Science.gov

Sample records for ni-mo coatings produced

  1. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  2. A Study on Wear Resistance of HVOF-Sprayed Ni-MoS2 Self-Lubricating Composite Coatings

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Jeng, M. C.; Hwang, J. R.; Chang, C. H.

    2015-02-01

    Composite coating techniques are becoming increasingly popular owing to their peculiar performances. In this study, the wear resistance of thermally sprayed Ni-MoS2 composite coatings on an AISI 1020 steel substrate was investigated. Ni-MoS2 composite powder (size: 60-90 μm) containing 25 wt.% of dispersed MoS2 was prepared by electroless plating. Ni-MoS2 composite coatings were then prepared by HVOF thermal spraying. The coatings were characterized by structural, surface morphological, and compositional analyses by means of microhardness tests, SEM/EDS, XRD, and ICP-AES. For the evaluation of their anti-wear properties, the composites were subjected to ball-on-disk dry wear tests based on the ASTM G99 standard at room temperature. Experimental results showed that some of the MoS2 content dispersed in the Ni-based composite coating burnt away during the high-temperature spraying process, thereby reducing the MoS2 concentration in the coating. In the wear test, the weight loss in the Ni-MoS2 composite coating was minimal under a low load (<15 N) but increased rapidly with increasing load (>30 N). The average wear rate of the coatings was found to be ~1/40 times that of a Ni coating, showing that the wear resistance of the composite coatings was significantly improved by MoS2 addition.

  3. Microstructural Characterization and Tribological Behavior of HVOF Sprayed NiMoAl Coating from 20 to 800 °C

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Zhou, Huidi; Zhao, Xiaoqin; Chen, Jianmin; An, Yulong; Yan, Fengyuan

    2015-02-01

    NiMoAl coating was deposited by high velocity oxy-fuel spraying from gas-atomized powders and its tribological properties from 20 to 800 °C under unlubricated conditions were evaluated. Scanning electron microscopy, x-ray diffraction, and Raman spectroscopy were used to characterize the coating and corresponding wear tracks to determine the lubrication mechanisms. The friction coefficient of NiMoAl coating that decreased gradually with the increase of temperature exhibited the highest value of 0.8 at 20 °C and the lowest value of 0.29 at 800 °C. Meanwhile, NiMoAl coating also possessed an excellent anti-wear property and the wear rate of the coating maintained at a relatively low value at all test temperatures. Characterizations of worn surfaces revealed that the coating suffered abrasive wear at the low temperature. When the temperature elevated to 600 and 800 °C, molybdenum oxide and nickel molybdate that were formed through tribo-chemistry reactions acted as lubricants at the high temperature. In addition, NiMoAl coating experienced no obvious oxidation or phase transition on the unrubbed surface during the friction test at 800 °C, indicating that the coating performed both thermal stability and lubrication function at the high temperature.

  4. Phase Evolution and Properties of Al2CrFeNiMo x High-Entropy Alloys Coatings by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Jiang, Li; Jiang, Hui; Pan, Xuemin; Cao, Zhiqiang; Deng, Dewei; Wang, Tongmin; Li, Tingju

    2015-10-01

    A series of Al2CrFeNiMo x ( x = 0 to 2.0 at.%) high-entropy alloys coatings was synthesized on stainless steel by laser cladding. The effect of Mo content on the microstructures and mechanical properties of Al2CrFeNiMo x coatings was studied. The results show that the laser clad layer consists of the cladding zone, bonding zone, and heat-affected zone. The Al2CrFeNiMo x coatings are composed of two simple body-center cubic phases and the cladding zone is mainly composed of equiaxed grains. When the content of Mo reaches 2 at.%, a eutectic structure is found in the interdendritic regions. The surface microhardness of the Al2CrFeNiMo2 coating is 678 HV, which is about three times higher than that of the substrate (243 HV). Compared with stainless steel, the wear resistance of the coatings has been improved greatly. The wear mass loss of the Al2CrFeNiMo alloy is 9.8 mg, which is much less than that of the substrate (18.9 mg) and its wear scar width is the lowest among the Al2CrFeNiMo x coatings, indicating that the wear resistance of the Al2CrFeNiMo is the best.

  5. Impact of Nanometer Graphite Addition on the Anti-deliquescence and Tribological Properties of Ni/MoS2 Lubricating Coating

    NASA Astrophysics Data System (ADS)

    Zhang, S.; Li, G. L.; Wang, H. D.; Xu, B. S.; Ma, G. Z.

    In order to improve the long-standing problem of MoS2 coating that lubrication performance drop dramatic after storage in humid air, using nano-composite electro brush plating technology and Ni/MoS2-C combination coating with thinness of 100 μm was succeed deposited on GCr15 substrate. Microstructure, surface morphology and elements of this composite coating were analyzed using SEM, XPS and TEM while phase structure was tested by XRD. The tribological properties of this composite coating were tested by MSTS-1; Test the preceding tribological properties of Ni/MoS2-C composite coatings to the pure Ni/MoS2 after different period storage at room temperature and 100% relative humidity atmosphere of 12 h, 24 h, and 48 h as well as the element of the chemical changes. Research shows that there is a small amount of MoS2 in pure MoS2 coatings behind a 12 hours storage in humid air became MoO3 and the tribological performance decreased significantly followed, in the same conditions composite coating with nanometer graphite addition get a preferably tribological properties while the hardness of this coating was improved by the nanometer graphite addition and combination plating showed a well duration tribological properties as a result.

  6. Electrochemical Deposition and Characterization of Ni-Mo Alloys as Cathode for Alkaline Water Electrolysis

    NASA Astrophysics Data System (ADS)

    Manazoğlu, Mert; Hapçı, Gökçe; Orhan, Gökhan

    2016-01-01

    In this study, Ni-Mo alloy coatings were electrochemically deposited on a copper plate in citrate solutions. The effects of Ni/Mo mole ratio in the electrolyte and pH value on hydrogen evolution reaction (HER) as well as the electrochemical stability were investigated in the alkaline solution for electrodeposited NiMo. The electrocatalytic activity of the fabricated NiMo alloys for HER in alkaline solutions was investigated by the polarization measurements and electrochemical impedance spectroscopy techniques. The morphology and chemical composition of the electrodeposited Ni-Mo were investigated using SEM and EDS analyses. It was found that NiMo electrode with the highest molybdenum content (ca. 38 wt.%) and high surface area show high electrocatalytic activity in the HER. This was produced from a bath with a pH of 9.5, Ni/Mo ratio of 1/10 and 0.5 M sodium citrate concentration. The stability of this coating was tested by polarization measurements after different anodic and cathodic treatment in 1 M NaOH solution. The open circuit potential ( E ocp) of the electrode as a function of immersion time was also measured.

  7. Microstructure and mechanical properties of nanocrystalline Ni-Mo protective coatings

    NASA Astrophysics Data System (ADS)

    Bigos, A.; Beltowska-Lehman, E.; Indyka, P.

    2012-03-01

    Nickel-molybdenum alloys are of interest due to their functional properties, such as high hardness, corrosion resistance, as well as low wear and friction coefficients. Thus, they provide an excellent alternative to hard chromium coatings obtained from toxic electrolytes. Characterized coatings were electrodeposited on the steel substrates, from an aqueous citrate complex solution, containing nickel and molybdenum salts, in a system with a rotating disk electrode (RDE). The effect of cathodic current density on microstructure, chemical and phase composition, and crystallite size of the coatings was determined by the scanning and transmission electron microscopy, energy-dispersive X-ray spectrometry, and X-ray diffraction. The influence of microstructure as well as chemical composition on functional properties of coatings were also determined.

  8. Surface morphology and electrochemical characterization of electrodeposited Ni-Mo nanocomposites as cathodes for hydrogen evolution

    NASA Astrophysics Data System (ADS)

    Elhachmi Guettaf, Temam; Hachemi Ben, Temam; Said, Benramache

    2015-10-01

    In this work, we study the influences of current density on surface morphology and electrochemical characterization of electrodeposited Ni-Mo. The Ni-Mo composite coatings are deposited on pretreated copper substrates by electrolytic deposition. The Ni-Mo solution is taken from nickel sulfate fluid and ammonium heptamolybdate with 10 g/l. The Ni-Mo composite coatings are deposited at a temperature of 303 K with an applied current density of jdep = 10 A/dm2-30 A/dm2. We find that the corrosion resistance is improved by incorporating Mo particles into Ni matrix in 0.6-M NaCl solution. From the potentiodynamic polarization curve of electrodeposited Ni-Mo it is confirmed that the corrosion resistance decreases with increasing applied current density. The x-ray diffraction (XRD) analyses of Ni-Mo coatings indicate three phases of MoNi4, Mo1.24Ni0.76, and Ni3Mo phases crystallites of nickel and molybdenum. The scanning electronic microscopy (SEM) tests indicate that Ni-Mo coatings present cracks and pores.

  9. Ni-Mo-Co ternary alloy as a replacement for hard chrome

    NASA Astrophysics Data System (ADS)

    Srivastava, Meenu; Anandan, C.; Grips, V. K. William

    2013-11-01

    Hard chrome is the most extensively used electroplated coating in the aerospace and automotive industries due to its attractive properties such as high hardness and excellent wear resistance. However, due to the health risks associated with the use of hexavalent chromium baths during electroplating, there is a need to identify an alternative to this coating. In this study a nickel-molybdenum alloy with cobalt as the alloying element has been developed. The coating was characterized for its micro hardness, wear resistance, coefficient of friction and corrosion resistance. The coating was also subjected to heat treatment at temperatures in the range of 200°-600 °C. It was observed that the micro hardness of Ni-Mo-Co (730 KHN) alloy coating under optimized conditions is apparently quiet similar to that of the most probable substitute Co-P (745 VHN) and hard chrome (800 VHN) coatings. The tribological properties like the wear rate and coefficient of friction of the 400 °C heat treated Ni-Mo-Co coating were noticed to be better compared to hard chrome coating. The electrochemical impedance and polarization studies showed that the corrosion resistance of heat treated Ni-Mo-Co alloy was better than as-deposited Ni-Mo-Co and Ni-Mo coating.

  10. Pulsed electrodeposition of Ni-Mo alloys

    SciTech Connect

    Nee, C.C.; Kim, W.; Weil, R.

    1988-05-01

    The effect of pulsing the current on the composition, internal stress, and mechanical properties of Ni-Mo electrodeposits was investigated. The molybdenum content increased with increasing peak current density and to a lesser degree with decreasing duty cycle. A reduction in the internal stresses was explained in terms of the relaxation of those due to crystallite or fine grain coalescence during the off-time and an expansion of the surface layer when hydrogen diffused into it at the start of each on-time. The mechanical properties were improved by high-frequency pulse plating. Deposits consisting of alternate layers of different composition annealed at 300 C exhibited further improvement of their mechanical properties.

  11. Pulsed electrodeposition of Ni-Mo alloys

    SciTech Connect

    Nee, C.C.; Kim, W.; Weil, R.

    1988-05-01

    The effect of pulsing the current on the composition, the internal stress, and mechanical properties of Ni-Mo electrodeposits was investigated. The molybdenum, content increased with increasing peak current density and to a lesser degree with decreasing duty cycle. A reduction in the internal stresses was explained in terms of the relaxation of those due to crystallite or fine grain coalescence during the off-time and an expansion of the surface layer when hydrogen diffused into it at the start of each on-time. The mechanical properties were improved by high frequency pulse plating. Deposits consisting of alternate layers of different composition annealed at 300/sup 0/C exhibited further improvement of their mechanical properties.

  12. Support effects on hydrotreating activity of NiMo catalysts

    SciTech Connect

    Dominguez-Crespo, M.A. Arce-Estrada, E.M.; Torres-Huerta, A.M.

    2007-10-15

    The effect of the gamma alumina particle size on the catalytic activity of NiMoS{sub x} catalysts prepared by precipitation method of aluminum acetate at pH = 10 was studied. The structural characterization of the supports was measured by using XRD, pyridine FTIR-TPD and nitrogen physisorption. NiMo catalysts were characterized during the preparation steps (annealing and sulfidation) using transmission electron microscopy (TEM). Hydrogen TPR studies of the NiMo catalysts were also carried out in order to correlate their hydrogenating properties and their catalytic functionality. Catalytic tests were carried out in a pilot plant at 613, 633 and 653 K temperatures. The results showed that the rate constants of hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatizing (HDA) at 613-653 K decreased in the following order: A > B > C corresponding to the increase of NiMoS particle size associated to these catalysts.

  13. Development of Ni-Mo/Al2O3 catalyst for reverse water gas shift (RWGS) reaction.

    PubMed

    Kharaji, Abolfazl Gharibi; Shariati, Ahmad; Ostadi, Mohammad

    2014-09-01

    In the present study, Mo/Al2O3 catalyst was prepared using impregnation method. Then it was promoted with Ni ions to produce Ni-Mo/Al2O3 catalyst. The structures of the catalysts were studied using X-ray diffraction (XRD), Energy dispersive X-ray (EDAX), Brunauer-Emmett-Teller (BET), X-ray photoelectron spectroscopy (XPS), CO chemisorption, temperature programmed reduction of hydrogen (H2-TPR) and scanning electron microscope (SEM) techniques. Catalytic performances of the two catalysts were investigated in a fixed-bed reactor for RWGS reaction. The results indicated that addition of nickel promoter to Mo/Al2O3 catalyst enhances its activity. It is reasonable for the electron deficient state of the Ni species and existence of NiMoO4 phase to possess high activity in RWGS reaction. Stability test of Ni-Mo/Al2O3 catalyst was carried out in a fixed bed reactor and a high CO2 conversion for 60 h time on stream was demonstrated. This study introduces a new catalyst, Ni-Mo/Al2O3, with high activity and stability for RWGS reaction. PMID:25924339

  14. Effect of surface oxidation of the support on the thiophene hydrodesulfurization activity of Mo, Ni, and NiMo catalysts supported on activated carbon

    SciTech Connect

    Calafat, A. |; Lopez-Agudo, A.; Palacios, J.M.

    1996-08-01

    The present investigation attempts to provide a better understanding of the influence of the nature of the carbon support on the HDS activity of Mo, Ni, and NiMo catalysts. For this purpose a high purity activated carbon was subjected to oxidative treatments with HNO{sub 3} to modify its surface properties. NiMo catalysts supported on the resulting activated carbons were prepared and characterized by TPR, XRD, and SEM-EDX, and their activity for HDS of thiophene at 30 bars and 375{degrees}C was evaluated. The results obtained showed that oxidation of the carbon surface does not affect the HDS activity and other characteristics of the supported Mo phase. In contrast, the HDS activity of the Ni catalysts is enhanced by acid treatments of the carbon support. In this case, introduction of oxygen-containing functional groups (O{sub (s)}) leads to a strong interaction of O{sub (s)}-Ni during impregnation, which becomes essential to achieving and preserving high nickel dispersion. This effect on NiMo/C catalysts. The synergistic effect of the bimetallic catalysts is observed only when oxygen functional groups are present on the carbon surface, which are necessary for a good HDS activity, mainly because they enhance Ni-Mo interactions that produce the highly active Ni-Mo-S phase. A NiMoO{sub 4}-like phase formed during impregnation seems to be the precursor for the active sulfide phase over the present NiMo/C catalysts. 34 refs., 6 figs., 5 tabs.

  15. Comparative study of the performance of alumina-supported Ni-Mo, Ni-W and Ni-Mo-W catalysts in hydrotreating vacuum residue

    SciTech Connect

    Absi-Halabi, M.; Stanislaus, A.; Al-Dolama, K.

    1996-12-31

    The performance of a NiMoW/Al{sub 2}O{sub 3} catalyst for promoting various reactions during residual oil hydroprocessing is reported. Catalyst performance and properties are compared to that of conventional NiMo and NiW catalysts. Performance evaluation tests were conducted in a high pressure fixed bed reactor system using Kuwait vacuum residue as feed. Hydrodesulfurization, hydrodenitrogenation, hydrodemetalization, hydroconversion to distillates, asphaltene removal and CCR reduction reactions were monitored. The NiMoW catalyst was more active for various conversions than the NiMo and NiW catalysts. The addition of W to NiMo/Al{sub 2}O{sub 3} enhanced the hydrogenation function of the catalyst. 11 refs., 3 figs., 2 tabs.

  16. Obtaining Carbon Nanomaterials on a Ni-Mo-Bentonite Catalyst

    NASA Astrophysics Data System (ADS)

    Sataeva, G. E.; Daurenbek, N. M.; Myrzakhmet, M. K.

    2014-05-01

    Investigations into obtaining granulated sorbents based on bentonite clays of the Kyngrack fi eld have been carried out. A pilot-production technology for obtaining carbon composite materials (sorbents and catalysts) has been proposed. The process of formation of catalytic carbon in composites based on Ni-Mo bentonite has been studied on a semicommercial continuous laboratory reactor. It has been established that tubular-fibrous nanosize particles are predominantly formed in the pyrolysis of methane with a Ni-Mo-bentonite catalyst. The efficiency of activation of these sorbents is influenced by the concentration of the clay in them and by their temperature, and also by the consumption of an acid and the time of contact between the solvent and the acid. The structure of the formed nanotubes and nanofibers has been determined with a scanning electron microscope. Optimum parameters and kinetic regularities of the process of obtaining nanotubes and nanofibers at the intermolecular level through their pyrolysis from methane have been obtained.

  17. Strain hardening mechanisms in a Ni-Mo-Cr alloy

    SciTech Connect

    Dymek, S. ); Dollar, M. ); Klarstrom, D.L. )

    1991-01-01

    HAYNES 242 alloy has been recently developed for gas turbine components applications. This age-hardenable alloy, consisting essentially of Ni-25%Mo-8%Cr, utilizes a long-range-ordering reaction to form uniformly sized and distributed, extremely small (on the order of 10nm), ordered particles. Excellent strength and ductility at elevated temperatures, low thermal expansion characteristics and good oxidation resistance of Haynes 242 alloy has encouraged a number of studies designed to characterize its properties. What is lacking is an attempt to understand the fundamentals of the deformation and strengthening mechanisms in this alloy. This on-going research has been undertaken to explore deformation mechanisms in unaged and aged Haynes 242 alloy. The emphasis has been put on the effects of initial precipitation structure on the development of deformation structure and how it controls selected mechanical properties. This paper presents selected results and reports a change in the deformation mode from crystallographic glide in an unaged alloy into twinning in the presence of ordered particles. Deformation twinning in Ni-Mo and Ni-Mo-Cr alloys was reported earlier but was not discussed in detail. This research sheds light on possible origins of particle-induced twinning in alloys strengthened by small ordered particles.

  18. Fault structures in rapidly quenched Ni-Mo binary alloys

    NASA Technical Reports Server (NTRS)

    Jayaraman, N.; Tewari, S. N.

    1986-01-01

    Fault structures in two Ni-Mo alloy ribbons (Ni-28 at. pct Mo and Ni-35 at. pct Mo) cast by a free jet chill block melt spinning process were studied. Thin foils for TEM studies were made by electrochemical thinning using an alcohol/butyl cellosolve/perchloric acid mixture in a twin jet electropolishing device. The samples displayed typical grains containing linear faulted regions on the wheelside of the two alloy ribbons. However, an anomalous diffraction behavior was observed upon continuous tilting of the sample: the network of diffraction spots from a single grain appeared to expand or contract and rotate. This anomalous diffraction behavior was explained by assuming extended spike formation at reciprocal lattice points, resulting in a network of continuous rel rods. The validity of the model was confirmed by observations of a cross section of the reciprocal lattice parallel to the rel rods.

  19. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at % Mo. Although the microstructures observed by undercooling and melt spinning were similar the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  20. Undercooled and rapidly quenched Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1987-01-01

    Hypoeutectic, eutectic, and hypereutectic nickel-molybdenum alloys were rapidly solidified by both bulk undercooling and melt spinning techniques. Alloys were undercooled in both electromagnetic levitation and differential thermal analysis equipment. The rate of recalescence depended upon the degree of initial undercooling and the nature (faceted or nonfaceted) of the primary nucleating phase. Alloy melts were observed to undercool more in the presence of primary Beta (NiMo intermetallic) phase than in gamma (fcc solid solution) phase. Melt spinning resulted in an extension of molybdenum solid solubility in gamma nickel, from 28 to 37.5 at. pct Mo. Although the microstructures observed by undercooling and melt spinning were similar, the microsegregation pattern across the gamma dendries was different. The range of microstructures evolved was analyzed in terms of the nature of the primary phase to nucleate, its subsequent dendritic growth, coarsening and fragmentation, and final solidification of interfenderitic liquid.

  1. Non-enzymatic electrochemical glucose sensor based on NiMoO₄ nanorods.

    PubMed

    Wang, Dandan; Cai, Daoping; Huang, Hui; Liu, Bin; Wang, Lingling; Liu, Yuan; Li, Han; Wang, Yanrong; Li, Qiuhong; Wang, Taihong

    2015-04-10

    A non-enzymatic glucose sensor based on the NiMoO4 nanorods has been fabricated for the first time. The electrocatalytic performance of the NiMoO4 nanorods' modified electrode toward glucose oxidation was evaluated by cyclic voltammetry and amperometry. The NiMoO4 nanorods' modified electrode showed a greatly enhanced electrocatalytic property toward glucose oxidation, as well as an excellent anti-interference and a good stability. Impressively, good accuracy and high precision for detecting glucose concentration in human serum samples were obtained. These excellent sensing properties, combined with good reproducibility and low cost, indicate that NiMoO4 nanorods are a promising candidate for non-enzymatic glucose sensors. PMID:25772142

  2. Cracking vegetable oil from Callophylluminnophyllum L. seeds to bio-gasoline by Ni-Mo/Al2O3 and Ni-Mo/Zeolite as micro-porous catalysts

    NASA Astrophysics Data System (ADS)

    Savitri, Effendi, R.; Tursiloadi, S.

    2016-02-01

    Natural minerals such as zeolite are local natural resources in the various regions in Indonesia. Studies on the application of natural mineral currently carried out by national research institutions, among others, as a filler, bleaching agent, or dehydration agent. However, not many studies that utilize these natural minerals as green catalysts material which has high performance for biomass conversion processes and ready to be applied directly by the bio-fuel industry. The trend movement of green and sustainable chemistry research that designing environmentally friendly chemical processes from renewable raw materials to produce innovative products derived biomass for bio-fuel. Callophylluminnophyllum L. seeds can be used as raw material for bio-energy because of its high oil content. Fatty acid and triglyceride compounds from this oil can be cracked into bio-gasoline, which does not contain oxygen in the hydrocarbon structure. Bio-gasoline commonly is referred to as drop-in biofuel because it can be directly used as a substitute fuel. This paper focused on the preparation and formulation of the catalyst NiMo/H-Zeolite and Ni-Mo/Al2O3 which were used in hydro-cracking process of oil from Callophylluminnophyllum L. seeds to produce bio-gasoline. The catalysts were analyzed using XRD, BET and IR-adsorbed pyridine method. The results of hydro-cracking products mostly were paraffin (C10-C19) straight chain, with 59.5 % peak area based on GC-MS analysis.

  3. Calcium phosphate coatings produced by radiofrequency magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Bolbasov, E. N.; Zheravin, A. A.; Klimov, I. A.; Kulbakin, D. E.; Perelmuter, V. M.; Tverdokhlebov, S. I.; Cherdyntseva, N. V.; Choinzonov, E. L.

    2016-08-01

    Calcium phosphate coatings on titanium implants surface, produced by radio frequency (RF) magnetron sputtering method with hydroxyapatite solid target were investigated. It was found that produced coatings are calcium deficient compared to stoichiometric hydroxyapatite. The surface of the coatings is highly rough at the nanoscale and highly elastic. In vivo experiments on rats revealed that titanium implants with the calcium phosphate coatings do not cause negative tissue reaction after 6 months incubation period.

  4. Technology for producing carbon field emitters

    SciTech Connect

    Khatapova, R.M.; Demskaya, L.L.; Romanova, V.K.

    1985-12-01

    This paper describes methods for producing field emitters from carbon filaments. Coating of Ni and two-layer coatings of Ni-Mo with a thickness of 10-40 um are applied to the carbon filaments by electrochemical deposition so that they can be spot welded to a metal holder. A technology for attaching carbon filaments with a refractory adhesive composition is also described. Field emitters with point radius of curvature of 0.2-0.4 um are made from three types of carbon filament.

  5. Experimental study and thermodynamic assessment of the Ni-Mo-Ta ternary system

    SciTech Connect

    Cui, Y.; Lu, X.; Jin, Z.

    1999-11-01

    Phase equilibrium data of the Ni-Mo-Ta system at 1,473, 1,373, and 1,173 K were determined by means of diffusion triple and electron probe microanalysis (EPMA) techniques in this article. From the present experimental results and literature data, the Ni-Mo-Ta system was thermodynamically assessed using the CALPHAD method. A set of consistent thermodynamic parameters of each phase was obtained. A number of calculated isothermal sections are presented and compared with experimental data. They are in reasonable agreement. The present calculation was successfully used to analyze the solidification behavior of two alloys. Two subsystems, Ni-Mo and Mo-Ta, were assessed prior to the assessment of the ternary system.

  6. Synthesis and characterization of Ni-Mo bimetallic nitride from the mixture of nitrogen and hydrogen

    SciTech Connect

    Zhang Huimin; Zhao Zhen . E-mail: zhenzhao@cup.edu.cn; Xu Chunming; Duan Aijun; Lin Wenyong; Tian Hanjing; Wachs, Israel E.

    2006-12-14

    A new method for the synthesis of Ni-Mo bimetallic nitrides was reported in the present paper. The bimetallic nitrides were successfully prepared by a temperature-programmed reaction between bimetallic oxide precursors and the mixed gases of N{sub 2} and H{sub 2} instead of NH{sub 3}. By adjusting pH values of the solution in the process of co-precipitation, pure NiMoO{sub 4} or NiMoO{sub 4} with excess MoO{sub 3} was obtained, and then pure Ni{sub 3}Mo{sub 3}N or Ni{sub 3}Mo{sub 3}N with {gamma}-Mo{sub 2}N was synthesized by nitriding the precursors. The structural properties of the precursors and their corresponding nitrides were investigated by means of X-ray diffraction (XRD), ultraviolet laser Raman spectroscopy, thermogravimetric (TG) analysis and chemical analysis of total nitrogen content.

  7. Liquid phase coating to produce controlled-release alginate microspheres.

    PubMed

    Chan, Lai Wah; Liu, Xiaohua; Heng, Paul Wan Sia

    2005-12-01

    This study explored a liquid phase coating technique to produce polymethyl methacrylate (PMMA)-coated alginate microspheres. Alginate microspheres with a mean diameter of 85.6 microm were prepared using an emulsification method. The alginate microspheres, as cores, were then coated with different types of PMMA by a liquid phase coating technique. The release characteristics of these coated microspheres in simulated gastric (SGF) and intestinal (SIF) fluids and the influence of drug load on encapsulation efficiency were studied. The release of paracetamol, as a model hydrophilic drug, from the coated microspheres in SGF and SIF was greatly retarded. Release rates of Eudragit RS100-coated microspheres in SGF and SIF were similar as the rate-controlling polymer coat was insoluble in both media. Drug release from Eudragit S100-coated microspheres was more sustained in SGF than in SIF, due to the greater solubility of the coating polymer in media with pH greater than 7.0. The drug release rate was affected by the core:coat ratio. Drug release from the coated microspheres was best described by the Higuchi's square root model. The liquid phase coating technique developed offers an efficient method of coating small microspheres with markedly reduced drug loss and possible controlled drug release. PMID:16423760

  8. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, Jong Hee

    1998-01-01

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound

  9. Insulator coating for high temperature alloys method for producing insulator coating for high temperature alloys

    DOEpatents

    Park, J.H.

    1998-06-23

    A method for fabricating an electrically insulating coating on a surface is disclosed comprising coating the surface with a metal, and reacting the metal coated surface with a nonmetal so as to create a film on the metal-coated surface. Alternatively, the invention provides for a method for producing a noncorrosive, electrically insulating coating on a surface saturated with a nonmetal comprising supplying a molten fluid, dissolving a metal in the molten fluid to create a mixture, and contacting the mixture with the saturated surface. Lastly, the invention provides an electrically insulative coating comprising an underlying structural substrate coated with an oxide or nitride compound. 2 figs.

  10. Method of producing adherent metal oxide coatings on metallic surfaces

    DOEpatents

    Lane, Michael H.; Varrin, Jr., Robert D.

    2001-01-01

    Provided is a process of producing an adherent synthetic corrosion product (sludge) coating on metallic surfaces. The method involves a chemical reaction between a dry solid powder mixture of at least one reactive metal oxide with orthophosphoric acid to produce a coating in which the particles are bound together and the matrix is adherent to the metallic surface.

  11. Method of Producing Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    2000-01-01

    An improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coatings includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer or a diameter of less than 5 micron. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention the first bond coat layer is applied to the substrate. and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of the invention a ceramic insulating layer covers the second bond coat layer.

  12. Method of producing thermally sprayed metallic coating

    DOEpatents

    Byrnes, Larry Edward; Kramer, Martin Stephen; Neiser, Richard A.

    2003-08-26

    The cylinder walls of light metal engine blocks are thermally spray coated with a ferrous-based coating using an HVOF device. A ferrous-based wire is fed to the HVOF device to locate a tip end of the wire in a high temperature zone of the device. Jet flows of oxygen and gaseous fuel are fed to the high temperature zone and are combusted to generate heat to melt the tip end. The oxygen is oversupplied in relation to the gaseous fuel. The excess oxygen reacts with and burns a fraction of the ferrous-based feed wire in an exothermic reaction to generate substantial supplemental heat to the HVOF device. The molten/combusted metal is sprayed by the device onto the walls of the cylinder by the jet flow of gases.

  13. Support chemistry, surface area, and preparation effects on sulfided NiMo catalyst activity

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.; Sandoval, R.S.

    1996-06-01

    Hydrous Metal Oxides (HMOs) are chemically synthesized materials which contain a homogeneous distribution of ion exchangeable alkali cations that provide charge compensation to the metal-oxygen framework. In terms of the major types of inorganic ion exchangers defined by Clearfield, these amorphous HMO materials are similar to both hydrous oxides and layered oxide ion exchangers (e.g., alkali metal titanates). For catalyst applications, the HMO material serves as an ion exchangeable support which facilitates the uniform incorporation of catalyst precursor species. Following catalyst precursor incorporation, an activation step is required to convert the catalyst precursor to the desired active phase. Considerable process development activities at Sandia National Laboratories related to HMO materials have resulted in bulk hydrous titanium oxide (HTO)- and silica-doped hydrous titanium oxide (HTO:Si)-supported NiMo catalysts that are more active in model reactions which simulate direct coal liquefaction (e.g., pyrene hydrogenation) than commercial {gamma}-Al{sub 2}O{sub 3}-supported NiMo catalysts. However, a fundamental explanation does not exist for the enhanced activity of these novel catalyst materials; possible reasons include fundamental differences in support chemistry relative to commercial oxides, high surface area, or catalyst preparation effects (ion exchange vs. incipient wetness impregnation techniques). The goals of this paper are to identify the key factors which control sulfided NiMo catalyst activity, including those characteristics of HTO- and HTO:Si-supported NiMo catalysts which uniquely set them apart from conventional oxide supports.

