Science.gov

Sample records for ni-based organometallic compounds

  1. Organometallic chemistry of bimetallic compounds

    SciTech Connect

    Casey, C.P.

    1991-07-01

    This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)

  2. Nonsteroidal Anti-inflammatory-Organometallic Anticancer Compounds.

    PubMed

    Păunescu, Emilia; McArthur, Sarah; Soudani, Mylène; Scopelliti, Rosario; Dyson, Paul J

    2016-02-15

    Compounds that combine metal-based drugs with covalently linked targeted organic agents have been shown, in some instances, to exhibit superior anticancer properties compared to the individual counterparts. Within this framework, we prepared a series of organometallic ruthenium(II)- and osmium(II)-p-cymene complexes modified with the nonsteroidal anti-inflammatory drugs (NSAIDs) indomethacin and diclofenac. The NSAIDs are attached to the organometallic moieties via monodentate (pyridine/phosphine) or bidentate (bipyridine) ligands, affording piano-stool Ru(II) and Os(II) arene complexes of general formula [M(η(6)-p-cymene)Cl2(N)], where N is a pyridine-based ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-3-(pyridin-3-yl)propanoate}, [M(η(6)-p-cymene)Cl2(P)], where P is a phosphine ligand, {2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate} or {2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl-4-(diphenylphosphanyl)benzoate, and [M(η(6)-p-cymene)Cl(N,N')][Cl], where N,N' is a bipyridine-based ligand, (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate), (4'-methyl-[2,2'-bipyridin]-4-yl)methyl-2-(2-((2,6-dichlorophenyl)amino)phenyl)acetate), (bis(2-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate), or (bis(2-(2-(2-((2,6-dichlorophenyl)amino)phenyl)acetoxy)ethyl)[2,2'-bipyridine]-5,5'-dicarboxylate). The antiproliferative properties of the complexes were assessed in human ovarian cancer cells (A2780 and A2780cisR, the latter being resistant to cisplatin) and nontumorigenic human embryonic kidney (HEK-293) cells. Some of the complexes are considerably more cytotoxic than the original drugs and also display significant cancer cell selectivity. PMID:26824462

  3. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    SciTech Connect

    Costuas, Karine

    2015-01-22

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  4. Molecular switches in carbon-rich organometallic compounds: Theoretical aspects

    NASA Astrophysics Data System (ADS)

    Costuas, Karine

    2015-01-01

    Organometallic complexes associated with an appropriate choice of ancillary ligands reveal to have a wide range of physical properties leading to promising applications when incorporated in nano-size devices. The challenge is to design innovative multifunctional compounds based on redox active carbon-rich organometallics associated with spin carriers and/or photochromic units. A multidisciplinary approach in this area has proved to be efficient in a series a systems combining carbon-rich bridging ligands and redox metallic moieties. In this domain, the role of theoretical investigations based on quantum mechanics tools have a crucial role in rationalizing and in helping designing systems possessing target properties.

  5. A Review of the Tissue Residue Approach for Organic and Organometallic Compounds in Aquatic Organisms

    EPA Science Inventory

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (tin, mercury, and lead). Specific emphasis was placed on evaluating key factors that influence interpretation of critical body resid...

  6. Facile Separation of Regioisomeric Compounds by a Heteronuclear Organometallic Capsule.

    PubMed

    Zhang, Wen-Ying; Lin, Yue-Jian; Han, Ying-Feng; Jin, Guo-Xin

    2016-08-24

    Owing to the often-similar physical and chemical properties of structural isomers of organic molecules, large efforts have been made to develop efficient strategies to isolate specific isomers. However, facile separation of regioisomeric compounds remains difficult. Here we demonstrate a universal organometallic capsule in which two silver centers are rigidly separated from each other by two tetranuclear [Rh4] pyramidal frustums, which selectively encapsulate a specific isomer from mixtures. Not only is the present heterometallic capsule suitable as a host for the encapsulation of a series of aromatic compounds, but also the receptor shows widely differing specificity for the various isomers. Direct experimental evidence is provided for the selective encapsulation of a series of para (p)-disubstituted benzene derivatives, such as p-xylene, p-dichlorobenzene, p-dibromobenzene, and p-diiodobenzene. The size and shape matching, as well as the Ag-π interactions, are the main forces governing the extent of molecular recognition. The encapsulated guest p-xylene can be released by using the solid-liquid solvent washing strategy, and the other guest molecules are easily liberated by using light stimulus. PMID:27463561

  7. Group 9 organometallic compounds for therapeutic and bioanalytical applications.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2014-12-16

    CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein

  8. Preparation of nanoparticles and organometallic compounds via the SMAD technique

    NASA Astrophysics Data System (ADS)

    Ponce, Audaldo A.

    The SMAD method is a versatile synthetic technique for preparation of organometallic compounds, colloids and nanostructured materials from metals and semiconductors. In this work we use this technique to prepare beta-diketonate complexes of Ba and Cu, nanoparticles of Fe-SiO and copper, and for first time nanoparticles of ionic salt-like compounds. The evaporation and cocondensation of Fe, SiO, and an organic solvent, produces nanoparticles of Fe-SiO that when heat treated and passivated, acquire a core-shell structure that protects the iron core from oxidation, preserving its magnetic properties. beta-Diketonate complexes of Ba and Cu have been prepared free of water and with a considerable purity. Moreover, a striking finding was the dependence of the reactivity of the copper particles with their size toward the formation of the beta-diketonate complex. Nanocrystalline particles of copper have been prepared, and their chemical and catalytic reactivity have been tested in the Ullman reaction and the hydrogenation of CO2 to form CH3OH. Their chemical reactivity in the Ullman reaction is proportional to their surface area, and more reactive that those found in literature, with a maximum yield of 90% biphenyl at 150°C after 6 h. for the Cu*/toluene sample. Their catalytic activity tested using nanocrystalline ZnO as a support, resulted in a maximum conversion of 80% from CO2 to CH3OH. Nanocrystalline LiF particles have been successfully prepared with surface areas of 230--520 m2/g and with crystallite size of 5--10 nm. These particles present resistance to sintering when heated from room temperature up to 200°C. These samples can be densified without crystallite growth.

  9. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  10. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  11. 40 CFR 721.10414 - Polycyclic polyamine diester organometallic compound (generic) (P-10-358).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Polycyclic polyamine diester organometallic compound (generic) (P-10-358). 721.10414 Section 721.10414 Protection of Environment ENVIRONMENTAL... compound (generic) (P-10-358). (a) Chemical substance and significant new uses subject to reporting....

  12. Model for the Vaporization of Mixed Organometallic Compounds in the Metalorganic Chemical Vapor Deposition of High Temperature Superconducting Films

    NASA Technical Reports Server (NTRS)

    Meng, Guangyao; Zhou, Gang; Schneider, Roger L.; Sarma, Bimal K.; Levy, Moises

    1993-01-01

    A model of the vaporization and mass transport of mixed organometallics from a single source for thin film metalorganic chemical vapor deposition is presented. A stoichiometric gas phase can be obtained from a mixture of the organometallics in the desired mole ratios, in spite of differences in the volatilities of the individual compounds. Proper film composition and growth rates are obtained by controlling the velocity of a carriage containing the organometallics through the heating zone of a vaporizer.

  13. Using Molecular Modeling in Teaching Group Theory Analysis of the Infrared Spectra of Organometallic Compounds

    ERIC Educational Resources Information Center

    Wang, Lihua

    2012-01-01

    A new method is introduced for teaching group theory analysis of the infrared spectra of organometallic compounds using molecular modeling. The main focus of this method is to enhance student understanding of the symmetry properties of vibrational modes and of the group theory analysis of infrared (IR) spectra by using visual aids provided by…

  14. Organometallic chemistry of bimetallic compounds. Final progress report

    SciTech Connect

    Casey, C.P.

    1991-07-01

    This report consists of six sections: heterobimetallic dihydrides, early-late transition metal heterobimetallic compounds, amphiphilic carbene complexes and hydroxycarbene complexes, diiron compounds with bridging hydrocarbon ligands, diphosphine chelates with natural bite angles near 120 degrees, and synthesis and reactions of M=M compounds. (WET)

  15. Five-membered metallacycles of titanium and zirconium--attractive compounds for organometallic chemistry and catalysis.

    PubMed

    Rosenthal, Uwe; Burlakov, Vladimir V; Bach, Marc A; Beweries, Torsten

    2007-05-01

    In these days a renaissance of metallacycles as an increasingly important class of organometallic compounds for synthetic and catalytic applications is evident, making such very attractive for a plethora of investigations. Titanocene and zirconocene bis(trimethylsilyl)acetylene complexes, regarded as three-membered metallacycles (1-metallacyclopropenes), present a rich chemistry towards unsaturated molecules. By elimination of the alkyne these complexes form by reaction with unsaturated compounds five-membered titana- and zirconacycles, all of which are relevant to stoichiometric and catalytic C-C coupling and cleavage reactions of unsaturated molecules. PMID:17471397

  16. Absorption of organic compounds and organometallics on ceramic substrates for wear reduction

    SciTech Connect

    Kennedy, P.J.; Agarwala, V.S.

    1996-12-31

    The concept of employing thermally stable compounds (that is, metal oxides) as high temperature vapor phase ceramic lubricants was investigated. A major part of this study was devoted to the development of various calorimetric and tribological techniques that could be used to determine interfacial reactions between thermally stable compounds and ceramic substrates such as zirconia and alumina. This interaction is pivotal in understanding the mechanism of high temperature lubricity. The approach consisted of selecting low sublimation temperature materials and measuring their thermodynamic interactions as vapors with the ceramic substrates. The materials studied included two easily sublimable organic compounds (that is, naphthalene and salicylic acid) and several organometallics (for example, copper phthalocyanine). Thermodynamic data such as heat of adsorption, packing density, and reversibility of the adsorption were obtained on some of these compounds and were related to wear characteristics. All of these compounds provided effective lubrication at room temperature. Copper phthalocyanine was an effective lubricant at temperatures up to 400 C.

  17. Thermal lens and all optical switching of new organometallic compound doped polyacrylamide gel

    NASA Astrophysics Data System (ADS)

    Badran, Hussain Ali

    In this work thermal lens spectrometry (TLS) is applied to investigate the thermo-optical properties of new organometallic compound containing azomethine group, Dichloro bis [2-(2-hydroxybenzylideneamino)-5-methylphenyl] telluride platinum(II), doped polyacrylamide gel using transistor-transistor logic (TTL) modulated cw 532 nm laser beam as an excitation beam modulated at 10 Hz frequency and probe beam wavelength 635 nm at 14 mW. The technique is applied to determine the thermal diffusivities, ds/dT and the linear thermal expansion coefficient of the sample. All-optical switching effects with low background and high stability are demonstrated.

  18. Anti-leishmanial activity of heteroleptic organometallic Sb(v) compounds.

    PubMed

    Ali, Muhammad Irshad; Rauf, Muhammad Khawar; Badshah, Amin; Kumar, Ish; Forsyth, Craig M; Junk, Peter C; Kedzierski, Lukasz; Andrews, Philip C

    2013-12-28

    In seeking new drugs for the treatment of the parasitic disease Leishmaniasis, an extensive range of organometallic antimony(v) dicarboxylates of the form [SbR3(O2CR')2] have been synthesised, characterised and evaluated. The organometallic moieties (R) in the complexes vary in being Ph, tolyl (o, m or p), or benzyl. The carboxylates are predominantly substituted benzoates with some compounds incorporating acetato or cinnamato ligands. The crystal structures of [Sb(p-Tol)3(O2CC6H2-3,4,5-(OMe)3)2]·0.5PhMe and [SbPh3(m-CH3C6H4CH2CO2)2] were determined and shown to adopt a typical trigonal pyramidal geometry, being monomeric with a five coordinate Sb centre. In total, the biological activity of 26 Sb(v) compounds was assessed against the Leishmania major parasite, and also human fibroblast skin cells to give a measure of general toxicity. Of these, 11 compounds (predominantly substituted benzoates with m- or p-tolyl ligands) proved to be highly effective against the parasite amastigotes at concentrations of 0.5-3.5 μM, while being non-toxic towards the mammalian cells at levels below 25 μM, making them highly promising drug candidates. PMID:24077559

  19. A review of the tissue residue approach for organic and organometallic compounds in aquatic organisms.

    PubMed

    McElroy, Anne E; Barron, Mace G; Beckvar, Nancy; Driscoll, Susan B Kane; Meador, James P; Parkerton, Tom F; Preuss, Thomas G; Steevens, Jeffery A

    2011-01-01

    This paper reviews the tissue residue approach (TRA) for toxicity assessment as it applies to organic chemicals and some organometallic compounds (Sn, Hg, and Pb) in aquatic organisms. Specific emphasis was placed on evaluating key factors that influence interpretation of critical body residue (CBR) toxicity metrics including data quality issues, lipid dynamics, choice of endpoints, processes that alter toxicokinetics and toxicodynamics, phototoxicity, species- and life stage-specific sensitivities, and biotransformation. The vast majority of data available on TRA is derived from laboratory studies of acute lethal responses to organic toxicants exhibiting baseline toxicity. Application of the TRA to various baseline toxicants as well as substances with specific modes of action via receptor-mediated processes, such as chlorinated aromatic hydrocarbons, pesticides, and organometallics is discussed, as is application of TRA concepts in field assessments of tissue residues. In contrast to media-based toxicity relationships, CBR values tend to be less variable and less influenced by factors that control bioavailability and bioaccumulation, and TRA can be used to infer mechanisms of toxic action, evaluate the toxicity of mixtures, and interpret field data on bioaccumulated toxicants. If residue-effects data are not available, body residues can be estimated, as has been done using the target lipid model for baseline toxicants, to derive critical values for risk assessment. One of the primary unresolved issues complicating TRA for organic chemicals is biotransformation. Further work on the influence of biotransformation, a better understanding of contaminant lipid interactions, and an explicit understanding of the time dependency of CBRs and receptor-mediated toxicity are all required to advance this field. Additional residue-effects data on sublethal endpoints, early life stages, and a wider range of legacy and emergent contaminants will be needed to improve the ability

  20. Systems and methods for solar energy storage, transportation, and conversion utilizing photochemically active organometallic isomeric compounds and solid-state catalysts

    DOEpatents

    Vollhardt, K. Peter C.; Segalman, Rachel A; Majumdar, Arunava; Meier, Steven

    2015-02-10

    A system for converting solar energy to chemical energy, and, subsequently, to thermal energy includes a light-harvesting station, a storage station, and a thermal energy release station. The system may include additional stations for converting the released thermal energy to other energy forms, e.g., to electrical energy and mechanical work. At the light-harvesting station, a photochemically active first organometallic compound, e.g., a fulvalenyl diruthenium complex, is exposed to light and is photochemically converted to a second, higher-energy organometallic compound, which is then transported to a storage station. At the storage station, the high-energy organometallic compound is stored for a desired time and/or is transported to a desired location for thermal energy release. At the thermal energy release station, the high-energy organometallic compound is catalytically converted back to the photochemically active organometallic compound by an exothermic process, while the released thermal energy is captured for subsequent use.

  1. Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents.

    PubMed

    Florindo, Pedro R; Pereira, Diane M; Borralho, Pedro M; Rodrigues, Cecília M P; Piedade, M F M; Fernandes, Ana C

    2015-05-28

    New ruthenium(II) and iron(II) organometallic compounds of general formula [(η(5)-C5H5)M(PP)Lc][PF6], bearing carbohydrate derivative ligands (Lc), were prepared and fully characterized and the crystal structures of five of those compounds were determined by X-ray diffraction studies. Cell viability of colon cancer HCT116 cell line was determined for a total of 23 organometallic compounds and SAR's data analysis within this library showed an interesting dependency of the cytotoxic activity on the carbohydrate moiety, linker, phosphane coligands, and metal center. More importantly, two compounds, 14Ru and 18Ru, matched oxaliplatin IC50 (0.45 μM), the standard metallodrug used in CC chemotherapeutics, and our leading compound 14Ru was shown to be significantly more cytotoxic than oxaliplatin to HCT116 cells, triggering higher levels of caspase-3 and -7 activity and apoptosis in a dose-dependent manner. PMID:25923600

  2. Organometallic chemistry of bimetallic compounds. Progress report, January 1992--July 1995

    SciTech Connect

    Casey, C.P.

    1994-07-01

    Four main projects at the interface between organometallic chemistry and homogeneous catalysis were pursued. All were designed to give increased understanding of the mechanisms of organometallic reactions related to homogeneous and heterogeneous catalysis. In addition, a minor study involving {eta}{sup 5}-to {eta}{sup 1}-cyclopentadienyl ring slippage in catalysis was completed.

  3. Electromagnetic absorption and conductivity of organometallic TiOx-Py plasma compounds

    NASA Astrophysics Data System (ADS)

    González-Salgado, Francisco; Olayo, Maria Guadalupe; García-Rosales, Genoveva; Gómez, Lidia Maria; González-Torres, Maribel; Cruz, Guillermo J.

    2016-05-01

    Organometallic compounds made of titanium oxide (TiOx) and pyrrole (Py) were synthesized by plasma to combine the photoelectronic activity of TiO and Py in hybrid materials with potential use in photostimulated processes as photoelectronic devices in pollutant degradation or in solar photocollectors. The Ti precursors were based on titanium tetrapropoxide combined with Py in 1:1 mass ratio in a vacuum tubular glass reactor under resistive electrical glow discharges of water vapor plasmas. The TiOx-Py hybrid compounds with x in the 2.75-3.55 interval absorbed electromagnetic radiation in two regions with different intensities. The first and most intense one was from approximately 190 to 350 nm and the other from roughly 350 to 900 nm, which indicates that in the first interval, the TiO fraction dominates the absorption and that the activity of the second region belonged to Py segments. The electrical conductivity was in the (10-6-10-10) S/m interval with activation energy in the (0.015-2.42) eV range, depending on the reaction time and synthesis conditions.

  4. In silico characterization of a fourfold magnesium organometallic compound in PTCDA thin films.

    PubMed

    Zazza, Costantino; Sanna, Nico; Palma, Amedeo

    2009-12-31

    In this contribution, using first principles calculations within a density functional theory framework, we report, for the first time, evidence for the formation of a fourfold magnesium organometallic compound upon metal deposition on perylene-3,4,9,10-tetracarboxyl dianhydride (PTCDA) organic semiconductor. Current investigation clearly indicates that in the bulk of the organic crystallographic structure the magnesium atom mainly interacts with three PTCDA molecules. The reactive metal is bound both to carboxylic oxygen atoms of the anhydride-end moieties and to a perylene carbon atom which changes its hybridization state, from sp(2) to sp(3), in the presence of metal impurities. In turn, the analysis of the electronic structure of the reacted system prevalently reveals the formation of four covalent bonds, as a consequence of a weak charge transfer toward the organic material. Such a result confirms the capability of the PTCDA thin films to host metal atoms providing, inside their structural empty channels, a rather accessible and soft chemical environment. Interestingly, in the light of these findings and of previous works, a relationship between first ionization potential of the doping metal and the character of the newly formed chemical bonds is confirmed. PMID:19788293

  5. Theoretical Study of Indium Compounds of Interest for Organometallic Chemical Vapor Deposition

    NASA Technical Reports Server (NTRS)

    Cardelino, B. H.; Moore, C. E.; Cardelino, C. A.; Frazier, D. O.; Backmann, K. J.

    2000-01-01

    The structural. electronic and therinochemical properties of indium compounds which are of interest in halide transport and organometallic chemical vapor deposition processes have been studied by ab initio and statistical mechanics methods. The compounds reported include: indium halides and hydrides (InF, InCl, InCl3, InH, InH2, InH3); indium clusters (In2, In3); methylindium, dimethylindium, and their hydrogen derivatives [In(CH3), In(CH3)H, In(CH3)H2, In(CH3)2, In(CH3)2H]; dimethyl-indium dimer [In2(CH3)4], trimethyl-indium [In(CH3)3]; dehydrogenated methyl, dimethyl and trimethylindium [In(CH3)2CH2, In(CH3)CH2, In(CH2)], trimethylindium adducts with ammonia, trimethylamine and hydrazine [(CH3)3In:NH3, (CH3)3In:N(CH3)3, (CH3)3In:N(H2)N(H2)]; dimethylamino-indium and methylimino-indium [In(CH3)2(NH2), In(CH3)(NH)]; indium nitride and indium nitride dimer (InN, In2N2), indium phosphide, arsenide and antimonide ([InP, InAs, InSb). The predicted electronic properties are based on density functional theory calculations; the calculated thermodynamic properties are reported following the format of the JANAF (Joint Army, Navy, NASA, Air Force) Tables. Equilibrium compositions at two temperatures (298 and 1000 K) have been analyzed for groups of competing simultaneous reactions.

  6. Transition-metal organometallic compounds as cocatalysts in olefin polymerization with MgCl{sub 2}-supported catalysts

    SciTech Connect

    Galimberti, M.; Piemontesi, F.; Giannini, U.; Albizzati, E.

    1993-12-06

    Zirconium tetrabenzyl was used as the cocatalyst in olefin polymerization together with MgCl{sub 2}-supported titanium catalysts. Its behavior was compared with those of aluminum and titanium organometallic compounds. In propylene polymerization performed with a MgCl{sub 2}/TiCl{sub 4} catalyst containing ethyl benzoate as the internal donor and with tetrabenzylzirconium as the cocatalyst, a polypropylene with 93 as its isostatic index was obtained, without the need of any external donor. They present a tentative explanation, based on the study of the interaction between the different components of the catalytic system.

  7. Protective Actions of 17β-Estradiol and Progesterone on Oxidative Neuronal Injury Induced by Organometallic Compounds

    PubMed Central

    Ishihara, Yasuhiro; Takemoto, Takuya; Yamazaki, Takeshi

    2015-01-01

    Steroid hormones synthesized in and secreted from peripheral endocrine glands pass through the blood-brain barrier and play a role in the central nervous system. In addition, the brain possesses an inherent endocrine system and synthesizes steroid hormones known as neurosteroids. Increasing evidence shows that neuroactive steroids protect the central nervous system from various harmful stimuli. Reports show that the neuroprotective actions of steroid hormones attenuate oxidative stress. In this review, we summarize the antioxidative effects of neuroactive steroids, especially 17β-estradiol and progesterone, on neuronal injury in the central nervous system under various pathological conditions, and then describe our recent findings concerning the neuroprotective actions of 17β-estradiol and progesterone on oxidative neuronal injury induced by organometallic compounds, tributyltin, and methylmercury. PMID:25815107

  8. Rationalization of the inhibition activity of structurally related organometallic compounds against the drug target cathepsin B by DFT.

    PubMed

    Casini, Angela; Edafe, Fabio; Erlandsson, Mikael; Gonsalvi, Luca; Ciancetta, Antonella; Re, Nazzareno; Ienco, Andrea; Messori, Luigi; Peruzzini, Maurizio; Dyson, Paul J

    2010-06-21

    A series of organometallic compounds of general formula [(arene)M(PTA)(n)X(m)]Y (arene = eta(6)-C(10)H(14), eta-C(5)Me(5)); M = Ru(ii), Os(ii), Rh(iii) and Ir(iii); X = Cl, mPTA; Y = OTf, PF(6)) have been screened for their cytotoxicity and ability to inhibit cathepsin B in vitro, in comparison to the antimetastatic compound NAMI-A. The Ru and Os analogues and NAMI-A showed similar enzyme inhibition properties (with IC(50) values in the low muM range), whereas the Rh(iii) and Ir(iii) compounds were inactive. In order to build up a rational for the observed differences, DFT calculations of the metal complexes adducts with N-acetyl-l-cysteine-N'-methylamide, a mimic for the Cys residue in the cathepsin B active site, were performed to provide insights into binding thermodynamics in solution. Initial structure-activity relationships have been defined with the calculated binding energies of the M-S bonds correlating well with the observed inhibition properties of the compounds. PMID:20467693

  9. Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds. Sublimation, Vaporization and Fusion Enthalpies From 1880 to 2015. Part 1. C1 - C10

    NASA Astrophysics Data System (ADS)

    Acree, William; Chickos, James S.

    2016-09-01

    A compendium of phase change enthalpies published in 2010 is updated to include the period 1880-2015. Phase change enthalpies including fusion, vaporization, and sublimation enthalpies are included for organic, organometallic, and a few inorganic compounds. Part 1 of this compendium includes organic compounds from C1 to C10. Part 2 of this compendium, to be published separately, will include organic and organometallic compounds from C11 to C192. Sufficient data are presently available to permit thermodynamic cycles to be constructed as an independent means of evaluating the reliability of the data. Temperature adjustments of phase change enthalpies from the temperature of measurement to the standard reference temperature, T = 298.15 K, and a protocol for doing so are briefly discussed.

  10. Effects of Reaction Conditions on the Properties of Spherical Silver Powders Synthesized by Reduction of an Organometallic Compound

    NASA Astrophysics Data System (ADS)

    Chiang, Ying-Jung; Wang, Sea-Fue; Lu, Chun-An; Lin, Hong-Ching

    2014-09-01

    Silver powders were synthesized by reducing a silver organometallic compound, silver 2-ethylhexanoate, with di- n-octylamine. The effects of preparation conditions on the characteristics of the powders were investigated. Silver powders prepared from silver 2-ethylhexanoate and di- n-octylamine in the ratio 2:1 (MA21) at 150°C for 3 h had the best characteristics (average particle size 277 nm, narrow particle-size distribution, high tap density of 4.0 g/cm3), and were also obtained in high yield (98%). Use of an excessive amount of di- n-octylamine resulted in intense thermolysis and a low yield of silver powders of irregular morphology with a wide particle-size distribution. As the proportion of silver 2-ethylhexanoate was increased, the silver powders obtained had a bimodal particle-size distribution and a relatively low tap density. Silver films seemed to have high resistivity when the temperature used for synthesis of the silver powders was too low or reaction time was insufficient. The electrical resistivities of silver films prepared from MA21 powders and sintered at 300°C and 500°C for 30 min were 3.8 × 10-6 Ω cm and 2.3 × 10-6 Ω cm, respectively, close to that of bulk silver.

  11. First-principles study of the organometallic S =1/2 kagome compound Cu(1,3-bdc)

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Mei, Jia-Wei; Liu, Feng

    2015-10-01

    Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)] contains structurally perfect kagome planes formed by Cu2 + ions without the presence of diamagnetic defects. This organometallic compound should serve as a precious platform to explore quantum frustrated magnetism, yet the experimental results so far are mysterious, leading to questions such as, "Is Cu(1,3-bdc) just a trivial weak ferromagnet?" Using the density functional theory, we have systematically studied the electronic and magnetic properties of Cu(1,3-bdc), putting forth a theoretical basis to clarify this novel material. We present numerical evidence of a dominating antiferromagnetic (AFM) exchange between nearest-neighbor (NN) Cu2 + as experimentally extracted from the high-temperature susceptibility data. We further show that beyond the NN AFM exchange, the additional interactions in Cu(1,3-bdc) have similar strength as those in the well-studied kagome antiferromagnet, herbertsmithite, by designing a comparative study. In the end, we discuss our understanding of the phase transition and FM signals observed under low temperature.

