluation, static pressure testing, dynamic flow testing and fatigue testing. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted mitral valve repair.

  18. Shape memory-based tunable resistivity of polymer composites

    NASA Astrophysics Data System (ADS)

    Luo, Hongsheng; Zhou, Xingdong; Ma, Yuanyuan; Yi, Guobin; Cheng, Xiaoling; Zhu, Yong; Zu, Xihong; Zhang, Nanjun; Huang, Binghao; Yu, Lifang

    2016-02-01

    A conductive composite in bi-layer structure was fabricated by embedding hybrid nanofillers, namely carbon nanotubes (CNTs) and silver nanoparticles (AgNPs), into a shape memory polyurethane (SMPU). The CNT/AgNP-SMPU composites exhibited a novel tunable conductivity which could be facially tailored in wide range via the compositions or a specifically designed thermo-mechanical shape memory programming. The morphologies of the conductive fillers and the composites were investigated by scanning electron microscope (SEM). The mechanical and thermal measurements were performed by tensile tests and differential scanning calorimetry (DSC). By virtue of a specifically explored shape memory programming, the composites were stretched and fixed into different temporary states. The electrical resistivity (Rs) varied accordingly, which was able to be stabilized along with the shape fixing. Theoretical prediction based upon the tunneling model was performed. The Rs-strain curves of the composites with different compositions were well fitted. Furthermore, the relative resistivity and the Gauge factor along with the elongation were calculated. The influence of the compositions on the strain-dependent Rs was disclosed. The findings provided a new avenue to tailor the conductivity of the polymeric nano-composites by combining the composition method and a thermo-mechanical programming, which may greatly benefit the application of intelligent polymers in flexible electronics and sensors fields.

  19. Chitosan/bioactive glass nanoparticles scaffolds with shape memory properties.

    PubMed

    Correia, Cristina O; Leite, Álvaro J; Mano, João F

    2015-06-01

    We propose a combination of chitosan (CHT) with bioactive glass nanoparticles (BG-NPs) in order to produce CHT/BG-NPs scaffolds that combine the shape memory properties of chitosan and the biomineralization ability of BG-NPs for applications in bone regeneration. The addition of BG-NPs prepared by a sol-gel route to the CHT polymeric matrix improved the bioactivity of the nanocomposite scaffold, as seen by the precipitation of bone-like apatite layer upon immersion in simulated body fluid (SBF). Shape memory tests were carried out while the samples were immersed in varying compositions of water/ethanol mixtures. Dehydration with ethanol enables to fix a temporary shape of a deformed scaffold that recovers the initial geometry upon water uptake. The scaffolds present good shape memory properties characterized by a recovery ratio of 87.5% for CHT and 89.9% for CHT/BG-NPs and a fixity ratio of 97.2% for CHT and 98.2% for CHT/BG-NPs (for 30% compressive deformation). The applicability of such structures was demonstrated by a good geometrical accommodation of a previously compressed scaffold in a bone defect. The results indicate that the developed CHT/BG-NPs nanocomposite scaffolds have potential for being applied in bone tissue engineering. PMID:25843832

  20. Does learning to read shape verbal working memory?

    PubMed

    Demoulin, Catherine; Kolinsky, Régine

    2016-06-01

    Many experimental studies have investigated the relationship between the acquisition of reading and working memory in a unidirectional way, attempting to determine to what extent individual differences in working memory can predict reading achievement. In contrast, very little attention has been dedicated to the converse possibility that learning to read shapes the development of verbal memory processes. In this paper, we present available evidence that advocates a more prominent role for reading acquisition on verbal working memory and then discuss the potential mechanisms of such literacy effects. First, the early decoding activities might bolster the development of subvocal rehearsal, which, in turn, would enhance serial order performance in immediate memory tasks. In addition, learning to read and write in an alphabetical system allows the emergence of phonemic awareness and finely tuned phonological representations, as well as of orthographic representations. This could improve the quality, strength, and precision of lexical representations, and hence offer better support for the temporary encoding of memory items and/or for their retrieval. PMID:26438254