Science.gov

Sample records for nicotiana tabacum defence

  1. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22.

    PubMed

    Mhlongo, Msizi I; Piater, Lizelle A; Madala, Ntakadzeni E; Steenkamp, Paul A; Dubery, Ian A

    2016-01-01

    Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role. PMID:26978774

  2. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22

    PubMed Central

    Mhlongo, Msizi I.; Piater, Lizelle A.; Madala, Ntakadzeni E.; Steenkamp, Paul A.; Dubery, Ian A.

    2016-01-01

    Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role. PMID:26978774

  3. Rapid metabolic profiling of Nicotiana tabacum defence responses against Phytophthora nicotianae using direct infrared laser desorption ionization mass spectrometry and principal component analysis

    PubMed Central

    2010-01-01

    Background Successful defence of tobacco plants against attack from the oomycete Phytophthora nicotianae includes a type of local programmed cell death called the hypersensitive response. Complex and not completely understood signaling processes are required to mediate the development of this defence in the infected tissue. Here, we demonstrate that different families of metabolites can be monitored in small pieces of infected, mechanically-stressed, and healthy tobacco leaves using direct infrared laser desorption ionization orthogonal time-of-flight mass spectrometry. The defence response was monitored for 1 - 9 hours post infection. Results Infrared laser desorption ionization orthogonal time-of-flight mass spectrometry allows rapid and simultaneous detection in both negative and positive ion mode of a wide range of naturally occurring primary and secondary metabolites. An unsupervised principal component analysis was employed to identify correlations between changes in metabolite expression (obtained at different times and sample treatment conditions) and the overall defence response. A one-dimensional projection of the principal components 1 and 2 obtained from positive ion mode spectra was used to generate a Biological Response Index (BRI). The BRI obtained for each sample treatment was compared with the number of dead cells found in the respective tissue. The high correlation between these two values suggested that the BRI provides a rapid assessment of the plant response against the pathogen infection. Evaluation of the loading plots of the principal components (1 and 2) reveals a correlation among three metabolic cascades and the defence response generated in infected leaves. Analysis of selected phytohormones by liquid chromatography electrospray ionization mass spectrometry verified our findings. Conclusion The described methodology allows for rapid assessment of infection-specific changes in the plant metabolism, in particular of phenolics, alkaloids

  4. A new benzofuran derivative from Nicotiana tabacum.

    PubMed

    Xia, Jian-Jun; Li, Yuan-Dong; Liu, Xiu-Ming; Lu, Yuan; Wu, Yi-Qin; Qin, Yun-Hua

    2016-08-01

    A new benzofuran derivative, methyl 3-acetyl-7-hydroxy-6-methoxy-2-methylbenzofuran-4-carboxylate (1), and a known compound pyrrolezanthine (2), were isolated from leaves of Nicotiana tabacum. Compound 1 was elucidated by means of spectroscopic methods, as well as X-ray diffraction. Both compounds 1 and 2 exhibited moderate inhibitory activities on human cancer cell lines. PMID:26982907

  5. Two new sesquiterpenoid glycosides from Nicotiana tabacum.

    PubMed

    Yang, Cai-Yan; Geng, Chang-An; Ma, Yun-Bao; Huang, Xiao-Yan; Zhang, Xue-Mei; Zhou, Jun; Chen, Ji-Jun

    2014-01-01

    Two new sesquiterpenoid glycosides, nicotabalactonecoside (1) and nicotabadiolcoside (2), along with four known terpenoids (3-6) were isolated from the leaves of Nicotiana tabacum. The structures of compounds 1 and 2 were determined as dihydrodeacetylphytuberin-2-one 11-O-β-D-glucopyranoside and 1,2-dehydro-4-epieremophil-9-ene-11,12-diol 12-O-β-D-glucopyranoside by extensive spectroscopic analyses (HR-ESI-MS, UV, IR, 1D, and 2D NMR) and chemical method. Compound 1 is an unusual phytuberin-type sesquiterpenoid with a 6/5/5 tricyclic system. PMID:24911395

  6. Antiviral sesquiterpenes from leaves of Nicotiana tabacum.

    PubMed

    Shang, Shan-Zhai; Zhao, Wei; Tang, Jian-Guo; Xu, Xing-Meng; Sun, Han-Dong; Pu, Jian-Xin; Liu, Zhi-Hua; Miao, Ming-Ming; Chen, Yong-Kuan; Yang, Guang-Yu

    2016-01-01

    Three unreported sesquiterpenes possessing two new skeletons, tabasesquiterpenes A-C (1-3), together with three known sesquiterpenes (3-6) were isolated from the leaves of Nicotiana tabacum. Their structures were determined mainly by spectroscopic methods, including extensive 1D- and 2D-NMR techniques. Compounds 1-6 were evaluated for their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compound 2 exhibited high anti-TMV activity with inhibition rate of 35.2%, which were higher than that of positive control (ningnanmycin). The other compounds also showed potential anti-TMV activity with inhibition rates in the range of 20.5-28.6%. PMID:26581121

  7. Detection of Nicotiana tabacum Leaf Contamination in Pharmaceutical Products.

    PubMed

    Tokumoto, Hiroko; Shimomura, Hiroko; Hakamatsuka, Takashi; Ozeki, Yoshihiro; Goda, Yukihiro

    2016-08-01

    Nicotiana tabacum (Solanaceae) is the only species whose leaves can be legally marketed as tobacco according to the Japanese Tobacco Business Act. Nicotine, a major alkaloid produced by N. tabacum leaves, is regulated in pharmaceuticals by the Japanese Pharmaceutical Affairs Law. However, the use of N. tabacum stems as an excipient in pharmaceuticals is permitted, because these contained only a small amount of nicotine. Recently, several reports showed that a substantial amount of nicotine was detected in an OTC pharmaceutical product, in which N. tabacum stems were used as an excipient. Therefore, products containing N. tabacum stems could be contaminated with the leaf material. In the present study, we established a method to detect contamination of N. tabacum stem materials with its leaves, using microscopy to obtain standard reference microphotographs for identification. Cultivated N. tabacum stems and leaves, commercial cigarette leaves, and N. tabacum tissue imported as excipient material were used for preparing the microphotographs. The characteristic N. tabacum leaf structures found in the powdered fragments included: epidermal cells with sinuous anticlinal cell walls, hairs, mesophyll parenchyma with crystalized calcium oxalate (calciphytoliths), and branching vascular bundles derived from reticulate net-veins. A comparison of the microscopic characteristics of an OTC powder with those from the standard reference microphotographs was an effective method for N. tabacum stem and leaf identification. Thus, we evaluated the powdered pharmaceutical product containing N. tabacum stem tissue and Hydrangea serrata (Hydrangeaceae) leaf tissue as excipients, and confirmed the presence of N. tabacum leaf material. PMID:27237788

  8. Silicon delays tobacco Ringspot virus systemic symptoms in Nicotiana tabacum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soluble silicon (Si) provides protection to plants against a variety of abiotic and biotic stress. However, the role of Si in viral infections has been elusive. To investigate the role of Si in viral infections, hydroponic studies were conducted in Nicotiana tabacum with two pathogens: Tobacco rings...

  9. Piriformospora indica confers cadmium tolerance in Nicotiana tabacum.

    PubMed

    Hui, Feiqiong; Liu, Jian; Gao, Qikang; Lou, Binggan

    2015-11-01

    Piriformospora indica, a root-colonizing endophytic fungus of Sebacinales, promotes plant growth and confers resistance against biotic and abiotic stresses. In order to confirm the influence of P. indica on growth, proline, malondialdehyde (MDA), chlorophyll, and cadmium (Cd) amounts in Nicotiana tabacum under Cd stress, hydroponics, pot and field trials were conducted. The results showed that P. indica can store Cd in plant roots and reduce leaf Cd content, reduce the concentration of MDA, and increase the proline and chlorophyll content and the activities of catalase, peroxidase, and superoxide dismutase under hydroponic Cd stress. RT-PCR analysis showed that the relative expression level of genes Gsh2, TaPCS1, oas1, GPX, and Hsp70 in colonized plants was 4.3, 1.4, 2.9, 1.7, and 6.9 fold higher than in un-colonized plants respectively. Cd exposure significantly reduced un-colonized plants' agronomic traits compared to P. indica-colonized ones. Our results suggested that P. indica can sequester Cd in roots, so that much less cadmium was transported to leaves, and the increased concentrations of antioxidant enzymes, pigments and proline contents, as well as the higher expression of stress-related phytochelatin biosynthesis genes in P. indica-inoculated plants, may also serve to protect N. tabacum plants against oxidative damage, enhancing Cd tolerance. PMID:26574103

  10. Pollination triggers female gametophyte development in immature Nicotiana tabacum flowers.

    PubMed

    Brito, Michael S; Bertolino, Lígia T; Cossalter, Viviane; Quiapim, Andréa C; DePaoli, Henrique C; Goldman, Gustavo H; Teixeira, Simone P; Goldman, Maria H S

    2015-01-01

    In Nicotiana tabacum, female gametophytes are not fully developed at anthesis, but flower buds pollinated 12 h before anthesis produce mature embryo sacs. We investigated several pollination-associated parameters in N. tabacum flower buds to determine the developmental timing of important events in preparation for successful fertilization. First, we performed hand pollinations in flowers from stages 4 to 11 to study at which developmental stage pollination would produce fruits. A Peroxtesmo test was performed to correlate peroxidase activity on the stigma surface, indicative of stigma receptivity, with fruit set. Pollen tube growth and female gametophyte development were microscopically analyzed in pistils of different developmental stages. Fruits were obtained only after pollinations of flower buds at late stage 7 and older; fruit weight and seed germination capacity increased as the developmental stage of the pollinated flower approached anthesis. Despite positive peroxidase activity and pollen tube growth, pistils at stages 5 and 6 were unable to produce fruits. At late stage 7, female gametophytes were undergoing first mitotic division. After 24 h, female gametophytes of unpollinated pistils were still in the end of the first division, whereas those of pollinated pistils showed egg cells. RT-qPCR assay showed that the expression of the NtEC1 gene, a marker of egg cell development, is considerably higher in pollinated late stage 7 ovaries compared with unpollinated ovaries. To test whether ethylene is the signal eliciting female gametophyte maturation, the expression of ACC synthase was examined in unpollinated and pollinated stage 6 and late stage 7 stigmas/styles. Pollination induced NtACS expression in stage 6 pistils, which are unable to produce fruits. Our results show that pollination is a stimulus capable of triggering female gametophyte development in immature tobacco flowers and suggests the existence of a yet undefined signal sensed by the pistil. PMID

  11. Pollination triggers female gametophyte development in immature Nicotiana tabacum flowers

    PubMed Central

    Brito, Michael S.; Bertolino, Lígia T.; Cossalter, Viviane; Quiapim, Andréa C.; DePaoli, Henrique C.; Goldman, Gustavo H.; Teixeira, Simone P.; Goldman, Maria H. S.

    2015-01-01

    In Nicotiana tabacum, female gametophytes are not fully developed at anthesis, but flower buds pollinated 12 h before anthesis produce mature embryo sacs. We investigated several pollination-associated parameters in N. tabacum flower buds to determine the developmental timing of important events in preparation for successful fertilization. First, we performed hand pollinations in flowers from stages 4 to 11 to study at which developmental stage pollination would produce fruits. A Peroxtesmo test was performed to correlate peroxidase activity on the stigma surface, indicative of stigma receptivity, with fruit set. Pollen tube growth and female gametophyte development were microscopically analyzed in pistils of different developmental stages. Fruits were obtained only after pollinations of flower buds at late stage 7 and older; fruit weight and seed germination capacity increased as the developmental stage of the pollinated flower approached anthesis. Despite positive peroxidase activity and pollen tube growth, pistils at stages 5 and 6 were unable to produce fruits. At late stage 7, female gametophytes were undergoing first mitotic division. After 24 h, female gametophytes of unpollinated pistils were still in the end of the first division, whereas those of pollinated pistils showed egg cells. RT-qPCR assay showed that the expression of the NtEC1 gene, a marker of egg cell development, is considerably higher in pollinated late stage 7 ovaries compared with unpollinated ovaries. To test whether ethylene is the signal eliciting female gametophyte maturation, the expression of ACC synthase was examined in unpollinated and pollinated stage 6 and late stage 7 stigmas/styles. Pollination induced NtACS expression in stage 6 pistils, which are unable to produce fruits. Our results show that pollination is a stimulus capable of triggering female gametophyte development in immature tobacco flowers and suggests the existence of a yet undefined signal sensed by the pistil. PMID

  12. Spider silk-like proteins derived from transgenic Nicotiana tabacum.

    PubMed

    Peng, Congyue Annie; Russo, Julia; Gravgaard, Charlene; McCartney, Heather; Gaines, William; Marcotte, William R

    2016-08-01

    The high tensile strength and biocompatibility of spider dragline silk makes it a desirable material in many engineering and tissue regeneration applications. Here, we present the feasibility to produce recombinant proteins in transgenic tobacco Nicotiana tabacum with sequences representing spider silk protein building blocks . Recombinant mini-spidroins contain native N- and C-terminal domains of major ampullate spidroin 1 (rMaSp1) or rMaSp2 flanking an abbreviated number (8, 16 or 32) of consensus repeat domains. Two different expression plasmid vectors were tested and a downstream chitin binding domain and self-cleavable intein were included to facilitate protein purification. We confirmed gene insertion and RNA transcription by PCR and reverse-transcriptase PCR, respectively. Mini-spidroin production was detected by N-terminus specific antibodies. Purification of mini-spidroins was performed through chitin affinity chromatography and subsequent intein activation with reducing reagent. Mini-spidroins, when dialyzed and freeze-dried, formed viscous gelatin-like fluids. PMID:27026165

  13. Nucleotide sequence of the tobacco (Nicotiana tabacum) anionic peroxidase gene

    SciTech Connect

    Diaz-De-Leon, F.; Klotz, K.L.; Lagrimini, L.M. )

    1993-03-01

    Peroxidases have been implicated in numerous physiological processes including lignification (Grisebach, 1981), wound-healing (Espelie et al., 1986), phenol oxidation (Lagrimini, 1991), pathogen defense (Ye et al., 1990), and the regulation of cell elongation through the formation of interchain covalent bonds between various cell wall polymers (Fry, 1986; Goldberg et al., 1986; Bradley et al., 1992). However, a complete description of peroxidase action in vivo is not available because of the vast number of potential substrates and the existence of multiple isoenzymes. The tobacco anionic peroxidase is one of the better-characterized isoenzymes. This enzyme has been shown to oxidize a number of significant plant secondary compounds in vitro including cinnamyl alcohols, phenolic acids, and indole-3-acetic acid (Maeder, 1980; Lagrimini, 1991). A cDNA encoding the enzyme has been obtained, and this enzyme was shown to be expressed at the highest levels in lignifying tissues (xylem and tracheary elements) and also in epidermal tissue (Lagrimini et al., 1987). It was shown at this time that there were four distinct copies of the anionic peroxidase gene in tobacco (Nicotiana tabacum). A tobacco genomic DNA library was constructed in the [lambda]-phase EMBL3, from which two unique peroxidase genes were sequenced. One of these clones, [lambda]POD1, was designated as a pseudogene when the exonic sequences were found to differ from the cDNA sequences by 1%, and several frame shifts in the coding sequences indicated a dysfunctional gene (the authors' unpublished results). The other clone, [lambda]POD3, described in this manuscript, was designated as the functional tobacco anionic peroxidase gene because of 100% homology with the cDNA. Significant structural elements include an AS-2 box indicated in shoot-specific expression (Lam and Chua, 1989), a TATA box, and two intervening sequences. 10 refs., 1 tab.

  14. Production, partial purification and characterization of xylanase using Nicotiana tabacum leaf dust as substrate.

    PubMed

    Acharya, Komal P; Shilpkar, Prateek

    2016-03-01

    Isolated Bacillus sp. was used in the present study for production of xylanase from Nicotiana tabacum leaf dust. The strain was able to give a maximum of 1.77 Uml⁻¹ xylanase activity under optimized fermentation conditions which was further increased upto 2.77 Uml⁻¹ after extraction and partial purification of enzyme. After partial purification, the enzyme was characterized and it gave the highest xylanase activity at pH 7.0, when 0.2 ml enzyme was incubated with 2.0% substrate (Nicotiana tabacum leaf dust) for 60 min at 60°C. Saccharification study of Nicotiana tabacum leaf dust with partially purified enzyme revealed that 18.4% reducing sugar was released in 20 hrs incubation, and TLC and HPTLC analysis showed that xylose and glucose sugars were obtained after hydrolysis of substrate. FTIR analysis confirmed decomposition of substrate. PMID:27097451

  15. The complete mitochondrial genome sequence of Sua-type cytoplasmic male sterility of tobacco (Nicotiana tabacum).

    PubMed

    Li, Fengxia; Yang, Aiguo; Lv, Jing; Gong, Daping; Sun, Yuhe

    2016-07-01

    To uncover the cytoplasmic male sterility (CMS)-associated mitochondrial genes of tobacco (Nicotiana tabacum), we determined the complete nucleotide sequence of Sua-CMS mitochondrial genome. The Sua-CMS mtDNA sequence is 522,731 bp in length and contains 34 protein-coding genes, 25 transfer RNA (tRNA) genes, and three ribosomal RNA (rRNA) genes. The nucleotide sequence data of 34 protein-coding genes of 14 mitochondrial genomes were used for constructing the phylogenetic tree. The results showed that Nicotiana tabacum Sua-CMS exhibits most close relationship with other solanaceae species. PMID:27158790

  16. Nicotiana tabacum as model for ozone - plant surface reactions

    NASA Astrophysics Data System (ADS)

    Jud, Werner; Fischer, Lukas; Wohlfahrt, Georg; Tissier, Alain; Canaval, Eva; Hansel, Armin

    2015-04-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. The ensuing injuries have been related to the uptake of ozone through the stomatal pores and oxidative effects damaging the internal leaf tissue. A striking question of current research is the environment and plant specific partitioning of ozone loss between gas phase, stomatal or plant surface sink terms. Here we show results from ozone fumigation experiments using various Nicotiana Tabacum varieties, whose surfaces are covered with different amounts of unsaturated diterpenoids exuded by their glandular trichomes. Exposure to elevated ozone levels (50 to 150 ppbv) for 5 to 15 hours in an exceptionally clean cuvette system did neither result in a reduction of photosynthesis nor caused any visible leaf damage. Both these ozone induced stress effects have been observed previously in ozone fumigation experiments with the ozone sensitive tobacco line Bel-W3. In our case ozone fumigation was accompanied by a continuous release of oxygenated volatile organic compounds, which could be clearly associated to their condensed phase precursors for the first time. Gas phase reactions of ozone were avoided by choosing a high enough gas exchange rate of the plant cuvette system. In the case of the Ambalema variety, that is known to exude only the diterpenoid cis-abienol, ozone fumigation experiments yield the volatiles formaldehyde and methyl vinyl ketone (MVK). The latter could be unequivocally separated from isomeric methacrolein (MACR) by the aid of a Selective Reagent Ion Time-of-Flight Mass Spectrometer (SRI-ToF-MS), which was switched every six minutes from H3O+ to NO+ primary ion mode and vice versa. Consistent with the picture of an ozone protection mechanism caused by reactive diterpenoids at the leaf surface are the results from dark-light experiments. The ozone loss obtained from the

  17. Tryptophan Biosynthesis in Cell Cultures of Nicotiana tabacum1

    PubMed Central

    Delmer, Deborah P.; Mills, S. E.

    1968-01-01

    Some of the general features of the pathway for l-tryptophan biosynthesis in cell cultures of Nicotiana tabccum var. Wisc. 38 have been investigated. The results of both isotope competition and direct-labeling experiments show that shikimic acid, anthranilic acid, indoleglycerol phosphate, and indole can serve as precursors to l-tryptophan in these cells, indicating that, in terms of its biochemical intermediates, the pathway is similar to that described for the bacteria and fungi. PMID:16656741

  18. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants

    PubMed Central

    Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.

    2016-01-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  19. Influence of selected herbicides on ozone injury in tobacco (Nicotiana tabacum)

    SciTech Connect

    Reilly, J.J.; Moore, L.D.

    1982-01-01

    Field experiments were conducted over a four year period to determine the influence of selected herbicides on ozone injury in tobacco (Nicotiana tabacum L.). Isopropalin (2,6-dinitro-N,N-dipropylcumidine), pebulate (S-propyl butylethylthiocarbamate), and diphenamid (N,N-dimethyl-2,2-diphenylacetamide) were applied at the recommended rates of 1.7, 4.5, and 4.5 kg/ha (ai), respectively. Treatment of tobacco plants with isopropalin or diphenamid reduced oxidant injury for the first two to four weeks after transplanting, but not later in the season. Pebulate has no consistent affect on the sensitivity of tobacco to ozone. 26 references, 3 tables.

  20. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants.

    PubMed

    Hehle, Verena K; Paul, Matthew J; Roberts, Victoria A; van Dolleweerd, Craig J; Ma, Julian K-C

    2016-04-01

    This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformedNicotiana tabacum Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy's 13 antibody heavy and light chain mutant combinations were expressed transiently inN. tabacumand demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.-Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217

  1. Cell Death Processes during Expression of Hybrid Lethality in Interspecific F1 Hybrid between Nicotiana gossei Domin and Nicotiana tabacum

    PubMed Central

    Mino, Masanobu; Maekawa, Kenji; Ogawa, Ken'ichi; Yamagishi, Hiroshi; Inoue, Masayoshi

    2002-01-01

    Hybrid lethality, a type of reproductive isolation, is a genetically controlled event appearing at the seedling stage in interspecific hybrids. We characterized the lethality of F1 hybrid seedlings from Nicotiana gossei Domin and Nicotiana tabacum cv Bright-Yellow 4 using a number of traits including growth rate, microscopic features of tissues and cells, ion leakage, DNA degradation, reactive oxygen intermediates including superoxide radical (O2−) and hydrogen peroxide (H2O2), and expression of stress response marker genes. Lethal symptoms appeared at 4 d after germination in the basal hypocotyl and extended toward both the hypocotyl and root of the plants grown at 26°C. Microscopic analysis revealed a prompt lysis of cell components during cell death. Membrane disruption and DNA degradation were found in the advanced stage of the lethality. The death of mesophyll cells in the cotyledon was initiated by the vascular bundle, suggesting that a putative factor inducing cell death diffused into surrounding cells from the vascular tissue. In contrast, these symptoms were not observed in the plants grown at 37°C. Seedlings grown at 26°C generated larger amounts of reactive oxygen intermediate in the hypocotyl than those grown at 37°C. A number of stress response marker genes were expressed at 26°C but not at 37°C. We proposed that a putative death factor moving systemically through the vascular system induced a prompt and successive lysis of the cytoplasm of cells and that massive cell death eventually led to the loss of the hybrid plant. PMID:12481061

  2. Early events induced by the toxin deoxynivalenol lead to programmed cell death in Nicotiana tabacum cells.

    PubMed

    Yekkour, Amine; Tran, Daniel; Arbelet-Bonnin, Delphine; Briand, Joël; Mathieu, Florence; Lebrihi, Ahmed; Errakhi, Rafik; Sabaou, Nasserdine; Bouteau, François

    2015-09-01

    Deoxynivalenol (DON) is a mycotoxin affecting animals and plants. This toxin synthesized by Fusarium culmorum and Fusarium graminearum is currently believed to play a decisive role in the fungal phytopathogenesis as a virulence factor. Using cultured cells of Nicotiana tabacum BY2, we showed that DON-induced programmed cell death (PCD) could require transcription and translation processes, in contrast to what was observed in animal cells. DON could induce different cross-linked pathways involving (i) reactive oxygen species (ROS) generation linked, at least partly, to a mitochondrial dysfunction and a transcriptional down-regulation of the alternative oxidase (Aox1) gene and (ii) regulation of ion channel activities participating in cell shrinkage, to achieve PCD. PMID:26259183

  3. Hydrogen sulfide mediates nicotine biosynthesis in tobacco (Nicotiana tabacum) under high temperature conditions.

    PubMed

    Chen, Xiaodong; Chen, Qian; Zhang, Xiaoming; Li, Ruijing; Jia, Yujie; Ef, Abd Allah; Jia, Aiqun; Hu, Liwei; Hu, Xiangyang

    2016-07-01

    Hydrogen sulfide (H2S) acts as a signal to induce many physiological processes in plants, but its role in controlling the biosynthesis of secondary metabolites is not well established. In this study, we found that high temperature (HT) treatment induced nicotine biosynthesis in tobacco (Nicotiana tabacum) and promoted the rapid accumulation of H2S. Furthermore, HT triggered the biosynthesis of jasmonic acid (JA), a plant hormone that promotes nicotine biosynthesis. Suppression of the H2S signal using chemical inhibitors or via RNAi suppression of l-cysteine desulphydrase (L-CD) in transgenic plants, compromised JA production and nicotine biosynthesis under HT treatments, and these inhibitory effects could be reversed by applying exogenous H2S. Based on these data, we propose that H2S is an important trigger of nicotine biosynthesis in tobacco under HT conditions, and that H2S acts upstream of JA signaling by modulating the transcription of genes associated with JA biosynthesis. PMID:27035256

  4. Complete genome sequence of tobacco virus 1, a closterovirus from Nicotiana tabacum.

    PubMed

    Wang, Fang; Qi, Shuishui; Gao, Zhengliang; Akinyemi, Ibukun A; Xu, Dafeng; Zhou, Benguo

    2016-04-01

    The complete genome sequence of a novel virus, provisionally named tobacco virus 1 (TV1), was determined, and this virus was identified in leaves of tobacco (Nicotiana tabacum) exhibiting leaf mosaic and yellowing symptoms in Anhui Province, China. The genome sequence of TV1 consists of 15,395 nucleotides with 61.6 % nucleotide sequence identity to mint virus 1 (MV1). Its genome organization is similar to that of MV1, containing nine open reading frames (ORFs) that potentially encode proteins with putative functions in virion assembly, cell-to-cell movement and suppression of RNA silencing. Phylogenetic analysis of the heat shock protein 70 homolog (HSP70h) placed TV1 alongside members of the genus Closterovirus in the family Closteroviridae. To our knowledge, this study is the first report of the complete genome sequence of a closterovirus identified in tobacco. PMID:26795159

  5. Identification of a dicer homologue gene (DCL2) in Nicotiana tabacum.

    PubMed

    Udriste, A A; Stan, V; Radu, G L; Tabler, M; Cucu, N

    2012-11-01

    Eukaryotes possess a mechanism that generates small interfering RNA (siRNA) and microRNA (miRNA) and use these to regulate gene expression at the transcriptional or post-transcriptional level. These small RNAs (21-24nt) are processed from long double-stranded RNA precursors by type III RNase enzymes, referred to as DICER or DICER-LIKE proteins (DCLs). In Arabidopsis, there are four DCL genes and their role in small RNA biogenesis and silencing has been the subject of intense study. DCL2 is less well studied than the other DCL proteins although it is known to play a role in formation of natural antisense siRNA and may be involved in transitive silencing of transgene transcripts. This study provides basic genomic information on DCL2 in the Nicotiana tabacum (NtDCL2) gene family and its probable roles in plant growth and development. PMID:22812643

  6. [Induction of polyploid in hairy roots of Nicotiana tabacum and its plant regeneration].

    PubMed

    Hou, Lili; Shi, Heping; Yu, Wu; Tsang, Po Keung Eric; Chow, Cheuk Fai Stephen

    2014-04-01

    By genetic transformation with Agrobacterum rhizogenes and artificial chromosome doubling techniques, we studied the induction of hairy roots and their polyploidization, and subsequent plant regeneration and nicotine determination to enhance the content of nicotine in Nicotiana tabacum. The results show that hairy roots could be induced from the basal surface of leaf explants of N. tabacum 8 days after inoculation with Agrobacterium rhizogenes ATCC15834. The percentage of the rooting leaf explants was 100% 15 days after inoculation. The hairy roots could grow rapidly and autonomously on solid or liquid phytohormones-free MS medium. The transformation was confirmed by PCR amplification of rol gene of Ri plasmid and paper electrophoresis of opines from N. tabacum hairy roots. The highest rate of polyploidy induction, more than 64.71%, was obtained after treatment of hairy roots with 0.1% colchicine for 36 h. The optimum medium for plant regeneration from polyploid hairy roots was MS+2.0 mg/L 6-BA +0.2 mg/L NAA. Compared with the control diploid plants, the hairy roots-regenerated plants had weak apical dominance, more axillary buds and more narrow leaves; whereas the polyploid hairy root-regenerated plants had thicker stems, shorter internodes and the colour, width and thickness of leaves were significantly higher than that of the control. Observation of the number of chromosomes in their root tip cells reveals that the obtained polyploid regenerated plants were tetraploidy, with 96 (4n = 96) chromosomes. Pot-grown experiments showed compared to the control, the flowering was delayed by 21 days in diploid hairy roots-regenerated plants and polyploid hairy root-regenerated plants. GC-MS detection shows that the content of nicotine in polyploid plants was about 6.90 and 4.57 times the control and the diploid hairy roots-regenerated plants, respectively. PMID:25195248

  7. Characterization and phylogenetic analysis of fifteen NtabSPL genes in Nicotiana tabacum L. cv. Qinyan95.

    PubMed

    Han, Yao-Yao; Ma, Yan-Qin; Li, Dian-Zhen; Yao, Jing-Wen; Xu, Zi-Qin

    2016-01-01

    Fifteen SPL (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE) genes were identified and characterized in Nicotiana tabacum L. cv. Qinyan95. The exon-intron structures of these genes were determined according to the coding sequences confirmed by RT-PCR and the genomic DNA sequences downloaded from the databases in Sol Genomics Network, and thirteen of them were found to carry the response element of miR156. To elucidate the origin of the validated NtabSPL genes, multiple alignments of the nucleotide sequences encompassing the open reading frames were conducted by using the orthologs in N. tabacum, Nicotiana sylvestris, Nicotiana tomentosiformis, and Nicotiana otophora. The results showed that six NtabSPL genes were derived from a progenitor of N. sylvestris, and nine NtabSPL genes were derived from a progenitor of N. tomentosiformis, further corroborating that N. tabacum came from the interspecific hybridization between the ancestors of N. sylvestris and N. tomentosiformis. In contrast to previous statements about highly repetitive sequences, the genome of N. tabacum mainly retained the paternal-derived SPL genes in diploidization process. Phylogenetic analyses based on the highly conserved SBP (SQUAMOSA PROMOTER BINDING PROTEIN) domains and the full-length amino acid sequences reveal that the SPL proteins of tobacco, tomato, and Arabidopsis can be categorized into eight groups. It is worth noting that N. tabacum contains seven NtabSPL6 genes originated from two parental genomes and NtabSPL6-2 possesses a GC-AG intron. In addition, transgenic tobacco plants harboring Arabidopsis Pri-miR156A were generated by Agrobacterium-mediated transformation method, and the constitutive expression of miR156 could obviously inhibit the activity of the NtabSPL genes containing its target site, suggesting the function of miR156 is conservative in tobacco and Arabidopsis. PMID:26635304

  8. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells

    PubMed Central

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  9. Gene Inactivation by CRISPR-Cas9 in Nicotiana tabacum BY-2 Suspension Cells.

    PubMed

    Mercx, Sébastien; Tollet, Jérémie; Magy, Bertrand; Navarre, Catherine; Boutry, Marc

    2016-01-01

    Plant suspension cells are interesting hosts for the heterologous production of pharmacological proteins such as antibodies. They have the advantage to facilitate the containment and the application of good manufacturing practices. Furthermore, antibodies can be secreted to the extracellular medium, which makes the purification steps much simpler. However, improvements are still to be made regarding the quality and the production yield. For instance, the inactivation of proteases and the humanization of glycosylation are both important targets which require either gene silencing or gene inactivation. To this purpose, CRISPR-Cas9 is a very promising technique which has been used recently in a series of plant species, but not yet in plant suspension cells. Here, we sought to use the CRISPR-Cas9 system for gene inactivation in Nicotiana tabacum BY-2 suspension cells. We transformed a transgenic line expressing a red fluorescent protein (mCherry) with a binary vector containing genes coding for Cas9 and three guide RNAs targeting mCherry restriction sites, as well as a bialaphos-resistant (bar) gene for selection. To demonstrate gene inactivation in the transgenic lines, the mCherry gene was PCR-amplified and analyzed by electrophoresis. Seven out of 20 transformants displayed a shortened fragment, indicating that a deletion occurred between two target sites. We also analyzed the transformants by restriction fragment length polymorphism and observed that the three targeted restriction sites were hit. DNA sequencing of the PCR fragments confirmed either deletion between two target sites or single nucleotide deletion. We therefore conclude that CRISPR-Cas9 can be used in N. tabacum BY2 cells. PMID:26870061

  10. Phenotypes and functional effects caused by various viral RNA silencing suppressors in transgenic Nicotiana benthamiana and N. tabacum.

    PubMed

    Siddiqui, Shahid Aslam; Sarmiento, Cecilia; Truve, Erkki; Lehto, Harry; Lehto, Kirsi

    2008-02-01

    RNA silencing suppressor genes derived from six virus genera were transformed into Nicotiana benthamiana and N. tabacum plants. These suppressors were P1 of Rice yellow mottle virus (RYMV), P1 of Cocksfoot mottle virus, P19 of Tomato bushy stunt virus, P25 of Potato virus X, HcPro of Potato virus Y (strain N), 2b of Cucumber mosaic virus (strain Kin), and AC2 of African cassava mosaic virus (ACMV). HcPro caused the most severe phenotypes in both Nicotiana spp. AC2 also produced severe effects in N. tabacum but a much milder phenotype in N. benthamiana, although both HcPro and AC2 affected the leaf tissues of the two Nicotiana spp. in similar ways, causing hyperplasia and hypoplasia, respectively. P1-RYMV caused high lethality in the N. benthamiana plants but only mild effects in the N. tabacum plants. Phenotypic alterations produced by the other transgenes were minor in both species. Interestingly, the suppressors had very different effects on crucifer-infecting Tobamovirus (crTMV) infections. AC2 enhanced both spread and brightness of the crTMV-green fluorescent protein (GFP) lesions, whereas 2b and both P1 suppressors enhanced spread but not brightness of these lesions. P19 promoted spread of the infection into new foci within the infiltrated leaf, whereas HcPro and P25 suppressed the spread of crTMV-GFP lesions. PMID:18184062

  11. Phytoaccumulation of lead by sunflower (Helianthus annuus), tobacco (Nicotiana tabacum), and vetiver (Vetiveria zizanioides).

    PubMed

    Boonyapookana, Benjaporn; Parkpian, Preeda; Techapinyawat, Sombun; DeLaune, R D; Jugsujinda, Aroon

    2005-01-01

    The ability of three plant species: Helianthus annuus, Nicotiana tabacum, and Vetiveria zizanioides for phytoaccumulation of Pb was studied. Plants were grown in hydroponic solution containing Pb(NO3)2 at concentration of 0.25 and 2.5 mM Pb in the presence or absence of chelating agents (EDTA or DTPA). Lead (Pb) transport and localization within the tissues of the plant species was determined using scanning electron microscope equipped with energy dispersive X-ray spectrometers (SEM-EDS). The addition of chelators increased Pb uptake as compared to plants grown in solution containing Pb alone. Lead taken up by the plant species were concentrated in both leaf and stem at the region of vascular bundles with greater amounts in the leaf portion. Lead granules were also found in the H. annuus root tissue from the epidermis layer to the central axis. After four weeks of growth a 23-fold increase in shoot Pb content for H. annuus and N. tabacum and 17-fold increase in shoot Pb for V. zizanioides resulted from plants grown in the 2.5 mM Pb-EDTA treatment. The higher Pb treatment (2.5 mM Pb containing EDTA) resulted in higher concentrations of Pb in plant tissue at the fourth week of exposure as compared to Pb treatment containing DTPA. Overall, Pb accumulation potential of H. annuus was greater than that of N. tabacum and V. zizanioides as indicated by the bioconcentration factor (171, 70, and 88, respectively). The highest measured Pb concentrations were found in H. annuus roots, stems, and leaves (2668, 843, and 3611 microg/g DW, respectively) grown in the 2.5 mM Pb-EDTA treatment. The addition of chelators caused some reduction in plant growth and biomass. Results showed that the three plant species tested have potential for use in phytoaccumulation of Pb since the Pb was concentrated in leaf and stem as compared to control plants. H. annuus however best meet the prerequisites for a hyperaccumulator plant and would have the potential for use in the restoration of

  12. Influence of Iron Chlorosis on Pigment and Protein Metabolism in Leaves of Nicotiana tabacum L. 1

    PubMed Central

    Shetty, A. S.; Miller, G. W.

    1966-01-01

    Experiments were conducted on Nicotiana tabacum, L. to study the relation in the grana among chlorophylls, carotenoids, and proteins. The effect of iron chlorosis on protein and pigment synthesis was studied at different stages of chlorosis using glycine-U-C14. Pigments were separated by thin layer chromatography. Chlorophyll a, chlorophyll b, carotenoid, and protein contents of chloroplasts from chlorotic tissue were less than those of normal tissues. A 25% decrease in protein labeling and a 45% decrease in chlorophyll labeling was noted in deficient tissue compared to normal tissue even before chlorosis was perceptible. Both normal and iron deficient leaf discs which received iron in the incubation medium incorporated higher amounts of radioactive glycine into chlorophyll a and chlorophyll b at all stages of development than their respective counterparts not supplied with iron in the incubation medium. The presence of iron in the incubation medium reduced the amount of glycine incorporated into carotenes and xanthophylls, except where the tissue was severely chlorotic. This may be attributed to active competition for glycine between the iron-dependent- (chlorophyll) and iron-independent-(carotenoid) biosynthetic pathways. Incorporation of glycine into chloroplast pigments was lowest at severe chlorosis, probably due to a reduction in the overall enzyme activity. PMID:16656270

  13. Leucine: tRNA Ligase from Cultured Cells of Nicotiana tabacum var. Xanthi

    PubMed Central

    Gore, Nigel R.; Wray, John L.