  12. From carbanions to organometallic compounds: quantification of metal ion effects on nucleophilic reactivities.

    PubMed

    Corral-Bautista, Francisco; Klier, Lydia; Knochel, Paul; Mayr, Herbert

    2015-10-12

    The influence of the metal on the nucleophilic reactivities of indenyl metal compounds was quantitatively determined by kinetic investigations of their reactions with benzhydrylium ions (Ar2 CH(+) ) and structurally related quinone methides. With the correlation equation log k2 =sN (N+E), it can be derived that the ionic indenyl alkali compounds are 10(18) to 10(24) times more reactive (depending on the reference electrophile) than the corresponding indenyltrimethylsilane. PMID:25951612

  13. Aromatic amine N-oxide organometallic compounds: searching for prospective agents against infectious diseases.

    PubMed

    Rodríguez Arce, Esteban; Mosquillo, M Florencia; Pérez-Díaz, Leticia; Echeverría, Gustavo A; Piro, Oscar E; Merlino, Alicia; Coitiño, E Laura; Maríngolo Ribeiro, Camila; Leite, Clarice Q F; Pavan, Fernando R; Otero, Lucía; Gambino, Dinorah

    2015-08-28

    In search of prospective agents against infectious diseases, 1,1'-bis(diphenylphosphino)ferrocene pyridine-2-thiolato-1-oxide M(ii) hexafluorophosphate compounds [M(mpo)(dppf)](PF6), where M = palladium or platinum, were synthesized and fully characterized in the solid state and in solution using experimental and DFT computational techniques. The compounds are isomorphous and the M(ii) transition metal ions are in a nearly planar trapezoidal cis-coordination bound to the pyridine-2-thiolato-1-oxide (mpo) and to the 1,1'-bis(diphenylphosphino)ferrocene molecules, both acting as bidentate ligands. Both compounds showed high cytotoxic activity on Trypanosoma cruzi and Mycobacterium tuberculosis (MTB) and acceptable selectivities towards MTB, but good to excellent selectivity index values as anti-T. cruzi compounds. The inclusion of the ferrocene moiety (dppf ligand) improved the selectivity towards the parasite when compared to the previously reported [M(mpo)2] complexes. Related to the probable mechanism of action of the complexes, molecular docking studies on modelled T. cruzi NADH-fumarate reductase (TcFR) predicted that both be very good inhibitors of the enzyme. The effect of the compounds on the enzyme activity was experimentally confirmed using T. cruzi protein extracts. According to all obtained results, both [M(mpo)(dppf)](PF6) compounds could be considered prospective anti-trypanosomal agents that deserve further research. PMID:26203896

  14. Assessment of background concentrations of organometallic compounds (methylmercury, ethyllead and butyl- and phenyltin) in French aquatic environments.

    PubMed

    Cavalheiro, Joana; Sola, Cristina; Baldanza, Julie; Tessier, Emmanuel; Lestremau, François; Botta, Fabrizio; Preud'homme, Hugues; Monperrus, Mathilde; Amouroux, David

    2016-05-01

    The aim of this work is to estimate background concentrations of organometallic compounds, such as tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPhT), diphenyltin (DPhT), monophenyltin (MPhT), methylmercury (MeHg), inorganic mercury (iHg) and diethyllead (Et2Pb) in the aquatic environment at the French national scale. Both water and sediment samples were collected all over the country, resulting in 152 water samples and 123 sediment samples collected at 181 sampling points. Three types of surface water bodies were investigated: rivers (140 sites), lakes (19 sites) and coastal water (42 sites), spread along the 11 French river basins. The choice of sites was made on the basis of previous investigation results and the following target criteria: reference, urban sites, agricultural and industrial areas. The analytical method was properly validated for both matrices prior to analysis, resulting in low limits of quantification (LOQ), good precision and linearity in agreement with the Water Framework Directive demands. The results were first evaluated as a function of their river basins, type of surrounding pressure and water bodies. Later, background concentrations at the French national scale were established for both water and sediment matrices, as well as their threshold, i.e., the concentration that distinguishes background from anomalies or contaminations. Background concentrations in water are ranging between <0.04-0.14 ng Hg. L(-1) for MeHg, <0.14-2.10 ng Hg. L(-1) for iHg, <1.0-8.43 ng Pb. L(-1) for Et2Pb and 0.49-151 ng Sn. L(-1), <0.08-3.04 ng Sn. L(-1) and <0.08-0.25 ng Sn. L(-1) for MBT, DBT and TBT, respectively. For sediments, background concentrations were set as <0.09-1.11 ng Hg. g(-1) for MeHg, <0.06-24.3 ng Pb. g(-1) for Et2Pb and <1.4-13.4 ng Sn. g(-1), <0.82-8.54 ng Sn. g(-1), <0.25-1.16 ng Sn. g(-1) and <0.08-0.61 ng Sn. g(-1) for MBT, DBT, TBT and DPhT, respectively. TBT occurs in higher concentrations

  15. An Organometallic Compound which Exhibits a DNA Topology-Dependent One-Stranded Intercalation Mode.

    PubMed

    Ma, Zhujun; Palermo, Giulia; Adhireksan, Zenita; Murray, Benjamin S; von Erlach, Thibaud; Dyson, Paul J; Rothlisberger, Ursula; Davey, Curt A

    2016-06-20

    Understanding how small molecules interact with DNA is essential since it underlies a multitude of pathological conditions and therapeutic interventions. Many different intercalator compounds have been studied because of their activity as mutagens or drugs, but little is known regarding their interaction with nucleosomes, the protein-packaged form of DNA in cells. Here, using crystallographic methods and molecular dynamics simulations, we discovered that adducts formed by [(η(6) -THA)Ru(ethylenediamine)Cl][PF6 ] (THA=5,8,9,10-tetrahydroanthracene; RAED-THA-Cl[PF6 ]) in the nucleosome comprise a novel one-stranded intercalation and DNA distortion mode. Conversely, the THA group in fact remains solvent exposed and does not disrupt base stacking in RAED-THA adducts on B-form DNA. This newly observed DNA binding mode and topology dependence may actually be prevalent and should be considered when studying covalently binding intercalating compounds. PMID:27184539

  16. Organometallic Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    Although molecular imaging agents have to be synthesized ultimately from aqueous solutions, organometallic complexes are becoming more and more important as flexible yet kinetically stable building blocks for radiopharmaceutical drug discovery. The diversity of ligands, targets, and targeting molecules related to these complexes is an essential base for finding novel, noninvasive imaging agents to diagnose and eventually treat widespread diseases such as cancer. This review article covers the most important findings toward these objectives accomplished during the past 3-4 years. The two major available organometallic building blocks will be discussed in the beginning together with constraints for market introduction as imposed by science and industry. Since targeting radiopharmaceuticals are a major focus of current research in molecular imaging, attempts toward so-called technetium essential radiopharmaceuticals will be briefly touched in the beginning followed by the main discussion about the labeling of targeting molecules such as folic acid, nucleosides, vitamins, carbohydrates, and fatty acids. At the end, some new strategies for drug discovery will be introduced together with results from organometallic chemistry in water. The majority of the new results have been achieved with the [99mTc(OH2)3(CO)3]+ complex which will, though not exclusively, be a focus of this review.

  17. Synthesis of a sugar-organometallic compound 1,1‧-difurfurylferrocene and its microwave preparation of carbon/iron oxide nanocomposite

    NASA Astrophysics Data System (ADS)

    Zhao, Shanyu; Cooper, Daniel C.; Xu, Haixun; Zhu, Pinghua; Suggs, J. William

    2013-01-01

    In order to synthesize a carbon-metal or metal oxide combination sphere, carbonaceous resource furfural 1 was introduced, which was nucleophilic treated with 1,1‧-dilithioferrocene 2 to form a sugar-organometallic compound: ferrocenyl monosaccharide derivative 1,1‧-difurfurylferrocene 3. 1,1‧-Difurfurylferrocene 3 can be hydrothermally treated in a microwave reactor to give 300-500 nm microspheres with the α-Fe2O3 or Fe3O4 nanocrystals formed on the surface, which may be favorable for new magnetic materials preparation or instead of iron with other metal ions, versatile carbon/metal composites will be possibly synthesized for catalysis, drug delivery and magnetic uses.

  18. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements. PMID:27442286

  19. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal–ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  20. Synthesis of organometallic-based biologically active compounds: In vitro antibacterial, antifungal and cytotoxic properties of some sulfonamide incorporated ferrocences.

    PubMed

    Chohan, Zahid H

    2009-02-01

    Sulfonamides incorporated ferrocene (SIF) have been synthesized by the condensation reaction of sulfonamides (sulfanilamide, sulfathiazole or sulfamethaxazole) with 1,1'-diacetylferrocene. The synthesized compounds (SIF(1)-SIF(4)) have been characterized by their physical, spectral and analytical properties and have been screened for their in vitro antibacterial properties against pathogenic bacterial strains e.g., Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using Agar-well diffusion method. Most of the compounds showed good antibacterial activity whereas, all the compounds exhibited significant antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:18608785

  1. Iron(III)-Salophene: An Organometallic Compound with Selective Cytotoxic and Anti-Proliferative Properties in Platinum-Resistant Ovarian Cancer Cells

    PubMed Central

    Singh, Rakesh K.; Strongin, Robert M.; McCourt, Carolyn K.; Brard, Laurent

    2008-01-01

    Background In this pioneer study to the biological activity of organometallic compound Iron(III)-salophene (Fe-SP) the specific effects of Fe-SP on viability, morphology, proliferation, and cell-cycle progression on platinum-resistant ovarian cancer cell lines were investigated. Methodology/Principal Findings Fe-SP displayed selective cytotoxicity against SKOV-3 and OVCAR-3 (ovarian epithelial adenocarcinoma) cell lines at concentrations between 100 nM and 1 µM, while the viability of HeLa cells (epithelial cervix adenocarcinoma) or primary lung or skin fibroblasts was not affected. SKOV-3 cells in contrast to fibroblasts after treatment with Fe-SP revealed apparent hallmarks of apoptosis including densely stained nuclear granular bodies within fragmented nuclei, highly condensed chromatin and chromatin fragmentation. Fe-SP treatment led to the activation of markers of the extrinsic (Caspase-8) and intrinsic (Caspase-9) pathway of apoptosis as well as of executioner Caspase-3 while PARP-1 was deactivated. Fe-SP exerted effects as an anti-proliferative agent with an IC50 value of 300 nM and caused delayed progression of cells through S-phase phase of the cell cycle resulting in a complete S-phase arrest. When intra-peritoneally applied to rats Fe-SP did not show any systemic toxicity at concentrations that in preliminary trials were determined to be chemotherapeutic relevant doses in a rat ovarian cancer cell model. Conclusion/Significance The present report suggests that Fe-SP is a potent growth-suppressing agent in vitro for cell lines derived from ovarian cancer and a potential therapeutic drug to treat such tumors in vivo. PMID:18509533

  2. Organometallic compounds of the lanthanides. 42/sup 1/ bis(dimethyloxyethane)lithium bis(cyclopentadienyl)bis(trimethylsilyl)lanthanide complexes

    SciTech Connect

    Schumann, H.; Nickel, S.; Loebel, J.; Pickardt, J.

    1988-09-01

    The trichlorides of Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu react with NaC/sub 5/H/sub 5/ in tetrahydrofuran in the presence of dimethoxyethane (dme) with formation of bis(cyclopentadienyl)lanthanide chloride complexes of the types (C/sub 5/H/sub 5/)/sub 2/Ln(/mu/-Cl)/sub 2/Na(dme). The reactions of these organolanthanide halide complexes with (trimethylsilyl)lithium in dme yield compounds of the type (Li(dme)/sub 2/)((C/sub 5/H/sub 5/)/sub 2/Ln(SiMe/sub 3/)/sub 2/) (Ln = Sm, Dy, Ho, Er, Tm, Lu). C/sub 5/H/sub 5//sub 2/Sm(/mu/-Cl)/sub 2/Na(dme) reacts with (trimethylgermyl)lithium in dme/pentane with formation of (Li(dme)/sub 3/)((C/sub 5/H/sub 5/)/sub 3/SmClSm(C/sub 5/H/sub 5/)/sub 3/) (7a.). The new compounds have been characterized by elemental analyses and IR and NMR spectra. The structure of (Li(dme)/sub 3/)(C/sub 5/H/sub 5/)/sub 3/SmClSm(C/sub 5/H/sub 5/)/sub 3/ (7a) has been elucidated through complete X-ray analysis. The crystals are monoclinic with a = 14.00 (1) /angstrom/, b = 13.38 (2) /angstrom/, c = 23.49 (3) /angstrom/, /beta/ = 93.37 (9)/degree/, space group P2/sub 1//n,Z = 4, and R = 0.0411 for 4671 reflections. The (Cp/sub 3/SmClSmCp/sub 3/)/sup /minus// anion consists of two Cp/sub 3/Sm units bridged by a chlorine atom with Sm-Cl distances of 2.827 (2) and 2.798 (2) /angstrom/.

  3. Organometallic Salts Generate Optical Second Harmonics

    NASA Technical Reports Server (NTRS)

    Marder, Seth R.; Perry, Joseph W.

    1991-01-01

    Series of organometallic salts exhibit large second-order dielectric susceptibilities, as evidenced by generation of second harmonics when illuminated at visible and near-infrared wavelengths. Investigations of these and related compounds continue with view toward development of materials for use as optical second-harmonic generators, electro-optical modulators, optical switches, piezoelectric sensors, and parametric crystals.

  4. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  5. Detection of toxic organometallic complexes in wastewaters using algal assays.

    PubMed

    Wong, S L; Nakamoto, L; Wainwright, J F

    1997-05-01

    Chlorella (a unicellular green alga) and Cladophora (a filamentous alga) were used in algal assays to identify the presence and toxicity of organometallic complexes in four industrial wastewaters. Toxicities of inorganic Pb and organometallic compounds (trimethyl, tetramethyl and tetraethyl leads, cacodylic acid and Cu-picolinate) were examined, using algal cells grown in 10% BBM solution. Inorganic Pb and organometallic compounds altered the fine structure of Chlorella cells in a distinguishable manner. X-ray microanalysis revealed that organometallic compounds accumulated in the neutral lipids of Cladophora cells. By applying the above techniques to the wastewater assays, two of the four wastewaters tested were found to contain organometallic complexes. Wastewater from a chemical company contained only traces of organo-Cu, but one mining effluent contained significant quantities of organo-Cu and organo-Pb, and traces of organo-Cr and organo-Tl (thallium). These studies suggest that X-ray microanalysis of algae may be a useful tool in identifying aquatic systems contaminated with metals and organometallic compounds. PMID:9175500

  6. Coupling of a gas chromatograph to a simultaneous-detection inductively coupled plasma mass spectrograph for speciation of organohalide and organometallic compounds

    SciTech Connect

    Barnes, James H.; Schilling, G; Sperline, Roger; Denton, M Bonner B.; Young, Erick T.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2004-06-01

    A gas chromatograph (GC) has been coupled to an inductively coupled plasma Mattauch-Herzog geometry mass spectrograph (ICP-MHMS) equipped with a novel detector array. In its current state of development the detector array, termed the focal plan camera (FPC), permits the simultaneous monitoring of up to 15 m/z values. A heated line was used to transfer the capillary-column effluent from the GC to the ICP torch, though due to instrument operating conditions, the transfer line was terminated 50 mm ahead of the ICP torch. Minimal tailing was observed, with the most severe effect seen for high-boiling analytes. With the coupling, absolute limits of detection are in the tens to hundreds of femtogram regime for organometallic species and in the single pictogram regime for halogenated hydrocarbons.

  7. Sterically Hindered Square-Planar Nickel(II) Organometallic Complexes: Preparation, Characterization, and Substitution Behavior

    ERIC Educational Resources Information Center

    Martinez, Manuel; Muller, Guillermo; Rocamora, Merce; Rodriguez, Carlos

    2007-01-01

    The series of experiments proposed for advanced undergraduate students deal with both standard organometallic preparative methods in dry anaerobic conditions and with a kinetic study of the mechanisms operating in the substitution of square-planar complexes. The preparation of organometallic compounds is carried out by transmetallation or…

  8. Synthesis of functionalized materials using aryloxo-organometallic compounds toward spinel-like MM'2O4 (M = Ba2+, Sr2+; M' = In3+, Al3+) double oxides.

    PubMed

    John, Łukasz; Kosińska-Klähn, Magdalena; Jerzykiewicz, Lucjan B; Kępiński, Leszek; Sobota, Piotr

    2012-09-17

    The predesigned single-source precursors [Ba{(μ-ddbfo)(2)InMe(2)}(2)] (1), [Me(2)In(μ-ddbfo)](2) (2), [Sr{(μ-ddbfo)(2)AlMe(2)}(2)] (4), and [Me(2)Al(μ-ddbfo)](2) (5) (ddbfoH = 2,3-dihydro-2,2-dimethylbenzofuran-7-ol) for spinel-like double oxides and group 13 oxide materials were prepared via the direct reaction of the homoleptic aryloxide [M(ddbfoH)(4)](ddbfo)(2)·ddbfoH (M = Ba(2+), Sr(2+) (3)) and InMe(3) or AlMe(3) in toluene. In all of the reactions, there was an organometallic-driven abstraction of the OH protons from the 7-benzofuranols in the Ba(2+) and Sr(2+) cation sphere. All compounds were characterized by elemental analysis, (1)H NMR, and FT-IR spectroscopy. In addition, the molecular structures of 1, 2, and 3 were determined by single-crystal X-ray diffraction. The oxide products derived from the compounds mentioned above were studied using elemental analysis, Raman spectroscopy, X-ray powder diffraction, and scanning and transmission electron microscopy equipped with an energy-dispersive spectrometer. Moreover, their specific surface area and mesopore size distribution were evaluated using nitrogen porosimetry. Preliminary investigations of the Eu-doped SrAl(2)O(4) and In(2)O(3) phosphors revealed that the oxides obtained could be considered as matrices for lanthanide ions. PMID:22931100

  9. Precursor approach to lanthanide dioxo monocarbodiimides Ln2O2CN2 (Ln=Y, Ho, Er, Yb) by insertion of CO2 into organometallic Ln-N compounds.

    PubMed

    Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang

    2008-01-01

    We present two organometallic precursor approaches leading to the hitherto-unknown dioxo monocarbodiimides (Ln(2)O(2)CN(2)) of the late lanthanides Ho, Er, and Yb as well as yttrium. One involves insertion of CO(2), and the other one is a straightforward route using a molecular single-source precursor. To this end the reactivity of the activated amido lanthanide compound [(Cp(2)ErNH(2))(2)] towards carbon dioxide absorption under supercritical conditions was studied. Selective insertion of CO(2) into the amido complex yielded the single-source precursor [Er(2)(O(2)CN(2)H(4))Cp(4)], which was characterized by vibrational spectroscopy and thermal and elemental analyses. Ammonolysis of this amorphous compound at 700 degrees C affords Er(2)O(2)CN(2). To gain deeper insight into the structural characteristics of the amorphous precursor, a similar molecular carbamato complex was synthesized and fully characterized. X-ray structure analysis of the dimeric complex [Cp(4)Ho(2){mu-eta(1):eta(2)-OC(OtBu)NH}] shows an unusual bonding mode of the tert-butylcarbamate ligand, which acts as both a bridging and side-on chelating group. Ammonolysis of this compound also yielded dioxo monocarbodiimides, and therefore the crystalline carbamato complex turned out to be an alternative precursor for the straightforward synthesis of Ln(2)O(2)CN(2). Analogously, the dioxo monocarbodiimides of Y, Ho, Er, and Yb were synthesized by this route. The crystal structures were determined from X-ray powder diffraction data and refined by the Rietveld method (Ln=Ho, Er). Further spectroscopic characterization and elemental analysis evidenced the existence of phase-pure products. The dioxo monocarbodiimides of holmium and erbium crystallize in the trigonal space group P[over]3m1. According to X-ray powder diffraction, they adopt the Ln(2)O(2)CN(2) (Ln=Ce-Gd) structure type. PMID:18058884

  10. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  11. Organometallic Chemistry. Final Progress Report

    SciTech Connect

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. Organometallics Roundtable 2011

    SciTech Connect

    Gladysz, John A.; Ball, Zachary T.; Bertrand, Guy; Blum, Suzanne A.; Dong, Vy M.; Dorta, Reto; Hahn, F. Ekkehardt; Humphrey, Mark; Jones, William D.; Klosin, Jerzy; Manners, Ian; Marks, Tobin J.; Mayer, James M.; Rieger, Bernhard; Ritter, Joachim C.; Sattelberger, Alfred P.; Schomaker, Jennifer M.; Wing-Wah Yam, Vivian

    2012-01-09

    We are living in an era of unprecedented change in academic, industrial, and government-based research worldwide, and navigating these rough waters requires "all hands on deck". Toward this end, Organometallics has assembled a panel of seventeen experts who share their thoughts on a variety of matters of importance to our field. In constituting this panel, an attempt was made to secure representation from a number of countries and career stages, as well as from industry. We were fortunate that so many busy experts could take the time to spend with us. The following pages constitute an edited transcript of the panel discussion held on August 29, 2011, which was structured around the 10 questions summarized in the side bar and repeated below.

  13. Hydrogenation properties of nanostructured Ti2Ni-based alloys and nanocomposites

    NASA Astrophysics Data System (ADS)

    Balcerzak, M.; Jakubowicz, J.; Kachlicki, T.; Jurczyk, M.

    2015-04-01

    Mechanical alloying and annealing at 1023 K for 0.5 h under an argon atmosphere were used to prepare Ti2Ni-based nanocrystalline alloys and their nanocomposites. Ti2Ni alloy was chemically modified by Pd and multi-walled carbon nanotubes. An objective of the present study is to provide data on hydrogenation properties of Ti2Ni-based alloys and compounds containing Pd and/or multi-walled carbon nanotubes. Alloys and composites were characterized by X-ray diffraction, scanning electron microscopy equipped with an electron energy dispersive spectrometer, transmission electron microscopy, atomic force microscopy to evaluate phase composition, crystal structure, grain size, particle morphology and distribution of catalyst element. Hydrogenation/dehydrogenation properties and hydriding kinetics of materials were measured using a Sievert's apparatus. Hydrogenation properties of nanostructured Ti2Ni-based alloy and Ti2Ni-based nanocomposites were compared with those of the binary Ti2Ni compound. In present work we shown how mechanical alloying method and chemical modification by Pd and MWCNTs affected hydrogen storage properties of Ti2Ni alloy. The highest hydrogen capacity obtained for nanostructured Ti2Ni + Pd alloy equaled 2.1 wt.%. Up to our knowledge it is the highest hydrogen storage capacity obtained so far for Ti2Ni-based materials.

  14. NEW APPLICATIONS OF LC-MS AND LC-MS2 TOWARD UNDERSTANDING THE ENVIRONMENTAL FATE OF ORGANOMETALLICS

    EPA Science Inventory

    Over the last 40 years, many organometallic compounds have been synthesized and used in a variety of consumer, agricultural, and industrial products. Including wastewater effluents, leaching, and direct land and water applications, there are many pathways that can disperse organo...

  15. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  16. Organometallic Chemistry and Catalysis in Industry.

    ERIC Educational Resources Information Center

    Parshall, George W.; Putscher, Richard E.

    1986-01-01

    Traces the growth in the industrial usage of organometallic chemistry from 1950 to 1977, pointing out that this growth involved the production of commodity chemicals. Indicates that one of the early successes of organometallic chemistry was the discovery of ethylene polymerization catalysts. (JN)

  17. Anticancer Organometallic Osmium(II)-p-cymene Complexes.

    PubMed

    Păunescu, Emilia; Nowak-Sliwinska, Patrycja; Clavel, Catherine M; Scopelliti, Rosario; Griffioen, Arjan W; Dyson, Paul J

    2015-09-01

    Osmium compounds are attracting increasing attention as potential anticancer drugs. In this context, a series of bifunctional organometallic osmium(II)-p-cymene complexes functionalized with alkyl or perfluoroalkyl groups were prepared and screened for their antiproliferative activity. Three compounds from the series display selectivity toward cancer cells, with moderate cytotoxicity observed against human ovarian carcinoma (A2780) cells, whereas no cytotoxicity was observed on non-cancerous human embryonic kidney (HEK-293) cells and human endothelial (ECRF24) cells. Two of these three cancer-cell-selective compounds induce cell death largely via apoptosis and were also found to disrupt vascularization in the chicken embryo chorioallantoic membrane (CAM) model. Based on these promising properties, these compounds have potential clinical applications. PMID:26190176

  18. Angle-resolved spectroscopy study of Ni-based superconductor SrNi2As2

    NASA Astrophysics Data System (ADS)

    Zeng, L.-K.; Richard, P.; van Roekeghem, A.; Yin, J.-X.; Wu, S.-F.; Chen, Z. G.; Wang, N. L.; Biermann, S.; Qian, T.; Ding, H.

    2016-07-01

    We performed an angle-resolved photoemission spectroscopy study of the Ni-based superconductor SrNi2As2 . Electron and hole Fermi surface pockets are observed, but their different shapes and sizes lead to very poor nesting conditions. The experimental electronic band structure of SrNi2As2 is in good agreement with first-principles calculations after a slight renormalization (by a factor 1.1), confirming the picture of Hund's exchange-dominated electronic correlations decreasing with increasing filling of the 3 d shell in the Fe-, Co-, and Ni-based compounds. These findings emphasize the importance of Hund's coupling and 3 d -orbital filling as key tuning parameters of electronic correlations in transition-metal pnictides.

  19. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes. PMID:26673552

  20. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  1. Patterns in Organometallic Chemistry with Application in Organic Synthesis.

    ERIC Educational Resources Information Center

    Schwartz, Jeffrey; Labinger, Jay A.

    1980-01-01

    Of interest in this discussion of organometallic complexes are stoichiometric or catalytic reagents for organic synthesis in the complex transformations observed during synthesis for transition metal organometallic complexes. Detailed are general reaction types from which the chemistry or many transition metal organometallic complexes can be…

  2. Organometallic Antitumour Agents with Alternative Modes of Action

    NASA Astrophysics Data System (ADS)

    Casini, Angela; Hartinger, Christian G.; Nazarov, Alexey A.; Dyson, Paul J.

    The therapeutic index of drugs that target DNA, a ubiquitous target present in nearly all cells, is low. Nevertheless, DNA has remained the primary target for medicinal chemists developing metal-based anticancer drugs, although DNA has been essentially abandoned in favour of non-genomic targets by medicinal chemists developing organic drugs. A number of organometallic drugs that target proteins/enzymes have been developed and these compounds, based on ruthenium, osmium and gold, are described in this chapter. Targets include cathepsin B, thioredoxin reductases, multidrug resistance protein (Pgp), glutathione S-transferases and kinases. It is found that compounds that inhibit these various targets are active against metastatic tumours, or tumours that are resistant to classical DNA damaging agents such as cisplatin, and therefore offer considerable potential in clinical applications.