  14. Anodization process produces opaque, reflective coatings on aluminum

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Opaque, reflective coatings are produced on aluminum articles by an anodizing process wherein the anodizing bath contains an aqueous dispersion of finely divided insoluble inorganic compounds. These particles appear as uniformly distributed occlusions in the anodic deposit on the aluminum.

  15. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte

    PubMed Central

    Miao, Jianwei; Xiao, Fang-Xing; Yang, Hong Bin; Khoo, Si Yun; Chen, Jiazang; Fan, Zhanxi; Hsu, Ying-Ya; Chen, Hao Ming; Zhang, Hua; Liu, Bin

    2015-01-01

    A unique functional electrode made of hierarchal Ni-Mo-S nanosheets with abundant exposed edges anchored on conductive and flexible carbon fiber cloth, referred to as Ni-Mo-S/C, has been developed through a facile biomolecule-assisted hydrothermal method. The incorporation of Ni atoms in Mo-S plays a crucial role in tuning its intrinsic catalytic property by creating substantial defect sites as well as modifying the morphology of Ni-Mo-S network at atomic scale, resulting in an impressive enhancement in the catalytic activity. The Ni-Mo-S/C electrode exhibits a large cathodic current and a low onset potential for hydrogen evolution reaction in neutral electrolyte (pH ~7), for example, current density of 10 mA/cm2 at a very small overpotential of 200 mV. Furthermore, the Ni-Mo-S/C electrode has excellent electrocatalytic stability over an extended period, much better than those of MoS2/C and Pt plate electrodes. Scanning and transmission electron microscopy, Raman spectroscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and x-ray absorption spectroscopy were used to understand the formation process and electrocatalytic properties of Ni-Mo-S/C. The intuitive comparison test was designed to reveal the superior gas-evolving profile of Ni-Mo-S/C over that of MoS2/C, and a laboratory-scale hydrogen generator was further assembled to demonstrate its potential application in practical appliances. PMID:26601227

  16. Novel alkyd-type coating resins produced using cationic polymerization

    SciTech Connect

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; Ulven, Chad

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showed that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.

  17. Fabrication of Low Adsorption Energy Ni-Mo Cluster Cocatalyst in Metal-Organic Frameworks for Visible Photocatalytic Hydrogen Evolution.

    PubMed

    Zhen, Wenlong; Gao, Haibo; Tian, Bin; Ma, Jiantai; Lu, Gongxuan

    2016-05-01

    An effective cocatalyst is crucial for enhancing the visible photocatalytic performance of the hydrogen generation reaction. By using density-functional theory (DFT) and frontier molecular orbital (FMO) theory calculation analysis, the hydrogen adsorption free energy (ΔGH) of Ni-Mo alloy (458 kJ·mol(-1)) is found to be lower than that of Ni itself (537 kJ·mol(-1)). Inspired by these results, the novel, highly efficient cocatalyst NiMo@MIL-101 for photocatalysis of the hydrogen evolution reaction (HER) was fabricated using the double solvents method (DSM). In contrast with Ni@MIL-101 and Mo@MIL-101, NiMo@MIL-101 exhibited an excellent photocatalytic performance (740.2 μmol·h(-1) for HER), stability, and high apparent quantum efficiency (75.7%) under 520 nm illumination at pH 7. The NiMo@MIL-101 catalyst also showed a higher transient photocurrent, lower overpotential (-0.51 V), and longer fluorescence lifetime (1.57 ns). The results uncover the dependence of the photocatalytic activity of HER on the ΔGH of Ni-Mo (MoNi4) alloy nanoclusters, i.e., lower ΔGH corresponding to higher HER activity for the first time. The NiMo@MIL-101 catalyst could be a promising candidate to replace precious-metal catalysts of the HER. PMID:27070204

  18. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts

    NASA Astrophysics Data System (ADS)

    Lai, Weikun; Chen, Zhou; Zhu, Jianping; Yang, Lefu; Zheng, Jinbao; Yi, Xiaodong; Fang, Weiping

    2016-02-01

    Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6-12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni-Mo-S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower-like nanostructure could be useful as promising catalysts for deep desulfurization of fuel oils.Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6-12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni-Mo-S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower

  19. Correlation of the thermodynamic calculation and the experimental observation of Ni-Mo-Cr low alloy steel changing Ni, Mo, and Cr contents

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gyu; Kim, Min-Chul; Lee, Bong-Sang; Wee, Dang-Moon

    2010-12-01

    SA508 Gr.4N Ni-Mo-Cr low alloy steel has improved fracture toughness and strength compared to commercial low alloy steels such as SA508 Gr.3 Mn-Mo-Ni low alloy steel, which has less than 1% Ni. Higher strength and fracture toughness of low alloy steels can be achieved by increasing the Ni and Cr contents. In this study, the effects of the alloying elements of Ni and Cr on the microstructural characteristics and mechanical properties of SA508 Gr.4N Ni-Mo-Cr low alloy steel are evaluated. Changes in the stable phases of SA508 Gr.4N low alloy steel with these alloying elements were evaluated using thermodynamic calculation software. These values were then compared with the observed microstructural results. Additionally, tensile tests and Charpy impact test were carried out to evaluate the mechanical properties. The thermodynamic calculations show that Ni mainly affects the change of the matrix phase of γ and α rather than the carbide phase. Contrary to the Ni effect, Cr and Mo primarily affect the precipitation behavior of the carbide phases of Cr 23C 6, Cr 7C 3 and Mo 2C. In the microscopic observations, the lath martensitic structure becomes finer as the Ni content increases without affecting the carbides. When the Cr content decreases, the Cr carbide becomes unstable and carbide coarsening occurs. Carbide Mo 2C in the form of fine needles were observed in the high-Mo alloy. Greater strength was obtained after additions of Ni and Mo and the transition properties were improved as the Ni and Cr contents increased. These results were correlated with the thermodynamic calculation results.

  20. Apparatus for producing carbon-coated nanoparticles and carbon nanospheres

    DOEpatents

    Perry, W. Lee; Weigle, John C.; Phillips, Jonathan

    2015-10-20

    An apparatus for producing carbon-coated nano- or micron-scale particles comprising a container for entraining particles in an aerosol gas, providing an inlet for carbon-containing gas, providing an inlet for plasma gas, a proximate torch for mixing the aerosol gas, the carbon-containing gas, and the plasma gas, bombarding the mixed gases with microwaves, and providing a collection device for gathering the resulting carbon-coated nano- or micron-scale particles. Also disclosed is a method and apparatus for making hollow carbon nano- or micro-scale spheres.

  1. A practical grinding-assisted dry synthesis of nanocrystalline NiMoO{sub 4} polymorphs for oxidative dehydrogenation of propane

    SciTech Connect

    Chen Miao; Wu Jialing; Liu Yongmei; Cao Yong; Guo Li; He Heyong; Fan Kangnian

    2011-12-15

    A practical two-stage reactive grinding-assisted pathway waste-free and cost-effective for the synthesis of NiMoO{sub 4} has been successfully developed. It was demonstrated that proper design in synthetic strategy for grinding plays a crucial role in determining the ultimate polymorph of NiMoO{sub 4}. Specifically, direct grinding (DG) of MoO{sub 3} and NiO rendered {alpha}-NiMoO{sub 4} after annealing, whereas sequential grinding (SG) of the two independently pre-ground oxides followed by annealing generated {beta}-NiMoO{sub 4} solid solution. Characterizations in terms of Raman and X-ray diffraction suggest the creation of {beta}-NiMoO{sub 4} precursor in the latter alternative is the key aspect for the formation of {beta}-NiMoO{sub 4}. The DG-derived {alpha}-NiMoO{sub 4} tested by oxidative dehydrogenation of propane exhibited superior activity in contrast to its analog synthesized via conventional coprecipitation. It is suggested that the favorable chemical composition facilely obtained via grinding in contrast to that by coprecipitation was essential for achieving a more selective production of propylene. - Graphical Abstract: Grinding-assisted synthesis of NiMoO{sub 4} offers higher and more reproducible activities in contrast to coprecipitation for oxidative dehydrogenation of propane, and both {alpha}- and {beta}-NiMoO{sub 4} can be synthesized. Highlights: Black-Right-Pointing-Pointer NiMoO{sub 4} was prepared through grinding-assisted pathway. Black-Right-Pointing-Pointer Direct/sequential grinding rendered {alpha}-, {beta}-NiMoO{sub 4}, respectively. Black-Right-Pointing-Pointer Grinding-derived {alpha}-NiMoO{sub 4} showed high and reproducible activity for oxidative dehydrogenation of propane.

  2. Method of applying coatings to substrates and the novel coatings produced thereby

    DOEpatents

    Hendricks, C.D.

    1987-09-15

    A method for applying novel coatings to substrates is provided. The ends of a multiplicity of rods of different materials are melted by focused beams of laser light. Individual electric fields are applied to each of the molten rod ends, thereby ejecting charged particles that include droplets, atomic clusters, molecules, and atoms. The charged particles are separately transported, by the accelerations provided by electric potentials produced by an electrode structure, to substrates where they combine and form the coatings. Layered and thickness graded coatings comprised of hitherto unavailable compositions, are provided. 2 figs.

  3. Effect of melt spinning on grain size and texture in Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.

    1988-01-01

    Chill-block melt-spun ribbons of Ni-Mo alloys with Mo contents of 8 to 41.8 wt pct have been examined for microstructure and texture dependence on processing conditions. Linear features observed in grains solidified with a planar liquid-solid interface at the quench side of the ribbons have been identified to be due to the twins on the (111)gamma plane formed during solidification. Grain size variation with the wheel surface speed and the alloy composition has been studied. The crystallographic texture on the quench side and the free surface side of the ribbons has been investigated.

  4. Primary arm spacing in chill block melt spun Ni-Mo alloys

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Glasgow, T. K.

    1986-01-01

    Chill block melt spun ribbons of Ni-Mo binary alloys containing 8.0 to 41.8 wt % Mo have been prepared under carefully controlled processing conditions. The growth velocity has been determined as a function of distance from the quench surface from the observed ribbon thickness dependence on the melt puddle residence time. Primary arm spacings measured at the midribbon thickness locations show a dependence on growth velocity and alloy composition which is expected from dendritic growth models for binary alloys directionally solidified in a positive temperature gradient.

  5. A NiMoS flower-like structure with self-assembled nanosheets as high-performance hydrodesulfurization catalysts.

    PubMed

    Lai, Weikun; Chen, Zhou; Zhu, Jianping; Yang, Lefu; Zheng, Jinbao; Yi, Xiaodong; Fang, Weiping

    2016-02-14

    Uniform 3D NiMoS nanoflowers with self-assembled nanosheets were successfully synthesized via a simple hydrothermal growth method using cheap and nontoxic elemental sulfur as sulfur sources. The structure and morphology of the nanomaterials were characterized by SEM, TEM, XRD, Raman and XPS analyses, revealing that the NiMoS nanoflowers were composed of ultrathin nanosheets with a thickness of approximately 6-12 nm. The HRTEM results indicate that the curve/short MoS2 slabs on the nanosheets possess the characteristics of dislocations, distortions and discontinuity, which suggests a defect-rich structure, resulting in the exposure of additional Ni-Mo-S edge sites. The obtained NiMoS nanoflowers exhibited an excellent activity for thiophene hydrodesulfurization (HDS) and 4,6-dimethyldibenzothiophene deep HDS due to their high density of active sites. The outstanding HDS performance suggests that these NiMoS composites with a unique flower-like nanostructure could be useful as promising catalysts for deep desulfurization of fuel oils. PMID:26815736

  6. Novel alkyd-type coating resins produced using cationic polymerization

    DOE PAGESBeta

    Chisholm, Bret J.; Kalita, Harjyoti; Alam, Samim; Jayasooriyamu, Anurad; Fernando, Shashi; Samanata, Satyabrata; Bahr, James; Selvakumar, Sermadurai; Sibi, Mukund; Vold, Jessica; et al

    2015-05-06

    Novel, partially bio-based poly(vinyl ether) copolymers derived from soybean oil and cyclohexyl vinyl ether (CHVE) were produced by cationic polymerization and investigated for application as alkyd-type surface coatings. Compared to conventional alkyd resins, which are produced by high temperature melt condensation polymerization, the poly(v9nyl ether)s provide several advantages. These advantages include milder, more energy efficient polymer synthesis, elimination of issues associated with gelation during polymer synthesis, production of polymers with well-defined composition and relatively narrow molecular weight distribution, and elimination of film formation and physical property issues associated with entrained monomers, dimers, trimers, etc. The results of the studied showedmore » that the thermal, mechanical, and physical properties of the coatings produced from these novel polymers varied considerably as a function of polymer composition and cure temperature. Overall, the results suggest a good potential for these novel copolymers to be used for coatings cured by autoxidation.« less

  7. Hydroxyapatite Coatings Produced by Surface-Induced Mineralizaiton

    SciTech Connect

    Campbell, Allison A.; Deatherage, Brooke L.; Li, Xiaohong S.; Nelson, Bradley J.; Bottoni, Craig R.; Dejong, E. Schuyler

    2002-01-03

    The surface-induced mineralization (SIM) process is based on the observation that, in nature, organisms use biopolymers to produce ceramic composites such as teeth, bones, and shells. The SIM process involves modification of a surface to introduce surface functionalization followed by immersion in aqueous supersaturated calcium phosphate solutions. This room temperature process has advantages over conventional methods of calcium phosphate deposition in that uniform coatings are produced onto complex-shaped and/or microporous samples. Additionally, because it is a room temperature process, biological agents can be incorporated.

  8. Thermal Stability of Intermetallic Phases in Fe-rich Fe-Cr-Ni-Mo Alloys

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-09-01

    Understanding the thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys is critical to alloy design and application of Mo-containing austenitic steels. Coupled with thermodynamic modeling, the thermal stability of intermetallic Chi and Laves phases in two Fe-Cr-Ni-Mo alloys was investigated at 1273 K, 1123 K, and 973 K (1000 °C, 850 °C, and 700 °C) for different annealing times. The morphologies, compositions, and crystal structures of the precipitates of the intermetallic phases were carefully examined by scanning electron microscopy, electron probe microanalysis, X-ray diffraction, and transmission electron microscopy. Two key findings resulted from this study. First, the Chi phase is stable at high temperature, and with the decreasing temperature it transforms into the Laves phase that is stable at low temperature. Secondly, Cr, Mo, and Ni are soluble in both the Chi and Laves phases, with the solubility of Mo playing a major role in the relative stability of the intermetallic phases. The thermodynamic models that were developed were then applied to evaluating the effect of Mo on the thermal stability of intermetallic phases in type 316 and NF709 stainless steels.

  9. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    SciTech Connect

    R, Lisha; P, Geetha; B, Aravind P.; Anantharaman, M. R.; T, Hysen; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.

    2015-06-24

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  10. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    DOE PAGESBeta

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed intomore » the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.« less

  11. Thermal stability of intermetallic phases in Fe-rich Fe-Cr-Ni-Mo alloys

    SciTech Connect

    Yang, Ying; Tan, Lizhen; Busby, Jeremy T.

    2015-06-12

    Understanding the stability of precipitate phases in the Fe-rich Fe-Cr-Ni-Mo alloys is critical to the alloy design and application of Mo-containing Austenitic steels. Coupled with thermodynamic modeling, stability of the chi and Laves phases in two Fe-Cr-Ni-Mo alloys were investigated at 1000, 850 and 700 °C for different annealing time. The morphologies, compositions and crystal structures of the matrix and precipitate phases were carefully examined by Scanning Electron Microscopy, Electron Probe Microanalysis, X-ray diffraction and Transmission Electron Microscopy. The two key findings resulted from this work. One is that the chi phase is stable at high temperature and transformed into the Laves phase at low temperature. The other is that both the chi and Laves phases have large solubilites of Cr, Mo and Ni, among which the Mo solubility has a major role on the relative stability of the precipitate phases. The developed thermodynamic models were then applied to evaluating the Mo effect on the stability of precipitate phases in AISI 316 and NF709 alloys.

  12. Comparative study on graphene growth mechanism using Ni films, Ni/Mo sheets, and Pt substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byeong-Joo; Jeong, Goo-Hwan

    2014-07-01

    We demonstrate a comparative study on graphene growth mechanism using various catalytic metal substrates such as Ni thin films, Ni-deposited Mo (Ni/Mo) sheets, and Pt sheets during chemical vapor deposition (CVD). Depending on the substrates, two kinds of graphene growth mechanisms that involve either precipitation or surface adsorption of carbon have been reported. We synthesized graphene, focusing especially on the initial growth stage during CVD, by varying synthesis parameters such as synthesis time, amount of feedstock, and cooling rate after synthesis. We concluded that precipitation-driven synthesis is dominant in the case of Ni substrates whereas adsorption-driven growth is dominant in the Ni/Mo system. In the case of the Pt substrate, which is generally believed to grow by carbon precipitation, graphene growth by adsorption was found to be dominant. We believe that our results will contribute to a clearer understanding of the graphene synthesis mechanism, and development of manufacturing routes for controllable synthesis of high-quality graphenes.

  13. Exchange bias in zinc ferrite-FeNiMoB based metallic glass composite thin films

    NASA Astrophysics Data System (ADS)

    R, Lisha; T, Hysen; P, Geetha; B, Aravind P.; Ojha, S.; Avasthi, D. K.; Ramanujan, R. V.; Anantharaman, M. R.

    2015-06-01

    The Exchange bias phenomenon and methods to manipulate the bias field in a controlled manner are thrust areas in magnetism due to its sophisticated theoretical concepts as well as advanced technological utility in the field of spintronics. The Exchange bias effect is observed as a result of ferromagnetic-antiferromagnetic (FM-AFM) exchange interaction, usually observed as a loop shift on field cooling below the Neel temperature of AFM. In the present study, we have chosen zinc ferrite which is a well known antiferromagnet, and FeNiMoB based metallic glass as the ferromagnet. The films were prepared by RF sputtering technique. The thickness and composition was obtained by RBS. The magnetic studies using SQUID VSM indicate exchange bias effect in the system. The effect of thermal annealing on exchange bias effect was studied. The observed exchange bias in the zinc ferrite-FeNiMoB system is not due to FM-AFM coupling but due to spin glass-ferromagnetic interaction.

  14. Evolution of oxide scale on a Ni-Mo-Cr alloy at 900 deg. C

    SciTech Connect

    Ul-Hamid, A. . E-mail: anwar@kfupm.edu.sa; Mohammed, A.I.; Al-Jaroudi, S.S.; Tawancy, H.M.; Abbas, N.M.

    2007-01-15

    The cyclic oxidation behavior of a Ni-Mo-Cr alloy was studied in air at 900 deg. C for exposure periods of up to 1000 h. The morphology, microstructure and composition of the oxide scale was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. Oxidation kinetics was determined by weight gain measurements. The results show that steady state oxidation was achieved within 1 h of exposure. During transient oxidation, the alloy grain boundaries intersecting the alloy surface became depleted in Ni and enriched in Mo and Cr. The scale initially formed at the surface was NiO which grew outwardly. However, a protective Cr{sub 2}O{sub 3} layer developed, rapidly retarding the rate of oxidation. Formation of NiMoO{sub 4} was also observed. The presence of Mo in the alloy facilitated the formation of a Cr{sub 2}O{sub 3} layer at an early stage of oxidation. The alloy exhibited considerable oxide spalling during prolonged exposure.

  15. Laser produced coatings and surface modifications for medical implants

    NASA Astrophysics Data System (ADS)

    León, B.

    2010-11-01

    Lasers can be an effective tool for tailoring the surface of medical implants. Laser irradiation can modify the surface wettability, bioactivity and its capacity to absorb proteins. By using appropriate energies and wavelengths, also the topographical features at macro, micro and nano level can be shaped in order to adapt to cells, extracellular matrices and orientation of ligand molecules. Pulsed laser deposition can produce nanometer thick, dense and well adhering CaP coatings with extremely fine control of chemistry and crystallinity. No further thermal annealing is needed. In-vitro and in-vivo experiments with different cells and animals models have demonstrated similar or better osseointegration of laser deposited coatings compared to the commercial available plasma sprayed ones. Ultraviolet lasers can successfully chemically functionalize the surface of implants, and femtosecond laser can drill polymer plates or meshes for tissue engineering applications.

  16. Amorphous boron coatings produced with vacuum arc deposition technology

    NASA Astrophysics Data System (ADS)

    Klepper, C. C.; Hazelton, R. C.; Yadlowsky, E. J.; Carlson, E. P.; Keitz, M. D.; Williams, J. M.; Zuhr, R. A.; Poker, D. B.

    2002-05-01

    In principle, boron (B) as a material has many excellent surface properties, including corrosion resistance, very high hardness, refractory properties, and a strong tendency to bond with most substrates. The potential technological benefits of the material have not been realized, because it is difficult to deposit it as coatings. B is difficult to evaporate, does not sputter well, and cannot be thermally sprayed. In this article, first successful deposition results from a robust system, based on the vacuum (cathodic) arc technology, are reported. Adherent coatings have been produced on 1100 Al, CP-Ti, Ti-6Al-4V, 316 SS, hard chrome plate, and 52 100 steel. Composition and thickness analyses have been performed by Rutherford backscattering spectroscopy. Hardness (H) and modules (E) have been evaluated by nanoindentation. The coatings are very pure and have properties characteristic of B suboxides. A microhardness of up to 27 GPa has been measured on a 400-nm-thick film deposited on 52 100 steel, with a corresponding modulus of 180 GPa. This gives a very high value for the H/E ratio, a figure-of-merit for impact resistance of the film. A number of applications are contemplated, including corrosion/abrasion protection for die-casting dies and improved wear resistance for biomedical implants.

  17. Electrochemical investigations of Cr-Ni-Mo stainless steel used in urology

    NASA Astrophysics Data System (ADS)

    Przondziono, J.; Walke, W.

    2011-05-01

    The influence of chemical passivation process on physical and chemical characteristics of samples made of X2CrNiMo 17-7-2 steel with differentiated hardening, in the solution simulating the environment of human urine was analysed in the study. Wire obtained in cold drawing process is used for the production of stents and appliances in urological treatment. Proper roughness of the surface was obtained through mechanical working - grinding (Ra = 0,40 μn) and electrochemical polishing (Ra = 0,12 μn). Chemical passivation process was carried out in 40% solution of HN03 within 60 minutes in the temperature of 65°C. The tests of corrosion resistance were made on the ground of registered anodic polarisation curves and Stern method. For evaluation of phenomena occurring on the surface of tested steel, electrochemical impedance spectroscopy (EIS) was applied.

  18. Microstructure and Properties of FeAlCrNiMo x High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Li, X. C.; Dou, D.; Zheng, Z. Y.; Li, J. C.

    2016-06-01

    FeAlCrNiMo x high-entropy alloys were prepared. The effect of Mo content on the microstructure and the properties of the alloys were investigated. When the Mo content was 0.1, the alloys were composed of single BCC solid solution; when Mo content reaches 0.25, the alloys were composed of BCC solid solution and ordered B2 solid solution. When Mo content is more than 0.75, some σ phases emerged. The volume fraction of the second phase increases with the increasing Mo content, and the crystal grains became coarsening. The yield strength, fracture strength, and hardness increase with the increasing Mo content and reach 2252, 2612 MPa, and 1006 Hv, respectively. The magnetic transformation undergoes from the ferromagnetism to paramagnetism with the increasing Mo content. The saturation intensity and remnant magnetism are decreased with the increasing Mo content.

  19. Catalyseur d'hydrocraquage à base de sulfure de NiMo déposé sur une zéolithe HEMT modifiée

    NASA Astrophysics Data System (ADS)

    Baalala, M.; Becue, T.; Leglise, J.; Manoli, J. M.; van Gestel, J. N. M.; Lamotte, J.; Bensitel, M.; Goupil, J. M.; Cornet, D.

    1999-02-01

    Treating a NH4EMT zeolite with a solution of (NH4)2SiF6 at 80 °C affords a solid containing amorphous SiO2 intimately mixed with the zeolite. This acidic support EMT-Si was loaded with NiMo sulfide in order to prepare a bifunctional catalyst, which was tested for the hydrogenation of benzene and the hydrocracking of n-heptane. This NiMo/EMT-Si catalyst was found more active for hydrogenation than the analogous NiMo/HY. This is ascribed to a higher dispersion of the NiMo sulfide, which is almost equally shared between the internal mesopores in the modified EMT solid, and the fissures, which were created throughout the zeolite grains upon inserting the NiMo sulfide. The catalyst with the EMT-Si support was also found more active than the NiMo/HY for the hydrocracking of heptane, with a slightly higher selectivity into heptane isomers. Le traitement d'une zéolithe NH4EMT par une solution de (NH4)2SiF6 fournit un solide comportant une phase SiO2 amorphe intimement mélangée aux parties intactes de la zéolithe. Sur ce support acide EMT-Si, on a greffé un sulfure de NiMo afin de préparer un catalyseur bifonctionnel qui a été testé dans les réactions d'hydrogénation du benzène et d'hydrocraquage du n-heptane. Ce catalyseur NiMo/EMT-Si s'avère plus actif en hydrogénation que son analogue NiMo/HY, en raison d'une meilleure dispersion du sulfure de NiMo. Sur le solide EMT modifié, le sulfure se répartit à peu près également entre les mésopores internes et les fissures crées dans les grains de zéolithe lors de l'insertion du sulfure de NiMo. Au contraire sur le support Y, une partie du sulfure est externe aux grains de zéolithe et inactive en catalyse. Le catalyseur NiMo/EMT-Si est aussi trouvé plus actif que le NiMo/HY en hydrocraquage du n-heptane, et un peu plus sélectif en isomères.

  20. Microstructure and phase transformations in laser clad CrxSy/Ni coating on H13 steel

    NASA Astrophysics Data System (ADS)

    Lei, Yiwen; Sun, Ronglu; Tang, Ying; Niu, Wei

    2015-03-01

    Laser cladding was carried out onto H13 steel with preplaced NiCrBSi+Ni/MoS2 powders using CO2 laser under the optimized experimental parameters of laser power 2 kW, scanning velocity 6 mm/s and laser beam diameter 3 mm. An X-ray diffractometer and scanning electron microscope with energy dispersive spectroscopy were applied to analyze the microstructure and phase compositions of the coating. Thermodynamic calculation was performed with Thermo-Calc software on the basis of a commercially available Ni-based Alloys' database. The experimental results show that MoS2 decomposed and S reacted with Cr to form nonstoichiometric CrxSy during the laser cladding process. The coating consists of spherical CrxSy particles, primary γ-Ni dendrite, interdendritic eutectic (γ-Ni+NiMo) and precipitated NiMo. The precipitated NiMo was fine and uniformly distributed in primary γ-Ni dendrite. The calculated results and experimental data indicate that the solidification process in the coating during laser cladding process was liquid→liquid+CrxSy→ liquid+CrxSy+γ-Ni→liquid+CrxSy+γ-Ni+ eutectic (γ-Ni+NiMo). A solid state phase transformation (fine and uniformly distributed NiMo precipitated from γ-Ni) occurred after the solidification process. The calculations agree well with the experimental data and it is helpful to understand the phase transformation and microstructure evolution in the coating.

  1. Hydrotreatment of petroleum vaccum residue with NiMo supported on carbon black of hollow nano-particles

    SciTech Connect

    Yamashita, N.; Sakanishi, K.; Mochida, I.

    1996-10-01

    Hydrogenation with NiMo catalyst on the carbon black of hollow sphere was very active to decrease asphaltene(hexane insoluble:HI) from 10% to 1% in the VR under the conditions of 340{degrees}C, 4h, and 10 MPa of H2. Non-protonated-aromatic carbons of remaining HI were converted to protonated carbons with increase of naphthenic carbons observed by {sup 13}C-NMR. Metallic compounds principally contained in HI were also converted to be hexane soluble(HS). It revealed that some of the metal containing compounds trapped in the asphaltene micelle are liberated from the micelle through the catalytic hydrogenation under mild conditions. The present catalyst was found much more active for the hydrogenative conversion of asphaltene and metallic compounds as well as the demetallation than the conventional demetallation catalysts, suggesting that NiMo/KB catalyst is highly dispersed to interact more intimately with asphaltene molecules.

  2. Synthesis, crystal structure, and structural conversion of Ni molybdate hydrate NiMoO 4· nH 2O

    NASA Astrophysics Data System (ADS)

    Eda, Kazuo; Kato, Yasuyuki; Ohshiro, Yu; Sugitani, Takamitu; Whittingham, M. Stanley

    2010-06-01

    The synthesis and crystal structure of NiMoO 4· nH 2O were investigated. The hydrate crystallized in the triclinic system with space group P-1, Z=4 with unit cell parameters of a=6.7791(2) Å, b=6.8900(2) Å, c=9.2486(2) Å, α=76.681(2)°, β=83.960(2)°, γ=74.218(2)°. Its ideal chemical composition was NiMoO 4·3/4H 2O rather than NiMoO 4·1H 2O. Under hydrothermal conditions the hydrate turned directly into α-NiMoO 4 above 483 K, giving nanorods thinner than the crystallites of the mother hydrate. On the other hand, it turned into Anderson type of polyoxomolybdate via a solid-solution process in a molybdate solution at room temperature.

  3. Low temperature physical properties of a Ni-Mo-Cr alloy Haynes® 242™

    NASA Astrophysics Data System (ADS)

    Lu, J.; Han, K.; Choi, E. S.; Jo, Y.; Balicas, L.; Xin, Y.

    2007-06-01

    Haynes 242 is a Ni-Mo-Cr based superalloy. High strength and high fracture toughness at low temperatures make Haynes 242 an attractive choice for cryogenic applications such as the conduit material for the cable-in-conduit conductor of superconducting magnets. In this work, its low temperature physical properties including magnetization, specific heat, electrical resistivity, thermal conductivity, and Seebeck coefficient are measured from 2to300K. Haynes 242 shows Curie paramagnetism with a Curie constant C =0.0289K. The electrical resistivity has a minimum at ˜12K and shows weakly linear T dependence at high temperatures as expected. The specific heat Cp between 10 and 40K can be fitted by Cp=γT+AT3 with γ =9.43×10-5J/gK2 and A =5.91×10-7J/gK4. Below 10K, an upturn in Cp/T with decreasing T is interpreted by the existence of very small ferromagnetic clusters which is supported by our magnetization data. The thermal conductivity is analyzed by separating the electronic and phonon contributions. The relatively strong phonon thermal conduction at temperatures <100K results in effective Lorenz number a few times larger than the ideal Lorenz number. Our results suggest that Haynes 242 is suitable for many cryogenic applications including conduit for large superconducting magnet and low temperature probe.