    1978-01-01

    Leucine:tRNA ligase was assayed in extracts from cultured tobacco (Nicotiana tabacum) XD cells by measuring the initial rate of aminoacylation of transfer RNA with l-[4,5-3H]leucine. Transfer RNA was purified from tobacco XD cells after the method of Vanderhoef et al. (Phytochemistry 9: 2291-2304). The buoyant density of leucine:tRNA ligase from cells grown for 100 generations in 2.5 mm [15N]nitrate and 30% deuterium oxide was 1.3397. After transfer of cells into light medium (2.5 mm [14N]nitrate and 100% H2O) the ligase activity increased and the buoyant density decreased with time to 1.3174 at 72 hours after transfer. It was concluded that leucine:tRNA ligase molecules were synthesized de novo from light amino acids during the period of activity increase. The width at half-peak height of the enzyme distribution profiles following isopycnic equilibrium centrifugation in caesium chloride remained constant at all times after transfer into light medium providing evidence for the loss of preexisting functional ligase molecules. It was concluded that during the period of activity increase the cellular level of enzyme activity was determined by a balance between de novo synthesis and the loss of functional enzyme molecules due to either inactivation or degradation. PMID:16660229

  14. Intracellular compartmentation of ions in salt adapted tobacco cells. [Nicotiana tabacum L

    SciTech Connect

    Binzel, M.L.; Hess, F.D.; Bressan, R.A.; Hasegawa, P.M. )

    1988-02-01

    Na{sup +} and Cl{sup {minus}} are the principal solutes utilized for osmotic adjustment in cells of Nicotiana tabacum L. var Wisconsin 38 (tobacco) adapted to NaCl, accumulating to levels of 472 and 386 millimolar, respectively, in cells adapted to 428 millimolar NaCl. X-ray microanalysis of unetched frozen-hydrated cells adapted to salt indicated that Na{sup +} and Cl{sup {minus}} were compartmentalized in the vacuole, at concentrations of 780 and 624 millimolar, respectively, while cytoplasmic concentrations of the ions were maintained at 96 millimolar. The morphometric differences which existed between unadapted and salt adapted cells, (cytoplasmic volume of 22 and 45% of the cell, respectively), facilitated containment of the excited volume of the x-ray signal in the cytoplasm of the adapted cells. Confirmation of ion compartmentation in salt adapted cells was obtained based on kinetic analyses of {sup 22}Na{sup +} and {sup 36}Cl{sup {minus}} efflux from cells in steady state. These data provide evidence that ion compartmentation is a component of salt adaptation of glycophyte cells.

  15. In vitro anthelmintic effect of Tobacco (Nicotiana tabacum) extract on parasitic nematode, Marshallagia marshalli.

    PubMed

    Nouri, Fatemeh; Nourollahi-Fard, Saeid R; Foroodi, Hamid R; Sharifi, Hamid

    2016-09-01

    Because of developing resistance to the existing anthelmintic drugs, there is a need for new anthelmintic agents. Tobacco plant has alkaloid materials that have antiparasitic effect. We investigated the in vitro anthelminthic effect of aqueous and alcoholic extract of Tobacco (Nicotiana tabacum) against M. marshalli. For investigating this effect, we prepared three dilutions of aqueous and alcoholic extract of Tobacco (25, 50 and 75 mg/ml). The worms exposed to extracts for 10 h at 25-30 °C. The buffer PBS used as negative control and 50 mg/ml dilution of Levamisole used as standard reference. In each group, 50 worms were examined. We used an inhibition mobility test for our study. Survival analysis with Cox proportional hazard model was used for data analysis. The result showed that compared with Levamisole 50 mg/ml, dilution of 25 and 50 mg/ml of the aqueous extract had the same anthelminthic effects (P > 0.05), but 75 mg/ml dilution of the aqueous extract and dilution of 25, 50 and 75 mg/ml of alcoholic extract had more anthelminthic effect (P < 0.05). Overall, extracts of Tobacco possess considerable anthelminthic activity and more potent effects were observed with the highest concentrations. Therefore, the in vivo study on Tobocco in animal models is recommended. PMID:27605759

  16. Crystal structure of the PsbP protein of photosystem II from Nicotiana tabacum.

    PubMed

    Ifuku, Kentaro; Nakatsu, Toru; Kato, Hiroaki; Sato, Fumihiko

    2004-04-01

    PsbP is a membrane-extrinsic subunit of the water-oxidizing complex photosystem II (PS II). The evolutionary origin of PsbP has long been a mystery because it specifically exists in higher plants and green algae but not in cyanobacteria. We report here the crystal structure of PsbP from Nicotiana tabacum at a resolution of 1.6 A. Its structure is mainly composed of beta-sheet, and is not similar to any structures in cyanobacterial PS II. However, the electrostatic surface potential of PsbP is similar to that of cyanobacterial PsbV (cyt c(550)), which has a function similar to PsbP. A structural homology search with the DALI algorithm indicated that the folding of PsbP is very similar to that of Mog1p, a regulatory protein for the nuclear transport of Ran GTPase. The structure of PsbP provides insight into its novel function in GTP-regulated metabolism in PS II. PMID:15031714

  17. The genetical basis of hybrid vigour in a highly heterotic cross of Nicotiana tabacum.

    PubMed

    Pooni, H S; Virk, P S; Coombs, D T; Chowdhury, M K

    1994-12-01

    The genetical control of F1 heterosis, observed in a cross of desirable Nicotiana tabacum varieties, was investigated by analysing the data of the basic generations, triple test cross-families and random samples of doubled haploids (DH) and single-seed descent (SSD) lines. Analyses of the first-degree statistics revealed a complex control underlying the genetic variation, including the presence of epistasis, linkage, maternal effects and their interactions, in addition to the additive and dominance effects of the genes segregating in the cross. These analyses identified gene dispersion, directional dominance, and duplicate epistasis, as the main causes of heterosis. The triple test-cross analysis also confirmed the presence of non-allelic interactions and indicated that the dominance ratio, although inflated by epistasis, is consistently partial for all the traits. The extent of transgression in the recombinant inbred lines finally established unequivocally that, as in numerous other crosses, gene dispersion and unidirectional, but partial, dominance are the true causes of heterosis in this cross too. PMID:24178120

  18. Only Specific Tobacco (Nicotiana tabacum) Chitinases and [beta]-1,3-Glucanases Exhibit Antifungal Activity.

    PubMed Central

    Sela-Buurlage, M. B.; Ponstein, A. S.; Bres-Vloemans, S. A.; Melchers, L. S.; Van Den Elzen, PJM.; Cornelissen, BJC.

    1993-01-01

    Different isoforms of chitinases and [beta]-1,3-glucanases of tobacco (Nicotiana tabacum cv Samsun NN) were tested for their antifungal activities. The class I, vacuolar chitinase and [beta]-1,3-glucanase isoforms were the most active against Fusarium solani germlings, resulting in lysis of the hyphal tips and in growth inhibition. In additon, we observed that the class I chitinase and [beta]-1,3-glucanase acted synergistically. The class II isoforms of the two hydrolases exhibited no antifungal activity. However, the class II chitinases showed limited growth inhibitory activity in combination with higher amounts of class I [beta]-1,3-glucanase. The class II [beta]-1,3-glucanases showed no inhibitory activity in any combination. In transgenic tobacco plants producing modified forms of either a class I chitinase or a class I [beta]-1,3-glucanase, or both, these proteins were targeted extracellularly. Both modified proteins lack their C-terminal propeptide, which functions as a vacuolar targeting signal. Extracellular targeting had no effect on the specific activities of the chitinase and [beta]-1,3-glucanase enzymes. Furthermore, the extracellular washing fluid (EF) from leaves of transgenic plants expressing either of the secreted class I enzymes exhibited antifungal activity on F. solani germlings in vitro comparable to that of the purified vacuolar class I proteins. Mixing EF fractions from these plants revealed synergism in inhibitory activity against F. solani; the mixed fractions exhibited inhibitory activity similar to that of EF from plants expressing both secreted enzymes. PMID:12231736

  19. PsbN is required for assembly of the photosystem II reaction center in Nicotiana tabacum.

    PubMed

    Torabi, Salar; Umate, Pavan; Manavski, Nikolay; Plöchinger, Magdalena; Kleinknecht, Laura; Bogireddi, Hanumakumar; Herrmann, Reinhold G; Wanner, Gerhard; Schröder, Wolfgang P; Meurer, Jörg

    2014-03-01

    The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants psbN-F and psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC. PMID:24619613

  20. Improved photosynthetic performance during severe drought in Nicotiana tabacum overexpressing a nonenergy conserving respiratory electron sink.

    PubMed

    Dahal, Keshav; Martyn, Greg D; Vanlerberghe, Greg C

    2015-10-01

    Chloroplasts have means to manage excess reducing power but these mechanisms may become restricted by rates of ATP turnover. Alternative oxidase (AOX) is a mitochondrial terminal oxidase that uncouples the consumption of reducing power from ATP synthesis. Physiological and biochemical analyses were used to compare respiration and photosynthesis of Nicotiana tabacum wild-type (WT) plants with that of transgenic lines overexpressing AOX, under both well-watered and drought stress conditions. With increasing drought severity, AOX overexpression acted to increase respiration in the light (RL ) relative to WT. CO2 and light response curves indicated that overexpression also improved photosynthetic performance relative to WT, as drought severity increased. This was not due to an effect of AOX amount on leaf water status or the development of the diffusive limitations that occur due to drought. Rather, AOX overexpression dampened photosystem stoichiometry adjustments and losses of key photosynthetic components that occurred in WT. The results indicate that AOX amount influences RL , particularly during severe drought, when cytochrome pathway respiration may become increasingly restricted. This impacts the chloroplast redox state, influencing how the photosynthetic apparatus responds to increasing drought severity. In particular, the development of biochemical limitations to photosynthesis are dampened in plants with increased nonenergy conserving RL . PMID:26032897

  1. Roles of extensins in cotyledon primordium formation and shoot apical meristem activity in Nicotiana tabacum

    PubMed Central

    Zhang, XueLian; Ren, YuJun; Zhao, Jie

    2008-01-01

    Extensins are cell wall basic glycoproteins with a polypeptide backbone that is extremely rich in hydroxyproline. In this paper, the function of extensins in embryo development was studied in Nicotiana tabacum. By using Western blot and immunohistochemistry, the extensin JIM20 epitopes were found to express in different developmental stages of embryos, and specifically in the top of the embryo proper (EP) and the suspensor of the late globular embryos. In order to clarify the functions of extensins, a potent hydroxyproline synthesis inhibitor, 3,4-dehydro-L-proline (3,4-DHP), was used in ovule and embryo culture. The results showed that the addition of 3,4-DHP caused abnormal embryos with single, asymmetry and supernumerary cotyledon primordia, and continuous culture led to cotyledon defects in the germinated seedlings. Histological sections showed that the shoot apical meristem (SAM) of the abnormal seedlings was dissimilar from the controls, especially in the seedlings with cup-shaped cotyledons. Furthermore, the vasculature of the abnormal cotyledons was in an out-of-order format and contained at least two main veins. Finally, both the hydroxyproline assay and fluorescent immunolocalization confirmed that 3,4-DHP treatment reduced the level of extensins in the cultured ovules and embryos. These results indicate that extensins may play important roles in the cotyledon primordium formation, SAM activity, and vasculature differentiation during embryo development. PMID:18931351

  2. Shading Influence on the Sterol Balance of Nicotiana tabacum L. 1

    PubMed Central

    Grunwald, Claus

    1978-01-01

    Tobacco plants (Nicotiana tabacum L.) were grown in the field and the apex was removed at the 42-day stage. Shading screens were set up which produced 0, 26, 67, and 90% shade. Plants were grown an additional 25 days before leaves from top, middle, and bottom stalk positions were harvested. Each leaf group was analyzed for free sterol, steryl ester, steryl glycoside, and acylsteryl glycoside. The free sterol content was lowest in top leaves and highest in bottom leaves; however, the top leaves had more steryl ester than the bottom leaves. Leaf position had no effect on steryl glycosides and acylsteryl glycosides. Shading did not influence the level of any sterol class; but in general, shading increased stigmasterol and decreased sitosterol. This trend was observed for all sterol classes, and the free sterols showed the largest and most consistent change. The younger top leaves showed a greater response than the older bottom leaves, but bottom leaves always had more stigmasterol than sitosterol even without shade. PMID:16660242

  3. Nicotiana tabacum Tsip1-Interacting Ferredoxin 1 Affects Biotic and Abiotic Stress Resistance

    PubMed Central

    Huh, Sung Un; Lee, In-Ju; Ham, Byung-Kook; Paek, Kyung-Hee

    2012-01-01

    Tsip1, a Zn finger protein that was isolated as a direct interactor with tobacco stress-induced 1 (Tsi1), plays an important role in both biotic and abiotic stress signaling. To further understand Tsip1 function, we searched for more Tsip1-interacting proteins by yeast two-hybrid screening using a tobacco cDNA library. Screening identified a new Tsip1-interacting protein, Nicotiana tabacum Tsip1-interacting ferredoxin 1 (NtTfd1), and binding specificity was confirmed both in vitro and in vivo. The four repeats of a cysteine-rich motif (CXXCXGXG) of Tsip1 proved important for binding to NtTfd1. Virus-induced gene silencing of NtTfd1, Tsip1, and NtTfd1/Tsip1 rendered plants more susceptible to salinity stress compared with TRV2 control plants. NtTfd1- and Tsip1-silenced tobacco plants were more susceptible to infection by Cucumber mosaic virus compared with control plants. These results suggest that NtTfd1 might be involved in the regulation of biotic and abiotic stresses in chloroplasts by interaction with Tsip1. PMID:22699755

  4. Agroinfiltration by cytokinin-producing Agrobacterium sp. strain GV3101 primes defense responses in Nicotiana tabacum.

    PubMed

    Sheikh, Arsheed Hussain; Raghuram, Badmi; Eschen-Lippold, Lennart; Scheel, Dierk; Lee, Justin; Sinha, Alok Krishna

    2014-11-01

    Transient infiltrations in tobacco are commonly used in plant studies, but the host response to different disarmed Agrobacterium strains is not fully understood. The present study shows that pretreatment with disarmed Agrobacterium tumefaciens GV3101 primes the defense response to subsequent infection by Pseudomonas syringae in Nicotiana tabacum. The presence of a trans-zeatin synthase (tzs) gene in strain GV3101 may be partly responsible for the priming response, as the tzs-deficient Agrobacterium sp. strain LBA4404 only weakly imparts such responses. Besides inducing the expression of defense-related genes like PR-1 and NHL10, GV3101 pretreatment increased the expression of tobacco mitogen-activated protein kinase (MAPK) pathway genes like MEK2, WIPK (wound-induced protein kinase), and SIPK (salicylic acid-induced protein kinase). Furthermore, the GV3101 strain showed a stronger effect than the LBA4404 strain in activating phosphorylation of the tobacco MAPK, WIPK and SIPK, which presumably prime the plant immune machinery. Lower doses of exogenously applied cytokinins increased the activation of MAPK, while higher doses decreased the activation, suggesting a balanced level of cytokinins is required to generate defense response in planta. The current study serves as a cautionary warning for plant researchers over the choice of Agrobacterium strains and their possible consequences on subsequent pathogen-related studies. PMID:25054409

  5. Transcriptome Analysis of Nicotiana tabacum Infected by Cucumber mosaic virus during Systemic Symptom Development

    PubMed Central

    Kong, Jun; Chen, Ling-Na; Qiu, Yan-Hong; Li, Gui-Fen; Meng, Xiao-Hua; Zhu, Shui-Fang

    2012-01-01

    Virus infection of plants may induce a variety of disease symptoms. However, little is known about the molecular mechanism of systemic symptom development in infected plants. Here we performed the first next-generation sequencing study to identify gene expression changes associated with disease development in tobacco plants (Nicotiana tabacum cv. Xanthi nc) induced by infection with the M strain of Cucumber mosaic virus (M-CMV). Analysis of the tobacco transcriptome by RNA-Seq identified 95,916 unigenes, 34,408 of which were new transcripts by database searches. Deep sequencing was subsequently used to compare the digital gene expression (DGE) profiles of the healthy plants with the infected plants at six sequential disease development stages, including vein clearing, mosaic, severe chlorosis, partial and complete recovery, and secondary mosaic. Thousands of differentially expressed genes were identified, and KEGG pathway analysis of these genes suggested that many biological processes, such as photosynthesis, pigment metabolism and plant-pathogen interaction, were involved in systemic symptom development. Our systematic analysis provides comprehensive transcriptomic information regarding systemic symptom development in virus-infected plants. This information will help further our understanding of the detailed mechanisms of plant responses to viral infection. PMID:22952684

  6. Larval Helicoverpa zea Transcriptional, Growth and Behavioral Responses to Nicotine and Nicotiana tabacum

    PubMed Central

    Gog, Linus; Vogel, Heiko; Hum-Musser, Sue M.; Tuter, Jason; Musser, Richard O.

    2014-01-01

    The polyphagous feeding habits of the corn earworm, Helicoverpa zea (Boddie), underscore its status as a major agricultural pest with a wide geographic distribution and host plant repertoire. To study the transcriptomic response to toxins in diet, we conducted a microarray analysis of H. zea caterpillars feeding on artificial diet, diet laced with nicotine and Nicotiana tabacum (L.) plants. We supplemented our analysis with growth and aversion bioassays. The transcriptome reflects an abundant expression of proteases, chitin, cytochrome P450 and immune-related genes, many of which are shared between the two experimental treatments. However, the tobacco treatment tended to elicit stronger transcriptional responses than nicotine-laced diet. The salivary factor glucose oxidase, known to suppress nicotine induction in the plant, was upregulated by H. zea in response to tobacco but not to nicotine-laced diet. Reduced caterpillar growth rates accompanied the broad regulation of genes associated with growth, such as juvenile hormone epoxide hydrolase. The differential expression of chemosensory proteins, such as odorant binding-protein-2 precursor, as well as the neurotransmitter nicotinic-acetylcholine-receptor subunit 9, highlights candidate genes regulating aversive behavior towards nicotine. We suggest that an observed coincidental rise in cannibalistic behavior and regulation of proteases and protease inhibitors in H. zea larvae signify a compensatory response to induced plant defenses. PMID:26462833

  7. Engineering a Platform for Photosynthetic Pigment, Hormone and Cembrane-Related Diterpenoid Production in Nicotiana tabacum.

    PubMed

    Zhang, Hongying; Niu, Dexin; Wang, Jing; Zhang, Songtao; Yang, Yongxia; Jia, Hongfang; Cui, Hong

    2015-11-01

    Plants synthesize a large number of isoprenoids that are of nutritional, medicinal and industrial importance. 1-Deoxy-d-xylulose 5-phosphate reductoisomerase (DXR) catalyzes the first committed step for plastidial isoprenoid biosynthesis. Here, we identified two DXR isogenes, designated NtDXR1 and NtDXR2, from tetraploid common tobacco (Nicotiana tabacum L.). Southern blotting and genotyping analysis revealed that two NtDXR genes existed in the tetraploid tobacco genome; NtDXR1 and NtDXR2 were separately derived from N. tomentosiformis and N. sylvestris. Both NtDXRs were localized in chloroplasts. Expression patterns indicated that NtDXR1 and NtDXR2 had similar expression profiles. NtDXR genes were highly expressed in leaves with or without trichomes; expression was relatively reduced in flowers and stems, weak in leaf trichomes and marginal in roots and seeds. Overexpressing NtDXR1 under control of the 35S promoter resulted in longer primary roots and enhancement of various photosynthetic pigments and hormones in leaves. In contrast, there were no significant changes in cembrane-related diterpenoids synthesized in glandular trichomes. To elucidate further the function of DXR in the biosynthesis of diterpenoids, overexpression vectors for NtDXR1 under the control of a trichome-specific CYP promoter were transferred to tobacco plants. CYP:NtDXR1 tobacco exhibited larger glandular cells and increased cembrane-related diterpenoids in leaf glandular trichomes. Moreover, transcripts of eight MEP (2-C-methyl-d-erythritol 4-phosphate) pathway genes were significantly up-regulated in NtDXR1-overexpressing tobacco plants, indicating that overexpression of NtDXR could boost the expression of downstream genes in the MEP pathway. Our results suggested that overexpression of NtDXR1 could increase the levels of photosynthetic pigments, leaf surface exudates and hormones though the MEP pathway. PMID:26363359

  8. Structural and Functional Similarities between Osmotin from Nicotiana Tabacum Seeds and Human Adiponectin

    PubMed Central

    Colonna, Giovanni

    2011-01-01

    Osmotin, a plant protein, specifically binds a seven transmembrane domain receptor-like protein to exert its biological activity via a RAS2/cAMP signaling pathway. The receptor protein is encoded in the gene ORE20/PHO36 and the mammalian homolog of PHO36 is a receptor for the human hormone adiponectin (ADIPOR1). Moreover it is known that the osmotin domain I can be overlapped to the β-barrel domain of adiponectin. Therefore, these observations and some already existing structural and biological data open a window on a possible use of the osmotin or of its derivative as adiponectin agonist. We have modelled the three-dimensional structure of the adiponectin trimer (ADIPOQ), and two ADIPOR1 and PHO36 receptors. Moreover, we have also modelled the following complexes: ADIPOQ/ADIPOR1, osmotin/PHO36 and osmotin/ADIPOR1. We have then shown the structural determinants of these interactions and their physico-chemical features and analyzed the related interaction residues involved in the formation of the complexes. The stability of the modelled structures and their complexes was always evaluated and controlled by molecular dynamics. On the basis of these results a 9 residues osmotin peptide was selected and its interaction with ADIPOR1 and PHO36 was modelled and analysed in term of energetic stability by molecular dynamics. To confirm in vivo the molecular modelling data, osmotin has been purified from nicotiana tabacum seeds and its nine residues peptide synthesized. We have used cultured human synovial fibroblasts that respond to adiponectin by increasing the expression of IL-6, TNF-alpha and IL-1beta via ADIPOR1. The biological effect on fibroblasts of osmotin and its peptide derivative has been found similar to that of adiponectin confirming the results found in silico. PMID:21311758

  9. Increased Salt and Drought Tolerance by D-Ononitol Production in Transgenic Nicotiana tabacum L.

    PubMed Central

    Sheveleva, E.; Chmara, W.; Bohnert, H. J.; Jensen, R. G.

    1997-01-01

    A cDNA encoding myo-inositol O-methyltransferase (IMT1) has been transferred into Nicotiana tabacum cultivar SR1. During drought and salt stress, transformants (I5A) accumulated the methylated inositol D-ononitol in amounts exceeding 35 [mu]mol g-1 fresh weight In I5A, photosynthetic CO2 fixation was inhibited less during salt stress and drought, and the plants recovered faster than wild type. One day after rewatering drought-stressed plants, I5A photosynthesis had recovered 75% versus 57% recovery with cultivar SR1 plants. After 2.5 weeks of 250 mM NaCl in hydroponic solution, I5A fixed 4.9 [plus or minus] 1.4 [mu]mol CO2 m-2 s-1, whereas SR1 fixed 2.5 [plus or minus] 0.6 [mu]mol CO2 m-2 s-1. myo-Inositol, the substrate for IMT1, increases in tobacco under stress. Preconditioning of I5A plants in 50 mM NaCl increased D-ononitol amounts and resulted in increased protection when the plants were stressed subsequently with 150 mM NaCl. Pro, Suc, Fru, and Glc showed substantial diurnal fluctuations in amounts, but D-ononitol did not. Plant transformation resulting in stress-inducible, stable solute accumulation appears to provide better protection under drought and salt-stress conditions than strategies using osmotic adjustment by metabolites that are constitutively present. PMID:12223867

  10. Characterization of membrane-bound small GTP-binding proteins from Nicotiana tabacum.

    PubMed Central

    Haizel, T; Merkle, T; Turck, F; Nagy, F

    1995-01-01

    We have cloned nine cDNAs encoding small GTP-binding proteins from leaf cDNA libraries of tobacco (Nicotiana tabacum). These cDNAs encode distinct proteins (22-25 kD) that display different levels of identity with members of the mammalian Rab family: Nt-Rab6 with Rab6 (83%), Nt-Rab7a-c with Rab7 (63-70%), and Nt-Rab11a-e with Rab11 (53-69%). Functionally important regions of these proteins, including the "effector binding" domain, the C-terminal Cys residues for membrane attachment, and the four regions involved in GTP-binding and hydrolysis, are highly conserved. Northern and western blot analyses show that these genes are expressed, although at slightly different levels, in all plant tissues examined. We demonstrate that the plant Rab5, Rab6, and Rab11 proteins, similar to their mammalian and yeast counterparts, are tightly bound to membranes and that they exhibit different solubilization characteristics. Furthermore, we show that the yeast GTPase-activating protein Gyp6, shown to be specifically required to control the GTP hydrolysis of the yeast Ypt6 protein, could interact with tobacco GTP-binding proteins. It increases in vitro the GTP hydrolysis rate of the wild-type Nt-Rab7 protein. In addition, it also increases, at different levels, the GTP hydrolysis rates of a Nt-Rab7m protein with a Rab6 effector domain and of two other chimaeric Nt-Rab6/Nt-Rab7 proteins. However, it does not interact with the wild-type Nt-Rab6 protein, which is most similar to the yeast Ypt6 protein. PMID:7784525

  11. Manipulation of monoubiquitin improves chilling tolerance in transgenic tobacco (Nicotiana tabacum).

    PubMed

    Feng, Yanan; Zhang, Meng; Guo, Qifang; Wang, Guokun; Gong, Jiangfeng; Xu, Ying; Wang, Wei

    2014-02-01

    Ubiquitin (Ub) is a multifunctional protein that mainly functions to tag proteins for selective degradation by the 26S proteasome. We cloned an Ub gene TaUb2 from wheat (Triticum aestivum L.) previously. To study the function of TaUB2 in chilling stress, sense and antisense Ub transgenic tobacco plants (Nicotiana tabacum L.), as well as wild type (WT) and vector control β-glucuronidase (T-GUS) plants, were used. Under stress, leaf wilting in sense plants was significantly less than in controls, but more severe in antisense plants. Meanwhile, the net photosynthetic rate (Pn) and the maximal photochemical efficiency of PSII (Fv/Fm) in sense plants were greater than controls, but lower in antisense plants during chilling stress and recovery. Less wilting in sense plants resulted from improved water status, which may be related to the accumulation of proline and solute sugar. Furthermore, as indicated by electrolyte leakage, membrane damage under stress was less in sense plants and more severe in antisense plants than controls. Consistent with electrolyte leakage, the malondialdehyde (MDA) content was less in sense plants, but more in antisense plants compared to controls. Meanwhile, the less accumulation of reactive oxygen species (ROS) and the greater antioxidant enzyme activity in sense plants implied the improved antioxidant competence by the overexpression of monoubiquitin gene Ta-Ub2 from wheat. We suggest that overexpressing Ub is a useful strategy to promote chilling tolerance. The improvement of ROS scavenging may be an important mechanism underlying the role of Ub in promoting plants tolerant to chilling stress. PMID:24445300

  12. Two new benzolactones from the leaves of Nicotiana tabacum and their anti-tobacco mosaic virus activities.

    PubMed

    Shen, Qinpeng; Xu, Xingmeng; Zhang, Fengmei; Xiang, Nengjun; He, Pei; Si, Xiaoxi; Zhu, Ruizhi; Wang, Kunmiao; Liu, Zhihua; Liu, Chunbo; Miao, Mingming

    2016-07-01

    Two new benzolactones, 5-methyl-6-prenyl-isobenzofuran-1(3H)-one (1), 5-hydroxymethyl-6-prenyl-isobenzofuran-1(3H)-one (2), together with four known phenolic compounds (3-6), were isolated from the leaves of Nicotiana tabacum. Their structures were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1-6 were evaluated for their anti-tobacco mosaic virus (anti-TMV) activities. The results showed that compounds 1-6 exhibited high anti-TMV activities with inhibition rates in the range of 16.9-26.2%, respectively. PMID:26666679

  13. Herbivore induction of jasmonic acid and chemical defences reduce photosynthesis in Nicotiana attenuata.

    PubMed

    Nabity, Paul D; Zavala, Jorge A; DeLucia, Evan H

    2013-01-01

    Herbivory initiates a shift in plant metabolism from growth to defence that may reduce fitness in the absence of further herbivory. However, the defence-induced changes in carbon assimilation that precede this reallocation in resources remain largely undetermined. This study characterized the response of photosynthesis to herbivore induction of jasmonic acid (JA)-related defences in Nicotiana attenuata to increase understanding of these mechanisms. It was hypothesized that JA-induced defences would immediately reduce the component processes of photosynthesis upon attack and was predicted that wild-type plants would suffer greater reductions in photosynthesis than plants lacking JA-induced defences. Gas exchange, chlorophyll fluorescence, and thermal spatial patterns were measured together with the production of defence-related metabolites after attack and through recovery. Herbivore damage immediately reduced electron transport and gas exchange in wild-type plants, and gas exchange remained suppressed for several days after attack. The sustained reductions in gas exchange occurred concurrently with increased defence metabolites in wild-type plants, whereas plants lacking JA-induced defences suffered minimal suppression in photosynthesis and no increase in defence metabolite production. This suppression in photosynthesis occurred only after sustained defence signalling and defence chemical mobilization, whereas a short bout of feeding damage only transiently altered components of photosynthesis. It was identified that lipoxygenase signalling interacted with photosynthetic electron transport and that the resulting JA-related metabolites reduced photosynthesis. These data represent a metabolic cost to mounting a chemical defence against herbivory and link defence-signalling networks to the differential effects of herbivory on photosynthesis in remaining leaf tissues in a time-dependent manner. PMID:23264519

  14. Biological and chemical induction of resistance to the Globodera tabacum solanacearum in oriental and flue-cured tobacco (Nicotiana tabacum L.).

    PubMed

    Parkunan, Venkatesan; Johnson, Charles S; Eisenback, Jon D

    2009-09-01

    The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field. PMID:22736815

  15. Biological and Chemical Induction of Resistance to the Globodera tabacum solanacearum in Oriental and Flue-Cured Tobacco (Nicotiana tabacum L.)

    PubMed Central

    Johnson, Charles S.; Eisenback, Jon D.

    2009-01-01

    The effects of acibenzolar-S-methyl (ASM) and four combinations of plant growth-promoting rhizobacteria (PGPR) on the reproduction of a tobacco cyst nematode, Globodera tabacum solanacearum, and growth of Nicotiana tabacum (cv. K326 and Xanthi) were tested under greenhouse and field conditions. The PGPR included combinations of Bacillus subtilis A13 with B. pumilis INR7, B. pumilis SE34, B. licheniformis IN937b, or B. amyloliquefaciens IN937a, respectively. Among the four rhizobacterial combinations, IN937a + A13 exhibited the most consistent reduction in G. t. solanacearum cysts under greenhouse and field conditions. No undesirable effects of IN937a + A13 were observed on tobacco growth under greenhouse and field conditions. Use of INR7 + A13 reduced G. t. solanacearum reproduction on flue-cured tobacco cv. K326 but not on oriental tobacco cv. Xanthi. Application of ASM reduced final numbers of G. t. solanacearum cysts, but also resulted in phytotoxicity mainly under the greenhouse conditions. When oriental tobacco seedlings were pre-grown in a IN937a + A13-treated soil-less medium, a single application of ASM at 200 mg/L one week after transplanting significantly reduced G. t. solanacearum reproduction in the field. PMID:22736815

  16. Genome-wide identification of the expansin gene family in tobacco (Nicotiana tabacum).

    PubMed

    Ding, Anming; Marowa, Prince; Kong, Yingzhen

    2016-10-01

    Expansins are pH-dependent cell wall loosening proteins which form a large family in plants. They have been shown to be involved in various developmental processes and been implicated in enabling plants' ability to absorb nutrients from the soil as well as conferring biotic and abiotic stress resistances. It is therefore clear that they can be potential targets in genetic engineering for crop improvement. Tobacco (Nicotiana tabacum) is a major crop species as well as a model organism. Considering that only a few tobacco expansins have been studied, a genome-wide analysis of the tobacco expansin gene family is necessary. In this study, we identified 52 expansins in tobacco, which were classified into four subfamilies: 36 NtEXPAs, 6 NtEXPBs, 3 NtEXLAs and 7 NtEXLBs. Compared to other species, the NtEXLB subfamily size was relatively larger. Phylogenetic analysis showed that the 52 tobacco expansins were divided into 13 subgroups. Gene structure analysis revealed that genes within subfamilies/subgroups exhibited similar characteristics such as gene structure and protein motif arrangement. Whole-genome duplication and tandem duplication events may have played important roles in the expanding of tobacco expansins. Cis-Acting element analysis revealed that each expansin gene was regulated or several expansin genes were co-regulated by both internal and environmental factors. 35 of these genes were identified as being expressed according to a microarray analysis. In contrast to most NtEXPAs which had higher expression levels in young organs, NtEXLAs and NtEXLBs were preferentially expressed in mature or senescent tissues, suggesting that they might play different roles in different organs or at different developmental stages. As the first step towards genome-wide analysis of the tobacco expansin gene family, our work provides solid background information related to structure, evolution and expression as well as regulatory cis-acting elements of the tobacco expansins. This

  17. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance

    PubMed Central

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  18. Cloning of the Lycopene β-cyclase Gene in Nicotiana tabacum and Its Overexpression Confers Salt and Drought Tolerance.

    PubMed

    Shi, Yanmei; Guo, Jinggong; Zhang, Wei; Jin, Lifeng; Liu, Pingping; Chen, Xia; Li, Feng; Wei, Pan; Li, Zefeng; Li, Wenzheng; Wei, Chunyang; Zheng, Qingxia; Chen, Qiansi; Zhang, Jianfeng; Lin, Fucheng; Qu, Lingbo; Snyder, John Hugh; Wang, Ran

    2015-01-01

    Carotenoids are important pigments in plants that play crucial roles in plant growth and in plant responses to environmental stress. Lycopene β cyclase (β-LCY) functions at the branch point of the carotenoid biosynthesis pathway, catalyzing the cyclization of lycopene. Here, a β-LCY gene from Nicotiana tabacum, designated as Ntβ-LCY1, was cloned and functionally characterized. Robust expression of Ntβ-LCY1 was found in leaves, and Ntβ-LCY1 expression was obviously induced by salt, drought, and exogenous abscisic acid treatments. Strong accumulation of carotenoids and expression of carotenoid biosynthesis genes resulted from Ntβ-LCY1 overexpression. Additionally, compared to wild-type plants, transgenic plants with overexpression showed enhanced tolerance to salt and drought stress with higher abscisic acid levels and lower levels of malondialdehyde and reactive oxygen species. Conversely, transgenic RNA interference plants had a clear albino phenotype in leaves, and some plants did not survive beyond the early developmental stages. The suppression of Ntβ-LCY1 expression led to lower expression levels of genes in the carotenoid biosynthesis pathway and to reduced accumulation of carotenoids, chlorophyll, and abscisic acid. These results indicate that Ntβ-LCY1 is not only a likely cyclization enzyme involved in carotenoid accumulation but also confers salt and drought stress tolerance in Nicotiana tabacum. PMID:26703579

  19. Progeny analysis of the interspecific somatic hybrids: Nicotiana tabacum (CMS) + Nicotiana sylvestris with respect to nuclear and chloroplast markers.

    PubMed

    Aviv, D; Fluhr, R; Edelman, M; Galun, E

    1980-07-01

    The progeny of a fusion experiment involving N. sylvestris protoplasts and X-irradiated protoplasts of the cytoplasmic male sterile 'Line 92' (N. tabacum nucleus and alien, male-sterility inducing, cytoplasm) were analyzed. Three groups of somatic hybrid plants resulted: Type A, Type B-1 and Type B-2. These as well as their androgenic progenies and the progenies resulting from their pollination with N. tabacum or N. sylvestris were followed with respect to several nuclear and cytoplasmic traits. Those controlled by the nuclear genome were plant and flower morphologies; those controlled by genetic information in the cytoplasm were tentoxin sensitivity (affecting the coupling factor of chloroplast ATPase), the large subunit of ribulose bisphosphate carboxylase and the restriction endonuclease pattern of plastid DNA. A further cytoplasmic trait investigated (exact site of genetic control not known) was male sterility. The examinations of the somatic-hybrid groups and their respective progenies indicated that: Type A plants have N. sylvestris nuclei and 'Line 92' plastids; Type B-1 plants also have 'Line 92' plastids but their genome is composed of N. sylvestris and N. tabacum nuclei; Type B-2 plants with impaired male fertility had N. sylvestris plastids and N. sylvestris nuclei. PMID:24305792

  20. Ectopic expression of class 1 KNOX genes induce and adventitious shoot regeneration and alter growth and development of tobacco (Nicotiana tabacum L) and European plum (Prunus domestica L)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic plants of tobacco (Nicotiana tabacum L) and plum (Prunus domestica L) were produced by transforming with apple class 1 KNOX genes (MdKN1 and MdKN2) or corn KN1 gene. Transgenic tobacco plants were regenerated in vitro from transformed leaf discs cultured in a tissue medium lacking cytoki...