  3. Automated building of organometallic complexes from 3D fragments.

    PubMed

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry. PMID:24998944

  4. Organometallic vapor phase epitaxial growth of InP using new phosphorus sources

    NASA Astrophysics Data System (ADS)

    Larsen, C. A.; Chen, C. H.; Kitamura, M.; Stringfellow, G. B.; Brown, D. W.; Robertson, A. J.

    1986-06-01

    Two organophosphorus compounds, isobutylphosphine and tertiarybutylphosphine, have been investigated for their possible use as precursors in the organometallic vapor phase epitaxy process. They are the first nonhydride compounds to be used as phosphorus sources. Pyrolysis studies show that the first decomposition products are phosphine and various organic compounds. The phosphine then pyrolyzes to give phosphorus. The materials are less pyrophoric and less toxic than phosphine, and so are safer to use. The compounds have been used to grow epitaxial layers of InP on InP and GaAs substrates. The layers exhibit photoluminescence and electrical properties which are similar to those of layers grown with phosphine.

  5. Noninvasive Fluid Level Sensor for Organometallic Sources

    NASA Technical Reports Server (NTRS)

    Gerdes, W.

    1986-01-01

    Two ultrasonic methods available for measuring level of organometallic liquid in stainless-steel (or other homogeneous solid) container. Methods require no disassembly or weighing of container. Commercially available ultrasonic flaw detectors, some of which have digital readouts and computer interfaces, used in techniques. Both methods used in crystal growth to determine level of liquids contained in sealed, opaque containers.

  6. Advances in organometallic synthesis with mechanochemical methods.

    PubMed

    Rightmire, Nicholas R; Hanusa, Timothy P

    2016-02-14

    Solvent-based syntheses have long been normative in all areas of chemistry, although mechanochemical methods (specifically grinding and milling) have been used to good effect for decades in organic, and to a lesser but growing extent, inorganic coordination chemistry. Organometallic synthesis, in contrast, represents a relatively underdeveloped area for mechanochemical research, and the potential benefits are considerable. From access to new classes of unsolvated complexes, to control over stoichiometries that have not been observed in solution routes, mechanochemical (or 'M-chem') approaches have much to offer the synthetic chemist. It has already become clear that removing the solvent from an organometallic reaction can change reaction pathways considerably, so that prediction of the outcome is not always straightforward. This Perspective reviews recent developments in the field, and describes equipment that can be used in organometallic synthesis. Synthetic chemists are encouraged to add mechanochemical methods to their repertoire in the search for new and highly reactive metal complexes and novel types of organometallic transformations. PMID:26763151

  7. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed. PMID:26609781

  8. Preparation of uranium compounds

    DOEpatents

    Kiplinger, Jaqueline L; Montreal, Marisa J; Thomson, Robert K; Cantat, Thibault; Travia, Nicholas E

    2013-02-19

    UI.sub.3(1,4-dioxane).sub.1.5 and UI.sub.4(1,4-dioxane).sub.2, were synthesized in high yield by reacting turnings of elemental uranium with iodine dissolved in 1,4-dioxane under mild conditions. These molecular compounds of uranium are thermally stable and excellent precursor materials for synthesizing other molecular compounds of uranium including alkoxide, amide, organometallic, and halide compounds.

  9. A ferroelectric olefin-copper(I) organometallic polymer with flexible organic ligand (R)-MbVBP

    NASA Astrophysics Data System (ADS)

    Wang, Guo-Xi; Xing, Zheng; Chen, Li-Zhuang; Han, Guang-Fan

    2015-07-01

    Hydrothermal treatment of (R)-2-methyl-1,4-bis(4-vinylbenzyl)piperazine [(R)-MbVBP] and CuCl afforded a novel olefin-copper(I) coordination compound. Introducing the flexible ligand (R)-MbVBP allowed the olefin-copper(I) organometallic compound to crystallize in a polar point group P21. The compound was ferroelectric, and its electric hysteresis loop showed a remnant polarization (Pr) of 0.13-0.32 μC cm-2 and a coercive field (Ec) of 3.5-11 kV cm-1.

  10. Segregation of impurities at γ' (L12) / γ (fcc) interfaces in a Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Tafen, De Nyago; Gao, Michael

    2011-03-01

    One of the most technologically advanced energy conversion devices is the gas turbine used in aerospace jet engines and gas- fired land-based turbines for electricity generation, fabricated from Ni-based superalloys. However, these materials lack of long- term mechanical and microstructure stability, which is largely due to an excessive coarsening of γ ' that can cause substantial loss of creep resistance and mechanical instability at high temperatures. Theoretical prediction of the creep rate of these important compounds is very imperative, but yet is extremely challenging. Interfacial energy is one of the most important factors that control the coarsening kinetics of these important phases. It indirectly determines the creep resistance of the alloy through the coarsening rate of the strengthening precipitate phase. In this talk, we will present the results of various γ ' / γ interfaces of a Ni-based superalloy obtained using DFT calculations. Then, we will discuss the segregation of impurities at these interfaces. Minor alloying elements in superalloys can alter the interfacial energy between γ and γ ' , and change the strength behavior of the alloy. Alloying elements or impurity species can segregate to interfaces. A favorable segregation would result in enhancing the interfacial cohesion and thus lower the energy.

  11. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-12-31

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  12. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-01-01

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  13. In Situ Observation of Active Oxygen Species in Fe-Containing Ni-Based Oxygen Evolution Catalysts: The Effect of pH on Electrochemical Activity.

    PubMed

    Trześniewski, Bartek J; Diaz-Morales, Oscar; Vermaas, David A; Longo, Alessandro; Bras, Wim; Koper, Marc T M; Smith, Wilson A

    2015-12-01

    Ni-based oxygen evolution catalysts (OECs) are cost-effective and very active materials that can be potentially used for efficient solar-to-fuel conversion process toward sustainable energy generation. We present a systematic spectroelectrochemical characterization of two Fe-containing Ni-based OECs, namely nickel borate (Ni(Fe)-B(i)) and nickel oxyhydroxide (Ni(Fe)OOH). Our Raman and X-ray absorption spectroscopy results show that both OECs are chemically similar, and that the borate anions do not play an apparent role in the catalytic process at pH 13. Furthermore, we show spectroscopic evidence for the generation of negatively charged sites in both OECs (NiOO(-)), which can be described as adsorbed "active oxygen". Our data conclusively links the OER activity of the Ni-based OECs with the generation of those sites on the surface of the OECs. The OER activity of both OECs is strongly pH dependent, which can be attributed to a deprotonation process of the Ni-based OECs, leading to the formation of the negatively charged surface sites that act as OER precursors. This work emphasizes the relevance of the electrolyte effect to obtain catalytically active phases in Ni-based OECs, in addition to the key role of the Fe impurities. This effect should be carefully considered in the development of Ni-based compounds meant to catalyze the OER at moderate pHs. Complementarily, UV-vis spectroscopy measurements show strong darkening of those catalysts in the catalytically active state. This coloration effect is directly related to the oxidation of nickel and can be an important factor limiting the efficiency of solar-driven devices utilizing Ni-based OECs. PMID:26544169

  14. Tuning Electronic Structure, Redox, and Photophysical Properties in Asymmetric NIR-Absorbing Organometallic BODIPYs.

    PubMed

    Zatsikha, Yuriy V; Maligaspe, Eranda; Purchel, Anatolii A; Didukh, Natalia O; Wang, Yefeng; Kovtun, Yuriy P; Blank, David A; Nemykin, Victor N

    2015-08-17

    Stepwise modification of the methyl groups at the α positions of BODIPY 1 was used for preparation of a series of mono- (2, 4, and 6) and diferrocene (3) substituted donor-acceptor dyads in which the organometallic substituents are fully conjugated with the BODIPY π system. All donor-acceptor complexes have strong absorption in the NIR region and quenched steady-state fluorescence, which can be partially restored upon oxidation of organometallic group(s). X-ray crystallography of complexes 2-4 and 6 confirms the nearly coplanar arrangement of the ferrocene groups and the BODIPY π system. Redox properties of the target systems were studied using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). It was found that the first oxidation process in all dyads is ferrocene centered, while the separation between the first and the second ferrocene-centered oxidation potentials in diferrocenyl-containing dyad 3 is ∼150 mV. The density functional theory-polarized continuum model (DFT-PCM) and time-dependent (TD) DFT-PCM methods were used to investigate the electronic structure as well as explain the UV-vis and redox properties of organometallic compounds 2-4 and 6. TDDFT calculations allow for assignment of the charge-transfer and π → π* transitions in the target compounds. The excited state dynamics of the parent BODIPY 1 and dyads 2-4 and 6 were investigated using time-resolved transient spectroscopy. In all organometallic dyads 2-4 and 6 the initially excited state is rapidly quenched by electron transfer from the ferrocene ligand. The lifetime of the charge-separated state was found to be between 136 and 260 ps and demonstrates a systematic dependence on the electronic structure and geometry of BODIPYs 2-4 and 6. PMID:26220063

  15. The water soluble ruthenium(II) organometallic compound [Ru(p-cymene)(bis(3,5 dimethylpyrazol-1-yl)methane)Cl]Cl suppresses triple negative breast cancer growth by inhibiting tumor infiltration of regulatory T cells.

    PubMed

    Montani, Maura; Pazmay, Gretta V Badillo; Hysi, Albana; Lupidi, Giulio; Pettinari, Riccardo; Gambini, Valentina; Tilio, Martina; Marchetti, Fabio; Pettinari, Claudio; Ferraro, Stefano; Iezzi, Manuela; Marchini, Cristina; Amici, Augusto

    2016-05-01

    Ruthenium compounds have become promising alternatives to platinum drugs by displaying specific activities against different cancers and favorable toxicity and clearance properties. Here, we show that the ruthenium(II) complex [Ru(p-cymene)(bis(3,5-dimethylpyrazol-1-yl)methane)Cl]Cl (UNICAM-1) exhibits potent in vivo antitumor effects. When administered as four-dose course, by repeating a single dose (52.4mgkg-1) every three days, UNICAM-1 significantly reduces the growth of A17 triple negative breast cancer cells transplanted into FVB syngeneic mice. Pharmacokinetic studies indicate that UNICAM-1 is rapidly eliminated from kidney, liver and bloodstream thanks to its high hydrosolubility, exerting excellent therapeutic activity with minimal side effects. Immunohistological analysis revealed that the efficacy of UNICAM-1, mainly relies on its capacity to reverse tumor-associated immune suppression by significantly reducing the number of tumor-infiltrating regulatory T cells. Therefore, UNICAM-1 appears very promising for the treatment of TNBC. PMID:27038531

  16. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    PubMed

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    rhodium complex showed catalytic activity in Suzuki-Miyaura type reaction. As a result of the excellent stability of the homogeneous catalyst [(quinone)Rh(COD)](-) in water, we also successfully demonstrated catalyst recycling in 1,2- and 1,4-addition reactions. The compound [(quinone)Ir(COD)](-) showed significantly poorer catalytic activity in 1,4-addition reactions. Following upon the excellent coordination ability of the quinonoid rhodium complexes to metal centers, we synthesized organometallic coordination polymer nanocatalysts and silica gel-supported quinonoid rhodium catalysts, the latter using a surface sol-gel technique. The resulting heterogeneous catalysts showed activity in the stereospecific polymerization of phenylacetylene. PMID:23745596

  17. Microporosity Prediction and Validation for Ni-based Superalloy Castings

    NASA Astrophysics Data System (ADS)

    Guo, J.; Beckermann, C.; Carlson, K.; Hirvo, D.; Bell, K.; Moreland, T.; Gu, J.; Clews, J.; Scott, S.; Couturier, G.; Backman, D.

    2015-06-01

    Microporosityin high performance aerospace castings can reduce mechanical properties and consequently degrade both component life and durability. Therefore, casting engineers must be able to both predict and reduce casting microporosity. A dimensionless Niyama model has been developed [1] that predicts local microporosity by accounting for local thermal conditions during casting as well as the properties and solidification characteristics of the cast alloy. Unlike the well-known Niyama criterion, application of the dimensionless Niyama model avoids the need to find a threshold Niyama criterion below which shrinkage porosity forms - a criterion which can be determined only via extensive alloy dependent experimentation. In the present study, the dimensionless Niyama model is integrated with a commercial finite element casting simulation software, which can now more accurately predict the location-specific shrinkage porosity volume fraction during solidification of superalloy castings. These microporosity predictions are validated by comparing modelled results against radiographically and metallographically measured porosity for several Ni-based superalloy equiaxed castings that vary in alloy chemistry with a focus on plates of changing draft angle and thickness. The simulation results agree well with experimental measurements. The simulation results also show that the dimensionless Niyama model can not only identify the location but also the average volume fraction of microporosity distribution in these equiaxed investment cast Ni-based superalloy experiments of relatively simple geometry.

  18. Autothermal reforming of propane over Ni-based hydrotalcite catalysts.

    PubMed

    Park, Sun-Young; Kim, Jong-Ho; Moon, Dong-Ju; Park, Nam-Cook; Kim, Young-Chul

    2010-05-01

    Ni-based hydrotalcite catalysts were investigated for ATR of propane in a fixed-bed flow reactor. The reactions were carried out with a H2O/C/O2 stream ratio of 3/1/0.73 at temperatures ranging from 300 to 700 degrees C. The solvents used in the manufacture of Ni-based catalysts noble metal/Ni/MgAl catalysts or substituted active material were changed in order to decrease the level of catalyst deactivation. The use of a mixture of ethanol and water during the formation of the Pd-Ni/MgAl catalyst produced a higher hydrogen yield than that using water only. In addition, the use of acetone in the synthesis of Ru-Ni/MgAl catalyst produced a higher hydrogen yield than using water only. This shows that the solvents used for the noble metals affect the degree of dispersion and particle size of the nickel and prevented carbon deposition resulting in the enhanced hydrogen selectivity and catalyst activity. Active metals were substituted during the preparation of hydrotalcite catalysts. Among the catalysts prepared with various ratio (Ni:Fe) tested at high temperature, the ratio, Ni:Fe = 75:25, showed best performance. There was less sintering of Ni particles due to substitution of the active metal at the optimal ratio. PMID:20358916

  19. Transuranic organometallics: The next generation

    SciTech Connect

    Zwick, B.D.; Sattelberger, A.P.; Avens, L.R.

    1990-01-01

    Neptunium and plutonium metal react cleanly with 3/2 equiv. I{sub 2} in aprotic ligating solvents, L, such as tetrahydrofuran (THF), pyridine (Py), and dimethylsulfoxide (DMSO) to give the triiodide complexes as tetrasolvates, AnI{sub 3}(L){sub 4} (An = Np, L = THF (1)); An = Pu, L = THF (2a), Py (2b), and DMSO (2c). These triiodide complexes are convenient precursors to new transuranic compounds. Reaction of the triiodide complexes 1 and 2a hexane with 3 equiv. of sodium bis(trimethylsilyl)amide give the volatile, solvate-free tris(silylamide) complexes, An(N(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 3; An = Pu, 4). The silylamide complexes 3 and 4 undergo rapid reaction in hexane upon stoichiometric addition of HO-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3} to give the aryl oxide complexes An(O-2,6-(t-C{sub 4}H{sub 9}){sub 2}C{sub 6}H{sub 3}){sub 3} (An = Np, 5; An = Pu, 6). Preliminary investigations suggest that the aryl oxide complexes 5 and 6 react with lithium bis(trimethylsilyl)methanide, Li{sup +} CH(SiMe{sub 3}){sub 2}, in hexane to give the homoleptic alkyl complexes An(CH(SiMe{sub 3}){sub 2}){sub 3} (An = Np, 7; An = Pu, 8). The homoleptic silylamide, aryl oxide, and alkyl complexes are the first to be reported for transuranic elements. 17 refs.

  20. Sample treatment in chromatography-based speciation of organometallic pollutants.

    PubMed

    Gómez-Riza, J L; Morales, E; Giráldez, I; Sánchez-Rodas, D; Velasco, A

    2001-12-14

    Speciation analysis is nowadays performed routinely in many laboratories to control the quality of the environment, food and health. Chemical speciation analyses generally include the study of different oxidation state of elements or individual organometallic compounds. The determination of the different chemical forms of elements is still an analytical challenge, since they are often unstable and concentrations in different matrices of interest are in the microg l(-1) or even in the ng l(-1) range (e.g., estuarine waters) or ng g(-1) in sediments and biological tissues. For this reason, sensitive and selective analytical atomic techniques are being used as available detectors for speciation, generally coupled with chromatography for the time-resolved introduction of analytes into the atomic spectrometer. The complexity of these instrumental couplings has a straightforward consequence on the duration of the analysis, but sample preparation to separate and transfer the chemical species present in the sample into a solution to be accepted readily by a chromatographic column is the more critical step of total analysis, and demands considerable operator skills and time cost. Traditionally, liquid-liquid extraction has been employed for sample treatment with serious disadvantages, such as consumption, disposal and long-term exposure to organic solvent. In addition, they are usually cumbersome and time-consuming. Therefore, the introduction of new reagents such as sodium tetraethylborate for the simultaneous derivatization of several elements has been proposed. Other possibilities are based in the implementation of techniques for efficient and accelerated isolation of species from the sample matrix. This is the case for microwave-assisted extraction, solid-phase extraction and microextraction, supercritical fluid extraction or pressurized liquid extraction, which offer new possibilities in species treatment, and the advantages of a drastic reduction of the extraction

  1. Bifilm Defects in Ni-Based Alloy Castings

    NASA Astrophysics Data System (ADS)

    Campbell, John; Tiryakioğlu, Murat

    2012-08-01

    The Ni-base superalloys, which are normally melted and cast in a vacuum, entrain their surface-oxide film during turbulent pouring of the melt; unfortunately at this time, this process is universally practiced for investment castings of these materials. The entrained film becomes a bifilm crack automatically, so that cast alloys have a large population of cracks that controls their failure behavior. The problems of the growth of single crystals and the welding of polycrystalline alloys are reviewed to illustrate the central role of bifilms in the cracking of turbine blades, the heat-affected zones of welds, and the reliability of properties. It has been demonstrated that improved gravity pouring systems can reduce these problems significantly, but only countergravity filling of molds is expected to result in defect-free castings. Recent cases in which turbine blades failed in service are examined, and the central role of bifilm defects in these failures is discussed.

  2. Microwave properties of Ni-based ferromagnetic inverse opals

    NASA Astrophysics Data System (ADS)

    Kostylev, M.; Stashkevich, A. A.; Roussigné, Y.; Grigoryeva, N. A.; Mistonov, A. A.; Menzel, D.; Sapoletova, N. A.; Napolskii, K. S.; Eliseev, A. A.; Lukashin, A. V.; Grigoriev, S. V.; Samarin, S. N.

    2012-11-01

    Investigations of microwave properties of Ni-based inverse ferromagnetic opal-like film with the [111] axis of the fcc structure along the normal direction to the film have been carried out in the 2-18 GHz frequency band. We observed multiple spin wave resonances for the magnetic field applied perpendicular to the film, i.e., along the [111] axis of this artificial crystal. For the field applied in the film plane, a broad band of microwave absorption is observed, which does not contain a fine structure. The field ranges of the responses observed are quite different for these two magnetization directions. This suggests a collective magnetic ground state or shape anisotropy and collective microwave dynamics for this foam-like material. This result is in agreement with SQUID measurements of hysteresis loops for the material. Two different models for this collective behavior are suggested that satisfactorily explain the major experimental results.

  3. Organometallic Antitumor Compounds: Ferrocifens as Precursors to Quinone Methides.

    PubMed

    Wang, Yong; Pigeon, Pascal; Top, Siden; McGlinchey, Michael J; Jaouen, Gérard

    2015-08-24

    The synthesis and chemical oxidation profile of a new generation of ferrocifen derivatives with strong antiproliferative behavior in vitro is reported. In particular, the hydroxypropyl derivative HO(CH2 )3 C(Fc)=C(C6 H4 OH)2 (3 b) exhibited exceptional antiproliferative activity against the cancer cell lines HepG2 and MDA-MB-231 TNBC, with IC50 values of 0.07 and 0.11 μM, respectively. Chemical oxidation of 3 b yielded an unprecedented tetrahydrofuran-substituted quinone methide (QM) via internal cyclization of the hydroxyalkyl chain, whereas the corresponding alkyl analogue CH3 CH2 -C(Fc)=C(C6 H4 OH)2 merely formed a vinyl QM. The ferrocenyl group in 3 b plays a key role, not only as an intramolecular reversible redox "antenna", but also as a stabilized carbenium ion "modulator". The presence of the oxygen heterocycle in 3 b-QM enhances its stability and leads to a unique chemical oxidation profile, thus revealing crucial clues for deciphering its mechanism of action in vivo. PMID:26179051

  4. Organometallic Ru(II) Photosensitizers Derived from π-Expansive Cyclometalating Ligands: Surprising Theranostic PDT Effects.

    PubMed

    Sainuddin, Tariq; McCain, Julia; Pinto, Mitch; Yin, Huimin; Gibson, Jordan; Hetu, Marc; McFarland, Sherri A

    2016-01-01

    The purpose of the present study was to investigate the influence of π-expansive cyclometalating ligands on the photophysical and photobiological properties of organometallic Ru(II) compounds. Four compounds with increasing π conjugation on the cyclometalating ligand were prepared, and their structures were confirmed by HPLC, 1D and 2D (1)H NMR, and mass spectrometry. The properties of these compounds differed substantially from their Ru(II) polypyridyl counterparts. Namely, they were characterized by red-shifted absorption, very weak to no room temperature phosphorescence, extremely short phosphorescence state lifetimes (<10 ns), low singlet oxygen quantum yields (0.5-8%), and efficient ligand-centered fluorescence. Three of the metal complexes were very cytotoxic to cancer cells in the dark (EC50 values = 1-2 μM), in agreement with what has traditionally been observed for Ru(II) compounds derived from small C^N ligands. Surprisingly, the complex derived from the most π-expansive cyclometalating ligand exhibited no cytotoxicity in the dark (EC50 > 300 μM) but was phototoxic to cells in the nanomolar regime. Exceptionally large phototherapeutic margins, exceeding 3 orders of magnitude in some cases, were accompanied by bright ligand-centered intracellular fluorescence in cancer cells. Thus, Ru(II) organometallic systems derived from π-expansive cyclometalating ligands, such 4,9,16-triazadibenzo[a,c]napthacene (pbpn), represent the first class of potent light-responsive Ru(II) cyclometalating agents with theranostic potential. PMID:26672769

  5. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  6. (Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989)

    SciTech Connect

    Not Available

    1989-01-01

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  7. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  8. Organometallic electrochemistry based on electrolytes containing weakly-coordinating fluoroarylborate anions.

    PubMed

    Geiger, William E; Barrière, Frédéric

    2010-07-20

    -deficient organometallic compounds are subject to nucleophilic attack by the traditional family of electrolyte anions. With a view to testing the scope of the much less nucleophililic WCAs in providing a benign electrolyte anion for the generation of organometallic cation radicals, we carried out a series of studies on transition metal sandwich and half-sandwich compounds. The model compounds were chosen both for their fundamental importance and because their radical cations had been neither isolated nor spectrally characterized, despite many previous electrochemical investigations with traditional anions. The oxidation of prototypical organometallic compounds, such as the sandwich-structured ruthenocene and the piano-stool structured Cr(eta(6)-C(6)H(6))(CO)(3), Mn(eta(5)-C(5)H(5))(CO)(3), Re(eta(5)-C(5)H(5))(CO)(3), and Co(eta(5)-C(5)H(5))(CO)(2), gave the first definitive in situ characterization of their radical cations. In several cases, the kinetic stabilization of the anodic products allowed the identification of dimers or unique dimer radicals having weak metal-metal bonds and provided new preparative options for organometallic systems. In terms of thermodynamic effects, the lower ion-pairing abilities of WCAs and their good solubility in a broad range of solvents, including those of lower polarity, permitted a systematic study that yielded an integrated model of how to use solvent-electrolyte combinations to manipulate the E(1/2) differences of compounds undergoing multiple electron-transfer reactions. Although the efficacy of WCA-based electrolytes in organometallic anodic chemistry is now established, WCAs might further expand applications of organic redox chemistry. Other WCAs, including those derived from carboranes and fluorinated alkoxyaluminates, merit additional studies. PMID:20345126

  9. Use of column V alkyls in organometallic vapor phase epitaxy (OMVPE)

    NASA Technical Reports Server (NTRS)

    Ludowise, M. J.; Cooper, C. B., III

    1982-01-01

    The use of the column V-trialkyls trimethylarsenic (TMAs) and trimethylantimony (TMSb) for the organometallic vapor phase epitaxy (OM-VPE) of III-V compound semiconductors is reviewed. A general discussion of the interaction chemistry of common Group III and Group V reactants is presented. The practical application of TMSb and TMAs for OM-VPE is demonstrated using the growth of GaSb, GaAs(1-y)Sb(y), Al(x)Ga(1-x)Sb, and Ga(1-x)In(x)As as examples.

  10. Development of Organometallic S6K1 Inhibitors

    PubMed Central

    2015-01-01

    Aberrant activation of S6 kinase 1 (S6K1) is found in many diseases, including diabetes, aging, and cancer. We developed ATP competitive organometallic kinase inhibitors, EM5 and FL772, which are inspired by the structure of the pan-kinase inhibitor staurosporine, to specifically inhibit S6K1 using a strategy previously used to target other kinases. Biochemical data demonstrate that EM5 and FL772 inhibit the kinase with IC50 value in the low nanomolar range at 100 μM ATP and that the more potent FL772 compound has a greater than 100-fold specificity over S6K2. The crystal structures of S6K1 bound to staurosporine, EM5, and FL772 reveal that the EM5 and FL772 inhibitors bind in the ATP binding pocket and make S6K1-specific contacts, resulting in changes to the p-loop, αC helix, and αD helix when compared to the staurosporine-bound structure. Cellular data reveal that FL772 is able to inhibit S6K phosphorylation in yeast cells. Together, these studies demonstrate that potent, selective, and cell permeable S6K1 inhibitors can be prepared and provide a scaffold for future development of S6K inhibitors with possible therapeutic applications. PMID:25356520

  11. Organometallic carboxylate resists for extreme ultraviolet with high sensitivity

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Re, Ryan Del; Sortland, Miriam; Hotalen, Jodi; Dousharm, Levi; Fallica, Roberto; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    We have developed organometallic carboxylate compounds [RnM)] capable of acting as negative-tone extreme ultraviolet (EUV) resists. The most sensitive of these resists contain antimony, three R-groups and two carboxylate groups, and carboxylate groups with polymerizable olefins (e.g., acrylate, methacrylate, or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of the molecules of the type RnM) where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR‧). The sensitivity of these resists was evaluated using Emax or dose to maximum resist thickness after exposure and development. We found that the greatest predictor of sensitivity of the RnSb) resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins versus the number of nonhydrogen atoms. Linear and log plots of Emax versus POL for a variety of molecules of the type R3Sb) lend insight into the behavior of these resists.