  4. Hydrotreatment of Athabasca bitumen derived gas oil over Ni-Mo, Ni-W, and Co-Mo catalysts

    SciTech Connect

    Diaz-Real, R.A.; Mann, R.S.; Sambi, I.S. . Dept. of Chemical Engineering)

    1993-07-01

    The hydrotreatment of Athabasca bitumen derived heavy gas oil containing 4.08% S and 0.49% N was carried out in a trickle bed reactor over Ni-W, Ni-Mo, and Co-Mo catalysts supported on zeolite-alumina-silica at 623-698 K, LHSV of 1-4, gas flow rate 890 m[sup 3][sub H2]/m[sup 3][sub oil] (5,000 sef/bbl), and pressure of 6.89 MPa. Analyses for viscosity, density, aniline point, ASTM mid boiling point distillation, C/H ratio, and percentage of N and S in the final product were carried out to characterize the product oil. The amounts of N and S removed indicated the hydrodenitrogenation and hydrodesulfurization activity of the catalysts. Results of zeolite-alumina-silica-supported catalysts are compared to those obtained with commercially available Ni-Mo, Ni-W, and Co-Mo on [gamma]-alumina. Ni-Mo supported on zeolite-alumina-silica was most active and could remove as much as 99 % S and 89% N present in the oil at 698 K. The data for HDN and HDS fitted the pseudo first order model. The kinetic model is described in detail.

  5. Photocatalytic Iron Oxide Coatings Produced by Thermal Spraying Process

    NASA Astrophysics Data System (ADS)

    Navidpour, A. H.; Salehi, M.; Amirnasr, M.; Salimijazi, H. R.; Azarpour Siahkali, M.; Kalantari, Y.; Mohammadnezhad, M.

    2015-12-01

    Recently, hematite coatings with semiconductor properties have received attention for photocatalytic applications. In this study, plasma and flame spraying techniques were used for hematite deposition on 316 stainless steel plates. X-ray diffraction was used for phase composition analysis, and methylene blue was used as an organic pollutant to evaluate the photocatalytic activity of thermally sprayed coatings. The results showed that all these coatings could act under visible-light irradiation but the one deposited by flame spraying at 20 cm stand-off distance showed the highest photocatalytic activity. The results showed that wavelength of the light source and pH of the solution affected the photocatalytic activity significantly. It was also shown that thermally sprayed iron oxide coatings could have a high photo-absorption ability, which could positively affect the photocatalytic activity.

  6. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, Paul K. T.; Gallaher, George R.; Wu, Jeffrey C. S.

    1993-01-01

    A method of producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane.

  7. Method of producing a carbon coated ceramic membrane and associated product

    DOEpatents

    Liu, P.K.T.; Gallaher, G.R.; Wu, J.C.S.

    1993-11-16

    A method is described for producing a carbon coated ceramic membrane including passing a selected hydrocarbon vapor through a ceramic membrane and controlling ceramic membrane exposure temperature and ceramic membrane exposure time. The method produces a carbon coated ceramic membrane of reduced pore size and modified surface properties having increased chemical, thermal and hydrothermal stability over an uncoated ceramic membrane. 12 figures.

  8. Wear resistance of composite coatings produced by thermal spraying

    SciTech Connect

    Klinskaya, N.A.

    1995-12-31

    Injection of refractory additions (carbides, borides, oxides etc.) into self-fluxing alloys is a well-known technique for their hardening. Nevertheless the matter of influence of refractory components on the structure and characteristics of composite coatings is not studied well enough. This paper presents the results of investigations of gas thermal coatings (plasma and detonation ones) on the base of stellite with refractory components in the form of borides such as CrB{sub 2}, TiB{sub 2}, (TiCr)B{sub 2}. This study is concerned with the influence of refractory additions (carbides, borides, oxides) on the wear resistance sprayed coatings based on self-fluxing alloys NiCrBSi and CoCrBSi.

  9. Enhanced methanol electro-oxidation over in-situ carbon and graphene supported one dimensional NiMoO4 nanorods

    NASA Astrophysics Data System (ADS)

    Jothi, Palani Raja; Kannan, Shanthi; Velayutham, G.

    2015-03-01

    Non-precious NiMoO4 nanorods with carbon and graphene have been designed for methanol oxidation via one pot hydrothermal method. The physicochemical and electrocatalytic features of these catalysts are characterized. Among the three catalysts, carbon modified NiMoO4 shows an enhanced catalytic activity in terms of current density, onset potential, cyclic stability and high tolerance to intermediate towards methanol electro-oxidation. Moreover, the NiMoO4/C catalyst delivers a current density of 49 mA cm-2 at low onset potential of 0.45 V (vs. Hg/HgO) in 1 M KOH and 2.0 M methanol electrolyte. This greater electrocatalytic activity is attributed to the unique 1D microstructure of NiMoO4 nanorods with well distributed carbonaceous material, which enhances the efficient transport of electron/ion kinetics at the electrode and electrolyte interfaces. From this observation, it is concluded that the carbon modified NiMoO4 nanorods could be a promising alternate non-noble electrocatalysts for direct methanol fuel cell (DMFC) applications.

  10. Hierarchical NiMoO4 nanowire arrays supported on macroporous graphene foam as binder-free 3D anodes for high-performance lithium storage.

    PubMed

    Wang, Bo; Li, Songmei; Wu, Xiaoyu; Liu, Jianhua; Tian, Wenming

    2016-01-14

    Novel three-dimensional (3D) NiMoO4 nanowire arrays (NWAs) grown directly onto the surface of macroporous graphene foams (GF) with robust adhesion were synthesized via a facile chemical vapor deposition (CVD) and subsequent hydrothermal route. The as-prepared NiMoO4 nanowires are composed of ultra-small nanoparticles (∼5 nm) with a diameter of 70-150 nm and are several micrometers in length. Such as-grown NiMoO4 NWA/3DGF composites are then evaluated as monolithic electrodes for lithium-ion batteries (LIBs) without the need of binders or metal-based current collectors. Benefitting from the unique three-dimensional arrayed architecture and characteristics with a high specific surface area and more active sites which facilitate fast electron and ionic transport within the electrode, the NiMoO4 NWA/GF composites deliver a high reversible specific capacity of 1088.02 mA h g(-1) at a current density of 200 mA g(-1) and 867.86 mA h g(-1) after 150 cycles (79.77% retention of the second cycle), and excellent rate capability. With the advantages of excellent electrochemical performance and a facile synthesis method, the NiMoO4 nanowire arrays supported on 3DGF exhibit great potential as anode materials for LIBs. PMID:26648554

  11. Refractory coatings and method of producing the same

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R. (Inventor)

    1982-01-01

    The adhesion, friction, and wear properties of sputtered refractory coatings on substrates of materials that form stable nitrides is improved by placing each substrate directly below a titanium carbide target of a commercial radiofrequency diode apparatus in a vacuum chamber. Nitrogen is bled into the system through a nozzle resulting in a small partial pressure of about 0.5% to 2.5% during the first two minutes of deposition. The flow of nitrogen is then stopped, and the sputtering ambient is reduced to pure argon through a nozzle without interrupting the sputtering process. When nitrogen is deliberately introduced during the crucial interface formation, some of the titanium at the interface reacts to form titanium nitride while the metal of the substrate also forms the nitride. These two nitrides atomically mixed together in the interfacial region act to more strongly bond the growing titanium carbide coating as it forms on the substrate.

  12. Apparatus for producing oxidation protection coatings for polymers

    NASA Technical Reports Server (NTRS)

    Mirtich, M. J. (Inventor); Sovey, J. S. (Inventor); Banks, A. (Inventor)

    1986-01-01

    A polymeric substrate is coated with a metal oxide film to provide oxidation protection in low Earth orbital environments. The film contains about 4 volume percent polymer to provide flexibility. A coil of polymer materials moves through an ion beam as it is fed between reels. The ion beam first cleans the polymer material surface and then sputters the film material from a target onto this surface.

  13. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.

    PubMed

    Srifa, Atthapon; Faungnawakij, Kajornsak; Itthibenchapong, Vorranutch; Viriya-Empikul, Nawin; Charinpanitkul, Tawatchai; Assabumrungrat, Suttichai

    2014-04-01

    Catalytic hydrotreating of palm oil (refined palm olein type) to produce bio-hydrogenated diesel (BHD) was carried out in a continuous-flow fixed-bed reactor over NiMoS2/γ-Al2O3 catalyst. Effects of dominant hydrotreating parameters: temperature: 270-420°C; H2 pressure: 15-80 bar; LHSV: 0.25-5.0 h(-1); and H2/oil ratio: 250-2000 N(cm(3)/cm(3)) on the conversion, product yield, and a contribution of hydrodeoxygenation (HDO) and decarbonylation/decarboxylation (DCO/DCO2) were investigated to find the optimal hydrotreating conditions. All calculations including product yield and the contribution of HDO and DCO/DCO2 were extremely estimated based on mole balance corresponding to the fatty acid composition in feed to fully understand deoxygenation behaviors at different conditions. These analyses demonstrated that HDO, DCO, and DCO2 reactions competitively occurred at each condition, and had different optimal and limiting conditions. The differences in the hydrotreating reactions, liquid product compositions, and gas product composition were also discussed. PMID:24583218

  14. Process for producing radiation-induced self-terminating protective coatings on a substrate

    DOEpatents

    Klebanoff, Leonard E.

    2001-01-01

    A gas and radiation are used to produce a protective coating that is substantially void-free on the molecular scale, self-terminating, and degradation resistant. The process can be used to deposit very thin (.apprxeq.5-20 .ANG.) coatings on critical surfaces needing protection from degradative processes including, corrosion and contamination.

  15. Iron-Based Amorphous Coatings Produced by HVOF Thermal Spray Processing-Coating Structure and Properties

    SciTech Connect

    Beardsley, M B

    2008-03-26

    The feasibility to coat large SNF/HLW containers with a structurally amorphous material (SAM) was demonstrated on sub-scale models fabricated from Type 316L stainless steel. The sub-scale model were coated with SAM 1651 material using kerosene high velocity oxygen fuel (HVOF) torch to thicknesses ranging from 1 mm to 2 mm. The process parameters such as standoff distance, oxygen flow, and kerosene flow, were optimized in order to improve the corrosion properties of the coatings. Testing in an electrochemical cell and long-term exposure to a salt spray environment were used to guide the selection of process parameters.

  16. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying.

    PubMed

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed. PMID:26625888

  17. Structure of Biocompatible Coatings Produced from Hydroxyapatite Nanoparticles by Detonation Spraying

    NASA Astrophysics Data System (ADS)

    Nosenko, Valentyna; Strutynska, Nataliia; Vorona, Igor; Zatovsky, Igor; Dzhagan, Volodymyr; Lemishko, Sergiy; Epple, Matthias; Prymak, Oleg; Baran, Nikolai; Ishchenko, Stanislav; Slobodyanik, Nikolai; Prylutskyy, Yuriy; Klyui, Nickolai; Temchenko, Volodymyr

    2015-12-01

    Detonation-produced hydroxyapatite coatings were studied by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and electron paramagnetic resonance (EPR) spectroscopy. The source material for detonation spraying was a B-type carbonated hydroxyapatite powder. The coatings consisted of tetracalcium phosphate and apatite. The ratio depended slightly on the degree of crystallinity of the initial powder and processing parameters of the coating preparation. The tetracalcium phosphate phase was homogeneous; the apatite phase contained defects localized on the sixfold axis and consisted of hydroxyapatite and oxyapatite. Technological factors contributing to the transformation of hydroxyapatite powder structure during coating formation by detonation spraying are discussed.

  18. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors.

    PubMed

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm(-2) at 2 mA cm(-2) and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm(-2). The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  19. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

    PubMed Central

    Huang, Liang; Zhang, Wei; Xiang, Jinwei; Xu, Henghui; Li, Guolong; Huang, Yunhui

    2016-01-01

    Hierarchical core-shell NiCo2O4@NiMoO4 nanowires were grown on carbon cloth (CC@NiCo2O4@NiMoO4) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo2O4@NiMoO4 integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm−2 at 2 mA cm−2 and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm−2. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure. PMID:27515274

  20. Kinetics and reaction chemistry of catalytic hydrodechlorination of chlorinated benzenes on sulfided NiMo/. gamma. Al sub 2

    SciTech Connect

    Hagh, B.F.

    1989-01-01

    Catalytic hydroprocessing has recently emerged as a treatment and recycling process for waste streams containing chlorinated organics. Compounds such as polychlorinated biphenyls (PCBs), and pentachlorophenol (PCP) can be effectively treated using this chemistry. These applications have created a need for rate and mechanism data for these reactions. In this work, the catalytic hydrodechlorination reactions of hexachlorobenzene and all of its partially dechlorinated intermediates over NiMo/{gamma}Al{sub 2}O{sub 3} hydroprocessing catalyst were examined in a differential microflow reactor. The NiMo catalyst was chosen after a screening study revealed that it had high activity and selectivity for dechlorination. Based on chlorobenzene hydrodechlorination data at 275-375C, a kinetic model was proposed where the rates of adsorption and surface reaction were comparable and neither controlled the overall reaction rate. The dechlorination rate data of hexachlorobenzene and other chlorinated benzenes point toward the presence of steps that involve multiple chlorine removal. Not all possible intermediates are formed; all of the observed intermediate dechlorination steps proceed at comparable rates.

  1. Surface modification of 40CrNiMo7 steel with high current pulsed electron beam treatment

    NASA Astrophysics Data System (ADS)

    Hao, Shengzhi; Wang, Huihui; Zhao, Limin

    2016-02-01

    High current pulsed electron beam (HCPEB) treatment was conducted on 40CrNiMo7 steel with accelerating voltage 27 kV, energy density 3 J/cm2, pulse duration 2.5 μs and 1-50 pulses. The evolutions of surface microstructure were investigated by using optical microscopy (OM), X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscopy (TEM) techniques. It was found that the carbides in the surface remelted layer of depth ∼4 μm were dissolved gradually along with the increasing number of HCPEB pulses. Eventually, the surface microstructure of 40CrNiMo7 steel was transformed to a complex structure composed of very refined ∼150 nm austenite as the main part and a little quantity of martensite phases. After 15 pulses of HCPEB treatment, the surface microhardness was doubled to 553 HV, and the wear rate decreased to one third of the initial state correspondingly.

  2. Hydroprocessing of sunflower oil-gas oil blends over sulfided Ni-Mo-Al-zeolite beta composites.

    PubMed

    Sankaranarayanan, T M; Banu, M; Pandurangan, A; Sivasanker, S

    2011-11-01

    Mixtures of sunflower oil and a straight run gas oil in the diesel fuel range were hydroprocessed over sulfided NiO(3%)-MoO3(12%)-γ-Al2O3 incorporating 0, 15 or 30 wt.% zeolite beta (BEA). The studies were carried out at 320-350 °C; 30-60 bars, and weight hourly space velocities (WHSV), 1-4 h(-1). Catalyst containing 30% BEA achieved nearly 100 % conversion of the vegetable oil into hydrocarbons at 330 °C, 60 bars and a WHSV of 2 h(-1) compared to 95.5% by the Ni-Mo-γ-alumina catalyst without BEA. Hydroprocessing with blends containing oleic acid revealed that the catalysts were able to transform the acid into hydrocarbons. An analysis of the ratios of the n-C18 and n-C17 paraffins formed from the vegetable oil at different process conditions revealed that the catalyst containing 15% BEA was most active for hydrodeoxygenation. The gas oil-hydrodesulfurization activity of the Ni-Mo-Al2O3 was enhanced by the addition of BEA by more than 10%. PMID:21945166

  3. Cyclic variations of sulfur isotopes in Cambrian stratabound Ni-Mo-(PGE-Au) ores of southern China

    USGS Publications Warehouse

    Murowchick, J.B.; Coveney, R.M., Jr.; Grauch, R.I.; Eldridge, C.S.; Shelton, K.L.

    1994-01-01

    Cyclic variations of ??34S values over a range of at least 48??? in pyrite nodules from stratabound Ni-Mo-PGE(Au) ores of southern China are attributed to biogenic reduction of seawater sulfate in an anoxic, phosphogenic, and metallogenic basin. Cyclic introduction and mixing of normal seawater into typically stagnant basin waters led to extreme variations in ??34S values of aqueous sulfide species present at different times. Intermittent venting of metal-laden hydrothermal fluids into such a bacteriogenic sulfide-rich environment resulted in precipitation of metal sulfides as pseudomorphous replacements of organic debris and as sulfide sediments that record large ??34SCDT variations from -26 to +22???. Apatite and silica dominated the replacement of the organic debris when metals were not being introduced into the basin. The combination of abundant organic debris, localized topographic basins for accumulation of the debris, bacterial production of sulfide species, and introduction of metal-bearing hydrothermal fluids provided the environment necessary to form these unusually rich Ni-Mo ores. ?? 1994.

  4. Process for producing a high emittance coating and resulting article

    NASA Technical Reports Server (NTRS)

    Le, Huong G. (Inventor); O'Brien, Dudley L. (Inventor)

    1993-01-01

    Process for anodizing aluminum or its alloys to obtain a surface particularly having high infrared emittance by anodizing an aluminum or aluminum alloy substrate surface in an aqueous sulfuric acid solution at elevated temperature and by a step-wise current density procedure, followed by sealing the resulting anodized surface. In a preferred embodiment the aluminum or aluminum alloy substrate is first alkaline cleaned and then chemically brightened in an acid bath The resulting cleaned substrate is anodized in a 15% by weight sulfuric acid bath maintained at a temperature of 30.degree. C. Anodizing is carried out by a step-wise current density procedure at 19 amperes per square ft. (ASF) for 20 minutes, 15 ASF for 20 minutes and 10 ASF for 20 minutes. After anodizing the sample is sealed by immersion in water at 200.degree. F. and then air dried. The resulting coating has a high infrared emissivity of about 0.92 and a solar absorptivity of about 0.2, for a 5657 aluminum alloy, and a relatively thick anodic coating of about 1 mil.

  5. Moisture resistant and anti-reflection optical coatings produced by plasma polymerization of organic compounds

    NASA Technical Reports Server (NTRS)

    Hollahan, J. R.; Wydeven, T.

    1975-01-01

    The need for protective coatings on critical optical surfaces, such as halide crystal windows or lenses used in spectroscopy, has long been recognized. It has been demonstrated that thin, one micron, organic coatings produced by polymerization of flourinated monomers in low temperature gas discharge (plasma) exhibit very high degrees of moisture resistence, e.g., hundreds of hours protection for cesium iodide vs. minutes before degradation sets in for untreated surfaces. The index of refraction of these coatings is intermediate between that of the halide substrate and air, a condition for anti-reflection, another desirable property of optical coatings. Thus, the organic coatings not only offer protection, but improved transmittance as well. The polymer coating is non-absorbing over the range 0.4 to 40 microns with an exception at 8.0 microns, the expected absorption for C-F bonds.

  6. Antimicrobial coatings for ensuring safety of fresh produces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Safety of fresh produce has been a perennial issue for the industry in the US despite tightening up regulations and implementing good manufacturing practice. The diversity of crops and labor-intense operations in the fresh produce production created a unique set of contamination routes that are not...

  7. Laminar iridium coating produced by pulse current electrodeposition from chloride molten salt

    NASA Astrophysics Data System (ADS)

    Zhu, Li'an; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2013-10-01

    Due to the unique physical and chemical properties, Iridium (Ir) is one of the most promising oxidation-resistant coatings for refractory materials above 1800 °C in aerospace field. However, the Ir coatings prepared by traditional methods are composed of columnar grains throughout the coating thickness. The columnar structure of the coating is considered to do harm to its oxidation resistance. The laminar Ir coating is expected to have a better high-temperature oxidation resistance than the columnar Ir coating does. The pulse current electrodeposition, with three independent parameters: average current density (Jm), duty cycle (R) and pulse frequency (f), is considered to be a promising method to fabricate layered Ir coating. In this study, laminar Ir coatings were prepared by pulse current electrodeposition in chloride molten salt. The morphology, roughness and texture of the coatings were determined by scanning electron microscope (SEM), profilometer and X-ray diffraction (XRD), respectively. The results showed that the laminar Ir coatings were composed of a nucleation layer with columnar structure and a growth layer with laminar structure. The top surfaces of the laminar Ir coatings consisted of cauliflower-like aggregates containing many fine grains, which were separated by deep grooves. The laminar Ir coating produced at the deposition condition of 20 mA/cm2 (Jm), 10% (R) and 6 Hz (f) was quite smooth (Ra 1.01 ± 0.09 μm) with extremely high degree of preferred orientation of <1 1 1>, and its laminar structure was well developed with clear boundaries and uniform thickness of sub-layers.

  8. Characterization of industrially produced galvannealed coating using cross-sectional specimen in TEM

    SciTech Connect

    Chakraborty, A.; Saha, R.; Ray, R.K.

    2009-08-15

    Galvannealed coated sheet steels are extensively used in the automotive industry due to their inherent advantages, as compared to other zinc based coating, such as excellent spot weldability, good corrosion resistance and better paintability. Despite the above advantages, galvannealed coating suffers from poor formability due to the presence of hard and brittle Fe-Zn intermetallic phases. The formability of the coating depends on the amount and orientation of different Fe-Zn intermetallic phases. The present study deals with the characterization of an industrially produced galvannealed coating using cross-sectional specimen in a Transmission Electron Microscope. From the selected area diffraction patterns obtained in Transmission Electron Microscope, the orientations of the delta phase were calculated.

  9. Reaction of H{sub 2} and H{sub 2}S with CoMoO{sub 4} and NiMoO{sub 4}: TPR, XANES, time-resolved XRD, and molecular-orbital studies

    SciTech Connect

    Rodriguez, J.A.; Chaturvedi, S.; Hanson, J.C.; Brito, J.L.

    1999-02-04

    The combination of two metals in an oxide matrix can produce materials with novel physical and chemical properties. The reactivity of a series of cobalt and nickel molybdates ({alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}, and AmoO{sub 4}{center_dot}nH{sub 2}O; A = Co or Ni) toward H{sub 2} and H{sub 2}S was examined using temperature programmed reduction (TPR), synchrotron-based X-ray powder diffraction (XRD), and X-ray absorption near-edge-spectroscopy (XANES). In general, the cobalt and nickel molybdates are more reactive toward H{sub 2} and easier to reduce than pure molybdenum oxides: MoO{sub 2} < MoO{sub 3} < CoMoO{sub 4} < NiMoO{sub 4}. The interaction of H{sub 2} with surfaces of {alpha}-NiMoO{sub 4}, {alpha}-CoMoO{sub 4}, and {alpha}-MoO{sub 3} was investigated using ab initio SCF calculations and cluster models. The mixed-metal oxides are easier to reduce due to the combination of two factors. First, it is easier to adsorb and dissociate H{sub 2} on Ni or Co sites than on Mo sites of an oxide. And second, as a result of differences in the strength of the metal-oxygen bonds, it is easier to remove oxygen as water from the nickel and cobalt molybdates than from MoO{sub 3} or MoO{sub 2}. The extra reactivity that the Co and Ni atoms provide also makes the rate of sulfidation of the cobalt and nickel molybdates faster than that of pure molybdenum oxides. For the adsorption of H{sub 2}S, HS, and S on {alpha}-NiMoO{sub 4} and {alpha}-MoO{sub 3} clusters, the results of ab initio SCF calculations show bigger bonding energies on the Ni sites than on the Mo sites. In these systems, the oxidation state of the Ni atoms is substantially lower (i.e., larger electron density) than that of the Mo atoms, favoring the formation of Ni {r_arrow} SH and Ni {r_arrow} S dative bonds. Results of time-resolved XRD and XANES indicate that the reduced AMoO{sub 4} compounds can be regenerated by reaction with O{sub 2} at high temperatures (350--450 C). A similar procedure (S{sub a} + O

  10. Layer structured Na2Ni(MoO4)2 particles as a visible-light-driven photocatalyst for degradation of methylene blue

    NASA Astrophysics Data System (ADS)

    Lu, Yuting; Chen, Luyang; Huang, Yanlin; Chen, Cuili; Kim, Sun Il; Seo, Hyo Jin

    2015-03-01

    A new visible-light-driven photocatalyst of Na2Ni(MoO4)2 particle was prepared by the modified Pechini method. The crystal structure was measured by X-ray diffraction (XRD) and the structural refinement. The sample was investigated by scanning electron microscope (SEM), transmission electron microscopy (TEM), and UV-vis absorption spectrum measurements. The average size of Na2Ni(MoO4)2 particle is about 180 nm. Na2Ni(MoO4)2 particle have an efficient optical absorption in the UV-visible light wavelength region with a direct allowed electronic transition of 2.06 eV. The effective photodegradation of methylene blue (MB) dye was demonstrated, which benefits from the special crystal structure of Na2Ni(MoO4)2 particle. This crystal lattice has two infinite chains formed by (Ni,Na)O6 and MoO4 polyhedra standing in lines alone with the inner wall of the hexagonal tunnels. This results in the efficient optical absorption and provides more chances for electron-hole separations, which can further react with dye molecules to oxidize the dye pollutant into non-toxic products.

  11. Quasi in situ Ni K-edge EXAFS investigation of the spent NiMo catalyst from ultra-deep hydrodesulfurization of gas oil in a commercial plant.

    PubMed

    Hamabe, Yusuke; Jung, Sungbong; Suzuki, Hikotaro; Koizumi, Naoto; Yamada, Muneyoshi

    2010-07-01

    Ni species on the spent NiMo catalyst from ultra-deep hydrodesulfurization of gas oil in a commercial plant were studied by Ni K-edge EXAFS and TEM measurement without contact of the catalysts with air. The Ni-Mo coordination shell related to the Ni-Mo-S phase was observed in the spent catalyst by quasi in situ Ni K-edge EXAFS measurement with a newly constructed high-pressure chamber. The coordination number of this shell was almost identical to that obtained by in situ Ni K-edge EXAFS measurement of the fresh catalyst sulfided at 1.1 MPa. On the other hand, large agglomerates of Ni(3)S(2) were observed only in the spent catalyst by quasi in situ TEM/EDX measurement. MoS(2)-like slabs were sintered slightly on the spent catalyst, where they were destacked to form monolayer slabs. These results suggest that the Ni-Mo-S phase is preserved on the spent catalyst and Ni(3)S(2) agglomerates are formed by sintering of Ni(3)S(2) species originally present on the fresh catalyst. PMID:20567086

  12. Characterization of Vc-Vb Particles Reinforced Fe-Based Composite Coatings Produced by Laser Cladding

    NASA Astrophysics Data System (ADS)

    Qu, K. L.; Wang, X. H.; Wang, Z. K.

    2016-03-01

    In situ synthesized VC-VB particles reinforced Fe-based composite coatings were produced by laser beam melting mixture of ferrovanadium (Fe-V) alloy, boron carbide (B4C), CaF2 and Fe-based self-melting powders. The results showed that VB particles with black regular and irregular blocky shape and VC with black flower-like shape were uniformly distributed in the coatings. The type, amount, and size of the reinforcements were influenced by the content of FeV40 and B4C powders. Compared to the substrate, the hardness and wear resistance of the composite coatings were greatly improved.

  13. The effect of copper doping on martensite shear stress in porous TiNi(Mo,Fe,Cu) alloys

    NASA Astrophysics Data System (ADS)

    Khodorenko, V. N.; Kaftaranova, M. I.; Gunther, V. E.

    2015-03-01

    The properties of alloys based on porous nickel-titanium (TiNi) with copper additives have been studied. It is established that the copper doping of porous TiNi(Mo,Fe,Cu) alloys fabricated by the method of self-propagating high-temperature synthesis leads to a significant decrease in the martensite shear stress (below 30 MPa). Low values of the martensite shear stress (σmin) in copper-doped TiNi-based alloys allows medical implants of complex shapes to be manufactured for various purposes, including oral surgery. The optimum concentration of copper additives (within 3-6 at %) has been determined that ensures high performance characteristics of TiNi-based porous alloys for medical implants.

  14. Effects of Laser Quenching on Impact Toughness and Fracture Morphologies of 40CrNiMo High Strength Steel

    NASA Astrophysics Data System (ADS)

    Dejun, Kong; Lei, Zhang

    2014-10-01

    The surface of 40CrNiMo steel was quenched with a CO2 laser, Charpy impact test was conducted at temperatures of 20, 0, and -20 °C, and the impact absorption energies were measured. The fracture morphologies were observed with SEM, and the influence of microhardness, residual stress, and retained austenite on mechanical behavior of impact fracture after laser quenching was discussed. The results show that the hardened layer depth is more than 1 mm after laser quenching, and hardness is about 480-500 HV. The fracture morphology of the sample is dimple rupture at a temperature of 20 °C; with the lower temperature the fracture dimples become smaller. At a temperature of -20 °C, the fracture morphologies change from ductile to brittle, which is mainly cleavage fracture. The increase in surface hardness, production of compressive residual stress, and existence of retained austenite after laser quenching are the main mechanisms of increasing impact toughness.

  15. Zwitterionic Antifouling Coatings for the Purification of High-Salinity Shale Gas Produced Water.

    PubMed

    Yang, Rong; Goktekin, Esma; Gleason, Karen K

    2015-11-01

    Fouling refers to the undesirable attachment of organic molecules and microorganisms to submerged surfaces. It is an obstacle to the purification of shale gas produced water and is currently without an effective solution due to the highly contaminated nature of produced water. Here, we demonstrate the direct vapor application of a robust zwitterionic coating to a variety of substrates. The coating remains unprecedentedly hydrophilic, smooth, and effectively antifouling in extremely high salinity solutions (with salt concentration of 200,000 ppm). The fouling resistance is assessed rapidly and quantitatively with a molecular force spectroscopy-based method and corroborated using quartz crystal microbalance system with dissipation monitoring. Grazing angle attenuated total reflectance Fourier transform infrared is used in combination with X-ray photoelectron spectroscopy, atomic force microscope, and in situ spectroscopic ellipsometry to lend insight into the underlying mechanism for the exceptional stability and effectiveness of the zwitterionic coating under high-salinity conditions. A unique coating architecture, where the surface is concentrated with mobile zwitterionic moieties while the bulk is cross-linked to enhance coating durability, was discovered to be the origin of its stable fouling resistance under high salinity. Combined with previously reported exceptional stability in highly oxidative environments and strong fouling resistance to oil and grease, the zwitterionic surface here has the potential to enable low-cost, membrane-based techniques for the purification of produced water and to eventually balance the favorable economics and the concerning environmental impacts of the hydraulic fracturing industry. PMID:26449686

  16. Correlations between spraying conditions and microstructure for alumina coatings produced by HVOF and VPS

    SciTech Connect

    Ramm, D.A.J.; Clyne, T.W.; Sturgeon, A.J.; Dunkerton, S.

    1994-12-31

    Coatings have been produced on steel substrates by thermal spraying of alumina, using the High Velocity Oxy-Fuel (HVOF) and Vacuum Plasma Spraying (VPS) techniques. Only fine powder ({approximately} 10 {micro}m) could be sprayed by HVOF, but VPS was carried out both with this powder and two coarser ones. Particle impact velocities were measured using a mechanical technique based on twin rotating cylinders. These were shown to be in the range 100--300 m s{sup {minus}1} for VPS, depending primarily on the chamber pressure. The limited data obtained to date indicate that velocities during HVOF are appreciably higher. The phase constitutions of the coatings were studied using three different techniques. The coatings were in all cases found to consist largely of {gamma}-alumina. The {alpha}-alumina content, attributable to the presence of unmolten particles, varied between about 10% and 30%. Porosity contents, determined using high precision densitometry, were in the range 2--8%. For the VPS coatings, higher impact velocities, lower {alpha} phase contents and lower porosity levels were found for the intermediate size ({approximately} 15 {micro}m) particles, the latter two being similar to those for the HVOF coatings. The erosion resistance of these two coatings were also found to be similar.