  1. Ionome changes in Xylella fastidiosa-infected Nicotiana tabacum correlate with virulence and discriminate between subspecies of bacterial isolates.

    PubMed

    Oliver, J E; Sefick, S A; Parker, J K; Arnold, T; Cobine, P A; De La Fuente, L

    2014-10-01

    Characterization of ionomes has been used to uncover the basis of nutrient utilization and environmental adaptation of plants. Here, ionomic profiles were used to understand the phenotypic response of a plant to infection by genetically diverse isolates of Xylella fastidiosa, a gram-negative, xylem-limited bacterial plant pathogen. In this study, X. fastidiosa isolates were used to infect a common model host (Nicotiana tabacum 'SR1'), and leaf and sap concentrations of eleven elements together with plant colonization and symptoms were assessed. Multivariate statistical analysis revealed that changes in the ionome were significantly correlated with symptom severity and bacterial populations in host petioles. Moreover, plant ionome modification by infection could be used to differentiate the X. fastidiosa subspecies with which the plant was infected. This report establishes host ionome modification as a phenotypic response to infection. PMID:24983508

  2. Priming of anti-herbivore defence in Nicotiana attenuata by insect oviposition: herbivore-specific effects.

    PubMed

    Bandoly, Michele; Grichnik, Roland; Hilker, Monika; Steppuhn, Anke

    2016-04-01

    Oviposition by Spodoptera exigua on Nicotiana attenuata primes plant defence against its larvae that consequently suffer reduced performance. To reveal whether this is a general response of tobacco to insect oviposition or species-specific, we investigated whether also Manduca sexta oviposition primes N. attenuata's anti-herbivore defence. The plant response to M. sexta and S. exigua oviposition overlapped in the egg-primed feeding-induced production of the phenylpropanoid caffeoylputrescine. While M. sexta larvae were unaffected in their performance, they showed a novel response to the oviposition-mediated plant changes: a reduced antimicrobial activity in their haemolymph. In a cross-resistance experiment, S. exigua larvae suffered reduced performance on M. sexta-oviposited plants like they did on S. exigua-oviposited plants. The M. sexta oviposition-mediated plant effects on the S. exigua larval performance and on M. sexta larval immunity required expression of the NaMyb8 transcription factor that is governing biosynthesis of phenylpropanoids such as caffeoylputrescine. Thus, NaMyb8-dependent defence traits mediate the effects that oviposition by both lepidopteran species exerts on the plant's anti-herbivore defence. These results suggest that oviposition by lepidopteran species on N. attenuata leaves may generally prime the feeding-induced production of certain plant defence compounds but that different herbivore species show different susceptibility to egg-primed plant effects. PMID:26566692

  3. Oviposition by Spodoptera exigua on Nicotiana attenuata primes induced plant defence against larval herbivory.

    PubMed

    Bandoly, Michele; Hilker, Monika; Steppuhn, Anke

    2015-08-01

    Plants exhibit multifarious defence traits against herbivory that are constitutively expressed or induced upon attack. Insect egg deposition often precedes impending larval attack, and several plants can increase their resistance against larvae after experiencing the oviposition by an herbivore. The nature of such oviposition-mediated resistance remains unknown, and here we aim to determine plant traits that explain it. We test whether oviposition on a host plant can induce plant defence responses or enhance (prime) the induction of defence traits in response to larval herbivory. We exposed Nicotiana attenuata plants to oviposition by moths of a generalist herbivore, Spodoptera exigua. Its larvae suffered higher mortality, retarded development and inflicted less feeding damage on oviposition-experienced than on oviposition-unexperienced plants. While oviposition alone did not induce any of the examined defence traits, oviposited plants exhibited a stronger inducibility of known defence traits, i.e. caffeoylputrescine (CP) and trypsin protease inhibitors (TPIs). We found no effects of oviposition on phytohormone levels, but on the feeding-inducible accumulation of the transcription factor NaMyb8 that is governing biosynthesis of phenylpropanoid-polyamine conjugates, including CP. Comparison of larval performance on wild-type plants, CP-deficient plants (silenced NaMyb8 gene), and TPI-deficient plants (silenced NaPI gene) revealed that priming of plant resistance to larvae by prior oviposition required NaMyb8-mediated defence traits. Our results show that plants can use insect egg deposition as a warning signal to prime their feeding-induced defence. PMID:26096574

  4. Enhancement of cadmium tolerance and accumulation by introducing Perilla frutescens (L.) Britt var. frutescens genes in Nicotiana tabacum L. plants.

    PubMed

    Wei, Keqiang; Pang, Shengxi; Yang, Junxian; Wei, Zhizhong

    2015-04-01

    The tobacco has the genetic potential to remove toxic metals from the soil. To develop hyperaccumulating tobacco plants, distant hybridization between tobacco (Nicotiana tabacum L.), a high-biomass crop, and Perilla frutescens (L.) Britt var. frutescens, a newfound Cd-hyperaccumulator species, was carried out using a novel method viz. pollination following grafting. Their hybrid nature was preliminarily confirmed by phenotype, isozyme pattern, random amplified polymorphic DNA (RAPD) and metabolites analysis. About 120 putative F2 hybrids derived from the cross-combination [(N. sylvestris Speg. & Comes rootstock + N. tabacum L. var. 78-04 scion) × P. frutescens (L.) Britt var. frutescens] were then subjected to up to 300 μM CdCl2 in hydroponic conditions for 10 days. Results showed five seedlings were more resistant to Cd than female parent and accumulated 314.6 ± 99.9 mg kg(-1) Cd in their aerial biomass, which was 5.7 times greater than that in "78-04" tobacco (47.2 ± 3.56 mg kg(-1)) (P ≤ 0.05). Two of these seedlings exceeded male parent P. frutescens in the Cd concentration of shoots and reached 424 and 396 mg kg(-1), which was 13% and 6% greater for that of perilla (374.2 ± 10.38 mg kg(-1)), respectively. Compared with parents, two other F2 hybrids tended to accumulate more Cd in the root with bioconcentration factor (BCF) 7.05 and 5.17, respectively. Only one hybrid showed lower Cd concentration but transferred Cd more effectively from the root to the shoot than parents and other F2 hybrids, with the maximum translocation factor (TF) value 1.37. These indicated that the introduction of P. frutescens genes could obviously enhance the cadmium tolerance and accumulation of superior individuals. PMID:25567061

  5. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed Central

    Dalton, Heidi L.; Blomstedt, Cecilia K.; Neale, Alan D.; Gleadow, Ros; DeBoer, Kathleen D.; Hamill, John D.

    2016-01-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  6. Cloning, expression analysis and recombinant expression of a gene encoding a polygalacturonase-inhibiting protein from tobacco, Nicotiana tabacum.

    PubMed

    Zhang, Chengsheng; Feng, Chao; Wang, Jing; Kong, Fanyu; Sun, Wenxiu; Wang, Fenglong

    2016-05-01

    Polygalacturonase inhibiting proteins (PGIPs) are major defensive proteins produced by plant cell walls that play a crucial role in pathogen resistance by reducing polygalacturonase (PG) activity. In the present study, a novel PGIP gene was isolated from tobacco (Nicotiana tabacum), hereafter referred as NtPGIP. A full-length NtPGIP cDNA of 1,412 bp with a 186 bp 5'-untranslated region (UTR), and 209 bp 3'-UTR was cloned from tobacco, NtPGIP is predicted to encode a protein of 338 amino acids. The NtPGIP sequence from genomic DNA showed no introns and sequence alignments of NtPGIP's deduced amino acid sequence showed high homology with known PGIPs from other plant species. Moreover, the putative NtPGIP protein was closely clustered with several Solanaceae PGIPs. Further, the expression profile of NtPGIP was examined in tobacco leaves following stimulation with the oomycete Phytophthora nicotianae and other stressors, including salicylic acid (SA), abscisic acid (ABA), salt, and cold treatment. The results showed that all of the treatments up-regulated the expression of NtPGIP at different times. To understand the biochemical activity of NtPGIP gene, a full-length NtPGIP cDNA sequence was subcloned into a pET28a vector and transformed into E. coli BL21 (DE3). Recombinant proteins were successfully induced by 1.0 nmol/L IPTG and the purified proteins effectively inhibited Phytophthora capsici PG activity. The results of this study suggest that NtPGIP may be a new candidate gene with properties that could be exploited in plant breeding. PMID:27441281

  7. Effects of down-regulating ornithine decarboxylase upon putrescine-associated metabolism and growth in Nicotiana tabacum L.

    PubMed

    Dalton, Heidi L; Blomstedt, Cecilia K; Neale, Alan D; Gleadow, Ros; DeBoer, Kathleen D; Hamill, John D

    2016-05-01

    Transgenic plants of Nicotiana tabacum L. homozygous for an RNAi construct designed to silence ornithine decarboxylase (ODC) had significantly lower concentrations of nicotine and nornicotine, but significantly higher concentrations of anatabine, compared with vector-only controls. Silencing of ODC also led to significantly reduced concentrations of polyamines (putrescine, spermidine and spermine), tyramine and phenolamides (caffeoylputrescine and dicaffeoylspermidine) with concomitant increases in concentrations of amino acids ornithine, arginine, aspartate, glutamate and glutamine. Root transcript levels of S-adenosyl methionine decarboxylase, S-adenosyl methionine synthase and spermidine synthase (polyamine synthesis enzymes) were reduced compared with vector controls, whilst transcript levels of arginine decarboxylase (putrescine synthesis), putrescine methyltransferase (nicotine production) and multi-drug and toxic compound extrusion (alkaloid transport) proteins were elevated. In contrast, expression of two other key proteins required for alkaloid synthesis, quinolinic acid phosphoribosyltransferase (nicotinic acid production) and a PIP-family oxidoreductase (nicotinic acid condensation reactions), were diminished in roots of odc-RNAi plants relative to vector-only controls. Transcriptional and biochemical differences associated with polyamine and alkaloid metabolism were exacerbated in odc-RNAi plants in response to different forms of shoot damage. In general, apex removal had a greater effect than leaf wounding alone, with a combination of these injury treatments producing synergistic responses in some cases. Reduced expression of ODC appeared to have negative effects upon plant growth and vigour with some leaves of odc-RNAi lines being brittle and bleached compared with vector-only controls. Together, results of this study demonstrate that ornithine decarboxylase has important roles in facilitating both primary and secondary metabolism in Nicotiana. PMID

  8. PsbN Is Required for Assembly of the Photosystem II Reaction Center in Nicotiana tabacum[W

    PubMed Central

    Torabi, Salar; Umate, Pavan; Manavski, Nikolay; Plöchinger, Magdalena; Kleinknecht, Laura; Bogireddi, Hanumakumar; Herrmann, Reinhold G.; Wanner, Gerhard; Schröder, Wolfgang P.; Meurer, Jörg

    2014-01-01

    The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants ∆psbN-F and ∆psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The ∆psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC. PMID:24619613

  9. GC-MS and MALDI-TOF MS profiling of sucrose esters from Nicotiana tabacum and N. rustica.

    PubMed

    Haliński, Łukasz P; Stepnowski, Piotr

    2013-01-01

    Matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been applied for the first time to the analysis of the sucrose esters from the surface of Nicotiana L. leaves. The profiles obtained for the model plant N. tabacum were similar to those from the gas chromatography-flame ionization detector (GC-FID) analysis. The most reproducible results were obtained using a dihydroxybenzoic acid (DHB) matrix. The main advantage of this method is that crude plant extracts can be analysed without sample clean-up. GC-MS analysis of Aztec tobacco (N. rustica) extracts revealed the presence of three types of sucrose esters. All identified compounds had three C4-C8 acyl chains substituting the glucose moiety, while the fructose part of the molecule was substituted with 0, 1, or 2 acetyl groups. MALDI-TOF MS analysis of the sucrose ester fraction revealed the presence of compounds not eluting from a GC column. Combining the data from both GC-MS and MALDI-TOF MS experiments, we obtained a full sucrose ester profile, which is based on the molecular weight of the compounds and on the number of acyl chains in the molecule. PMID:23923618

  10. Early inhibition of photosynthesis during development of Mn toxicity in tobacco. [Nicotiana tabacum L. cv KY14

    SciTech Connect

    Nable, R.O.; Houtz, R.L.; Cheniae, G.M. )

    1988-04-01

    Early physiological effects of developing Mn toxicity in young leaves of burley tobacco (Nicotiana tabacum L. cv KY 14) were examined in glass-house/water cultured plants grown at high (summer) and low (winter) photon flux. Following transfer of plants to solutions containing 1 millimolar Mn{sup 2+}, sequential samplings were made at various times for the following 9 days, during which Mn accumulation by leaves increased rapidly from {approx} 70 on day 0 to {approx} 1700 and {approx} 5000 microgram per gram dry matter after 1 and 9 days, respectively. In plants grown at high photon flux, net photosynthesis declined by {approx} 20 and {approx} 60% after 1 and 9 days, respectively, and the onset of this decline preceded appearance (after 3 to 4 days) of visible foliar symptoms of Mn toxicity. Intercellular CO{sub 2} concentrations and rates of transpiration were not significantly affected. Though the activity of latent or activated polyphenol oxidase increased in parallel with Mn accumulation, neither leaf respiration nor the activity of catalase (EC 1.11.1.6) and peroxidase (EC 1.10.1.7) were greatly affected. These effects from Mn toxicity could not be explained by any changes in protein or chlorophyll abundance. Additionally, they were not a consequence of Mn induced Fe deficiency. Therefore, inhibition of net photosynthesis and enhancement of polyphenol oxidase activity are early indicators of excess Mn accumulation in tobacco leaves.

  11. Synthesis of glycolate from pyruvate via isocitrate lyase by tobacco leaves in light. [Nicotiana tabacum var Havana Seed

    SciTech Connect

    Zelitch, I. )

    1988-02-01

    Tobacco (Nicotiana tabacum var Havana Seed) leaf discs were supplied tracer quantities of (2-{sup 14}C)- and (3-{sup 14}C) pyruvate for 60 minutes in steady state photosynthesis with 21% or 1% O{sub 2}, and the glycolate oxidase inhibitor {alpha}-hydroxy-2-pyridinemethanesulfonic acid was then added for 5 or 10 minutes to cause glycolate to accumulate. The (3-{sup 14}C) pyruvate was converted directly to glycolate as shown by a 50% greater than equal-labeled {sup 14}C in C-2 of glycolate, and the fraction of {sup 14}C in C-2 increased in 1% O{sub 2} to 80% greater than equal-labeled. This suggests the pathway using pyruvate is less O{sub 2}-dependent than the oxygenase reaction producing glycolate from the Calvin cycle. The formation of glycolate from pyruvate in the leaf discs was time-dependent and with (2-{sup 14}C)- and (3-{sup 14}C) pyruvate supplied leaf discs the C-2 of glyoxylate derived from C-2 of isocitrate was labeled asymmetrically in a manner similar to the asymmetrical labeling of C-2 of glycolate under a number of conditions. Thus glycolate was probably formed by the reduction of glyoxylate. Isocitric lyase activity of tobacco leaves was associated with leaf mitochondria, through most of the activity was in the supernatant fraction after differential centrifugation of leaf homogenates.

  12. The extremophile Nicotiana benthamiana has traded viral defence for early vigour.

    PubMed

    Bally, Julia; Nakasugi, Kenlee; Jia, Fangzhi; Jung, Hyungtaek; Ho, Simon Y W; Wong, Mei; Paul, Chloe M; Naim, Fatima; Wood, Craig C; Crowhurst, Ross N; Hellens, Roger P; Dale, James L; Waterhouse, Peter M

    2015-01-01

    A single lineage of Nicotiana benthamiana is widely used as a model plant(1) and has been instrumental in making revolutionary discoveries about RNA interference (RNAi), viral defence and vaccine production. It is peerless in its susceptibility to viruses and its amenability in transiently expressing transgenes(2,3). These unparalleled characteristics have been associated both positively and negatively with a disruptive insertion in the RNA-dependent RNA polymerase 1 gene, Rdr1(4-6). For a plant so routinely used in research, the origin, diversity and evolution of the species, and the basis of its unusual abilities, have been relatively unexplored. Here, by comparison with wild accessions from across the spectrum of the species' natural distribution, we show that the laboratory strain of N. benthamiana is an extremophile originating from a population that has retained a mutation in Rdr1 for ∼0.8 Myr and thereby traded its defence capacity for early vigour and survival in the extreme habitat of central Australia. Reconstituting Rdr1 activity in this isolate provided protection. Silencing the functional allele in a wild strain rendered it hypersusceptible and was associated with a doubling of seed size and enhanced early growth rate. These findings open the way to a deeper understanding of the delicate balance between protection and vigour. PMID:27251536

  13. Immunodiagnostic Properties of Wucheraria bancrofti SXP-1, a Potential Filarial Diagnostic Candidate Expressed in Tobacco Plant, Nicotiana tabacum.

    PubMed

    Ganapathy, Mathangi; Chakravarthi, M; Charles, S Jason; Harunipriya, P; Jaiganesh, S; Subramonian, N; Kaliraj, P

    2015-08-01

    Transgenic tobacco plants were developed expressing WbSXP-1, a diagnostic antigen isolated from the cDNA library of L3 stage larvae of Wucheraria bancrofti. This antigen produced by recombinant Escherichia coli has been demonstrated by to be successful as potential diagnostic candidate against lymphatic filariasis. A rapid format simple and qualitative flow through immune-filtration diagnostic kit has been developed for the identification of IgG antibodies to the recombinant WbSXP-1 and is being marketed by M/S Span Diagnostics Ltd in India and Africa. Here, we present the results of experiments on the transformation and expression of the same filarial antigen, WbSXP-1, in tobacco plant, Nicotiana tabacum, to produce plant-based diagnostic antigen. It was possible to successfully transform the tobacco plant with WbSXP-1, the integration of the parasite-specific gene in plants was confirmed by PCR amplification and the expression of the filarial protein by Western blotting. The immunoreactivity of the plant-produced WbSXP-1 was assessed based on its reaction with the monoclonal antibodies developed against the E. coli-produced protein. Immunological screening using clinical sera from patients indicates that the plant-produced protein is comparable to E. coli-produced diagnostic antigen. The result demonstrated that plants can be used as suitable expression systems for the production of diagnostic proteins against lymphatic filariasis, a neglected tropical infectious disease which has a negative impact on socioeconomic development. This is the first report of the integration, expression and efficacy of a diagnostic candidate of lymphatic filariasis in plants.Key MessageTransgenic tobacco plants with WbSXP-1, a filarial diagnostic candidate, were developed. The plant-produced protein showed immunoreactivity on par with the E. coli product. PMID:26043851

  14. Comparative study on macro- and micro-elements concentration in Nicotiana tabacum and Faba siliquis plants by ICP-MS

    NASA Astrophysics Data System (ADS)

    Balazs, Zoltan; Voica, Cezara; Dehelean, Adriana; Magdas, Dana Alina; Ristoiu, Dumitru

    2015-12-01

    Plants are important components of ecosystems as they transfer elements from abiotic into biotic environments. The concentration of macro and micro-elements in tobacco leaves (Nicotiana tabacum) and bean (Faba siliquis) was analyzed using ICP-MS technique. The results obtained indicated that the mean concentration of Mg, P, K and Ca in tobacco leaves was 0.965, 0.812, 4.412 and 2.694 g.kg-1, respectively, while in bean samples were 0.899, 2.024, 6.725 and 1.387 g.kg-1, respectively. Mn concentration ranged from 156.835 mg.kg-1 to 234.593 mg.kg-1 in tobacco leaves and from 116.174 mg.kg-1 to 440.423 mg.kg-1 in bean samples. The results for Cu and Zn were between 7.262 mg.kg-1 and 105.738 mg.kg-1, 68.549 mg.kg-1 and 113.720 mg.kg-1 (tobacco leaves); and 6.830 mg.kg-1 and 46.034 mg.kg-1, 50.166 mg.kg-1 and 77.242 mg.kg-1 (bean samples), respectively. In analyzed samples, Pb, Cd and As concentrations ranged between <0.001-0.717 mg.kg-1, 0.046 mg.kg-1 -6.218 mg.kg-1, <0.001-0.381 mg.kg-1. The paper discusses the transfer of metal ions (Mn, As, Cd, Cu, Pb and Zn, respectively) from soil to these plants in terms of transfer factors (TF).

  15. Induction of UDP-glucose:salicylic acid glucosyltransferase activity in tobacco mosaic virus-inoculated tobacco (Nicotiana tabacum) leaves

    SciTech Connect

    Enyedi, A.J.; Raskin, I. )

    1993-04-01

    Salicylic acid (SA) is a putative signal that activates plant resistance to pathogens. SA levels increase systemically following the hypersensitive response produced by tobacco masaic virus (TMV) inoculation of tobacco (Nicotiana tabacum L. cv Xanthi-nc) leaves. The SA increase in the inoculated leaf coincided with the appearance of a [beta]-glucosidase-hydrolyzable SA conjugate identified as [beta]-O-D-glucosylsalicylic acid (GSA). SA and GSA accumulation in the TMV-inoculated leaf paralleled the increase in the activity of a UDP-glucose:salicylic acid 3-O-glucosyltransferase (EC 2.4.1.35) ([beta]-GTase) capable of converting SA to GSA. Healthy tissues had constitutive [beta]-GTase activity of 0.076 milliunits g[sup [minus]1] fresh weight. This activity started to increase 48 h after TMV inoculation, reaching its maximum (6.7-fold induction over the basal levels) 72 h after TMV inoculation. No significant GSA or elevated [beta]-GTase activity could be detected in the healthy leaf immediately above the TMV-inoculated leaf. The effect of TMV inoculation on the [beta]-GTase and GSA accumulation could be duplicated by infiltrating tobacco leaf discs with SA at the levels naturally produced in TMV-inoculated leaves (2.7--27.0 [mu]g g[sup [minus]1] fresh weight). Pretreatment of leaf discs with the protein synthesis inhibitor cycloheximide inhibited the induction of [beta]GTase by SA and prevented the formation of GSA. Of 12 analogs of SA tested, only 2,6-dihydroxybenzoic acid induced [beta]-GTase activity. 21 refs., 5 figs.

  16. [Metabolic profiling of the short-term responses of Nicotiana tabacum leaves cultivated under different LED lights].

    PubMed

    Meng, Lin; Liang, Meng; Wang, Cheng-dong; Liu, Xiao-bing; Song, Wen-jing; Shi, Jiao; Xu, Yi-min

    2015-12-01

    The physiologically mature tobacco (Nicotiana tabacum) leaves was exposed to different light-emitting diode (LED) lights, i.e. ultraviolet A (UV-A), blue, green, yellow, red, white, to investigate their short-term response. Results showed that: 1) 68 GC/MS-stable metabolites were detected by non-targeted method. In the PLS-DA score plot, tobacco leaf samples showed clear grouping in each light cultivating condition. 61 metabolites were identified in mass spectra library. Besides, 45 metabolites, mainly including organic acids, carbohydrates, TCA cycle intermediate metabolites and amino acids, showed significant differences among the six light treatments. Hierarchical cluster analysis (HCA) and heat map showed that differential metabolites could be divided into five groups, and there were significant differences among the six treatments, especially under red and blue lights. Except for the metabolites of group B, almost all other metabolites contents in tobacco leaves treated with red light were higher than those under blue light. 2) Contents of solanesol, 3 alkaloids and 5 polyphenols were measured with targeted method. 4 alkaloids, including nicotine detected by non-targeted method, showed similar variation among all treatments, of which red and yellow light increased alkaloid accumulation significantly. The kaempferol-3-O-rutinoside and rutin showed similar variation among the six treatments, with the lowest content under blue light and the highest content under yellow light, nevertheless, 3 other polyphenols were differently affected by light qualities. The aolanesol accumulation was significantly repressed by yellow light, but showed highest content under blue light. In conclusion, light quality affected many metabolic pathways significantly in tobacco, such as fatty acid metabolism, glycometabolism, alkaloid metabolism, amino acid metabolism, tricarboxylic acid cycle and shikimate pathway. PMID:27112018

  17. Mitochondrial Alternative Oxidase Maintains Respiration and Preserves Photosynthetic Capacity during Moderate Drought in Nicotiana tabacum1[W

    PubMed Central

    Dahal, Keshav; Wang, Jia; Martyn, Greg D.; Rahimy, Farkhunda; Vanlerberghe, Greg C.

    2014-01-01

    The mitochondrial electron transport chain includes an alternative oxidase (AOX) that is hypothesized to aid photosynthetic metabolism, perhaps by acting as an additional electron sink for photogenerated reductant or by dampening the generation of reactive oxygen species. Gas exchange, chlorophyll fluorescence, photosystem I (PSI) absorbance, and biochemical and protein analyses were used to compare respiration and photosynthesis of Nicotiana tabacum ‘Petit Havana SR1’ wild-type plants with that of transgenic AOX knockdown (RNA interference) and overexpression lines, under both well-watered and moderate drought-stressed conditions. During drought, AOX knockdown lines displayed a lower rate of respiration in the light than the wild type, as confirmed by two independent methods. Furthermore, CO2 and light response curves indicated a nonstomatal limitation of photosynthesis in the knockdowns during drought, relative to the wild type. Also relative to the wild type, the knockdowns under drought maintained PSI and PSII in a more reduced redox state, showed greater regulated nonphotochemical energy quenching by PSII, and displayed a higher relative rate of cyclic electron transport around PSI. The origin of these differences may lie in the chloroplast ATP synthase amount, which declined dramatically in the knockdowns in response to drought. None of these effects were seen in plants overexpressing AOX. The results show that AOX is necessary to maintain mitochondrial respiration during moderate drought. In its absence, respiration rate slows and the lack of this electron sink feeds back on the photosynthetic apparatus, resulting in a loss of chloroplast ATP synthase that then limits photosynthetic capacity. PMID:25204647

  18. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis

    PubMed Central

    Yuan, Ning; Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Hu, Qian; Luo, Hong

    2016-01-01

    Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil –SO42−– is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco. PMID:27350219

  19. Heterologous expression of a rice miR395 gene in Nicotiana tabacum impairs sulfate homeostasis.

    PubMed

    Yuan, Ning; Yuan, Shuangrong; Li, Zhigang; Li, Dayong; Hu, Qian; Luo, Hong

    2016-01-01

    Sulfur participates in many important mechanisms and pathways of plant development. The most common source of sulfur in soil -SO4(2-)- is absorbed into root tissue and distributed into aerial part through vasculature system, where it is reduced into sulfite and finally sulfide within the subcellular organs such as chloroplasts and mitochondria and used for cysteine and methionine biosynthesis. MicroRNAs are involved in many regulation pathways by repressing the expression of their target genes. MiR395 family in Arabidopsis thaliana has been reported to be an important regulator involved in sulfate transport and assimilation, and a high-affinity sulphate transporter and three ATP sulfurylases (ATPS) were the target genes of AthmiR395 (Arabidopsis thaliana miR395). We have cloned a miR395 gene from rice (Oryza sativa) and studied its function in plant nutritional response. Our results indicated that in rice, transcript level of OsamiR395 (Oryza sativa miR395) increased under sulfate deficiency conditions, and the two predicted target genes of miR395 were down-regulated under the same conditions. Overexpression of OsamiR395h in tobacco impaired its sulfate homeostasis, and sulfate distribution was also slightly impacted among leaves of different ages. One sulfate transporter (SULTR) gene NtaSULTR2 was identified to be the target of miR395 in Nicotiana tobacum, which belongs to low affinity sulfate transporter group. Both miR395 and NtaSULTR2 respond to sulfate starvation in tobacco. PMID:27350219

  20. Multi-Platform Metabolomic Analyses of Ergosterol-Induced Dynamic Changes in Nicotiana tabacum Cells

    PubMed Central

    Tugizimana, Fidele; Steenkamp, Paul A.; Piater, Lizelle A.; Dubery, Ian A.

    2014-01-01

    Metabolomics is providing new dimensions into understanding the intracellular adaptive responses in plants to external stimuli. In this study, a multi-technology-metabolomic approach was used to investigate the effect of the fungal sterol, ergosterol, on the metabolome of cultured tobacco cells. Cell suspensions were treated with different concentrations (0–1000 nM) of ergosterol and incubated for different time periods (0–24 h). Intracellular metabolites were extracted with two methods: a selective dispersive liquid-liquid micro-extraction and a general methanol extraction. Chromatographic techniques (GC-FID, GC-MS, GC×GC-TOF-MS, UHPLC-MS) and 1H NMR spectroscopy were used for quantitative and qualitative analyses. Multivariate data analyses (PCA and OPLS-DA models) were used to extract interpretable information from the multidimensional data generated from the analytical techniques. The results showed that ergosterol triggered differential changes in the metabolome of the cells, leading to variation in the biosynthesis of secondary metabolites. PCA scores plots revealed dose- and time-dependent metabolic variations, with optimal treatment conditions being found to be 300 nM ergosterol and an 18 h incubation period. The observed ergosterol-induced metabolic changes were correlated with changes in defence-related metabolites. The ‘defensome’ involved increases in terpenoid metabolites with five antimicrobial compounds (the bicyclic sesquiterpenoid phytoalexins: phytuberin, solavetivone, capsidiol, lubimin and rishitin) and other metabolites (abscisic acid and phytosterols) putatively identified. In addition, various phenylpropanoid precursors, cinnamic acid derivatives and - conjugates, coumarins and lignin monomers were annotated. These annotated metabolites revealed a dynamic reprogramming of metabolic networks that are functionally correlated, with a high complexity in their regulation. PMID:24498209

  1. Multi-platform metabolomic analyses of ergosterol-induced dynamic changes in Nicotiana tabacum cells.

    PubMed

    Tugizimana, Fidele; Steenkamp, Paul A; Piater, Lizelle A; Dubery, Ian A

    2014-01-01

    Metabolomics is providing new dimensions into understanding the intracellular adaptive responses in plants to external stimuli. In this study, a multi-technology-metabolomic approach was used to investigate the effect of the fungal sterol, ergosterol, on the metabolome of cultured tobacco cells. Cell suspensions were treated with different concentrations (0-1000 nM) of ergosterol and incubated for different time periods (0-24 h). Intracellular metabolites were extracted with two methods: a selective dispersive liquid-liquid micro-extraction and a general methanol extraction. Chromatographic techniques (GC-FID, GC-MS, GC × GC-TOF-MS, UHPLC-MS) and (1)H NMR spectroscopy were used for quantitative and qualitative analyses. Multivariate data analyses (PCA and OPLS-DA models) were used to extract interpretable information from the multidimensional data generated from the analytical techniques. The results showed that ergosterol triggered differential changes in the metabolome of the cells, leading to variation in the biosynthesis of secondary metabolites. PCA scores plots revealed dose- and time-dependent metabolic variations, with optimal treatment conditions being found to be 300 nM ergosterol and an 18 h incubation period. The observed ergosterol-induced metabolic changes were correlated with changes in defence-related metabolites. The 'defensome' involved increases in terpenoid metabolites with five antimicrobial compounds (the bicyclic sesquiterpenoid phytoalexins: phytuberin, solavetivone, capsidiol, lubimin and rishitin) and other metabolites (abscisic acid and phytosterols) putatively identified. In addition, various phenylpropanoid precursors, cinnamic acid derivatives and - conjugates, coumarins and lignin monomers were annotated. These annotated metabolites revealed a dynamic reprogramming of metabolic networks that are functionally correlated, with a high complexity in their regulation. PMID:24498209

  2. Effects of aluminum oxide nanoparticles on the growth, development, and microRNA expression of tobacco (Nicotiana tabacum).

    PubMed

    Burklew, Caitlin E; Ashlock, Jordan; Winfrey, William B; Zhang, Baohong

    2012-01-01

    Nanoparticles are a class of newly emerging environmental pollutions. To date, few experiments have been conducted to investigate the effect nanoparticles may have on plant growth and development. It is important to study the effects nanoparticles have on plants because they are stationary organisms that cannot move away from environmental stresses like animals can, therefore they must overcome these stresses by molecular routes such as altering gene expression. microRNAs (miRNA) are a newly discovered, endogenous class of post-transcriptional gene regulators that function to alter gene expression by either targeting mRNAs for degradation or inhibiting mRNAs translating into proteins. miRNAs have been shown to mediate abiotic stress responses such as drought and salinity in plants by altering gene expression, however no study has been performed on the effect of nanoparticles on the miRNA expression profile; therefore our aim in this study was to classify if certain miRNAs play a role in plant response to Al(2)O(3) nanoparticle stress. In this study, we exposed tobacco (Nicotiana tabacum) plants (an important cash crop as well as a model organism) to 0%, 0.1%, 0.5%, and 1% Al(2)O(3) nanoparticles and found that as exposure to the nanoparticles increased, the average root length, the average biomass, and the leaf count of the seedlings significantly decreased. We also found that miR395, miR397, miR398, and miR399 showed an extreme increase in expression during exposure to 1% Al(2)O(3) nanoparticles as compared to the other treatments and the control, therefore these miRNAs may play a key role in mediating plant stress responses to nanoparticle stress in the environment. The results of this study show that Al(2)O(3) nanoparticles have a negative effect on the growth and development of tobacco seedlings and that miRNAs may play a role in the ability of plants to withstand stress to Al(2)O(3) nanoparticles in the environment. PMID:22606225

  3. Root-specific expression of opine genes and opine accumulation in some cultivars of the naturally occurring genetically modified organism Nicotiana tabacum.

    PubMed

    Chen, Ke; de Borne, François Dorlhac; Julio, Emilie; Obszynski, Julie; Pale, Patrick; Otten, Léon

    2016-08-01

    Previous studies have shown that Nicotiana tabacum contains three Agrobacterium-derived T-DNA sequences inherited from its paternal ancestor Nicotiana tomentosiformis. Among these, the TB locus carries an intact mannopine synthase 2' gene (TB-mas2'). This gene is similar to the Agrobacterium rhizogenes A4-mas2' gene that encodes the synthesis of the Amadori compound deoxyfructosyl-glutamine (DFG or santhopine). In this study we show that TB-mas2' is expressed at very low levels in N. tomentosiformis and in most N. tabacum cultivars; however, some cultivars show high TB-mas2' expression levels. The TB-mas2' promoter sequences of low- and high-expressing cultivars are identical. The low/high level of expression segregates as a single Mendelian factor in a cross between a low- and a high-expression cultivar. pTB-mas2'-GUS and pA4-mas2'-GUS reporter genes were stably introduced in N. benthamiana. Both were mainly expressed in the root expansion zone and leaf vasculature. Roots of tobacco cultivars with high TB-mas2' expression contain detectable levels of DFG. PMID:27125327

  4. Effect of UV irradiation, toluidine blue, and environment on maternal haploid frequencies from the cross between Nicotiana tabacum and N. africana

    SciTech Connect

    Chimoyo, H.M.

    1988-01-01

    Treating Nicotiana africana Merxm. pollen with three levels UV radiation prior to pollinating four cultivars of flue-cured tobacco (Coker 176, NC95, McN944 and PD4), Nicotiana tabacum produced 1,953 viable seedlings from an estimated total of 170,248 seeds, of which 1,667 were haploid and 286 were hybrids. Drenching N. tabacum flowers with toluidine blue 18 hours after pollination with normal N. africana pollen, yielded 511 viable seedlings from 70,613 seeds, of which 346 were haploid and 165 hybrids. Untreated pollen gave 548 viable seedlings from 56,291 seeds, comprising 341 haploids and 208 hybrids. Contrary to results from a previous histological study, in vivo pollen tube growth rate appears to be similar irrespective of pollen source or treatment, and fertilization seems to occur at about the same time as in the selfed control. From an estimated total of 803,854 seeds sown, 3,014 viable seedlings were obtained. Coker 176 gave significantly higher yields of haploids than the other three cultivars. Field grown plants produced more haploids than greenhouse grown plants. Further evidence was obtained to support selective chromosomal elimination as the mechanism governing the development of maternal haploids from this interspecific cross.