  12. High-sensitivity molecular organometallic resist for EUV (MORE)

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Del Re, Ryan; Sortland, Miriam; Dousharm, Levi; Vockenhuber, Michaela; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-03-01

    We have developed organometallic carboxylate compounds [RnM(O2CR')2] capable of acting as negativetone EUV resists. Overall, the best and fastest resists contain antimony, are pentavalent and the carboxylate group contains a polymerizable olefin (e.g. acrylate, methacrylate or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of molecules of the type RnM(O2CR')2 where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR'). We found that the greatest predictor of sensitivity of the RnSb(O2CR')2 resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins vs. the number of non-hydrogen atoms. Linear and log plots of Emax vs. POL for a variety of molecules of the type R3Sb(O2CR')2 lend insight into the behaviour of these resists.

  13. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  14. Some Tendencies in the Literature of Organometallic Chemistry

    ERIC Educational Resources Information Center

    Haiduc, Ionel

    1972-01-01

    A survey of the number of references published annually for individual elements or groups of elements suggests that the organometallic chemistry literature is approaching a phase of slower increase. (Author/NH)

  15. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1990-02-01

    The goal of our program is to define those modes of interaction that take place between organometallic molecules and inorganic surfaces and, ultimately, to correlate various molecule-surface structures with catalytic properties.

  16. Advanced polymer chemistry of organometallic anions

    SciTech Connect

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  17. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    NASA Astrophysics Data System (ADS)

    Palagin, Dennis; Doye, Jonathan P. K.

    2014-12-01

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni-Al clusters, Ni-Ag clusters preserve high spin states (up to 8 μB in case of Ni13Ag32 cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni7Ag27 cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni13Ag38 clusters adsorbed on the Si(111)-(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  18. Ni-based nanoalloys: Towards thermally stable highly magnetic materials

    SciTech Connect

    Palagin, Dennis Doye, Jonathan P. K.

    2014-12-07

    Molecular dynamics simulations and density functional theory calculations have been used to demonstrate the possibility of preserving high spin states of the magnetic cores within Ni-based core-shell bimetallic nanoalloys over a wide range of temperatures. We show that, unlike the case of Ni–Al clusters, Ni–Ag clusters preserve high spin states (up to 8 μ{sub B} in case of Ni{sub 13}Ag{sub 32} cluster) due to small hybridization between the electronic levels of two species. Intriguingly, such clusters are also able to maintain geometrical and electronic integrity of their cores at temperatures up to 1000 K (e.g., for Ni{sub 7}Ag{sub 27} cluster). Furthermore, we also show the possibility of creating ordered arrays of such magnetic clusters on a suitable support by soft-landing pre-formed clusters on the surface, without introducing much disturbance in geometrical and electronic structure of the cluster. We illustrate this approach with the example of Ni{sub 13}Ag{sub 38} clusters adsorbed on the Si(111)–(7×7) surface, which, having two distinctive halves to the unit cell, acts as a selective template for cluster deposition.

  19. Slip Analysis in a Ni-base Superalloy

    NASA Technical Reports Server (NTRS)

    Westbrooke, Eboni F.; Forero, Luis E.; Ebrahimi, Fereshteh

    2004-01-01

    A Ni-base superalloy single crystal with Gamma/Gamma' structure was tested at room temperature along the , <110> and <111> directions. Consistent with previously reported investigations, this alloy did not obey the Schmid law and the CRSS (critical resolved shear stress) was noticeably lower for the <111>-oriented samples. Furthermore, the strain hardening rate decreased and the degree of deformation localization increased in the order of <111>, and <110> orientations. The appearance and orientation of deformation traces were found to depend on the loading orientation as well as the amount of strain. In general, when Gamma'-particles were sheared, the traces followed the expected octahedral shear planes. It is demonstrated that the wavy deformation traces that do not follow the {111} planes are associated with changes in the gamma-channels width and the falling off of the gamma-particles. In this paper the evolution of deformation bands are discussed in terms of plastic localization at microscopic, mesoscopic and macroscopic levels.

  20. Local structure of Iridium organometallic catalysts covalently bonded to carbon nanotubes.

    NASA Astrophysics Data System (ADS)

    Blasco, J.; Cuartero, V.; Subías, G.; Jiménez, M. V.; Pérez-Torrente, J. J.; Oro, L. A.; Blanco, M.; Álvarez, P.; Blanco, C.; Menéndez, R.

    2016-05-01

    Hybrid catalysts based on Iridium N-heterocyclic carbenes anchored to carbon nanotubes (CNT) have been studied by XAFS spectroscopy. Oxidation of CNT yields a large amount of functional groups, mainly hydroxyl groups at the walls and carboxylic groups at the tips, defects and edges. Different kinds of esterification reactions were performed to functionalize oxidized CNT with imidazolium salts. Then, the resulting products were reacted with an Ir organometallic compound to form hybrid catalysts efficient in hydrogen transfer processes. XANES spectroscopy agree with the presence of Ir(I) in these catalysts and the EXAFS spectra detected differences in the local structure of Ir atoms between the initial Ir organometallic compound and the Ir complexes anchored to the CNT. Our results confirm that the halide atom, present in the Ir precursor, was replaced by oxygen from -OH groups at the CNT wall in the first coordination shell of Ir. The lability of this group accounts for the good recyclability and the good efficiency shown by these hybrid catalysts.

  1. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  2. Sulfur-bonded thiophenes in organometallic rhenium complexes and adsorption of isocyanides on gold

    SciTech Connect

    Robertson, M.J.

    1993-08-01

    This dissertation contains results of research conducted in two different areas: (1) organometallic synthesis and reactivity, and (2) organometallic surface chemistry. In the synthesis and reactivity studies, sulfur coordination of thiophene and benzo[b]thiophene to the metal center in organometallic rhenium complexes is examined. In the surface chemistry studies, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to analyze the adsorption of several isocyanides on the surface of gold powder. Results are compared and contrasted to known organometallic chemistry.

  3. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  4. Atom-Precise Organometallic Zinc Clusters.

    PubMed

    Banh, Hung; Dilchert, Katharina; Schulz, Christine; Gemel, Christian; Seidel, Rüdiger W; Gautier, Régis; Kahlal, Samia; Saillard, Jean-Yves; Fischer, Roland A

    2016-03-01

    The bottom-up synthesis of organometallic zinc clusters is described. The cation {[Zn10 ](Cp*)6 Me}(+) (1) is obtained by reacting [Zn2 Cp*2 ] with [FeCp2 ][BAr4 (F) ] in the presence of ZnMe2 . In the presence of suitable ligands, the high reactivity of 1 enables the controlled abstraction of single Zn units, providing access to the lower-nuclearity clusters {[Zn9 ](Cp*)6 } (2) and {[Zn8 ](Cp*)5 ((t) BuNC)3 }(+) (3). According to DFT calculations, 1 and 2 can be described as closed-shell species that are electron-deficient in terms of the Wade-Mingos rules because the apical ZnCp* units that constitute the cluster cage do not have three, but only one, frontier orbitals available for cluster bonding. Zinc behaves flexibly in building the skeletal metal-metal bonds, sometimes providing one major frontier orbital (like Group 11 metals) and sometimes providing three frontier orbitals (like Group 13 elements). PMID:26846901

  5. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  6. Tuning exchange interactions in organometallic semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.

    2015-09-01

    Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.

  7. Organic or organometallic template mediated clay synthesis

    SciTech Connect

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  8. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  9. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  10. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  11. Estimate of conjugate gamma and gamma prime compositions in Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.

    1977-01-01

    Approaches for estimating the composition of the matrix phase of alloys from the melt composition are reviewed. The first method is based on assigning essentially fixed stoichiometry to precipitating phases and is typified by PHACOMP. The second method uses analytical geometry to interpret phase diagrams and is applicable to a two-phase region of a six-component Ni-base system. The geometric method is also applicable to commercial Ni-base superalloys.

  12. Mass Spectrometry Uncovers Molecular Reactivities of Coordination and Organometallic Gold(III) Drug Candidates in Competitive Experiments That Correlate with Their Biological Effects.

    PubMed

    Meier, Samuel M; Gerner, Christopher; Keppler, Bernhard K; Cinellu, Maria Agostina; Casini, Angela

    2016-05-01

    The reactivity of three cytotoxic organometallic gold(III) complexes with cyclometalated C,N,N and C,N ligands (either six- or five-membered metallacycles), as well as that of two representative gold(III) complexes with N-donor ligands, with biological nucleophiles has been studied by ESI-MS on ion trap and time-of-flight instruments. Specifically, the gold compounds were reacted with mixtures of nucleophiles containing l-histidine (imine), l-methionine (thioether), l-cysteine (thiol), l-glutamic acid (carboxylic acid), methylseleno-l-cysteine (selenoether), and in situ generated seleno-l-cysteine (selenol) to judge the preference of the gold compounds for binding to selenium-containing amino acid residues. Moreover, the gold compounds' reactivity was studied with proteins and nucleic acid building blocks. These experiments revealed profound differences between the coordination and organometallic families and even within the family of organometallics, which allowed insights to be gained into the compounds mechanisms of action. In particular, interactions with seleno-l-cysteine appear to reflect well the compounds' inhibition properties of the seleno-enzyme thioredoxin reductase and to a certain extent their antiproliferative effects in vitro. Therefore, mass spectrometry is successfully applied for linking the molecular reactivity and target preferences of metal-based drug candidates to their biological effects. Finally, this experimental setup is applicable to any other metallodrug that undergoes ligand substitution reactions and/or redox changes as part of its mechanism of action. PMID:26866307

  13. In –Situ Spectroscopic Investigation of Immobilized Organometallic Catalysts

    SciTech Connect

    Davis, Robert, J.

    2007-11-14

    Immobilized organometallic catalysts, in principle, can give high rates and selectivities like homogeneous catalysts with the ease of separation enjoyed by heterogeneous catalysts. However, the science of immobilized organometallics has not been developed because the field lies at the interface between the homogeneous and heterogeneous catalysis communities. By assembling an interdisciplinary research team that can probe all aspects of immobilized organometallic catalyst design, the entire reacting system can be considered, where the transition metal complex, the complex-support interface and the properties of the support can all be considered simultaneously from both experimental and theoretical points of view. Researchers at Georgia Tech and the University of Virginia are studying the fundamental principles that can be used to understand and design future classes of immobilized organometallic catalysts. In the framework of the overall collaborative project with Georgia Tech, our work focused on (a) the X-ray absorption spectroscopy of an immobilized Pd-SCS-O complex (b) the mode of metal leaching from supported Pd catalysts during Heck catalysis and (c) the mode of deactivation of Jacobsen’s Co-salen catalysts during the hydrolytic kinetic resolution of terminal epoxides. Catalysts containing supported Pd pincer complexes, functionalized supports containing mercapto and amine groups, and oligomeric Co-salen catalysts were synthesized at Georgia Tech and sent to the University of Virginia. Incorporation of Pd onto several different kinds of supports (silica, mercapto-functionalized silica, zeolite Y) was performed at the University of Virginia.

  14. ROMP Synthesis of Iron-Containing Organometallic Polymers.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Filip, Petru; Simionescu, Bogdan C; Demonceau, Albert

    2016-01-01

    The paper overviews iron-containing polymers prepared by controlled "living" ring-opening metathesis polymerization (ROMP). Developments in the design and synthesis of this class of organometallic polymers are highlighted, pinpointing methodologies and newest trends in advanced applications of hybrid materials based on polymers functionalized with iron motifs. PMID:26861276

  15. Organometalic carbosilane polymers containing vanadium and their preparation

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Fukuda, K.

    1983-01-01

    The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen.

  16. Ligand Rearrangements of Organometallic Complexes inSolution

    SciTech Connect

    Shanoski, Jennifer E.

    2006-05-08

    Many chemical reactions utilize organometallic complexes as catalysts. These complexes find use in reactions as varied as bond activation, polymerization, and isomerization. This thesis outlines the construction of a new ultrafast laser system with an emphasis on the generation of tunable mid-infrared pulses, data collection, and data analysis.

  17. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  18. A "Classic Papers" Approach to Teaching Undergraduate Organometallic Chemistry

    ERIC Educational Resources Information Center

    Duncan, Andrew P.; Johnson, Adam R.

    2007-01-01

    We have structured an upper-level undergraduate course in organometallic chemistry on a selection of "classic" publications in the field. This approach offers students a richly contextual introduction to many of the fundamental tenets of the discipline. After a brief introduction to the field led by the faculty, the students themselves are…

  19. MALDI-TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in.

    PubMed

    Wyatt, Mark F

    2011-07-01

    A mini-review of the characterisation of metal-containing compounds by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is presented. Organometallic and coordination compounds have many varied applications, most notably in industrial catalytic processes and also in the electronics and healthcare sectors. In general, the compounds discussed, be they small or large molecules, have a high percentage metal content, rather than simply containing 'a metal atom'. A brief history of the field is given, but the main scope over the last 5 years is covered in some detail. How MALDI-TOFMS compliments electrospray for metal-containing compounds is highlighted. Perspectives on recent advances, such as solvent-free and air/moisture-sensitive sample preparation, and potential future challenges and developments, such as nanomaterials and metallodrug/metallometabolite imaging, are given. PMID:21744419

  20. Iron-Catalyzed C-C Cross-Couplings Using Organometallics.

    PubMed

    Guérinot, Amandine; Cossy, Janine

    2016-08-01

    Over the last decades, iron-catalyzed cross-couplings have emerged as an important tool for the formation of C-C bonds. A wide variety of alkenyl, aryl, and alkyl (pseudo)halides have been coupled to organometallic reagents, the most currently used being Grignard reagents. Particular attention has been devoted to the development of iron catalysts for the functionalization of alkyl halides that are generally challenging substrates in classical cross-couplings. The high functional group tolerance of iron-catalyzed cross-couplings has encouraged organic chemists to use them in the synthesis of bioactive compounds. Even if some points remain obscure, numerous studies have been carried out to investigate the mechanism of iron-catalyzed cross-coupling and several hypotheses have been proposed. PMID:27573401

  1. Reaction mechanisms in the organometallic vapor phase epitaxial growth of GaAs

    NASA Technical Reports Server (NTRS)

    Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B.

    1988-01-01

    The decomposition mechanisms of AsH3, trimethylgallium (TMGa), and mixtures of the two have been studied in an atmospheric-pressure flow system with the use of D2 to label the reaction products which are analyzed in a time-of-flight mass spectrometer. AsH3 decomposes entirely heterogeneously to give H2. TMGa decomposes by a series of gas-phase steps, involving methyl radicals and D atoms to produce CH3D, CH4, C2H6, and HD. TMGa decomposition is accelerated by the presence of AsH3. When the two are mixed, as in the organometallic vapor phase epitaxial growth of GaAs, both compounds decompose in concert to produce only CH4. A likely model is that of a Lewis acid-base adduct that forms and subsequently eliminates CH4.

  2. A Study on the Abrasive Resistance of Ni Based Laser Coatings with WC Hard Phase

    NASA Astrophysics Data System (ADS)

    Iždinská, Zita; Brusilová, Alena; Iždinský, Karol

    2011-12-01

    Wear properties of composite laser cladding on the basis of Ni with a 50% presence of WC particles on the dependence of laser beam power output and speed of cladding were investigated in this paper. Properties are compared with reference Ni based laser claddings without WC particles. Laser beam power output of 4.3 and 3.7 kW and cladding speed of 3, 5 and 7 mm/s were used for the preparation of test pieces. All types of prepared claddings were compact without visible internal defects. With increased cladding speed, the hardness of Ni matrix decreased. Wear resistance of Ni based laser claddings with WC particles were dependent on the speed of laser cladding. The presence of WC particles increased the wear resistance of Ni based laser claddings 5 fold.

  3. A Review on Inertia and Linear Friction Welding of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    Chamanfar, Ahmad; Jahazi, Mohammad; Cormier, Jonathan

    2015-04-01

    Inertia and linear friction welding are being increasingly used for near-net-shape manufacturing of high-value materials in aerospace and power generation gas turbines because of providing a better quality joint and offering many advantages over conventional fusion welding and mechanical joining techniques. In this paper, the published works up-to-date on inertia and linear friction welding of Ni-based superalloys are reviewed with the objective to make clarifications on discrepancies and uncertainties reported in literature regarding issues related to these two friction welding processes as well as microstructure, texture, and mechanical properties of the Ni-based superalloy weldments. Initially, the chemical composition and microstructure of Ni-based superalloys that contribute to the quality of the joint are reviewed briefly. Then, problems related to fusion welding of these alloys are addressed with due consideration of inertia and linear friction welding as alternative techniques. The fundamentals of inertia and linear friction welding processes are analyzed next with emphasis on the bonding mechanisms and evolution of temperature and strain rate across the weld interface. Microstructural features, texture development, residual stresses, and mechanical properties of similar and dissimilar polycrystalline and single crystal Ni-based superalloy weldments are discussed next. Then, application of inertia and linear friction welding for joining Ni-based superalloys and related advantages over fusion welding, mechanical joining, and machining are explained briefly. Finally, present scientific and technological challenges facing inertia and linear friction welding of Ni-based superalloys including those related to modeling of these processes are addressed.

  4. The fragility of Al Ni-based glass-forming melts

    NASA Astrophysics Data System (ADS)

    Si, Pengchao; Bian, Xiufang; Zhang, Junyan; Li, Hui; Sun, Minhua; Zhao, Yan

    2003-08-01

    In the original description of fragility, Angell (1988 J. Phys. Chem. Solids 49 863) determined the degree of fragility from the curvature on an Arrhenius plot. This paper discusses a new measurement of the fragility value. The fragility of Al-Ni-based glass-forming melts, which is seldom reported in this field, can be analysed by using data from their viscosity and thermal properties. The fragility is observed to be very high, which is in very good agreement with the low glass-forming ability of Al-Ni-based alloys.

  5. Effects of Heat Treatments on Aluminum Oxide Coatings Deposited on Ni-BASED Alloy

    NASA Astrophysics Data System (ADS)

    Tang, Xiufeng; Luo, Fa; Hseih, Chunhan; Li, Xiangyu

    2015-12-01

    AlxOy films coated on both Ni-based superalloy and silica substrates were prepared by DC reactive magnetron sputtering. Post-deposition annealing was carried out on those as-deposited films. And then 1 h heat treatments were done on the annealed films at constant temperatures ranging from 600-900°C to simulate the high-temperature application. The AlxOy film heated at 600°C exhibited good film property. Bonding strength between the 600°C-heated AlxOy film and the Ni-based substrate was about 11.6 MPa.

  6. Irradiation effects in oxide dispersion strengthened (ODS) Ni-base alloys for Gen. IV nuclear reactors

    NASA Astrophysics Data System (ADS)

    Oono, Naoko; Ukai, Shigeharu; Kondo, Sosuke; Hashitomi, Okinobu; Kimura, Akihiko

    2015-10-01

    Oxide particle dispersion strengthened (ODS) Ni-base alloys are irradiated by using simulation technique (Fe/He dual-ion irradiation) to investigate the reliability to Gen. IV high-temperature reactors. The fine oxide particles with less than 10 nm in average size and approximately 8.0 × 1022 m-3 in number density remained after 101 dpa irradiation. The tiny helium bubbles were inside grains, not at grain-boundaries; it is advantageous effect of oxide particles which trap the helium atoms at the particle-matrix interface. Ni-base ODS alloys demonstrated their great ability to overcome He embrittlement.

  7. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1991-01-01

    Adsorbing organometallic molecules onto the surfaces of inorganic supports such as Al{sub 2}O{sub 3}, MgCl{sub 2}, SiO{sub 2}, etc. can result in dramatic enhancements in catalytic activity. The reasons for this and the structures of the resulting surface organometallic centers are not well understood. We have addressed this problem using actinide and early transition metal complexes as model adsorbates. Characterization tools include catalytic and stoichiometric reaction chemistry, reaction kinetics and isotopic labeling, quantitative poisoning studies, model solution chemistry, and a wide array of surface-sensitive spectroscopies such as CPMAS NMR, EPR, and UV-VIS as well as titration calorimetry. These chemical and physical experiments are closely coupled to model solution chemistry to provide maximum information yield. 4 refs., 2 figs.

  8. Effectiveness of various organometallics as antiwear additives in mineral oil

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1977-01-01

    Sliding friction experiments were conducted with 1045 steel contacting 302 stainless steel and lubricated with various organometallics in mineral oil. Auger emission spectroscopy was used to determine the element present in the wear contact zone. The results indicate that there are organometallics which are as effective an antiwear additives as the commonly used zinc dialkyl dithiophosphate. These include dimethyl cadmium, triphenyl lead thiomethoxide, and triphenyl tin chloride. The additives were examined in concentrations to 1 weight percent. With dimethyl cadmium at concentrations of 0.5 weight percent and above, cadmium was detected in the contact zone. Coincident with the detection of cadmium, a marked decrease in the friction coefficient was observed. All additives examined reduced friction, but only the aforementioned reduced wear to a level comparable to that observed with zinc dialkyl dithiophosphate.

  9. An Organometallic Future in Green and Energy Chemistry?

    SciTech Connect

    Crabtree, Robert H

    2011-01-10

    The title topic is reviewed with selected examples taken from recent work, such as: the 'hydrogen borrowing' amine alkylation by alcohols; the dehydrogenative coupling of amine and alcohol to give amide; Ru complexes as solar cell photosensitizers; Ir organometallics as water oxidation catalyst precursors and as OLED emitters; as well as recent hydrogen storage strategies involving catalytic dehydrogenation of ammonia-borane and of organic heterocycles.

  10. Controlled Variable Oxidative Doping of Individual Organometallic Nanoparticles.

    PubMed

    Feng, Ann; Cheng, Wei; Holter, Jennifer; Young, Neil; Compton, Richard G

    2016-05-10

    The charging and controlled oxidative doping of single organometallic ferrocene nanoparticles is reported in aqueous sodium tetrafluoroborate using the nano-impacts method. It is shown that ferrocene nanoparticles of approximately 105 nm diameter are essentially quantitatively oxidatively doped with the uptake of one tetrafluoroborate anion per ferrocene molecule at suitably high overpotentials. By using lower potentials, it is possible to achieve low doping levels of single nanoparticles in a controlled manner. PMID:27038252

  11. New applications of Ziegler-Natta organometallic catalysts

    SciTech Connect

    Noskova, N.H.; Sokol'skii, D.V.

    1983-05-01

    The composition of Ziegler-Natta organometallic catalysts was discussed. These catalysts were found to be a set of definite complexes, including a polynuclear cluster complex, in dynamic equilibrium with each other. New applications were found for Ziegler-Natta catalysts, specifically, use for the mild activation of alkanes, reduction of carbon monoxide, and positional isomerization of unconjugated dienes into conjugated analogs which are promising in metal complex catalysis.

  12. Computational Raman spectroscopy of organometallic reaction products in lithium and sodium-based battery systems.

    PubMed

    Sánchez-Carrera, Roel S; Kozinsky, Boris

    2014-11-28

    A common approach to understanding surface reaction mechanisms in rechargeable lithium-based battery systems involves spectroscopic characterization of the product mixtures and matching of spectroscopic features to spectra of pure candidate reference compounds. This strategy, however, requires separate chemical synthesis and accurate characterization of potential reference compounds. It also assumes that atomic structures are the same in the actual product mixture as in the reference samples. We propose an alternative approach that uses first-principles computations of spectra of the possible reaction products and by-products present in advanced battery systems. We construct a library of computed Raman spectra for possible products, achieving excellent agreement with reference experimental data, targeting solid-electrolyte interphase in Li-ion cells and discharge products of Li-air cells. However, the solid-state crystalline structure of Li(Na) metal-organic compounds is often not known, making the spectra computations difficult. We develop and apply a novel technique of simplifying spectra calculations by using dimer-like representations of the solid state structures. On the basis of a systematic investigation, we demonstrate that molecular dimers of Li(Na)-based organometallic material provide relevant information about the vibrational properties of many possible solid reaction products. Such an approach should serve as a basis to extend existing spectral libraries of molecular structures relevant for understanding the link between atomic structures and measured spectroscopic data of materials in novel battery systems. PMID:25310385

  13. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions

    NASA Astrophysics Data System (ADS)

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N.; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios.

  14. Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions.

    PubMed

    Schwarz, Florian; Kastlunger, Georg; Lissel, Franziska; Egler-Lucas, Carolina; Semenov, Sergey N; Venkatesan, Koushik; Berke, Heinz; Stadler, Robert; Lörtscher, Emanuel

    2016-02-01

    Charge transport through single molecules can be influenced by the charge and spin states of redox-active metal centres placed in the transport pathway. These intrinsic properties are usually manipulated by varying the molecule's electrochemical and magnetic environment, a procedure that requires complex setups with multiple terminals. Here we show that oxidation and reduction of organometallic compounds containing either Fe, Ru or Mo centres can solely be triggered by the electric field applied to a two-terminal molecular junction. Whereas all compounds exhibit bias-dependent hysteresis, the Mo-containing compound additionally shows an abrupt voltage-induced conductance switching, yielding high-to-low current ratios exceeding 1,000 at bias voltages of less than 1.0 V. Density functional theory calculations identify a localized, redox-active molecular orbital that is weakly coupled to the electrodes and closely aligned with the Fermi energy of the leads because of the spin-polarized ground state unique to the Mo centre. This situation provides an additional slow and incoherent hopping channel for transport, triggering a transient charging effect in the entire molecule with a strong hysteresis and large high-to-low current ratios. PMID:26571004

  15. New Twists and Turns for Actinide Chemistry: Organometallic Infinite Coordination Polymers of Thorium Diazide.

    PubMed

    Monreal, Marisa J; Seaman, Lani A; Goff, George S; Michalczyk, Ryszard; Morris, David E; Scott, Brian L; Kiplinger, Jaqueline L

    2016-03-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. PMID:26865502

  16. 2012 ORGANOMETALLIC CHEMISTRY GRC/GRS, JULY 7-13, 2012

    SciTech Connect

    Hillhouse, Gregory

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  17. Reactive codoping of GaAlInP compound semiconductors

    DOEpatents

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  18. Discontinuous Precipitation in Ni-Base Superalloys During Solution Heat Treatment

    NASA Astrophysics Data System (ADS)

    Welton, D.; D'Souza, N.; Kelleher, J.; Gardner, S.; Dong, Z. H.; West, G. D.; Dong, Hongbiao

    2015-09-01

    Discontinuous precipitation in single-crystal Ni-base superalloys during solution heat treatment has been studied. It is found that discontinuous precipitation occurs at temperatures approaching the solvus, where volume diffusion is dominant. Diffusion of Al ahead of the boundary leads to gamma prime precipitation and is accompanied by a loss in the driving force available for advancement of the grain boundary. The rate of gamma prime precipitation was tracked using in situ neutron diffraction during isothermal hold. Gamma prime precipitation is accompanied by super-saturation of Cr and W within the channels ahead of the interface. The driving force calculated for the initial stages of DP was [10-5 to 10-4] N/[ μm2 of the grain boundary]. The results provide an insight into discontinuous precipitation during solution heat treatment of Ni-base single-crystal alloys and are useful in optimizing the heat treatment process to avoid surface defect formation.

  19. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-01

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  20. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    PubMed Central

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-01-01

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. The observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys. PMID:26446425

  1. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    SciTech Connect

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused by a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.

  2. Shape Memory Effects in TiNi-based Alloys Subjected to Electroplastic Rolling

    NASA Astrophysics Data System (ADS)

    Potapova, A. A.; Resnina, N. N.; Stolyarov, V. V.