  17. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  18. Properties of pure and sulfided NiMoO{sub 4} and CoMoO{sub 4} catalysts: TPR, XANES and time-resolved XRD studies

    SciTech Connect

    Chaturvedi, S.; Rodriguez, J.A.; Hanson, J.C.; Albornoz, A.; Brito, J.L.

    1998-12-31

    X-ray absorption near-edge spectroscopy (XANES) was used to characterize the structural and electronic properties of a series of cobalt- and nickel-molybdate catalysts (AMoO{sub 4}.nH{sub 2}O, {alpha}-AMoO{sub 4}, {beta}-AMoO{sub 4}; A=Co or Ni). The results of XANES indicate that the Co and Ni atoms are in octahedral sites in all these compounds, while the coordination of Mo varies from octahedral in the {alpha}-phases to tetrahedral in the {beta}-phases and hydrate. Time-resolved x-ray diffraction shows a direct transformation of the hydrates into the {beta}-AMoO{sub 4} compounds (following a kinetics of first order) at temperatures between 200 and 350{degrees}C. This is facilitated by the similarities that the AMoO{sub 4}.nH{sub 2}O and H{sub 2} at temperatures between 400 and 600{degrees}C, forming gaseous water oxides in which the oxidation state of Co and Ni remains +2 while that of Mo is reduced to +5 or +4. After exposing {alpha}-NiMoO{sub 4} and {beta}-NiMoO{sub 4} to H{sub 2}S, both metals get sulfided and a NiMoS{sub x} phase is formed. For the {beta} phase of NiMoO{sub 4} the sulfidation of Mo is more extensive than for the {alpha} phase, making the former a better precursor for catalysts of hydrodesulfurization reactions.

  19. Property evaluation of thermal sprayed metallic coating by acoustic emission analysis

    SciTech Connect

    Ishida, Asako; Mizutani, Yoshihiro; Takemoto, Mikio; Ono, Kanji

    2000-03-01

    The authors analyzed acoustic emission signals from plasma sprayed sheets by first obtaining the Young's modulus, Poisson's ratio, and density. The sheets of a high Cr-Ni alloy (55Cr-41Ni-Mo, Si, B) were made by low pressure plasma spraying (LPPS) and heat treated. Utilizing laser induced surface acoustic waves (SAWs), the group velocity dispersion data of Rayleigh waves was obtained and matched to that computed by Adler's matrix transfer method. They monitored the acoustic emissions (Lamb waves) produced by microfractures in free standing as sprayed coating subjected to bending. Fast cleavage type microfracture with source rise time of around 2 {micro}s occurred as precursors to the final brittle fracture. The velocity and time-frequency amplitude spectrograms (wavelet contour maps) of the Lamb waves were utilized for the source location and fracture kinetic analyses.

  20. Process of high temperature synthesis in producing composite carbide powders for thermally sprayed coatings

    NASA Astrophysics Data System (ADS)

    Szymański, K.; Formanek, B.

    2011-05-01

    The paper presents the characterization of powders containing hard phases of chromium carbides in a NiCr matrix, intended for thermal spraying coatings. The synthesized composite powder containing hard phases and plastic matrix, produced in high-temperature synthesis with chosen powder metallurgy processes has been presented. Commercial materials, such as NiCr- CrxCy, are fabricated by means of agglomeration and sintering method. Processes of high temperature synthesis of Cr3C2, Cr7C3, Cr23C6 carbides combined with NiCr powder mechanical alloying are presented in the article. Parameters of the carbides synthesis were determined in the reactive -protective atmosphere. In the rotation- vibration mill, processes were conducted using grinding and appropriate mechanical alloying at variable amplitude. The standard and synthesized powders were thermally sprayed by HVOF method in Jet Kote II and Diamond Jet system. The structure and phase composition of the powders and coatings were determined by: light and scanning microscopy, X-ray phase analysis (RTG) and energy dispersive X-ray analysis (EDX). The structure and wear properties of HVOF sprayed coatings containing chromium carbides has been presented. The thermally sprayed coatings are characterized of wear resistance in abrasion and erosion tests. The sprayed coatings characterized high resistance in wear conditions.

  1. Effect of Ti addition on the microstructure and mechanical properties of a cast Fe-Ni-Mo-Mn maraging steel

    NASA Astrophysics Data System (ADS)

    Nejad, S. Hossein; Nili Ahmadabadi, M.

    2003-10-01

    To study the effect of Ti on the age hardening behavior of Fe-Ni-Mn maraging steels, a Fe-Ni-Mo-Mn steel was alloyed with Ti then mechanical properties and aging behavior of two cast steels were investigated. In this regard, two heats of nominal compositions of Fe-10Ni-6Mo-3Mn and Fe-lONi-6Mo-3Mn-0. 7Ti were induction melted in air and vacuum respectively and cast in iron mold. After homogenizing at 1473K for 21.6ks and water quenching, solution annealing was performed at 1223K for 3.6ks followed by air cooling. Age hardening behavior at 773Kin the range of 0.36-172. 8 ks was determined. Tensile properties and Charpy impact toughness were measured in the solution annealed and peak-aged conditions. Fractographic features were studied by scanning electron microscope equipped with EDX microanalyses. Tensile properties of the alloys in the peakaged condition were in the range of grade 200 standard maraging steel. It has been found that Ti addition resulted in increasing of hardness and strength in aged condition and decreasing of Charpy impact toughness in both solution annealed and aged conditions. Ti addition also changes type and morphology of inclusions and fracture mechanism from semi-ductile intergranular mode to semi-ductile transgranular one.

  2. Self-Propagating High-Temperature Synthesis in the Ti-C-Ni-Mo System on Application of Powerful Ultrasound

    NASA Astrophysics Data System (ADS)

    Kulak, M. M.; Khina, B. B.

    2014-03-01

    An experimental setup has been developed and a study has been made of the self-propagating high-temperature synthesis in a Ti-C-Ni-Mo system under the conditions of action of ultrasonic vibrations. The influence of the amplitude of ultrasonic vibrations on the combustion rate and temperature and on the phase composition and structure of the derived composite material based on titanium carbide with a metal binder has been determined. The heat-transfer coefficient on the surface of a sample for vibrations at ultrasound frequency has been evaluated. Consideration has been given to possible mechanisms of influence of ultrasonic vibrations on the process of self-propagating high-temperature synthesis. It has been shown that the reduction in the synthesis temperature is due to the cooling of the sample because of the forced convection of the surrounding gas, whereas the change in the structure of the synthesized material is related to the change in the conditions of high-temperature heterogeneous interaction in the wave of self-propagating high-temperature synthesis.

  3. Effects of carbide precipitation on the strength and Charpy impact properties of low carbon Mn-Ni-Mo bainitic steels

    NASA Astrophysics Data System (ADS)

    Im, Young-Roc; Jun Oh, Yong; Lee, Byeong-Joo; Hwa Hong, Jun; Lee, Hu-Chul

    2001-08-01

    The effects of carbide precipitation on the strength and Charpy impact properties of tempered bainitic Mn-Ni-Mo steels have been investigated. An attempt has also been made to modify the microstructure of the steels in order to improve the Charpy properties, by controlling the alloy composition being guided by thermodynamic calculations of phase equilibria. Coarse rod type or agglomerated spherical type cementite particles in inter-lath region were considered to be mostly detrimental to Charpy impact properties. By reducing the precipitation of cementite through decreasing carbon content and/or by substituting it into fine M 2C carbides through increasing the molybdenum content, DBTT could be lowered significantly. Further decrease of DBTT could be achieved by substituting part of manganese content by nickel. Yield strength of tested alloys could be maintained at the level of a reference 0.2 wt% carbon alloy in spite of the significant reduction in carbon content, mainly by the increase in the precipitation of fine M 2C type carbides with increased molybdenum content.

  4. Kinetic Parameters of Secondary Carbide Precipitation in High-Cr White Iron Alloyed by Mn-Ni-Mo-V Complex

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Chabak, Yu. G.; Brykov, M. N.

    2013-05-01

    This study presents kinetics of precipitation of secondary carbides in 14.55%Cr-Mn-Ni-Mo-V white cast iron during the destabilization heat treatment. The as-cast iron was heat treated at temperatures in the range of 800-1100 °C with soaking up to 6 h. Investigation was carried out by optical and electron microscopy, dilatometric analysis, Ms temperature measurement, and bulk hardness evaluation. TTT-curve of precipitation process of secondary carbides (M7C3, M23C6, M3C2) has been constructed in this study. It was determined that the precipitation occurs at the maximum rate at 950 °C where the process is started after 10 s and completed within 160 min further. The precipitation leads to significant increase of Ms temperature and bulk hardness; large soaking times at destabilization temperatures cause coarsening of secondary carbides and decrease in particles number, followed by decrease in hardness. The results obtained are discussed in terms of solubility of carbon in the austenite and diffusion activation of Cr atoms. The precipitation was found to consist of two stages with activation energies of 196.5 kJ/g-mole at the first stage and 47.1 kJ/g-mole at the second stage.

  5. Effect of Grain Boundary Character Distribution on the Impact Toughness of 410NiMo Weld Metal

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, C. R.; Chowdhury, Sandip Ghosh; Albert, S. K.; Bhaduri, A. K.

    2016-07-01

    Grain boundary character distributions in 410NiMo weld metal were studied in the as-welded, first-stage, and second-stage postweld heat treatment (PWHT) conditions, and these were correlated with the Charpy-V impact toughness values of the material. The high impact toughness values in the weld metal in the as-welded and first-stage PWHT conditions compared to that in the second-stage condition are attributed to the higher fraction of low-energy Σ boundaries. A higher volume fraction of retained austenite and coarser martensite after second-stage PWHT accompanied by the formation of the ideal cube component in the 2-hour heat-treated specimen led to a reduction in the toughness value. A subsequent increase in the PWHT duration at 873 K (600 °C) enhanced the formation of {111}<112>, which impedes the adverse effect of the cubic component, resulting in an increase in the impact toughness. In addition to this, grain refinement during 4-hour PWHT in the second stage also increased the toughness of the weld metal.

  6. Study of Effect of Quenching Deformation Influenced by 17CrNiMo6 Gear Shaft of Carburization

    NASA Astrophysics Data System (ADS)

    Pang, Zirui; Yu, Shenjun; Xu, Jinwu

    The 17CrNiMo6 steel is mainly used for the gear shaft of large modulus in many fields of heavy industry such as mining, transit, hoist, forging and so on[1]. The size of addendum circle and common normal line is changed a lot beyond the tolerance because of the long time of carburizing process and the out-of-step structural stress and thermal stress during the quenching process. And thus the posterior grinding efficiency and quality are influenced. In the paper comparison and analysis of the deformation affected by solid and hollow gear shafts were done and the methods of simulation and practice were both used. The results are as follows: the deformation of gear shaft was small before and after carburizing while that of gear shaft was large before and after quenching because of different cooling velocity, structure and hardness of each position. And the deformation of hollow was much smaller than that of solid. Therefore, if the hollow gear shaft is used, the waste of material will be decreased, and finishing cost will be reduced, and thus the technology of heat treatment will be optimized.

  7. Solar selective absorber coating for high service temperatures, produced by plasma sputtering

    NASA Astrophysics Data System (ADS)

    Lanxner, Michael; Elgat, Zvi

    1990-08-01

    Spectrally selective absorber coatings, deposited on engineering material substrates such as stainless steel, have been developed for service as efficient solar photothermal energy converters. The selective solar absorber is based on a multilayer of thin films, produced by sputtering. The main solar absorber is a metal/ceramic (cermet) composite, such as, Mo/Al2th or Mo/Si02, with a graded metal concentration. Such a cermet layer, strongly absorbs radiation over most of the range of the solar spectrum but is transparent to longer wavelength radiation. The cermet layer is deposited on a highly reflecting infrared metal layer. Two more layers were added: An AhO diffusion barrier layer which is deposited first on the substrate and an AI2O or a Si02 antireflection layer which is deposited on the top of the cermet film. In order to better understand the spectral reflectivity of the multilayered selective coating, a procedure for the calculation of the optical properties was developed. After the R&D development phase was successfully completed, a full scale production coating machine was constructed. The production machine is a linear in line coater. The selective coating is deposited on stainless steel tubes, translating in the coating machine while rotating about their axes, along their axial direction. Measurements of reflectance, solar absorptivity, a, thermal emissivity, C, and high temperature durability, are all parts of the quality control routine. The results show values of a in the range 0.96 - 0.98. The thermal emissivity at 350CC is in the range 0.16 - 0.18. Thermal durability tests, show no degradation of the coating when subjected to up to 65O in vacuum for one month and when passed through a temperature cycling test which includes 1200 cycles between temperatures of 150CC and 450CCfor a period of two months.

  8. Review on materials & methods to produce controlled release coated urea fertilizer.

    PubMed

    Azeem, Babar; KuShaari, KuZilati; Man, Zakaria B; Basit, Abdul; Thanh, Trinh H

    2014-05-10

    With the exponential growth of the global population, the agricultural sector is bound to use ever larger quantities of fertilizers to augment the food supply, which consequently increases food production costs. Urea, when applied to crops is vulnerable to losses from volatilization and leaching. Current methods also reduce nitrogen use efficiency (NUE) by plants which limits crop yields and, moreover, contributes towards environmental pollution in terms of hazardous gaseous emissions and water eutrophication. An approach that offsets this pollution while also enhancing NUE is the use of controlled release urea (CRU) for which several methods and materials have been reported. The physical intromission of urea granules in an appropriate coating material is one such technique that produces controlled release coated urea (CRCU). The development of CRCU is a green technology that not only reduces nitrogen loss caused by volatilization and leaching, but also alters the kinetics of nitrogen release, which, in turn, provides nutrients to plants at a pace that is more compatible with their metabolic needs. This review covers the research quantum regarding the physical coating of original urea granules. Special emphasis is placed on the latest coating methods as well as release experiments and mechanisms with an integrated critical analyses followed by suggestions for future research. PMID:24593892

  9. Novel approach to produce polymerized hydrocarbon coatings using dielectric barrier controlled atmospheric pressure glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Mishra, K. K.; Khardekar, R. K.; Singh, Rashmi; Pant, H. C.

    2002-09-01

    Conventionally, low-pressure (<1 Torr) electrical discharges are used for material processing and thin-film deposition. These schemes suffer mainly due to the high cost of equipment and the complexity of operations. The atmospheric pressure glow discharge plasma is developed using a threaded styled electrode in different configurations, and these reactors are used to produce plasma polymerized coatings, required on plane substrates as self-supporting films to obtain membranes for blocking holes in cavities, and on microballoon targets, which are used as fuel containers for inertial confinement fusion, to avoid DT gas permeation. Helium gas is used as the supporting gas for formation and stabilization of atmospheric pressure glow discharge plasma reactors. Ethylene and acetylene gases are used as monomers to produce plasma polymerized hydrocarbon films. These films are characterized using scanning electron microscopy. Plasma polymerized coatings of thickness 100 nm-10 μm with a smooth surface finish (rms<100 nm) are deposited successfully. The surface finish is further improved using a postdischarge configuration. Preliminary results are very encouraging but further progress is to be made in this area. We are also planning to extend this technique for C:H coating of microballoons, which are used as fuel containers in inertial confinement fusion.

  10. Analysis of microstructure and properties of multilayer coatings produced by laser cladding

    NASA Astrophysics Data System (ADS)

    Bykovskiy, D. P.; Petrovskiy, V. N.; Dzhumaev, P. S.; Polskiy, V. I.; Yermachenko, V. M.

    2016-02-01

    Purpose of the work is to prepare multilayer coatings corresponding to specified requirements to recovery and improvement of surface details. Requirements to coatings: providing durable and reliable adhesion base and filler materials, absence of pores, cracks, delaminations, reducing mixing metal base and cladding. We used iron-based PR-10R6M5 and tungsten carbide Hoganas 44712 powders. Experimental determination of the optimal technological mode of application of the single track, the coefficient of overlapping tracks to create a full layer, the angle of the second cladding layer, relative to the first one and, finally, the determination of the optimal additive tungsten carbide to achieve increased durability were produced to fulfill these requirements.

  11. Preparation and properties of the Ni-Al/Fe-Al intermetallics composite coating produced by plasma cladding

    NASA Astrophysics Data System (ADS)

    Zhang, Li-Min; Liu, Bang-Wu; Sun, Dong-Bai

    2011-12-01

    A novel approach to produce an intermetallic composite coating was put forward. The microstructure, microhardness, and dry-sliding wear behavior of the composite coating were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrum (EDS) analysis, microhardness test, and ball-on-disc wear experiment. XRD results indicate that some new phases FeAl, Fe0.23Ni0.77Al, and Ni3Al exit in the composite coating with the Al2O3 addition. SEM results show that the coating is bonded with carbon steel metallurgically and exhibits typical rapid directional solidification structures. The Cr7C3 carbide and intermetallic compounds co-reinforced composite coating has a high average hardness and exhibits an excellent wear resistance under dry-sliding wear test compared with the Cr7C3 carbide-reinforced composite coating. The formation mechanism of the intermetallic compounds was also investigated.

  12. Investigation of Cu-Fe-based coating produced on copper alloy substrate by laser induction hybrid rapid cladding

    NASA Astrophysics Data System (ADS)

    Zhou, Shengfeng; Zhang, Tianyou; Xiong, Zheng; Dai, Xiaoqin; Wu, Chao; Shao, Zhishong

    2014-07-01

    The Cu-Fe-based coating was produced on copper alloy substrate by laser induction hybrid rapid cladding (LIHRC). The results showed that the maximum laser scanning speed and the maximum powder feeding rate can be increased to 3200 mm/min and 110 g/min, respectively. The coating was mainly composed of α-Fe and ɛ-Cu phases. At the bottom of coating, Cu-rich matrix took on planar growth and columnar dendritic morphology. In the center of coating, Fe-rich spherical particles containing a supersaturated Cu were embedded in Cu-rich matrix and many fine Cu-rich grains were precipitated inside the Fe-rich spherical particles. However, at the top of coating, the smaller Fe-rich spherical particles were embedded inside the larger Cu-rich spherical particles which were embedded in the dendritic Fe-rich matrix. The microhardness of coating was much three times higher than that of substrate.

  13. A review on calcium phosphate coatings produced using a sputtering process--an alternative to plasma spraying.

    PubMed

    Yang, Yunzhi; Kim, Kyo-Han; Ong, Joo L

    2005-01-01

    New promising techniques for depositing hydroxyapatite (HA) and calcium phosphate (CaP) coatings on medical devices are continuously being investigated. Given the vast number of experimental deposition process currently available, this review will focus only on CaP and/or HA coatings produced using the sputtering process. This review will discuss the characterization of sputtered CaP coatings before and after post-deposition treatments and tissue responses to some of the characterized coating surfaces. From the studies observed in the literature, current research on sputtered CaP coatings has shown some promises that may eliminate some of the problems associated with the plasma-spraying process. It has been generally accepted that sputtered HA and CaP coatings improve bone strength and initial osseointegration rate. However, optimal coating properties required to achieve maximal bone response are yet to be reported. As such, the use of well-characterized sputtered CaP and/or HA surfaces in the evaluation of biological responses should be well documented to avoid controversial results. In addition, future investigations of the sputtering process should include clinical trials, to continue the understanding of bone responses to coated-implant surfaces of different properties, and the possibility of coupling sputtered HA and CaP coatings with growth factors. PMID:15262475

  14. Rational construction of three dimensional hybrid Co3O4@NiMoO4 nanosheets array for energy storage application

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Jinqing; Gong, Peiwei; Sun, Jinfeng; Niu, Lengyuan; Yang, Zhigang; Wang, Zhaofeng; Yang, Shengrong

    2014-12-01

    Electrodes with rationally designed hybrid nanostructures can offer many opportunities for the enhanced performance in electrochemical energy storage. In this work, the uniform 2D Co3O4-based building blocks have been prepared through a facile chemical etching assistant approach and a following treatment of thermal annealing. The obtained nanosheets array has been directly employed as 2D backbone for the subsequent construction of hybrid nanostructure of Co3O4@NiMoO4 by a simple hydrothermal synthesis. As a binder-free electrode, the constructed 3D hybrid nanostructures exhibit a high specific capacitance of 1526 F g-1 at a current density of 3 mA cm-2 and a capacitance retention of 72% with the increase of current density from 3 mA cm-2 to 30 mA cm-2. Moreover, an asymmetric supercapacitor based on this hybrid Co3O4@NiMoO4 and activated carbon can deliver a maximum energy density of 37.8 Wh kg-1 at a power density of 482 W kg-1. The outstanding electrochemical behaviors presented here suggest that this hybrid nanostructured material has potential applications in energy storage.

  15. Synthesis, Characterization, and Catalytic Activity of Sulfided Silico-Alumino-Titanate (Si-Al-Ti) Mixed Oxides Xerogels Supported Ni-Mo Catalyst

    SciTech Connect

    Al-Adwani, H.A.; Anthony, R.G.; Gardner, T.J.; Thammachote, N.

    1999-02-24

    Layered semicrystalline silico-alumino-titanate (Si-Al-Ti) mixed oxides were synthesized by a modified sol-gel method with hydrothermal synthesis temperatures less than 200 C and autogenic pressure. The solid products are semicrystalline materials with a surface area of 136-367 m{sup 2}/g and a monomodal pore size distribution with an average pore diameter of 3.6-4.7 nrn. The catalytic activity for pyrene hydrogenation in a batch reactor at 300 C and 500 psig was determined for sulfided Ni-Mo supported on the Si-Al-Ti mixed oxide. The activity was a function of the support composition the heat treatment before and after loading the active metals, the addition of organic templates, and different methods of metal loading. The most active sulfided Ni-Mo/Si-Al-Ti catalyst has an activity in the same range as the commercial catalyst, Shell 324, but the metal loading is 37% less than the commercial catalyst.

  16. A Comparative Study on Improved Arrhenius-Type and Artificial Neural Network Models to Predict High-Temperature Flow Behaviors in 20MnNiMo Alloy

    PubMed Central

    Yu, Chun-tang; Liu, Ying-ying; Xia, Yu-feng

    2014-01-01

    The stress-strain data of 20MnNiMo alloy were collected from a series of hot compressions on Gleeble-1500 thermal-mechanical simulator in the temperature range of 1173∼1473 K and strain rate range of 0.01∼10 s−1. Based on the experimental data, the improved Arrhenius-type constitutive model and the artificial neural network (ANN) model were established to predict the high temperature flow stress of as-cast 20MnNiMo alloy. The accuracy and reliability of the improved Arrhenius-type model and the trained ANN model were further evaluated in terms of the correlation coefficient (R), the average absolute relative error (AARE), and the relative error (η). For the former, R and AARE were found to be 0.9954 and 5.26%, respectively, while, for the latter, 0.9997 and 1.02%, respectively. The relative errors (η) of the improved Arrhenius-type model and the ANN model were, respectively, in the range of −39.99%∼35.05% and −3.77%∼16.74%. As for the former, only 16.3% of the test data set possesses η-values within ±1%, while, as for the latter, more than 79% possesses. The results indicate that the ANN model presents a higher predictable ability than the improved Arrhenius-type constitutive model. PMID:24688358

  17. Characterization of hard coatings produced by laser cladding using laser-induced breakdown spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Varela, J. A.; Amado, J. M.; Tobar, M. J.; Mateo, M. P.; Yañez, A.; Nicolas, G.

    2015-05-01

    Protective coatings with a high abrasive wear resistance can be obtained from powders by laser cladding technique, in order to extend the service life of some industrial components. In this work, laser clad layers of self-fluxing NiCrBSi alloy powder mixed with WC powder have been produced on stainless steel substrates of austenitic type (AISI 304) in a first step and then chemically characterized by laser-induced breakdown spectroscopy (LIBS) technique. With the suitable laser processing parameters (mainly output power, beam scan speed and flow rate) and powders mixture proportions between WC ceramics and NiCrBSi alloys, dense pore free layers have been obtained on single tracks and on large areas with overlapped tracks. The results achieved by LIBS technique and applied for the first time to the analysis of laser clads provided the chemical composition of the tungsten carbides in metal alloy matrix. Different measurement modes (multiple point analyses, depth profiles and chemical maps) have been employed, demonstrating the usefulness of LIBS technique for the characterization of laser clads based on hardfacing alloys. The behavior of hardness can be explained by LIBS maps which evidenced the partial dilution of some WC spheres in the coating.

  18. Uniform trapped fields produced by stacks of HTS coated conductor tape

    NASA Astrophysics Data System (ADS)

    Mitchell-Williams, T. B.; Baskys, A.; Hopkins, S. C.; Kalitka, V.; Molodyk, A.; Glowacki, B. A.; Patel, A.

    2016-08-01

    The trapped magnetic field profile of stacks of GdBa2Cu3O7‑x superconducting tape was investigated. Angled stacks of superconducting tape were magnetized and found to produce very uniform trapped field profiles. The angled stacks were made of 12 mm × 24 mm solder coated tape pieces and were bonded together following a brief consolidation heat treatment. Layering multiple stacks together and adding a ferromagnetic plate beneath the samples were both found to enhance the magnitude and uniformity of the trapped field profiles. Stationary and time-dependent critical state finite element models were also developed to complement the experimental results and investigate the magnetization process. The size and shapes possible with the angled stacks make them attractive for applications requiring uniform magnetic fields over larger areas than can be achieved with existing bulk rings or tape annuli.

  19. Transparent conductive reduced graphene oxide thin films produced by spray coating

    NASA Astrophysics Data System (ADS)

    Shi, HongFei; Wang, Can; Sun, ZhiPei; Zhou, YueLiang; Jin, KuiJuan; Yang, GuoZhen

    2015-01-01

    Reduced graphene oxide thin films were fabricated on quartz by spray coating method using a stable dispersion of reduced graphene oxide in N,N-Dimethylformamide. The dispersion was produced by chemical reduction of graphene oxide, and the film thickness was controlled with the amount of spray volume. AFM measurements revealed that the thin films have near-atomically flat surface. The chemical and structural parameters of the samples were analyzed by Raman and XPS studies. It was found that the thin films show electrical conductivity with good optical transparency in the visible to near infrared region. The sheet resistance of the films can be significantly reduced by annealing in vacuum and reach 58 kΩ with a light transmittance of 68.69% at 550 nm. The conductive transparent properties of the reduced graphene oxide thin films would be useful to develop flexible electronics.

  20. Interfacial reaction in cast WC particulate reinforced titanium metal matrix composites coating produced by laser processing

    NASA Astrophysics Data System (ADS)

    Liu, Dejian; Hu, Peipei; Min, Guoqing

    2015-06-01

    Laser injection of ceramic particle was conducted to produce particulate reinforced metal matrix composites (MMCs) coating on Ti-6Al-4V alloy. Cast WC particle (WCp) was used as injection reinforcement to avoid excessive release of carbon atoms into the melt pool. The interfaces and boundaries between WC and Ti matrix were investigated by electron microscopy study. Compared with single crystal WCp, cast WCp was an appropriate solution to control the reaction products (TiC) in the matrix and the total amount of reaction products was significantly reduced. Irregular-shape reaction layers were formed around cast WCp. The reaction layers consist of a W2C layer and a mixed layer of W and TiC. Such reaction layers are effective in load transfer under an external load.

  1. Essais de fissuration a froid appliques aux metaux d'apport inoxydables martensitiques 410NiMo

    NASA Astrophysics Data System (ADS)

    Paquin, Mathieu

    Martensitic stainless steels have represented since few years a material of choice for the manufacture of mechanical parts such as hydroelectric turbines. The development of the alloy has led to grades with very low amount of carbon giving them a good weldability. The assembly of these parts, made by autogenous welding, requires the use of materials with low transformation temperature (LTT) such as 410NiMo. These filler metals are also used for assembly by heterogeneous welding of steel parts susceptible to cold cracking. The transformation of austenite to martensite occurring at low temperature, residual stresses from single-pass welding operation are different from those normally found and reduce the risk of cracking. By cons, industrial experience shows that in situation of multipass welding, the risks of cold cracking are still present. This project aimed to determine a cracking test for assessing susceptibility to cold cracking of 13%Cr-4%Ni stainless steel according to the welding procedure, in autogenous welding situation. Literature contains much information about cold cracking phenomena. That phenomena occurs under three conditions. These conditions are: a high diffusible hydrogen level, significant residual stresses and a brittle microstructure. It seems that despite the low mass ratio of carbon (0.022%C) and the low diffusible hydrogen level (< 3 ml/100g) risks of cold cracking remain present during multipass deposits. Use of cracking tests was necessary to assess the sensitivity to cracking of the martensitic stainless steel. Before the work preliminary tests have been made or tested Tekken GBOP and testing to determine that to obtain the most representative of the industrial reality results. Then they have been modified to reverse the compression stress in the seam test to tension by the addition of a second weld. This inversion occurs in multipass welding and has been targeted as an important factor in the occurrence of cold cracking phenomenon. The

  2. Relative Importance of Various Sources of Defect-Producing Hydrogen Introduced into Steel During Application of Vitreous Coatings

    NASA Technical Reports Server (NTRS)

    Moore, Dwight G; Mason, Mary A; Harrison, William N

    1953-01-01

    When porcelain enamels or vitreous-type ceramic coatings are applied to ferrous metals, there is believed to be an evolution of hydrogen gas both during and after the firing operation. At elevated temperatures rapid evolution may result in blistering while if hydrogen becomes trapped in the steel during the rapid cooling following the firing operation gas pressures may be generated at the coating-metal interface and flakes of the coating literally blown off the metal. To determine experimentally the relative importance of the principal sources of the hydrogen causing the defects, a procedure was devised in which heavy hydrogen (deuterium) was substituted in turn for regular hydrogen in each of five possible hydrogen-producing operations in the coating process. The findings of the study were as follows: (1) the principal source of the defect-producing hydrogen was the dissolved water present in the enamel frit that was incorporated into the coating. (2) the acid pickling, the milling water, the chemically combined water in the clay, and the quenching water were all minor sources of defect-producing hydrogen under the test conditions used. Confirming experiments showed that fishscaling could be eliminated by using a water-free coating.