  5. Acidic α-galactosidase is the most abundant nectarin in floral nectar of common tobacco (Nicotiana tabacum)

    PubMed Central

    Zha, Hong-Guang; Flowers, V. Lynn; Yang, Min; Chen, Ling-Yang; Sun, Hang

    2012-01-01

    Background and Aims To date, most floral nectarins (nectar proteins) are reported to function in nectar defence, particularly for insect-pollinated outcrossing species. We compared nectarin composition and abundance in selfing common tobacco (Nicotiana tobaccum) with outcrossing ornamental tobacco plants to elucidate the functional difference of nectarins in different reproductive systems. Methods Common tobacco (CT) nectarins were separated by SDS-PAGE and the N terminus of the most abundant nectarin was sequenced via Edman degradation. The full-length nectarin gene was amplified and cloned from genomic DNA and mRNA with hiTail-PCR and RACE (rapid amplification of cDNA ends), and expression patterns were then investigated in different tissues using semi-quantitative reverse transcriptase PCR. Additionally, high-performance liquid chromatography and enzymatic analyses of nectar sugar composition, and other biochemical traits and functions of the novel nectarin were studied. Key Results The most abundant nectarin in CT nectar is an acidic α-galactosidase, here designated NTα-Gal. This compound has a molecular mass of 40 013 Da and a theoretical pI of 5·33. NTα-Gal has a conserved α-Gal characteristic signature, encodes a mature protein of 364 amino acids and is expressed in different organs. Compared with 27 other melliferous plant species from different families, CT floral nectar demonstrated the highest α-Gal activity, which is inhibited by d-galactose. Raffinose family oligosaccharides were not detected in CT nectar, indicating that NTα-Gal does not function in post-secretory hydrolysis. Moreover, tobacco plant fruits did not develop intact skin with galactose inhibition of NTα-Gal activity in nectar, suggesting that NTα-Gal induces cell-wall surface restructuring during the initial stages of fruit development. Conclusions α-Gal was the most abundant nectarin in selfing CT plants, but was not detected in the nectar of strictly outcrossing sister tobacco

  6. Improvement in the stability and functionality of Nicotiana tabacum produced recombinant TRAIL through employment of endoplasmic reticulum expression and ascorbate buffer mediated extraction strategies

    PubMed Central

    Heidari, Hamid Reza; Bandehpour, Mojgan; Vahidi, Hossein; Barar, Jaleh; Kazemi, Bahram; Naderi-Manesh, Hossein

    2014-01-01

    Introduction: In order to employ Nicotiana tabacum cells as a profitable natural bioreactor for production of bio-functional "Soluble human TRAIL" (ShTRAIL), endoplasmic reticulum (ER) targeted expression and innovative extraction procedures were exploited. Methods: At first, the ShTRAIL encoding gene was sub-cloned into designed H2 helper vector to equip it with potent TMV omega leader sequences, ER sorting signal peptide, poly-histidine tag and ER retention signal peptide (KDEL). Then, the ER targeted ShTRAIL cassette was sequentially sub-cloned into "CaMV-35S" helper and "pGreen-0179" final expression vectors. Afterward, Agrobacterium mediated transformation method was adopted to express the ShTRAIL in the ER of N. tabacum . Next, the ShTRAIL protein was extracted through both phosphate and innovative ascorbate extraction buffers. Subsequently, oligomerization state of the ShTRAIL was evaluated through cross-linking assay and western blot analysis. Then, semi-quantitative western blot analysis was performed to estimate the ShTRAIL production. Finally, biological activity of the ShTRAIL was evaluated through MTT assay. Results: The phosphate buffer extracted ShTRAIL was produced in dimmer form, whereas the ShTRAIL extracted with ascorbate buffer generated trimer form. The ER targeted ShTRAIL strategy increased the ShTRAIL’s production level up to about 20 μg/g of fresh weight of N. tabacum . MTT assay indicated that ascorbate buffer extracted ShTRAIL could prohibit proliferation of A549 cell line. Conclusion: Endoplasmic reticulum expression and reductive ascorbate buffer extraction procedure can be employed to enhance the stability and overall production level of bio-functional recombinant ShTRAIL from transgenic N. tabacum cells. PMID:25337465

  7. S-Carvone Suppresses Cellulase-Induced Capsidiol Production in Nicotiana tabacum by Interfering with Protein Isoprenylation1[C][W

    PubMed Central

    Huchelmann, Alexandre; Gastaldo, Clément; Veinante, Mickaël; Zeng, Ying; Heintz, Dimitri; Tritsch, Denis; Schaller, Hubert; Rohmer, Michel; Bach, Thomas J.; Hemmerlin, Andréa

    2014-01-01

    S-Carvone has been described as a negative regulator of mevalonic acid (MVA) production by interfering with 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGR) activity, a key player in isoprenoid biosynthesis. The impact of this monoterpene on the production of capsidiol in Nicotiana tabacum, an assumed MVA-derived sesquiterpenoid phytoalexin produced in response to elicitation by cellulase, was investigated. As expected, capsidiol production, as well as early stages of elicitation such as hydrogen peroxide production or stimulation of 5-epi-aristolochene synthase activity, were repressed. Despite the lack of capsidiol synthesis, apparent HMGR activity was boosted. Feeding experiments using (1-13C)Glc followed by analysis of labeling patterns by 13C-NMR, confirmed an MVA-dependent biosynthesis; however, treatments with fosmidomycin, an inhibitor of the MVA-independent 2-C-methyl-d-erythritol 4-phosphate (MEP) isoprenoid pathway, unexpectedly down-regulated the biosynthesis of this sesquiterpene as well. We postulated that S-carvone does not directly inhibit the production of MVA by inactivating HMGR, but possibly targets an MEP-derived isoprenoid involved in the early steps of the elicitation process. A new model is proposed in which the monoterpene blocks an MEP pathway–dependent protein geranylgeranylation necessary for the signaling cascade. The production of capsidiol was inhibited when plants were treated with some inhibitors of protein prenylation or by further monoterpenes. Moreover, S-carvone hindered isoprenylation of a prenylable GFP indicator protein expressed in N. tabacum cell lines, which can be chemically complemented with geranylgeraniol. The model was further validated using N. tabacum cell extracts or recombinant N. tabacum protein prenyltransferases expressed in Escherichia coli. Our study endorsed a reevaluation of the effect of S-carvone on plant isoprenoid metabolism. PMID:24367019

  8. Ectopic expression of Malus domestica class 1 knox genes altered growth and development of Nicotiana tabacum and Prunus domestica, and induced adventitious shoot regeneration from leaf explants without exogenous cytokinin

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Transgenic tobacco (Nicotiana tabacum L) and plum (Prunus domestica L) plants were regenerated by transforming with apple class 1 KNOX genes (MdKNP1 and MdKNP2) or a corn KN1 (ZmKN1) gene. Transgenic tobacco plants were produced in vitro from transformed leaf discs in the absence of cytokinin in th...

  9. Spectral reflectance, chlorophyll fluorescence and virological investigations of tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV)

    NASA Astrophysics Data System (ADS)

    Krezhova, Dora; Hristova, Dimitrina; Iliev, Ilko; Yanev, Tony

    Application of multispectral remote sensing techniques to plant condition monitoring has been adopted for various purposes. Remote sensing is a reliable tool for detecting signs of vege-tation stress and diseases. Spectral reflectance and chlorophyll fluorescence are functions of tissue optical properties and biological status of the plants, and illumination conditions. The mean reflectance spectrum depends on the relative composition of all the pigments in the leaf including chlorophylls, carotenoids etc. Chlorophyll fluorescence results from the primary re-actions of photosynthesis and during the last decade it finds widening application as a means for revelation of stress and diseases. The changes in chlorophyll function take place before the alteration in chlorophyll content to occur so that changes in the fluorescence signal arise before any visible signs are apparent. The aim of our investigations was to study the development and spreading out of a viral infection on the leaves of two cultivars tobacco plants (Nicotiana tabacum L.) infected with Tobacco mosaic virus (TMV). We applied two remote sensing tech-niques (spectral reflectance and chlorophyll fluorescence measurements) for evaluation of the changes in the optical properties of the plants in accordance to their physiological status. The serological analyses via the Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) were made with appropriate kits (Leowe, Germany) for quantitative assessment of the concentration of viruses in the plants. The tobacco plants were grown in green house under controlled conditions. The first cultivar Nevrocop 1146 is known as resistive to the TMV, i.e. it shows hypersensitive response. The second cultivar named Krumovgrad is normally sen-sitive to the TMV. At growth stage 4-6 expanded leaf, up to one leaf from 20 plants for each cultivar were inoculated with TMV. The leaves opposite to the infected ones formed the group of control (untreated) leaves. The

  10. Molecular cloning and functional characterization of the lycopene ε-cyclase gene via virus-induced gene silencing and its expression pattern in Nicotiana tabacum.

    PubMed

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  11. Molecular Cloning and Functional Characterization of the Lycopene ε-Cyclase Gene via Virus-Induced Gene Silencing and Its Expression Pattern in Nicotiana tabacum

    PubMed Central

    Shi, Yanmei; Wang, Ran; Luo, Zhaopeng; Jin, Lifeng; Liu, Pingping; Chen, Qiansi; Li, Zefeng; Li, Feng; Wei, Chunyang; Wu, Mingzhu; Wei, Pan; Xie, He; Qu, Lingbo; Lin, Fucheng; Yang, Jun

    2014-01-01

    Lycopene ε-cyclase (ε-LCY) is a key enzyme that catalyzes the synthesis of α-branch carotenoids through the cyclization of lycopene. Two cDNA molecules encoding ε-LCY (designated Ntε-LCY1 and Ntε-LCY2) were cloned from Nicotiana tabacum. Ntε-LCY1 and Ntε-LCY2 are encoded by two distinct genes with different evolutionary origins, one originating from the tobacco progenitor, Nicotiana sylvestris, and the other originating from Nicotiana tomentosiformis. The two coding regions are 97% identical at the nucleotide level and 95% identical at the amino acid level. Transcripts of Ntε-LCY were detectable in both vegetative and reproductive organs, with a relatively higher level of expression in leaves than in other tissues. Subcellular localization experiments using an Ntε-LCY1-GFP fusion protein demonstrated that mature Ntε-LCY1 protein is localized within the chloroplast in Bright Yellow 2 suspension cells. Under low-temperature and low-irradiation stress, Ntε-LCY transcript levels substantially increased relative to control plants. Tobacco rattle virus (TRV)-mediated silencing of ε-LCY in Nicotiana benthamiana resulted in an increase of β-branch carotenoids and a reduction in the levels of α-branch carotenoids. Meanwhile, transcripts of related genes in the carotenoid biosynthetic pathway observably increased, with the exception of β-OHase in the TRV-ε-lcy line. Suppression of ε-LCY expression was also found to alleviate photoinhibition of Potosystem II in virus-induced gene silencing (VIGS) plants under low-temperature and low-irradiation stress. Our results provide insight into the regulatory role of ε-LCY in plant carotenoid biosynthesis and suggest a role for ε-LCY in positively modulating low temperature stress responses. PMID:25153631

  12. Improved phytoaccumulation of cadmium by genetically modified tobacco plants (Nicotiana tabacum L.). Physiological and biochemical response of the transformants to cadmium toxicity.

    PubMed

    Gorinova, N; Nedkovska, M; Todorovska, E; Simova-Stoilova, L; Stoyanova, Z; Georgieva, K; Demirevska-Kepova, K; Atanassov, A; Herzig, R

    2007-01-01

    The response of tobacco plants (Nicotiana tabacum L.)--non-transformed and transformed with a metallothionein gene MThis from Silene vulgaris L.--to increase cadmium supply in the nutrient solution was compared. The transgenic plants accumulated significantly more Cd both in the roots and the leaves. Visual toxicity symptoms and disturbance in water balance were correlated with Cd tissue content. Treatment with 300 microM CdCl(2) resulted in inhibition of photosynthesis and mobilization of the ascorbate-glutathione cycle. Treatment with 500 microM CdCl(2) led to irreversible damage of photosynthesis and oxidative stress. An appearance of a new peroxidase isoform and changes in the leaf polypeptide pattern were observed at the highest Cd concentration. The level of non-protein thiols gradually increased following the Cd treatment both in transgenic and non-transformed plants. PMID:16762468

  13. Uptake of NO, NO 2 and O 3 by sunflower ( Helianthus annuus L.) and tobacco plants ( Nicotiana tabacum L.): dependence on stomatal conductivity

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Kley, D.; Wildt, J.; Segschneider, H. J.; Förstel, H.

    The uptake of NO, NO 2 and O 3 by sunflowers ( Helianthus annuus L. var. giganteus) and tobacco plants ( Nicotiana tabacum L. var. Bel W3), using concentrations representative for moderately polluted air, has been determined by gas exchange experiments. Conductivities for these trace gases were measured at different light fluxes ranging from 820 μEm -2s -1 to darkness. The conductivities to water vapor and the trace gases are highly correlated. It is concluded that the uptake of NO, NO 2 and O 3 by sunflowers and tobacco plants is linearly dependent on stomatal opening. While the uptake of NO is limited by the mesophyll resistance, the uptake of NO 2 is only by diffusion through the stomata. Loss processes by deposition to the leaf surfaces are more pronounced for O 3 than for NO and NO 2.

  14. Gel-based and gel-free proteomic analysis of Nicotiana tabacum trichomes identifies proteins involved in secondary metabolism and in the (a)biotic stress response.

    PubMed

    Van Cutsem, Emmanuel; Simonart, Géraldine; Degand, Hervé; Faber, Anne-Marie; Morsomme, Pierre; Boutry, Marc

    2011-02-01

    Nicotiana tabacum leaves are covered by trichomes involved in the secretion of large amounts of secondary metabolites, some of which play a major role in plant defense. However, little is known about the metabolic pathways that operate in these structures. We undertook a proteomic analysis of N. tabacum trichomes in order to identify their protein complement. Efficient trichome isolation was obtained by abrading frozen leaves. After homogenization, soluble proteins and a microsomal fraction were prepared by centrifugation. Gel-based and gel-free proteomic analyses were then performed. 2-DE analysis of soluble proteins led to the identification of 1373 protein spots, which were digested and analyzed by MS/MS, leading to 680 unique identifications. Both soluble proteins and microsomal fraction were analyzed by LC MALDI-MS/MS after trypsin digestion, leading to 858 identifications, many of which had not been identified after 2-DE, indicating that the two methods complement each other. Many enzymes putatively involved in secondary metabolism were identified, including enzymes involved in the synthesis of terpenoid precursors and in acyl sugar production. Several transporters were also identified, some of which might be involved in secondary metabolite transport. Various (a)biotic stress response proteins were also detected, supporting the role of trichomes in plant defense. PMID:21268273

  15. Tobacco mosaic virus 126-kDa protein increases the susceptibility of Nicotiana tabacum to other viruses and its dosage affects virus-induced gene silencing.

    PubMed

    Harries, Phillip A; Palanichelvam, Karuppaiah; Bhat, Sumana; Nelson, Richard S

    2008-12-01

    The Tobacco mosaic virus (TMV) 126-kDa protein is a suppressor of RNA silencing previously shown to delay the silencing of transgenes in Nicotiana tabacum and N. benthamiana. Here, we demonstrate that expression of a 126-kDa protein-green fluorescent protein (GFP) fusion (126-GFP) in N. tabacum increases susceptibility to a broad assortment of viruses, including Alfalfa mosaic virus, Brome mosaic virus, Tobacco rattle virus (TRV), and Potato virus X. Given its ability to enhance TRV infection in tobacco, we tested the effect of 126-GFP expression on TRV-mediated virus-induced gene silencing (VIGS) and demonstrate that this protein can enhance silencing phenotypes. To explain these results, we examined the poorly understood effect of suppressor dosage on the VIGS response and demonstrated that enhanced VIGS corresponds to the presence of low levels of suppressor protein. A mutant version of the 126-kDa protein, inhibited in its ability to suppress silencing, had a minimal effect on VIGS, suggesting that the suppressor activity of the 126-kDa protein is indeed responsible for the observed dosage effects. These findings illustrate the sensitivity of host plants to relatively small changes in suppressor dosage and have implications for those interested in enhancing silencing phenotypes in tobacco and other species through VIGS. PMID:18986250

  16. Immunocompetent truncated E2 glycoprotein of bovine viral diarrhea virus (BVDV) expressed in Nicotiana tabacum plants: a candidate antigen for new generation of veterinary vaccines.

    PubMed

    Nelson, Guillermo; Marconi, Patricia; Periolo, Osvaldo; La Torre, José; Alvarez, María Alejandra

    2012-06-22

    The bovine viral diarrhea virus (BVDV) is the etiological agent responsible for a wide spectrum of clinical diseases in cattle. The glycoprotein E2 is the major envelope protein of this virus and the strongest inductor of the immune response. There are several available commercial vaccines against bovine viral diarrhea (BVD), which show irregular performances. Here, we report the use of tobacco plants as an alternative productive platform for the expression of the truncated version of E2 glycoprotein (tE2) from the BVDV. The tE2 sequence, lacking the transmembrane domain, was cloned into the pK7WG2 Agrobacterium binary vector. The construct also carried the 2S2 Arabidopsis thaliana signal for directing the protein into the plant secretory pathway, the Kozak sequence, an hexa-histidine tag to facilitate protein purification and the KDEL endoplasmic reticulum retention signal. The resulting plasmid (pK-2S2-tE2-His-KDEL) was introduced into Agrobacterium tumefaciens strain EHA101 by electroporation. The transformed A. tumefaciens was then used to express tE2 in leaves of Nicotiana tabacum plants. Western blot and ELISA using specific monoclonal antibodies confirmed the presence of the recombinant tE2 protein in plant extracts. An estimated amount of 20 μg of tE2 per gram of fresh leaves was regularly obtained with this plant system. Injection of guinea pigs with plant extracts containing 20 μg of rtE2 induced the production of BVDV specific antibodies at equal or higher levels than those induced by whole virus vaccines. This is the first report of the production of an immunocompetent tE2 in N. tabacum plants, having the advantage to be free of any eventual animal contaminant. PMID:22554468

  17. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis

    PubMed Central

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-01-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1–0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  18. Transfer of the cytochrome P450-dependent dhurrin pathway from Sorghum bicolor into Nicotiana tabacum chloroplasts for light-driven synthesis.

    PubMed

    Gnanasekaran, Thiyagarajan; Karcher, Daniel; Nielsen, Agnieszka Zygadlo; Martens, Helle Juel; Ruf, Stephanie; Kroop, Xenia; Olsen, Carl Erik; Motawie, Mohammed Saddik; Pribil, Mathias; Møller, Birger Lindberg; Bock, Ralph; Jensen, Poul Erik

    2016-04-01

    Plant chloroplasts are light-driven cell factories that have great potential to act as a chassis for metabolic engineering applications. Using plant chloroplasts, we demonstrate how photosynthetic reducing power can drive a metabolic pathway to synthesise a bio-active natural product. For this purpose, we stably engineered the dhurrin pathway from Sorghum bicolor into the chloroplasts of Nicotiana tabacum (tobacco). Dhurrin is a cyanogenic glucoside and its synthesis from the amino acid tyrosine is catalysed by two membrane-bound cytochrome P450 enzymes (CYP79A1 and CYP71E1) and a soluble glucosyltransferase (UGT85B1), and is dependent on electron transfer from a P450 oxidoreductase. The entire pathway was introduced into the chloroplast by integrating CYP79A1, CYP71E1, and UGT85B1 into a neutral site of the N. tabacum chloroplast genome. The two P450s and the UGT85B1 were functional when expressed in the chloroplasts and converted endogenous tyrosine into dhurrin using electrons derived directly from the photosynthetic electron transport chain, without the need for the presence of an NADPH-dependent P450 oxidoreductase. The dhurrin produced in the engineered plants amounted to 0.1-0.2% of leaf dry weight compared to 6% in sorghum. The results obtained pave the way for plant P450s involved in the synthesis of economically important compounds to be engineered into the thylakoid membrane of chloroplasts, and demonstrate that their full catalytic cycle can be driven directly by photosynthesis-derived electrons. PMID:26969746

  19. Relationship between leaf antioxidants and ozone injury in Nicotiana tabacum 'Bel-W3' under environmental conditions in São Paulo, SE - Brazil

    NASA Astrophysics Data System (ADS)

    Esposito, Marisia P.; Ferreira, Mauricio L.; Sant'Anna, Silvia M. R.; Domingos, Marisa; Souza, Silvia R.

    Previous studies have reported that the extent of leaf injury in Nicotiana tabacum "Bel-W3" exposed to environmental conditions in the city of São Paulo is influenced by weather conditions. This influence may occur by means of antioxidant responses. Thus, this study aimed to evaluate whether daily antioxidant responses to environmental variations interfere on the progression of leaf injury on plants of this cultivar during their exposure in a state park of São Paulo and to determine a linear combination of variables, among antioxidants and environmental factors, which mostly explain this visible response. Plants were exposed at the mentioned site for 14 days in four different experiments. During each experiment, three plants were daily sampled to determine the accumulated percentage of leaf area affected by necrosis and antioxidant responses (concentrations of total ascorbic acid (AA) and activity of superoxide dismutase (SOD) and peroxidases (POD)). Ozone concentrations and weather conditions were also daily measured. Pearson correlations and multivariate analyses assessed the relationship between biological and environmental variables. Leaf injury appeared between the 3rd and 6th days of exposure and increased over the exposure periods. The daily concentrations of AA tended to decrease with time of exposure in all experiments, but the activity of SOD and POD oscillated during plant exposure. Positive correlations were observed between AA or SOD and O 3 concentrations, as well as negative correlations between AA and air temperature. The increasing percentage of leaf necrosis across the whole period was explained by decreasing levels of AA 2 days before injury estimation and by higher O 3 concentrations 5 days before ( R2 = 0.36; p < 0.001). The use of N. tabacum Bel-W3 as a bioindicator can be restricted by leaf antioxidant responses to both atmospheric contamination and weather conditions.

  20. Cloning and molecular characterisation of a Delta8-sphingolipid-desaturase from Nicotiana tabacum closely related to Delta6-acyl-desaturases.

    PubMed

    García-Maroto, Federico; Garrido-Cárdenas, José A; Michaelson, Louise V; Napier, Johnathan A; Alonso, Diego López

    2007-06-01

    Investigation on the absence of Delta(6)-desaturase activity in Nicotiana tabacum has led to the cloning of a new desaturase gene from this organism (NTDXDES) that exhibited unexpected biochemical activity. Cladistic analysis shows clustering of NTDXDES together with functional Delta(6)-acyl-desaturases of near Solanales plants, such as Borago and Echium. This group lies apart from that of previously characterised Delta(8)-sphingolipid-desaturases, which also includes two putative tobacco members identified in this study. Moreover, strong expression of NTDXDES is found in leaves, flowers, fruits and developing seeds of tobacco plants that is highly dependent on the development phase, with transcriptional activity being higher at stages of active tissue growth. This pattern is similar to that showed by Delta(6)-acyl-desaturases characterised in Boraginaceae species. However, functional assays using a yeast expression system revealed that the protein encoded by NTDXDES lacks Delta(6)-desaturase activity, but instead it is able to desaturate sphingolipid substrates by introducing a double bond on the Delta(8)-position. These data indicate that NTDXDES represent a novel desaturase gene placed in a different evolutionary lineage to that of previously characterised Delta(8)-desaturases. PMID:17325828

  1. Tobacco plants transformed with the bean. alpha. ai gene express an inhibitor of insect. alpha. -amylase in their seeds. [Nicotiana tabacum; Tenebrio molitor

    SciTech Connect

    Altabella, T.; Chrispeels, M.J. )

    1990-06-01

    Bean (Phaseolus vulgaris L.) seeds contain a putative plant defense protein that inhibits insect and mammalian but not plant {alpha}-amylases. We recently presented strong circumstantial evidence that this {alpha}-amylase inhibitor ({alpha}Al) is encoded by an already-identified lectin gene whose product is referred to as lectin-like-protein (LLP). We have now made a chimeric gene consisting of the coding sequence of the lectin gene that encodes LLP and the 5{prime} and 3{prime} flanking sequences of the lectin gene that encodes phytohemagglutinin-L. When this chimeric gene was expressed in transgenic tobacco (Nicotiana tabacum), we observed in the seeds a series of polypeptides (M{sub r} 10,000-18,000) that cross-react with antibodies to the bean {alpha}-amylase inhibitor. Most of these polypeptides bind to a pig pancreas {alpha}-amylase affinity column. An extract of the seeds of the transformed tobacco plants inhibits pig pancreas {alpha}-amylase activity as well as the {alpha}-amylase present in the midgut of Tenebrio molitor. We suggest that introduction of this lectin gene (to be called {alpha}ai) into other leguminous plants may be a strategy to protect the seeds from the seed-eating larvae of Coleoptera.

  2. Effects of a petunia scaffold/matrix attachment region on copy number dependency and stability of transgene expression in Nicotiana tabacum.

    PubMed

    Dietz-Pfeilstetter, Antje; Arndt, Nicola; Manske, Ulrike

    2016-04-01

    Transgenes in genetically modified plants are often not reliably expressed during development or in subsequent generations. Transcriptional gene silencing (TGS) as well as post-transcriptional gene silencing (PTGS) have been shown to occur in transgenic plants depending on integration pattern, copy number and integration site. In an effort to reduce position effects, to prevent read-through transcription and to provide a more accessible chromatin structure, a P35S-ß-glucuronidase (P35S-gus) transgene flanked by a scaffold/matrix attachment region from petunia (Petun-SAR), was introduced in Nicotiana tabacum plants by Agrobacterium tumefaciens mediated transformation. It was found that Petun-SAR mediates enhanced expression and copy number dependency up to 2 gene copies, but did not prevent gene silencing in transformants with multiple and rearranged gene copies. However, in contrast to the non-SAR transformants where silencing was irreversible and proceeded during long-term vegetative propagation and in progeny plants, gus expression in Petun-SAR plants was re-established in the course of development. Gene silencing was not necessarily accompanied by DNA methylation, while the gus transgene could still be expressed despite considerable CG methylation within the coding region. PMID:26732611

  3. The Development of DNA Based Methods for the Reliable and Efficient Identification of Nicotiana tabacum in Tobacco and Its Derived Products

    PubMed Central

    Fan, Wei; Li, Rong; Li, Sifan; Ping, Wenli; Li, Shujun; Naumova, Alexandra; Peelen, Tamara; Yuan, Zheng; Zhang, Dabing

    2016-01-01

    Reliable methods are needed to detect the presence of tobacco components in tobacco products to effectively control smuggling and classify tariff and excise in tobacco industry to control illegal tobacco trade. In this study, two sensitive and specific DNA based methods, one quantitative real-time PCR (qPCR) assay and the other loop-mediated isothermal amplification (LAMP) assay, were developed for the reliable and efficient detection of the presence of tobacco (Nicotiana tabacum) in various tobacco samples and commodities. Both assays targeted the same sequence of the uridine 5′-monophosphate synthase (UMPS), and their specificities and sensitivities were determined with various plant materials. Both qPCR and LAMP methods were reliable and accurate in the rapid detection of tobacco components in various practical samples, including customs samples, reconstituted tobacco samples, and locally purchased cigarettes, showing high potential for their application in tobacco identification, particularly in the special cases where the morphology or chemical compositions of tobacco have been disrupted. Therefore, combining both methods would facilitate not only the detection of tobacco smuggling control, but also the detection of tariff classification and of excise.

  4. Alamethicin permeabilizes the plasma membrane and mitochondria but not the tonoplast in tobacco (Nicotiana tabacum L. cv Bright Yellow) suspension cells

    PubMed Central

    2005-01-01

    The ion channel-forming peptide AlaM (alamethicin) is known to permeabilize isolated mitochondria as well as animal cells. When intact tobacco (Nicotiana tabacum L.) Bright Yellow-2 cells were treated with AlaM, the cells became permeable for low-molecular-mass molecules as shown by induced leakage of NAD(P)+. After the addition of cofactors and substrates, activities of cytosolic as well as mitochondrial respiratory enzymes could be directly determined inside the permeabilized cells. However, at an AlaM concentration at which the cytoplasmic enzymes were maximally accessible, the vacuole remained intact, as indicated by an unaffected tonoplast proton gradient. Low-flux permeabilization of plasma membranes and mitochondria at moderate AlaM concentrations was reversible and did not affect cell vigour. Higher AlaM concentrations induced cell death. After the addition of catalase that removes the H2O2 necessary for NADH oxidation by apoplastic peroxidases, mitochondrial oxygen consumption could be measured in permeabilized cells. Inhibitor-sensitive oxidation of the respiratory substrates succinate, malate and NADH was observed after the addition of the appropriate coenzymes (ATP, NAD+). The capacities of different pathways in the respiratory electron-transport chain could thus be determined directly. We conclude that AlaM permeabilization provides a very useful tool for monitoring metabolic pathways or individual enzymes in their native proteinaceous environment with controlled cofactor concentrations. Possible uses and limitations of this method for plant cell research are discussed. PMID:15836437

  5. Functional characterisation of Nicotiana tabacum xyloglucan endotransglycosylase (NtXET-1): generation of transgenic tobacco plants and changes in cell wall xyloglucan.

    PubMed

    Herbers, K; Lorences, E P; Barrachina, C; Sonnewald, U

    2001-01-01

    To study the function of xyloglucan endotransglycosylase (XET) in vivo we isolated, a tomato (Lycopersicon esculentum Mill.) XET cDNA (GenBank AA824986) from the homologous tobacco (Nicotiana tabacum L.) clone named NtXET-1 (Accession no. D86730). The expression pattern revealed highest levels of NtXET-1 mRNA in organs highly enriched in vascular tissue. The levels of NtXET-1 mRNA decreased in midribs with increasing age of leaves. Increasing leaf age was correlated with an increase in the average molecular weight (MW) of xyloglucan (XG) and a decrease in the relative growth rates of leaves. Transgenic tobacco plants with reduced levels of XET activity were created to further study the biochemical consequences of reduced levels of NtXET-1 expression. In two independent lines, total XET activity could be reduced by 56% and 37%, respectively, in midribs of tobacco plants transformed with an antisense construct. The decreased activity led to an increase in the average MW of XG by at least 20%. These two lines of evidence argue for NtXET-1 being involved in the incorporation of small XG molecules into the cell wall by transglycosylation. Reducing the incorporation of small XG molecules will result in a shift towards a higher average MW. The observed reduction in NtXET-1 expression and increase in the MW of XG in older leaves might be associated with strengthening of cell walls by reduced turnover and hydrolysis of XG. PMID:11216849

  6. Evaluation of tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots for the production of geraniol, the first committed step in terpenoid indole alkaloid pathway.

    PubMed

    Ritala, Anneli; Dong, Lemeng; Imseng, Nicole; Seppänen-Laakso, Tuulikki; Vasilev, Nikolay; van der Krol, Sander; Rischer, Heiko; Maaheimo, Hannu; Virkki, Arho; Brändli, Johanna; Schillberg, Stefan; Eibl, Regine; Bouwmeester, Harro; Oksman-Caldentey, Kirsi-Marja

    2014-04-20

    The terpenoid indole alkaloids are one of the major classes of plant-derived natural products and are well known for their many applications in the pharmaceutical, fragrance and cosmetics industries. Hairy root cultures are useful for the production of plant secondary metabolites because of their genetic and biochemical stability and their rapid growth in hormone-free media. Tobacco (Nicotiana tabacum L. cv. Petit Havana SR1) hairy roots, which do not produce geraniol naturally, were engineered to express a plastid-targeted geraniol synthase gene originally isolated from Valeriana officinalis L. (VoGES). A SPME-GC-MS screening tool was developed for the rapid evaluation of production clones. The GC-MS analysis revealed that the free geraniol content in 20 hairy root clones expressing VoGES was an average of 13.7 μg/g dry weight (DW) and a maximum of 31.3 μg/g DW. More detailed metabolic analysis revealed that geraniol derivatives were present in six major glycoside forms, namely the hexose and/or pentose conjugates of geraniol and hydroxygeraniol, resulting in total geraniol levels of up to 204.3 μg/g DW following deglycosylation. A benchtop-scale process was developed in a 20-L wave-mixed bioreactor eventually yielding hundreds of grams of biomass and milligram quantities of geraniol per cultivation bag. PMID:24530945

  7. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals

    PubMed Central

    Singh, Sanjay K.; Wu, Yongmei; Ghosh, Jayadri S.; Pattanaik, Sitakanta; Fisher, Colin; Wang, Ying; Lawson, Darlene; Yuan, Ling

    2015-01-01

    Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro® (FP), and contact, Off-Shoot-T®. Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system. PMID:26670135

  8. Light‐dependent Anaerobic Induction of the Maize Glyceraldehyde‐3‐Phosphate Dehydrogenase 4 (GapC4) Promoter in Arabidopsis thaliana and Nicotiana tabacum

    PubMed Central

    HÄNSCH, ROBERT; MENDEL, RALF R.; CERFF, RÜDIGER; HEHL, REINHARD

    2003-01-01

    The maize glyceraldehyde‐3‐phosphate dehydrogenase 4 (GapC4) promoter confers strong and specific anaerobic gene expression in tobacco (Nicotiana tabacum) and potato (Solanum tuberosum). Here we show that the promoter is also anaerobically induced in Arabidopsis thaliana. Histochemical analysis demonstrates that the promoter is anaerobically induced in roots, leaves, stems and flower organs. Surprisingly, the strong anaerobic induction of the promoter is dependent on light and on the substitution of oxygen with carbon dioxide. High carbon dioxide concentration alone does not induce the promoter in the presence of oxygen and light. If anaerobic conditions are generated under complete darkness or if plants are submerged, no induction above background is observed. When transgenic tobacco harbouring a GapC4 promoter–reporter gene construct is analysed for light dependent anaerobic induction, the results are indistinguishable from those with arabidopsis. The implications for using the GapC4 promoter as an anaerobic reporter for monitoring alterations in the anaerobic signal transduction pathway are discussed. PMID:12509336

  9. RNA-sequencing Reveals Global Transcriptomic Changes in Nicotiana tabacum Responding to Topping and Treatment of Axillary-shoot Control Chemicals.

    PubMed

    Singh, Sanjay K; Wu, Yongmei; Ghosh, Jayadri S; Pattanaik, Sitakanta; Fisher, Colin; Wang, Ying; Lawson, Darlene; Yuan, Ling

    2015-01-01

    Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro(®) (FP), and contact, Off-Shoot-T(®). Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system. PMID:26670135

  10. The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents.

    PubMed

    Degola, Francesca; Fattorini, Laura; Bona, Elisa; Sprimuto, Christian Triscari; Argese, Emanuele; Berta, Graziella; Sanità di Toppi, Luigi

    2015-07-01

    Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products. PMID:25900420

  11. Comparison of Thermobifida fusca Cellulases Expressed in Escherichia coli and Nicotiana tabacum Indicates Advantages of the Plant System for the Expression of Bacterial Cellulases

    PubMed Central

    Klinger, Johannes; Fischer, Rainer; Commandeur, Ulrich

    2015-01-01

    The economic conversion of lignocellulosic biomass to biofuels requires in addition to pretreatment techniques access to large quantities of inexpensive cellulases to be competitive with established first generation processes. A solution to this problem could be achieved by plant based expression of these enzymes. We expressed the complete set of six cellulases and an additional β-glucosidase expressed from Thermobifida fusca in the bacterium Escherichia coli and in tobacco plants (Nicotiana tabacum). This was done to determine whether functional enzyme expression was feasible in these organisms. In extracts of recombinant E. coli cells, five of the proteins were detected by western blot analysis, but exocellulases E3 and E6 were undetectable. In the plant-based expression system we were able to detect all six cellulases but not the β-glucosidase even though activity was detectable. When E. coli was used as the expression system, endocellulase E2 was active, while endocellulases E1 and E5 showed only residual activity. The remaining cellulases appeared completely inactive against the model substrates azo-carboxymethyl-cellulose (Azo-CMC) and 4-methylumbelliferyl-cellobioside (4-MUC). Only the β-glucosidase showed high activity against 4-MUC. In contrast, all the plant-derived enzymes were active against the respective model substrates. Our data indicate that some enzymes of bacterial origin are more active and more efficiently expressed in plants than in a bacterial host. PMID:26648951

  12. Use of the wound-inducible NtQPT2 promoter from Nicotiana tabacum for production of a plant-made vaccine.

    PubMed

    De Guzman, Giorgio; Walmsley, Amanda M; Webster, Diane E; Hamill, John D

    2012-06-01

    The wound-inducible quinolinate phosphoribosyl transferase promoter from Nicotiana tabacum (NtQPT2) was assessed for its capacity to produce B-subunit of the heat-labile toxin (LTB) from enterotoxigenic Escherichia coli in transgenic plant tissues. Comparisons were made with the widely used and constitutive Cauliflower Mosaic Virus 35S (CaMV35S) promoter. The NtQPT2 promoter produced somewhat lower average concentrations of LTB protein per unit weight of hairy root tissue but allowed better growth thereby producing similar or higher overall average yields of LTB per culture batch. Transgenic tobacco plants containing the NtQPT2-LTB construct contained LTB protein in roots but not leaves. Moreover, wounding NtQPT2-LTB transgenic plants, by removal of apices, resulted in an approximate 500% increase in LTB levels in roots when analysed several days later. CaMV35S-LTB transgenic plants contained LTB protein in leaves and roots but wounding made no difference to their LTB content. PMID:22354474

  13. Expression of ipt gene controlled by an ethylene and auxin responsive fragment of the LEACO1 promoter increases flower number in transgenic Nicotiana tabacum.