    2014-07-01

    One of the prospective methods for structure refinement is electroplastic rolling (EPR). The use of an electric current pulse during cold rolling enhances deformability (1.5-3 times for TiNi-based alloys). It was shown that EPR ( e > 1) with post-deformation annealing at 450-500 °C leads to nanostructure formation with a grain size of 60-120 nm. Also, EPR leads to an increase in functional properties of TiNi-based alloys. So, the recovery coefficient was revealed as being better than the undeformed alloy (90-96% for Ti49,2Ni50,8 and 75-80% for Ti50,0Ni50,0). In the Ti50,0Ni50,0 subjected to EPR up to strain 3.6 and subsequent annealing at 450 °C for 1 h, the superelasticity effect is found.

  3. Estimation of conjugate gamma and gamma-prime compositions in Ni-base superalloys

    NASA Technical Reports Server (NTRS)

    Dreshfield, R. L.

    1977-01-01

    To control the formation of unwanted phases, superalloy metallurgists have developed methods of estimating the composition of the matrix phase of alloys. That composition is then used to estimate the alloy's propensity toward sigma and other unwanted phase formations upon prolonged exposure to elevated temperatures in service. This paper reviews two approaches for estimating phase composition from the melt composition. One method is based on assigning essentially fixed stoichiometry to precipitating phases and is typified by 'PHACOMP'. The second method uses analytical geometry to interpret phase diagrams and is shown to be applicable to a two-phase region of a six-component Ni-base system. The geometric method is also shown to be applicable to commercial Ni-base superalloys.

  4. Microstructural Stability and Hot Deformation of γ- γ'- δ Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Detrois, Martin; Helmink, Randolph C.; Tin, Sammy

    2014-11-01

    Nickel-base superalloys exhibit excellent high-temperature mechanical and physical properties and remain the first choice for structural components in advanced gas turbine engines for the aerospace propulsion and power generation applications. In response to the increasing demand for more efficient solutions and tighter requirements linked to gas turbine technologies, the properties of nickel-base superalloys can be improved by modification of their thermo-mechanical and/or compositional attributes. Recent investigations have revealed the potential use of ternary eutectic γ- γ'- δ Ni-base superalloys in advanced gas turbines due to high temperature mechanical properties that are comparable to state-of-the-art polycrystalline Ni-base superalloys. With properties largely dependent on microstructural strengthening mechanisms, both the composition and thermo-mechanical processing parameters of this novel class of alloys need to be optimized concurrently. The hot deformation characteristics of four γ- γ'- δ Ni-base superalloys with varying levels of Nb were evaluated at temperatures and strain rates between 1353 K and 1433 K (1080 °C and 1160 °C) and 0.01 to 0.001/s, respectively. Evidence of dislocation-based plasticity was observed following deformation at low temperatures and high strain rates, while high temperatures and low strain rates promoted superplasticity in these alloys. The extent of the microstructural changes and the magnitude of the cavitation damage which occurred during deformation was found to vary as a function of the alloy composition.

  5. Effects of Ta on microstructure and microhardness of Ni based laser clad coating

    NASA Astrophysics Data System (ADS)

    Yu, Ting; Deng, Qilin; Dong, Gang; Yang, Jianguo

    2011-03-01

    Through addition of Tantalum, fine TaC particles were in situ synthesized in a NiCrBSi alloy laser clad composite coating. Microstructure, microhardness and abrasive wear resistance of the composite coating were investigated. The result showed that TaC particles were dispersed in Ni based alloy composite coating, refining the microstructure of the coating after laser cladding. Amount of coarse primary carbides such as M7C3 and eutectic of γ-Ni + M23C6 substantially decreased because the formation of TaC particles suppressed the formation of M7C3 and M23C6. On the one hand, fine TaC particles acted as hard phase, which improved the microhardness of the composite coating; on the other hand, a decrease in amount of the coarse M7C3 and eutectic of γ-Ni + M23C6 reduced the crack susceptibility of the Ni based composite coating. Also, Ta element improved the abrasive wear resistance of the Ni based coating.

  6. Antitumor and biological investigation of doubly cyclometalated ruthenium(ii) organometallics derived from benzimidazolyl derivatives.

    PubMed

    Elumalai, Palani; Jeong, Yong Joon; Park, Dae Won; Kim, Dong Hwan; Kim, Hyunuk; Kang, Se Chan; Chi, Ki-Whan

    2016-04-12

    In this study, we report the synthesis, anticancer and biological properties of three doubly cyclometalated phenylbenzimidazole derived ruthenium(ii) organometallics () and their corresponding three organic ligands. The structures of were fully characterized by various analytical techniques, and the meso stereoisomer of the doubly cyclometalated ruthenacycle was unambiguously confirmed by single crystal X-ray diffraction. The anticancer effects of the newly synthesized compounds were tested against selected human cancer cell lines AGS (gastric carcinoma), SK-hep-1 (hepatocellular carcinoma), and HCT-15 (colorectal carcinoma). The growth inhibitory effects of ruthenacycles on cancer cells were found to be considerably more effective against the abovementioned cancer cells than the reference drug oxaliplatin. Compound exhibited a more specific effect on the AGS cells. Gene-fishing and ELISA array were performed to analyze the target genes and cytokine secretion by . As a result, a significant reduction was observed in RPS21 by . Moreover, increased the secretion of cytokines such as IFNγ in macrophages and reduced the release of cytokines such as rantes and IGF-1. These results show that could be a very good anticancer drug through the regulation of the RPS21 gene and cytokines. PMID:26974823

  7. CVD Of Thin Films From Single Organometallic Precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Barron, Andrew R.; Power, Michael B.; Macinnes, Andrew N.; Jenkins, Phillip P.

    1996-01-01

    Method of forming thin inorganic films involves chemical vapor deposition (CVD) from single organometallic precursors. No toxic constituents, minimizes impurities, and yields films having substantially uniform crystal structure and composition. Especially suitable for depositing high-quality passivating or buffer layers of GaS on GaAs semiconductor substrates. Also applicable to formation of high-quality films for purposes other than buffering or passivation, and to different materials in which another element from same group in periodic table of elements substituted for all or portion of each element in GaS/GaAs system.

  8. Fundamental organometallic reactions: Applications on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Rappe, A. K.

    1984-01-01

    Two of the most challenging problems of Organometallic chemistry (loosely defined) are pollution control with the large space velocities needed and nitrogen fixation, a process so capably done by nature and so relatively poorly done by man (industry). For a computational chemist these problems are on the fringe of what is possible with conventional computers (large models needed and accurate energetics required). A summary of the algorithmic modification needed to address these problems on a vector processor such as the CYBER 205 and a sketch of findings to date on deNOx catalysis and nitrogen fixation are presented.

  9. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-01

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp2s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the 3E2 g, 2E2 g, 1A1 g, 2E1 g, and 3A2 g states, respectively. The magnetizations of the CoCp2 and NiCp2 energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  10. Tabletop Extreme Ultraviolet Spectroscopy of Element-Specific Organometallic Photophysics

    NASA Astrophysics Data System (ADS)

    Vura-Weis, Josh

    High-harmonic extreme ultraviolet (XUV) spectroscopy has the potential to provide the elemental, oxidation-state, and spin-state specificity of core-level spectroscopy with the convenience and ultrafast time resolution of tabletop laser sources. We will show that M-edge spectroscopy of first-row transition metal complexes (3p -->3d excitation) is a sensitive probe of the electronic structure of organometallic complexes in solution. Furthermore, this technique can be used to determine the relaxation dynamics of these molecules in the first few femtoseconds to nanoseconds after photoexcitation.

  11. High-valent organometallic copper and palladium in catalysis.

    PubMed

    Hickman, Amanda J; Sanford, Melanie S

    2012-04-12

    Copper and palladium catalysts are critically important in numerous commercial chemical processes. Improvements in the activity, selectivity and scope of these catalysts could drastically reduce the environmental impact, and increase the sustainability, of chemical reactions. One rapidly developing strategy for achieving these goals is to use 'high-valent' organometallic copper and palladium intermediates in catalysis. Here we describe recent advances involving both the fundamental chemistry and the applications of these high-valent metal complexes in numerous synthetically useful catalytic transformations. PMID:22498623

  12. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1992-02-01

    The long-range goal of this project is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. The nature of the adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecular-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  13. Towards cancer cell-specific phototoxic organometallic rhenium(I) complexes.

    PubMed

    Leonidova, Anna; Pierroz, Vanessa; Rubbiani, Riccardo; Heier, Jakob; Ferrari, Stefano; Gasser, Gilles

    2014-03-21

    Over the recent years, several Re(I) organometallic compounds have been shown to be toxic to various cancer cell lines. However, these compounds lacked sufficient selectivity towards cancer tissues to be used as novel chemotherapeutic agents. In this study, we probe the potential of two known N,N-bis(quinolinoyl) Re(I) tricarbonyl complex derivatives, namely Re(I) tricarbonyl [N,N-bis(quinolin-2-ylmethyl)amino]-4-butane-1-amine (Re-NH₂) and Re(I) tricarbonyl [N,N-bis(quinolin-2-ylmethyl)amino]-5-valeric acid (Re-COOH), as photodynamic therapy (PDT) photosensitizers. Re-NH₂ and Re-COOH proved to be excellent singlet oxygen generators in a lipophilic environment with quantum yields of about 75%. Furthermore, we envisaged to improve the selectivity of Re-COOH via conjugation to two types of peptides, namely a nuclear localization signal (NLS) and a derivative of the neuropeptide bombesin, to form Re-NLS and Re-Bombesin, respectively. Fluorescent microscopy on cervical cancer cells (HeLa) showed that the conjugation of Re-COOH to NLS significantly enhanced the compound's accumulation into the cell nucleus and more specifically into its nucleoli. Importantly, in view of PDT applications, the cytotoxicity of the Re complexes and their bioconjugates increased significantly upon light irradiation. In particular, Re-Bombesin was found to be at least 20-fold more toxic after light irradiation. DNA photo-cleavage studies demonstrated that all compounds damaged DNA via singlet oxygen and, to a minor extent, superoxide production. PMID:23982882

  14. Two-Photon Absorption in Organometallic Bromide Perovskites.

    PubMed

    Walters, Grant; Sutherland, Brandon R; Hoogland, Sjoerd; Shi, Dong; Comin, Riccardo; Sellan, Daniel P; Bakr, Osman M; Sargent, Edward H

    2015-09-22

    Organometallic trihalide perovskites are solution-processed semiconductors that have made great strides in third-generation thin film light-harvesting and light-emitting optoelectronic devices. Recently, it has been demonstrated that large, high-purity single crystals of these perovskites can be synthesized from the solution phase. These crystals' large dimensions, clean bandgap, and solid-state order have provided us with a suitable medium to observe and quantify two-photon absorption in perovskites. When CH3NH3PbBr3 single crystals are pumped with intense 800 nm light, we observe band-to-band photoluminescence at 572 nm, indicative of two-photon absorption. We report the nonlinear absorption coefficient of CH3NH3PbBr3 perovskites to be 8.6 cm GW(-1) at 800 nm, comparable to epitaxial single-crystal semiconductors of similar bandgap. We have leveraged this nonlinear process to electrically autocorrelate a 100 fs pulsed laser using a two-photon perovskite photodetector. This work demonstrates the viability of organometallic trihalide perovskites as a convenient and low-cost nonlinear absorber for applications in ultrafast photonics. PMID:26196162

  15. Polymeric Micelle-Mediated Delivery of DNA-Targeting Organometallic Complexes for Resistant Ovarian Cancer Treatment.

    PubMed

    Duan, Xiaopin; Liu, Demin; Chan, Christina; Lin, Wenbin

    2015-08-26

    Three half-sandwich iridium and ruthenium organometallic complexes with high cytotoxicity are synthesized, and their anticancer mechanisms are elucidated. The organometallic complexes can interact with DNA through coordination or intercalation, thereby inducing apoptosis and inhibiting proliferation of resistant cancer cells. The organometallic complexes are then incorporated into polymeric micelles through the polymer-metal coordination between poly(ethylene glycol)-b-poly(glutamic acid) [PEG-b-P(Glu)] and organometallic complexes to further enhance their anticancer effects as a result of the enhanced permeability and retention effect. The micelles with particle sizes of ≈60 nm are more efficiently internalized by cancer cells than the corresponding complexes, and selectively dissociate and release organometallic anticancer agents within late endosomes and lysosomes, thereby enhancing drug delivery to the nuclei of cancer cells and facilitating their interactions with DNA. Thus, the micelles display higher antitumor activity than the organometallic complexes alone with a lack of the systemic toxicity in a mouse xenograft model of cisplatin-resistant human ovarian cancer. These results suggest that the polymeric micelles carrying anticancer organometallic complexes provide a promising platform for the treatment of resistant ovarian cancer and other hard-to-treat solid tumors. PMID:25963931

  16. Development of ultrafast photochromic organometallics and photoinduced linkage isomerization of arene chromium carbonyl derivatives.

    PubMed

    To, Tung T; Heilweil, Edwin J; Duke, Charles B; Ruddick, Kristie R; Webster, Charles Edwin; Burkey, Theodore J

    2009-03-26

    We review recent studies of processes relevant to photoinduced linkage isomerization of organometallic systems with the goal of preparing organometallics with an efficient and ultrafast photochromic response. The organometallic system thus corresponds to two linkage isomers with different electronic environments that are responsible for different optical properties. Much of this work has focused on examining processes following irradiation of cyclopentadienyl manganese tricarbonyl derivatives (compounds 3-21) including solvent coordination, thermal relaxation, solvent displacement by tethered functional groups (chelation), dissociation of tethered functional groups, and linkage isomerization. A new platform is investigated for obtaining a photochromic response in new experiments with arene chromium dicarbonyl complexes. A photochromic response is observed for arene chromium dicarbonyl complexes with tethered pyridine and olefin functional groups based on light-driven linkage isomerization on the nanosecond time scale. Irradiation at 532 nm of 23 ([Cr{eta(6)-C(6)H(5)CH(2-Py-kappaN)CH(2)CH=CH(2)}(CO)(2)]) (Py = pyridine) results in the isomerization to 22 ([Cr{eta(6)-C(6)H(5)CH(2-Py)CH(2)-eta(2)-CH=CH(2)}(CO)(2)]), and 355 nm irradiation isomerizes 22 to 23. The ultrafast linkage isomerization has been investigated at room temperature in n-heptane solution on the picosecond to microsecond time scale with UV- or visible-pump and IR-probe transient absorption spectroscopy by comparing the dynamics with model compounds containing only a tethered pyridine. Irradiation of 24 ([Cr{eta(6)-C(6)H(5)(CH(2))(3)(2-Py)}(CO)(3)]) and 25 ([Cr{eta(6)-C(6)H(5)(CH(2))(2)(2-Py)}(CO)(3)]) at 289 nm induces CO loss to immediately yield a Cr-heptane solvent coordinated intermediate of the unsaturated Cr fragment, which then converts to the kappaN(1)-pyridine chelate within 200 and 100 ns, respectively. Irradiation of 26 ([Cr{eta(6)-C(6)H(5)CH(2)(2-Py)}(CO)(3)]) also induces CO loss to

  17. Precipitate Phase Stability in γ- γ'- δ- η Ni-Base Superalloys

    NASA Astrophysics Data System (ADS)

    Detrois, Martin; Antonov, Stoichko; Helmink, Randolph C.; Tin, Sammy

    2014-12-01

    In response to the increasing temperature capability of the structural materials required for advanced gas turbine engines, new alloying concepts are required to develop materials with properties that are significantly better than existing nickel-base superalloys. Recent investigations have focused on the development of polycrystalline, ternary eutectic γ- γ'- δ Ni-base superalloys that use large volume fractions of the intermetallic δ phase to provide composite strengthening. While compositional changes enabled the formation of the δ phase precipitates, in some alloys an additional precipitate phase η was formed. As the effects of these phases on high-temperature mechanical properties are not well quantified, a better understanding of the thermodynamics and kinetics associated with the formation of these δ and η phase precipitates is required for future designs of Ni-base superalloys. A set of experimental alloys was investigated to understand the formation of the δ and η phase precipitates in Ni-base superalloys. When the alloy chemistry was observed to exhibit a compositional ratio of Al/(Nb+Ta+Ti) less than 1, δ and/or η phase precipitates formed, whereas a ratio greater than 1 resulted in conventional γ- γ' microstructures. For alloys in which δ and/or η phase precipitates were formed, the prevalent phase could be determined by evaluating the compositional ratio for (Nb+Ta)/(Al+Ti). Alloys that had ratios greater than 1 were largely composed of δ phase precipitates, whereas a ratio less than 1 resulted in the predominance of the η phase precipitates.

  18. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    SciTech Connect

    Ruiz-Vargas, J.; Siredey-Schwaller, N.; Noyrez, P.; Mathieu, S.; Bocher, P.; and others

    2014-08-15

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides.

  19. Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer

    NASA Astrophysics Data System (ADS)

    Xu, Jiang; Tao, Jie; Jiang, Shuyun; Xu, Zhong

    2008-04-01

    In order to investigate the role of amorphous SiO 2 particles in corrosion and wear resistance of Ni-based metal matrix composite alloying layer, the amorphous nano-SiO 2 particles reinforced Ni-based composite alloying layer has been prepared by double glow plasma alloying on AISI 316L stainless steel surface, where Ni/amorphous nano-SiO 2 was firstly predeposited by brush plating. The composition and microstructure of the nano-SiO 2 particles reinforced Ni-based composite alloying layer were analyzed by using SEM, TEM and XRD. The results indicated that the composite alloying layer consisted of γ-phase and amorphous nano-SiO 2 particles, and under alloying temperature (1000 °C) condition, the nano-SiO 2 particles were uniformly distributed in the alloying layer and still kept the amorphous structure. The corrosion resistance of composite alloying layer was investigated by an electrochemical method in 3.5%NaCl solution. Compared with single alloying layer, the amorphous nano-SiO 2 particles slightly decreased the corrosion resistance of the Ni-Cr-Mo-Cu alloying layer. X-ray photoelectron spectroscopy (XPS) revealed that the passive films formed on the composite alloying consisted of Cr 2O 3, MoO 3, SiO 2 and metallic Ni and Mo. The dry wear test results showed that the composite alloying layer had excellent friction-reduced property, and the wear weight loss of composite alloying layer was less than 60% of that of Ni-Cr-Mo-Cu alloying layer.

  20. Creep Damage Process of Ni-Base Superalloy Caused by Stress-Induced Anisotropic Atomic Diffusion

    NASA Astrophysics Data System (ADS)

    Suzuki, Ken; Ito, Hiroyuki; Inoue, Tatsuya; Miura, Hideo

    In order to make clear the mechanism of the directional coarsening of γ' phases (rafting) of Ni-base superalloy under uni-axial strain, molecular dynamics (MD) analysis was applied to analyze the effect of strain on the diffusion characteristics around the interface between different materials. In a Ni (001)/Al (001) interface structure, the stress induced diffusion of Al atoms perpendicular to the interface was found. The stress induced anisotropic diffusion of Al was also found in a Ni (001)/Ni3Al (001) interface. These results imply that it is highly possible the rafting occurs predominantly by the stress induced anisotropic diffusion of Al atoms.

  1. Measuring Depth-dependent Dislocation Densities and Elastic Strains in an Indented Ni-based Superalloy

    SciTech Connect

    Barabash, O.M.; Santella, M.; Barabash, R.I.; Ice, G.E.; Tischler, J.

    2011-12-14

    The indentation-induced elastic-plastic zone in an IN 740 Ni-based superalloy was studied by three-dimensional (3-D) x-ray microdiffraction and electron back scattering diffraction (EBSD). Large lattice reorientations and the formation of geometrically necessary dislocations are observed in the area with a radius of {approx}75 {mu}m. A residual compression zone is found close to the indent edge. An elastic-plastic transition is observed at {approx}20 {mu}m from the indent edge. Depth dependent dislocation densities are determined at different distances from the indent edge.

  2. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  3. Entrapment of an organometallic complex within a metal: a concept for heterogeneous catalysis.

    PubMed

    Yosef, Itzik; Abu-Reziq, Raed; Avnir, David

    2008-09-10

    A novel family of composite materials, organically doped metals, has been recently introduced. Here, we demonstrate their use as a new platform for heterogeneous catalysis, namely the doping of a metal with a catalytic organometallic complex. Specifically, a rhodium(I) catalyst, (RhCl(COD)(Ph2P(C6H4SO3Na))), ([Rh]), was physically entrapped within silver, thus creating a new type of catalytic material: [Rh]@Ag. Several aspects were demonstrated with the development of this heterogeneous catalyst: a metal can be used as a support for heterogenizing a homogeneous catalyst; the homogeneous catalyst is stabilized by the entrapment within the metal; the products of the composite catalyst are different compared to those obtained from the homogeneous one; and the adsorption of [Rh] on the surface of Ag and its entrapment are very different processes only the latter provided appreciable catalytic activity. Thus, while homogeneous [Rh] was entirely destroyed after converting styrene to ethylbenzne at 50%, [Rh]@Ag remained active after effecting the same reaction to a yield of 85% (compared to only 7% for [Rh] adsorbed on Ag), and while homogeneous [Rh] hydrogenated diphenylacetylene to bibenzyl (and was completely deactivated after one cycle) with no trace of cis-stilbene, [Rh]@Ag afforded that compound as the main product and could be reused. PMID:18702492

  4. Single and multijunction space solar cells grown by organometallic vapor phase epitaxy (OM-VPE)

    SciTech Connect

    Borden, P.G.; Gregory, P.E.; Larue, R.A.; Ludowise, M.J.

    1982-08-01

    Organometallic Vapor Phase Epitaxy (OM-VPE) is a versatile technique for growing III-V compound semiconductor solar cells. It has good uniformity and morphology, control that allows growth of extremely thin layers, and is a technique readily automated. The vehicle for the present discussion is a metal interconnected cascade (MIC/sup 2/) solar cell that has achieved 16.6% AM0 and 22% AM3 efficiency (uncorrected for 14% grid coverage). These are the best results reported to date for a cascade solar cell. Features include a 9-layer epitaxial structure, the thinnest of which is less than 1000 thick, a high-efficiency 30% AlGaAs top cell only 1.5 microns thick, a GaAs bottom cell that has survived the 780/sup 0/C, 20-minute top cell growth, and process yields greater than 4 cm/sup 2/ per wafer. The paper describes the cell design requirements, how it was grown by OM-VPE, and performance results.

  5. Effect of organometallic fuel additives on nanoparticle emissions from a gasoline passenger car.

    PubMed

    Gidney, Jeremy T; Twigg, Martyn V; Kittelson, David B

    2010-04-01

    Particle size measurements were performed on the exhaust of a car operating on a chassis dynamometer fueled with standard gasoline and gasoline containing low levels of Pb, Fe, and Mn organometallic additives. When additives were present there was a distinct nucleation mode consisting primarily of sub-10 nm nanoparticles. At equal molar dosing Mn and Fe gave similar nanoparticle concentrations at the tailpipe, whereas Pb gave a considerably lower concentration. A catalytic stripper was used to remove the organic component of these particles and revealed that they were mainly solid and, because of their association with inorganic additives, presumably inorganic. Solid nucleation mode nanoparticles of similar size and concentration to those observed here from a gasoline engine with Mn and Fe additives have also been observed from modern heavy-duty diesel engines without aftertreatment at idle, but these solid particles are a small fraction of the primarily volatile nucleation mode particles emitted. The solid nucleation mode particles emitted by the diesel engines are likely derived from metal compounds in the lubrication oil, although carbonaceous particles cannot be ruled out. Significantly, most of these solid nanoparticles emitted by both engine types fall below the 23 nm cutoff of the PMP number regulation. PMID:20192164

  6. CVD of SiC and AlN using cyclic organometallic precursors

    NASA Technical Reports Server (NTRS)

    Interrante, L. V.; Larkin, D. J.; Amato, C.

    1992-01-01

    The use of cyclic organometallic molecules as single-source MOCVD precursors is illustrated by means of examples taken from our recent work on AlN and SiC deposition, with particular focus on SiC. Molecules containing (AlN)3 and (SiC)2 rings as the 'core structure' were employed as the source materials for these studies. The organoaluminum amide, (Me2AlNH2)3, was used as the AlN source and has been studied in a molecular beam sampling apparatus in order to determine the gas phase species present in a hot-wall CVD reactor environment. In the case of SiC CVD, a series of disilacyclobutanes (Si(XX')CH2)2 (with X and X' = H, CH3, and CH2SiH2CH3), were examined in a cold-wall, hot-stage CVD reactor in order to compare their relative reactivities and prospective utility as single-source CVD precursors. The parent compound, disilacyclobutane, (SiH2CH2)2, was found to exhibit the lowest deposition temperature (ca. 670 C) and to yield the highest purity SiC films. This precursor gave a highly textured, polycrystalline film on the Si(100) substrates.

  7. Novel Two- and Three-Dimensional Organometallic-Organic Hybrid Materials Based on Polyphosphorus Complexes.

    PubMed

    Attenberger, Bianca; Peresypkina, Eugenia V; Scheer, Manfred

    2015-07-20

    The reaction of the silver salt Ag[Al{OC(CF3)3}4] (1) with the P2 ligand complex [Cp2Mo2(CO)4(η(2)-P2)] (2) and the organic ditopic linker trans-1,2-di(pyridine-4-yl)ethene (dpe) results in the formation of four novel organometallic-organic hybrid compounds. Depending on the reaction conditions, the two-dimensional networks [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)Ag]n[Al{OC(CF3)3}4]n·0.075nCH2Cl2·1.425nC6H6 (3) and [{Cp2Mo2(CO)4(μ3,η(2:2:2)-P2)}2(μ,η(1:1)-C12H10N2)3Ag2]n[Al{OC(CF3)3}4]2n·2nC7H8 (4) are accessible. The latter shows a two-dimensional (2D) → 2D interpenetration structure. Furthermore, the formation of a unique three-dimensional polymer [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)Ag]n[Al{OC(CF3)3}4]n·0.3nCH2Cl2 (5b) together with another 2D polymer [{Cp2Mo2(CO)4(μ4,η(1:1:2:2)-P2)}(μ,η(1:1)-C12H10N2)3Ag2]n[Al{OC(CF3)3}4]2n·0.75CH2Cl2·0.5C7H8 (5a) was observed. In three of these polymers, unprecedented organometallic nodes were realized including one, two, or even four silver cations. All products were characterized by X-ray structural analysis and classified by the structural characteristics in three different network topologies. PMID:26121218

  8. Organometallic Iridium(III) Anticancer Complexes with New Mechanisms of Action: NCI-60 Screening, Mitochondrial Targeting, and Apoptosis

    PubMed Central

    2013-01-01

    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (IrIII) complexes [Ir(Cpx)(XY)Cl]+/0 (Cpx = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cpx ring. In comparison, highly potent complex 4 (Cpx = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these IrIII complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic IrIII complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  9. Organometallic Iridium(III) anticancer complexes with new mechanisms of action: NCI-60 screening, mitochondrial targeting, and apoptosis.