  3. Coatings.

    ERIC Educational Resources Information Center

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  4. Development and Characterization of Nanostructured Cermet Coatings Produced by Co-electrodeposition

    NASA Astrophysics Data System (ADS)

    Farrokhzad, Mohammad Ali

    Nanostructured cermet (ceramic-metallic) coatings are a group of materials that combine properties possessed by ceramics, such as oxidation resistance and high hardness, and the properties of metals such as strength and ductility. These coatings consist of nano-sized metal-oxide particles (i.e. Al2 O3) dispersed into a corrosion resistant metal matrix such as nickel. Cermet coatings have been used in many industrial applications such as cutting tools and jet engines where high temperature and erosion resistance performance are required. However, despite the promising properties, the lack of experimental data and theories on high temperature oxidation and mechanical properties of cermet coatings have restricted their full potential to be used in technologies for oil sand production such as In-Situ Combustion (ISC). In this study, the structure of cermet coatings was investigated to identify the characteristics that give rise to oxidation performance and wear resistance properties of cermet coatings. The experimental oxidation results on the single-component oxide cermet coatings showed that when Al2O3 and TiO2 were combined in the electrolyte, the new combination can improve oxidation performance (less mass gain) as compared to a pure Ni coating. Based on the oxidation and micro-hardness results, a new group of nanostructured cermet coatings (double-component oxides) was developed and investigated using long term oxidation tests, thermo-gravimetric analysis in mixed gas, thermal cycling, micro-hardness and abrasive wear tests. The mechanical analysis of the newly developed coatings showed improved resistance against wear and thermal cycling compared to single-component oxide cermet and pure Ni coatings. Furthermore, some new theoretical analysis were also put forward that aims at a new explanation of high temperature oxidation for cermet coatings.

  5. Laser Surface Treatment of Silica Sol-gel Coating to Produce Nanocrystalline Structure

    NASA Astrophysics Data System (ADS)

    Razavi, R. Shoja; Gordani, Gh.; Hojjati, A.

    2011-12-01

    In this study two methods of laser and furnace sintering are used to prepare nanocrystalline structure of silica sol-gel coating on glass substrate. In laser sintering method, an Nd:YAG pulsed laser with a laser pulse energy of 1 J used to sinter the silica sol-gel coating. To evaluate the surface morphology and microstructural analysis, XRD and SEM were used. The optical properties of coatings were examined by UV/VIS spectroscopy. The results indicated that the laser sintered coating was denser than the furnace sintered coating. No porosity and cracks were detected on the surface of laser sintered coating. Using Scherer mathematical equation, it was shown that the grain size of laser sintered coating is well within nano size range. The uniformity of nanocrystalline structure clearly improved the reflection of incident beam from the laser sintered coating. This was mainly due to increase in grain boundary regions which in turn can cause some the wavelength of the incident beam to be transmitted from silica coatings.

  6. Silica coating of polymer nanowires produced via nanoimprint lithography from femtosecond laser machined templates

    NASA Astrophysics Data System (ADS)

    Rajput, Deepak; Costa, Lino; Terekhov, Alexander; Lansford, Kathleen; Hofmeister, William

    2012-03-01

    In this paper we report on the fabrication of regular arrays of silica nanoneedles by deposition of a thin layer of silica on patterned arrays of polymer nanowires (or polymer nanohair). An array of high-aspect-ratio nanoscale diameter holes of depths greater than 10 µm was produced at the surface of a fused silica wafer by an amplified femtosecond laser system operated in single-pulse mode. Cellulose acetate (CA) film was imprinted into the nanoholes and peeled off to form a patterned array of standing CA nanowires, a negative replica of the laser machined nanoholes. The cellulose acetate replica was then coated with silica in a chemical vapor deposition process using silicon tetrachloride vapor at 65 °C. Field emission scanning electron microscopy, focused ion beam sectioning, energy dispersive x-ray analysis and Fourier-transform infrared spectroscopy were used to characterize the silica nanoneedles. Precisely patterned, functionalized arrays of standing silica nanoneedles are useful for a number of applications.

  7. Method of producing carbon coated nano- and micron-scale particles

    DOEpatents

    Perry, W. Lee; Weigle, John C; Phillips, Jonathan

    2013-12-17

    A method of making carbon-coated nano- or micron-scale particles comprising entraining particles in an aerosol gas, providing a carbon-containing gas, providing a plasma gas, mixing the aerosol gas, the carbon-containing gas, and the plasma gas proximate a torch, bombarding the mixed gases with microwaves, and collecting resulting carbon-coated nano- or micron-scale particles.

  8. Quality optimization of thermally sprayed coatings produced by the JP-5000 (HVOF) gun using mathematical modeling

    NASA Technical Reports Server (NTRS)

    Tawfik, Hazem

    1994-01-01

    Currently, thermal barrier coatings (TBC) of gas-turbine blades and similar applications have centered around the use of zirconia as a protective coating for high thermal applications. The advantages of zirconia include low thermal conductivity and good thermal shock resistance. Thermally sprayed tungsten carbide hardface coatings are used for a wide range of applications spanning both the aerospace and other industrial markets. Major aircraft engine manufacturers and repair facilities use hardface coatings for original engine manufacture (OEM), as well as in the overhaul of critical engine components. The principle function of these coatings is to resist severe wear environments for such wear mechanisms as abrasion, adhesion, fretting, and erosion. The (JP-5000) thermal spray gun is the most advanced in the High Velocity Oxygen Fuel (HVOF) systems. Recently, it has received considerable attention because of its relative low cost and its production of quality coatings that challenge the very successful but yet very expensive Vacuum Plasma Spraying (VPS) system. The quality of thermal spray coatings is enhanced as porosity, oxidation, residual stress, and surface roughness are reduced or minimized. Higher densification, interfacial bonding strength, hardness and wear resistance of coating are desirable features for quality improvement.

  9. Hydrophilicity Characteristics of Thermal Sprayed Coating Produced Using Calcination Powders Recovered from Waste Dry Batteries

    NASA Astrophysics Data System (ADS)

    Futamata, Masami; Nakanishi, Kimio; Itoh, Hidenobu; Ohnishi, Nobuhiro

    A ceramic coating with super hydrophilicity characteristics (the contact angle θ=0°) was prepared by the thermal spraying technique using calcinations powders recovered from the waste dry batteries (IZC). Evaporation behavior and evaporation time of a water droplet for the IZC coatings on a mild steel substrate were examined. It was found that the water droplet did not show the Leidenfrost phenomenon on the IZC coatings surface, and the evaporation time remarkably shortened compared with those on the grinding or blasted surfaces of the mild steel substrate. On the other hand, the cooling speed in soaking the heated test piece in boiling water was examined. The cooling speed of the IZC coated substrate remarkably increases in the initial stage, since it changes from film boiling to nucleate boiling. These facts suggest that the IZC coatings are effective for improvement in the evaporation and cooling speed.

  10. Friction and wear of self-lubricating TiN-MoS{sub 2} coatings produced by chemical vapor deposition

    SciTech Connect

    Blau, P.J.; Yust, C.S.; Bae, Y.W.; Besmann, T.M.; Lee, W.Y.

    1994-12-31

    The purpose of the work reported here was to develop special chemical vapor deposition (CVD) methods to produce self-lubricating ceramic coatings in which the lubricating and structural phases were co-deposited on Ti-6Al-4V alloy substrates. These novel composite coatings are based on a system containing titanium nitride and molybdenum disulfide. The method for producing these coatings and their sliding behavior against silicon nitride counterfaces, in the temperature range 20--700 C in air, are described. The initial sliding friction coefficients for the composite coatings at room temperature were 0.07--0.30, but longer-term transitions to higher friction occurred, and specimen-to-specimen test variations suggested that further developments of the deposition process are required to assure repeatable friction and wear results. Friction and wear tests at 300 and 700 C produced encouraging results, but tests run at an intermediate temperate of 400 C exhibited friction coefficients of 1.0 or more. Oxidation and a change in the nature of the debris layers formed during sliding are believed to be responsible for this behavior.

  11. Physical properties and cellular responses to calcium phosphate coating produced by laser rapid forming on titanium.

    PubMed

    Gao, Y; Hu, J; Guan, T H; Wu, J; Zhang, C B; Gao, B

    2014-01-01

    In order to improve the surface bioactivity of titanium implants, CaCO₃ and CaHPO₄·2H₂O powder was used to fabricate a calcium phosphate (CaP) coating using laser rapid forming (LRF) technology. The surface characterization showed that a porous and beta-tricalcium phosphate (beta-TCP) layer with small amount of alpha-TCP was formed on commercial pure titanium (Ti). The bonding strength between the coating and the Ti substrate was above 40.17 MPa measured by the means of pull-off test. The elastic modulus and the average microhardness of the coating were 117.61 GPa and 431.2 HV₀.₁, respectively. Through the static immersion test, it was proved that the coating could not only prevent the corrosion of Ti but also promote the redeposition of beta-TCP in artificial saliva. Osteoblasts possessed good attachment performance and strong proliferation ability on the surface of LRF coating (p < 0.05) in our cell experiments. This result demonstrated that the LRF coating could improve the surface cytocompatibility of titanium. Using scanning electron microscopy observation, it was found that osteoblasts grown on LRF coating formed multiple layers in pours. The result of reverse transcription PCR analysis demonstrated that the expressions of ITGβ1 and BMP-2 were significantly (p < 0.05) upregulated on the LRF coating in a time-dependent manner, compared with uncoated Ti. These findings suggested that the LRF technology might be a promising potential treatment for fabricating CaP coatings on titanium implants. PMID:23139072

  12. Method of producing an oxide dispersion strengthened coating and micro-channels

    SciTech Connect

    Kang, Bruce S; Chyu, Minking K; Alvin, Mary Anne; Gleeson, Brian M

    2013-12-17

    The disclosure provides a method for the production of composite particles utilizing a mechano chemical bonding process following by high energy ball milling on a powder mixture comprised of coating particles, first host particles, and second host particles. The composite particles formed have a grain size of less than one micron with grains generally characterized by a uniformly dispersed coating material and a mix of first material and second material intermetallics. The method disclosed is particularly useful for the fabrication of oxide dispersion strengthened coatings, for example using a powder mixture comprised of Y.sub.2O.sub.3, Cr, Ni, and Al. This particular powder mixture may be subjected to the MCB process for a period generally less than one hour following by high energy ball milling for a period as short as 2 hours. After application by cold spraying, the composite particles may be heat treated to generate an oxide-dispersion strengthened coating.

  13. Hydrophilicity Characteristic of Thermal Sprayed Coating Produced Using Calcination Powders Recovered from Waste Dry Batteries

    NASA Astrophysics Data System (ADS)

    Futamata, Masami; Hoshino, Yasutaka; Nakanishi, Kimio; Itoh, Hidenobu; Ohnishi, Nobuhiro

    The powders called IZC(Itomuka Zinc Calcine) that are obtained from waste dry battery by roast processing mainly consist of oxides of zinc and manganese. Part of IZC is used as a raw material of the ferrite but the majority is unused. Authors considered its application to the thermal spray material. Thermal sprayed coating made by IZC powders possesses excellent light absorption, heat absorption, electromagnetic wave absorption and hydrophilicity characteristics. Hydrophilicity characteristic of IZC coating is especially remarkable, and IZC coating is expected to be applied for various heat exchangers such as evaporators. In this study, control test was done on two kinds of thermal sprayed coatings made by IZC powders decreased in zinc oxide and manganese dioxide powders without containing zinc oxide, and hydrophilicity characteristic of the IZC coatings were experimentally considered from the viewpoint of structure of coating and chemical composition. As a result of this study, the following useful findings were acquired to the clarification of the hydrophilicity appearance mechanism. Contact angle as an evaluation indicator of hydrophilicity characteristic is effected by manganese oxide stronger than zinc oxide, while not strongly effected by the roughness of the structure. The diameter of waterdrop spread is not necessarily the same even if the contact angle is the same as θ=0°.

  14. Producing ultra-thin silica coatings on iron-oxide nanoparticles to improve their surface reactivity

    NASA Astrophysics Data System (ADS)

    Kralj, Slavko; Makovec, Darko; Čampelj, Stanislav; Drofenik, Miha

    2010-07-01

    The reactivity of the relatively inert surfaces of iron-oxide magnetic nanoparticles can be significantly improved by coating the surfaces with silica. Unfortunately, however, this nonmagnetic silica layer tends to dilute the magnetic properties of the nanoparticles. Therefore, the silica layer should be as continuous, homogeneous, and as thin as possible. In this investigation we coated superparamagnetic maghemite nanoparticles by hydrolysis and the polycondensation of tetraethyl orthosilicate (TEOS), with the ethanol solution of TEOS being added to a stable suspension of citric acid-coated nanoparticles. The influences of the various parameters of the procedure on the quality of the coatings were systematically evaluated. The quality of the silica layer was characterized using electron microscopy and by performing leaching of the nanoparticles in HCl, while the surface reactivity was tested by grafting (3-aminopropyl) triethoxysilane (APS) onto the nanoparticles. We observed that the surface concentration of the grafted APS strongly increased when the nanoparticles were coated with a silica layer. The choice of experimental conditions for the coating procedure that favors the heterogeneous nucleation of silica on the surfaces of the nanoparticles enabled the preparation of very thin silica layers, less than 2 nm thick. By decreasing the amount of added TEOS to correspond to a monolayer of -Si-OH at the nanoparticles' surfaces, their surface reactivity could be very much improved, and with a reduction in their magnetization of only ˜10%.

  15. Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processes

    NASA Astrophysics Data System (ADS)

    Milanti, A.; Matikainen, V.; Bolelli, G.; Koivuluoto, H.; Lusvarghi, L.; Vuoristo, P.

    2016-06-01

    The microstructure and micromechanical behavior of thermally sprayed Fe-based coatings manufactured with high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes were investigated. Fe-Cr-Ni-Si-B-C and Fe-Cr-Ni-Mo-Si-B-C powders were used as the feedstock materials. The coatings showed a highly dense microstructure with near-zero oxidation. The microstructure of the feedstock powders was better retained when sprayed with HVAF process. Differential scanning calorimetry revealed two small exothermic peaks at about 600 °C for the HVOF-sprayed coatings, without any increase in weight in thermogravimetric analysis. It suggested the re-precipitation of carbides that were dissolved during spraying due to the higher particle temperature reported by spray diagnostics system during the HVOF process (≈1800 °C) compared to the HVAF one (≈1400 °C). Micro- and nano-indentations helped to show the difference in inter-lamellar cohesive strength and, in turn, in the particle deposition mechanism. Coatings sprayed with Fe-Cr-Ni-Mo-Si-B-C composition possessed higher sliding wear resistance than that of Fe-Cr-Ni-Si-B-C due to higher nano-hardness. More specifically, HVOF-sprayed Fe-Cr-Ni-Mo-Si-B-C coating showed the largest intra-lamellar hardness, the largest elasticity, and high quality of particle interfaces which resulted in lower sliding wear rate.

  16. Microstructure and Sliding Wear Behavior of Fe-Based Coatings Manufactured with HVOF and HVAF Thermal Spray Processes

    NASA Astrophysics Data System (ADS)

    Milanti, A.; Matikainen, V.; Bolelli, G.; Koivuluoto, H.; Lusvarghi, L.; Vuoristo, P.

    2016-04-01

    The microstructure and micromechanical behavior of thermally sprayed Fe-based coatings manufactured with high-velocity oxygen fuel (HVOF) and high-velocity air fuel (HVAF) processes were investigated. Fe-Cr-Ni-Si-B-C and Fe-Cr-Ni-Mo-Si-B-C powders were used as the feedstock materials. The coatings showed a highly dense microstructure with near-zero oxidation. The microstructure of the feedstock powders was better retained when sprayed with HVAF process. Differential scanning calorimetry revealed two small exothermic peaks at about 600 °C for the HVOF-sprayed coatings, without any increase in weight in thermogravimetric analysis. It suggested the re-precipitation of carbides that were dissolved during spraying due to the higher particle temperature reported by spray diagnostics system during the HVOF process (≈1800 °C) compared to the HVAF one (≈1400 °C). Micro- and nano-indentations helped to show the difference in inter-lamellar cohesive strength and, in turn, in the particle deposition mechanism. Coatings sprayed with Fe-Cr-Ni-Mo-Si-B-C composition possessed higher sliding wear resistance than that of Fe-Cr-Ni-Si-B-C due to higher nano-hardness. More specifically, HVOF-sprayed Fe-Cr-Ni-Mo-Si-B-C coating showed the largest intra-lamellar hardness, the largest elasticity, and high quality of particle interfaces which resulted in lower sliding wear rate.

  17. Characterization of zirconia- and niobia-silica mixture coatings produced by ion-beam sputtering

    SciTech Connect

    Melninkaitis, Andrius; Tolenis, Tomas; Mazule, Lina; Mirauskas, Julius; Sirutkaitis, Valdas; Mangote, Benoit; Fu Xinghai; Zerrad, Myriam; Gallais, Laurent; Commandre, Mireille; Kicas, Simonas; Drazdys, Ramutis

    2011-03-20

    ZrO{sub 2}-SiO{sub 2} and Nb{sub 2}O{sub 5}-SiO{sub 2} mixture coatings as well as those of pure zirconia (ZrO{sub 2}), niobia (Nb{sub 2}O{sub 5}), and silica (SiO{sub 2}) deposited by ion-beam sputtering were investigated. Refractive-index dispersions, bandgaps, and volumetric fractions of materials in mixed coatings were analyzed from spectrophotometric data. Optical scattering, surface roughness, nanostructure, and optical resistance were also studied. Zirconia-silica mixtures experience the transition from crystalline to amorphous phase by increasing the content of SiO{sub 2}. This also results in reduced surface roughness. All niobia and silica coatings and their mixtures were amorphous. The obtained laser-induced damage thresholds in the subpicosecond range also correlates with respect to the silica content in both zirconia- and niobia-silica mixtures.

  18. Structure and Properties of Ti-O-N Coatings Produced by Reactive Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Konischev, M. E.; Kuzmin, O. S.; Pustovalova, A. A.; Morozova, N. S.; Evdokimov, K. E.; Surmenev, R. A.; Pichugin, V. F.; Epple, M.

    2014-02-01

    Results of an experimental study of the optical characteristics of gas discharges are presented. The study was aimed at optimizing the operating modes of a mid-frequency magnetron sputtering system to efficiently deposit Ti-O-N coatings. The conditions for maintaining the intensity of the chosen spectroscopic lines that ensure synthesis of titanium oxide and titanium oxynitride coatings have been revealed. The morphology, structure, contact angle, and free surface energy of titanium oxide and titanium oxynitride coatings on type 12Kh18N10T stainless steel substrates were examined by using scanning and transmission electron microscopy and infrared spectroscopy, and by measuring the wetting angle. The results of examination of the structure and properties of the synthesized films and their physicomechanical and optical characteristics are given.

  19. Microstructure characteristics of ZrO2 coating produced by atmospheric pressure chemical vapor deposition.

    PubMed

    Sun, Wei; Xiong, Xiang; Li, Xiaobin

    2011-09-01

    To settle the problem of low growth rate when prepare ZrO2 thermal barrier coating by Metalorganic CVD (MOCVD), a simple method was employed-atmospheric pressure CVD (APCVD). The paper firstly thermodynamic calculated the effect of O/Zr ratio and temperature on phase formation at various H/C ratios for ZrCl4-CO2-H2-Ar system. With temperature increment, the solid phase changes from C+ monoclinic ZrO2 to Monoclinic ZrO2 then to tetragonal ZrO2. With the increase of H/C ratio, the phase zone of C+ monoclinic ZrO2 expands. XRD and Raman spectrum were employed to measure phase structure of ZrO2 coating at different temperature. At 1300 degrees C, the coating contains a small amount tetragonal ZrO2 phase besides monoclinic phase; at 1100 degrees C, the coating is composed of monoclinic ZrO2 phase and a little C. The surface SEM images show the small grains evolve to polycrystals which have clear crystal form when raising temperature. The cross-section images show that dense ZrO2 column crystals arrange normal to the substrate. PMID:22097578

  20. Antimicrobial Activities and Water Vapor Barrier of Starch-Lipid Based Edible Coatings on Fresh Produce

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The uses of edible antimicrobial films or coatings have been proven to be a novel way of suppressing pathogen contaminations of fresh foods where physical barriers alone aren’t enough. In the present study, we embedded essential oils into a proprietary starch-lipids composite, called Fantesk, to in...

  1. Enteric coated spheres produced by extrusion/spheronization provide effective gastric protection and efficient release of live therapeutic bacteria.

    PubMed

    de Barros, João M S; Lechner, Tabea; Charalampopoulos, Dimitrios; Khutoryanskiy, Vitaliy V; Edwards, Alexander D

    2015-09-30

    We present a novel but simple enteric coated sphere formulation containing probiotic bacteria (Lactobacillus casei). Oral delivery of live bacterial cells (LBC) requires live cells to survive firstly manufacturing processes and secondly GI microbicidal defenses including gastric acid. We incorporated live L. casei directly in the granulation liquid, followed by granulation, extrusion, spheronization, drying and spray coating to produce dried live probiotic spheres. A blend of MCC, calcium-crosslinked alginate, and lactose was developed that gave improved live cell survival during manufacturing, and gave excellent protection from gastric acid plus rapid release in intestinal conditions. No significant loss of viability was observed in all steps except drying, which resulted in approximately 1 log loss of viable cells. Eudragit coating was used to protect dried live cells from acid, and microcrystalline cellulose (MCC) was combined with sodium alginate to achieve efficient sphere disintegration leading to rapid and complete bacterial cell release in intestinal conditions. Viability and release of L. casei was evaluated in vitro in simulated GI conditions. Uncoated spheres gave partial acid protection, but enteric coated spheres effectively protected dried probiotic LBC from acid for 2h, and subsequently released all viable cells within 1h of transfer into simulated intestinal fluid. PMID:26188314

  2. Use of gamma-irradiation technology in combination with edible coating to produce shelf-stable foods

    NASA Astrophysics Data System (ADS)

    Ouattara, B.; Sabato, S. F.; Lacroix, M.

    2002-03-01

    This research was undertaken to determine the effectiveness of low-dose gamma-irradiation combined with edible coatings to produce shelf-stable foods. Three types of commercially distributed food products were investigated: precooked shrimps, ready to cook pizzas, and fresh strawberries. Samples were coated with various formulations of protein-based solutions and irradiated at total doses between 0 and 3 kGy. Samples were stored at 4°C and evaluated periodically for microbial growth. Sensorial analysis was also performed using a nine-point hedonic scale to evaluate the organoleptic characteristics (odor, taste and appearance). The results showed significant ( p⩽0.05) combined effect of gamma-irradiation and coating on microbial growth (APCs and Pseudomonas putida). The shelf-life extension periods ranged from 3 to 10 days for shrimps and from 7 to 20 days for pizzas, compared to uncoated/unirradiated products. No significant ( p>0.05) detrimental effect of gamma-irradiation on sensorial characteristics (odor, taste, appearance) was observed. In strawberries, coating with irradiated protein solutions resulted in significant reduction of the percentage of mold contamination.

  3. Rhenium and osmium isotopes in black shales and Ni-Mo-PGE-rich sulfide layers, Yukon Territory, Canada, and Hunan and Guizhou provinces, China

    USGS Publications Warehouse

    Horan, M.F.; Morgan, J.W.; Grauch, R.I.; Coveney, R.M., Jr.; Murowchick, J.B.; Hulbert, L.J.

    1994-01-01

    Rhenium and osmium abundances and osmium isotopic compositions were determined by negative thermal ionization mass spectrometry for samples of Devonian black shale and an associated Ni-enriched sulfide layer from the Yukon Territory, Canada. The same composition information was also obtained for samples of early Cambrian Ni-Mo-rich sulfide layers hosted in black shale in Guizhou and Hunan provinces, China. This study was undertaken to constrain the origin of the PGE enrichment in the sulfide layers. Samples of the Ni sulfide layer from the Yukon Territory are highly enriched in Re, Os, and other PGE, with distinctly higher Re/192Os but similar Pt/Re, compared to the black shale host. Re-Os isotopic data of the black shale and the sulfide layer are approximately isochronous, and the data plot close to reference isochrons which bracket the depositional age of the enclosing shales. Samples of the Chinese sulfide layers are also highly enriched in Re, Os, and the other PGE. Re/192Os are lower than in the Yukon sulfide layer. Re-Os isotopic data for the sulfide layers lie near a reference isochron with an age of 560 Ma, similar to the depositional age of the black shale host. The osmium isotopic data suggest that Re and PGE enrichment of the brecciated sulfide layers in both the Yukon Territory and in southern China may have occurred near the time of sediment deposition or during early diagenesis, during the middle to late Devonian and early Cambrian, respectively. ?? 1994.

  4. The effects of Ni, Mo, Ti and Si on the mechanical properties of Cr free Mn steel (Fe-25Mn-5Al-2C)

    NASA Technical Reports Server (NTRS)

    Schuon, S. R.

    1982-01-01

    The FeMnAlC alloys may hold potential as Cr-free replacements for high strategic material iron base superalloys, but little is known about their intermediate temperature (650 C to 870 C) mechanical properties. The effects of alloying elements on the mechanical properties of model FeMnAlC alloys were studied. Results showed that modified FeMnAlC alloys had promising short term, intermediate temperature properties but had relatively poor stress rupture lives at 172 MPa and 788 C. Room temperature and 788 C tensile strength of FeMnAlC alloys were better than common cast stainless steels. Changes in room temperature tensile and 788 C tensile strength and ductility, and 788 C stress rupture life were correlated with changes in Ni, Mo, Ti, and Si levels due to alloying effects on interstitial carbon levels and carbide morphology. Fe-25Mn-5Al-2C had a very poor stress rupture life at 172 MPa and 788 C. Addition of carbide-forming elements improved the stress rupture life.

  5. Ceramics reinforced metal base composite coatings produced by CO II laser cladding

    NASA Astrophysics Data System (ADS)

    Yang, Xichen; Wang, Yu; Yang, Nan

    2008-03-01

    Due to the excellent performance in high strength, anti-temperature and anti-wear, ceramics reinforced metal base composite material was used in some important fields of aircraft, aerospace, automobile and defense. The traditional bulk metal base composite materials are the expensive cost, which is limited in its industrial application. Development of laser coating of ceramics reinforced metal base composite is very interesting in economy. This paper is focused on three laser cladding ceramics coatings of SiC particle /Al matrix , Al IIO 3 powder/ Al matrix and WC + Co/mild steel matrix. Powder particle sizes are of 10-60μm. Chemical contents of aluminum matrix are of 3.8-4.0% Cu, 1.2-1.8% Mg, 0.3-0.99% Mn and balance Al. 5KW CO II laser, 5 axes CNC table, JKF-6 type powder feeder and co-axis feeder nozzle are used in laser cladding. Microstructure and performance of laser composite coatings have been respectively examined with OM,SEM and X-ray diffraction. Its results are as follows : Microstructures of 3C-,6H- and 5H- SiC particles + Al + Al 4SiC 4 + Si in SiC/Al composite, hexagonal α-Al IIO 3 + cubic γ-Al IIO 3 + f.c.c Al in Al IIO 3 powder/ Al composite and original WC particles + separated WC particles + eutectic WC + γ-Co solid solution + W IIC particles in WC + Co/steel coatings are respectively recognized. New microstructures of 5H-SiC in SiC/Al composite, cubic γ-Al IIO 3 in Al IIO 3 composite and W IIC in WC + Co/ steel composite by laser cladding have been respectively observed.

  6. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements.

    PubMed

    Bahlawane, N; Struckmeier, U; Kasper, T S; Osswald, P

    2007-01-01

    Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl(3) as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetyl acetone)(3) allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl(3)-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques. PMID:17503931

  7. Noncatalytic thermocouple coatings produced with chemical vapor deposition for flame temperature measurements

    NASA Astrophysics Data System (ADS)

    Bahlawane, N.; Struckmeier, U.; Kasper, T. S.; Oßwald, P.

    2007-01-01

    Chemical vapor deposition (CVD) and metal-organic chemical vapor deposition (MOCVD) have been employed to develop alumina thin films in order to protect thermocouples from catalytic overheating in flames and to minimize the intrusion presented to the combustion process. Alumina films obtained with a CVD process using AlCl3 as the precursor are dense, not contaminated, and crystallize in the corundum structure, while MOCVD using Al(acetylwidth="0.3em"/>acetone)3 allows the growth of corundum alumina with improved growth rates. These films, however, present a porous columnar structure and show some carbon contamination. Therefore, coated thermocouples using AlCl3-CVD were judged more suitable for flame temperature measurements and were tested in different fuels over a typical range of stoichiometries. Coated thermocouples exhibit satisfactory measurement reproducibility, no temporal drifts, and do not suffer from catalytic effects. Furthermore, their increased radiative heat loss (observed by infrared spectroscopy) allows temperature measurements over a wider range when compared to uncoated thermocouples. A flame with a well-known temperature profile established with laser-based techniques was used to determine the radiative heat loss correction to account for the difference between the apparent temperature measured by the coated thermocouple and the true flame temperature. The validity of the correction term was confirmed with temperature profile measurements for several flames previously studied in different laboratories with laser-based techniques.

  8. Corrosion Resistance of Laser Produced in-situ Particle Reinforced Fe-matrix Composite Coating with High Nickel Content on Spheroidal Graphite Cast Iron

    NASA Astrophysics Data System (ADS)

    Qiwen, W.; Mingxing, M.; Cunyuan, P.; Xiaohui, Y.; Weiming, Z.

    Fe-matrix composite coatings reinforced by in-situ particles with high nickel content were produced on QT450-10 by laser alloying. Coatings with different microstructure proportions and particle distributions were obtained by the adjustment of the content of Ni, Ti and Zr in the alloying powder and the laser parameters. The influence of the content of Ni and the particle distribution on coating's corrosion resistance is studied, which is revealed by the electrochemical characteristics. The results indicate that the alloying coating with more content of nickel and less particles get corroded much harder with a higher corrosion rate.

  9. Effect of Heat Treatment on the Microstructure and Mechanical Properties of Stainless Steel 316L Coatings Produced by Cold Spray for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    AL-Mangour, Bandar; Vo, Phuong; Mongrain, Rosaire; Irissou, Eric; Yue, Stephen

    2014-04-01

    In this study, the effects of heat treatment on the microstructure and mechanical properties of cold sprayed stainless steel 316L coatings using N2 and He as propellant gases were investigated. Powder and coating characterizations, including coating microhardness, coating porosity, and XRD phase analysis were performed. It was found that heat treatment reduced porosity, improved inter-particle bonding, and increased ductility. XRD results confirmed that no phase transformation occurred during deposition. Significant increase in UTS and ductility was observed for the annealed specimens obtained with nitrogen propellant, whereas little changes were observed for the helium propellant produced specimen.

  10. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C.; Wong, Frank M. G.; Haslam, Jeffery J.; Ji, Xiaoyan; Day, Sumner D.; Blue, Craig A.; Rivard, John D. K.; Aprigliano, Louis F.; Kohler, Leslie K.; Bayles, Robert; Lemieux, Edward J.; Yang, Nancy; Perepezko, John H.; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J.

    2013-07-09

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  11. Compositions of corrosion-resistant Fe-based amorphous metals suitable for producing thermal spray coatings

    DOEpatents

    Farmer, Joseph C; Wong, Frank M.G.; Haslam, Jeffery J; Ji, Xiaoyan; Day, Sumner D; Blue, Craig A; Rivard, John D.K.; Aprigliano, Louis F; Kohler, Leslie K; Bayles, Robert; Lemieux, Edward J; Yang, Nancy; Perepezko, John H; Kaufman, Larry; Heuer, Arthur; Lavernia, Enrique J

    2013-09-03

    A method of coating a surface comprising providing a source of amorphous metal that contains manganese (1 to 3 atomic %), yttrium (0.1 to 10 atomic %), and silicon (0.3 to 3.1 atomic %) in the range of composition given in parentheses; and that contains the following elements in the specified range of composition given in parentheses: chromium (15 to 20 atomic %), molybdenum (2 to 15 atomic %), tungsten (1 to 3 atomic %), boron (5 to 16 atomic %), carbon (3 to 16 atomic %), and the balance iron; and applying said amorphous metal to the surface by a spray.