    PubMed

    Khodakovskaya, Mariya; Zhao, Degang; Smith, William; Li, Yi; McAvoy, Richard

    2006-11-01

    Cytokinins play important roles in regulating plant growth and development. A new genetic construct for regulating cytokinin content in plant cells was cloned and tested. The gene coding for isopentenyl transferase (ipt) was placed under the control of a 0.821 kb fragment of the 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase gene promoter from Lycopersicon esculentum (LEACO1) and introduced into Nicotiana tabacum (cv. Havana). Some LEACO1(0.821) (kb)-ipt transgenic plant lines displayed normal shoot morphology but with a dramatic increase in the number of flower buds compared to nontransgenic plants. Other transgenic lines produced excessive lateral branch development but no change in flower bud number. Isolated leaves of transgenic tobacco plants showed a significantly prolonged retention of chlorophyll under dark incubation (25 degrees C for 20 days). Leaves of nontransformed plants senesced gradually under the same conditions. Experiments with LEACO1(0.821) (kb)-gus transgenic tobacco plants suggested auxin and ethylene involvement in induction of LEACO1(0.821) (kb) promoter activity. Multiple copies of nucleotide base sequences associated with either ethylene or auxin response elements were identified in the LEACO1(0.821) (kb) promoter fragment. The LEACO1(0.821) (kb)-ipt fusion gene appears to have potential utility for improving certain ornamental and agricultural crop species by increasing flower bud initiation and altering branching habit. PMID:16786314

  14. Single rol Genes from the Agrobacterium rhizogenes TL-DNA Alter Some of the Cellular Responses to Auxin in Nicotiana tabacum 1

    PubMed Central

    Maurel, Christophe; Barbier-Brygoo, Hélène; Spena, Angelo; Tempé, Jacques; Guern, Jean

    1991-01-01

    Two kinds of cellular responses to auxin, the hyperpolarization of protoplasts and the division of protoplast-derived cells, were compared in Nicotiana tabacum plants transformed by different T-DNA fragments of Agrobacterium rhizogenes strain A4. Using transmembrane potential difference measurements to characterize hormonal sensitivity of mesophyll protoplasts, we found a 30-fold increase in sensitivity to auxin in protoplasts transformed by the whole Ri A4 T-DNA. Furthermore, the rol genes of the Ri A4 TL-DNA, together or as single genes, were able to increase the sensitivity to auxin by factors up to 104. The different effects of the single rol genes on the sensitivity of mesophyll protoplasts to auxin, rolB being the most powerful, were consistent with their respective rhizogenic effects on leaf fragments (A Spena, T Schmülling, C Koncz, J Schell [1987] EMBO J 6: 3891-3899). No difference was seen concerning the effects of auxin on division of cells derived from normal or transformed protoplasts. These results suggest that only some cellular responses to auxin could be selectively altered by rol genes. They also show that rol-transformed tobaccos can be a model system to study auxin action in plants. PMID:16668373

  15. Relationship between ozone, meteorological conditions, gas exchange and leaf injury in Nicotiana tabacum Bel-W3 in a sub-tropical region

    NASA Astrophysics Data System (ADS)

    Silva, Daiane T.; Meirelles, Sérgio T.; Moraes, Regina M.

    2012-12-01

    The city of São Paulo is located in a subtropical region whose climate exhibits few defined seasons as well as frequent oscillations in temperature and rainfall throughout the year. In addition to interfering with physiological processes, these peculiar climatic dynamics influence the formation of O3 and its influx into leaves, causing species used as bioindicators in temperate climates to be ineffective here. This study evaluated gas exchange variations in CO2 and H2O and leaf injuries induced by O3 in Nicotiana tabacum Bel-W3 in relation to oscillations in environmental conditions. Plants were exposed to an O3-polluted environment for fifteen periods of fourteen days each throughout 2008. Gas exchange and O3 were higher during the summer and winter but were highly variable in all seasons. Severe injuries occurred during the winter and spring, with significant variation in this parameter being observed throughout the year. An analysis of biotic and abiotic variables revealed complex relationships among them, with great importance of meteorological factors in plant responses. We conclude that under unstable climatic conditions, the relationship between O3 flux and injury is weak, and the qualitative character of biomonitoring is further confirmed.

  16. iTRAQ-based quantitative proteomic analysis reveals proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum) in response to drought stress.

    PubMed

    Xie, He; Yang, Da-Hai; Yao, Heng; Bai, Ge; Zhang, Yi-Han; Xiao, Bing-Guang

    2016-01-15

    Drought is one of the most severe forms of abiotic stresses that threaten the survival of plants, including crops. In turn, plants dramatically change their physiology to increase drought tolerance, including reconfiguration of proteomes. Here, we studied drought-induced proteomic changes in leaves of cultivated tobacco (Nicotiana tabacum), a solanaceous plant, using the isobaric tags for relative and absolute quantitation (iTRAQ)-based protein labeling technology. Of identified 5570 proteins totally, drought treatment increased and decreased abundance of 260 and 206 proteins, respectively, compared with control condition. Most of these differentially regulated proteins are involved in photosynthesis, metabolism, and stress and defense. Although abscisic acid (ABA) levels greatly increased in drought-treated tobacco leaves, abundance of detected ABA biosynthetic enzymes showed no obvious changes. In contrast, heat shock proteins (HSPs), thioredoxins, ascorbate-, glutathione-, and hydrogen peroxide (H2O2)-related proteins were up- or down-regulated in drought-treated tobacco leaves, suggesting that chaperones and redox signaling are important for tobacco tolerance to drought, and it is likely that redox-induced posttranslational modifications play an important role in modulating protein activity. This study not only provides a comprehensive dataset on overall protein changes in drought-treated tobacco leaves, but also shed light on the mechanism by which solanaceous plants adapt to drought stress. PMID:26692494

  17. Evidence for effects on the in vivo activity of ribulose-bisphosphate carboxylase/oxygenase during development of Mn toxicity in tobacco. [Nicotiana tabacum L. cv KY14

    SciTech Connect

    Houtz, R.L.; Nable, R.O.; Cheniae, G.M. )

    1988-04-01

    The progressive decrease in net photosynthesis accompanying development of Mn toxicity in young leaves of burley tobacco (Nicotiana tabacum L. cv KY 14) is a result of effects on in vivo activity of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (rubisco, EC 4.1.1.39). This conclusion is supported by: (a) decrease in rates of CO{sub 2} depletion during measurements of CO{sub 2} compensation, (b) increase in leaf RuBP concentrations, (c) progressive decreases in rate-constants of RuBP loss (light to dark transition analyses) with progressive increases of leaf Mn concentrations, and (d) restoration of diminished rates of net photosynthesis to control rates by elevated CO{sub 2} (5%). Moreover, elevated CO{sub 2} (1100 microliters per liter) during culture of Mn-treated plants decreased elevated RuBP concentrations to control levels and alleviated foliar symptoms of Mn toxicity. These effects of Mn toxicity on in vivo activity of rubisco were not expressed by in vitro kinetic analyses of rubisco prepared under conditions to sequester Mn or to adsorb polyphenols or their oxidation products. Similarly, the in vitro activity of fructose bisphosphatase (EC 3.1.3.11) was unaffected by Mn toxicity.

  18. K-Nutrition, Growth Bud Formation, and Amine and Hydroxycinnamic Acid Amide Contents in Leaf Explants of Nicotiana tabacum Variety Xanthi n.c. Cultivated in Vitro1

    PubMed Central

    Klinguer, Serge; Martin-Tanguy, Josette; Martin, Claude

    1986-01-01

    The effects of K-nutrition on growth (increase of fresh weight), bud formation (time of emergence, number of buds), and amine and hydroxycinnamic acid amide contents in foliar explants of Nicotiana tabacum cv Xanthi n.c. cultivated in vitro were examined. In K-deficient medium and in high K medium growth and bud formation were markedly inhibited. Marked changes of amine content (a diamine, putrescine; a phenolic amine, phenethylamine) were observed after a few days of culture. No apparent relationship was found between these amines and growth or bud differentiation. In contrast, changes in hydroxycinnamic acid levels were shown to correlate well with growth and bud formation. The greatest stimulation of budding and growth was correlated with the greatest accumulation of these amides. The highest contents of hydroxycinnamic acid amides were found during the first 15 days in culture when intensive cell division took place. Then they declined sharply after 26 days in culture as the rate of cell division decreased and differentiation occurred. PMID:16665067

  19. A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.)

    PubMed Central

    Wang, Di; Chen, Xiaobo; Zhang, Zenglin; Liu, Danmei; Song, Gaoyuan; Kong, Xingchen; Geng, Shuaifeng; Yang, Jiayue; Wang, Bingnan; Wu, Liang; Li, Aili; Mao, Long

    2015-01-01

    Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture diversity. To date, knowledge about the molecular mechanisms of pedicel development is derived from Arabidopsis. Not much is known regarding other plants. Here, an SVP family MADS-box gene, NtSVP, in tobacco (Nicotiana tabacum) that is required for pedicel elongation was identified. It is shown that knockdown of NtSVP by RNA interference (RNAi) caused elongated pedicels, while overexpression resulted in compact inflorescences with much shortened pedicels. Moreover, an Arabidopsis BREVIPEDECELLUS/KNAT1 homologue NtBP-Like (NtBPL) was significantly up-regulated in NtSVP-RNAi plants. Disruption of NtBPL decreased pedicel lengths and shortened cortex cells. Consistent with the presence of a CArG-box at the NtBPL promoter, the direct binding of NtSVP to the NtBPL promoter was demonstrated by yeast one-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay, in which NtSVP may act as a repressor of NtBPL. Microarray analysis showed that down-regulation of NtBPL resulted in differential expression of genes associated with a number of hormone biogenesis and signalling genes such as those for auxin and gibberellin. These findings together suggest the function of a MADS-box transcription factor in plant pedicel development, probably via negative regulation of a BP-like class I KNOX gene. The present work thus postulates the conservation and divergence of the molecular regulatory pathways underlying the development of plant inflorescence architecture. PMID:26175352

  20. A MADS-box gene NtSVP regulates pedicel elongation by directly suppressing a KNAT1-like KNOX gene NtBPL in tobacco (Nicotiana tabacum L.).

    PubMed

    Wang, Di; Chen, Xiaobo; Zhang, Zenglin; Liu, Danmei; Song, Gaoyuan; Kong, Xingchen; Geng, Shuaifeng; Yang, Jiayue; Wang, Bingnan; Wu, Liang; Li, Aili; Mao, Long

    2015-10-01

    Optimal inflorescence architecture is important for plant reproductive success by affecting the ultimate number of flowers that set fruits and for plant competitiveness when interacting with biotic or abiotic conditions. The pedicel is one of the key contributors to inflorescence architecture diversity. To date, knowledge about the molecular mechanisms of pedicel development is derived from Arabidopsis. Not much is known regarding other plants. Here, an SVP family MADS-box gene, NtSVP, in tobacco (Nicotiana tabacum) that is required for pedicel elongation was identified. It is shown that knockdown of NtSVP by RNA interference (RNAi) caused elongated pedicels, while overexpression resulted in compact inflorescences with much shortened pedicels. Moreover, an Arabidopsis BREVIPEDECELLUS/KNAT1 homologue NtBP-Like (NtBPL) was significantly up-regulated in NtSVP-RNAi plants. Disruption of NtBPL decreased pedicel lengths and shortened cortex cells. Consistent with the presence of a CArG-box at the NtBPL promoter, the direct binding of NtSVP to the NtBPL promoter was demonstrated by yeast one-hybrid assay, electrophoretic mobility shift assay, and dual-luciferase assay, in which NtSVP may act as a repressor of NtBPL. Microarray analysis showed that down-regulation of NtBPL resulted in differential expression of genes associated with a number of hormone biogenesis and signalling genes such as those for auxin and gibberellin. These findings together suggest the function of a MADS-box transcription factor in plant pedicel development, probably via negative regulation of a BP-like class I KNOX gene. The present work thus postulates the conservation and divergence of the molecular regulatory pathways underlying the development of plant inflorescence architecture. PMID:26175352

  1. Tolerance to clomazone herbicide is linked to the state of LHC, PQ-pool and ROS detoxification in tobacco (Nicotiana tabacum L.).

    PubMed

    Darwish, Majd; Vidal, Véronique; Lopez-Lauri, Félicie; Alnaser, Osama; Junglee, Sanders; El Maataoui, Mohamed; Sallanon, Huguette

    2015-03-01

    In this study, plantlets of two tobacco (Nicotiana tabacum L.) varieties that are clomazone-tolerant (cv. Xanthi) and clomazone-sensitive (cv. Virginie vk51) were subjected to low concentration of clomazone herbicide. The oxygen-evolving rate of isolated chloroplasts, chlorophyll a fluorescence transients, JIP-test responses, hydrogen peroxide contents, antioxidant enzyme activities, cytohistological results and photosynthetic pigment contents were recorded. The results indicated that the carotenoid content was 2-fold higher in Virginie, which had greater clomazone sensitivity than Xanthi. Virginie exhibited noticeable decreases in the LHC content (Chl a/b ratio), the maximum photochemical quantum efficiency of PSII (Fv/Fm), the performance index on the absorption basis (PIabs), and the electron flux beyond the first PSII QA evaluated as (1-VJ) with VJ=(FJ-F0)/(Fm-F0) as well as increases in the rate of photon absorption (ABS/RC) and the energy dissipation as heat (DI0/RC). These results suggest that PSII photoinhibition occurred as a consequence of more reduced PQ-pool and accumulated QA(-). The oxygen evolution measurements indicate that PSI electron transport activity was not affected by clomazone. The more significant accumulation of H2O2 in Virginie compared to Xanthi was due to the absence of ROS-scavenging enzymes, and presumably induced programmed cell death (PCD). The symptoms of PCD were observed by cytohistological analysis, which also indicated that the leaf tissues of clomazone-treated Virginie exhibited significant starch accumulation compared to Xanthi. Taken together, these results indicate that the variable tolerance to clomazone observed between Virginie and Xanthi is independent of the carotenoid content and could be related to the state of the LHC, the redox state of the PQ-pool, and the activity of detoxification enzymes. PMID:25544589

  2. Synchronous high-resolution phenotyping of leaf and root growth in Nicotiana tabacum over 24-h periods with GROWMAP-plant

    PubMed Central

    2013-01-01

    Background Root growth is highly responsive to temporal changes in the environment. On the contrary, diel (24 h) leaf expansion in dicot plants is governed by endogenous control and therefore its temporal pattern does not strictly follow diel changes in the environment. Nevertheless, root and shoot are connected with each other through resource partitioning and changing environments for one organ could affect growth of the other organ, and hence overall plant growth. Results We developed a new technique, GROWMAP-plant, to monitor growth processes synchronously in leaf and root of the same plant with a high resolution over the diel period. This allowed us to quantify treatment effects on the growth rates of the treated and non-treated organ and the possible interaction between them. We subjected the root system of Nicotiana tabacum seedlings to three different conditions: constant darkness at 22°C (control), constant darkness at 10°C (root cooling), and 12 h/12 h light–dark cycles at 22°C (root illumination). In all treatments the shoot was kept under the same 12 h/12 h light–dark cycles at 22°C. Root growth rates were found to be constant when the root-zone environment was kept constant, although the root cooling treatment significantly reduced root growth. Root velocity was decreased after light-on and light-off events of the root illumination treatment, resulting in diel root growth rhythmicity. Despite these changes in root growth, leaf growth was not affected substantially by the root-zone treatments, persistently showing up to three times higher nocturnal growth than diurnal growth. Conclusion GROWMAP-plant allows detailed synchronous growth phenotyping of leaf and root in the same plant. Root growth was very responsive to the root cooling and root illumination, while these treatments altered neither relative growth rate nor diel growth pattern in the seedling leaf. Our results that were obtained simultaneously in growing leaves and roots of the same

  3. Herbivory: Caterpillar saliva beats plant defences

    NASA Astrophysics Data System (ADS)

    Musser, Richard O.; Hum-Musser, Sue M.; Eichenseer, Herb; Peiffer, Michelle; Ervin, Gary; Murphy, J. Brad; Felton, Gary W.

    2002-04-01

    Blood-feeding arthropods secrete special salivary proteins that suppress the defensive reaction they induce in their hosts. This is in contrast to herbivores, which are thought to be helpless victims of plant defences elicited by their oral secretions. On the basis of the finding that caterpillar regurgitant can reduce the amount of toxic nicotine released by the tobacco plant Nicotiana tabacum, we investigate here whether specific salivary components from the caterpillar Helicoverpa zea might be responsible for this suppression. We find that the enzyme glucose oxidase counteracts the production of nicotine induced by the caterpillar feeding on the plant.

  4. Nuclear-encoded chloroplast ribosomal protein L12 of Nicotiana tabacum: characterization of mature protein and isolation and sequence analysis of cDNA clones encoding its cytoplasmic precursor.

    PubMed Central

    Elhag, G A; Thomas, F J; McCreery, T P; Bourque, D P

    1992-01-01

    Poly(A)+ mRNA isolated from Nicotiana tabacum (cv. Petite Havana) leaves was used to prepare a cDNA library in the expression vector lambda gt11. Recombinant phage containing cDNAs coding for chloroplast ribosomal protein L12 were identified and sequenced. Mature tobacco L12 protein has 44% amino acid identity with ribosomal protein L7/L12 of Escherichia coli. The longest L12 cDNA (733 nucleotides) codes for a 13,823 molecular weight polypeptide with a transit peptide of 53 amino acids and a mature protein of 133 amino acids. The transit peptide and mature protein share 43% and 79% amino acid identity, respectively, with corresponding regions of spinach chloroplast ribosomal protein L12. The predicted amino terminus of the mature protein was confirmed by partial sequence analysis of HPLC-purified tobacco chloroplast ribosomal protein L12. A single L12 mRNA of about 0.8 kb was detected by hybridization of L12 cDNA to poly(A)+ and total leaf RNA. Hybridization patterns of restriction fragments of tobacco genomic DNA probed with the L12 cDNA suggested the existence of more than one gene for ribosomal protein L12. Characterization of a second cDNA with an identical L12 coding sequence but a different 3'-noncoding sequence provided evidence that at least two L12 genes are expressed in tobacco. Images PMID:1542565

  5. Transplastomic Nicotiana benthamiana plants expressing multiple defence genes encoding protease inhibitors and chitinase display broad-spectrum resistance against insects, pathogens and abiotic stresses.

    PubMed

    Chen, Peng-Jen; Senthilkumar, Rajendran; Jane, Wann-Neng; He, Yong; Tian, Zhihong; Yeh, Kai-Wun

    2014-05-01

    Plastid engineering provides several advantages for the next generation of transgenic technology, including the convenient use of transgene stacking and the generation of high expression levels of foreign proteins. With the goal of generating transplastomic plants with multiresistance against both phytopathogens and insects, a construct containing a monocistronic patterned gene stack was transformed into Nicotiana benthamiana plastids harbouring sweet potato sporamin, taro cystatin and chitinase from Paecilomyces javanicus. Transplastomic lines were screened and characterized by Southern/Northern/Western blot analysis for the confirmation of transgene integration and respective expression level. Immunogold localization analyses confirmed the high level of accumulation proteins that were specifically expressed in leaf and root plastids. Subsequent functional bioassays confirmed that the gene stacks conferred a high level of resistance against both insects and phytopathogens. Specifically, larva of Spodoptera litura and Spodoptera exigua either died or exhibited growth retardation after ingesting transplastomic plant leaves. In addition, the inhibitory effects on both leaf spot diseases caused by Alternaria alternata and soft rot disease caused by Pectobacterium carotovorum subsp. carotovorum were markedly observed. Moreover, tolerance to abiotic stresses such as salt/osmotic stress was highly enhanced. The results confirmed that the simultaneous expression of sporamin, cystatin and chitinase conferred a broad spectrum of resistance. Conversely, the expression of single transgenes was not capable of conferring such resistance. To the best of our knowledge, this is the first study to demonstrate an efficacious stacked combination of plastid-expressed defence genes which resulted in an engineered tolerance to various abiotic and biotic stresses. PMID:24479648

  6. Reference genomes and transcriptomes of Nicotiana sylvestris and Nicotiana tomentosiformis

    PubMed Central

    2013-01-01

    Background Nicotiana sylvestris and Nicotiana tomentosiformis are members of the Solanaceae family that includes tomato, potato, eggplant and pepper. These two Nicotiana species originate from South America and exhibit different alkaloid and diterpenoid production. N. sylvestris is cultivated largely as an ornamental plant and it has been used as a diploid model system for studies of terpenoid production, plastid engineering, and resistance to biotic and abiotic stress. N. sylvestris and N. tomentosiformis are considered to be modern descendants of the maternal and paternal donors that formed Nicotiana tabacum about 200,000 years ago through interspecific hybridization. Here we report the first genome-wide analysis of these two Nicotiana species. Results Draft genomes of N. sylvestris and N. tomentosiformis were assembled to 82.9% and 71.6% of their expected size respectively, with N50 sizes of about 80 kb. The repeat content was 72-75%, with a higher proportion of retrotransposons and copia-like long terminal repeats in N. tomentosiformis. The transcriptome assemblies showed that 44,000-53,000 transcripts were expressed in the roots, leaves or flowers. The key genes involved in terpenoid metabolism, alkaloid metabolism and heavy metal transport showed differential expression in the leaves, roots and flowers of N. sylvestris and N. tomentosiformis. Conclusions The reference genomes of N. sylvestris and N. tomentosiformis represent a significant contribution to the SOL100 initiative because, as members of the Nicotiana genus of Solanaceae, they strengthen the value of the already existing resources by providing additional comparative information, thereby helping to improve our understanding of plant metabolism and evolution. PMID:23773524

  7. Genotoxicity of Nicotiana tabacum leaves on Helix aspersa

    PubMed Central

    da Silva, Fernanda R.; Erdtmann, Bernardo; Dalpiaz, Tiago; Nunes, Emilene; Ferraz, Alexandre; Martins, Tales L.C.; Dias, Johny F.; da Rosa, Darlan P.; Porawskie, Marilene; Bona, Silvia; da Silva, Juliana

    2013-01-01

    Tobacco farmers are routinely exposed to complex mixtures of inorganic and organic chemicals present in tobacco leaves. In this study, we examined the genotoxicity of tobacco leaves in the snail Helix aspersa as a measure of the risk to human health. DNA damage was evaluated using the micronucleus test and the Comet assay and the concentration of cytochrome P450 enzymes was estimated. Two groups of snails were studied: one fed on tobacco leaves and one fed on lettuce (Lactuca sativa L) leaves (control group). All of the snails received leaves (tobacco and lettuce leaves were the only food provided) and water ad libitum. Hemolymph cells were collected after 0, 24, 48 and 72 h. The Comet assay and micronucleus test showed that exposure to tobacco leaves for different periods of time caused significant DNA damage. Inhibition of cytochrome P450 enzymes occurred only in the tobacco group. Chemical analysis indicated the presence of the alkaloid nicotine, coumarins, saponins, flavonoids and various metals. These results show that tobacco leaves are genotoxic in H. aspersa and inhibit cytochrome P450 activity, probably through the action of the complex chemical mixture present in the plant. PMID:23885210

  8. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae

    PubMed Central

    Matern, Sanja; Peskan-Berghoefer, Tatjana; Gromes, Roland; Kiesel, Rebecca Vazquez; Rausch, Thomas

    2015-01-01

    The role of the redox-active tripeptide glutathione in plant defence against pathogens has been studied extensively; however, the impact of changes in cellular glutathione redox potential on signalling processes during defence reactions has remained elusive. This study explored the impact of elevated glutathione content on the cytosolic redox potential and on early defence signalling at the level of mitogen-activated protein kinases (MAPKs), as well as on subsequent defence reactions, including changes in salicylic acid (SA) content, pathogenesis-related gene expression, callose depositions, and the hypersensitive response. Wild-type (WT) Nicotiana tabacum L. and transgenic high-glutathione lines (HGL) were transformed with the cytosol-targeted sensor GRX1-roGFP2 to monitor the cytosolic redox state. Surprisingly, HGLs displayed an oxidative shift in their cytosolic redox potential and an activation of the tobacco MAPKs wound-induced protein kinase (WIPK) and SA-induced protein kinase (SIPK). This activation occurred in the absence of any change in free SA content, but was accompanied by constitutively increased expression of several defence genes. Similarly, rapid activation of MAPKs could be induced in WT tobacco by exposure to either reduced or oxidized glutathione. When HGL plants were challenged with adapted or non-adapted Pseudomonas syringae pathovars, the cytosolic redox shift was further amplified and the defence response was markedly increased, showing a priming effect for SA and callose; however, the initial and transient hyperactivation of MAPK signalling was attenuated in HGLs. The results suggest that, in tobacco, MAPK and SA signalling may operate independently, both possibly being modulated by the glutathione redox potential. Possible mechanisms for redox-mediated MAPK activation are discussed. PMID:25628332

  9. Trap Crops and Population Management of Globodera tabacum tabacum.

    PubMed

    Lamondia, J A

    1996-06-01

    Tobacco, eastern black nightshade, and tomato were grown for 3 to 13 weeks to assess differences in invasion, development, and soil density of Globodera tabacum tabacum (tobacco cyst nematode) in field plots and microplots over three seasons. Tobacco cyst nematodes invaded roots of resistant and susceptible tobacco, nightshade, and tomato. Nematode development was fastest in nightshade and slowest in tomato, and few adults developed in roots of nematode-resistant tobacco. Soil populations of tobacco cyst nematodes were reduced up to 80% by destroying nightshade or susceptible tobacco grown for 3 to 6 weeks. Nematode populations were reduced up to 96% by destroying tomato or resistant tobacco grown for 3 to 6 weeks. Timing of crop destruction was less critical with tomato and resistant tobacco, as nematode populations did not increase after 13 weeks of growth. These studies demonstrate that trap cropping, through crop destruction, can significantly reduce G. t. tabacum populations. PMID:19277140

  10. Relationship between Active Oxygen Species, Lipid Peroxidation, Necrosis, and Phytoalexin Production Induced by Elicitins in Nicotiana.

    PubMed Central

    Rusterucci, C.; Stallaert, V.; Milat, M. L.; Pugin, A.; Ricci, P.; Blein, J. P.

    1996-01-01

    Excised leaves of Nicotiana tabacum var Xanthi and Nicotiana rustica were treated with cryptogein and capsicein, basic and acidic elicitins, respectively. Both compounds induced leaf necrosis, the intensity of which depended on concentration and duration of treatment. N. tabacum var Xanthi was the most sensitive species and cryptogein was the most active elicitin. Lipid peroxidation in elicitin-treated Nicotiana leaves was closely correlated with the appearance of necrosis. Elicitin treatments induced a rapid and transient burst of active oxygen species (AOS) in cell cultures of both Nicotiana species, with the production by Xanthi cells being 6-fold greater than that by N. rustica. Similar maximum AOS production levels were observed with both elicitins, but capsicein required 10-fold higher concentrations than those of cryptogein. Phytoalexin production was lower in response to both elicitins in N. tabacum var Xanthi cells than in N. rustica cells, and capsicein was the most efficient elicitor of this response. In cryptogein-treated cell suspensions, phytoalexin synthesis was unaffected by diphenyleneiodonium, which inhibited AOS generation, nor was it affected by tiron or catalase, which suppressed AOS accumulation in the extracellular medium. These results suggest that AOS production, lipid peroxidation, and necrosis are directly related, whereas phytoalexin production depends on neither the presence nor the intensity of these responses. PMID:12226334

  11. Assessing the bioconfinement potential of a Nicotiana hybrid platform for use in plant molecular farming applications

    PubMed Central

    2013-01-01

    Background The introduction of pharmaceutical traits in tobacco for commercial production could benefit from the utilization of a transgene bioconfinement system. It has been observed that interspecific F1Nicotiana hybrids (Nicotiana tabacum × Nicotiana glauca) are sterile and thus proposed that hybrids could be suitable bioconfined hosts for biomanufacturing. We genetically tagged hybrids with green fluorescent protein (GFP), which was used as a visual marker to enable gene flow tracking and quantification for field and greenhouse studies. GFP was used as a useful proxy for pharmaceutical transgenes. Results Analysis of DNA content revealed significant genomic downsizing of the hybrid relative to that of N. tabacum. Hybrid pollen was capable of germination in vitro, albeit with a very low frequency and with significant differences between plants. In two field experiments, one each in Tennessee and Kentucky, we detected outcrossing at only one location (Tennessee) at 1.4%. Additionally, from 50 hybrid plants at each field site, formation of 84 and 16 seed was observed, respectively. Similar conclusions about hybrid fertility were drawn from greenhouse crosses. In terms of above-ground biomass, the hybrid yield was not significantly different than that of N. tabacum in the field. Conclusion N. tabacum × N. glauca hybrids show potential to contribute to a bioconfinement- and biomanufacturing host system. Hybrids exhibit extremely low fertility with no difference of green biomass yields relative to N. tabacum. In addition, hybrids are morphologically distinguishable from tobacco allowing for identity preservation. This hybrid system for biomanufacturing would optimally be used where N. glauca is not present and in physical isolation of N. tabacum production to provide total bioconfinement. PMID:23914736

  12. Complete Chloroplast Genome of Nicotiana otophora and its Comparison with Related Species

    PubMed Central

    Asaf, Sajjad; Khan, Abdul L.; Khan, Abdur R.; Waqas, Muhammad; Kang, Sang-Mo; Khan, Muhammad A.; Lee, Seok-Min; Lee, In-Jung

    2016-01-01

    Nicotiana otophora is a wild parental species of Nicotiana tabacum, an interspecific hybrid of Nicotiana tomentosiformis and Nicotiana sylvestris. However, N. otophora is least understood as an alternative paternal donor. Here, we compared the fully assembled chloroplast (cp) genome of N. otophora and with those of closely related species. The analysis showed a cp genome size of 156,073 bp and exhibited a typical quadripartite structure, which contains a pair of inverted repeats separated by small and large single copies, containing 163 representative genes, with 165 microsatellites distributed unevenly throughout the genome. Comparative analysis of a gene with known function across Nicotiana species revealed 76 protein-coding sequences, 20 tRNA sequences, and 3 rRNA sequence shared between the cp genomes. The analysis revealed that N. otophora is a sister species to N. tomentosiformis within the Nicotiana genus, and Atropha belladonna and Datura stramonium are their closest relatives. These findings provide a valuable analysis of the complete N. otophora cp genome, which can identify species, elucidate taxonomy, and reconstruct the phylogeny of genus Nicotiana. PMID:27379132

  13. Reactions of Nicotiana species to inoculation with monopartite and bipartite begomoviruses

    PubMed Central

    2011-01-01

    Background Some Nicotiana species are widely used as experimental hosts for plant viruses. Nicotiana species differ in ploidy levels, chromosome numbers and have diverse geographical origins. Thus, these species are useful model systems to investigate virus-host interactions, co-evolution of pathogens and hosts and the effects of ploidy level on virus resistance/susceptibility. Results Here we have studied the responses of seven Nicotiana species to inoculation with Cotton leaf curl Multan virus (CLCuMV), a monopartite begomovirus, and Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, both from the Indian subcontinent. All Nicotiana species supported the replication of both begomoviruses in inoculated leaves. However, only three Nicotiana species, namely N. benthamiana, N. tabacum and N. sylvestris showed symptoms when inoculated with ToLCNDV, while N. benthamiana was the only species that developed leaf curl symptoms when inoculated with CLCuMV. CLCuMV accumulated to detectable levels in N. tabacum, but plants remained asymptomatic. A previously identified mutation of RNA dependent RNA polymerase 1 was shown to be present only in N. benthamiana. The finding is in line with earlier results showing that the susceptibility of this species to a diverse range of plant viruses correlates with a defective RNA silencing-mediated host defense. Conclusions The results presented show that individual Nicotiana species respond differently to inoculation with begomoviruses. The inability of begomoviruses to systemically infect several Nicotiana species is likely due to inhibition of virus movement, rather than replication, and thus provides a novel model to study virus-host interactions in resistant/susceptible hosts. PMID:22011413

  14. Nicotiana Roots Recruit Rare Rhizosphere Taxa as Major Root-Inhabiting Microbes.

    PubMed

    Saleem, Muhammad; Law, Audrey D; Moe, Luke A

    2016-02-01

    Root-associated microbes have a profound impact on plant health, yet little is known about the distribution of root-associated microbes among different root morphologies or between rhizosphere and root environments. We explore these issues here with two commercial varieties of burley tobacco (Nicotiana tabacum) using 16S rRNA gene amplicon sequencing from rhizosphere soil, as well as from primary, secondary, and fine roots. While rhizosphere soils exhibited a fairly rich and even distribution, root samples were dominated by Proteobacteria. A comparison of abundant operational taxonomic units (OTUs) between rhizosphere and root samples indicated that Nicotiana roots select for rare taxa (predominantly Proteobacteria, Verrucomicrobia, Actinobacteria, Bacteroidetes, and Acidobacteria) from their corresponding rhizosphere environments. The majority of root-inhabiting OTUs (~80 %) exhibited habitat generalism across the different root morphological habitats, although habitat specialists were noted. These results suggest a specific process whereby roots select rare taxa from a larger community. PMID:26391804

  15. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum).

    PubMed

    Sakamoto, Shingo; Fujikawa, Yukichi; Tanaka, Nobukazu; Esaka, Muneharu

    2012-01-01

    L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis. PMID:22790939

  16. Inhibition of Trehalose Breakdown Increases New Carbon Partitioning into Cellulosic Biomass in Nicotiana tabacum

    SciTech Connect

    Best, F.M.; Ferrieri, R.; Best, F.M.; Koenig, K.; McDonald, K.; Schueller, M.J.; Rogers, A.; Ferrieri, R.A.

    2011-01-18

    Validamycin A was used to inhibit in vivo trehalase activity in tobacco enabling the study of subsequent changes in new C partitioning into cellulosic biomass and lignin precursors. After 12-h exposure to treatment, plants were pulse labeled using radioactive {sup 11}CO{sub 2}, and the partitioning of isotope was traced into [{sup 11}C]cellulose and [{sup 11}C]hemicellulose, as well as into [{sup 11}C]phenylalanine, the precursor for lignin. Over this time course of treatment, new carbon partitioning into hemicellulose and cellulose was increased, while new carbon partitioning into phenylalanine was decreased. This trend was accompanied by a decrease in phenylalanine ammonia-lyase activity. After 4 d of exposure to validamycin A, we also measured leaf protein content and key C and N metabolite pools. Extended treatment increased foliar cellulose and starch content, decreased sucrose, and total amino acid and nitrate content, and had no effect on total protein.

  17. [Sporopollenin accumulation in Nicotiana tabacum L. microspore wall during its development].

    PubMed

    Matveeva, N P; Polevova, S V; Smirnova, A V; Ermakov, I P

    2012-01-01

    Accumulation of sporopollenin components in microspore wall, its polymerization dynamics and possible participation of reactive oxygen species (ROS) in this process has been studied. For this purpose fluorescent and electron microscopy (TEM) was used. It has been determined that phenylpropanoid components of sporopollenin that form the exine accumulate in the microspore cell wall at the middle and late tetrad stages. At the late tetrad stage, they fully cover the microspore surface and accumulate abundantly in aperture areas. In accordance with this, numerous thick sporopollenin lamellae, electron-dense and acetolysis-resistant, emerge in aperture areas. Exine in the areas between apertures includes both acetolysis-resistant sporopollenin and washout components. These particular parts of the wall are intensively stained with fluorescent dye MitoSOX, which detects the presence of ROS. The staining disappeared after the treatment of microspore with superoxide dismutase, demonstrating the presence of superoxide in the exine. Superoxide easily converts to hydrogen peroxide, which can cause oxidative polymerization of sporopollenin components, leading to the formation of chemically stable biopolymer. The data obtained favor the hypothesis of ROS involvement in the formation of sporopollenin. PMID:22590931

  18. (E)-β-farnesene synthase genes affect aphid (Myzus persicae) infestation in tobacco (Nicotiana tabacum).

    PubMed

    Yu, Xiudao; Jones, Huw D; Ma, Youzhi; Wang, Genping; Xu, Zhaoshi; Zhang, Baoming; Zhang, Yongjun; Ren, Guangwei; Pickett, John A; Xia, Lanqin

    2012-03-01

    Aphids are major agricultural pests which cause significant yield losses of the crop plants each year. (E)-β-farnesene (EβF) is the alarm pheromone involved in the chemical communication between aphids and particularly in the avoidance of predation. In the present study, two EβF synthase genes were isolated from sweet wormwood and designated as AaβFS1 and AaβFS2, respectively. Overexpression of AaβFS1 or AaβFS2 in tobacco plants resulted in the emission of EβF ranging from 1.55 to 4.65 ng/day/g fresh tissues. Tritrophic interactions involving the peach aphids (Myzus persicae), predatory lacewings (Chrysopa septempunctata) demonstrated that the transgenic tobacco expressing AaβFS1 and AaβFS2 could repel peach aphids, but not as strongly as expected. However, AaβFS1 and AaβFS2 lines exhibited strong and statistically significant attraction to lacewings. Further experiments combining aphids and lacewing larvae in an octagon arrangement showed transgenic tobacco plants could repel aphids and attract lacewing larvae, thus minimizing aphid infestation. Therefore, we demonstrated a potentially valuable strategy of using EβF synthase genes from sweet wormwood for aphid control in tobacco or other economic important crops in an environmentally benign way. PMID:21847661

  19. Exogenous jasmonic acid induces stress tolerance in tobacco (Nicotiana tabacum) exposed to imazapic.

    PubMed

    Kaya, Armagan; Doganlar, Zeynep Banu

    2016-02-01

    Jasmonic acid (JA) is one of the important phytohormones, regulating the stress responses as well as plant growth and development. The aim of this study is to determine the effects of exogenous JA application on stress responses of tobacco plant exposed to imazapic. In this study, phytotoxic responses resulting from both imazapic and imazapic combined with JA treatment are investigated comparatively for tobacco plants. For plants treated with imazapic at different concentrations (0.030, 0.060 and 0.120mM), antioxidant enzyme activities (catalase, ascorbate peroxidase, glutathione S-transferase and glutathione reductase), carotenoids, glutathione and malondialdehyte (MDA) contents, jasmonic acid, abscisic acid and indole-3-acetic acid levels as well as herbicide residue amounts on leaves increased in general compared to the control group. In the plants treated with 45µM jasmonic acid, pigment content, antioxidant activity and phytohormone level increased whereas MDA content and the amount of herbicidal residue decreased compared to the non-treated plants. Our findings show that imazapic treatment induces some phytotoxic responses on tobacco leaves and that exogenous jasmonic acid treatment alleviates the negative effects of herbicide treatment by regulating these responses. PMID:26629659

  20. Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum).