    PubMed

    Hearn, Jessica M; Romero-Canelón, Isolda; Qamar, Bushra; Liu, Zhe; Hands-Portman, Ian; Sadler, Peter J

    2013-01-01

    Platinum complexes related to cisplatin, cis-[PtCl2(NH3)2], are successful anticancer drugs; however, other transition metal complexes offer potential for combating cisplatin resistance, decreasing side effects, and widening the spectrum of activity. Organometallic half-sandwich iridium (Ir(III)) complexes [Ir(Cp(x))(XY)Cl](+/0) (Cp(x) = biphenyltetramethylcyclopentadienyl and XY = phenanthroline (1), bipyridine (2), or phenylpyridine (3)) all hydrolyze rapidly, forming monofunctional G adducts on DNA with additional intercalation of the phenyl substituents on the Cp(x) ring. In comparison, highly potent complex 4 (Cp(x) = phenyltetramethylcyclopentadienyl and XY = N,N-dimethylphenylazopyridine) does not hydrolyze. All show higher potency toward A2780 human ovarian cancer cells compared to cisplatin, with 1, 3, and 4 also demonstrating higher potency in the National Cancer Institute (NCI) NCI-60 cell-line screen. Use of the NCI COMPARE algorithm (which predicts mechanisms of action (MoAs) for emerging anticancer compounds by correlating NCI-60 patterns of sensitivity) shows that the MoA of these Ir(III) complexes has no correlation to cisplatin (or oxaliplatin), with 3 and 4 emerging as particularly novel compounds. Those findings by COMPARE were experimentally probed by transmission electron microscopy (TEM) of A2780 cells exposed to 1, showing mitochondrial swelling and activation of apoptosis after 24 h. Significant changes in mitochondrial membrane polarization were detected by flow cytometry, and the potency of the complexes was enhanced ca. 5× by co-administration with a low concentration (5 μM) of the γ-glutamyl cysteine synthetase inhibitor L-buthionine sulfoximine (L-BSO). These studies reveal potential polypharmacology of organometallic Ir(III) complexes, with MoA and cell selectivity governed by structural changes in the chelating ligands. PMID:23618382

  10. Laser Direct Writing of Conductive Silver Film on Polyimide Surface from Decomposition of Organometallic Ink

    NASA Astrophysics Data System (ADS)

    Cai, Zhixiang; Zeng, Xiaoyan; Liu, Jianguo

    2011-03-01

    Laser direct writing of organometallic ink to manufacture silver films was investigated by using a continuous-wave, Yb-doped fiber laser beam at a wavelength of 1071 nm. The organometallic ink consisted of an organometallic silver complex and a carrier vehicle, which was prepared by reaction of silver oxide with ammonium carbamates in methanol. The organometallic silver decomposed at a laser power of 0.1 W. The electrical resistivity values of silver conductors that were fabricated at a laser power of 0.5 W were about four times that of bulk silver. The morphology and electrical properties of the silver film were observed to be controllable as a function of laser processing parameters. The fabricated silver film exhibited excellent adherence to the polyimide substrate surface according to evaluation using the peel-off testing method.

  11. Supported organometallic complexes: Surface chemistry, spectroscopy, and catalysis. Progress report, March 15, 1988--July 14, 1989

    SciTech Connect

    Marks, T.J.

    1990-02-01

    The goal of our program is to define those modes of interaction that take place between organometallic molecules and inorganic surfaces and, ultimately, to correlate various molecule-surface structures with catalytic properties.

  12. Effect of exposure in steam or argon on the creep properties of Ni-based alloys: Creep properties of Ni-based alloys

    SciTech Connect

    Dryepondt, S.; Unocic, K. A.; Pint, B. A.

    2012-09-17

    Although expensive, Ni-based superalloys are of interest for the ultrasupercritical steam program because of their good creep and oxidation resistance at temperature above 700 C. However, the effect of steam oxidation on the alloy mechanical properties is unknown, and creep specimens of alloy CCA617, 740 and 230 were pre-oxidized for 2000 and 4000h in steam at 800 C before testing in air at the same temperature. Exposure in steam decreased the creep properties of alloy CCA617 compared with as fabricated material, had less of an effect on alloy 740, and did not affect alloy 230. Testing of a specimen repolished after steam exposure as well as microstructure observation indicate that the oxidation affected zone at the specimen surface is not responsible for the properties degradation. Surprisingly, a similar time anneal in an inert environment resulted in a drastic decrease of creep rupture life and an increase in the creep rate and elongation at rupture. TEM analysis revealed that the mechanical properties decrease for alloy CCA617 is related to the absence of precipitates in the grain.

  13. Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.

    PubMed

    Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger

    2016-02-18

    Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. PMID:26799241

  14. Flat Chern band in a two-dimensional organometallic framework.

    PubMed

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a "romance of flatland" could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology. PMID:23521279

  15. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  16. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band, namely the flat chern band (FCB), has recently been proposed, in which carriers experience strong Coulomb interaction as well as topological frustration that in together spawn unprecedented topological strongly-correlated electronic states, such as high-temperature fractional quantum hall state. Despite the proposal of several theoretical lattice models, however, it remains a doubt whether such a ``romance of flatland'' could exist in a real material. Here, we present a first-principles design to realize a nearly FCB right around the Fermi level in a two-dimensional (2D) Indium-Phenylene Organometallic Framework (IPOF). Our design in addition provides a general strategy to synthesize topologically nontrivial materials in virtue of organic chemistry and nanotechnology. Supported by DOE-BES and ARL

  17. Electronic configurations and magnetic anisotropy in organometallic metallocenes

    SciTech Connect

    Nawa, Kenji Kitaoka, Yukie; Nakamura, Kohji; Akiyama, Toru; Ito, Tomonori

    2015-05-07

    Electronic configurations and magnetic anisotropy of organometallic metallocenes (MCp{sub 2}s) were investigated by means of first principles calculations based on the constraint density functional theory. The results predict that the ground states for M = Cr, Mn, Fe, Co, and Ni are the {sup 3}E{sub 2g}, {sup 2}E{sub 2g}, {sup 1}A{sub 1g}, {sup 2}E{sub 1g}, and {sup 3}A{sub 2g} states, respectively. The magnetizations of the CoCp{sub 2} and NiCp{sub 2} energetically favor highly orienting along the perpendicular and parallel directions to the cyclopentadienyl (Cp) plane, respectively, and the others show almost no preference for the magnetic easy axis.

  18. Outer-Sphere Electrophilic Fluorination of Organometallic Complexes.

    PubMed

    Milner, Lucy M; Pridmore, Natalie E; Whitwood, Adrian C; Lynam, Jason M; Slattery, John M

    2015-08-26

    Organofluorine chemistry plays a key role in materials science, pharmaceuticals, agrochemicals, and medical imaging. However, the formation of new carbon-fluorine bonds with controlled regiochemistry and functional group tolerance is synthetically challenging. The use of metal complexes to promote fluorination reactions is of great current interest, but even state-of-the-art approaches are limited in their substrate scope, often require activated substrates, or do not allow access to desirable functionality, such as alkenyl C(sp(2))-F or chiral C(sp(3))-F centers. Here, we report the formation of new alkenyl and alkyl C-F bonds in the coordination sphere of ruthenium via an unprecedented outer-sphere electrophilic fluorination mechanism. The organometallic species involved are derived from nonactivated substrates (pyridine and terminal alkynes), and C-F bond formation occurs with full regio- and diastereoselectivity. The fluorinated ligands that are formed are retained at the metal, which allows subsequent metal-mediated reactivity. PMID:26270894

  19. Reactivity of Gold Complexes towards Elementary Organometallic Reactions.

    PubMed

    Joost, Maximilian; Amgoune, Abderrahmane; Bourissou, Didier

    2015-12-01

    For a while, the reactivity of gold complexes was largely dominated by their Lewis acid behavior. In contrast to the other transition metals, the elementary steps of organometallic chemistry-oxidative addition, reductive elimination, transmetallation, migratory insertion-have scarcely been studied in the case of gold or even remained unprecedented until recently. However, within the last few years, the ability of gold complexes to undergo these fundamental reactions has been unambiguously demonstrated, and the reactivity of gold complexes was shown to extend well beyond π-activation. In this Review, the main achievements described in this area are presented in a historical context. Particular emphasis is set on mechanistic studies and structure determination of key intermediates. The electronic and structural parameters delineating the reactivity of gold complexes are discussed, as well as the remaining challenges. PMID:26768342

  20. The Estimation of Localized Corrosion Behavior of Ni-Based Dental Alloys Using Electrochemical Techniques

    NASA Astrophysics Data System (ADS)

    Mareci, Daniel; Chelariu, Romeu; Iacoban, Sorin; Munteanu, Corneliu; Bolat, Georgiana; Sutiman, Daniel

    2012-07-01

    The aim of this study is to investigate the electrochemical behavior of the five non-precious Ni-based dental casting alloys in acidified artificial saliva. For comparison, nickel was also investigated. In order to study the localized corrosion resistance, the cyclic potentiodynamic polarization (CCP) and electrochemical impedance spectroscopy were performed. Scanning electron microscopy (SEM) observations were made after the CCP tests. The Ni-Cr alloys with chromium (14-18%) contents were susceptible to localized corrosion. The Ni-Cr-Mo alloy with contents of chromium (≈13%) and molybdenum (9%) presents a dangerous breakdown, but have a zero corrosion potential so that the difference between them is around 650 mV. The Ni-Cr-Mo alloys with higher chromium (22-25%) and molybdenum (9-11%) contents had a much larger passive range in the polarization curve and were immune to pitting corrosion. Pitting resistance equivalent (PRE) of about ≈54 could provide the Ni-based alloy with a good pitting corrosion resistance.

  1. A synchrotron study of microstructure gradient in laser additively formed epitaxial Ni-based superalloy

    DOE PAGESBeta

    Xue, Jiawei; Zhang, Anfeng; Li, Yao; Qian, Dan; Wan, Jingchun; Qi, Baolu; Tamura, Nobumichi; Song, Zhongxiao; Chen, Kai

    2015-10-08

    Laser additive forming is considered to be one of the promising techniques to repair single crystal Ni-based superalloy parts to extend their life and reduce the cost. Preservation of the single crystalline nature and prevention of thermal mechanical failure are two of the most essential issues for the application of this technique. Here we employ synchrotron X-ray microdiffraction to evaluate the quality in terms of crystal orientation and defect distribution of a Ni-based superalloy DZ125L directly formed by a laser additive process rooted from a single crystalline substrate of the same material. We show that a disorientation gradient caused bymore » a high density of geometrically necessary dislocations and resultant subgrains exists in the interfacial region between the epitaxial and stray grains. This creates a potential relationship of stray grain formation and defect accumulation. In conclusion, the observation offers new directions on the study of performance control and reliability of the laser additive manufactured superalloys.« less

  2. Castability of Traditionally Wrought Ni-Based Superalloys for USC Steam Turbines

    SciTech Connect

    Jablonski, P D; Cowen, C J; Hawk, J A; Evens, N; Maziasz, P

    2011-02-27

    The high temperature components within conventional coal fired power plants are manufactured from ferritic/martensitic steels. In order to reduce greenhouse gas emissions the efficiency of pulverized coal steam power plants must be increased. The proposed steam temperature in the Advanced Ultra Supercritical (A-USC) power plant is high enough (760°C) that ferritic/martensitic steels will not work due to temperature limitations of this class of materials; thus Ni-based superalloys are being considered. The full size castings are quite substantial: ~4in thick, several feet in diameter and weigh 5-10,000lb each half. Experimental castings were quite a bit smaller, but section size was retained and cooling rate controlled in order to produce relevant microstructures. A multi-step homogenization heat treatment was developed in order to better deploy the alloy constituents. The castability of two traditionally wrought Ni-based superalloys to which minor alloy adjustments have been made in order to improve foundry performance is further explored.

  3. Effect of Microstructure on the High Temperature Fatigue Properties of Two Ni-based Superalloys

    SciTech Connect

    Muralidharan, Govindarajan; Battiste, Rick; Kenik, Edward A; Bentley, James; Bunting, Bruce G

    2010-01-01

    There is significant need for Ni-based superalloys in the next generation automotive engine components such as exhaust valves. High temperature, high cycle fatigue life is one of the important properties required for such applications. The focus of this work is to evaluate the effect of microstructure on the high cycle fatigue properties of two Ni-based alloys, alloy 751, an alloy used in these applications at lower temperatures, and Waspaloy. High cycle fatigue lives of the alloys at 870oC were evaluated using in-situ high temperature fully reversed fatigue tests at 870oC and a nominal frequency of 30 Hz. Scanning electron microscopy and transmission electron microscopy were used to characterize the microstructure of the alloys. Computational modeling was used to calculate the equilibrium microstructure and microstructural coarsening at 870oC. Correlation of fatigue properties with microstructure of the alloys shows that for the experimental conditions used in the study, the fatigue life of Waspaloy, which has greater high temperature strength and larger volume fraction, is better than that of alloy 751.

  4. A study of microstructural characteristics of Ni-based superalloys at high temperatures. Final Report

    SciTech Connect

    Lal, R.B.; Aggarwal, M.D.

    1990-12-01

    The microstructural characteristics of the Ni-based superalloy MAR-M245(Hf) which is used in manufacturing the components of the Space Shuttle main engine are studied. These superalloys need optimum heat treatment to get the best results. To find out the optimum heat treatment, the techniques of differential thermal analysis (DTA) and the optical photomicrographs were utilized. In the first phase, the existing experimental equipment like cutting, grinding/polishing machines and metallurgical microscope were set up to cut/polish and take the photomicrographs. In the beginning of the project a Perkin Elmer differential thermal analyzer DTA1700 along with a temperature programmed and the needed computer interface was procured and made operational. In the second year a Leitz Metallux-3 hot state research microscope was also procured and installed for in-situ observation of the superalloy samples. The hot stage when tested for the first time alloyed the thermocouple with the Tantalum heating element and has now been installed. Samples of MAR-M246(Hf), MAR-M247, Waspaloy, Udimet-41, CMSX-3, and CMSX-3 (Polycrystalline and single crystals) were studied using a differential thermal analyzer and the results are reported. Photomicrographs of the Ni-based superalloy MAR-M246 (Hf) were recorded before and after heat treatment at certain temperatures. More heat treatments need to be done before a final inference can be reached.

  5. A study of microstructural characteristics of Ni-based superalloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Lal, Ravindra B.; Aggarwal, M. D.

    1990-01-01

    The microstructural characteristics of the Ni-based superalloy MAR-M245(Hf) which is used in manufacturing the components of the Space Shuttle main engine are studied. These superalloys need optimum heat treatment to get the best results. To find out the optimum heat treatment, the techniques of differential thermal analysis (DTA) and the optical photomicrographs were utilized. In the first phase, the existing experimental equipment like cutting, grinding/polishing machines and metallurgical microscope were set up to cut/polish and take the photomicrographs. In the beginning of the project a Perkin Elmer differential thermal analyzer DTA1700 along with a temperature programmed and the needed computer interface was procured and made operational. In the second year a Leitz Metallux-3 hot state research microscope was also procured and installed for in-situ observation of the superalloy samples. The hot stage when tested for the first time alloyed the thermocouple with the Tantalum heating element and has now been installed. Samples of MAR-M246(Hf), MAR-M247, Waspaloy, Udimet-41, CMSX-3, and CMSX-3 (Polycrystalline and single crystals) were studied using a differential thermal analyzer and the results are reported. Photomicrographs of the Ni-based superalloy MAR-M246 (Hf) were recorded before and after heat treatment at certain temperatures. More heat treatments need to be done before a final inference can be reached.

  6. Origin of synergistic effect over Ni-based bimetallic surfaces: A density functional theory study

    NASA Astrophysics Data System (ADS)

    Fan, Chen; Zhu, Yi-An; Xu, Yue; Zhou, Yan; Zhou, Xing-Gui; Chen, De

    2012-07-01

    Density functional theory calculations have been conducted to explore the physical origin of the synergistic effect over Ni-based surface alloys using methane dissociation as a probe reaction. Some late transition metal atoms (M = Cu, Ru, Rh, Pd, Ag, Pt, and Au) are substituted for surface Ni atoms to examine the variation in electronic structure and adsorption property of Ni(111). Two types of threefold hollow sites, namely, the Ni2M and Ni3 sites, are taken into account. The calculated results indicate that the variation in the CHx adsorption energy at the Ni2M and Ni3 sites is dominated by the ensemble and ligand effect, respectively, and the other factors such as surface and adsorbate distortion and electrostatic interaction affect the catalytic properties of the bimetallic surfaces to a smaller extent. Both the Brønsted-Evans-Polanyi relationship and the scaling correlation hold true on the Ni-based bimetallic surfaces. With the combination of these two linear energy relations, the corrected binding energy of atomic C is found to be a good descriptor for representing the catalytic activity of the alloyed surfaces. Considering the compromise between the catalytic activity and catalyst stability, we suggest that the Rh/Ni catalyst is a good candidate for methane dissociation.

  7. Scalable Synthesis of Piperazines Enabled by Visible-Light Irradiation and Aluminum Organometallics

    PubMed Central

    Suárez-Pantiga, Samuel; Colas, Kilian; Johansson, Magnus J; Mendoza, Abraham

    2015-01-01

    The development of more active C–H oxidation catalysts has inspired a rapid, scalable, and stereoselective assembly of multifunctional piperazines through a [3+3] coupling of azomethine ylides. A combination of visible-light irradiation and aluminum organometallics is essential to promote this transformation, which introduces visible-light photochemistry of main-group organometallics and sets the basis for new and promising catalysts. PMID:26337253

  8. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  9. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  10. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    SciTech Connect

    Fan, Qitang; Wang, Tao; Zhu, Junfa; Liu, Liming; Zhao, Jin; Gottfried, J. Michael

    2015-03-14

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ∼140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C–Br bonds and formation of C–Cu–C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  11. Tribromobenzene on Cu(111): Temperature-dependent formation of halogen-bonded, organometallic, and covalent nanostructures

    NASA Astrophysics Data System (ADS)

    Fan, Qitang; Wang, Tao; Liu, Liming; Zhao, Jin; Zhu, Junfa; Gottfried, J. Michael

    2015-03-01

    The temperature-controlled surface-assisted synthesis of halogen bonded, organometallic, and covalent nanostructures based on 1,3,5-tribromo-benzene (TriBB) was studied with scanning tunneling microscopy and X-ray photoemission spectroscopy in ultrahigh vacuum. Vapor deposition of TriBB onto a Cu(111) surface held at 90 K leads to the formation of large domains of a honeycomb-like organic monolayer structure stabilized by triangular nodes with Br⋯Br intermolecular bonds. Upon annealing the organic monolayer to ˜140 K, a new hexagonal close-packed structure with intact TriBB molecules connected by Cu adatoms is formed. Further warming up the sample to 300 K gives rise to the scission of C-Br bonds and formation of C-Cu-C bonds between phenyl fragments such that stable dendritic organometallic networks are formed. Larger islands of organometallic networks are obtained by maintaining the temperature of Cu(111) at 420 K during deposition of TriBB. Simultaneously, large islands of Br atoms are formed around the organometallic networks. Annealing the more extended organometallic network (prepared at 420 K) to 520 K leads to the formation of a branched covalent organic framework (COF) which comprises structural elements of porous graphene and is surrounded by Br islands. These organometallic networks and COFs appear as small dendritic and branched domains, most likely due to the steric influence exerted by the Br islands.

  12. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    SciTech Connect

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-20

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the refractory metal side. It was also noted that at least some degree of forging on the Ni-based superalloy side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10-{mu}m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels

  13. Performance of Alumina-Forming Austenitic Steels, Fe-base and Ni-base alloys exposed to metal dusting environments

    SciTech Connect

    Vande Put Ep Rouaix, Aurelie; Unocic, Kinga A; Pint, Bruce A; Brady, Michael P

    2011-01-01

    A series of conventional Fe- and Ni- base, chromia- and alumina- forming alloys, and a newly developed creep-resistant, alumina-forming austenitic steel were developed and its performance relative to conventional Fe- and Ni-based chromia-forming alloys was evaluated in metal dusting environments with a range of water vapor contents. Five 500h experiments have been performed at 650 C with different water vapor contents and total pressures. Without water vapor, the Ni-base alloys showed greater resistance to metal dusting than the Fe-base alloys, including AFA. However, with 10-28% water vapor, more protective behavior was observed with the higher-alloyed materials and only small mass changes were observed. Longer exposure times are in progress to further differentiate performance.

  14. The effect of microstructure on the fatigue behavior of Ni base superalloys

    NASA Technical Reports Server (NTRS)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    Nickel-base superalloys are used in jet engine components such as disks, turbine blades, and vanes. Improvements in the fatigue behavior will allow the life to be extended or the payloads to be increased. The first part of the present investigation deals primarily with the effects of microstructural variations on the fatigue crack propagation (FCP) behavior of nickel-base alloys, while the second part is concerned with low-cycle fatigue (LCF) behavior of Ni base systems. Waspaloy at low temperature is considered, taking into account material heat treatment and test procedures, a composite plot of Waspaloy FCP data, Paris law fatigue crack propagation constants, monotonic tensile data, and overload FCP test results for Waspaloy. It is found that the FCP and overload behavior of nickel-base alloys may be markedly improved by heat treating. Attention is given to effects of cyclic deformation on microstructure and substructure, environmental damage, and an environmental/deformation model of high temperature LCF.

  15. Modeling of Thermal Expansion Coefficients of Ni-Based Superalloys Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Bano, Nafisa; Nganbe, Michel

    2013-04-01

    The objective of this work is to model the thermal expansion coefficients of various Ni-based superalloys used in gas turbine components. The thermal expansion coefficient is described as a function of temperature, chemical composition including Ni, Cr, Co, Mo, W, Ta, Nb, Al, Ti, B, Zr, and C contents as well as heat treatment including solutionizing and aging. Experimental values are well described and their relative changes well correlated by the model. Because gas turbine engine components operate under severe loading conditions and at high and varying temperatures, the prediction of their thermal expansion coefficient is crucial. The model developed in this work can be useful for design optimizations for minimizing thermo-mechanical stresses between the base alloys and potential protective coatings or adjacent components. It can substantially contribute to improve the performance and service life of gas turbine components.

  16. Microstructural and Mechanical Properties of Ni-Base Thermal Spray Coatings Deposited by Flame Spraying

    NASA Astrophysics Data System (ADS)

    Amokrane, Bradai Mohand; Abdelhamid, Sadeddine; Youcef, Mouadji; Abderrahim, Benabbas; Nedjemeddine, Bounar; Ahmed, Mammeri

    2011-10-01

    In this work, two different Ni-base powders, namely, ProXon 21021 (P21) and ProXon 21031 (P31), were sprayed onto a steel substrate 35CrMo4 using a thermal flame spray technique. The morphology and chemical composition of the phases that are present in the powders and coatings were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS). The hardness and wear resistance of the coatings were investigated. The XRD analysis revealed that the phases present in the coatings are different from the initial powders. In addition, some inhomogeneities such as oxides, porosity, and unmelted particles were observed by SEM. It was found that the P31 spray-coated exhibited higher microhardness, higher wear resistance, and significantly lower friction coefficient in comparison with those of P21 coatings.

  17. Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming

    SciTech Connect

    Gunther Dieckmann

    2006-06-30

    In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

  18. Interdiffusion Behavior of Pt-Diffused gamma+gamma' Coatings on Ni-Based Superalloys

    SciTech Connect

    Zhang, Ying; Stacy, J P; Pint, Bruce A; Haynes, James A; Hazel, Brian T; Nagaraj, Ben

    2008-01-01

    Platinum-diffused {gamma} + {gamma}{prime} coatings ({approx} 20 at.% Al, {approx} 22 at.% Pt) were synthesized on Rene 142 and Rene N5 Ni-based superalloys by electroplating the substrates with {approx} 7 {micro}m of Pt, followed by an annealing treatment in vacuum at 1175 C. In order to study the compositional and microstructural evolution of these coatings at elevated temperatures, interdiffusion experiments were carried out on coated specimens in the temperature range of 900-1050 C for various durations. Composition profiles of the alloying elements in the {gamma} + {gamma}{prime} coatings before and after diffusion experiments were determined by electron probe microanalysis. Although the change of the Al content in the coatings was minimal under these interdiffusion conditions, the decrease of the Pt content and increase of the diffusion depth of Pt into the substrate alloys were significant. A preliminary diffusion model was used to estimate the Pt penetration depth after diffusion.

  19. Reduction of chromium in Ni-base superalloys through element substitution and rapid solidification processing

    NASA Technical Reports Server (NTRS)

    Fraser, H. D.; Muddl, B. C.

    1982-01-01

    The reduction in the use of Cr in Ni base superalloys by the combined approaches of both elemental substitution and rapid solidification processing is studied. The elements Si, Zr, Y and Hf were chosen as potential partial substitutes for Cr in Waspaloy and IN 713LC sine their separate addition to other alloys has previously resulted in enhanced oxidation resistance. The roles of Cr and these replacement elements in determining the microstructure and properties are evaluated. The elements Si, Zr, and Y and Hf are used as partial replacements for Cr in the base superalloys and these resultant alloys are processed using rapid solidification techniques. The mechanical properties and oxidation resistance of the processed materials are evaluated. The microstructure is characterized using state of the art techniques (e.g. analytical transmission electron microscopy), and the mechanism by which these structures are produced is determined.

  20. A ternary Ni-Al-W EAM potential for Ni-based single crystal superalloys

    NASA Astrophysics Data System (ADS)

    Fan, Qin-Na; Wang, Chong-Yu; Yu, Tao; Du, Jun-Ping

    2015-01-01

    Based on experiments and first-principles calculations, a ternary Ni-Al-W embedded-atom-method (EAM) potential is constructed for the Ni-based single crystal superalloys. The potential predicts that W atoms do not tend to form clusters in γ(Ni), which is consistent with experiments. The impurity diffusion of W in γ(Ni) is investigated using the five-frequency model. The diffusion coefficients and the diffusion activation energy of W are in reasonable agreement with the data in literatures. By W doping, the lattice misfit between the two phases decreases and the elastic constants of γ‧(Ni3Al) increase. As for alloyed elements Co, Re and W, the pinning effect of solute atom on the γ(Ni)/γ‧(Ni3Al) misfit dislocation increases with the increasing of the atomic radius.

  1. A study of microstructural characteristics and differential thermal analysis of Ni-based superalloys

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Lal, R. B.; Oyekenu, Samuel A.; Parr, Richard; Gentz, Stephen

    1989-01-01

    The objective of this work is to correlate the mechanical properties of the Ni-based superalloy MAR M246(Hf) used in the Space Shuttle Main Engine with its structural characteristics by systematic study of optical photomicrographs and differential thermal analysis. The authors developed a method of predicting the liquidus and solidus temperature of various nickel based superalloys (MAR-M247, Waspaloy, Udimet-41, polycrystalline and single crystals of CMSX-2 and CMSX-3) and comparing the predictions with the experimental differential thermal analysis (DTA) curves using Perkin-Elmer DTA 1700. The method of predicting these temperatures is based on the additive effect of the components dissolved in nickel. The results were compared with the experimental values.