  12. An in vitro study of mucoadhesion and biocompatibility of polymer coated liposomes on HT29-MTX mucus-producing cells.

    PubMed

    Adamczak, Małgorzata I; Hagesaether, Ellen; Smistad, Gro; Hiorth, Marianne

    2016-02-10

    Drug delivery to the oral cavity poses a significant challenge due to the short residence time of the formulations at the site of action. From this point of view, nanoparticulate drug delivery systems with ability to adhere to the oral mucosa are advantageous as they could increase the effectiveness of the therapy. Positively, negatively and neutrally charged liposomes were coated with four different types of polymers: alginate, low-ester pectin, chitosan and hydrophobically modified ethyl hydroxyethyl cellulose. The mucoadhesion was studied using a novel in vitro method allowing the liposomes to interact with a mucus-producing confluent HT29-MTX cell-line without applying any external force. MTT viability and paracellular permeability tests were conducted on the same cell-line. The alginate-coated liposomes achieved a high specific (genuine) mucin interaction, with a low potential of cell-irritation. The positively charged uncoated liposomes achieved the highest initial mucoadhesion, but also displayed a higher probability of cell-irritation. The chitosan-coated liposomes displayed the highest potential for long lasting mucoadhesion, but with the drawback of a higher general adhesion (tack) and a higher potential for irritating the cells. PMID:26706437

  13. Microporous Ti implant compact coated with hydroxyapatite produced by electro-discharge-sintering and electrostatic-spray-deposition.

    PubMed

    Jo, Y J; Kim, Y H; Jo, Y H; Seong, J G; Chang, S Y; Van Tyne, C J; Lee, W H

    2014-11-01

    A single pulse of 1.5 kJ/0.7 g of atomized spherical Ti powder from 300 μF capacitor was applied to produce the porous-surfaced Ti implant compact by electro-discharge-sintering (EDS). A solid core surrounded by porous layer was self-consolidated by a discharge in the middle of the compact in 122 μsec. Average pore size, porosity, and compressive yield strength of EDS Ti compact were estimated to be about 68.2 μm, 25.5%, and 266.4 MPa, respectively. Coatings with hydroxyapatite (HAp) on the Ti compact were conducted by electrostatic-spray-deposition (ESD) method. As-deposited HAp coating was in the form of porous structure and consisted of HAp particles which were uniformly distributed on the Ti porous structure. By heat-treatment at 700 degrees C, HAp particles were agglomerated each other and melted to form a highly smooth and homogeneous HAp thin film consisted of equiaxed nano-scaled grains. Porous-surfaced Ti implant compacts coated with highly crystalline apatite phase were successfully obtained by using the EDS and ESD techniques. PMID:25958542

  14. Substrate having high absorptance and emitance black electroless nicel coating and a process for producing the same

    SciTech Connect

    Greeson, R.; Geikas, G. I.

    1985-04-16

    A substrate having high absorptance and emittance is produced by roughening the surface of the substrate, immersing the substrate in a first electroless plating bath having a low phosphorus to nickel concentration, then immersing the substrate in a second electroless plating bath having a phosphorus to nickel concentration higher than that of said first electroless plating bath. Thereafter, the resulting electroless nickel-phosphorus alloy coated substrate is immersed in an aqueous acidic etchant bath containing sulfuric acid, nitric acid and divalent nickel to develop a highly blackened surface on said substrate.

  15. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  16. Bone ingrowth potential of electron beam and selective laser melting produced trabecular-like implant surfaces with and without a biomimetic coating.

    PubMed

    Biemond, J E; Hannink, G; Verdonschot, N; Buma, P

    2013-03-01

    The bone ingrowth potential of trabecular-like implant surfaces produced by either selective laser melting (SLM) or electron beam melting (EBM), with or without a biomimetic calciumphosphate coating, was examined in goats. For histological analysis and histomorphometry of bone ingrowth depth and bone implant contact specimens were implanted in the femoral condyle of goats. For mechanical push out tests to analyse mechanical implant fixation specimens were implanted in the iliac crest. The follow up periods were 4 (7 goats) and 15 weeks (7 goats). Both the SLM and EBM produced trabecular-like structures showed a variable bone ingrowth after 4 weeks. After 15 weeks good bone ingrowth was found in both implant types. Irrespective to the follow up period, and the presence of a coating, no histological differences in tissue reaction around SLM and EBM produced specimens was found. Histological no coating was detected at 4 and 15 weeks follow up. At both follow up periods the mechanical push out strength at the bone implant interface was significantly lower for the coated SLM specimens compared to the uncoated SLM specimens. The expected better ingrowth characteristics and mechanical fixation strength induced by the coating were not found. The lower mechanical strength of the coated specimens produced by SLM is a remarkable result, which might be influenced by the gross morphology of the specimens or the coating characteristics, indicating that further research is necessary. PMID:23254345

  17. Starting to gel: how Arabidopsis seed coat epidermal cells produce specialized secondary cell walls.

    PubMed

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  18. Starting to Gel: How Arabidopsis Seed Coat Epidermal Cells Produce Specialized Secondary Cell Walls

    PubMed Central

    Voiniciuc, Cătălin; Yang, Bo; Schmidt, Maximilian Heinrich-Wilhelm; Günl, Markus; Usadel, Björn

    2015-01-01

    For more than a decade, the Arabidopsis seed coat epidermis (SCE) has been used as a model system to study the synthesis, secretion and modification of cell wall polysaccharides, particularly pectin. Our detailed re-evaluation of available biochemical data highlights that Arabidopsis seed mucilage is more than just pectin. Typical secondary wall polymers such as xylans and heteromannans are also present in mucilage. Despite their low abundance, these components appear to play essential roles in controlling mucilage properties, and should be further investigated. We also provide a comprehensive community resource by re-assessing the mucilage phenotypes of almost 20 mutants using the same conditions. We conduct an in-depth functional evaluation of all the SCE genes described in the literature and propose a revised model for mucilage production. Further investigation of SCE cells will improve our understanding of plant cell walls. PMID:25658798

  19. Development of self-lubricating coatings via cold spray process: Feedstock formulation and deformation modeling

    NASA Astrophysics Data System (ADS)

    Aggarwal, Gaurav

    -substrate interface have been observed for a wide range of impact velocities (200 to 1000 m/s). The results are evaluated to predict particle size, lubricant content, and finally the critical velocities for composite particles during the cold spray process. For the first time, the cold spray process is used to deposit Ni-MoS 2 and Ni-hBN self-lubricating coatings. The modeling results are matched with the experimental results to provide guidelines for composite coatings via cold spray processing.

  20. Brown coat color in Icelandic cattle produced by the loci Extension and Agouti.

    PubMed

    Adalsteinsson, S; Bjarnadottir, S; Vage, D I; Jonmundsson, J V

    1995-01-01

    Inheritance of the colors black, brown, and red in Icelandic cattle was studied. The three colors are produced by two loci, Extension (E) and Agouti (A), with three alleles at the E locus: E(d) for dominant black; E+, intermediate, which allows expression of A locus alleles; and e for recessive red color. Two alleles are postulated at the A locus: A+, producing brown, and a, producing recessive black (nonagouti) when homozygous in E+/- animals. The dominant and recessive types of black are indistinguishable from each other phenotypically. The A alleles are only able to express their effect in E+/- genotypes. The E and A loci in cattle are postulated to be homologous to the E and A loci in the mouse. PMID:7560875

  1. Natural killer cells produce T cell-recruiting chemokines in response to antibody-coated tumor cells.

    PubMed

    Roda, Julie M; Parihar, Robin; Magro, Cynthia; Nuovo, Gerard J; Tridandapani, Susheela; Carson, William E

    2006-01-01

    In the current report, we have examined the ability of natural killer (NK) cells to produce T cell-recruiting chemokines following dual stimulation with interleukin (IL)-2 or IL-12 and human breast cancer cells coated with an antitumor antibody (trastuzumab). NK cells stimulated in this manner secreted an array of T cell-recruiting chemotactic factors, including IL-8, macrophage-derived chemokine, macrophage inflammatory protein 1alpha (MIP-1alpha), monocyte chemoattractant protein 1, and regulated on activation, normal T-cell expressed and secreted (RANTES), whereas stimulation of NK cells with either agent alone had minimal effect. Furthermore, these factors were functional for T-cell chemotaxis as culture supernatants derived from costimulated NK cells induced migration of both naïve and activated T cells in an in vitro chemotaxis assay. T-cell migration was significantly reduced when neutralizing antibodies to IL-8, MIP-1alpha, or RANTES were added to culture supernatants before their use in the chemotaxis assay. In addition, coadministration of trastuzumab-coated tumor cells and IL-12 to mice led to enhanced serum MIP-1alpha. As a clinical correlate, we examined the chemokine content of serum samples from breast cancer patients enrolled on a phase I trial of trastuzumab and IL-12, and found elevated levels of IL-8, RANTES, IFN-gamma inducible protein 10, monokine induced by IFN-gamma, and MIP-1alpha, specifically in those patients that experienced a clinical benefit. Sera from these patients exhibited the ability to direct T-cell migration in a chemotaxis assay, and neutralization of chemokines abrogated this effect. These data are the first to show chemokine production by NK cells, specifically in response to stimulation with antibody-coated tumor cells, and suggest a potential role for NK cell-derived chemokines in patients receiving therapeutic monoclonal antibodies. PMID:16397268

  2. Chemical immobilization of crosslinked polymeric ionic liquids on nitinol wires produces highly robust sorbent coatings for solid-phase microextraction.

    PubMed

    Ho, Tien D; Toledo, Bruna R; Hantao, Leandro W; Anderson, Jared L

    2014-09-16

    Super elastic nitinol (NiTi) wires were exploited as highly robust supports for three distinct crosslinked polymeric ionic liquid (PIL)-based coatings in solid-phase microextraction (SPME). The oxidation of NiTi wires in a boiling (30%w/w) H2O2 solution and subsequent derivatization in vinyltrimethoxysilane (VTMS) allowed for vinyl moieties to be appended to the surface of the support. UV-initiated on-fiber copolymerization of the vinyl-substituted NiTi support with monocationic ionic liquid (IL) monomers and dicationic IL crosslinkers produced a crosslinked PIL-based network that was covalently attached to the NiTi wire. This alteration alleviated receding of the coating from the support, which was observed for an analogous crosslinked PIL applied on unmodified NiTi wires. A series of demanding extraction conditions, including extreme pH, pre-exposure to pure organic solvents, and high temperatures, were applied to investigate the versatility and robustness of the fibers. Acceptable precision of the model analytes was obtained for all fibers under these conditions. Method validation by examining the relative recovery of a homologous group of phthalate esters (PAEs) was performed in drip-brewed coffee (maintained at 60 °C) by direct immersion SPME. Acceptable recoveries were obtained for most PAEs in the part-per-billion level, even in this exceedingly harsh and complex matrix. PMID:25150693

  3. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOEpatents

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  4. The effect of colouring agent on the physical properties of glass ceramic produced from waste glass for antimicrobial coating deposition

    NASA Astrophysics Data System (ADS)

    Juoi, J. M.; Ayoob, N. F.; Rosli, Z. M.; Rosli, N. R.; Husain, K.

    2016-07-01

    Domestic waste glass is utilized as raw material for the production of glass ceramic material (GCM) via sinter crystallisation route. The glass ceramic material in a form of tiles is to be utilized for the deposition of Ag-TiO2 antimicrobial coating. Two types of soda lime glass (SLG) that are non-coloured and green SLG are utilised as main raw materials during the batch formulation in order to study the effect of colouring agent (Fe2O3) on the physical and mechanical properties of glass ceramic produced. Glass powder were prepared by crushing bottles using hammer milled with milling machine and sieved until they passed through 75 µm sieve. The process continues by mixing glass powder with ball clay with ratio of 95:5 wt. %, 90:10 wt. % and 85:15 wt. %. Each batch mixture was then uniaxial pressed and sintered at 800°C, 825 °C and 850 °C. The physical and mechanical properties were then determined and compared between those produced from non-coloured and green coloured SLG in order to evaluate the effect of colouring agent (Fe2O3) on the GCM produced. The optimum properties of non-coloured SLG is produced with smaller ball clay content (10 wt. %) compared to green SLG (15 wt. %). The physical properties (determined thru ASTM C373) of the optimized GCM produced from non-coloured SLG and green SLG are 0.69 % of porosity, 1.92 g/cm3 of bulk density, 0.36 % of water absorption; and 1.96 % of porosity, 2.69 g/cm3 of bulk density, 0.73 % of water absorption; respectively. Results also indicate that the most suitable temperature in producing GCM from both glasses with optimized physical and mechanical properties is at 850 °C.

  5. Sugar-coated: exopolysaccharide producing lactic acid bacteria for food and human health applications.

    PubMed

    Ryan, P M; Ross, R P; Fitzgerald, G F; Caplice, N M; Stanton, C

    2015-03-01

    The human enteric microbiome represents a veritable organ relied upon by the host for a range of metabolic and homeostatic functions. Through the production of metabolites such as short chain fatty acids (SCFA), folate, vitamins B and K, lactic acid, bacteriocins, peroxides and exopolysaccharides, the bacteria of the gut microbiome provide nutritional components for colonocytes, liver and muscle cells, competitively exclude potential pathogenic organisms and modulate the hosts immune system. Due to the extensive variation in structure, size and composition, microbial exopolysaccharides represent a useful set of versatile natural ingredients for the food industrial sector, both in terms of their rheological properties and in many cases, their associated health benefits. The exopolysaccharide-producing bacteria that fall within the 35 Lactobacillus and five Bifidobacterium species which have achieved qualified presumption of safety (QPS) and generally recognised as safe (GRAS) status are of particular interest, as their inclusion in food products can avoid considerable scrutiny. In addition, additives commonly utilised by the food industry are becoming unattractive to the consumer, due to the demand for a more 'natural' and 'clean labelled' diet. In situ production of exopolysaccharides by food-grade cultures in many cases confers similar rheological and sensory properties in fermented dairy products, as traditional additives, such as hydrocolloids, collagen and alginate. This review will focus on microbial synthesis of exopolysaccharides, the human health benefits of dietary exopolysaccharides and the technofunctional applications of exopolysaccharide-synthesising microbes in the food industry. PMID:25580594

  6. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Hao, Yi; Wang, Ji-qiang; Cui, Xin-yu; Wu, Jie; Li, Tie-fan; Xiong, Tian-ying

    2016-06-01

    The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.

  7. Microstructure Characteristics and Mechanical Properties of Al-12Si Coatings on AZ31 Magnesium Alloy Produced by Cold Spray Technique

    NASA Astrophysics Data System (ADS)

    Hao, Yi; Wang, Ji-qiang; Cui, Xin-yu; Wu, Jie; Li, Tie-fan; Xiong, Tian-ying

    2016-04-01

    The cold spray technique was to deposit Al-12Si coatings on AZ31 magnesium alloy. The influence of gas pressure and gas temperature on the microstructure of coatings was investigated so as to optimize the process parameters. OM, SEM, and XRD were used to characterize the as-sprayed coatings. Mechanical properties including Vickers microhardness and adhesion strength were measured in order to evaluate coating quality. Test results indicate that the Al-12Si coatings possess the same crystal structure with powders, sufficient thickness, low porosity, high hardness, and excellent adhesion strength under optimal cold spray process parameters.

  8. Highly effective mixed pinning landscape produced by combined proton and heavy-ion irradiations in commercial coated conductors

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Leroux, Maxim; Kihlstrom, Karen; Welp, Ulrich; Kwok, Wai-Kwong; Rupich, Marty; Fleshler, Steven; Malozemoff, Alex P.; Ghigo, G.; Kayani, A.

    2015-03-01

    Particle irradiation is a very useful method to enhance the critical current density (Jc) in high Tc superconductors. As the nature of the damage produced under given irradiation conditions is well studied, it also provides a valuable tool to engineer controlled pinning landscapes to improve our understanding of vortex matter. Recently, it has been shown that proton irradiation can produce significant further Jc increase in commercial coated conductors (CC) with already high Jc. Here we report a further step towards Jc design, by combining 4 MeV proton and 250 MeV Au irradiations on the same CC. We show that the Jc improvement is better than what results from each individual irradiation, with columnar and random defects being dominant at low and high fields, respectively. Flux creep rates provide additional information about the vortex dynamics and depinning mechanisms in different regions of the Temperature-Field-Orientation phase diagram. Work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences.

  9. Synthesis and evaluation of MgF2 coatings by chemical conversion on magnesium alloys for producing biodegradable orthopedic implants of temporary use

    NASA Astrophysics Data System (ADS)

    Casanova, P. Y.; Jaimes, K. J.; Parada, N. J.; Hernández-Barrios, C. A.; Aparicio, M.; Viejo, F.; Coy, A. E.

    2013-11-01

    The aim of the present work was the synthesis of biodegradable MgF2 coatings by chemical conversion on the commercial Elektron 21 and AZ91D magnesium alloys, in aqueous HF solutions for different concentrations and temperatures. The chemical composition and morphology of the coatings were analyzed by scanning electron microscopy (SEM-EDX) and X-ray diffraction (XRD). On the other hand, their corrosion behavior was evaluated by gravimetric and electrochemical measurements in Hank's solution at 37°C for different immersion times. The experimental results revealed that chemical conversion in HF produced MgF2 coatings which corrosion resistance was enhanced by increasing the HF concentration. Further, the microstructure and composition of the base alloy played a key role on the growth and degradation mechanisms of the MgF2 coatings.

  10. [Thin calcium-phosphate coatings produced by high frequency magnetron sputtering and prospects for their use in biomedical engineering].

    PubMed

    Aronov, A M; Pichugin, V F; Eshenko, E V; Riabtseva, M A; Surmenev, R A; Tverdokhlebov, S I; Shesterikov, E V

    2008-01-01

    Thin calcium-phosphate coatings with thickness less than 2.7 m were prepared by radio-frequency magnetron sputtering technique on the surfaces of pure titanium, titanium alloy Ti6A14V and stainless ASTM 316. Results of scanning electron microscopy showed that all coatings were dense and poreless and did not have any visible defects or microcracks. Rutherford backscattering (RBS) revealed a prepared coating consisting only of calcium 33.6 (1.6 at%, phosphorous 16.5 (1.5 at%, and oxygen 48.6 (1.2 at%. The concentration of each above-mentioned element through the coating was almost constant. The physicomechanical properties of the prepared coatings were investigated using a nanoindentation technique. The values of nano-hardness and Young's modulus calculated on the basis of the obtained data were 10 GPa and 113 GPa, respectively. These values were higher than that of non-coated substrates, except titanium alloy due to the sputtering mechanism. It was found that the coating with a thickness less than 1.6 ?m possessed more adhesion strength than coatings with greater value of thickness. However, we suggest that all coatings have great cohesive resistance that does not depend on the coating thickness. PMID:18683576

  11. Physical and chemical characterization of Ag-doped Ti coatings produced by magnetron sputtering of modular targets.

    PubMed

    Schmitz, Tobias; Warmuth, Franziska; Werner, Ewald; Hertl, Cornelia; Groll, Jürgen; Gbureck, Uwe; Moseke, Claus

    2014-11-01

    Silver-doped Ti films were produced using a single magnetron sputtering source equipped with a titanium target containing implemented silver modules under variation of bias voltage and substrate temperature. The Ti(Ag) films were characterized regarding their morphology, contact angle, phase composition, silver content and distribution as well as the elution of Ag(+) ions into cell media. SEM and AFM pictures showed that substrate heating during film deposition supported the formation of even and dense surface layers with small roughness values, an effect that could even be enforced, when a substrate bias voltage was applied instead. The deposition of both Ti and Ag was confirmed by X-ray diffraction. ICP-MS and EDX showed a clear correlation between the applied sputtering parameters and the silver content of the coatings. Surface-sensitive XPS measurements revealed that higher substrate temperatures led to an accumulation of Ag in the near-surface region, while the application of a bias voltage had the opposite effect. Additional elution measurements using ICP-MS showed that the release kinetics depended on the amount of silver located at the film surface and hence could be tailored by variation of the sputter parameters. PMID:25280688

  12. Extension of Shelf Life and Control of Human Pathogens in Produce by Antimicrobial Edible Films and Coatings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter provides general information about edible films and coatings, and their use with fruits and vegetables to control human pathogens. It reviews potential antimicrobial phytochemicals used in edible films and coatings, and summarizes methods for measuring the antimicrobial activity and ph...

  13. Effect of Post-Weld Heat Treatment on Mechanical and Electrochemical Properties of Gas Metal Arc-Welded 316L (X2CrNiMo 17-13-2) Stainless Steel

    NASA Astrophysics Data System (ADS)

    Muhammad, F.; Ahmad, A.; Farooq, A.; Haider, W.

    2016-08-01

    In the present research work, corrosion behavior of post-weld heat-treated (PWHT) AISI 316L (X2CrNiMo 17-13-2) specimens joined by gas metal arc welding is compared with as-welded samples by using potentiodynamic polarization technique. Welded samples were PWHT at 1323 K for 480 s and quenched. Mechanical properties, corrosion behavior and microstructures of as-welded and PWHT specimens were investigated. Microstructural studies have shown grain size refinement after PWHT. Ultimate tensile strength and yield strength were found maximum for PWHT samples. Bend test have shown that PWHT imparted ductility in welded sample. Fractographic analysis has evidenced ductile behavior for samples. Potentiodynamic polarization test was carried out in a solution composed of 1 M H2SO4 and 1 N NaCl. Corrosion rate of weld region was 127.6 mpy, but after PWHT, it was decreased to 13.12 mpy.

  14. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  15. Phase transformations in nanostructured coatings based on Zr-Y-O and produced by a pulse magnetron sputtering method

    SciTech Connect

    Fedorischeva, Marina V. Kalashnikov, Mark P. Sergeev, Victor P.

    2015-10-27

    Deposition of nanostructured coatings on the basis of Zr-Y-O was implemented by the pulse magnetron methods. Structural-phase states and morphology of the nanostructured coatings were investigated by TEM, SEM and the high-temperature X-ray method. The method of the high-temperature X-ray diffraction revealed the presence of reversible phase transition of the tetragonal phase to the monoclinic phase, which can ensure stress relaxation and closure of surface cracks.

  16. Structure of the local environment of titanium atoms in multicomponent nitride coatings produced by plasma-ion techniques

    NASA Astrophysics Data System (ADS)

    Krysina, O. V.; Timchenko, N. A.; Koval, N. N.; Zubavichus, Ya V.

    2016-01-01

    An experiment was performed to examine the X-ray Absorption Near-Edge Structure (XANES) and the Extended X-ray Absorption Fine Structure (EXAFS) near the K-edge of titanium in nanocrystalline titanium nitride coatings containing additives of copper, silicon, and aluminum. Using the observation data, the structure parameters of the local environment of titanium atoms have been estimated for the coatings. According to crystallographic data, the Ti-N distance in the bulk phase of titanium nitride is 2.12 Å and the Ti-Ti distance is 3.0 Å. Nearly these values have been obtained for the respective parameters of the coatings. The presence of copper as an additive in a TiN coating increases the Ti-N distance inappreciably compared to that estimated for titanium nitride, whereas addition of silicon decreases the bond distance. It has been revealed that the copper and silicon atoms in Ti-Cu-N and Ti-Si-N coatings do not enter into the crystallographic phase of titanium nitride and do not form bonds with titanium and nitrogen, whereas the aluminum atoms in Ti-Al-N coatings form intermetallic phases with titanium and nitride phases.

  17. Anti-vibration Engineering in Internal Turning Using a Carbon Nanocomposite Damping Coating Produced by PECVD Process

    NASA Astrophysics Data System (ADS)

    Fu, Qilin; Lundin, Daniel; Nicolescu, Cornel M.

    2013-11-01

    Machining dynamic stability has been enhanced through a damping coating based on a novel carbon-based nanocomposite material. The coating was synthesized using a plasma enhanced chemical vapor deposition method, and deposited on to the round-shank boring bar used for internal turning and tested during machining. Comparisons between an uncoated and a coated boring bar were carried out at 0.25 mm and 0.5 mm depth of cut using a five times length to diameter ratio overhang, which are typical conditions known to generate detrimental mechanical vibrations. From sound pressure measurement it was found that the measured absolute sound level during process could be reduced by about 90% when using the tool coated with damping layer. Surface roughness measurements of the processed workpiece showed decreased Ra values from approximately 3-6 μm to less than 2 μm (and in 50% of the cases <1 μm) when comparing an uncoated standard tool with its coated counterpart. Moreover, it was found that the addition of an anti-vibration coating did not adversely affect other tool properties, such as rigidity and modularity.

  18. Effect of the Processing Parameters on the Integrity of Calcium Phosphate Coatings Produced by Rf-Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Toque, Jay Arre; Hamdi, M.; Ide-Ektessabi, A.; Sopyan, Iis

    Calcium phosphate (CaP) compounds like hydroxyapatite and tricalcium phosphates are considered to be very important biomaterials. This study used RF-magnetron sputtering (RF-MS) to deposit CaP onto 316L SS. Due to the complex nature of the effect of different sputtering parameters on the quality and integrity of the coatings, there is a need to further investigate those parameters collectively. An L9(34) orthogonal array was employed to design the experiment that was used to investigate four important coating parameters which include RF-power, argon gas flow rate, deposition time and post-heat treatment conditions. The coating composition and structure were evaluated using XRD, EDX and FTIR. The mechanical property was measured in terms of the adhesion strength using a microscratch testing machine. The response graph of the results revealed that the interfacial strength of CaP was mainly influenced by the deposition power, while the coating thickness was predominantly affected by the argon gas flow rate. High adhesion strength was achieved when the coatings have at least 2 μm thickness and deposited at a working pressure of 12 m Torr. ANOVA on the control factors helped rank the parameters accordingly in order of importance. Based on the response of the control factors, it was found that optimum adhesion strength could be achieved by depositing the coatings using the following parameters: 10 sccm of argon gas flow rate; 150 W of RF power; and 16 h of deposition.

  19. Phase Stability of Al-5Fe-V-Si Coatings Produced by Cold Gas Dynamic Spray Process Using Rapidly Solidified Feedstock Materials

    NASA Astrophysics Data System (ADS)

    Bérubé, G.; Yandouzi, M.; Zúñiga, A.; Ajdelsztajn, L.; Villafuerte, J.; Jodoin, B.

    2012-03-01

    In this study, aluminum alloy Al-5Fe-V-Si (in wt.%) feedstock powder, produced by rapid solidification (RS) using the gas atomization process, was selected to produce high-temperature resistant Al-alloy coatings using the cold gas dynamic spraying process (CGDS). The alloy composition was chosen for its mechanical properties at elevated temperature for potential applications in internal-combustion (IC) engines. The CGDS spray process was selected due to its relatively low operating temperature, thus preventing significant heating of the particles during spraying and as such allowing the original phases of the feedstock powder to be preserved within the coatings. The microstructure and phases stability was investigated by means of Scanning Electron Microscopy, transmission electron microscopy, X-ray diffraction and differential scanning calorimetery techniques. The coatings mechanical properties were evaluated through bond strength and microhardness testing. The study revealed the conservation of the complex microstructure of the rapid solidified powder during the spray process. Four distinct microstructures were observed as well as two different phases, namely a Al13(Fe,V)3Si silicide phase and a metastable (Al,Si) x (Fe,V) Micro-quasicrystalline Icosahedral (MI) phase. Aging of the coating samples was performed and confirmed that the phase transformation of the metastable phases and coarsening of the nanosized precipitates will occurs at around 400 °C. The metastable MI phase was determined to be thermally stable up to 390 °C, after which a phase transformation to silicide starts to occur.

  20. Enhanced Droplet Erosion Resistance of Laser Treated Nano Structured TWAS and Plasma Ion Nitro-Carburized Coatings for High Rating Steam Turbine Components

    NASA Astrophysics Data System (ADS)

    Pant, B. K.; Arya, Vivek; Mann, B. S.

    2010-09-01

    This article deals with surface modification of twin wire arc sprayed (TWAS) and plasma ion nitro-carburized X10CrNiMoV1222 steel using high power diode laser (HPDL) to overcome water droplet erosion occurring in low pressure steam turbine (LPST) bypass valves and LPST moving blades used in high rating conventional, critical, and super critical thermal power plants. The materials commonly used for high rating steam turbines blading are X10CrNiMoV1222 steel and Ti6Al4V titanium alloy. The HPDL surface treatment on TWAS coated X10CrNiMoV1222 steel as well as on plasma ion nitro-carburized steel has improved water droplet resistance manifolds. This may be due to combination of increased hardness and toughness as well as the formation of fine grained structure due to rapid heating and cooling rates associated with the laser surface treatment. The water droplet erosion test results along with their damage mechanism are reported in this article.

  1. A new titanium based alloy Ti-27Nb-13Zr produced by powder metallurgy with biomimetic coating for use as a biomaterial.