    PubMed

    Frazier, Taylor P; Burklew, Caitlin E; Zhang, Baohong

    2014-03-01

    Titanium dioxide (TiO(2)) is one of the most widely used pigments in the world. Due to its heavy use in industry and daily life, such as food additives, cosmetics, pharmaceuticals, and paints, many residues are released into the environment and currently TiO(2) nanoparticles are considered an emerging environmental contaminant. Although several studies have shown the effect of TiO(2) nanoparticles on a wide range of organisms including bacteria, algae, plankton, fish, mice, and rats, little research has been performed on land plants. In this study, we investigated the effect of TiO(2) nanoparticles on the growth, development, and gene expression of tobacco, an important economic and agricultural crop in the southeastern USA as well as around the world. We found that TiO(2) nanoparticles significantly inhibited the germination rates, root lengths, and biomasses of tobacco seedlings after 3 weeks of exposure to 0.1, 1, 2.5, and 5 % TiO(2) nanoparticles and that overall growth and development of the tobacco seedlings significantly decreased as TiO(2) nanoparticle concentrations increased. Overall, tobacco roots were the most sensitive to TiO(2) nanoparticle exposure. Nano-TiO(2) also significantly influenced the expression profiles of microRNAs (miRNAs), a recently discovered class of small endogenous noncoding RNAs (∼20-22 nt) that are considered important gene regulators and have been shown to play an important role in plant development as well as plant tolerance to abiotic stresses such as drought, salinity, cold, and heavy metal. Low concentrations (0.1 and 1 %) of TiO(2) nanoparticles dramatically induced miRNA expression in tobacco seedlings with miR395 and miR399 exhibiting the greatest fold changes of 285-fold and 143-fold, respectively. The results of this study show that TiO(2) nanoparticles have a negative impact on tobacco growth and development and that miRNAs may play an important role in tobacco response to heavy metals/nanoparticles by regulating gene expression. PMID:24132512

  1. Characterisation of detergent-insoluble membranes in pollen tubes of Nicotiana tabacum (L.)

    PubMed Central

    Moscatelli, Alessandra; Gagliardi, Assunta; Maneta-Peyret, Lilly; Bini, Luca; Stroppa, Nadia; Onelli, Elisabetta; Landi, Claudia; Scali, Monica; Idilli, Aurora Irene; Moreau, Patrick

    2015-01-01

    ABSTRACT Pollen tubes are the vehicle for sperm cell delivery to the embryo sac during fertilisation of Angiosperms. They provide an intriguing model for unravelling mechanisms of growing to extremes. The asymmetric distribution of lipids and proteins in the pollen tube plasma membrane modulates ion fluxes and actin dynamics and is maintained by a delicate equilibrium between exocytosis and endocytosis. The structural constraints regulating polarised secretion and asymmetric protein distribution on the plasma membrane are mostly unknown. To address this problem, we investigated whether ordered membrane microdomains, namely membrane rafts, might contribute to sperm cell delivery. Detergent insoluble membranes, rich in sterols and sphingolipids, were isolated from tobacco pollen tubes. MALDI TOF/MS analysis revealed that actin, prohibitins and proteins involved in methylation reactions and in phosphoinositide pattern regulation are specifically present in pollen tube detergent insoluble membranes. Tubulins, voltage-dependent anion channels and proteins involved in membrane trafficking and signalling were also present. This paper reports the first evidence of membrane rafts in Angiosperm pollen tubes, opening new perspectives on the coordination of signal transduction, cytoskeleton dynamics and polarised secretion. PMID:25701665

  2. Overexpression of mitochondrial uncoupling protein 1 (UCP1) induces a hypoxic response in Nicotiana tabacum leaves

    PubMed Central

    Barreto, Pedro; Okura, Vagner; Pena, Izabella A.; Maia, Renato; Maia, Ivan G.; Arruda, Paulo

    2016-01-01

    Mitochondrial uncoupling protein 1 (UCP1) decreases reactive oxygen species production under stress conditions by uncoupling the electrochemical gradient from ATP synthesis. This study combined transcriptome profiling with experimentally induced hypoxia to mechanistically dissect the impact of Arabidopsis thaliana UCP1 (AtUCP1) overexpression in tobacco. Transcriptomic analysis of AtUCP1-overexpressing (P07) and wild-type (WT) plants was carried out using RNA sequencing. Metabolite and carbohydrate profiling of hypoxia-treated plants was performed using 1H-nuclear magnetic resonance spectroscopy and high-performance anion-exchange chromatography with pulsed amperometric detection. The transcriptome of P07 plants revealed a broad induction of stress-responsive genes that were not strictly related to the mitochondrial antioxidant machinery, suggesting that overexpression of AtUCP1 imposes a strong stress response within the cell. In addition, transcripts that mapped into carbon fixation and energy expenditure pathways were broadly altered. It was found that metabolite markers of hypoxic adaptation, such as alanine and tricarboxylic acid intermediates, accumulated in P07 plants under control conditions at similar rates to WT plants under hypoxia. These findings indicate that constitutive overexpression of AtUCP1 induces a hypoxic response. The metabolites that accumulated in P07 plants are believed to be important in signalling for an improvement in carbon assimilation and induction of a hypoxic response. Under these conditions, mitochondrial ATP production is less necessary and fermentative glycolysis becomes critical to meet cell energy demands. In this scenario, the more flexible energy metabolism along with an intrinsically activated hypoxic response make these plants better adapted to face several biotic and abiotic stresses. PMID:26494730

  3. Antibiotics induce genome-wide hypermethylation in cultured Nicotiana tabacum plants.

    PubMed

    Schmitt, F; Oakeley, E J; Jost, J P

    1997-01-17

    Plant genomic DNA methylation was analyzed by an improved SssI methyltransferase assay and by genomic sequencing with sodium bisulfite. Kanamycin, hygromycin, and cefotaxime (also called Claforan) are commonly used as selective agents for the production of transgenic plants. These antibiotics caused DNA hypermethylation in tobacco plants grown in vitro, which was both time- and dose-dependent. An exposure of the plantlets to 500 mg/liter cefotaxime for 1 month caused the de novo methylation of 3 x 10(7) CpG sites/haploid genome of 3.5 x 10(9) base pairs. It occurred in high, moderate, and low repetitive DNA and was not reversible upon the removal of the antibiotics. Reversion was only observed in progeny grown in the absence of drugs. Analysis of the promoter regions of two single-copy genes, an auxin-binding protein gene and the class I chitinase gene, showed the hypermethylation to be heterogeneous but biased toward CpGs. The hypermethylation of the class I chitinase and the auxin-binding protein promoters was not a consequence of a drug-induced gene amplification. PMID:8999825

  4. Characterization of natural leaf senescence in tobacco (Nicotiana tabacum) plants grown in vitro.

    PubMed

    Uzelac, Branka; Janošević, Dušica; Simonović, Ana; Motyka, Václav; Dobrev, Petre I; Budimir, Snežana

    2016-03-01

    Leaf senescence is a highly regulated final phase of leaf development preceding massive cell death. It results in the coordinated degradation of macromolecules and the subsequent nutrient relocation to other plant parts. Very little is still known about early stages of leaf senescence during normal leaf ontogeny that is not triggered by stress factors. This paper comprises an integrated study of natural leaf senescence in tobacco plants grown in vitro, using molecular, structural, and physiological information. We determined the time sequence of ultrastructural changes in mesophyll cells during leaf senescence, showing that the degradation of chloroplast ultrastructure fully correlated with changes in chlorophyll content. The earliest degenerative changes in chloroplast ultrastructure coinciding with early chromatin condensation were observed already in mature green leaves. A continuum of degradative changes in chloroplast ultrastructure, chromatin condensation and aggregation, along with progressive decrease in cytoplasm organization and electron density were observed in the course of mesophyll cells ageing. Although the total amounts of endogenous cytokinins gradually increased during leaf ontogenesis, the proportion of bioactive cytokinin forms, as well as their phosphate precursors, in total cytokinin content rapidly declined with ageing. Endogenous indole-3-acetic acid (IAA) levels were strongly reduced in senescent leaves, and a decreasing tendency was also observed for abscisic acid (ABA) levels. Senescence-associated tobacco cysteine proteases (CP, E.C. 3.4.22) CP1 and CP23 genes were induced in the initial phase of senescence. Genes encoding glutamate dehydrogenase (GDH, E.C. 1.4.1.2) and one isoform of cytosolic glutamine synthetase (GS1, E.C. 6.3.1.2) were induced in the late stage of senescence, while chloroplastic GS (GS2) gene showed a continuous decrease with leaf ageing. PMID:25837009

  5. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    PubMed

    Djami-Tchatchou, Arnaud T; Maake, Mmapula P; Piater, Lizelle A; Dubery, Ian A

    2015-01-01

    Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP) were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta. PMID:25658943

  6. The influence of light quality on the accumulation of flavonoids in tobacco (Nicotiana tabacum L.) leaves.

    PubMed

    Fu, Bo; Ji, Xiaoming; Zhao, Mingqin; He, Fan; Wang, Xiaoli; Wang, Yiding; Liu, Pengfei; Niu, Lu

    2016-09-01

    Flavonoids are important secondary metabolites in plants regulated by the environment. To analyze the effect of light quality on the accumulation of flavonoids, we performed a rapid analysis of flavonoids in extracts of tobacco leaves using UHPLC-QTOF. A total of 12 flavonoids were detected and identified in tobacco leaves, which were classified into flavonoid methyl derivatives and flavonoid glycoside derivatives according to the groups linked to the flavonoid core. Correlation analysis was further conducted to investigate the effect of different wavelengths of light on their accumulation. The content of flavonoid methyl derivatives was positively correlated with the proportions of far-red light (FR; 716-810nm) and near-infrared light (NIR; 810-2200nm) in the sunlight spectrum and negatively correlated with the proportion of ultraviolet (UV-A; 350-400nm) and the red/far-red ratio (R/FR). By contrast, the content of flavonoid glycoside derivatives was positively correlated with the proportion of UV-A and the R/FR, and negatively correlated with FR and NIR. The results indicated that light quality with higher proportions of FR and NIR increases the activity of flavonoid methyltransferases but suppresses the activity of flavonoid glycoside transferases. While a high proportion of UV-A and a high R/FR can increase flavonoid glycoside transferase activity but suppress flavonoid methyltransferase activity. PMID:27474785

  7. Rhizosecretion improves the production of Cyanovirin-N in Nicotiana tabacum through simplified downstream processing.

    PubMed

    Madeira, Luisa M; Szeto, Tim H; Ma, Julian K-C; Drake, Pascal M W

    2016-07-01

    Rhizosecretion has many advantages for the production of recombinant pharmaceuticals, notably facile downstream processing from hydroponic medium. The aim of this study was to increase yields of the HIV microbicide candidate, Cyanovirin-N (CV-N), obtained using this production platform and to develop a simplified methodology for its downstream processing from hydroponic medium. Placing hydroponic cultures on an orbital shaker more than doubled the concentration of CV-N in the hydroponic medium compared to plants which remained stationary, reaching a maximum of approximately 20μg/ml in one week, which is more than 3 times higher than previously reported yields. The protein composition of the hydroponic medium, the rhizosecretome, was characterised in plants cultured with or without the plant growth regulator alpha-napthaleneacetic acid by LC-ESI-MS/MS, and CV-N was the most abundant protein. The issue of large volumes in the rhizosecretion system was addressed by using ion exchange chromatography to concentrate CV-N and partially remove impurities. The semi-purified CV-N was demonstrated to bind to HIV gp120 in an ELISA and to neutralise HIVBa-L with an IC50 of 6nM in a cell-based assay. Rhizosecretion is therefore a practicable and inexpensive method for the production of functional CV-N. PMID:26901579

  8. Inoculation methods using Rhodococcus erythropolis strain P30 affects bacterial assisted phytoextraction capacity of Nicotiana tabacum.

    PubMed

    Álvarez-López, V; Prieto-Fernández, A; Janssen, J; Herzig, R; Vangronsveld, J; Kidd, P S

    2016-01-01

    In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (10(6) CFUs mL(-1) and 10(8) CFUs mL(-1)). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 10(6) CFUs mL(-1)) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 10(8) CFUs mL(-1) in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 10(6) CFUs mL(-1). The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 10(6) CFUs mL(-1). PMID:26552496

  9. Thermal Inactivation of Phytophthora nicotianae.

    PubMed

    Coelho, L; Mitchell, D J; Chellemi, D O

    2000-10-01

    ABSTRACT Phytophthora nicotianae was added to pasteurized soil at the rate of 500 laboratory-produced chlamydospores per gram of soil and exposed to temperatures ranging from 35 to 53 degrees C for 20 days. The time required to reduce soil populations to residual levels (0.2 propagule per gram of soil or less) decreased with increasing temperatures. Addition of cabbage residue to the soil reduced the time required to inactivate chlamydospores. Temperature regimes were established to simulate daily temperature changes observed in the field, with a high temperature of 47 degrees C for 3 h/day, and were good estimators of the efficacy of soil solarization for the control of P. nicotianae in soil. Cabbage amendment reduced the time required to inactivate chlamydospores of P. nicotianae and its effect was more pronounced at lower temperature regimes. PMID:18944471

  10. Growth of nicotiana in response to atmospheric CO sub 2 enrichment and various light regimes

    SciTech Connect

    Pope, S.; Thomas, J.F. )

    1989-04-01

    Nicotiana tabacum NCTG-22, N. tabacum Petite Havana and N. plumbaginifolia were grown in chambers (24 C, 12-h light) under daytime atmospheric CO{sub 2} levels of 340 ppm (ambient) or 1000 ppm (enriched). All 3 types of tobacco grew faster and had open flowers sooner under CO2 enrichment, but patterns of dry weight distribution varied with type of tobacco. In N. plumbaginifolia significant proportions of dry weight were allocated to stems and branches, while in tabacum types, less was allocated to stems and more to leaves and roots. Increases in dry weight due to CO2 enrichment were accompanied by increases in leaf area and thickness. Plants given a far-red low intensity night break exhibited few differences from controls except having thinner leaves under ambient CO2; but under enriched CO2, had greater total dry weight and thicker leaves containing a higher proportion of spongy mesophyll than controls. A 50% reduction in light intensity led to a comparable reduction in dry weight and leaf area across treatments.

  11. Regulation of catalase activity in leaves of Nicotiana sylvestris by high CO sub 2

    SciTech Connect

    Havir, E.A.; McHale, N.A. )

    1989-03-01

    The effect of high CO{sub 2} (1% CO{sub 2}/21% O{sub 2}) on the activity of specific forms of catalase (CAT-1, -2, and -3) in seedling leaves of tobacco (Nicotiana sylvestris, Nicotiana tabacum) was examined. In high CO{sub 2} total catalase activity decreased by 50% in the first 2 days, followed by a more gradual decline in the next 4 days. The loss of total activity resulted primarily from a decrease in CAT-1 catalase. In contrast, the activity of CAT-3 catalase, a form with enhanced peroxidatic activity, increased 3-fold in high CO{sub 2} relative to air controls after 4 days. Short-term exposure to high CO{sub 2} indicated that the 50% loss of total activity occurs in the firs 12 hours. Catalase levels increased to normal within 12 hours after seedlings were returned to air. When seedlings were transferred to air after prolonged exposure to high CO{sub 2} (13 days), the levels of CAT-1 catalase were partially restored while CAT-3 remained at its elevated level. Levels of superoxide dismutase activity and those of several peroxisomal enzymes were not affected by high CO{sub 2}. Total catalase levels did not decline when seedlings were exposed to atmospheres of 0.04% CO{sub 2}/5% O{sub 2} or 0.04% CO{sub 2}/1% O{sub 2}, indicating that regulation of catalase in high CO{sub 2} is not related directly to suppression of photorespiration. Antibodies prepared against CAT-1 catalase from N. tabacum reacted strongly against CAT-1 catalase from both N. sylvestris and N. tabacum but not against CAT-3 catalase from either species.

  12. The effect of polyploidy and hybridization on the evolution of floral colour in Nicotiana (Solanaceae)

    PubMed Central

    McCarthy, Elizabeth W.; Arnold, Sarah E. J.; Chittka, Lars; Le Comber, Steven C.; Verity, Robert; Dodsworth, Steven; Knapp, Sandra; Kelly, Laura J.; Chase, Mark W.; Baldwin, Ian T.; Kovařík, Aleš; Mhiri, Corinne; Taylor, Lin; Leitch, Andrew R.

    2015-01-01

    Background and Aims Speciation in angiosperms can be accompanied by changes in floral colour that may influence pollinator preference and reproductive isolation. This study investigates whether changes in floral colour can accompany polyploid and homoploid hybridization, important processes in angiosperm evolution. Methods Spectral reflectance of corolla tissue was examined for 60 Nicotiana (Solanaceae) accessions (41 taxa) based on spectral shape (corresponding to pigmentation) as well as bee and hummingbird colour perception in order to assess patterns of floral colour evolution. Polyploid and homoploid hybrid spectra were compared with those of their progenitors to evaluate whether hybridization has resulted in floral colour shifts. Key Results Floral colour categories in Nicotiana seem to have arisen multiple times independently during the evolution of the genus. Most younger polyploids displayed an unexpected floral colour, considering those of their progenitors, in the colour perception of at least one pollinator type, whereas older polyploids tended to resemble one or both of their progenitors. Conclusions Floral colour evolution in Nicotiana is weakly constrained by phylogeny, and colour shifts do occur in association with both polyploid and homoploid hybrid divergence. Transgressive floral colour in N. tabacum has arisen by inheritance of anthocyanin pigmentation from its paternal progenitor while having a plastid phenotype like its maternal progenitor. Potentially, floral colour evolution has been driven by, or resulted in, pollinator shifts. However, those polyploids that are not sympatric (on a regional scale) with their progenitor lineages are typically not divergent in floral colour from them, perhaps because of a lack of competition for pollinators. PMID:25979919

  13. In Nicotiana species, an artificial microRNA corresponding to the virulence modulating region of Potato spindle tuber viroid directs RNA silencing of a soluble inorganic pyrophosphatase gene and the development of abnormal phenotypes.

    PubMed

    Eamens, Andrew L; Smith, Neil A; Dennis, Elizabeth S; Wassenegger, Michael; Wang, Ming-Bo

    2014-02-01

    Potato spindle tuber viroid (PSTVd) is a small non-protein-coding RNA pathogen that can induce disease symptoms in a variety of plant species. How PSTVd induces disease symptoms is a long standing question. It has been suggested that PSTVd-derived small RNAs (sRNAs) could direct RNA silencing of a targeted host gene(s) resulting in symptom development. To test this, we expressed PSTVd sequences as artificial microRNAs (amiRNAs) in Nicotiana tabacum and Nicotiana benthamiana. One amiRNA, amiR46 that corresponds to sequences within the PSTVd virulence modulating region (VMR), induced abnormal phenotypes in both Nicotiana species that closely resemble those displayed by PSTVd infected plants. In N. tabacum amiR46 plants, phenotype severity correlated with amiR46 accumulation and expression down-regulation of the bioinformatically-identified target gene, a Nicotiana soluble inorganic pyrophosphatase (siPPase). Taken together, our phenotypic and molecular analyses suggest that disease symptom development in Nicotiana species following PSTVd infection results from sRNA-directed RNA silencing of the host gene, siPPase. PMID:24503090

  14. Two tandemly repeated telomere-associated sequences in Nicotiana plumbaginifolia.

    PubMed

    Chen, C M; Wang, C T; Wang, C J; Ho, C H; Kao, Y Y; Chen, C C

    1997-12-01

    Two tandemly repeated telomere-associated sequences, NP3R and NP4R, have been isolated from Nicotiana plumbaginifolia. The length of a repeating unit for NP3R and NP4R is 165 and 180 nucleotides respectively. The abundance of NP3R, NP4R and telomeric repeats is, respectively, 8.4 x 10(4), 6 x 10(3) and 1.5 x 10(6) copies per haploid genome of N. plumbaginifolia. Fluorescence in situ hybridization revealed that NP3R is located at the ends and/or in interstitial regions of all 10 chromosomes and NP4R on the terminal regions of three chromosomes in the haploid genome of N. plumbaginifolia. Sequence homology search revealed that not only are NP3R and NP4R homologous to HRS60 and GRS, respectively, two tandem repeats isolated from N. tabacum, but that NP3R and NP4R are also related to each other, suggesting that they originated from a common ancestral sequence. The role of these repeated sequences in chromosome healing is discussed based on the observation that two to three copies of a telomere-similar sequence were present in each repeating unit of NP3R and NP4R. PMID:9451957

  15. Reactive oxygen species regulate alkaloid metabolism in undifferentiated N. tabacum cells.

    PubMed

    Sachan, Nita; Rogers, Dennis T; Yun, Kil-Young; Littleton, John M; Falcone, Deane L

    2010-05-01

    Plants produce an immense number of natural products and undifferentiated cells from various plant tissues have long been considered an ideal source for their synthesis. However, undifferentiated plant cells often either lose their biosynthetic capacity over time or exhibit immediate repression of the required pathways once dedifferentiated. In this study, freshly prepared callus tissue was employed to further investigate the regulation of a natural product pathway in undifferentiated tobacco cells. Putrescine N-methyltransferase (PMT) is a pathway-specific enzyme required in nicotinic alkaloid production in Nicotiana species. Callus derived from transgenic Nicotiana tabacum plants harboring PMT promoter-GUS fusions were used to study factors that influence PMT expression. Under normal callus growth conditions in the presence of light and auxin, PMT promoter activity was strongly repressed. Conversely, dark conditions and the absence of auxin were found to upregulate PMT promoter activity, with light being dominant to the repressive effects of auxin. Since reactive oxygen species (ROS) are known by-products of photosynthesis and have been implicated in signaling, their involvement was investigated in transgenic callus by treatment with the ROS scavenger, dimethylthiourea, or catalase. Under highly repressive conditions for alkaloid synthesis, including normal culture conditions in the light, both ROS scavengers resulted in significant induction of PMT promoter activity. Moreover, treatment of callus with catalase resulted in the upregulation of PMT promoter activity and alkaloid accumulation in this tissue. These results suggest that ROS impact the regulation of the alkaloid pathway in undifferentiated cells and have implications for regulation of the pathway in other plant tissues. PMID:20217418

  16. Leaf surface chemicals fromNicotiana affecting germination ofPeronospora tabacina (adam) sporangia.

    PubMed

    Kennedy, B S; Nielsen, M T; Severson, R F; Sisson, V A; Stephenson, M K; Jackson, D M

    1992-09-01

    A bioassay was used to evaluate the effects of cuticular leaf components, isolated fromN. tabacum, N. glutinosa (accessions 24 and 24a), and 23other Nicotiana species, on germinationof P. tabacina (blue mold). The leaf surface compounds includedα- andβ-4,8,13,-duvatriene-l,3-diols (DVT-diols), (13-E)-labda-13-ene-8α-,15-diol (labdenediol), (12-Z)-labda-12,14-diene-8α-ol (cis-abienol), (13-R)-labda-8,14-diene-13-ol (manool), 2-hydroxymanool, a mixture of (13-R)-labda-14-ene-8α,13-diol (sclareol), and (13-S)-labda-14-ene-8α,13-diol (episclareol), and various glucose and/or sucrose ester isolates. The above in acetone were applied onto leaf disks of the blue moldsusceptibleN. tabacum cv. TI 1406, which was then inoculated with blue mold sporangia. Estimated IC50 values (inhibitory concentration) were 3.0μg/cm(2) forα-DVT-diol, 2.9μ/cm(2) forβ-DVT-diol, 0.4μg/cm(2) for labdenediol and 4.7μg/cm(2) for the sclareol mixture. Manool, 2-hydroxymanool, andcis-abienol at application rates up to 30μg/cm(2) had little or no effect on sporangium germination. Glucose and/or sucrose ester isolates from the cuticular leaf extracts of 23Nicotiana species and three different fractions fromN. bigelovii were also evaluated for antimicrobial activity at a concentration of 30μg/cm(2). Germination was inhibited by >20% when exposed to sugar esters isolated fromN. acuminata, N. benthamiana, N. attenuata, N. clevelandii, andN. miersii, and accessions 10 and 12 ofN. bigelovii. These results imply that a number of compounds may influence resistance to blue mold in tobacco. PMID:24254279

  17. The Evolutionary Fate of the Horizontally Transferred Agrobacterial Mikimopine Synthase Gene in the Genera Nicotiana and Linaria

    PubMed Central

    Talianova, Martina; Vyskot, Boris

    2014-01-01

    Few cases of spontaneously horizontally transferred bacterial genes into plant genomes have been described to date. The occurrence of horizontally transferred genes from the T-DNA of Agrobacterium rhizogenes into the plant genome has been reported in the genus Nicotiana and in the species Linaria vulgaris. Here we compare patterns of evolution in one of these genes (a gene encoding mikimopine synthase, mis) following three different events of horizontal gene transfer (HGT). As this gene plays an important role in Agrobacterium, and there are known cases showing that genes from pathogens can acquire plant protection function, we hypothesised that in at least some of the studied species we will find signs of selective pressures influencing mis sequence. The mikimopine synthase (mis) gene evolved in a different manner in the branch leading to Nicotiana tabacum and N. tomentosiformis, in the branch leading to N. glauca and in the genus Linaria. Our analyses of the genus Linaria suggest that the mis gene began to degenerate soon after the HGT. In contrast, in the case of N. glauca, the mis gene evolved under significant selective pressures. This suggests a possible role of mikimopine synthase in current N. glauca and its ancestor(s). In N. tabacum and N. tomentosiformis, the mis gene has a common frameshift mutation that disrupted its open reading frame. Interestingly, our results suggest that in spite of the frameshift, the mis gene could evolve under selective pressures. This sequence may still have some regulatory role at the RNA level as suggested by coverage of this sequence by small RNAs in N. tabacum. PMID:25420106

  18. Morphometrics of Globodera tabacum tabacum, G. t. virginiae, and G. t. solanacearum (Nemata: Heteroderinae)

    PubMed Central

    Mota, Manuel M.; Eisenback, Jonathan D.

    1993-01-01

    A morphometric evaluation of second-stage juveniles (J2), males, females, cysts, and eggs of several isolates of the tobacco cyst nematode (TCN) complex, Globodera tabacum tabacum (GTT), G. t. virginiae (GTV), and G. t. solanacearum (GTS) is presented. Morphometrics of eggs, J2, and males are considerably less variable than of females and cysts. No measurements of eggs and J2 are useful for identification of the three subspecies. Distance from the median bulb and excretory pore to the head end in J2 and males is quite stable. Stylet knob width of males is useful for identifying GTV isolates and tail length in separating males of GTT isolates from GTV and GTS. Body length/width (L/W) ratio of females and cysts discriminates GTT from GTV and GTS; stylet knob width is an auxiliary character for identifying GTV. This subspecies complex has a continuum of values for the other characters. Data suggest a close relationship between GTV and GTS, which also occur in close proximity in Virginia. PMID:19279753

  19. Allergic host defences.

    PubMed

    Palm, Noah W; Rosenstein, Rachel K; Medzhitov, Ruslan

    2012-04-26

    Allergies are generally thought to be a detrimental outcome of a mistargeted immune response that evolved to provide immunity to macroparasites. Here we present arguments to suggest that allergic immunity has an important role in host defence against noxious environmental substances, including venoms, haematophagous fluids, environmental xenobiotics and irritants. We argue that appropriately targeted allergic reactions are beneficial, although they can become detrimental when excessive. Furthermore, we suggest that allergic hypersensitivity evolved to elicit anticipatory responses and to promote avoidance of suboptimal environments. PMID:22538607

  20. Some physiological aspects of nitrate reductase-deficient Nicotiana plumbaginifolia plants

    SciTech Connect

    Saux, C.; Morot-Gaudry, J.F.; Lemoine, Y.; Caboche, M.

    1986-04-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv. Viviani) mutants were found to be defective in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild type Nicotiana tabacum. The grafts of NR/sup -/ plants were found to contain less malate but more amino acids, sugars and starch than the wild type. Moreover they were chlorotic, with a slight increase of the proportion of LH Chl a/b protein complexes and they exhibited a lowering of the efficiency of energy transfer between the light-harvesting complexes and the active centers. After /sup 14/CO/sub 2/ pulse and chase experiments. The total /sup 14/C incorporation of the mutant leaves was approximately 20% of that of the control. The NR/sup -/ leaves mainly accumulated /sup 14/C in the whole intermediates of the Calvin-cycle and in sucrose. In the most deficient NR leaves, chloroplasts were stuffed with large starch inclusions disorganizing the lamellar system.

  1. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    SciTech Connect

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  2. Functional cybrid plants possessing a Nicotiana genome and an Atropa plastome.

    PubMed

    Kushnir, S G; Shlumukov, L R; Pogrebnyak, N J; Berger, S; Gleba, Y

    1987-08-01

    Mesophyll protoplasts of plastome chlorophyll-deficient, streptomycin-resistant Nicotiana tabacum were fused with those of wild type Atropa belladonna using the polyethylene-glycol/high Ca++/dimethylsulfoxide method. Protoplasts were cultured in nutrient media suitable for regeneration of tobacco but not Atropa cells. In two experiments, a total of 41 cell lines have been selected as green colonies. Cytogenetic (chromosomal number and morphology) and biochemical (isozyme analyses of esterase, amylase and peroxidase) studies were used to evaluate the nuclear genetic constitution of regenerated plants. To study plastid genetic constitution, restriction endonuclease analysis of chloroplast DNA was performed. Three groups of regenerants have been identified: (a) nuclear hybrids (4 cell lines); (b) Atropa plants, most probably arising from rare surviving parental protoplasts (4 lines) and (c) Nicotiana/Atropa cybrids possessing a tobacco genome and an Atropa plastome (33 lines). Most of cybrids obtained were diploid, morphogenetically normal plants phenotypically similar to tobacco. Some plants flowered and yielded viable seeds. Part of cybrid regenerants were variegated, variegation being transmitted to sexual progeny. Electron microscopic analysis of the mesophyll cells of variegated leaves revealed the presence of heteroplastidic cells. Analysis of thylakoid membrane polypeptides shows that in the cybrids the content of at least one of the major polypeptides, presumably a chlorophyll a/b binding protein is drastically reduced. PMID:17186622

  3. Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana.

    PubMed Central

    Lim, K Y; Skalicka, K; Koukalova, B; Volkov, R A; Matyasek, R; Hemleben, V; Leitch, A R; Kovarik, A

    2004-01-01

    An approximately 135-bp sequence called the A1/A2 repeat was isolated from the transcribed region of the 26-18S rDNA intergenic spacer (IGS) of Nicotiana tomentosiformis. Fluorescence in situ hybridization (FISH) and Southern blot analysis revealed its occurrence as an independent satellite (termed an A1/A2 satellite) outside of rDNA loci in species of Nicotiana section Tomentosae. The chromosomal location, patterns of genomic dispersion, and copy numbers of its tandemly arranged units varied between the species. In more distantly related Nicotiana species the A1/A2 repeats were found only at the nucleolar organizer regions (NOR). There was a trend toward the elimination of the A1/A2 satellite in N. tabacum (tobacco), an allotetraploid with parents closely related to the diploids N. sylvestris and N. tomentosiformis. This process may have already commenced in an S(3) generation of synthetic tobacco. Cytosine residues in the IGS were significantly hypomethylated compared with the A1/A2 satellite. There was no clear separation between the IGS and satellite fractions in sequence analysis of individual clones and we found no evidence for CG suppression. Taken together the data indicate a dynamic nature of the A1/A2 repeats in Nicotiana genomes, with evidence for recurrent integration, copy number expansions, and contractions. PMID:15126410

  4. An Interspecific Nicotiana Hybrid as a Useful and Cost-Effective Platform for Production of Animal Vaccines

    PubMed Central

    Ling, Huai-Yian; Edwards, Aaron M.; Gantier, Michael P.; DeBoer, Kathleen D.; Neale, Alan D.; Hamill, John D.; Walmsley, Amanda M.

    2012-01-01

    The use of transgenic plants to produce novel products has great biotechnological potential as the relatively inexpensive inputs of light, water, and nutrients are utilised in return for potentially valuable bioactive metabolites, diagnostic proteins and vaccines. Extensive research is ongoing in this area internationally with the aim of producing plant-made vaccines of importance for both animals and humans. Vaccine purification is generally regarded as being integral to the preparation of safe and effective vaccines for use in humans. However, the use of crude plant extracts for animal immunisation may enable plant-made vaccines to become a cost-effective and efficacious approach to safely immunise large numbers of farm animals against diseases such as avian influenza. Since the technology associated with genetic transformation and large-scale propagation is very well established in Nicotiana, the genus has attributes well-suited for the production of plant-made vaccines. However the presence of potentially toxic alkaloids in Nicotiana extracts impedes their use as crude vaccine preparations. In the current study we describe a Nicotiana tabacum and N. glauca hybrid that expresses the HA glycoprotein of influenza A in its leaves but does not synthesize alkaloids. We demonstrate that injection with crude leaf extracts from these interspecific hybrid plants is a safe and effective approach for immunising mice. Moreover, this antigen-producing alkaloid-free, transgenic interspecific hybrid is vigorous, with a high capacity for vegetative shoot regeneration after harvesting. These plants are easily propagated by vegetative cuttings and have the added benefit of not producing viable pollen, thus reducing potential problems associated with bio-containment. Hence, these Nicotiana hybrids provide an advantageous production platform for partially purified, plant-made vaccines which may be particularly well suited for use in veterinary immunization programs. PMID:22539991

  5. Inhibition of cereal rust fungi by both class I and II defensins derived from the flowers of Nicotiana alata.

    PubMed

    Dracatos, Peter M; van der Weerden, Nicole L; Carroll, Kate T; Johnson, Elizabeth D; Plummer, Kim M; Anderson, Marilyn A

    2014-01-01

    Defensins are a large family of small, cysteine-rich, basic proteins, produced by most plants and plant tissues. They have a primary function in defence against fungal disease, although other functions have been described. This study reports the isolation and characterization of a class I secreted defensin (NaD2) from the flowers of Nicotiana alata, and compares its antifungal activity with the class II defensin (NaD1) from N. alata flowers, which is stored in the vacuole. NaD2, like all other class I defensins, lacks the C-terminal pro-peptide (CTPP) characteristic of class II defensins. NaD2 is most closely related to Nt-thionin from N. tabacum (96% identical) and shares 81% identity with MtDef4 from alfalfa. The concentration required to inhibit in vitro fungal growth by 50% (IC50 ) was assessed for both NaD1 and NaD2 for the biotrophic basidiomycete fungi Puccinia coronata f. sp. avenae (Pca) and P. sorghi (Ps), the necrotrophic pathogenic ascomycetes Fusarium oxysporum f. sp. vasinfectum (Fov), F. graminearum (Fgr), Verticillium dahliae (Vd) and Thielaviopsis basicola (Tb), and the saprobe Aspergillus nidulans. NaD1 was a more potent antifungal molecule than NaD2 against both the biotrophic and necrotrophic fungal pathogens tested. NaD2 was 5-10 times less effective at killing necrotrophs, but only two-fold less effective on Puccinia species. A new procedure for testing antifungal proteins is described in this study which is applicable to pathogens with spores that are not amenable to liquid culture, such as rust pathogens. Rusts are the most damaging fungal pathogens of many agronomically important crop species (wheat, barley, oats and soybean). NaD1 and NaD2 inhibited urediniospore germination, germ tube growth and germ tube differentiation (appressoria induction) of both Puccinia species tested. NaD1 and NaD2 were fungicidal on Puccinia species and produced stunted germ tubes with a granular cytoplasm. When NaD1 and NaD2 were sprayed onto susceptible oat

  6. Molecular diversity, population structure, and linkage disequilibrium in a worldwide collection of tobacco (Nicotiana tabacum L.) germplasm

    PubMed Central

    2012-01-01

    Background The goals of our study were to assess the phylogeny and the population structure of tobacco accessions representing a wide range of genetic diversity; identify a subset of accessions as a core collection capturing most of the existing genetic diversity; and estimate, in the tobacco core collection, the extent of linkage disequilibrium (LD) in seven genomic regions using simple sequence repeat (SSR) markers. To this end, a collection of accessions were genotyped with SSR markers. Molecular diversity was evaluated and LD was analyzed across seven regions of the genome. Results A genotyping database for 312 tobacco accessions was profiled with 49 SSR markers. Principal Coordinate Analysis (PCoA) and Bayesian cluster analysis revealed structuring of the tobacco population with regard to commercial classes and six main clades were identified, which correspond to "Oriental", Flue-Cured", "Burley", "Dark", "Primitive", and "Other" classes. Pairwise kinship was calculated between accessions, and an overall low level of co-ancestry was observed. A set of 89 genotypes was identified that captured the whole genetic diversity detected at the 49 loci. LD was evaluated on these genotypes, using 422 SSR markers mapping on seven linkage groups. LD was estimated as squared correlation of allele frequencies (r2). The pattern of intrachromosomal LD revealed that in tobacco LD extended up to distances as great as 75 cM with r2 > 0.05 or up to 1 cM with r2 > 0.2. The pattern of LD was clearly dependent on the population structure. Conclusions A global population of tobacco is highly structured. Clustering highlights the accessions with the same market class. LD in tobacco extends up to 75 cM and is strongly dependent on the population structure. PMID:22435796

  7. Modulation of miR156 to identify traits associated with vegetative phase change in tobacco (Nicotiana tabacum).

    PubMed

    Feng, Shengjun; Xu, Yunmin; Guo, Changkui; Zheng, Jirong; Zhou, Bingying; Zhang, Yuting; Ding, Yue; Zhang, Lu; Zhu, Zhujun; Wang, Huasen; Wu, Gang

    2016-03-01

    After germination, plants progress through juvenile and adult phases of vegetative development before entering the reproductive phase. The character and timing of these phases vary significantly between different plant species, which makes it difficult to know whether temporal variations in various vegetative traits represent the same, or different, developmental processes. miR156 has been shown to be the master regulator of vegetative development in plants. Overexpression of miR156 prolongs the juvenile phase of development, whereas knocking-down the level of miR156 promotes the adult phase of development. Therefore, artificial modulation of miR156 expression is expected to cause corresponding changes in vegetative-specific traits in different plant species, particularly in those showing no substantial difference in morphology during vegetative development. To identify specific traits associated with the juvenile-to-adult transition in tobacco, we examined the phenotype of transgenic tobacco plants with elevated or reduced levels of miR156. We found that leaf shape, the density of abaxial trichomes, the number of leaf veins, the number of stomata, the size and density of epidermal cells, patterns of epidermal cell staining, the content of chlorophyll and the rate of photosynthesis, are all affected by miR156. These newly identified miR156-regulated traits therefore can be used to distinguish between juvenile and adult phases of development in tobacco, and provide a starting point for future studies of vegetative phase change in the family Solanaceae. PMID:26763975

  8. Contribution of Nicotine and Nornicotine toward the Production of N'-Nitrosonornicotine in Air-Cured Tobacco (Nicotiana tabacum).