  2. Rapid solidification characteristics in melt spinning a Ni-base superalloy

    NASA Technical Reports Server (NTRS)

    Huang, S. C.; Laforce, R. P.; Ritter, A. M.; Goehner, R. P.

    1985-01-01

    The solidification kinetics involved in the process of melt spinning a Ni-base superalloy have been characterized. Through a correlation of ribbon thickness to melt puddle residence time, it was found that the solidification front velocity, V, is typically about 100 mm/sec at the ribbon surface not in contact with the spinning wheel. The rate of solidification varies within the ribbon, increasing with decreasing distance, S, from the wheel-contact surface as V = 3.65/s. Ribbon microstructure and texture characteristics are discussed in light of this kinetics result. The thickness-vs-time correlation was further analyzed to yield information about thermal history during ribbon formation. These thermal results are generally consistent with those deduced from dendrite arm spacing measurements.

  3. A study of microstructural characteristics of Ni-based superalloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Aggarwal, M. D.

    1987-01-01

    The microstructure of the Ni-based superalloy MAR-M246 (Hf) which is used in manufacturing the components of the Space Shuttle Main Engine was investigated. In the first year, the superalloy will be studied using optical photomicrographs and the differential thermal analysis. During this period, the existing experimental equipment like cutting, grinding/polishing machines, metallurgical microscope will be used to but/polish and take the photomicrographs. At present, only a 35 mm camera attachment with the olympus inverted metallurgical microscope is being used. Due to this, there was considerable delay in processing photographs. A Perkin-Elmer Differential Thermal Analyzer (DTA-1700) was ordered and finally installed on April 28, 1987. Preliminary test runs were made on silver as well as MAR-M246 (Hf).

  4. Ni-base superalloy powder-processed porous layer for gas cooling in extreme environments

    DOE PAGESBeta

    White, Emma M. H.; Heidloff, Andrew J.; Byrd, David J.; Anderson, Ross D.; Anderson, Iver E.

    2016-05-26

    Extreme high temperature conditions demand novel solutions for hot gas filters and coolant access architectures, i.e., porous layers on exposed components. These high temperatures, for example in current turbine engines, are at or exceeding current material limits for high temperature oxidation/corrosion, creep resistance, and, even, melting temperature. Thus novel blade designs allowing greater heat removal are required to maintain airfoil temperatures below melting and/ or rapid creep deformation limits. Gas atomized Ni-base superalloy powders were partially sintered into porous layers to allow full-surface, transpirational cooling of the surface of airfoils. Furthermore, these powder-processed porous layers were fully characterized for surface,more » morphology, cross-sectional microstructure, and mechanical strength characteristics. A sintering model based on pure Ni surface diffusion correlated well with the experimental results and allowed reasonable control over the partial sintering process to obtain a specified level of porosity within the porous layer.« less

  5. Role of Elemental Sublimation during Solution Heat Treatment of Ni-Based Superalloys

    NASA Astrophysics Data System (ADS)

    D'Souza, N.; Simmonds, S.; West, G. D.; Dong, H. B.

    2013-10-01

    The role of elemental evaporation on the microstructural stability of blade surfaces has been investigated on solutioned and aged samples of Ni-based single-crystal superalloys. Evaporation of Ni and Cr at the casting surface during solution heat treatment leads to the formation of a Ni- and Cr-depleted layer at the surface. Nucleation and growth of γ' phase occur within this layer through subsequent long-range diffusion of Re, Ta, and W between the γ' layer and the substrate. Beyond a critical Ni and Cr loss, incipient melting initiates at the surface and principally γ' and TCP phases are stabilized with de-stabilization of γ phase. Nucleation of TCP phases occurs at grain boundaries arising from cellular recrystallization during the ramp-up cycle. Therefore, on quenching, a range of microstructures are observed at the casting surface.

  6. Analysis of WC/Ni-Based Coatings Deposited by Controlled Short-Circuit MIG Welding

    NASA Astrophysics Data System (ADS)

    Vespa, P.; Pinard, P. T.; Gauvin, R.; Brochu, M.

    2012-06-01

    This study investigates the recently developed controlled short-circuit metal inert gas (CSC-MIG) welding system for depositing WC/Ni-based claddings on carbon steel substrates. WC/Ni-based coatings deposited by CSC-MIG were analyzed by optical light microscopy and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS) and electron backscatter diffraction (EBSD) capabilities. X-ray diffraction (XRD) and hardness measurements of depositions are also reported. The CSC-MIG welding system provides a significant amount of user control over the current waveform during welding and has lower heat input when compared with traditional MIG welding. Heat input for the analyzed coatings ranged from 10.1 to 108.7 J/mm. Metallurgically bonded coatings free from spatter and with 0.75% average porosity were produced. It was found that the detrimental decarburization of the WC particles seen in thermal spray systems does not occur when welding with the CSC-MIG. Precipitation of a reaction layer around the reinforcing phase was identified as WC; the average thickness of which increases from 3.8 to 7.2 μm for the low and high heat input condition, respectively. Precipitation of newly formed WC particles was observed; their size distribution increased from D 50 of 2.4 μm in the low heat input weldment to 6.75 μm in the high heat input weldment. The level of dilution of the reinforcing phase increases significantly with heat input. The hardness of the deposited coatings decreases from 587 HV10 to 410 HV10 when the energy input was increased from 10.1 to 108.7 J/mm.

  7. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  8. Generation, Characterization, and Tunable Reactivity of Organometallic Fragments Bound to a Protein Ligand.

    PubMed

    Key, Hanna M; Clark, Douglas S; Hartwig, John F

    2015-07-01

    Organotransition metal complexes catalyze important synthetic transformations, and the development of these systems has rested on the detailed understanding of the structures and elementary reactions of discrete organometallic complexes bound to organic ligands. One strategy for the creation of new organometallic systems is to exploit the intricate and highly structured ligands found in natural metalloproteins. We report the preparation and characterization of discrete rhodium and iridium fragments bound site-specifically in a κ(2)-fashion to the protein carbonic anhydrase as a ligand. The reactions of apo human carbonic anhydrase with [Rh(nbd)2]BF4 or [M(CO)2(acac)] (M=Rh, Ir) form proteins containing Rh or Ir with organometallic ligands. A colorimetric assay was developed to quantify rapidly the metal occupancy at the native metal-binding site, and (15)N-(1)H NMR spectroscopy was used to establish the amino acids to which the metal is bound. IR spectroscopy and EXAFS revealed the presence and number of carbonyl ligands and the number total ligands, while UV-vis spectroscopy provided a signature to readily identify species that had been fully characterized. Exploiting these methods, we observed fundamental stoichiometric reactions of the artificial organometallic site of this protein, including reactions that simultaneously form and cleave metal-carbon bonds. The preparation and reactivity of these artificial organometallic proteins demonstrate the potential to study a new genre of organometallic complexes for which the rates and outcomes of organometallic reactions can be controlled by genetic manipulation of the protein scaffold. PMID:26020584

  9. Understanding the electron-stimulated surface reactions of organometallic complexes to enable design of precursors for electron beam-induced deposition

    NASA Astrophysics Data System (ADS)

    Spencer, Julie A.; Rosenberg, Samantha G.; Barclay, Michael; Wu, Yung-Chien; McElwee-White, Lisa; Howard Fairbrother, D.

    2014-12-01

    Standard practice in electron beam-induced deposition (EBID) is to use precursors designed for thermal processes, such as chemical vapor deposition (CVD). However, organometallic precursors that yield pure metal deposits in CVD often create EBID deposits with high levels of organic contamination. This contamination negatively impacts the deposit's properties (e.g., by increasing resistivity or decreasing catalytic activity) and severely limits the range of potential applications for metal-containing EBID nanostructures. To provide the information needed for the rational design of precursors specifically for EBID, we have employed an ultra-high vacuum (UHV) surface science approach to identify the elementary reactions of organometallic precursors during EBID. These UHV studies have demonstrated that the initial electron-induced deposition of the surface-bound organometallic precursors proceeds through desorption of one or more of the ligands present in the parent compound. In specific cases, this deposition step has been shown to proceed via dissociative electron attachment, involving low-energy secondary electrons generated by the interaction of the primary beam with the substrate. Electron beam processing of the surface-bound species produced in the initial deposition event usually causes decomposition of the residual ligands, creating nonvolatile fragments. This process is believed to be responsible for a significant fraction of the organic contaminants typically observed in EBID nanostructures. A few ligands (e.g., halogens) can, however, desorb during electron beam processing while other ligands (e.g., PF3, CO) can thermally desorb if elevated substrate temperatures are used during deposition. Using these general guidelines for reactivity, we propose some design strategies for EBID precursors. The ultimate goal is to minimize organic contamination and thus overcome the key bottleneck for fabrication of relatively pure EBID nanostructures.

  10. New Molecular Architecture for Electrically Conducting Materials Based on Unsymmetrical Organometallic-Dithiolene Complexes

    NASA Astrophysics Data System (ADS)

    Kubo, Kazuya; Kato, Reizo

    New molecular architecture for highly conducting molecular materials was developed with use of unsymmetrical organometallic-dithiolene complexes. The new architecture has various advantages including easy modification of their molecular and electronic features. Organometallic complexes based on unsymmetrical Au(III)-dithiolene complexes [(ppy)Au(C8H4S8 or C8H4S6O2)] were prepared for new cationic components of molecular conductors. These unsymmetrical organometallic complexes can provide various cation radical salts [(ppy)Au(S-S)]2[anion][solvent] n (S-S = C8H4S8 or C8H4S6O2, anion = PF6 -, BF4 -, AsF6 -, TaF6 -, solvent = PhCl, n = 0-0.5) by constant current electrolysis of their benzonitrile or chlorobenzene solutions containing (Bu4N)(anion) as electrolyte. [(ppy)Au(C8H4S8)]2[PF6] under pressure is the first molecular metal based on the organometallic component. In this review, principle of the molecular architecture based on the unsymmetrical organometallic-dithiolene complexes and physical properties of their cation radical salts are discussed.

  11. Synthesis and properties of novel, electroactive organometallic polymers

    SciTech Connect

    Not Available

    1987-01-01

    The object of this research is to synthesize a number of organometallic polymers based on 1,8-dimetallocenylnaphthalene (1) as a monomeric structural unit, and to examine the physical properties of these substances, especially their electrical conductance. In such polymers contiguous metallocene units are held face-to-face in a columnar array, so that conduction, in the partially oxidized material can in principal be achieved through {pi}-orbital interaction of neighboring metallocene units. The author has shown that low molecular weight polymers, based on 1 (M=Fe or Ru) can be prepared by palladium catalyzed coupling of ferrocenylzinc halides with 1,8-diiodonaphthalene, and now propose to define reaction conditions for the preparation of much higher molecular weight polymers. The synthesis of analogous polymers incorporating cobalt and nickel, through the use of cobaltocene and nickelocene in the coupling reaction, will also be examined. Other mixed metal polymeric systems, in which two transition metals alternate along the chain, may be preparable from 1,8-bis(cyclopentadienyl)naphthalene 3, recently synthesized in our laboratories. The preparation of 3 should also provide and opportunity for the synthesis of unique polymeric systems based on linear dimeric, trigonal trimeric and tetrahedral tetrameric cyclopentadienylmetal complexes. These syntheses will be examined. Finally, the application of the coupling-polymerization reaction to 1,4-dihalobenzenes will also be examined. 34 refs., 3 figs.

  12. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth.

    PubMed

    Yang, Bin; Keum, Jong; Ovchinnikova, Olga S; Belianinov, Alex; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher M; Geohegan, David B; Xiao, Kai

    2016-04-20

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films, a major unresolved question is the competition between multiple halide species (e.g., I(-), Cl(-), Br(-)) in the formation of the mixed-halide perovskite crystals. Whether Cl(-) ions are successfully incorporated into the perovskite crystal structure or, alternatively, where they are located is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br(-) or Cl(-) ions can promote crystal growth, yet reactive I(-) ions prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl(-) ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performing and cost-effective optoelectronic devices. PMID:26931634

  13. Coordination of dibensothiophenes and corannulenes to organometallic ruthenium (II) fragments

    SciTech Connect

    Vecchi, Paul Anthony

    2005-05-01

    This dissertation contains five papers in the format required for journal publication which describe (in part) my research accomplishments as a graduate student at Iowa State University. This work can be broadly categorized as the binding of weakly-coordinating ligands to cationic organometallic ruthenium fragments, and consists of two main areas of study. Chapters 2-4 are investigations into factors that influence the binding of dibenzothiophenes to {l_brace}Cp'Ru(CO){sub 2}{r_brace}{sup +} fragments, where Cp' = {eta}{sup 5}-C{sub 5}H{sub 5} (Cp) and {eta}{sup 5}-C{sub 5}Me{sub 5} (Cp*). Chapters 5 and 6 present the synthesis and structural characterization of complexes containing corannulene buckybowls that are {eta}{sup 6}-coordinated to {l_brace}Cp*Ru{r_brace}{sup +} fragments. The first chapter contains a brief description of the difficulty in lowering sulfur levels in diesel fuel along with a review of corannulene derivatives and their metal complexes. After the final paper is a short summary of the work herein (Chapter 7). Each chapter is independent, and all equations, schemes, figures, tables, references, and appendices in this dissertation pertain only to the chapter in which they appear.

  14. Degradation of organometallic perovskite solar cells induced by trap states

    NASA Astrophysics Data System (ADS)

    Song, Dandan; Ji, Jun; Li, Yaoyao; Li, Guanying; Li, Meicheng; Wang, Tianyue; Wei, Dong; Cui, Peng; He, Yue; Mbengue, Joseph Michel

    2016-02-01

    The degradation of organometallic perovskite solar cells (PSCs) is the key bottleneck hampering their development, which is typically ascribed to the decomposition of perovskite (CH3NH3PbI3). In this work, the degradation of PSCs is observed to be significant, with the decrease in efficiency from 18.2% to 11.5% in ambient air for 7 days. However, no obvious decomposition or structural evolution of the perovskite was observed, except the notable degradation phenomenon of the device. The degradation of PSCs derives from deteriorated photocurrent and fill factor, which are proven to be induced by increased trap states for enlarged carrier recombination in degraded PSCs. The increased trap states in PSCs over storage time are probably induced by the increased defects at the surface of perovskite. The trap states induced degradation provides a physical insight into the degradation mechanisms of PSCs. Moreover, as the investigations were performed on real PSCs instead of individual perovskite films, the findings here present one of their actual degradation mechanisms.

  15. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    PubMed Central

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings1,2. Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. In this manuscript, we demonstrate that visible light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More significantly, we have developed a general strategy to “switch on” important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron transfer (SET) catalysts. PMID:26266976

  16. Switching on elusive organometallic mechanisms with photoredox catalysis.

    PubMed

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C

    2015-08-20

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts. PMID:26266976

  17. Deciphering Halogen Competition in Organometallic Halide Perovskite Growth

    DOE PAGESBeta

    Keum, Jong Kahk; Ovchinnikova, Olga S.; Chen, Shiyou; Du, Mao-Hua; Ivanov, Ilia N; Rouleau, Christopher; Geohegan, David B.; Xiao, Kai

    2016-03-01

    Organometallic halide perovskites (OHPs) hold great promise for next-generation, low-cost optoelectronic devices. During the chemical synthesis and crystallization of OHP thin films a major unresolved question is the competition between multiple halide species (e.g. I-, Cl-, Br-) in the formation of the mixed halide perovskite crystals. Whether Cl- ions are successfully incorporated into the perovskite crystal structure or alternatively, where they are located, is not yet fully understood. Here, in situ X-ray diffraction measurements of crystallization dynamics are combined with ex situ TOF-SIMS chemical analysis to reveal that Br- or Cl- ions can promote crystal growth, yet reactive I- ionsmore » prevent them from incorporating into the lattice of the final perovskite crystal structure. The Cl- ions are located in the grain boundaries of the perovskite films. These findings significantly advance our understanding of the role of halogens during synthesis of hybrid perovskites, and provide an insightful guidance to the engineering of high-quality perovskite films, essential for exploring superior-performance and cost-effective optoelectronic devices.« less

  18. Switching on elusive organometallic mechanisms with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  19. Record Multiphoton Absorption Cross-Sections by Dendrimer Organometalation.

    PubMed

    Simpson, Peter V; Watson, Laurance A; Barlow, Adam; Wang, Genmiao; Cifuentes, Marie P; Humphrey, Mark G

    2016-02-12

    Large increases in molecular two-photon absorption, the onset of measurable molecular three-photon absorption, and record molecular four-photon absorption in organic π-delocalizable frameworks are achieved by incorporation of bis(diphosphine)ruthenium units with alkynyl linkages. The resultant ruthenium alkynyl-containing dendrimers exhibit strong multiphoton absorption activity through the biological and telecommunications windows in the near-infrared region. The ligated ruthenium units significantly enhance solubility and introduce fully reversible redox switchability to the optical properties. Increasing the ruthenium content leads to substantial increases in multiphoton absorption properties without any loss of optical transparency. This significant improvement in multiphoton absorption performance by incorporation of the organometallic units into the organic π-framework is maintained when the relevant parameters are scaled by molecular weights or number of delocalizable π-electrons. The four-photon absorption cross-section of the most metal-rich dendrimer is an order of magnitude greater than the previous record value. PMID:26797727

  20. Investigation on corrosion behavior of Ni-based alloys in molten fluoride salt using synchrotron radiation techniques

    NASA Astrophysics Data System (ADS)

    Liu, Min; Zheng, Junyi; Lu, Yanling; Li, Zhijun; Zou, Yang; Yu, Xiaohan; Zhou, Xingtai

    2013-09-01

    Ni-based alloys have been selected as the structural materials in molten-salt reactors due to their high corrosion resistance and excellent mechanical properties. In this paper, the corrosion behavior of some Ni-based superalloys including Inconel 600, Hastelloy X and Hastelloy C-276 were investigated in molten fluoride salts at 750 °C. Morphology and microstructure of corroded samples were analyzed using scanning electron microscope (SEM), synchrotron radiation X-ray microbeam fluorescence (μ-XRF) and synchrotron radiation X-ray diffraction (SR-XRD) techniques. Results from μ-XRF and SR-XRD show that the main depleted alloying element of Ni-based alloys in molten fluoride salt is Cr. In addition, the results indicate that Mo can enhance the corrosion resistance in molten FLiNaK salts. Among the above three Ni-based alloys, Hastelloy C-276 exhibits the best corrosion resistance in molten fluoride salts 750 °C. Higher-content Mo and lower-content Cr in Hastelloy C-276 alloy were responsible for the better anti-corrosive performance, compared to the other two alloys.

  1. Study of the HVOF Ni-Based Coatings' Corrosion Resistance Applied on Municipal Solid-Waste Incinerators

    NASA Astrophysics Data System (ADS)

    Guilemany, J. M.; Torrell, M.; Miguel, J. R.

    2008-06-01

    Oxidation of exchanger steel tubes causes important problems in Municipal Solid-Waste Incinerator (MSWI) plants. The present paper shows a possible solution for this problem through High-Velocity Oxygen Fuel (HVOF) thermal spray coatings. A comparative study was carried out between powder and wire Ni-based thermal spray coatings (with the same composition). These optimized coatings were compared based on their microstructure, wear properties (ASTM G99-90, ASTM G65-91), and erosion-corrosion (E-C) resistance. An E-C test designed in the Thermal Spray Centre was performed to reproduce the mechanisms that take place in a boiler. Studying the results of this test, the wire HVT Inconel coating sprayed by propylene appears to be the best alternative. A commercial bulk material with a composition similar to Ni-based coatings was tested to find the products of the oxidation reactions. The protective mechanisms of these materials were assessed after studying the results obtained for HVOF coatings and the bulk material where the presence of nickel and chromium oxides as a corrosion product can be seen. Kinetic evolution of the Ni-based coatings can be studied by thermogravimetric analysis. The protection that Inconel coatings give to the tube through the difference of the gain mass can be seen. Ni-based HVOF coatings by both spray conditions are a promising alternative to MSWI protection against chlorine environments, and their structures have a very important role.

  2. Superior reactivity of skeletal Ni-based catalysts for low-temperature steam reforming to produce CO-free hydrogen.

    PubMed

    Zhang, Chengxi; Zhang, Peng; Li, Shuirong; Wu, Gaowei; Ma, Xinbin; Gong, Jinlong

    2012-03-14

    This paper describes the utilization of skeletal Ni-based catalysts for steam reforming of ethanol to produce CO-free hydrogen, which could be superior in the application of fuel cells. Assistant metals play different roles in the reaction; Pt and Cu suppress the methanation and enhance H(2) production, while Co promotes the methanation. PMID:22297434

  3. Combining Organometallic Reagents, the Sulfur Dioxide Surrogate DABSO, and Amines: A One-Pot Preparation of Sulfonamides, Amenable to Array Synthesis**

    PubMed Central

    Deeming, Alex S; Russell, Claire J; Willis, Michael C

    2015-01-01

    We describe a method for the synthesis of sulfonamides through the combination of an organometallic reagent, a sulfur dioxide equivalent, and an aqueous solution of an amine under oxidative conditions (bleach). This simple reaction protocol avoids the need to employ sulfonyl chloride substrates, thus removing the limitation imposed by the commercial availability of these reagents. The resultant method allows access to new chemical space, and is also tolerant of the polar functional groups needed to impart favorable physiochemical properties required for medicinal chemistry and agrochemistry. The developed chemistry is employed in the synthesis of a targeted 70 compound array, prepared using automated methods. The array achieved a 93 % success rate for compounds prepared. Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties. PMID:25431118

  4. Combining organometallic reagents, the sulfur dioxide surrogate DABSO, and amines: a one-pot preparation of sulfonamides, amenable to array synthesis.

    PubMed

    Deeming, Alex S; Russell, Claire J; Willis, Michael C

    2015-01-19

    We describe a method for the synthesis of sulfonamides through the combination of an organometallic reagent, a sulfur dioxide equivalent, and an aqueous solution of an amine under oxidative conditions (bleach). This simple reaction protocol avoids the need to employ sulfonyl chloride substrates, thus removing the limitation imposed by the commercial availability of these reagents. The resultant method allows access to new chemical space, and is also tolerant of the polar functional groups needed to impart favorable physiochemical properties required for medicinal chemistry and agrochemistry. The developed chemistry is employed in the synthesis of a targeted 70 compound array, prepared using automated methods. The array achieved a 93% success rate for compounds prepared. Calculated molecular weights, lipophilicities, and polar surface areas are presented, demonstrating the utility of the method for delivering sulfonamides with drug-like properties. PMID:25431118

  5. Organometallic Palladium Complexes with a Water-Soluble Iminophosphorane Ligand as Potential Anticancer Agents

    PubMed Central

    Carreira, Monica; Calvo-Sanjuán, Rubén; Sanaú, Mercedes; Marzo, Isabel; Contel, María

    2012-01-01

    The synthesis and characterization of a new water-soluble iminophosphorane ligand TPA=N-C(O)-2BrC6H4 (C,N-IM; TPA = 1,3,5-triaza-7-phosphaadamantane) 1 is reported. Oxidative addition of 1 to Pd2(dba)3 affords the orthopalladated dimer [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) as a mixture of cis and trans isomers (1:1 molar ratio) where the iminophosphorane moeity behaves as a C,N-pincer ligand. By addition of different neutral or monoanionic ligands to 2, the bridging bromide can be cleaved and a variety of hydrophilic or water-soluble mononuclear organometallic palladium(II) complexes of the type [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L-L)] (L-L = acac (3); S2CNMe2 (4); 4,7-Diphenyl-1,10-phenanthrolinedisulfonic acid disodium salt C12H6N2(C6H4SO3Na)2 (5)); [Pd{C6H4(C(O)N=TPA-kC,N)-2}(L)Br] (L = P(mC6H4SO3Na)3 (6); P(3-Pyridyl)3 (7)) and, [Pd(C6H4(C(O)N=TPA)-2}(TPA)2Br] (8) are obtained as single isomers. All new complexes were tested as potential anticancer agents and their cytotoxicity properties were evaluated in vitro against human Jurkat-T acute lymphoblastic leukemia cells, normal T-lymphocytes (PBMC) and DU-145 human prostate cancer cells. Compounds [Pd(μ-Br){C6H4(C(O)N=TPA-kC,N)-2}]2 (2) and [Pd{C6H4(C(O)N=TPA-kC,N)-2}(acac)] 3 (which has been crystallographically characterized) display the higher cytotoxicity against the above mentioned cancer cell lines while being less toxic to normal T-lymphocytes (peripheral blood mononuclear cells: PBMC). In addition, 3 is very toxic to cisplatin resistant Jurkat shBak indicating a cell death pathway that may be different to that of cisplatin. The interaction of 2 and 3 with plasmid (pBR322) DNA is much weaker than that of cisplatin pointing to an alternative biomolecular target for these cytotoxic compounds. All the compounds show an interaction with human serum albumin (HSA) faster than that of cisplatin. PMID:23066172

  6. Preliminary Investigations of Joining Technologies for Attaching Refractory Metals to Ni-Based Superalloys

    NASA Technical Reports Server (NTRS)

    Gould, Jerry E.; Ritzert, Frank J.; Loewenthal, William S.

    2006-01-01

    In this study, a range of joining technologies has been investigated for creating attachments between refractory metal and Ni-based superalloys. Refractory materials of interest include Mo-47%Re, T-111, and Ta-10%W. The Ni-based superalloys include Hastelloy X and MarM 247. During joining with conventional processes, these materials have potential for a range of solidification and intermetallic formation-related defects. For this study, three non-conventional joining technologies were evaluated. These included inertia welding, electro-spark deposition (ESD) welding, and magnetic pulse welding (MPW). The developed inertia welding practice closely paralleled that typically used for the refractory metals alloys. Metallographic investigations showed that forging during inertia welding occurred predominantly on the nickel base alloy side. It was also noted that at least some degree of forging on the refractory metal side of the joint was necessary to achieve consistent bonding. Both refractory metals were readily weldable to the Hastelloy X material. When bonding to the MarM 247, results were inconsistent. This was related to the higher forging temperatures of the MarM 247, and subsequent reduced deformation on that material during welding. ESD trials using a Hastelloy X filler were successful for all material combinations. ESD places down very thin (5- to 10- m) layers per pass, and interactions between the substrates and the fill were limited (at most) to that layer. For the refractory metals, the fill only appeared to wet the surface, with minimal dilution effects. Microstructures of the deposits showed high weld metal integrity with maximum porosity on the order of a few percent. Some limited success was also obtained with MPW. In these trials, only the T-111 tubes were used. Joints were possible for the T-111 tube to the Hastelloy X bar stock, but the stiffness of the tube (resisting collapse) necessitated the use of very high power levels. These power levels

  7. [Development of new synthetic method using organometallic complexes and an application toward natural product synthesis].