    PubMed

    Mendes, Marcio W D; Ágreda, Carola G; Bressiani, Ana H A; Bressiani, José C

    2016-06-01

    Titanium alloys are widely used in biomedical applications due to their excellent properties such as high strength, good corrosion resistance and biocompatibility. Titanium alloys with alloying elements such as Nb and Zr are biocompatible and have Young's modulus close to that of human bone. To increase the bioactivity of titanium alloy surfaces is used chemical treatment with NaOH followed by immersion in simulated body fluid (SBF). The purpose of this study was to produce the alloy Ti-27Nb-13Zr with low Young's modulus by powder metallurgy using powders produced by the HDH process. The formation of biomimetic coatings on samples immersed in SBF for 3, 7, 11 and 15 days was evaluated. Characterization of the coating was performed by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and scanning electron microscope. The microstructure and composition of the alloy were determined using SEM and XRD, while the mechanical properties were evaluated by determining the elastic modulus and the Vickers microhardness. The sintered alloys were composed of α and β phases, equiaxed grains and with density around 97.8% of its theoretical density. The Vickers microhardness and elasticity modulus of the alloy were determined and their values indicate that this alloy can be used as a biomaterial. Analysis of the coating revealed the presence of calcium phosphate layers on samples immersed for >3 days in the SBF solution. PMID:27040264

  2. Bioactive ZnO Coatings Deposited by MAPLE-An Appropriate Strategy to Produce Efficient Anti-Biofilm Surfaces.

    PubMed

    Oprea, Alexandra Elena; Pandel, Loredana Mihaela; Dumitrescu, Ana Maria; Andronescu, Ecaterina; Grumezescu, Valentina; Chifiriuc, Mariana Carmen; Mogoantă, Laurenţiu; Bălşeanu, Tudor-Adrian; Mogoşanu, George Dan; Socol, Gabriel; Grumezescu, Alexandru Mihai; Iordache, Florin; Maniu, Horia; Chirea, Mariana; Holban, Alina Maria

    2016-01-01

    Deposition of bioactive coatings composed of zinc oxide, cyclodextrin and cefepime (ZnO/CD/Cfp) was performed by the Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The obtained nanostructures were characterized by X-ray diffraction, IR microscopy and scanning electron microscopy. The efficient release of cefepime was correlated with an increased anti-biofilm activity of ZnO/CD/Cfp composites. In vitro and in vivo tests have revealed a good biocompatibility of ZnO/CD/Cfp coatings, which recommend them as competitive candidates for the development of antimicrobial surfaces with biomedical applications. The release of the fourth generation cephalosporin Cfp in a biologically active form from the ZnO matrix could help preventing the bacterial adhesion and the subsequent colonization and biofilm development on various surfaces, and thus decreasing the risk of biofilm-related infections. PMID:26891290

  3. Scale-Up of SLIP Process: Producing Nanoengineered Coatings at High Volumes to Meet Multi-Directorate Needs

    SciTech Connect

    O'Brien, K C; Sanders, D M; Moffitt, K C; Marquez, R; Spadaccini, C

    2005-10-27

    There are a variety of applications that require the use of nanoengineered surfaces for separation applications. Surfaces are commonly functionalized in order to facilitate the purification of gases and liquids. Functionalization often requires the application of a polymer to the surface. The most common means is to dissolve the polymer in a solvent and then either cast or spray it onto the surface. This traditional approach causes two severe limitations: (1) the polymer must be soluble; (2) the solvent must be removed from the final coating. The first limitation often eliminates many potential candidate polymers. The second limitation is influential on the transport and separation properties of the coating. Low levels of residual solvents can significantly degrade the ability of the coating to perform the separation process. These two issues can be overcome through the use of ''Solvent-Less vapor deposition followed by In-situ Polymerization'' (SLIP). The SLIP process was originally developed for the fabrication of Inertial Confinement Fusion (ICF) targets. This application required the deposition of films of 100 to 200 microns in thickness onto a spherical substrate. The process consists of two evaporation chambers each containing a quantity of monomer. The precursors, monomers, are vaporized and flow though a mixing nozzle and eventually are deposited on a substrate surface. They react at the surface and form a nanoengineered polymer film. The SLIP process has been utilized to develop composite membranes for gas and liquid separation applications. Polyimide films that range in thickness from 50 to 400 nm were deposited onto a range of substrates. The SLIP process has been shown to be robust and current plans are in place to scale-up the process. This scale-up would enable the coating of flat sheets and fibers. This paper will outline the roadmap to constructing a pilot scale SLIP system in order to meet multiple programmatic needs.

  4. Artifact level produced by different femoral head prostheses in CT imaging: diamond coated silicon nitride as total hip replacement material.

    PubMed

    Rodrigues, Simone P; Paiva, José M; De Francesco, Silvia; Amaral, Margarida I; Oliveira, Filipe J; Silva, Rui F

    2013-01-01

    Commercial femoral head prostheses (cobalt-chromium alloy, yttria partially stabilized zirconia (Y-PSZ) and alumina) and new silicon nitride ceramic ones (nanocrystalline diamond coated and uncoated) were compared in terms of artifact level production by computed tomography (CT). Pelvis examination by CT allows the correct diagnosis of some pathologies (e.g. prostate and colon cancer) and the evaluation of the prosthesis-bone interface in post-operative joint surgery. Artifact quantification is rarely seen in literature despite having a great potential to grade biomaterials according to their imaging properties. Materials' characteristics (density and effective atomic number), size and geometry of the prostheses can cause more or less artifact. A quantification procedure based on the calculation of four statistical parameters for the Hounsfield pixel values (mean, standard deviation, mean squared error and worst case error) is presented. CT sequential and helical scanning modes were performed. Results prove the artifact reproducibility and indicate that the cobalt-chromium and Y-PSZ are the most artifact-inducing materials, while alumina and silicon nitride (diamond coated and uncoated) ceramic ones present a low level of artifact. Considering the excellent biocompatibility and biotribological behaviour reported in earlier works, combined with the high medical imaging quality here assessed, diamond coated silicon nitride ceramics are arising as new materials for joint replacement. PMID:23053807

  5. Phase, microstructure, and chemistry of aluminum copper iron chromium and aluminum copper iron quasicrystalline wear coatings produced via physical vapor deposition

    NASA Astrophysics Data System (ADS)

    Daniels, Matthew John

    A new method for producing complex AlCuFe and AlCuFeCr quasicrystalline and quasicrystalline approximant coatings using powder metallurgy targets was developed for use in DC and RF sputter systems. Microstructure analysis performed on the targets showed many of the constituents remained in their elemental form in the target. Small amounts of aluminum-rich intermetallics bonded the targets into semiporous blocks. "As-deposited" coatings exhibited broad x-ray diffraction maxima. The deposition window for the quasicrystalline phase was large, and included a variety of sputter gas pressures and target powers. Grain size modeling and radial distribution function analysis of the as-deposited coatings showed intermediate order and simulated grain sizes of ≈2.5 nm. Annealing at 450°C and above was required to develop the quasicrystalline or approximant structure. Depth dependent techniques such as cross section TEM, sputter profile XPS, and depth profiling with a synchrotron x-ray source were used to elucidate these changes to develop a model for microstructure development during annealing. In the AlCuFeCr system, crystalline aluminum and an amorphous phase related to the quasicrystal formed in the top 110 nm of the film. Residual porosity of 10% was observed in the annealed coating, concentrated predominantly in columnar pores. Grain growth proceeded along columnar and layered porosity in the film. In the AlCuFe system, anneals of varying lengths showed the route for microstructure development for the as-deposited film. The R-phase (icosohedral approximant) partially developed after 1 hour of annealing at 450°C. An aluminum-deficient beta phase was also observed in the near surface region due to preferential aluminum oxidation and enrichment at the surface of the film. The mechanical behavior of these quasicrystalline coatings was also investigated during annealing using a Laue radiography/topography imaging system capable of monitoring stress evolution in situ. The

  6. In Vivo Differentiation of Mesenchymal Stem Cells into Insulin Producing Cells on Electrospun Poly-L-Lactide Acid Scaffolds Coated with Matricaria chamomilla L. Oil

    PubMed Central

    Fazili, Afsaneh; Gholami, Soghra; Minaie Zangi, Bagher; Seyedjafari, Ehsan; Gholami, Mahdi

    2016-01-01

    Objective This study examined the in vivo differentiation of mesenchymal stem cells (MSCs) into insulin producing cells (IPCs) on electrospun poly-L-lactide acid (PLLA) scaffolds coated with Matricaria chammomila L. (chamomile) oil. Materials and Methods In this interventional, experimental study adipose MSCs (AMSCs) were isolated from 12 adult male New Zealand white rabbits and characterized by flow cytometry. AMSCs were subsequently differentiated into osteogenic and adipogenic lines. Cells were seeded onto either a PLLA scaffold (control) or PLLA scaffold coated with chamomile oil (experimental). A total of 24 scaffolds were inserted into the pancreatic area of each rabbit and placement was confirmed by ultrasound. After 21 days, immunohistochemistry analysis of insulin-producing like cells on protein levels confirmed insulin expression of insulin producing cells (IPSCs). Real-time polymerase chain reaction (PCR) determined the expressions of genes related to pancreatic endocrine development and function. Results Fourier transform infrared spectroscopy (FTIR) results confirmed the existence of oil on the surface of the PLLA scaffold. The results showed a new peak at 2854 cm-1 for the aliphatic CH2 bond. Pdx1 expression was 0.051 ± 0.007 in the experimental group and 0.009 ± 0.002 in the control group. There was significantly increased insulin expression in the scaffold coated with chamomile oil (0.09 ± 0.001) compared to control group (0.063 ± 0.009, P≤0.05). Both groups expressed Ngn3 and Pdx1 specific markers and pancreatic tissue was observed at 21 days post transplantation. Conclusion The pancreatic region is an optimal site for differentiation of AMSCs to IPCs. Chamomile oil (as an antioxidant agent) can affect cell adhesion to the scaffold and increase cell differentiation. In addition, the oil may lead to increased blood glucose uptake in pathways in the muscles, liver and fatty tissue of a diabetic animal model by some probable molecular mechanisms

  7. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  8. Metal-coated second-order fibre Bragg gratings produced by infrared femtosecond radiation for dual temperature and strain sensing

    NASA Astrophysics Data System (ADS)

    Chah, K.; Kinet, D.; Caucheteur, C.

    2016-05-01

    We report highly localized second-order fibre Bragg gratings at 1585 nm inscribed by point-by-point focused infrared femtosecond pulses. A thin gold coating deposited on the fibre outer surface at the grating location allows shielding the cladding mode resonances from the outer medium, so that they remain present in the transmitted amplitude spectrum. The Bragg resonance of the second-order grating is surrounded by high-order cladding mode resonances of the first-order grating. These cladding modes exhibit the same temperature sensitivity as the Bragg resonance (10.6 pm/°C) but high differential strain sensitivity (-0.55 pm/μepsilon versus 1.20 pm/μepsilon for the Bragg mode). Therefore, the conditioning of the matrix inversion as demodulation method is fully satisfied, yielding a new design of fibre sensor able to discriminate between temperature and strain, with an unprecedented sensitivity.

  9. Incorporation of Ca, P, and Si on bioactive coatings produced by plasma electrolytic oxidation: The role of electrolyte concentration and treatment duration.

    PubMed

    Marques, Isabella da Silva Vieira; da Cruz, Nilson Cristino; Landers, Richard; Yuan, Judy Chia-Chun; Mesquita, Marcelo Ferraz; Sukotjo, Cortino; Mathew, Mathew T; Barão, Valentim Adelino Ricardo

    2015-01-01

    The objectives of the present study were to produce bioactive coatings in solutions containing Ca, P, and Si by plasma electrolytic oxidation (PEO) on commercially pure titanium, to investigate the influence of different electrolytes concentration and treatment duration on the produced anodic films and to evaluate biocompatibility properties. The anodic films were characterized using scanning electron microscopy, energy-dispersive spectroscopy, atomic force microscopy, and x-ray diffraction and x-ray photoelectron spectroscopies. The surface energy and roughness were also evaluated. PEO process parameters influenced the crystalline structure formation and surface topography of the anodic films. Higher Ca content produced larger porous (volcanolike appearance) and thicker oxide layers when compared to the lower content. Treatment duration did not produce any topography difference. The treatment modified the surface chemistry, producing an enriched oxide layer with bioactive elements in the form of phosphate compounds, which may be responsible for mimicking bone surface. In addition, a rough surface with increased surface energy was generated. Optimal spreading and proliferation of human mesenchymal stem cells was achieved by PEO treatment, demonstrating excellent biocompatibility of the surface. The main finding is that the biofunctionalization with higher Ca/P on Ti-surface can improve surface features, potentially considered as a candidate for dental implants. PMID:26446191

  10. Wipes coated with a singlet-oxygen-producing photosensitizer are effective against human influenza virus but not against norovirus.

    PubMed

    Verhaelen, Katharina; Bouwknegt, Martijn; Rutjes, Saskia; de Roda Husman, Ana Maria; Duizer, Erwin

    2014-07-01

    Transmission of enteric and respiratory viruses, including human norovirus (hNoV) and human influenza virus, may involve surfaces. In food preparation and health care settings, surfaces are cleaned with wipes; however, wiping may not efficiently reduce contamination or may even spread viruses, increasing a potential public health risk. The virucidal properties of wipes with a singlet-oxygen-generating immobilized photosensitizer (IPS) coating were compared to those of similar but uncoated wipes (non-IPS) and of commonly used viscose wipes. Wipes were spiked with hNoV GI.4 and GII.4, murine norovirus 1 (MNV-1), human adenovirus type 5 (hAdV-5), and influenza virus H1N1 to study viral persistence. We also determined residual and transferred virus proportions on steel carriers after successively wiping a contaminated and an uncontaminated steel carrier. On IPS wipes only, influenza viruses were promptly inactivated with a 5-log10 reduction. D values of infectious MNV-1 and hAdV-5 were 8.7 and 7.0 h on IPS wipes, 11.6 and 9.3 h on non-IPS wipes, and 10.2 and 8.2 h on viscose wipes, respectively. Independently of the type of wipe, dry cleaning removed, or drastically reduced, initial spot contamination of hNoV on surfaces. All wipes transferred hNoV to an uncontaminated carrier; however, the risk of continued transmission by reuse of wipes after 6 and 24 h was limited for all viruses. We conclude that cleaning wet spots with dry wipes efficiently reduced spot contamination on surfaces but that cross-contamination with noroviruses by wiping may result in an increased public health risk at high initial virus loads. For influenza virus, IPS wipes present an efficient one-step procedure for cleaning and disinfecting contaminated surfaces. PMID:24814795

  11. Adsorption and spin state properties of Cr, Ni, Mo, and Pt deposited on Li⁺ and Na⁺ monovalent cation impurities of MgO (001) surface: DFT calculations.

    PubMed

    Shalabi, Ahmad S; Assem, Mervat M; Soliman, Kamal A

    2011-12-01

    We have analyzed, by means of density functional theory calculations and the embedded cluster model, the adsorption and spin-state properties of Cr, Ni, Mo, and Pt deposited on a MgO crystal. We considered deposition at the Mg(2+) site of a defect-free surface and at Li(+) and Na(+) sites of impurity-containing surfaces. To avoid artificial polarization effects, clusters of moderate sizes with no border anions were embedded in simulated Coulomb fields that closely approximate the Madelung fields of the host surfaces. The interaction between a transition metal atom and a surface results from a competition between Hund's rule for the adsorbed atom and the formation of a chemical bond at the interface. We found that the adsorption energies of the metal atoms are significantly enhanced by the cation impurities, and the adsorption energies of the low-spin states of spin-quenched complexes are always more favorable than those of the high-spin states. Spin polarization effects tend to preserve the spin states of the adsorbed atoms relative to those of the isolated atoms. The metal-support interactions stabilize the low-spin states of the adsorbed metals with respect to the isolated metals, but the effect is not always enough to quench the spin. Spin quenching occurs for Cr and Mo complexes at the Mg(2+) site of the pure surface and at Li(+) and Na(+) sites of the impurity-containing surfaces. Variations of the spin-state properties of free metals and of the adsorption and spin-state properties of metal complexes are correlated with the energies of the frontier orbitals. The electrostatic potential energy curves provide further understanding of the nature of the examined properties. PMID:21369929

  12. All-atom force field for molecular dynamics simulations on organotransition metal solids and liquids. Application to M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) compounds.

    PubMed

    Bernardes, Carlos E S; Canongia Lopes, José N; Minas da Piedade, Manuel E

    2013-10-31

    A previously developed OPLS-based all-atom force field for organometallic compounds was extended to a series of first-, second-, and third-row transition metals based on the study of M(CO)(n) (M = Cr, Fe, Ni, Mo, Ru, or W) complexes. For materials that are solid at ambient temperature and pressure (M = Cr, Mo, W) the validation of the force field was based on reported structural data and on the standard molar enthalpies of sublimation at 298.15 K, experimentally determined by Calvet-drop microcalorimetry using samples corresponding to a specific and well-characterized crystalline phase: Δ(sub)H(m)° = 72.6 ± 0.3 kJ·mol(–1) for Cr(CO)(6), 73.4 ± 0.3 kJ·mol(–1) for Mo(CO)(6), and 77.8 ± 0.3 kJ·mol(–1) for W(CO)(6). For liquids, where problems of polymorphism or phase mixtures are absent, critically analyzed literature data were used. The force field was able to reproduce the volumetric properties of the test set (density and unit cell volume) with an average deviations smaller than 2% and the experimentally determined enthalpies of sublimation and vaporization with an accuracy better than 2.3 kJ·mol(–1). The Lennard-Jones (12-6) potential function parameters used to calculate the repulsive and dispersion contributions of the metals within the framework of the force field were found to be transferable between chromium, iron, and nickel (first row) and between molybdenum and ruthenium (second row). PMID:24079472

  13. Effect of adhesive properties of buffy coat on the quality of blood components produced with Top & Top and Top & Bottom bags

    PubMed Central

    Cerelli, Eugenio; Nocera, Martina; Di Bartolomeo, Erminia; Panzani, Paola; Baricchi, Roberto

    2015-01-01

    Background The Transfusion Medicine Unit of Reggio Emilia currently collects whole blood using conventional quadruple Fresenius Top & Top bags. In this study, new Fresenius Top & Bottom bags were assessed and compared to the routine method with regards to product quality and operational requirements. Material and methods Twenty-one whole blood units were collected with both the new and the traditional bags, and then separated. Quality control data were evaluated and compared in order to estimate yield and quality of final blood components obtained with the two systems. We collected other bags, not included in the ordinary quality control programme, for comparison of platelet concentrates produced by pools of buffy coat. Results Compared to the traditional system, the whole blood units processed with Top & Bottom bags yielded larger plasma volumes (+5.7%) and a similar amount of concentrated red blood cells, but with a much lower contamination of lymphocytes (−61.5%) and platelets (−86.6%). Consequently, the pooled platelets contained less plasma (−26.3%) and were significantly richer in platelets (+17.9%). Discussion This study investigated the effect of centrifugation on the adhesiveness of the buffy coat to the bag used for whole blood collection. We analysed the mechanism by which this undesirable phenomenon affects the quality of packed red blood cells in two types of bags. We also documented the incomparability of measurements on platelet concentrates performed with different principles of cell counting: this vexing problem has important implications for biomedical research and for the establishment of universal product standards. Our results support the conclusion that the Top & Bottom bags produce components of higher quality than our usual system, while having equal operational efficiency. Use of the new bags could result in an important quality improvement in blood components manufacturing. PMID:25545866

  14. The effect of silicon on the oxidation behavior of NiAlHf coating system

    NASA Astrophysics Data System (ADS)

    Dai, Pengchao; Wu, Qiong; Ma, Yue; Li, Shusuo; Gong, Shengkai

    2013-04-01

    Two types of NiAlHf coatings doped with different content of Si (1 at.% and 2 at.%) were deposited on a Ni3Al based single crystal superalloy IC32 by electron beam physical vapor deposition (EB-PVD) method, respectively. For comparison, NiAlHf coating with 0 at.% Si was also prepared. The oxidation tests were carried out at 1423 K in air. At the initial stage of oxidation, large amount of flake-like θ-Al2O3 was found on NiAlHf coating surface. However, no θ-Al2O3 was observed in 2 at.% Si doped NiAlHf coating except α-Al2O3. It revealed that the Si additions could contribute to the transformation from θ-Al2O3 to α-Al2O3. When oxidation time prolonged to 100 h, it was found that the degradation of NiAlHf coating was very severe with no residual β-phase, which was due to the serious inter-diffusion between the coating and substrate. In contrast, the inter-diffusion in Si-doped coating was reduced with some residual β-phase and R-Ni(Mo, Re) precipitates. The presence of Si could retard the inter-diffusion of elements between coating and substrate, indicating a barrier diffusion effect. As a result, the oxidation resistance of NiAlHf coating was improved significantly.

  15. Coating of 6028 Aluminum Alloy Using Aluminum Piston Alloy and Al-Si Alloy-Based Nanocomposites Produced by the Addition of Al-Ti5-B1 to the Matrix Melt

    NASA Astrophysics Data System (ADS)

    El-Labban, Hashem F.; Abdelaziz, M.; Mahmoud, Essam R. I.

    2014-10-01

    The Al-12 pctSi alloy and aluminum-based composites reinforced with TiB2 and Al3Ti intermetallics exhibit good wear resistance, strength-to-weight ratio, and strength-to-cost ratio when compared to equivalent other commercial Al alloys, which make them good candidates as coating materials. In this study, structural AA 6028 alloy is used as the base material. Four different coating materials were used. The first one is Al-Si alloy that has Si content near eutectic composition. The second, third, and fourth ones are Al-6 pctSi-based reinforced with TiB2 and Al3Ti nano-particles produced by addition of Al-Ti5-B1 master alloy with different weight percentages (1, 2, and 3 pct). The coating treatment was carried out with the aid of GTAW process. The microstructures of the base and coated materials were investigated using optical microscope and scanning electron microscope equipped with EDX analyzer. Microhardness of the base material and the coated layer were evaluated using a microhardness tester. GTAW process results in almost sound coated layer on 6028 aluminum alloy with the used four coating materials. The coating materials of Al-12 pct Si alloy resulted in very fine dendritic Al-Si eutectic structure. The interface between the coated layer and the base metal was very clean. The coated layer was almost free from porosities or other defects. The coating materials of Al-6 pct Si-based mixed with Al-Ti5-B1 master alloy with different percentages (1, 2, and 3 pct), results in coated layer consisted of matrix of fine dendrite eutectic morphology structure inside α-Al grains. Many fine in situ TiAl3 and TiB2 intermetallics were precipitated almost at the grain boundary of α-Al grains. The amounts of these precipitates are increased by increasing the addition of Al-Ti5-B1 master alloy. The surface hardness of the 6028 aluminum alloy base metal was improved with the entire four used surface coating materials. The improvement reached to about 85 pct by the first type of

  16. Investigation of the Microstructure and the Mechanical Properties of Cu-NiC Composite Produced by Accumulative Roll Bonding and Coating Processes

    NASA Astrophysics Data System (ADS)

    Shabani, Ali; Toroghinejad, Mohammad Reza

    2015-12-01

    In the present study, Cu-1.8 wt.% NiC (nickel coating) composite was produced by the combination of two methods, including accumulative roll bonding (ARB) and electroplating processes. Electroplating process was done on copper strips in order to produce a nickel-particle-reinforced composite. Microstructure, texture, and the mechanical properties of the produced composite were evaluated during various cycles of ARB using optical and scanning electron microscopes, x-ray diffraction, microhardness, and tensile tests. In addition, the results were compared with Cu-Cu and also Cu-NiS (nickel sheet) samples. It was found that nickel layers were fractured from the first cycle of the process, and nickel fragments were distributed in the copper matrix as the number of cycles was increased. Variation of orientation density of α-, β-, and τ-fibers for the produced composite was examined in different cycles. Microhardness for different elements in different cycles of Cu-NiC was also evaluated. Also, the investigation of the mechanical properties showed that by proceeding the ARB process, the tensile strength of the produced Cu-NiC and Cu-Cu samples was increased. However, improvement in the mechanical properties of composite samples was more noticeable due to the reinforcing effect of nickel particles. The elongation of composite samples showed a decrease in the primary cycles, unlike Cu-Cu ones; however, it was then increased. Finally, by using scanning electron microscopy, the fracture surfaces of Cu-NiC composite were studied to disclose the fracture mechanism of the samples.

  17. Low Conductive Thermal Barrier Coatings Produced by Ion Beam Assisted EB-PVD with Controlled Porosity, Microstructure Refinement and Alloying Additions for High Temperature Applications

    NASA Technical Reports Server (NTRS)

    Wolfe, Douglas E.; Singh, Jogender

    2005-01-01

    Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.

  18. Study of hydrosulfurization of dibenzothiophene on Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3} catalysts by the use of radioisotope {sup 35}S tracer

    SciTech Connect

    Kabe, Toshiaki; Qian, Weihua; Ishihara, Atsushi

    1994-09-01

    The radioisotope tracer method has been used to quantify the behavior of sulfur on sulfided Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3}. The apparent activation energies of HDS reaction for DBT for the three catalysts were 20{+-}1 kcal/mol. The formation rate constants of {sup 35}S-H{sub 2}S were determined and the amount of labile sulfur on the sulfided catalysts were estimated by tracing the changes in radioactivities of the unreacted {sup 35}S-DBT and the formed {sup 35}S-H{sub 2}S during the HDS reaction of {sup 35}S-labeled dibenzothiophene ({sup 35}S-DBT). It was deduced that ca. 75% of sulfur in the sulfided Mo/Al{sub 2}O{sub 3} was related to HDS reaction at infinite rate of HDS. Compared with the amounts of labile sulfur in the sulfided Ni-Mo/Al{sub 2}O{sub 3}, Mo/Al{sub 2}O{sub 3}, and Ni/Al{sub 2}O{sub 3}, it was determined that the amounts of labile sulfur were 1.6, 9.8, and 18.4 mg sulfur/g catalyst at 280{degrees}C for the three catalysts, respectively. It was suggested that the sulfur in the form of NiS on the sulfided Ni-Mo/Al{sub 2}O{sub 3} was not labile and that the sulfur attached to both Mo and Ni atom were more labile and related to HDS. The promotion of Ni for Mo-based catalysts was attributed to the sulfur bonded to both Mo and Ni in the MoS{sub 2} phase being more labile. 35 refs., 12 figs., 2 tabs.

  19. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-06-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  20. Heat-to-Heat Variation in Creep Life and Fundamental Creep Rupture Strength of 18Cr-8Ni, 18Cr-12Ni-Mo, 18Cr-10Ni-Ti, and 18Cr-12Ni-Nb Stainless Steels

    NASA Astrophysics Data System (ADS)

    Abe, Fujio

    2016-09-01

    Metallurgical factors causing the heat-to-heat variation in time to rupture have been investigated for 300 series stainless steels for boiler and heat exchanger seamless tubes, 18Cr-8Ni (JIS SUS 304HTB), 18Cr-12Ni-Mo (JIS SUS 316HTB), 18Cr-10Ni-Ti (JIS SUS321 HTB), and 18Cr-12Ni-Nb (JIS SUS 347HTB), at 873 K to 1023 K (600 °C to 750 °C) using creep rupture data for nine heats of the respective steels in the NIMS Creep Data Sheets. The maximum time to rupture was 222,705.3 hours. The heat-to-heat variation in time to rupture of the 304HTB and 316HTB becomes more significant with longer test durations at times above ~10,000 hours at 973 K (700 °C) and reaches to about an order of magnitude difference between the strongest and weakest heats at 100,000 hours, whereas that of the 321HTB and 347HTB is very large of about an order of magnitude difference from a short time of ~100 hours to long times exceeding 100,000 hours at 873 K to 973 K (600 °C to 700 °C). The heat-to-heat variation in time to rupture is mainly explained by the effect of impurities: Al and Ti for the 304HTB and 316HTB, which reduces the concentration of dissolved nitrogen available for the creep strength by the formation of AlN and TiN during creep, and boron for the 347HTB, which enhances fine distributions of M23C6 carbides along grain boundaries. The heat-to-heat variation in time to rupture of the 321HTB is caused by the heat-to-heat variation in grain size, which is inversely proportional to the concentration of Ti. The fundamental creep rupture strength not influenced by impurities is estimated for the steels. The 100,000 hours-fundamental creep rupture strength of the 347HTB steel is lower than that of 304HTB and 316HTB at 873 K and 923 K (600 °C and 650 °C) because the slope of stress vs time to rupture curves is steeper in the 347HTB than in the 304HTB and 316HTB. The 100,000 hours-fundamental creep rupture strength of the 321HTB exhibits large variation depending on grain size.

  1. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    SciTech Connect

    Hampikian, J.M.; Carter, W.B.

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  2. TF-XRD examination of surface-reactive TiO2 coatings produced by heat treatment and CO2 laser treatment.

    PubMed

    Moritz, Niko; Areva, Sami; Wolke, Joop; Peltola, Timo

    2005-07-01

    When surface-reactive (bioactive) coatings are applied to medical implants by means of CO2 laser processing, the bioactivity of the surface of the implant can be locally modified to match the properties of the surrounding tissues to provide a firm fixation of the implant. The aim of this study was to compare the heat treated TiO2 coatings with the laser-treated TiO2 coatings in terms of amorphous-crystalline-phase development. The coatings were characterized with thin-film X-ray diffraction (TF-XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The TiO2 coatings heat treated at 500 degrees C known to be bioactive in SBF (simulated body fluid) consisted mainly of anatase with some rutile-phase, suggesting a predominant effect of anatase on reactivity of coatings. However, the coatings preheat-treated at 500 degrees C with further laser treatment exhibited enhanced bioactivity while consisting mainly of rutile. These findings indicated a key role of both rutile and anatase for the reactivity of the coatings. Without preheat treatment, by laser treatment alone, the amorphous titania coatings developed into mixed anatase/rutile containing coatings. This structural organization and the increase in crystal size are thus considered to be the reasons for their bioactivity. The SBF results indicate the possibility to control bioactivity by altering laser power used through the anatase/rutile crystallinity enhancement. PMID:15701375

  3. Comparative High-Temperature Corrosion Behavior of Ni-20Cr Coatings on T22 Boiler Steel Produced by HVOF, D-Gun, and Cold Spraying

    NASA Astrophysics Data System (ADS)

    Kaushal, Gagandeep; Bala, Niraj; Kaur, Narinder; Singh, Harpreet; Prakash, Satya

    2014-01-01

    To protect materials from surface degradations such as wear, corrosion, and thermal flux, a wide variety of materials can be deposited on the materials by several spraying processes. This paper examines and compares the microstructure and high-temperature corrosion of Ni-20Cr coatings deposited on T22 boiler steel by high velocity oxy-fuel (HVOF), detonation gun spray, and cold spraying techniques. The coatings' microstructural features were characterized by means of XRD and FE-SEM/EDS analyses. Based upon the results of mass gain, XRD, and FE-SEM/EDS analyses it may be concluded that the Ni-20Cr coating sprayed by all the three techniques was effective in reducing the corrosion rate of the steel. Among the three coatings, D-gun spray coating proved to be better than HVOF-spray and cold-spray coatings.

  4. Influence of the HVOF Gas Composition on the Thermal Spraying of WC-Co Submicron Powders (-8 + 1 μm) to Produce Superfine Structured Cermet Coatings

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Vogli, E.; Baumann, I.; Matthaeus, G.; Ostrowski, T.

    2008-12-01

    Thermal spraying technology represents a novel and promising approach to protect forming tools with complex surfaces and highest shape accuracy against abrasive wear and galling. However, due to high or nonuniform layer thicknesses or inappropriate surface roughness conventional coarse-structured coatings are not suitable to achieve this aim. The application of novel submicron or nanoscaled feedstock materials in the thermal spray process can provide the deposition of cermet coatings with significantly improved characteristics and is recently of great interest in science and industry. In this collaborative study, the feeding and HVOF spraying of WC-Co submicron powders (-8 + 1 μm) have been investigated to manufacture superfine structured, wear resistant, near-net-shape coatings with improved macroscopic properties and smooth surfaces. The influences of varying HVOF gas compositions on the spray process and the coating properties have been analyzed.