    PubMed

    Cai, Bin; Ji, Huihua; Fannin, Franklin F; Bush, Lowell P

    2016-04-22

    N'-Nitrosonornicotine (6) is a potent and organ-specific carcinogen found in tobacco and tobacco smoke in substantial amounts. Nicotine (1) and nornicotine (2) are proposed to be the precursors of 6 in tobacco. Since 1 can be rapidly demethylated to 2 in tobacco, to distinguish between the direct formation of 6 from these potential precursors is difficult. A gas chromatography/thermal energy analyzer method using two columns in series was developed to separate the enantiomers of 6, N'-nitrosoanabasine (7), and N'-nitrosoanatabine (8). Tobacco lines with different combinations of three nicotine demethylases inhibited were grown in the field. Air-cured leaves were analyzed for the enantiomeric composition of four main alkaloids and their corresponding tobacco-specific nitrosamines. The percentage of (R)-6 of total 6 varied from 7% to 69% in mutant lines. The measured 6 had the same enantiomeric composition as 2, rather than 1, even when the level of 2 was reduced to 0.6% of 1 in a triple mutant line. The pattern of the enantiomeric composition of 1, 2, and 6 demonstrated that the direct formation of 6 from 1, if it occurs, is negligible in air-cured tobacco. Since (S)-6 is more highly carcinogenic than its R form, the reduction of (S)-2 should be a priority for the reduction of 6. PMID:26959866

  9. Genome-wide identification of chromium stress-responsive micro RNAs and their target genes in tobacco (Nicotiana tabacum) roots.

    PubMed

    Bukhari, Syed Asad Hussain; Shang, Shenghua; Zhang, Mian; Zheng, Weite; Zhang, Guoping; Wang, Ting-Zhang; Shamsi, Imran Haider; Wu, Feibo

    2015-11-01

    Tobacco easily accumulates certain heavy metals in leaves and thus poses a potential threat to human health. To systematically dissect Cr-responsive microRNAs (miRNAs) and their targets at the global level, 4 small RNA libraries were constructed from the roots of Cr-treated (Cr) and Cr-free (control) for 2 contrasting tobacco genotypes,Yunyan2 (Cr-sensitive) and Guiyan1 (Cr-tolerant). Using high-throughput-sequencing-technology, the authors identified 53 conserved and 29 novel miRNA families. Comparative genomic analysis of 41 conserved Cr-responsive miRNA families revealed that 11 miRNA families showed up-regulation in Guiyan1 but unaltered in Yunyan2, and 17 miRNA families were up-regulated only in Yunyan2 under Cr stress. Only 1 family, miR6149, was down-regulated in Yunyan2 but remained unchanged in Guiyan1. Of the 29 novel miRNA families, 14 expressed differently in the 2 genotypes under Cr stress. Based on a high-throughput degradome sequencing homology search, potential targets were predicted for the 41 conserved and 14 novel Cr-responsive miRNA families. Clusters of Orthologous Groups functional category analysis revealed that some of these predicted target transcripts of miRNAs are responsive to biotic and abiotic stresses. Furthermore, the expression patterns of many Cr-responsive miRNAs were validated by stem-loop real-time transcription polymerase chain reaction. The results of the present study provide valuable information and a framework for understanding the function of miRNAs in Cr tolerance. PMID:26053264

  10. The role of gluconate production by Pseudomonas spp. in the mineralization and bioavailability of calcium-phytate to Nicotiana tabacum.

    PubMed

    Giles, Courtney D; Hsu, Pei-Chun Lisa; Richardson, Alan E; Hurst, Mark R H; Hill, Jane E

    2015-12-01

    Organic phosphorus (P) is abundant in most soils but is largely unavailable to plants. Pseudomonas spp. can improve the availability of P to plants through the production of phytases and organic anions. Gluconate is a major component of Pseudomonas organic anion production and may therefore play an important role in the mineralization of insoluble organic P forms such as calcium-phytate (CaIHP). Organic anion and phytase production was characterized in 2 Pseudomonas spp. soil isolates (CCAR59, Ha200) and an isogenic mutant of strain Ha200, which lacked a functional glucose dehydrogenase (Gcd) gene (strain Ha200 gcd::Tn5B8). Wild-type and mutant strains of Pseudomonas spp. were evaluated for their ability to solubilize and hydrolyze CaIHP and to promote the growth and assimilation of P by tobacco plants. Gluconate, 2-keto-gluconate, pyruvate, ascorbate, acetate, and formate were detected in Pseudomonas spp. supernatants. Wild-type pseudomonads containing a functional gcd could produce gluconate and mineralize CaIHP, whereas the isogenic mutant could not. Inoculation with Pseudomonas improved the bioavailability of CaIHP to tobacco plants, but there was no difference in plant growth response due to Gcd function. Gcd function is required for the mineralization of CaIHP in vitro; however, further studies will be needed to quantify the relative contribution of specific organic anions such as gluconate to plant growth promotion by soil pseudomonads. PMID:26435508

  11. RNA Sequencing Analysis Reveals Transcriptomic Variations in Tobacco (Nicotiana tabacum) Leaves Affected by Climate, Soil, and Tillage Factors

    PubMed Central

    Lei, Bo; Lu, Kun; Ding, Fuzhang; Zhang, Kai; Chen, Yi; Zhao, Huina; Zhang, Lin; Ren, Zhu; Qu, Cunmin; Guo, Wenjing; Wang, Jing; Pan, Wenjie

    2014-01-01

    The growth and development of plants are sensitive to their surroundings. Although numerous studies have analyzed plant transcriptomic variation, few have quantified the effect of combinations of factors or identified factor-specific effects. In this study, we performed RNA sequencing (RNA-seq) analysis on tobacco leaves derived from 10 treatment combinations of three groups of ecological factors, i.e., climate factors (CFs), soil factors (SFs), and tillage factors (TFs). We detected 4980, 2916, and 1605 differentially expressed genes (DEGs) that were affected by CFs, SFs, and TFs, which included 2703, 768, and 507 specific and 703 common DEGs (simultaneously regulated by CFs, SFs, and TFs), respectively. GO and KEGG enrichment analyses showed that genes involved in abiotic stress responses and secondary metabolic pathways were overrepresented in the common and CF-specific DEGs. In addition, we noted enrichment in CF-specific DEGs related to the circadian rhythm, SF-specific DEGs involved in mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated with photosynthesis. Based on these results, we propose a model that explains how plants adapt to various ecological factors at the transcriptomic level. Additionally, the identified DEGs lay the foundation for future investigations of stress resistance, circadian rhythm and photosynthesis in tobacco. PMID:24733065

  12. Cytokinin oxidase/dehydrogenase overexpression modifies antioxidant defense against heat, drought and their combination in Nicotiana tabacum plants.

    PubMed

    Lubovská, Zuzana; Dobrá, Jana; Storchová, Helena; Wilhelmová, Naďa; Vanková, Radomíra

    2014-11-01

    Cytokinins (CKs) as well as the antioxidant enzyme system (AES) play important roles in plant stress responses. The expression and activity of antioxidant enzymes (AE) were determined in drought, heat and combination of both stresses, comparing the response of tobacco plants overexpressing the main cytokinin degrading enzyme, cytokinin oxidase/dehydrogenase, under the control of root-specific WRKY6 promoter (W6:CKX1 plants) or constitutive promoter (35S:CKX1 plants) and the corresponding wild-type (WT). Expression levels as well as activities of cytosolic ascorbate peroxidase, catalase 3, and cytosolic superoxide dismutase were low under optimal conditions and increased after heat and combined stress in all genotypes. Unlike catalase 3, two other peroxisomal enzymes, catalase 1 and catalase 2, were transcribed extensively under control conditions. Heat stress, in contrast to drought or combined stress, increased catalase 1 and reduced catalase 2 expression in WT and W6:CKX1 plants. In 35S:CKX1, catalase 1 expression was enhanced by heat or drought, but not under combined stress conditions. Mitochondrial superoxide dismutase expression was generally higher in 35S:CKX1 plants than in WT. Genes encoding for chloroplastic AEs, stromatal ascorbate peroxidase, thylakoidal ascorbate peroxidase and chloroplastic superoxide dismutase, were strongly transcribed under control conditions. All stresses down-regulated their expression in WT and W6:CKX1, whereas more stress-tolerant 35S:CKX1 plants maintained high expression during drought and heat. The achieved data show that the effect of down-regulation of CK levels on AES may be mediated by altered habit, resulting in improved stress tolerance, which is associated with diminished stress impact on photosynthesis, and changes in source/sink relations. PMID:25171514

  13. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.

    PubMed

    Zeng, Wei-Ai; Li, Fan; Zhou, Hang; Qin, Xiao-Li; Zou, Zi-Jin; Tian, Tao; Zeng, Min; Liao, Bo-Han

    2016-01-01

    In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves. PMID:26930875

  14. Role of transpiration and metabolism in translocation and accumulation of cadmium in tobacco plants (Nicotiana tabacum L.).

    PubMed

    Liu, Haiwei; Wang, Haiyun; Ma, Yibing; Wang, Haohao; Shi, Yi

    2016-02-01

    Tobacco plants grown in pots and in hydroponic culture accumulated cadmium (Cd) particularly: the Cd content of tobacco leaves exceeded 100 mg/kg and the enrichment factor (the ratio of Cd in leaves to that in soil) was more than 4. These high levels of accumulation identify tobacco as a hyperaccumulator of Cd. Two transpiration inhibitors (paraffin or CaCl2) and shade decreased the Cd content of tobacco leaves, and the decrease showed a linear relationship with the leaf transpiration rate. A metabolism inhibitor, namely 2,4-dinitrophenol (DNP), and low temperature (4 °C) also lowered the Cd content of tobacco leaves, but the inhibitory effect of low temperature was greater. In the half number of leaves that were shaded, the Cd content decreased to 26.5% of that in leaves that were not shaded in the same tobacco plants. These results suggests that translocation of Cd from the medium to the leaves is driven by the symplastic and the apoplastic pathways. Probably, of the two crucial steps in the translocation of Cd in tobacco plants, one, namely uptake from the medium to the xylem, is energy-dependent whereas the other, namely the transfer from the xylem to the leaves, is driven mainly by transpiration. PMID:26547876

  15. A membrane-bound matrix-metalloproteinase from Nicotiana tabacum cv. BY-2 is induced by bacterial pathogens

    PubMed Central

    Schiermeyer, Andreas; Hartenstein, Hanna; Mandal, Manoj K; Otte, Burkhard; Wahner, Verena; Schillberg, Stefan

    2009-01-01

    Background Plant matrix metalloproteinases (MMP) are conserved proteolytic enzymes found in a wide range of monocotyledonous and dicotyledonous plant species. Acting on the plant extracellular matrix, they play crucial roles in many aspects of plant physiology including growth, development and the response to stresses such as pathogen attack. Results We have identified the first tobacco MMP, designated NtMMP1, and have isolated the corresponding cDNA sequence from the tobacco suspension cell line BY-2. The overall domain structure of NtMMP1 is similar to known MMP sequences, although certain features suggest it may be constitutively active rather than dependent on proteolytic processing. The protein appears to be expressed in two forms with different molecular masses, both of which are enzymatically active as determined by casein zymography. Exchanging the catalytic domain of NtMMP1 with green fluorescent protein (GFP) facilitated subcellular localization by confocal laser scanning microscopy, showing the protein is normally inserted into the plasma membrane. The NtMMP1 gene is expressed constitutively at a low level but can be induced by exposure to bacterial pathogens. Conclusion Our biochemical analysis of NtMMP1 together with bioinformatic data on the primary sequence indicate that NtMMP1 is a constitutively-active protease. Given its induction in response to bacterial pathogens and its localization in the plasma membrane, we propose a role in pathogen defense at the cell periphery. PMID:19563670

  16. Isolation and Compositional Analysis of a CP12-Associated Complex of Calvin Cycle Enzymes from Nicotiana tabacum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CP12 is a small intrinsically unstructured protein that forms a multiprotein complex with two Calvin Cycle enzymes, phosphoribulokinase (PRK) and NAD(P)-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The complex can be reconstituted in vitro from recombinant proteins under conditions t...

  17. Effects of Lead (Pb) on the Systemic Movement of RNA Viruses in Tobacco (Nicotiana tabacum var. Turkish)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effect of different lead (Pb) concentrations on the systemic movement of RNA viruses was examined in tobacco plants. Prior to inoculation, plants were grown hydroponically for six days in Hoagland's solution supplemented with five concentrations of lead nitrate [Pb(NO3)2]:0.0 (control), 10 uM, 15 u...

  18. High-level transient expression of ER-targeted human interleukin 6 in Nicotiana benthamiana.

    PubMed

    Nausch, Henrik; Mikschofsky, Heike; Koslowski, Roswitha; Meyer, Udo; Broer, Inge; Huckauf, Jana

    2012-01-01

    Tobacco plants can be used to express recombinant proteins that cannot be produced in a soluble and active form using traditional platforms such as Escherichia coli. We therefore expressed the human glycoprotein interleukin 6 (IL6) in two commercial tobacco cultivars (Nicotiana tabacum cv. Virginia and cv. Geudertheimer) as well as the model host N. benthamiana to compare different transformation strategies (stable vs. transient expression) and subcellular targeting (apoplast, endoplasmic reticulum (ER) and vacuole). In T(0) transgenic plants, the highest expression levels were achieved by ER targeting but the overall yields of IL6 were still low in the leaves (0.005% TSP in the ER, 0.0008% in the vacuole and 0.0005% in the apoplast). The apoplast variant accumulated to similar levels in leaves and seeds, whereas the ER-targeted variant was 1.2-fold more abundant in seeds and the vacuolar variant was 6-fold more abundant in seeds. The yields improved in subsequent generations, with the best-performing T(2) plants producing the ER-targeted IL6 at 0.14% TSP in both leaves and seeds. Transient expression of ER-targeted IL6 in leaves using the MagnICON system resulted in yields of up to 7% TSP in N. benthamiana, but only 1% in N. tabacum cv. Virginia and 0.5% in cv. Geudertheimer. Although the commercial tobacco cultivars produced up to threefold more biomass than N. benthamiana, this was not enough to compensate for the lower overall yields. The recombinant IL6 produced by transient and stable expression in plants was biologically active and presented as two alternative bands matching the corresponding native protein. PMID:23152824

  19. Quantitative Analysis of the Fate of Exogenous DNA in Nicotiana Protoplasts 1

    PubMed Central

    Uchimiya, Hirofumi; Murashige, Toshio

    1977-01-01

    After a 5-hour incubation of protoplasts of Nicotiana tabacum L. `Xanthi' with 3H-DNA (7.26 μg/ml) from N. tabacum L. `Xanthi nc' 3.5% of the initial radioactivity was found in acid-insoluble substances of the protoplasts. The addition of DEAE-dextran and poly-l-lysine to the incubation medium nearly doubled radioactivity adsorption. The absorption was inhibited by 2,4-dinitrophenol, KCN, and low temperature (0 C); this inhibition could not be reversed by exogenous ATP. About 500 tobacco plants established from protoplasts of a normally tobacco-mosaic virus-susceptible cultivar that had been allowed to absorb DNA prepared from a resistant cultivar did not show transfer of the virus-resistant gene. A detailed analysis was performed of the disposition of exogenous DNA in plant protoplasts, by employing Escherichia coli3H-DNA and Nicotiana glutinosa protoplasts. In 5 to 20 hours, about 10% of the 3H-DNA entered the protoplasts. Competition experiments between the 3H-DNA and unlabeled DNA or thymidine showed that the entry occurred as undegraded 3H-DNA. Examination of intraprotoplast fractions revealed that 60 to 80% of the absorbed radioactivity resided in the “soluble” fraction of the cytoplasm and 20% in the nuclear fraction. The mitochondrion fraction also contained measurable radioactivity. Sizing on sucrose density gradients showed that the bulk of the absorbed E. coli DNA had been depolymerized. Of the incorporated radioactivity, 15% was accountable as DNA, exogenous as well as resynthesized, and 15% as RNA, protein, and other cell constituents. DNA/DNA hybridization test indicated that 17.6% of the re-extractable 3H-DNA retained homology with the E. coli DNA; this was equivalent to 2.6% of the absorbed radioactivity. Resynthesized receptor protoplast DNA was represented by a fraction at least 1.7% of the total absorbed radioactivity. The amount of bacterial DNA remaining in protoplasts suggests that each protoplast retained 2.3 × 10−15g donor DNA, or

  20. Plant Oxidosqualene Metabolism: Cycloartenol Synthase–Dependent Sterol Biosynthesis in Nicotiana benthamiana

    PubMed Central

    Gas-Pascual, Elisabet; Berna, Anne; Bach, Thomas J.; Schaller, Hubert

    2014-01-01

    The plant sterol pathway exhibits a major biosynthetic difference as compared with that of metazoans. The committed sterol precursor is the pentacyclic cycloartenol (9β,19-cyclolanost-24-en-3β-ol) and not lanosterol (lanosta-8,24-dien-3β-ol), as it was shown in the late sixties. However, plant genome mining over the last years revealed the general presence of lanosterol synthases encoding sequences (LAS1) in the oxidosqualene cyclase repertoire, in addition to cycloartenol synthases (CAS1) and to non-steroidal triterpene synthases that contribute to the metabolic diversity of C30H50O compounds on earth. Furthermore, plant LAS1 proteins have been unambiguously identified by peptidic signatures and by their capacity to complement the yeast lanosterol synthase deficiency. A dual pathway for the synthesis of sterols through lanosterol and cycloartenol was reported in the model Arabidopsis thaliana, though the contribution of a lanosterol pathway to the production of 24-alkyl-Δ5-sterols was quite marginal (Ohyama et al. (2009) PNAS 106, 725). To investigate further the physiological relevance of CAS1 and LAS1 genes in plants, we have silenced their expression in Nicotiana benthamiana. We used virus induced gene silencing (VIGS) based on gene specific sequences from a Nicotiana tabacum CAS1 or derived from the solgenomics initiative (http://solgenomics.net/) to challenge the respective roles of CAS1 and LAS1. In this report, we show a CAS1-specific functional sterol pathway in engineered yeast, and a strict dependence on CAS1 of tobacco sterol biosynthesis. PMID:25343375

  1. STENOFOLIA Regulates Blade Outgrowth and Leaf Vascular Patterning in Medicago truncatula and Nicotiana sylvestris[C][W][OA

    PubMed Central

    Tadege, Million; Lin, Hao; Bedair, Mohamed; Berbel, Ana; Wen, Jiangqi; Rojas, Clemencia M.; Niu, Lifang; Tang, Yuhong; Sumner, Lloyd; Ratet, Pascal; McHale, Neil A.; Madueño, Francisco; Mysore, Kirankumar S.

    2011-01-01

    Dicot leaf primordia initiate at the flanks of the shoot apical meristem and extend laterally by cell division and cell expansion to form the flat lamina, but the molecular mechanism of lamina outgrowth remains unclear. Here, we report the identification of STENOFOLIA (STF), a WUSCHEL-like homeobox transcriptional regulator, in Medicago truncatula, which is required for blade outgrowth and leaf vascular patterning. STF belongs to the MAEWEST clade and its inactivation by the transposable element of Nicotiana tabacum cell type1 (Tnt1) retrotransposon insertion leads to abortion of blade expansion in the mediolateral axis and disruption of vein patterning. We also show that the classical lam1 mutant of Nicotiana sylvestris, which is blocked in lamina formation and stem elongation, is caused by deletion of the STF ortholog. STF is expressed at the adaxial–abaxial boundary layer of leaf primordia and governs organization and outgrowth of lamina, conferring morphogenetic competence. STF does not affect formation of lateral leaflets but is critical to their ability to generate a leaf blade. Our data suggest that STF functions by modulating phytohormone homeostasis and crosstalk directly linked to sugar metabolism, highlighting the importance of coordinating metabolic and developmental signals for leaf elaboration. PMID:21719692

  2. In Defence of the Lecture

    ERIC Educational Resources Information Center

    Webster, R. Scott

    2015-01-01

    In response to the lecture format coming under "attack" and being replaced by online materials and smaller tutorials, this paper attempts to offer not only a defence but also to assert that the potential value of the lecture is difficult to replicate through other learning formats. Some of the criticisms against lectures will be…

  3. Plant surface reactions: an ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2015-07-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: how much ozone effectively enters the plant through open stomata and how much is lost by chemical reactions at the plant surface? In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis of cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too. Fluid dynamic calculations were used to model ozone distribution in the diffusion limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way, that ozone flux through the open stomata is strongly reduced. Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  4. A new cyanogenic metabolite in Arabidopsis required for inducible pathogen defence.

    PubMed

    Rajniak, Jakub; Barco, Brenden; Clay, Nicole K; Sattely, Elizabeth S

    2015-09-17

    Thousands of putative biosynthetic genes in Arabidopsis thaliana have no known function, which suggests that there are numerous molecules contributing to plant fitness that have not yet been discovered. Prime among these uncharacterized genes are cytochromes P450 upregulated in response to pathogens. Here we start with a single pathogen-induced P450 (ref. 5), CYP82C2, and use a combination of untargeted metabolomics and coexpression analysis to uncover the complete biosynthetic pathway to 4-hydroxyindole-3-carbonyl nitrile (4-OH-ICN), a previously unknown Arabidopsis metabolite. This metabolite harbours cyanogenic functionality that is unprecedented in plants and exceedingly rare in nature; furthermore, the aryl cyanohydrin intermediate in the 4-OH-ICN pathway reveals a latent capacity for cyanogenic glucoside biosynthesis in Arabidopsis. By expressing 4-OH-ICN biosynthetic enzymes in Saccharomyces cerevisiae and Nicotiana benthamiana, we reconstitute the complete pathway in vitro and in vivo and validate the functions of its enzymes. Arabidopsis 4-OH-ICN pathway mutants show increased susceptibility to the bacterial pathogen Pseudomonas syringae, consistent with a role in inducible pathogen defence. Arabidopsis has been the pre-eminent model system for studying the role of small molecules in plant innate immunity; our results uncover a new branch of indole metabolism distinct from the canonical camalexin pathway, and support a role for this pathway in the Arabidopsis defence response. These results establish a more complete framework for understanding how the model plant Arabidopsis uses small molecules in pathogen defence. PMID:26352477

  5. Sensitivity of Allium and Nicotiana in cellular and acellular comet assays to assess differential genotoxicity of direct and indirect acting mutagens.

    PubMed

    Bandyopadhyay, Atrayee; Mukherjee, Anita

    2011-05-01

    We have evaluated the extent of DNA damage induced by direct and indirect mutagens by cellular and acellular comet assays in two plant systems, Nicotiana tabacum (wild type tobacco) and Allium cepa (common onion). The objectives of this study were: (1) to generate dose-response curves for DNA migration values from root and shoot nuclei of A. cepa and N. tabacum treated with the direct acting mutagens, ethyl methanesulphonate (EMS), hydrogen peroxide (H(2)O(2)) and the indirect acting mutagen, cadmium chloride (CdCl(2)), (2) to assess the differential response between isolated nuclei and nuclei of root and shoot and of both plants and (3) to examine the differences of sensitivity between direct and indirect acting mutagens by cellular and acellular comet assays. Similar sensitivities were evident in both plant systems to direct and indirect acting mutagens. The combination of cellular and acellular comet assays provided valuable insight to the mode of action of the genotoxicants used. The data obtained demonstrated the estimable capacity of the two plant systems to evaluate genotoxicity under different stress conditions and suggests Allium is a more desirable test system for rapid monitoring of genotoxicity. PMID:21237510

  6. Defence electro-optics: European perspective

    NASA Astrophysics Data System (ADS)

    Hartikainen, Jari

    2011-11-01

    In 2009 the United States invested in defence R&T 3,6 times and in defence research and development 6,8 times as much as all member states of the European Defence Agency (EDA) combined while the ratio in the total defence expenditure was 2,6 in the US' favour. The European lack of investments in defence research and development has a negative impact on the competitiveness of European defence industry and on the European non-dependence. In addition, the efficiency of investment is reduced due to duplication of work in different member states. The Lisbon Treaty tasks EDA to support defence technology research, and coordinate and plan joint research activities and the study of technical solutions meeting future operational needs. This paper gives an overview how EDA meets the challenge of improving the efficiency of European defence R&T investment with an emphasis on electro-optics and describes shortly the ways that governmental and industrial partners can participate in the EDA cooperation. Examples of joint R&T projects addressing electro-optics are presented.

  7. Plant defences against herbivore and insect attack

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants deploy a number of defences against attack by insects and other herbivores. Direct defence is conferred by plant products and structures that deter or kill the herbivores. Chemical toxins and deterrents vary widely among plant species, and some typical toxins include alkaloids, terpenoids, st...

  8. Compensation for a Mutated Auxin Biosynthesis Gene of Agrobacterium Ti Plasmid A66 in Nicotiana glutinosa Does Not Result from Increased Auxin Accumulation.

    PubMed

    Campell, B R; Su, L Y; Pengelly, W L

    1989-04-01

    Nicotiana glutinosa compensated for a mutated tumor-morphology-shooty (tms) (auxin biosynthesis) locus of Agrobacterlum tumefaciens strain A66 and showed the same virulent tumor response to infection by strain A66 or the wild-type strain A6. Cloned cell lines transformed by strains A6 or A66 were fully hormone independent in culture and grew rapidly as friable, unorganized tissues on hormone-free growth medium. Growth of N. glutinosa tumor cells was inhibited by addition of alpha-naphthaleneacetic acid to the growth medium, and A6- and A66-transformed cells showed similar dose responses to this auxin. On the other hand, A6-transformed cells contained much higher levels of indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) than A66-transformed cells. Differences in IAA and ACC levels in N. glutinosa tumor lines were consistent with the expected activity of the tms locus and were quantitatively similar to results obtained previously with A6- and A66-transformed cells of Nicotiana tabacum, which does not compensate for mutated tms genes. Thus, compensation for mutated tms genes in N. glutinosa did not result from increased auxin accumulation and did not appear to be related to the capacity of this host for auxin biosynthesis. PMID:16666706

  9. Ovipositional response of tobacco budworm moths (Lepidoptera: Noctuidae) to cuticular labdanes and sucrose esters from the green leaves ofNicotiana glutinosa L. (Solanaceae).

    PubMed

    Jackson, D M; Severson, R F; Sisson, V A; Stephenson, M G

    1991-12-01

    Field plots of three accessions ofNicotiana glutinosa L. (Nicotiana species accessions 24, 24A, and 24B) at Oxford, North Carolina and Tifton, Georgia were heavily damaged by natural populations of tobacco budworms,Heliothis virescens (F.), during 1985-1989. Experiments in outdoor screen cages demonstrated that all accessions ofN. glutinosa were as prone to oviposition byH. virescens moths as was NC 2326, a commercial cultivar of flue-cured tobacco,N. tabacum L. However, in greenhouse experiments, tobacco budworm larvae did not survive or grow as well when placed on plants ofN. glutinosa as they did when placed on plants of NC 2326. Four labdane diterpenes (manool, 2-hydroxymanool, a mixture of sclareols, and labda-13-ene-8α,15-diol [labdenediol]) and two sucrose ester fractions (2,3,4-tri-O-acyl-3'-O-acetyl-sucrose [G-SE-I] and 2,3,4,-tri-O-acyl-sucrose [G-SE-II]) were isolated from green leaves of the three accessions ofN. glutinosa. These components were bioassayed for their effects on the ovipositional behavior of tobacco budworm moths using small screen cages in a greenhouse at Oxford, North Carolina. Labdenediol, manool, and both sucrose ester fractions stimulated tobacco budworm moths to oviposit on a tobacco budworm-resistant Tobacco Introduction, TI 1112 (PI 124166), when these materials were sprayed onto a leaf. PMID:24258642

  10. Monoclonal Antibody Purification (Nicotiana benthamiana Plants)

    PubMed Central

    Husk, Adam; Hamorsky, Krystal Teasley; Matoba, Nobuyuki

    2016-01-01

    Plant-based expression systems provide an alternative biomanufacturing platform for recombinant proteins (Matoba et al., 2011). In particular, plant virus-based vectors can overexpress proteins within days in the leaf tissue of Nicotiana benthamiana (N. benthamiana). To overcome the issues of genetic instability and limited infectivity of recombinant viruses, Agrobacterium-mediated delivery of “deconstructed” virus vectors has become the mainstay for the production of large and/or multicomponent proteins, such as immunoglobulin (Ig)G monoclonal antibodies (mAbs). Here, we describe a method of producing human IgG mAbs in N. benthamiana using the tobamoviral replicon vector magnICON®. The vector can express up to a few hundred mg of a mAb per kg of leaf material in 7 days. A representative case for the broadly neutralizing anti-HIV and anti-influenza mAbs, VRC01 and CR6261 respectively, is shown (Hamorsky et al., 2013). Leaf tissue is homogenized and the extract is clarified by filtration and centrifugation. The mAb is purified by fast protein liquid chromatography (FPLC) using Protein A affinity and Phenyl HP hydrophobic interection resins.

  11. Sexual misbehaviour in the Australian Defence Force.

    PubMed

    Williams, Angela; Ranson, David

    2013-12-01

    It is clear from recent media reporting that serious issues have come to light regarding sexual misbehaviour matters within the Australian Defence Force. Subsequent reviews have indicated that these behaviours appear to have been more widespread than the initial media reports suggested and a number of reviews have been undertaken to better understand the problem and address the concerns of victims, Defence command, government and the community. If these problems are not addressed, there is a risk that recruitment to the Defence Forces may become problematic. The strong command structures within the Defence Forces can both exacerbate these misbehaviours through entrenching secrecy and at the same time have the capacity to provide a powerful leadership message that can change attitudes and reduce such misbehaviours. PMID:24597372

  12. The mechanical defence advantage of small seeds.

    PubMed

    Fricke, Evan C; Wright, S Joseph

    2016-08-01

    Seed size and toughness affect seed predators, and size-dependent investment in mechanical defence could affect relationships between seed size and predation. We tested how seed toughness and mechanical defence traits (tissue density and protective tissue content) are related to seed size among tropical forest species. Absolute toughness increased with seed size. However, smaller seeds had higher specific toughness both within and among species, with the smallest seeds requiring over 2000 times more energy per gram to break than the largest seeds. Investment in mechanical defence traits varied widely but independently of the toughness-mass allometry. Instead, a physical scaling relationship confers a toughness advantage on small seeds independent of selection on defence traits and without a direct cost. This scaling relationship may contribute to seed size diversity by decreasing fitness differences among large and small seeds. Allometric scaling of toughness reconciles predictions and conflicting empirical relationships between seed size and predation. PMID:27324185

  13. Coordinated defence and the liver.

    PubMed

    Elias, Elwyn; Mills, Charles O

    2007-04-01

    The liver is strategically placed to protect the body against a vast array of potentially harmful compounds. The steps involved include phase I metabolism which makes molecules more reactive and phase II reactions which generally enhance solubility in bile or urine. Recent discoveries have shown how regulation of these reactions is also closely allied to expression of membrane transporters which excrete the products of biotransformation into bile and prevent their reabsorption via the intestine. The coordinated activity of these various functions is orchestrated by orphan nuclear receptors which, in response to an encounter with a potential toxin, are able to induce expression of the genes involved in its biotransformation and excretion. Lithocholic acid (LCA) is routinely produced in our intestine by bacterial deconjugation of chenodeoxycholic acid a major bile acid in humans. In human liver the presence of LCA is sensed by the pregnane X receptor (PXR) which has the potential to switch on all the genes required for safe metabolism and elimination of LCA from the body. These include cytochrome P450 3A which hydroxylates LCA to more soluble forms and sulfotransferase (SULT2A1) which by sulphation of LCA makes it more readily solublein bile and enhances its faecal excretion. Similarly, PXR exposure to LCA produces up-regulated expression of the membrane transporters MDR1 and MRP2 which excrete metabolites of LCA. Evidence is accumulating in support of the hypothesis that deficiencies in these defence mechanisms underlie susceptibility to primary sclerosing cholangitis and ulcerative colitis. PMID:17491508

  14. Host defences against Giardia lamblia.

    PubMed

    Lopez-Romero, G; Quintero, J; Astiazarán-García, H; Velazquez, C

    2015-08-01

    Giardia spp. is a protozoan parasite that inhabits the upper small intestine of mammals and other species and is the aetiological agent of giardiasis. It has been demonstrated that nitric oxide, mast cells and dendritic cells are the first line of defence against Giardia. IL-6 and IL-17 play an important role during infection. Several cytokines possess overlapping functions in regulating innate and adaptive immune responses. IgA and CD4(+) T cells are fundamental to the process of Giardia clearance. It has been suggested that CD4(+) T cells play a double role during the anti-Giardia immune response. First, they activate and stimulate the differentiation of B cells to generate Giardia-specific antibodies. Second, they act through a B-cell-independent mechanism that is probably mediated by Th17 cells. Several Giardia proteins that stimulate humoral and cellular immune responses have been described. Variant surface proteins, α-1 giardin, and cyst wall protein 2 can induce host protective responses to future Giardia challenges. The characterization and evaluation of the protective potential of the immunogenic proteins that are associated with Giardia will offer new insights into host-parasite interactions and may aid in the development of an effective vaccine against the parasite. PMID:26072999

  15. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana

    PubMed Central

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  16. GhWRKY68 Reduces Resistance to Salt and Drought in Transgenic Nicotiana benthamiana

    PubMed Central

    Jia, Haihong; Wang, Chen; Wang, Fang; Liu, Shuchang; Li, Guilin; Guo, Xingqi

    2015-01-01

    The WRKY transcription factors modulate numerous physiological processes, including plant growth, development and responses to various environmental stresses. Currently, our understanding of the functions of the majority of the WRKY family members and their possible roles in signalling crosstalk is limited. In particular, very few WRKYs have been identified and characterised from an economically important crop, cotton. In this study, we characterised a novel group IIc WRKY gene, GhWRKY68, which is induced by different abiotic stresses and multiple defence-related signalling molecules. The β-glucuronidase activity driven by the GhWRKY68 promoter was enhanced after exposure to drought, salt, abscisic acid (ABA) and H2O2. The overexpression of GhWRKY68 in Nicotiana benthamiana reduced resistance to drought and salt and affected several physiological indices. GhWRKY68 may mediate salt and drought responses by modulating ABA content and enhancing the transcript levels of ABA-responsive genes. GhWRKY68-overexpressing plants exhibited reduced tolerance to oxidative stress after drought and salt stress treatments, which correlated with the accumulation of reactive oxygen species (ROS), reduced enzyme activities, elevated malondialdehyde (MDA) content and altered ROS-related gene expression. These results indicate that GhWRKY68 is a transcription factor that responds to drought and salt stresses by regulating ABA signalling and modulating cellular ROS. PMID:25793865

  17. A Phytophthora sojae cytoplasmic effector mediates disease resistance and abiotic stress tolerance in Nicotiana benthamiana.