    PubMed

    Mori, Miwako

    2005-01-01

    Recently, many organometallic complexes, such as palladium, nickel, ruthenium, titanium complexes and others, were used for synthetic organic chemistry. We have developed many novel synthetic methods using these organometallic complexes for synthetic organic chemistry. As the organometallic complexes, nickel, chromium, molybdenum, ruthenium, zirconium, titanium, and palladium complexes, were used. Furthermore, bimetallic complexes having silicon-tin and silicon-zirconium bonds were investigated. On the other hand, utilization of gases in synthetic organic chemistry has been also developed. 1 atm pressure of gases such as CO, CO(2), N(2), ethylene and acetylene, could be used and the reaction procedure is very simple, that a balloon filled with a gas is connected on the top of the flask. Using our novel synthetic methods, we have synthesized many natural products and biologically active substances, such as cephalotaxin, mesembrine, tubifoline, strychnine, stemoamide, lycopodine, pumiliotoxin C, beta-lactam, carbapenam and benzodiazepinone derivatives. PMID:15635281

  8. Bimodal X-ray and Infrared Imaging of an Organometallic Derivative of Praziquantel in Schistosoma mansoni.

    PubMed

    Clède, Sylvain; Cowan, Noemi; Lambert, François; Bertrand, Hélène C; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Sandt, Christophe; Trcera, Nicolas; Gasser, Gilles; Keiser, Jennifer; Policar, Clotilde

    2016-06-01

    An organometallic derivative of praziquantel was studied directly in worms by using inductively coupled plasma-mass spectrometry (ICP-MS) for quantification and synchrotron-based imaging. X-ray fluorescence (XRF) and IR absorption spectromicroscopy were used for the first time in combination to directly locate this organometallic drug candidate in schistosomes. The detection of both CO (IR) and Cr (XRF) signatures proved that the Cr(CO)3 core remained intact in the worms. Images showed a preferential accumulation at the worm's tegument, consistent with a possible targeting of the calcium channel but not excluding other biological targets inside the worm. PMID:26991635

  9. Theoretical evidence of photo-induced charge transfer from DNA to intercalated ruthenium (II) organometallic complexes

    NASA Astrophysics Data System (ADS)

    Chantzis, Agisilaos; Very, Thibaut; Daniel, Chantal; Monari, Antonio; Assfeld, Xavier

    2013-07-01

    The absorption spectrum of two ruthenium (II) organometallic complexes intercalated into DNA is studied at the quantum mechanic/molecular mechanic level. The macromolecular environment is taken into account as to include geometric, electrostatic and polarization effects that can alter the excitation energy and oscillator strength. The inclusion of DNA base pairs into the quantum mechanic partition allows us for the first time to clearly evidence the presence of charge transfer excited states involving an electron withdraw from DNA base pairs to the organometallic complex.

  10. The direct synthesis of organic and organometallic-containing MICA-type aluminosilicates

    SciTech Connect

    Carrado, K.A.; Awaluddin, A.

    1993-08-01

    Layer-silicate clay structures can provide supramolecular organization for catalysis, chiral reactions, colloid science, and electron transfer. The authors have successfully modified the experimental preparations of several different layer silicates in order to incorporate a wide variety of organic and organometallic molecules in the clay galleries. Synthesis and physical characterization of these materials are described and compared to ion-exchanged natural clay analogs. In addition, the photophysical properties of organometallic Ru(II) complexes incorporated by direct hydrothermal crystallization into synthetic clays were measured. 3 tabs, 21 refs.

  11. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    Recent advances in the synthesis and characterization of small, essentially molecular metal complexes and metal clusters on support surfaces have brought new insights to catalysis and point the way to systematic catalyst design. We summarize recent work unraveling effects of key design variables of site-isolated catalysts: the metal, metal nuclearity, support, and other ligands on the metals, also considering catalysts with separate, complementary functions on supports. The catalysts were synthesized with the goal of structural simplicity and uniformity to facilitate incisive characterization. Thus, they are essentially molecular species bonded to porous supports chosen for their high degree of uniformity; the supports are crystalline aluminosilicates (zeolites) and MgO. The catalytic species are synthesized in reactions of organometallic precursors with the support surfaces; the precursors include M(L)2(acetylacetonate)1-2, with M = Ru, Rh, Ir, or Au and the ligands L = C2H4, CO, or CH3. Os3(CO)12 and Ir4(CO)12 are used as precursors of supported metal clusters, and some such catalysts are made by ship-in-a-bottle syntheses to trap the clusters in zeolite cages. The simplicity and uniformity of the supported catalysts facilitate precise structure determinations, even in reactive atmospheres and during catalysis. The methods of characterizing catalysts in reactive atmospheres include infrared (IR), extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), and nuclear magnetic resonance (NMR) spectroscopies, and complementary methods include density functional theory and atomic-resolution aberration-corrected scanning transmission electron microscopy for imaging of individual metal atoms. IR, NMR, XANES, and microscopy data demonstrate the high degrees of uniformity of well-prepared supported species. The characterizations determine the compositions of surface metal complexes and clusters, including the ligands and the metal

  12. Microstructure evolution and mechanical property of pulsed laser welded Ni-based superalloy

    NASA Astrophysics Data System (ADS)

    Ma, Guangyi; Wu, Dongjiang; Niu, Fangyong; Zou, Helin

    2015-09-01

    For evaluating the microstructure evolution and mechanical property of Ni-based Hastelloy C-276 weld joint by the pulsed laser welding, the influence of pulsed laser welding on the microstructure and mechanical property of the weld joint is investigated by the analysis of the microstructure morphology, microhardness, phase structure and tensile property. The results indicate that, in the fusion zone three sections are divided on the basis of the patterns of grain structures. In the weld joint, the element segregation is found, but the trend of brittle phase's formation is weakened. The weld microhardness presents just a little higher than that of base metal, and there is no obvious the softened heat affected zone. Meanwhile in the weld joint, the phase structure is still the face-center cubic with the tiny shift of peak positions and widened Full Width at Half-Maximum. The yield strength of weld joint is the same as that of base metal, and the tensile strength is nearly 90% of that of base metal. The decreased tensile strength is mainly attributed to the dislocation piling-up.

  13. A study of microstructural characteristics of Ni-based superalloys at high temperatures

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Aggarwal, M. D.

    1988-01-01

    The microstructural characteristics of the Ni-based superalloy MAR-M246(Hf) which is used in manufacturing the components of the Space Shuttle's main engine have been studied. These superalloys need optimal heat treatment to get the best results. To find the optimum heat treatment the technique of differential thermal analysis and the optical photomicrographs are being planned to be utilized. In the first phase, the existing experimental equipment like cutting, grinding/polishing machines and metallurgical microscope have been set up to cut/polish and take the photomicrographs. In the beginning of this year an order was placed for the Leitz Mettalux-3 microscope with a hot stage for in-situ observation of the superalloy samples. The hot stage was tested for the first time, alloying the thermocouple with the Tantulum heating element and has not been installed finally by the supplier. A Perkin Elmer Differential Thermal Analyzer (DTA 1700) was procured in the first year of the project. Samples of MAR-M246(Hf), MAR-M247, Waspaloy, Udimet-41, CMSX-2 and CMSX-3 (polycrystalline and single crystals) have been studied using differential thermal analyzer.

  14. Development of Microstructural Damage in Ni-Based Alloys During Creep

    NASA Astrophysics Data System (ADS)

    Yonemura, Mitsuharu; Semba, Hiroyuki; Igarashi, Masaaki

    2016-04-01

    Ni-based model alloys with a base composition of Ni-20 mass pct Cr-3 mass pct Mo that were precipitation strengthened by the γ' phase were studied in regards to their failure mechanisms as part of the fundamental research for achieving a creep rupture strength of 100 MPa at 1023 K (750 °C) and 105 hours. The microstructure, which was interrupted by transient creep, as well as the minimum creep rate and accelerated creep at 1123 K (850 °C) and 80 MPa was observed. The microstructure around the grain boundaries was altered remarkably with strain-induced grain boundary migration, while the γ' particle size increased linearly inside the grains with increasing temperature and time. Furthermore, the volume fraction of the γ' phase and the amount of precipitation on the grain boundary were associated with the size of the precipitate-free zone (PFZ), which is a major factor in creep damage. The appropriate precipitations inside the grains and at the grain boundaries were very effective for suppressing PFZ. Consequently, the creep properties can be improved by controlling PFZ in the proximity of grain boundaries for a superior balance of creep strength and ductility.

  15. Grain growth of Ni-based superalloy IN718 coating fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Zhang, Yaocheng; Yang, Li; Dai, Jun; Huang, Zedong; Meng, Tao

    2016-06-01

    The pulsed laser deposited Ni-based superalloy coating was fabricated with successive 12 layers using single tracks. The microstructure of the deposited coating was observed by scanning electron microscopy (SEM). The grain growth and the grain boundary misorientation were investigated by electron backscatter diffraction (EBSD), the precipitation phase was determined by transmission electron microscope (TEM). The results showed that the dendrites were the most common microstructure in the coating, and the dendritic growth orientation was paralleled to the direction of the laser deposition. The dendrite got coarser and its space was increased with increasing laser deposited layers. Most grains grew along the preferential grain orientation <001> and formed anisotropy with grain boundaries misorientation angle about 2° in the pulsed laser deposited coating. The grain size along the texture orientation was 3-10 times larger than that in the transverse orientation. The cross section microhardness of the coating ranged between 240-280 HV, and decreased along the depositional direction due to the reasons of the variation of eutectic morphology, grain size distribution, grain misorientation and a small amounts of strengthening phase precipitation.

  16. Creep Properties and Deformation Mechanisms of a FGH95 Ni-based Superalloy

    NASA Astrophysics Data System (ADS)

    Xie, Jun; Tian, Su-gui; Zhou, Xiao-ming

    2013-07-01

    By means of full heat treatment, microstructure observation, lattice parameters determination, and the measurement of creep curves, an investigation has been conducted into the microstructure and creep mechanisms of FGH95 Ni-based superalloy. Results show that after the alloy is hot isostatically pressed, coarse γ' phase discontinuously distributes along the previous particle boundaries. After solution treatment at high temperature and aging, the grain size has no obvious change, and the amount of coarse γ' phase decreases, and a high volume fraction of fine γ' phase dispersedly precipitates in the γ matrix. Moreover, the granular carbides are found to be precipitated along grain boundaries, which can hinder the grain boundaries' sliding and enhance the creep resistance of the alloy. By x-ray diffraction analysis, it is indicated that the lattice misfit between the γ and γ' phases decreases in the alloy after full heat treatment. In the ranges of experimental temperatures and applied stresses, the creep activation energy of the alloy is measured to be 630.4 kJ/mol. During creep, the deformation mechanisms of the alloy are that dislocations slip in the γ matrix or shear into the γ' phase. Thereinto, the creep dislocations move over the γ' phase by the Orowan mechanism, and the < { 1 10 } rangle super-dislocation shearing into the γ' phase can be decomposed to form the configuration of (1/3) < { 1 12 } rangle super-Shockleys' partials and the stacking fault.

  17. Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals

    SciTech Connect

    Michael J. Mills

    2009-03-05

    Cast nickel-based superalloys are used for blades in land-based, energy conversion and powerplant applications, as well as in aircraft gas turbines operating at temperatures up to 1100 C, where creep is one of the life-limiting factors. Creep of superalloy single crystals has been extensively studied over the last several decades. Surprisingly, only recently has work focused specifically on the dislocation mechanisms that govern high temperature and low stress creep. Nevertheless, the perpetual goal of better engine efficiency demands that the creep mechanisms operative in this regime be fully understood in order to develop alloys and microstructures with improved high temperature capability. At present, the micro-mechanisms controlling creep before and after rafting (the microstructure evolution typical of high temperature creep) has occurred have yet to be identified and modeled, particularly for [001] oriented single crystals. This crystal orientation is most interesting technologically since it exhibits the highest creep strength. The major goal of the program entitled ''Mechanisms of High Temperature/Low Stress Creep of Ni-Based Superalloy Single Crystals'' (DOE Grant DE-FG02-04ER46137) has been to elucidate these creep mechanisms in cast nickel-based superalloys. We have utilized a combination of detailed microstructure and dislocation substructure analysis combined with the development of a novel phase-field model for microstructure evolution.

  18. The Portevin-Le Chatelier Effect in the Ni-Based Superalloy IN100

    NASA Astrophysics Data System (ADS)

    Fernandez-Zelaia, Patxi; Adair, Benjamin S.; Barker, Vincent M.; Antolovich, Stephen D.

    2015-12-01

    The Portevin-Le Chatelier (PLC) effect has been studied in the Ni-based superalloy IN100 which is currently used as a disk material in jet engines. A series of tensile tests was carried out at 588 K, 755 K, and 922 K (315 °C, 482 °C, and 649 °C) at plastic strain rates ranging from a low of 6.21 × 10-6 s-1 to a high of 4.92 × 10-2 s-1. The activation energy was determined using the slope of a line on a strain rate/temperature graph which divided the area of the graph into two regions: (1) "PLC behavior observed," and (2) "No PLC behavior observed." A new statistical approach was developed to objectively differentiate between a true PLC effect and experimental uncertainty ( i.e., "noise"). The value of the activation energy was found to be 1.14 eV/atom, which strongly suggests that the rate controlling process was bulk diffusion of C in the lattice. A qualitative model, based on the Orowan equation and slip band dislocation mechanics, was proposed, which unifies the seemingly disparate ideas of the process being controlled by a single atom/dislocation interaction while at the same time exhibiting significant strains during PLC load drops.

  19. Burner Rig Hot Corrosion of Five Ni-Base Alloys Including Mar-M247

    NASA Technical Reports Server (NTRS)

    Nesbitt, James A.; Helmink, R.; Harris, K.; Erickson, G.

    2000-01-01

    The hot corrosion resistance of four new Ni-base superalloys was compared to that of Mar-M247 by testing in a Mach 0.3 burner rig at 900 C for 300 1-hr cycles. While the Al content was held the same as in the Mar-M247, the Cr and Co levels in the four new alloys were decreased while other strengthening elements (Re, Ta) were increased. Surprisingly, despite their lower Cr and Co contents, the hot corrosion behavior of all four new alloys was superior to that of the Mar-M247 alloy. The Mar-M247 alloy began to lose weight almost immediately whereas the other four alloys appeared to undergo an incubation period of 50-150 1-hr cycles. Examination of the cross-sectional microstructures showed regions of rampant corrosion attack (propagation stage) in all five alloys after 300 1-hr cycles . This rampant corrosion morphology was similar for each of the alloys with Ni and Cr sulfides located in an inner subscale region. The morphology of the attack suggests a classic "Type I", or high temperature, hot corrosion attack.

  20. Carbon Deposition Onto Ni-Based Catalysts for Combined Steam/CO2 Reforming of Methane.

    PubMed

    Li, Peng; Park, Yoon Hwa; Moon, Dong Ju; Park, Nam Cook; Kim, Young Chul

    2016-02-01

    The present study was performed to suppress carbon deposition by Ce and Fe onto Ni-based catalysts in combined steam/CO2 reforming of methane (CSCRM), which is a process for producing synthesis gas (H2:CO = 2:1) for gas-to-liquids (GTL). The catalytic reaction was evaluated at 900 degrees C and 20 bar with a reactant feed ratio CH4:CO2:H20:Ar = 1:0.8:1.3:1 and gas hourly space velocity GHSV = 25,000 h(-1). The Ce and Fe modified Ni/gamma-A120, catalyst was characterized by BET surface area analysis, X-ray diffraction (XRD), H2 temperature-programmed reduction (TPR), H2 chemisorption, CO2 temperature-programmed desorption (TPD) and SEM. Ce- and Fe-modified Ni/Al2O3 catalysts exhibited remarkable activity and stability during the CSCRM over the course of 50 hours. It suggested that the Ni(12)-Ce(5)-Fe(5)/Al2O3 catalyst shows highly dispersed Ni particles with strong metal-to-support interaction (SMSI) as well as excellent catalytic activity. PMID:27433622

  1. Development of Ni-based multilayers for future focusing soft gamma ray telescopes

    NASA Astrophysics Data System (ADS)

    Girou, David A.; Massahi, Sonny; Sleire, Erlend K.; Jakobsen, Anders C.; Christensen, Finn E.

    2015-09-01

    Ni-based multilayers are a possible solution to extend the upper energy range of hard X-ray focusing telescopes currently limited at ≈79:4 keV by the Pt-K absorption edge. In this study 10 bilayers multilayers with a constant bilayer thickness were coated with the DC magnetron sputtering facility at DTU Space, characterized at 8 keV using X-ray reectometry and fitted using the IMD software. Ni/C multilayers were found to have a mean interface roughness ≈ 1:5 times lower than Ni/B4C multilayers. Reactive sputtering with ≈ 76% of Ar and ≈ 24% of N2 reduced the mean interface roughness by a factor of ≈ 1:7. It also increased the coating rate of C by a factor of ≈ 3:1 and lead to a coating process going ≈ 1:6 times faster. Honeycomb collimation proved to limit the increase in mean interface roughness when the bilayer thickness increases at the price of a coating process going ≈ 1:9 times longer than with separator plates. Finally a Ni/C 150 bilayers depth-graded mutilayer was coated with reactive sputtering and honeycomb collimation and then characterized from 10 keV to 150 keV. It showed 10% reectance up to 85 keV.

  2. Wear Characteristics of Ni-Based Hardfacing Alloy Deposited on Stainless Steel Substrate by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Awasthi, Reena; Limaye, P. K.; Kumar, Santosh; Kushwaha, Ram P.; Viswanadham, C. S.; Srivastava, Dinesh; Soni, N. L.; Patel, R. J.; Dey, G. K.

    2015-03-01

    In this study, dry sliding wear characteristics of the Ni-based hardfacing alloy (Ni-Mo-Cr-Si) deposited on stainless steel SS316L substrate by laser cladding have been presented. Dry sliding wear behavior of the laser clad layer was evaluated against two different counter bodies, AISI 52100 chromium steel (~850 VHN) and tungsten carbide ball (~2200 VHN) to study both adhesive and abrasive wear characteristics, in comparison with the substrate SS316L using ball on plate reciprocating wear tester. The wear resistance was evaluated as a function of load and sliding speed for a constant sliding amplitude and sliding distance. The wear mechanisms were studied on the basis of wear surface morphology and microchemical analysis of the wear track using SEM-EDS. Laser clad layer of Ni-Mo-Cr-Si on SS316L exhibited much higher hardness (~700 VHN) than that of substrate SS316L (~200 VHN). The laser clad layer exhibited higher wear resistance as compared to SS316L substrate while sliding against both the counterparts. However, the improvement in the wear resistance of the clad layer as compared to the substrate was much higher while sliding against AISI 52100 chromium steel than that while sliding against WC, at the same contact stress intensity.

  3. Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    NASA Astrophysics Data System (ADS)

    Samolyuk, G. D.; Béland, L. K.; Stocks, G. M.; Stoller, R. E.

    2016-05-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states at the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.

  4. Resistance to sulfur poisoning of Ni-based alloy with coinage (IB) metals

    NASA Astrophysics Data System (ADS)

    Xu, Xiaopei; Zhang, Yanxing; Yang, Zongxian

    2015-12-01

    The poisoning effects of S atom on the (1 0 0), (1 1 0) and (1 1 1) metal surfaces of pure Ni and Ni-based alloy with IB (coinage) metals (Cu, Ag, Au) are systematically studied. The effects of IB metal dopants on the S poisoning features are analyzed combining the density functional theory (DFT) results with thermodynamics data using the ab initio atomistic thermodynamic method. It is found that introducing IB doping metals into Ni surface can shift the d-band center downward from the Fermi level and weaken the adsorption of S on the (1 0 0) and (1 1 0) surfaces, and the S tolerance ability increases in the order of Ni, Cu/Ni, Ag/Ni and Au/Ni. Nevertheless, on the (1 1 1) surface, the S tolerance ability increases in the order of Ag/Ni (or Cu/Ni), Ni, and Au/Ni. When we increase the coverage of the IB metal dopants, we found that not only Au, but Cu and Ag can increase its S tolerance. We therefore propose that alloying can increase its S tolerance and alloying with Au would be a better way to increase the resistance to sulfur poisoning of the Ni anode as compared with the pure Ni and the Ag- or, Cu-doped Ni materials.

  5. Atom probe tomography of Ni-base superalloys Allvac 718Plus and Alloy 718.

    PubMed

    Viskari, L; Stiller, K

    2011-05-01

    Atom probe tomography (APT) allows near atomic scale compositional- and morphological studies of, e.g. matrix, precipitates and interfaces in a wide range of materials. In this work two Ni-base superalloys with similar compositions, Alloy 718 and its derivative Allvac 718Plus, are subject for investigation with special emphasis on the latter alloy. The structural and chemical nuances of these alloys are important for their properties. Of special interest are grain boundaries as their structure and chemistry are important for the materials' ability to resist rapid environmentally induced crack propagation. APT has proved to be suitable for analyses of these types of alloys using voltage pulsed APT. However, for investigations of specimens containing grain boundaries and other interfaces the risk for early specimen fracture is high. Analyses using laser pulsing impose lower electrical field on the specimen thereby significantly increasing the success rate of investigations. Here, the effect of laser pulsing was studied and the derived appropriate acquisition parameters were then applied for microstructural studies, from which initial results are shown. Furthermore, the influence of the higher evaporation field experienced by the hardening γ' Ni(3)(Al,Nb) precipitates on the obtained results is discussed. PMID:21295914

  6. Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC

    NASA Astrophysics Data System (ADS)

    Sajjadi, S. A.; Chaichi, A.; Ezatpour, H. R.; Maghsoudlou, A.; Kalaie, M. A.

    2016-04-01

    Hot deformation behavior of the Ni-based superalloy IN-738LC was investigated by means of hot compression tests over the temperature range of 1000-1200 °C and strain rate range of 0.01-1 s-1. The obtained peak flow stresses were related to strain rate and temperature through the hyperbolic sine equation with activation energy of 950 kJ/mol. Dynamic material model was used to obtain the processing map of IN-738LC. Analysis of the microstructure was carried out in order to study each domain's characteristic represented by the processing map. The results showed that dynamic recrystallization occurs in the temperature range of 1150-1200 °C and strain rate of 0.1 s-1 with the maximum power dissipation efficiency of 35%. The unstable domain was exhibited in the temperature range of 1000-1200 °C and strain rate of 1 s-1 on the occurrence of severe deformation bands and grain boundary cracking.

  7. Control of Interfacial Reactivity Between ZrB2 and Ni-Based Brazing Alloys

    NASA Astrophysics Data System (ADS)

    Valenza, F.; Muolo, M. L.; Passerone, A.; Cacciamani, G.; Artini, C.

    2012-05-01

    Transition metals diborides (Ti,Zr,Hf)B2 play a key role in applications where stability at extremely high temperatures and damage tolerance are required; however, much research has still to be done to optimize the joining of these materials to themselves or to other high-temperature materials. In this study, the reactivity at the solid-liquid interface between ZrB2 ceramics and Ni-based brazing alloys has been addressed; it is shown how the reactivity and the dissolution of the solid phase can be controlled and even suppressed by adjusting the brazing alloy composition on the basis of thermodynamic calculations. Wetting experiments on ZrB2 ceramics by Ni, Ni-B 17 at.%, and Ni-B 50 at.% were performed at 1500 and 1200 °C by the sessile drop technique. The obtained interfaces were characterized by optical microscopy and SEM-EDS, and interpreted by means of the ad hoc-calculated B-Ni-Zr ternary diagram. A correlation among microstructures, substrate dissolution, shape of the drops, spreading kinetics, and the phase diagram was found. The effect on the interfacial reactivity of Si3Ni4 used as a sintering aid and issues related to Si diffusion into the brazing alloy are discussed as well.

  8. Kinetics and Mechanisms of γ′ Reprecipitation in a Ni-based Superalloy

    PubMed Central

    Masoumi, F.; Shahriari, D.; Jahazi, M.; Cormier, J.; Devaux, A.

    2016-01-01

    The reprecipitation mechanisms and kinetics of γ′ particles during cooling from supersolvus and subsolvus temperatures were studied in AD730TM Ni-based superalloy using Differential Thermal Analysis (DTA). The evolution in the morphology and distribution of reprecipitated γ′ particles was investigated using Field Emission Gun Scanning Electron Microscopy (FEG-SEM). Depending on the cooling rate, γ′ particles showed multi or monomodal distribution. The irregularity growth characteristics observed at lower cooling rates were analyzed in the context of Mullins and Sekerka theory, and allowed the determination of a critical size of γ′ particles above which morphological instability appears. Precipitation kinetics parameters were determined using a non-isothermal JMA model and DTA data. The Avrami exponent was determined to be in the 1.5–2.3 range, suggesting spherical or irregular growth. A methodology was developed to take into account the temperature dependence of the rate coefficient k(T) in the non-isothermal JMA equation. In that regard, a function for k(T) was developed. Based on the results obtained, reprecipitation kinetics models for low and high cooling rates are proposed to quantify and predict the volume fraction of reprecipitated γ′ particles during the cooling process. PMID:27338868

  9. First-principles study of magnetic properties of Fe-Ni based alloys

    NASA Astrophysics Data System (ADS)

    Onoue, M.; Trimarchi, G.; Freeman, A. J.

    2013-03-01

    Investigations of the magnetic properties of Fe-Ni based alloys are important from the fundamental as well as technological points of view. Furthermore, the magnetization at saturation and Curie temperature (TC) of FeNi can be tuned for specific applications by alloying with other metallic species. We have performed electronic structure calculations on Fe-Ni- M alloys, where M are 3d transition metals, to determine how the magnetization depends on the species M and alloy composition. Electronic band structure and total energies are calculated by the Korringa-Kohn-Rostoker method within the coherent-potential-approximation (KKR-CPA). For the KKR-CPA calculations, we use the generalized gradient approximation of the exchange and correlation functional. In the case of Fe0.50Ni0.45M0 . 05 (M=Sc, Ti, V, Cr, Mn, and Co), the early 3 d atoms have antiparallel magnetic moments to the Fe or Ni, whereas the late ones, Mn and Co, have a parallel magnetic moment. Supported by the NU-Boeing Alliance

  10. Electron phonon coupling in Ni-based binary alloys with application to displacement cascade modeling

    DOE PAGESBeta

    Samolyuk, German D.; Stocks, George Malcolm; Stoller, Roger E.

    2016-04-01

    Energy transfer between lattice atoms and electrons is an important channel of energy dissipation during displacement cascade evolution in irradiated materials. On the assumption of small atomic displacements, the intensity of this transfer is controlled by the strength of electron–phonon (el–ph) coupling. The el–ph coupling in concentrated Ni-based alloys was calculated using electronic structure results obtained within the coherent potential approximation. It was found that Ni0.5Fe0.5, Ni0.5Co0.5 and Ni0.5Pd0.5 are ordered ferromagnetically, whereas Ni0.5Cr0.5 is nonmagnetic. Since the magnetism in these alloys has a Stoner-type origin, the magnetic ordering is accompanied by a decrease of electronic density of states atmore » the Fermi level, which in turn reduces the el–ph coupling. Thus, the el–ph coupling values for all alloys are approximately 50% smaller in the magnetic state than for the same alloy in a nonmagnetic state. As the temperature increases, the calculated coupling initially increases. After passing the Curie temperature, the coupling decreases. The rate of decrease is controlled by the shape of the density of states above the Fermi level. Introducing a two-temperature model based on these parameters in 10 keV molecular dynamics cascade simulation increases defect production by 10–20% in the alloys under consideration.« less