  5. Laser Surface Treatment of Hydro and Thermal Power Plant Components and Their Coatings: A Review and Recent Findings

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2015-11-01

    High-power diode laser (HPDL) surface modification of hydro and thermal power plant components is of the utmost importance to minimize their damages occurring due to cavitation erosion, water droplet erosion, and particle erosion (CE, WDE, and PE). Special emphasis is given on the HPDL surface treatment of martensitic and precipitate-hardened stainless steels, Ti6Al4V alloy, plasma ion nitro-carburized layers, high pressure high velocity oxy-fuel and twin-wire arc sprayed coatings. WDE test results of all these materials and coatings in `untreated' and `HPDL- treated at 1550 °C' conditions, up to 8.55 million cycles, are already available. Their WDE testing was further continued up to 10.43 million cycles. The X20Cr13 and X10CrNiMoV1222, the most common martensitic stainless steels used in hydro and thermal power plants, were HPDL surface treated at higher temperature (1650 °C) and their WDE test results were also obtained up to 10.43 million cycles. It is observed that the increased HPDL surface temperature from 1550 to 1650 °C has resulted in significant improvement in their WDE resistances because of increased martensitic (ά) phase at higher temperature. After conducting long-range WDE tests, the correlation of CE, WDE, and PE resistances of these materials and protective coatings with their mechanical properties such as fracture toughness and microhardness product, ultimate resilience, modified resilience, and ultimate modified resilience has been reviewed and discussed. One of the edges of a 500 MW low pressure steam turbine moving blade (X10CrNiMoV1222 stainless steel) was HPDL surface treated at 1550 °C and its radii of curvatures and deflections were measured. These were compared with the data available earlier from a flat rectangular sample of similar composition and identical HPDL surface temperature.

  6. A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures

    SciTech Connect

    Narita, Toshio

    2009-09-14

    Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4{sup th} generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional {beta}-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

  7. A View of Compatible Heat-Resistant Alloy and Coating Systems at High-Temperatures

    NASA Astrophysics Data System (ADS)

    Narita, Toshio

    2009-09-01

    Conventional and advanced coatings were reviewed, and it was pointed out that the coated Ni-base superalloys decreased their creep rupture life significantly at higher temperatures, and the advanced high strength superalloy became more remarkably. Concept of diffusion barrier coating system (DBC system) and their formation process was introduced, and the results obtained for several heat-resistant alloys, stainless steel (SUS310S), Ni-Mo base alloy (Hastelloy-X), and 4th generation single crystal superalloy (TMS-138) were given. It was noted that creep-rupture life of the SUS310S and Hastelloy-X with the DBC system became longer than those of the bare alloys with or without conventional β-NiAl coatings. This is due to slow creep-deformation of the Re-base alloy layer as the diffusion barrier. A novel concept based on combination of superalloys and coatings was proposed, by taking both the materials science and corrosion science into consideration.

  8. Method for producing evaporation inhibiting coating for protection of silicon--germanium and silicon--molybdenum alloys at high temperatures in vacuum

    DOEpatents

    Chao, P.J.

    1974-01-01

    A method is given for protecting Si--Ge and Si-- Mo alloys for use in thermocouples. The alloys are coated with silicon to inhibit the evaporation of the alloys at high tempenatures in a vacuum. Specific means and methods are provided. (5 fig) (Official Gazette)

  9. Microstructure and wear resistance of Al2O3-M7C3/Fe composite coatings produced by laser controlled reactive synthesis

    NASA Astrophysics Data System (ADS)

    Tan, Hui; Luo, Zhen; Li, Yang; Yan, Fuyu; Duan, Rui

    2015-05-01

    Based on the principle of thermite reaction of Al and Fe2O3 powders, the Al2O3 ceramic reinforced Fe-based composite coatings were fabricated on a steel substrate by laser controlled reactive synthesis and cladding. The effects of different additions of thermite reactants on the phase transition, microstructure evolution, microhardness and wear resistance of the composite coatings were investigated by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Vickers microhardness and block-on-ring wear test, respectively. The results show that Al2O3 ceramic and M7C3 carbide are in situ synthesized via the laser controlled reactive synthesis. The Al2O3 ceramic and M7C3 carbides prefer to distribute along the γ-Fe phase boundary continuously, which separates the γ-Fe matrix and is beneficial to the grain refinement. With the increase of thermite reactants, the amount of Al2O3 ceramic and M7C3 carbide in the composite coatings increases gradually. Moreover the cladding layer changes from dendritic structure to columnar structure and martensite structure in the heat affected zone becomes coarse. The increased thermite reactants improve the microhardness and wear resistance of the in situ composite coatings obviously and enhance the hardness of the heat affected zone, which should be ascribed to the grain refinement, ceramic and carbide precipitation and solid solution strengthening.

  10. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate elastohydrodynamic (EHD) sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as lubricant and 1 percent of 1,1,2-trichloroethane (TCE) as a surface-probing additive. TiN is chemically inert and its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN coated balls were higher. Nevertheless, no scuffing was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN coated balls and always when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichrosim of these bands were related to shear rates and inlet conditions of the EHD contact.

  11. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate EHD sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the steel balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as the lubricant and 1 percent of 1,1,2-trichloroethane TCE) as an additive with a high affinity for steel but a low affinity for TiN. TiN is chemically inert, but its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN-coated balls were higher. Nevertheless, no scuffng was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN-coated balls and with the steel balls when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichroism of these bands were related to shear rates and inlet conditions of the EHD contact.

  12. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  13. Coated Aerogel Beads

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  14. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2004-08-31

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  15. Solar selective absorption coatings

    DOEpatents

    Mahoney, Alan R.; Reed, Scott T.; Ashley, Carol S.; Martinez, F. Edward

    2003-10-14

    A new class of solar selective absorption coatings are disclosed. These coatings comprise a structured metallic overlayer such that the overlayer has a sub-micron structure designed to efficiently absorb solar radiation, while retaining low thermal emissivity for infrared thermal radiation. A sol-gel layer protects the structured metallic overlayer from mechanical, thermal, and environmental degradation. Processes for producing such solar selective absorption coatings are also disclosed.

  16. Effect of surfactant concentration in the electrolyte on the tribological properties of nickel-tungsten carbide composite coatings produced by pulse electro co-deposition

    NASA Astrophysics Data System (ADS)

    Kartal, Muhammet; Uysal, Mehmet; Gul, Harun; Alp, Ahmet; Akbulut, Hatem

    2015-11-01

    A nickel plating bath containing WC particles was used to obtain hard and wear-resistant particle reinforced Ni/WC MMCs on steel surfaces for anti-wear applications. Copper substrates were used for electro co-deposition of Ni matrix/WC with the particle size of <1 μm tungsten carbide reinforcements. The influence of surfactant (sodium dodecyl sulfate, SDS) concentration on particle distribution, microhardness and wear resistance of composite coatings has been studied. The nickel films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of the surfactant on the zeta potential, co-deposition and distribution of WC particles in the nickel matrix, as well as the tribological properties of composite coatings were also investigated. The tribological behaviors of the electrodeposited WC composite coatings sliding against M50 steel ball (Ø 10 mm) were examined on a CSM Instrument. All friction and wear tests were performed without lubrication at room temperature and in the ambient air (relative humidity 55-65%).

  17. Effect of particle concentration on the structure and tribological properties of submicron particle SiC reinforced Ni metal matrix composite (MMC) coatings produced by electrodeposition

    NASA Astrophysics Data System (ADS)

    Gül, H.; Kılıç, F.; Uysal, M.; Aslan, S.; Alp, A.; Akbulut, H.

    2012-03-01

    In the present work, a nickel sulfate bath containing SiC submicron particles between 100 and 1000 nm was used as the plating electrolyte. The aim of this work is to obtain Ni-SiC metal matrix composites (MMCs) reinforced with submicron particles on steel surfaces with high hardness and wear resistance for using in anti-wear applications such as dies, tools and working parts for automobiles and vehicles. The influence of the SiC content in the electrolyte on particle distribution, microhardness and wear resistance of nano-composite coatings was studied. During the electroplating process, the proper stirring speed was also determined for sub-micron SiC deposition with Ni matrix. The Ni films were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The depositions were controlled to obtain a specific thickness (between 50 and 200 μm) and volume fraction of the particles in the matrix (between 0.02 and 0.10). The hardness of the coatings was measured to be 280-571 HV depending on the particle volume in the Ni matrix. The tribological behaviors of the electrodeposited SiC nanocomposite coatings sliding against an M50 steel ball (Ø 10 mm) were examined on a tribometer. All the friction and wear tests were performed without lubrication at room temperature and in the ambient air (with a relative humidity of 55-65%). The results showed that the wear resistance of the nanocomposites was approximately 2-2.2 times more than those of unreinforced Ni.

  18. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  19. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  20. Zinc phosphate conversion coatings

    DOEpatents

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  1. Analysis of local regions near interfaces in nanostructured multicomponent (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition from an arc of an evaporating cathode

    NASA Astrophysics Data System (ADS)

    Krause-Rehberg, R.; Pogrebnyak, A. D.; Borisyuk, V. N.; Kaverin, M. V.; Ponomarev, A. G.; Bilokur, M. A.; Oyoshi, K.; Takeda, Y.; Beresnev, V. M.; Sobol', O. V.

    2013-08-01

    Multicomponent nanostructured (Ti-Zr-Hf-V-Nb)N coatings produced by the cathodic-arc-vapor-deposition method have been studied using several complementary methods of elemental and structural analysis, such as those based on the use of slow positron beam (SPB); proton microbeam (μ-PIXE); electron micro- and nanobeam (EDS and SEM analysis); and X-ray diffraction phase analysis (XRD), including the a-sin2ϕ method of measuring the stress-strain state (X-ray tensometry). The elemental composition, microstructure, residual stresses in nanograins, and in-depth and surface distributions of defects and atoms, as well as the phase composition, stress-strain state, and texture of the coatings have been studied in a 3D representation. It has been found that creating a state of elastic stress-strain compression in the coating can significantly enhance its resistance to oxidation upon annealing. A redistribution of elements and defects (their aligning and segregation) due to diffusion and termination of spinodal segregation has been revealed near interfaces, around grains and subgrains, which occurred without a significant change in the average size of nanograins.

  2. New nano-sized Al2O3-BN coating 3Y-TZP ceramic composites for CAD/CAM-produced all-ceramic dental restorations. Part I. Fabrication of powders.

    PubMed

    Yang, Se Fei; Yang, Li Qiang; Jin, Zhi Hao; Guo, Tian Wen; Wang, Lei; Liu, Hong Chen

    2009-06-01

    Partially sintered 3 mol % yttria-stabilized tetragonal zirconium dioxide (ZrO(2), zirconia) polycrystal (3Y-TZP) ceramics are used in dental posterior restorations with computer-aided design-computer-aided manufacturing (CAD/CAM) techniques. High strength is acquired after sintering, but shape distortion of preshaped compacts during their sintering is inevitable. The aim of this study is to fabricate new machinable ceramic composites with strong mechanical properties that are fit for all-ceramic dental restorations. Aluminum oxide (Al(2)O(3))-coated 3Y-TZP powders were first prepared by the heterogeneous precipitation method starting with 3Y-TZP, Al(NO(3))(3) . 9H(2)O, and ammonia, then amorphous boron nitride (BN) was produced and the as-received composite powders were coated via in situ reaction with boric acid and urea. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) were used to analyze the status of Al(2)O(3)-BN on the surface of the 3Y-TZP particles. TEM micrographs show an abundance of Al(2)O(3) particles and amorphous BN appearing uniformly on the surface of the 3Y-TZP particles after the coating process. The size of the Al(2)O(3) particles is about 20 nm. The XRD pattern shows clearly the peak of amorphous BN among the peaks of ZrO(2). PMID:19223246

  3. Selective coating for solar collectors

    SciTech Connect

    Schardein, D.J.

    1983-03-15

    A selective solar coating for solar collectors is disclosed. The coating is characterized by its high absorptance and low emittance. The coating comprises an organic compound or substance having a high molecular weight and a high carbon content, such as a petroleum, vegetable or animal oil, fat or wax, which is pyrolyzed to produce a carbon black pigmented varnish.

  4. Coatings for graphite fibers

    NASA Technical Reports Server (NTRS)

    Galasso, F. S.; Scola, D. A.; Veltri, R. D.

    1980-01-01

    Graphite fibers released from composites during burning or an explosion caused shorting of electrical and electronic equipment. Silicon carbide, silica, silicon nitride and boron nitride were coated on graphite fibers to increase their electrical resistances. Resistances as high as three orders of magnitude higher than uncoated fiber were attained without any significant degradation of the substrate fiber. An organo-silicone approach to produce coated fibers with high electrical resistance was also used. Celion 6000 graphite fibers were coated with an organo-silicone compound, followed by hydrolysis and pyrolysis of the coating to a silica-like material. The shear and flexural strengths of composites made from high electrically resistant fibers were considerably lower than the shear and flexural strengths of composites made from the lower electrically resistant fibers. The lower shear strengths of the composites indicated that the coatings on these fibers were weaker than the coating on the fibers which were pyrolyzed at higher temperature.

  5. Microstructure and corrosion behavior of TiC/Ti(CN)/TiN multilayer CVD coatings on high strength steels

    NASA Astrophysics Data System (ADS)

    Zhang, Jin; Xue, Qi; Li, Songxia

    2013-09-01

    Titanium carbide/titanium carbonitride/titanium nitride (TiC/Ti(CN)/TiN) multilayer coatings are prepared on the surface of three high-strength steels (35CrMo, 42CrMo, and 40CrNiMo) by chemical vapor deposition method. The fracture morphology, elemental distribution, phase composition, micro-hardness, and adhesion of the multilayer film are analyzed. The hydrogen sulfide stress corrosion resistance of the coating is evaluated by the National Association of Corrosion Engineers saturated hydrogen sulfide solution immersion test. A test simulating the environment of the natural gas wells with high temperature and pressure in Luojiazhai in Sichuan is also performed. The results show that the multilayer coatings have dense structures, ∼11 μm thickness, 24.5 ± 2.0 GPa nano-hardness, and ∼70 N adhesion. The corrosion sample also shows no brittle failure induced by stress corrosion after treatment with the coating. Gravimetric analysis shows that the deposition of TiC/Ti(CN)/TiN multilayer coatings results in a corrosion rate reduction of at least 50 times compared with the high-strength steel substrate. A preliminary analysis on this phenomenon is conducted.

  6. Fiber coating with suspensions

    NASA Astrophysics Data System (ADS)

    Abkarian, Manouk; Nunes, Janine K.; Stone, Howard A.

    2003-11-01

    The basic features of fiber coating with Newtonian fluids are well characterized at low capillary numbers by the Landau-Levich-Derjaguin analysis. Several extensions have been reported including studies of the influence of polymers, surfactants, and emulsions. Here we present an experimental study of fiber coating with suspensions of micron-sized particles where we perform direct visualization of the coating process using fluorescent particles. The addition of particles to the coating liquid produce several novel effects including (a) accumulation of particles in the neighborhood of the meniscus, which changes the dynamics of the coating process, and (b) crystallization can occur on the fiber, in some cases in the form of a continuous film that is at most a few particles thick, and which depends on capillary number. These results using continuous withdrawal will be contrasted with those reported in the literature for colloidal cystallization produced by evaporative processes.

  7. Reduction of hematite with ethanol to produce magnetic nanoparticles of Fe3O4, Fe1 - x O or Fe0 coated with carbon

    NASA Astrophysics Data System (ADS)

    Tristão, Juliana C.; Ardisson, José D.; Sansiviero, Maria Terezinha C.; Lago, Rochel M.

    2010-01-01

    The production of magnetic nanoparticles of Fe3O4 or Fe0 coated with carbon and carbon nanotubes was investigated by the reduction of hematite with ethanol in a Temperature Programmed Reaction up to 950°C. XRD and Mössbauer measurements showed after reaction at 350°C the partial reduction of hematite to magnetite. At 600°C the hematite is completely reduced to magnetite (59%), wüstite (39%) and metallic iron (7%). At higher temperatures, carbide and metallic iron are the only phases present. TG weight losses suggested the formation of 3-56 wt.% carbon deposits after reaction with ethanol. It was observed by SEM images a high concentration of nanometric carbon filaments on the material surface. BET analyses showed a slight increase in the surface area after reaction. These materials have potential application as catalyst support and removal of spilled oil contaminants.

  8. Incidence of Lettuce mosaic virus in lettuce and its detection by polyclonal antibodies produced against recombinant coat protein expressed in Escherichia coli.

    PubMed

    Sharma, Prachi; Sharma, Susheel; Singh, Jasvir; Saha, Swati; Baranwal, V K

    2016-04-01

    Lettuce mosaic virus (LMV), a member of the genus Potyvirus of family Potyviridae, causes mosaic disease in lettuce has recently been identified in India. The virus is seed borne and secondary infection occurs through aphids. To ensure virus freedom in seeds it is important to develop diagnostic tools, for serological methods the production of polyclonal antibodies is a prerequisite. The coat protein (CP) gene of LMV was amplified, cloned and expressed using pET-28a vector in Escherichia coli BL21DE3 competent cells. The LMV CP was expressed as a fusion protein containing a fragment of the E. coli His tag. The LMV CP/His protein reacted positively with a commercial antiserum against LMV in an immunoblot assay. Polyclonal antibodies purified from serum of rabbits immunized with the fusion protein gave positive results when LMV infected lettuce (Lactuca sativa) was tested at 1:1000 dilution in PTA-ELISA. These were used for specific detection of LMV in screening lettuce accessions. The efficacy of the raised polyclonal antiserum was high and it can be utilized in quarantine and clean seed production. PMID:26850143

  9. COATED ALLOYS

    DOEpatents

    Harman, C.G.; O'Bannon, L.S.

    1958-07-15

    A coating is described for iron group metals and alloys, that is particularly suitable for use with nickel containing alloys. The coating is glassy in nature and consists of a mixture containing an alkali metal oxide, strontium oxide, and silicon oxide. When the glass coated nickel base metal is"fired'' at less than the melting point of the coating, it appears the nlckel diffuses into the vitreous coating, thus providing a closely adherent and protective cladding.

  10. Aluminide coatings

    DOEpatents

    Henager, Jr; Charles, H [Kennewick, WA; Shin, Yongsoon [Richland, WA; Samuels, William D [Richland, WA

    2009-08-18

    Disclosed herein are aluminide coatings. In one embodiment coatings are used as a barrier coating to protect a metal substrate, such as a steel or a superalloy, from various chemical environments, including oxidizing, reducing and/or sulfidizing conditions. In addition, the disclosed coatings can be used, for example, to prevent the substantial diffusion of various elements, such as chromium, at elevated service temperatures. Related methods for preparing protective coatings on metal substrates are also described.

  11. Aerocoat 7 Replacement Coatings

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Kennedy Space Center has used Aerocoat 7 (AR-7) to protect stainless-steel flex hoses at Launch Complex (LC-39) and hydraulic lines of the Mobile Launcher Platform (MLP) because it provides excellent corrosion protection in low-temperature applications. The Sovereign Company produced AR-7 exclusively for NASA but discontinued production because the coating released high levels of volatile organic compounds (VOCs) and had a significant environmental impact. The purpose of this project was to select and evaluate potential replacement coatings for AR-7 that would be more environmentally sound. The physical and mechanical properties of commercially available coatings were investigated through the Internet. The ideal coating would be fluid enough to penetrate the outer mesh of a stainless-steel flex hose and coat the inner hose, and flexible enough to withstand the movement of the hose, as well as the expansion and contraction of its metal caused by changes in temperature.

  12. Coated microneedles for transdermal delivery

    PubMed Central

    Gill, Harvinder S.; Prausnitz, Mark R.

    2007-01-01

    Coated microneedles have been shown to deliver proteins and DNA into the skin in a minimally invasive manner. However, detailed studies examining coating methods and their breadth of applicability are lacking. This study’s goal was to develop a simple, versatile and controlled microneedle coating process to make uniform coatings on microneedles and establish the breadth of molecules and particles that can be coated onto microneedles. First, microneedles were fabricated from stainless steel sheets as single microneedles or arrays of microneedles. Next, a novel micron-scale dip-coating process and a GRAS coating formulation were designed to reliably produce uniform coatings on both individual and arrays of microneedles. This process was used to coat compounds including calcein, vitamin B, bovine serum albumin and plasmid DNA. Modified vaccinia virus and microparticles of 1 to 20 μm diameter were also coated. Coatings could be localized just to the needle shafts and formulated to dissolve within 20 s in porcine cadaver skin. Histological examination validated that microneedle coatings were delivered into the skin and did not wipe off during insertion. In conclusion, this study presents a simple, versatile, and controllable method to coat microneedles with proteins, DNA, viruses and microparticles for rapid delivery into the skin. PMID:17169459

  13. Natural-oxide solar-collector coatings

    NASA Technical Reports Server (NTRS)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  14. Electrodeposition of nickel composite coatings

    NASA Astrophysics Data System (ADS)

    Borkar, Tushar

    Pulse electrodeposition (PC) and pulse reverse electrodeposition (PRC) bring a new era in improving the surface properties of metals. These processes are associated with many advantages, such as reduction in porosity, low level of inclusions, and higher deposition rates compared to direct current (DC) electrodeposition process. There is much more flexibility in varying three basic parameters which are, pulse current density, on time, and off time in pulse electrodeposition resulting in unique composition and microstructure of coating being deposited. In this work, nickel matrix composite coatings were synthesized by co-depositing nano particles (Al2O3, SiC, and ZrO2) from Watts bath. To get detailed insight into effect of processing parameters on the microstructure, mechanical, and tribological properties of the composite coatings, the coatings were also fabricated using DC, PC, and PRC techniques. Also, the effect of bath loading on the level of reinforcement in the coating was investigated for Ni-Al2O 3 composite coatings. Furthermore an attempt was made to produce Ni-CNT coatings by pulse electrodeposition method. Pure nickel coatings were also prepared for comparison. Composite coatings deposited using PC and PRC techniques exhibited significant improvement in microhardness and wear resistance. The presence of nanoparticles in the composite coating seems to prohibit the columnar growth of the nickel grains resulting in random/weak texture and smaller thickness of the composite coatings. Ni-Al2O3 composite coatings show maximum hardness and wear resistance compared to Ni-SiC and Ni-ZrO 2 composite coatings. As Al2O3 content in electroplating bath increases, Microhardness and wear resistance of composite coatings increases but thickness of the coatings decreases due to nanoparticles obstructing grain growth. The Ni-CNT composite coatings exhibited significantly improved microhardness compared to pure nickel coatings.

  15. HVOF coatings of Diamalloy 2002 and Diamalloy 4010 onto steel: Tensile and bending response of coatings

    SciTech Connect

    Al-Shehri, Y. A.; Hashmi, M. S. J.; Yilbas, B. S.

    2011-01-17

    HVOF coating of Diamalloy 2002 powders and Diamalloy 4010 powders as well as two-layered coatings consisting of these powders is carried out. In the two-layered structure, Diamalloy 4010 is sprayed at the substrate surface while Diamalloy 2002 is sprayed on the top of Diamalloy 4010 coating. The mechanical properties of the coatings are examined through tensile and three-point bending tests. The coating microstructure and morphology are examined using the Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the coating produced is free from defects including voids and cracks. The failure mechanism of coating during tensile and three-point bending tests is mainly crack formation and propagation in the coating. The elastic modulus of coating produced from Diamalloy 2002 is higher than that of Diamalloy 4010 coating, which is due to the presence of 12% WC in the coating.

  16. Coating Process

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A black chrome coating, originally developed for spacecraft solar cells, led to the development of an efficient flat plate solar collector. The coating, called Chromonyx, helps the collector absorb more heat. Olympic Solar Corporation was formed to electroplate the collector. The coating technique allows 95% of the sun's energy to be utilized. The process is widely used.

  17. Coating Reduces Ice Adhesion

    NASA Technical Reports Server (NTRS)

    Smith, Trent; Prince, Michael; DwWeese, Charles; Curtis, Leslie

    2008-01-01

    The Shuttle Ice Liberation Coating (SILC) has been developed to reduce the adhesion of ice to surfaces on the space shuttle. SILC, when coated on a surface (foam, metal, epoxy primer, polymer surfaces), will reduce the adhesion of ice by as much as 90 percent as compared to the corresponding uncoated surface. This innovation is a durable coating that can withstand several cycles of ice growth and removal without loss of anti-adhesion properties. SILC is made of a binder composed of varying weight percents of siloxane(s), ethyl alcohol, ethyl sulfate, isopropyl alcohol, and of fine-particle polytetrafluoroethylene (PTFE). The combination of these components produces a coating with significantly improved weathering characteristics over the siloxane system alone. In some cases, the coating will delay ice formation and can reduce the amount of ice formed. SILC is not an ice prevention coating, but the very high water contact angle (greater than 140 ) causes water to readily run off the surface. This coating was designed for use at temperatures near -170 F (-112 C). Ice adhesion tests performed at temperatures from -170 to 20 F (-112 to -7 C) show that SILC is a very effective ice release coating. SILC can be left as applied (opaque) or buffed off until the surface appears clear. Energy dispersive spectroscopy (EDS) and x-ray photoelectron spectroscopy (XPS) data show that the coating is still present after buffing to transparency. This means SILC can be used to prevent ice adhesion even when coating windows or other objects, or items that require transmission of optical light. Car windshields are kept cleaner and SILC effectively mitigates rain and snow under driving conditions.

  18. Manufacturing and producibility technology

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.; Dreshfield, R. L.

    1985-01-01

    Activities of the manufacturing/producibility working group within the Advanced High-Pressure O2/H2 Technology Program are summarized. The objectives of the M/P working group are: to develop and evaluate process and manufacturing techniques for advanced propulsion hardware design and selected materials; and to optimize the producibility of (SSME) components and assemblies by improved performance, increased life, greater reliability, and/or reduced cost. The technologies being developed include: plasma arc, laser, and inertia welding; combustion chamber and turbine blade coatings; coating processes; high performance alloy electroforming; and process control technology.

  19. Methods for Coating Particulate Material

    NASA Technical Reports Server (NTRS)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  20. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  1. Thermoplastic coating of carbon fibers

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  2. Efficient Utilization of Nickel Laterite to Produce Master Alloy

    NASA Astrophysics Data System (ADS)

    Ma, Xiaodong; Cui, Zhixiang; Zhao, Baojun

    2016-07-01

    To lower the smelting temperature associated with the carbothermic reduction processing of laterite, the optimization of slag and alloy systems was investigated to enable the reduction of laterite ore in the molten state at 1723 K. The master Fe-Ni-Mo alloy was successfully produced at a lower temperature (1723 K). The liquidus of the slag decreased with the addition of oxide flux (Fe2O3 and CaO) and that of the ferronickel alloy decreased with the addition of Mo/MoO3. More effective metal-slag separation was achieved at 1723 K, which reduces the smelting temperature by 100 K compared with the current electric furnace process. A small addition of Mo/MoO3 not only decreased the melting point of ferronickel alloys but also served as a collector to aggregate the ferronickel sponges allowing them to grow larger. The FeO concentration in the slag and the nickel grade of the alloy decreased with increasing graphite reductant addition.

  3. Morbus Coats

    PubMed Central

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  4. Environmental Barrier Coatings Having a YSZ Top Coat

    NASA Technical Reports Server (NTRS)

    Lee, Kang N.; Gray, Hugh (Technical Monitor)

    2002-01-01

    Environmental barrier coatings (EBCs) with a Si bond coat, a yttria-stabilized zirconia (YSZ) top coat, and various intermediate coats were investigated. EBCs were processed by atmospheric pressure plasma spraying. The EBC durability was determined by thermal cycling tests in water vapor at 1300 C and 1400 C, and in air at 1400 C and 1500 C. EBCs with a mullite (3Al2O3 (dot) 2SiO2) + BSAS (1 - xBaO (dot) xSrO (dot) Al2O3 (dot) 2SiO2) intermediate coat were more durable than EBCs with a mullite intermediate coat, while EBCs with a mullite/BSAS duplex intermediate coat resulted in inferior durability. The improvement with a mullite + BSAS intermediate coat was attributed to enhanced compliance of the intermediate coat due to the addition of a low modulus BSAS second phase. Mullite + BSAS/YSZ and BSAS/YSZ interfaces produced a low melting (less than 1400 C) reaction product, which is expected to degrade the EBC performance by increasing the thermal conductivity. EBCs with a mullite + BSAS / graded mullite + YSZ intermediate coat showed the best durability among the EBCs investigated in this study. This improvement was attributed to diffused CTE (Coefficient of Thermal Expansion) mismatch stress and improved chemical stability due to the compositionally graded mullite+YSZ layer.

  5. Dissolution kinetics of calcium phosphate coatings.

    PubMed

    Burke, E M; Lucas, L C

    1998-01-01

    Plasma spray and high velocity oxy-fuel (HVOF) techniques produce coatings with varying composition and amounts of amorphous and crystalline phases. For coatings containing greater amorphous phases, a higher release of calcium ions is evident when samples are placed in Hank's calcium-free balanced salt solutions. Calcium is released from the amorphous phases in the coating, a conclusion that is supported by x-ray powder diffraction (XRD) results. Ion beam sputtering and RF magnetron sputtering under lower energy conditions produce amorphous coatings that will dissolve in a very short time period. When heat treated, crystalline phases are produced in the coatings. Heat-treated coatings are significantly more stable than the amorphous coatings. The dissolution rates of both amorphous and crystalline coatings produced by RF magnetron sputtering have been measured under constant solution conditions at pH 6.50. No reprecipitation is possible under these conditions. The amorphous coating dissolved at a significantly higher rate than the heat-treated coating. Reprecipitation of calcium phosphate onto amorphous coatings is possible in a physiological pH solution. Under these conditions, the dissolution rate of the amorphous coating is four times slower than at the pH 6.50 conditions. PMID:10196809

  6. Absorptive coating for aluminum solar panels

    NASA Technical Reports Server (NTRS)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  7. Formulation and production of intumescent coating systems

    NASA Technical Reports Server (NTRS)

    Hoffman, J.; Schwartz, H. R.

    1973-01-01

    Methods for manufacturing and producing fire protective intumescent coatings are described. The coatings consist of three reactive parts mixed together at the time of use. The chemical composition of the reactive parts is discussed. The characteristics of the coatings which are obtained by three types of processing are analyzed. Qualification tests of the materials to determine acceptability are reported.

  8. Abrasion-resistant coatings for plastic surfaces

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Hollahan, J. R.

    1976-01-01

    Optically clear composition of organosilicon compounds insulates plastic surfaces and protects them from abrasion. Plasma polymerization process produces superior uniformity and clarity than previous coating techniques.

  9. Characterization of thermal spray coatings

    SciTech Connect

    Schorr, B.S.; Stein, K.J.; Marder, A.R.

    1999-02-01

    The ability to characterize fully the microstructure of a coating is paramount for understanding the in-service properties and eventual optimization of the coating. This article discusses sample preparation and subsequent analytical techniques (LOM, SEM, XRD, WDS, and QIA) for several cermet thermal spray coatings and provides a detailed analysis of as-sprayed microstructures in addition to processing trends for several FeCrAIY-carbide coatings. It was found that the splats produced in these high velocity oxy-fuel (HVOF) coatings tended to exhibit a predominantly dendritic structure most likely retained from the gas atomization process that produced the original powder. Chemical analysis showed that the carbides tend to break down during spraying producing a complex mixture of oxides and various carbides. Finally, image analysis revealed that as the carbides in the pre-sprayed powder were increased, more carbides and oxides with less FeCrAIY and thinner coatings were found. These techniques allow the thorough characterization of thermal spray cermet coatings, which in turn should further the understanding of the thermal spray processes and help provide superior coatings in the future.

  10. Coated foams, preparation, uses and articles

    DOEpatents

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.