    PubMed

    Zhang, Meixiang; Ahmed Rajput, Nasir; Shen, Danyu; Sun, Peng; Zeng, Wentao; Liu, Tingli; Juma Mafurah, Joseph; Dou, Daolong

    2015-01-01

    Each oomycete pathogen encodes a large number of effectors. Some effectors can be used in crop disease resistance breeding, such as to accelerate R gene cloning and utilisation. Since cytoplasmic effectors may cause acute physiological changes in host cells at very low concentrations, we assume that some of these effectors can serve as functional genes for transgenic plants. Here, we generated transgenic Nicotiana benthamiana plants that express a Phytophthora sojae CRN (crinkling and necrosis) effector, PsCRN115. We showed that its expression did not significantly affect the growth and development of N. benthamiana, but significantly improved disease resistance and tolerance to salt and drought stresses. Furthermore, we found that expression of heat-shock-protein and cytochrome-P450 encoding genes were unregulated in PsCRN115-transgenic N. benthamiana based on digital gene expression profiling analyses, suggesting the increased plant defence may be achieved by upregulation of these stress-related genes in transgenic plants. Thus, PsCRN115 may be used to improve plant tolerance to biotic and abiotic stresses. PMID:26039925

  18. Human influence on the dispersal and genetic structure of French Globodera tabacum populations.

    PubMed

    Alenda, Charline; Montarry, Josselin; Grenier, Eric

    2014-10-01

    The dispersal abilities and the population genetic structure of nematodes living in soils are poorly known. In the present study, we have pursued these issues in the tobacco cyst nematode, Globodera tabacum, which is responsible of significant yield reductions. Nine microsatellites markers were used to explore the dispersal and genetic structure of 18 French G. tabacum populations. All the populations sampled belong to the "tabacum" subspecies and low level of gene flow was observed among G. tabacum populations in France. Bayesian genetic assignments revealed two distinct genetic groups that matched with the geographic limits of two agricultural cooperative societies. An important part of the genetic variability was observed between these agricultural cooperative societies and also within populations. Those results highlight the impact of the human organization of agricultural practices on the genetic structure of G. tabacum populations and complement previous results obtained on other cyst nematodes, showing the major contribution of human activities and soil transports during harvest in the passive dispersion of these organisms. PMID:25086343

  19. Capability engineering: transforming defence acquisition in Canada

    NASA Astrophysics Data System (ADS)

    Pagotto, Jack; Walker, Robert S.

    2004-07-01

    Capability engineering, a new methodology with the potential to transform defence planning and acquisition, is described. The impact of capability engineering on existing defence business processes and organizations is being explored in Canada during the course of a four-year Technology Demonstration Project called Collaborative Capability Definition, Engineering and Management (CapDEM). Having completed the first of three experimentation spirals within this project, a high-level capability engineering process model has been defined. The process begins by mapping strategic defence guidance onto defence capabilities, using architectural models that articulate the people, process and materiel requirements of each capability when viewed as a system-of-systems. For a selected capability, metrics are rigorously applied to these models to assess their ability to deliver the military capability outcomes required by a set of predefined tasks and force planning scenarios. By programming the modification of these tasks and planning scenarios over time according to evolving capability objectives, quantifiable capability gaps are identified, that in turn drive the process towards options to close these gaps. The implementation plan for these options constitutes a capability evolution roadmap to support defence-investment decisions. Capability engineering is viewed as an essential enabler to meeting the objective of improved capability management, subsuming the functions of capability generation, sustainment and employment.

  20. Do strigolactones contribute to plant defence?

    PubMed

    Torres-Vera, Rocío; García, Juan M; Pozo, María J; López-Ráez, Juan A

    2014-02-01

    Strigolactones are multifunctional molecules involved in several processes outside and within the plant. As signalling molecules in the rhizosphere, they favour the establishment of arbuscular mycorrhizal symbiosis, but they also act as host detection cues for root parasitic plants. As phytohormones, they are involved in the regulation of plant architecture, adventitious rooting, secondary growth and reproductive development, and novel roles are emerging continuously. In the present study, the possible involvement of strigolactones in plant defence responses was investigated. For this purpose, the resistance/susceptibility of the strigolactone-deficient tomato mutant Slccd8 against the foliar fungal pathogens Botrytis cinerea and Alternaria alternata was assessed. Slccd8 was more susceptible to both pathogens, pointing to a new role for strigolactones in plant defence. A reduction in the content of the defence-related hormones jasmonic acid, salicylic acid and abscisic acid was detected by high-performance liquid chromatography coupled to tandem mass spectrometry in the Slccd8 mutant, suggesting that hormone homeostasis is altered in the mutant. Moreover, the expression level of the jasmonate-dependent gene PinII, involved in the resistance of tomato to B. cinerea, was lower than in the corresponding wild-type. We propose here that strigolactones play a role in the regulation of plant defences through their interaction with other defence-related hormones, especially with the jasmonic acid signalling pathway. PMID:24112811

  1. Root-selective expression of "AtCAX4" and "AtCAX2" results in reduced lamina cadmium in field-grown "Nicotiana tabacum L"

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To assess the impact of enhanced root vacuole cadmium (Cd) sequestration on leaf Cd accumulation under a low Cd dose, as generally occurs in agriculture, leaf Cd accumulation was examined in field-grown tobacco plants expressing genes encoding the high-capacity-Cd, tonoplast-localized, divalent cati...

  2. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.).

    PubMed

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-01-01

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses. PMID:27435661

  3. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression.

    PubMed

    Moreno, J C; Cerda, A; Simpson, K; Lopez-Diaz, I; Carrera, E; Handford, M; Stange, C

    2016-04-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  4. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses

    PubMed Central

    Mellidou, Ifigeneia; Moschou, Panagiotis N.; Ioannidis, Nikolaos E.; Pankou, Chryssa; Gėmes, Katalin; Valassakis, Chryssanthi; Andronis, Efthimios A.; Beris, Despoina; Haralampidis, Kosmas; Roussis, Andreas; Karamanoli, Aikaterini; Matsi, Theodora; Kotzabasis, Kiriakos; Constantinidou, Helen-Isis; Roubelakis-Angelakis, Kalliopi A.

    2016-01-01

    Polyamines (PAs) are nitrogenous molecules that are indispensable for cell viability and with an agreed-on role in the modulation of stress responses. Tobacco plants with downregulated SAMDC (AS-SAMDC) exhibit reduced PAs synthesis but normal levels of PA catabolism. We used AS-SAMDC to increase our understanding on the role of PAs in stress responses. Surprisingly, at control conditions AS-SAMDC plants showed increased biomass and altered developmental characteristics, such as increased height and leaf number. On the contrary, during salt stress AS-SAMDC plants showed reduced vigor when compared to the WT. During salt stress, the AS-SAMDC plants although showing compensatory readjustments of the antioxidant machinery and of photosynthetic apparatus, they failed to sustain their vigor. AS-SAMDC sensitivity was accompanied by inability to effectively control H2O2 levels and concentrations of monovalent and divalent cations. In accordance with these findings, we suggest that PAs may regulate the trade-off between growth and tolerance responses. PMID:27064210

  5. CDPK1 from Ginger Promotes Salinity and Drought Stress Tolerance without Yield Penalty by Improving Growth and Photosynthesis in Nicotiana tabacum

    PubMed Central

    Vivek, Padmanabhan Jayanthi; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2013-01-01

    In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) – PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the response to salinity and drought stress in ginger and it is likely operating in a DRE/CRT independent manner. PMID:24194837

  6. Increased Nicotiana tabacum fitness through positive regulation of carotenoid, gibberellin and chlorophyll pathways promoted by Daucus carota lycopene β-cyclase (Dclcyb1) expression

    PubMed Central

    Moreno, J.C.; Cerda, A.; Simpson, K.; Lopez-Diaz, I.; Carrera, E; Handford, M.; Stange, C.

    2016-01-01

    Carotenoids, chlorophylls and gibberellins are derived from the common precursor geranylgeranyl diphosphate (GGPP). One of the enzymes in carotenoid biosynthesis is lycopene β-cyclase (LCYB) that catalyzes the conversion of lycopene into β-carotene. In carrot, Dclcyb1 is essential for carotenoid synthesis in the whole plant. Here we show that when expressed in tobacco, increments in total carotenoids, β-carotene and chlorophyll levels occur. Furthermore, photosynthetic efficiency is enhanced in transgenic lines. Interestingly, and contrary to previous observations where overexpression of a carotenogenic gene resulted in the inhibition of the synthesis of gibberellins, we found raised levels of active GA4 and the concommitant increases in plant height, leaf size and whole plant biomass, as well as an early flowering phenotype. Moreover, a significant increase in the expression of the key carotenogenic genes, Ntpsy1, Ntpsy2 and Ntlcyb, as well as those involved in the synthesis of chlorophyll (Ntchl), gibberellin (Ntga20ox, Ntcps and Ntks) and isoprenoid precursors (Ntdxs2 and Ntggpps) was observed. These results indicate that the expression of Dclcyb1 induces a positive feedback affecting the expression of isoprenoid gene precursors and genes involved in carotenoid, gibberellin and chlorophyll pathways leading to an enhancement in fitness measured as biomass, photosynthetic efficiency and carotenoid/chlorophyll composition. PMID:26893492

  7. Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sequestration mechanisms that prevent high concentrations of free metal ions from persisting in metabolically active compartments of cells are thought to be central in tolerance of plants to high levels of divalent cation metals. Expression of "AtCAX2" or "AtCAX4", which encode divalent cation/proto...

  8. Influence of electrical fields (AC and DC) on phytoremediation of metal polluted soils with rapeseed (Brassica napus) and tobacco (Nicotiana tabacum).

    PubMed

    Bi, Ran; Schlaak, Michael; Siefert, Eike; Lord, Richard; Connolly, Helen

    2011-04-01

    The combined use of electrokinetic remediation and phytoremediation to decontaminate soil polluted with heavy metals has been demonstrated in a laboratory-scale experiment. The plants species selected were rapeseed and tobacco. Three kinds of soil were used: un-contaminated soil from forest area (S1), artificially contaminated soil with 15mgkg(-1) Cd (S2) and multi-contaminated soil with Cd, Zn and Pb from an industrial area (S3). Three treatment conditions were applied to the plants growing in the experimental vessels: control (no electrical field), alternating current electrical field (AC, 1Vcm(-1)) and direct current electrical field (DC, 1Vcm(-1)) with switching polarity every 3h. The electrical fields were applied for 30d for rapeseed and 90d for tobacco, each experiment had three replicates. After a total of 90d growth for rapeseed and of 180d for tobacco, the plants were harvested. The pH variation from anode to cathode was eliminated by switching the polarity of the DC field. The plants reacted differently under the applied electrical field. Rapeseed biomass was enhanced under the AC field and no negative effect was found under DC field. However, no enhancement of the tobacco biomass under the AC treatment was found. The DC field had a negative influence on biomass production on tobacco plants. In general, Cd content was higher in both species growing in S2 treated with AC field compared to the control. Metal uptake (Cd, Cu, Zn and Pb) per rapeseed plant shoot was enhanced by the application of AC field in all soils. PMID:21237480

  9. Alternation of light/dark period priming enhances clomazone tolerance by increasing the levels of ascorbate and phenolic compounds and ROS detoxification in tobacco (Nicotiana tabacum L.) plantlets.

    PubMed

    Darwish, Majd; Lopez-Lauri, Félicie; Vidal, Véronique; El Maâtaoui, Mohamed; Sallanon, Huguette

    2015-07-01

    The effect of the alternation of light/dark periods (AL) (16/8 min light/dark cycles and a photosynthetic photon flux density (PPFD) of 50 μmol photons m(-2) s(-1) for three days) to clarify the mechanisms involved in the clomazone tolerance of tobacco plantlets primed with AL was studied. Clomazone decreased PSII activity, the net photosynthetic rate (Pn), and the ascorbate and total polyphenol contents and increased H2O2 and starch grain accumulation and the number of the cells that underwent programmed cell death (PCD). The pretreatment with AL reduced the inhibitory effect of clomazone on the PSII activity and photosynthesis, as indicated by the decreases in the H2O2 and starch grain accumulation and the PCD levels, and increased the content of ascorbate and certain phenolic compounds, such as chlorogenic acid, neochlorogenic acid and rutin. The AL treatment could promote photorespiration via post-illumination burst (PIB) effects. This alternative photorespiratory electron pathway may reduce H2O2 generation via the consumption of photochemical energy, such as NADH+H(+). At 10 days (D10) of AL treatment, this process induced moderate stress which stimulates H2O2 detoxification systems by increasing the activity of antioxidant enzymes and the biosynthesis of antioxidant components. Therefore, the PCD levels provoked by clomazone were noticeably decreased. PMID:25863439

  10. Promiscuous, non-catalytic, tandem carbohydrate-binding modules modulate the cell-wall structure and development of transgenic tobacco (Nicotiana tabacum) plants

    PubMed Central

    Obembe, Olawole O.; Jacobsen, Evert; Timmers, Jaap; Gilbert, Harry; Blake, Anthony W.; Knox, J. Paul; Visser, Richard G. F.

    2007-01-01

    We have compared heterologous expression of two types of carbohydrate binding module (CBM) in tobacco cell walls. These are the promiscuous CBM29 modules (a tandem CBM29-1-2 and its single derivative CBM29-2), derived from a non-catalytic protein1, NCP1, of the Piromyces equi cellulase/hemicellulase complex, and the less promiscuous tandem CBM2b-1-2 from the Cellulomonas fimi xylanase 11A. CBM-labelling studies revealed that CBM29-1-2 binds indiscriminately to every tissue of the wild-type tobacco stem whereas binding of CBM2b-1-2 was restricted to vascular tissue. The promiscuous CBM29-1-2 had much more pronounced effects on transgenic tobacco plants than the less promiscuous CBM2b-1-2. Reduced stem elongation and prolonged juvenility, resulting in delayed flower development, were observed in transformants expressing CBM29-1-2 whereas such growth phenotypes were not observed for CBM2b-1-2 plants. Histological examination and electron microscopy revealed layers of collapsed cortical cells in the stems of CBM29-1-2 plants whereas cellular deformation in the stem cortical cells of CBM2b-1-2 transformants was less severe. Altered cell expansion was also observed in most parts of the CBM29-1-2 stem whereas for the CBM2b-1-2 stem this was observed in the xylem cells only. The cellulose content of the transgenic plants was not altered. These results support the hypothesis that CBMs can modify cell wall structure leading to modulation of wall loosening and plant growth. PMID:17622484

  11. CDPK1 from ginger promotes salinity and drought stress tolerance without yield penalty by improving growth and photosynthesis in Nicotiana tabacum.

    PubMed

    Vivek, Padmanabhan Jayanthi; Tuteja, Narendra; Soniya, Eppurathu Vasudevan

    2013-01-01

    In plants, transient changes in calcium concentrations of cytosol have been observed during stress conditions like high salt, drought, extreme temperature and mechanical disturbances. Calcium-dependent protein kinases (CDPKs) play important roles in relaying these calcium signatures into downstream effects. In this study, a stress-responsive CDPK gene, ZoCDPK1 was isolated from a stress cDNA generated from ginger using rapid amplification of cDNA ends (RLM-RACE) - PCR technique and characterized its role in stress tolerance. An important aspect seen during the analysis of the deduced protein is a rare coupling between the presence of a nuclear localization sequence in the junction domain and consensus sequence in the EF-hand loops of calmodulin-like domain. ZoCDPK1 is abundantly expressed in rhizome and is rapidly induced by high-salt stress, drought, and jasmonic acid treatment but not by low temperature stress or abscissic acid treatment. The sub-cellular localization of ZoCDPK1-GFP fusion protein was studied in transgenic tobacco epidermal cells using confocal laser scanning microscopy. Over-expression of ginger CDPK1 gene in tobacco conferred tolerance to salinity and drought stress as reflected by the high percentage of seed germination, higher relative water content, expression of stress responsive genes, higher leaf chlorophyll content, increased photosynthetic efficiency and other photosynthetic parameters. In addition, transgenic tobacco subjected to salinity/drought stress exhibited 50% more growth during stress conditions as compared to wild type plant during normal conditions. T3 transgenic plants are able to grow to maturity, flowers early and set viable seeds under continuous salinity or drought stress without yield penalty. The ZoCDPK1 up-regulated the expression levels of stress-related genes RD21A and ERD1 in tobacco plants. These results suggest that ZoCDPK1 functions in the positive regulation of the signaling pathways that are involved in the response to salinity and drought stress in ginger and it is likely operating in a DRE/CRT independent manner. PMID:24194837

  12. Silencing S-Adenosyl-L-Methionine Decarboxylase (SAMDC) in Nicotiana tabacum Points at a Polyamine-Dependent Trade-Off between Growth and Tolerance Responses.

    PubMed

    Mellidou, Ifigeneia; Moschou, Panagiotis N; Ioannidis, Nikolaos E; Pankou, Chryssa; Gėmes, Katalin; Valassakis, Chryssanthi; Andronis, Efthimios A; Beris, Despoina; Haralampidis, Kosmas; Roussis, Andreas; Karamanoli, Aikaterini; Matsi, Theodora; Kotzabasis, Kiriakos; Constantinidou, Helen-Isis; Roubelakis-Angelakis, Kalliopi A

    2016-01-01

    Polyamines (PAs) are nitrogenous molecules that are indispensable for cell viability and with an agreed-on role in the modulation of stress responses. Tobacco plants with downregulated SAMDC (AS-SAMDC) exhibit reduced PAs synthesis but normal levels of PA catabolism. We used AS-SAMDC to increase our understanding on the role of PAs in stress responses. Surprisingly, at control conditions AS-SAMDC plants showed increased biomass and altered developmental characteristics, such as increased height and leaf number. On the contrary, during salt stress AS-SAMDC plants showed reduced vigor when compared to the WT. During salt stress, the AS-SAMDC plants although showing compensatory readjustments of the antioxidant machinery and of photosynthetic apparatus, they failed to sustain their vigor. AS-SAMDC sensitivity was accompanied by inability to effectively control H2O2 levels and concentrations of monovalent and divalent cations. In accordance with these findings, we suggest that PAs may regulate the trade-off between growth and tolerance responses. PMID:27064210

  13. RNA interference of the nicotine demethylase gene CYP82E4v1 reduces nornicotine content and enhances Myzus persicae resistance in Nicotiana tabacum L.

    PubMed

    Zhao, Dan; Qin, Li-Jun; Zhao, De-Gang

    2016-10-01

    The CYP82E4v1 gene was identified to encode nicotine demethylase, which catalyzed the conversion of nicotine to nornicotine. In this study, we constructed CYP82E4v1-RNAi vector and genetically transformed tobacco variety K326. The determination results of nicotine and nornicotine content via HPLC demonstrated that there was significant increase of nicotine content and reduction of nornicotine content in transgenic plants compared with those in wild-type plants. Exogenous application of IAA or GA3 could reduce the nicotine content in tobaccos, while ABA or 6-BA could increase the content of nicotine. And the more significant difference of nicotine content change in transgenic plants. Aphid-inoculation experiment demonstrated the number of aphid population in transgenic plants was significantly lower than wild-type plants at 12 d after aphid-inoculation. Meanwhile, the activity of AOEs and PAL in transgenic and wild-type tobacco plants after aphid-inoculation was measured. At 3 d after aphid-inoculation, both AOEs and PAL activity were significantly higher than controls, including wild-type plants with aphid-inoculation and transgenic plants with mock-inoculation. Also, the relative expression of these genes involved in salicylic acid/jasmonic acid (SA/JA) signaling pathways was analyzed at different stages after aphid-inoculation and the results demonstrated that there was significantly higher expression of JA-induced LOX gene in both transgenic and wild-type plants inoculated by aphid than the non-inoculated ones while no significant difference in the expression of SA-induced PR-1a gene among them was found, which indicated the JA-mediated resistance response was activated during aphid infestation. Moreover, although the expression level of BGL (another JA-induced gene) was less significant between the two inoculated tobaccos, it was significantly higher than the plant without inoculation, which was 1.4 and 2.2 folds higher than the non-inoculated controls respectively. To sum up, the improvement of aphid-resistance in transgenic tobaccos was based on nicotine accumulation which might cause nerve and antifeed toxicity and JA-mediated resistance response by enhancing the activities of AOEs and PAL. PMID:27314515

  14. Ethylene Response Factor TERF1, Regulated by ETHYLENE-INSENSITIVE3-like Factors, Functions in Reactive Oxygen Species (ROS) Scavenging in Tobacco (Nicotiana tabacum L.)

    PubMed Central

    Zhang, Hongbo; Li, Ang; Zhang, Zhijin; Huang, Zejun; Lu, Pingli; Zhang, Dingyu; Liu, Xinmin; Zhang, Zhong-Feng; Huang, Rongfeng

    2016-01-01

    The phytohormone ethylene plays a crucial role in the production and accumulation of reactive oxygen species (ROS) in plants under stress conditions. Ethylene response factors (ERFs) are important ethylene-signaling regulators functioning in plant defense responses against biotic and abiotic stresses. However, the roles of ERFs during plant adapting to ROS stress have not yet been well documented. Our studies previously reported that a tomato ERF transcription factor TERF1 functions in the regulation of plant ethylene responses and stress tolerance. Here, we report our findings regarding the roles of TERF1 in ROS scavenging. In this study, we revealed that the transcription of TERF1 is regulated by upstream EIN3-like (EIN3, ethylene-insensitive 3) regulators LeEIL3 and LeEIL4 in tomato (Solanum lycopersicum), and is also inducible by exogenous applied ROS-generating reagents. Ectopic expression of TERF1 in tobacco promoted the expression of genes involved in oxidative stress responses, including carbonic anhydrase functioning in hypersensitive defense, catalase and glutathione peroxidase catalyzing oxidative reactions, and GDP-D-mannose pyrophosphorylase functioning in ascorbic acid biosynthesis, reduced the ROS content induced by ethylene treatment, and enhanced stress tolerance of tobacco seedlings to hydrogen peroxide (H2O2). Cumulatively, these findings suggest that TERF1 is an ethylene inducible factor regulating ROS scavenging during stress responses. PMID:27435661

  15. Pepper aldehyde dehydrogenase CaALDH1 interacts with Xanthomonas effector AvrBsT and promotes effector-triggered cell death and defence responses.

    PubMed

    Kim, Nak Hyun; Hwang, Byung Kook

    2015-06-01

    Xanthomonas type III effector AvrBsT induces hypersensitive cell death and defence responses in pepper (Capsicum annuum) and Nicotiana benthamiana. Little is known about the host factors that interact with AvrBsT. Here, we identified pepper aldehyde dehydrogenase 1 (CaALDH1) as an AvrBsT-interacting protein. Bimolecular fluorescence complementation and co-immunoprecipitation assays confirmed the interaction between CaALDH1 and AvrBsT in planta. CaALDH1:smGFP fluorescence was detected in the cytoplasm. CaALDH1 expression in pepper was rapidly and strongly induced by avirulent Xanthomonas campestris pv. vesicatoria (Xcv) Ds1 (avrBsT) infection. Transient co-expression of CaALDH1 with avrBsT significantly enhanced avrBsT-triggered cell death in N. benthamiana leaves. Aldehyde dehydrogenase activity was higher in leaves transiently expressing CaALDH1, suggesting that CaALDH1 acts as a cell death enhancer, independently of AvrBsT. CaALDH1 silencing disrupted phenolic compound accumulation, H2O2 production, defence response gene expression, and cell death during avirulent Xcv Ds1 (avrBsT) infection. Transgenic Arabidopsis thaliana overexpressing CaALDH1 exhibited enhanced defence response to Pseudomonas syringae pv. tomato and Hyaloperonospora arabidopsidis infection. These results indicate that cytoplasmic CaALDH1 interacts with AvrBsT and promotes plant cell death and defence responses. PMID:25873668

  16. Malaysian Defence and E-Learning

    ERIC Educational Resources Information Center

    Juhary, Jowati binti

    2005-01-01

    This paper begins with an analysis of the changing security scenario in the Asian region, with special focus on Malaysian defence strategies and foreign policies. Beginning in the mid 1990s, the Malaysian government shifted its attention away from the counter insurgency strategies of the early decades of independence to focus on wider questions of…

  17. The Man-in-the-Middle Defence

    NASA Astrophysics Data System (ADS)

    Anderson, Ross

    The man-in-the-middle defence is all about rehabilitating Charlie. For 20 years we’ve worried about this guy in the middle, Charlie, who’s forever intercalating himself into the communications between Alice and Bob, and people have been very judgemental about poor Charlie, saying that Charlie is a wicked person. Well, we’re not entirely convinced.

  18. In Defence of the Classroom Science Demonstration

    ERIC Educational Resources Information Center

    McCrory, Paul

    2013-01-01

    Science demonstrations are often criticised for their passive nature, their gratuitous exploitation and their limited ability to develop scientific knowledge and understanding. This article is intended to present a robust defence of the use of demonstrations in the classroom by identifying some of their unique and powerful benefits--practical,…

  19. Host defence mediates interspecific competition in ectoparasites.

    PubMed

    Bush, Sarah E; Malenke, Jael R

    2008-05-01

    1. Interspecific competition influences which, how many and where species coexist in biological communities. Interactions between species in different trophic levels can mediate interspecific competition; e.g. predators are known to reduce competition between prey species by suppressing their population sizes. A parallel phenomenon may take place in host-parasite systems, with host defence mediating competition between parasite species. 2. We experimentally investigated the impact of host defence (preening) on competitive interactions between two species of feather-feeding lice: 'wing' lice Columbicola columbae and 'body' lice Campanulotes compar. Both species are host-specific parasites that co-occur on rock pigeons Columba livia. 3. We show that wing lice and body lice compete and that host defence mediates the magnitude of this competitive interaction. 4. Competition is asymmetrical; wing louse populations are negatively impacted by body lice, but not vice versa. This competitive asymmetry is consistent with the fact that body lice predominate in microhabitats on the host's body that offer the most food and the most space. 5. Our results indicate that host-defence-mediated competition can influence the structure of parasite communities and may play a part in the evolution of parasite diversity. PMID:18194262

  20. Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds

    PubMed Central

    Radhika, Venkatesan; Kost, Christian; Bartram, Stefan; Heil, Martin

    2008-01-01

    Many plants respond to herbivory with an increased production of extrafloral nectar (EFN) and/or volatile organic compounds (VOCs) to attract predatory arthropods as an indirect defensive strategy. In this study, we tested whether these two indirect defences fit the optimal defence hypothesis (ODH), which predicts the within-plant allocation of anti-herbivore defences according to trade-offs between growth and defence. Using jasmonic acid-induced plants of Phaseolus lunatus and Ricinus communis, we tested whether the within-plant distribution pattern of these two indirect defences reflects the fitness value of the respective plant parts. Furthermore, we quantified photosynthetic rates and followed the within-plant transport of assimilates with 13C labelling experiments. EFN secretion and VOC emission were highest in younger leaves. Moreover, the photosynthetic rate increased with leaf age, and pulse-labelling experiments suggested transport of carbon to younger leaves. Our results demonstrate that the ODH can explain the within-plant allocation pattern of both indirect defences studied. PMID:18493790

  1. Heterologous expression of moss light-harvesting complex stress-related 1 (LHCSR1), the chlorophyll a-xanthophyll pigment-protein complex catalyzing non-photochemical quenching, in Nicotiana sp.

    PubMed

    Pinnola, Alberta; Ghin, Leonardo; Gecchele, Elisa; Merlin, Matilde; Alboresi, Alessandro; Avesani, Linda; Pezzotti, Mario; Capaldi, Stefano; Cazzaniga, Stefano; Bassi, Roberto

    2015-10-01

    Oxygenic photosynthetic organisms evolved mechanisms for thermal dissipation of energy absorbed in excess to prevent formation of reactive oxygen species. The major and fastest component, called non-photochemical quenching, occurs within the photosystem II antenna system by the action of two essential light-harvesting complex (LHC)-like proteins, photosystem II subunit S (PSBS) in plants and light-harvesting complex stress-related (LHCSR) in green algae and diatoms. In the evolutionary intermediate Physcomitrella patens, a moss, both gene products are active. These proteins, which are present in low amounts, are difficult to purify, preventing structural and functional analysis. Here, we report on the overexpression of the LHCSR1 protein from P. patens in the heterologous systems Nicotiana benthamiana and Nicotiana tabacum using transient and stable nuclear transformation. We show that the protein accumulated in both heterologous systems is in its mature form, localizes in the chloroplast thylakoid membranes, and is correctly folded with chlorophyll a and xanthophylls but without chlorophyll b, an essential chromophore for plants and algal LHC proteins. Finally, we show that recombinant LHCSR1 is active in quenching in vivo, implying that the recombinant protein obtained is a good material for future structural and functional studies. PMID:26260788

  2. Rusi/Brassey's defence yearbook 1987 97th edition

    SciTech Connect

    Not Available

    1987-01-01

    This annual review of defence and strategic affairs provides an up-to-date survey of international strategic affairs, contemporary weapons and developments and future trends. For all those involved in defence studies, university and public libraries and the general public. Contents: The Year Ahead; The Middle East; NATO; The Soviet Union and Eastern Europe; UK defence policy; The Issues: What is SDI.; Will SDI help. A military view; SDI-the industrial implications; Conventional defence, a military view; An alternative view; European armaments cooperation; Terrorism; Sri Lanka: the Tamils; Israel 1986; The Iran/Iraq war; Arab view; South Africa; Chronology of conflict; Defence literature; Arms control; Nuclear weapons; Characteristics.

  3. Plant surface reactions: an opportunistic ozone defence mechanism impacting atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Jud, W.; Fischer, L.; Canaval, E.; Wohlfahrt, G.; Tissier, A.; Hansel, A.

    2016-01-01

    Elevated tropospheric ozone concentrations are considered a toxic threat to plants, responsible for global crop losses with associated economic costs of several billion dollars per year. Plant injuries have been linked to the uptake of ozone through stomatal pores and oxidative damage of the internal leaf tissue. But a striking question remains: can surface reactions limit the stomatal uptake of ozone and therefore reduce its detrimental effects to plants?In this laboratory study we could show that semi-volatile organic compounds exuded by the glandular trichomes of different Nicotiana tabacum varieties are an efficient ozone sink at the plant surface. In our experiments, different diterpenoid compounds were responsible for a strongly variety-dependent ozone uptake of plants under dark conditions, when stomatal pores are almost closed. Surface reactions of ozone were accompanied by a prompt release of oxygenated volatile organic compounds, which could be linked to the corresponding precursor compounds: ozonolysis cis-abienol (C20H34O) - a diterpenoid with two exocyclic double bonds - caused emissions of formaldehyde (HCHO) and methyl vinyl ketone (C4H6O). The ring-structured cembratrien-diols (C20H34O2) with three endocyclic double bonds need at least two ozonolysis steps to form volatile carbonyls such as 4-oxopentanal (C5H8O2), which we could observe in the gas phase, too.Fluid dynamic calculations were used to model ozone distribution in the diffusion-limited leaf boundary layer under daylight conditions. In the case of an ozone-reactive leaf surface, ozone gradients in the vicinity of stomatal pores are changed in such a way that the ozone flux through the open stomata is strongly reduced.Our results show that unsaturated semi-volatile compounds at the plant surface should be considered as a source of oxygenated volatile organic compounds, impacting gas phase chemistry, as well as efficient ozone sink improving the ozone tolerance of plants.

  4. MADS1, a novel MADS-box protein, is involved in the response of Nicotiana benthamiana to bacterial harpin(Xoo).

    PubMed

    Zhang, Huajian; Teng, Wenjun; Liang, Jingang; Liu, Xinyu; Zhang, Haifeng; Zhang, Zhengguang; Zheng, Xiaobo

    2016-01-01

    MADS-box transcription factor genes are well known for their role in floral organ and seed development. In this study, a novel MADS-box-containing gene, designated NbMADS1, was isolated from leaves of Nicotiana benthamiana. The full-length cDNA was 666 bp and encoded a putative polypeptide of 221 aa with a mass of 24.3 kDa. To assess the role of NbMADS1 in the defence response to bacterial harpin(Xoo), an elicitor of the hypersensitive response, a loss-of-function experiment was performed in N. benthamiana plants using virus-induced gene silencing. Analyses of electrolyte leakage revealed more extensive cell death in the control plants than in NbMADS1-silenced plants. The NbMADS1-silenced plants showed impaired harpin(Xoo)-induced stomatal closure, decreased harpin(Xoo)-induced production of hydrogen peroxide (H2O2) and nitric oxide (NO) in guard cells, and reduced harpin(Xoo)-induced resistance to Phytophthora nicotianae. The compromised stomatal closure observed in the NbMADS1-silenced plants was inhibited by the application of H2O2 and sodium nitroprusside (an NO donor). Taken together, these results demonstrate that the NbMADS1-H2O2-NO pathway mediates multiple harpin(Xoo)-triggered responses, including stomatal closure, hypersensitive cell death, and defence-related gene expression, suggesting that NbMADS1 plays an important role in regulating the response to harpin(Xoo) in N. benthamiana plants. PMID:26466663

  5. Immune defence under extreme ambient temperature

    PubMed Central

    Seppälä, Otto; Jokela, Jukka

    2011-01-01

    Owing to global climate change, the extreme weather conditions are predicted to become more frequent, which is suggested to have an even greater impact on ecological interactions than the gradual increase in average temperatures. Here, we examined whether exposure to high ambient temperature affects immune function of the great pond snail (Lymnaea stagnalis). We quantified the levels of several immune traits from snails maintained in a non-stressful temperature (15°C) and in an extreme temperature (30°C) that occurs in small ponds during hot summers. We found that snails exposed to high temperature had weaker immune defence, which potentially predisposes them to infections. However, while phenoloxidase and antibacterial activity of snail haemolymph were reduced at high temperature, haemocyte concentration was not affected. This suggests that the effect of high temperature on snail susceptibility to infections may vary across different pathogens because different components of invertebrate immune defence have different roles in resistance. PMID:20610417

  6. The Man-in-the-Middle Defence

    NASA Astrophysics Data System (ADS)

    Anderson, Ross; Bond, Mike

    Eliminating middlemen from security protocols helps less than one would think. EMV electronic payments, for example, can be made fairer by adding an electronic attorney - a middleman which mediates access to a customer’s card. We compare middlemen in crypto protocols and APIs with those in the real world, and show that a man-in-the-middle defence is helpful in many circumstances. We suggest that the middleman has been unfairly demonised.

  7. Reproduction of Globodera tabacum solanacearum in Seven Flue-Cured Tobacco-Producing Soils

    PubMed Central

    Rideout, S. L.; JOHNSON, C. S.; Eisenback, J. D.; Reed, T. D.

    2000-01-01

    The tobacco cyst nematode (Globodera tabacum solanacearum) continues to pose a serious threat to flue-cured tobacco production in Virginia and nearby states. Soils were sampled from five uninfested and two infested flue-cured tobacco-producing locations. Twenty-three edaphic factors were characterized to determine if any were correlated with G. t. solanacearum reproduction. Comparisons were also made between pasteurized and natural soils to determine if biological suppression of G. t. solanacearum reproduction might be occurring in currently uninfested areas. Differences in G. t. solanacearum reproduction were noted among the soils, but results were inconsistent across the three trials conducted in this study. Only soil pH correlated significantly with nematode reproduction, and then only in one of three trials. Globodera tabacum solanacearum reproduced with similar efficiency in natural and pasteurized soils. PMID:19270999

  8. Intraspecific Variability within Globodera tabacum solanacearum Using Random Amplified Polymorphic DNA

    PubMed Central

    Syracuse, A. J.; Johnson, C. S.; Eisenback, J. D.; Nessler, C. L.; Smith, E. P.

    2004-01-01

    Random amplified polymorphic DNA (RAPDs) were used to investigate the intraspecific variability among 19 geographic isolates of Globodera tabacum solanacearum from eight counties in Virginia and one county in North Carolina. Globodera tabacum tabacum, G. t. virginiae, and the Mexican cyst nematode (MCN) were included as outgroups. Six primers were used and 119 amplification products were observed. Each primer yielded reproducible differences in fragment patterns that differentiated the isolates and species. Hierarchical cluster analysis was performed to illustrate the relatedness among isolates and species. The average Jaccard's similarity index among isolates of G. t. solanacearum was 74%, possibly representing greater variation than that reported in the literature across different pathotypes of the potato cyst nematode, Globodera pallida, in studies where RAPD were also employed. The RAPD markers described here may be useful for the development of specific primers or probes that could improve the identification of TCN populations. Such improvements in the characterization of TCN genotypes would facilitate the effective deployment of existing and future resistant cultivars to control these economically important pests. PMID:19262823

  9. Overexpression of the synthetic chimeric native-T-phylloplanin-GFP genes optimized for monocot and dicot plants renders enhanced resistance to blue mold disease in tobacco (N. tabacum L.).

    PubMed

    Sahoo, Dipak K; Raha, Sumita; Hall, James T; Maiti, Indu B

    2014-01-01

    To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP) was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco. PMID:24778589

  10. Overexpression of the Synthetic Chimeric Native-T-phylloplanin-GFP Genes Optimized for Monocot and Dicot Plants Renders Enhanced Resistance to Blue Mold Disease in Tobacco (N. tabacum L.)

    PubMed Central

    Sahoo, Dipak K.; Hall, James T.; Maiti, Indu B.

    2014-01-01

    To enhance the natural plant resistance and to evaluate the antimicrobial properties of phylloplanin against blue mold, we have expressed a synthetic chimeric native-phylloplanin-GFP protein fusion in transgenic Nicotiana tabacum cv. KY14, a cultivar that is highly susceptible to infection by Peronospora tabacina. The coding sequence of the tobacco phylloplanin gene along with its native signal peptide was fused with GFP at the carboxy terminus. The synthetic chimeric gene (native-phylloplanin-GFP) was placed between the modified Mirabilis mosaic virus full-length transcript promoter with duplicated enhancer domains and the terminator sequence from the rbcSE9 gene. The chimeric gene, expressed in transgenic tobacco, was stably inherited in successive plant generations as shown by molecular characterization, GFP quantification, and confocal fluorescent microscopy. Transgenic plants were morphologically similar to wild-type plants and showed no deleterious effects due to transgene expression. Blue mold-sensitivity assays of tobacco lines were performed by applying P. tabacina sporangia to the upper leaf surface. Transgenic lines expressing the fused synthetic native-phyllopanin-GFP gene in the leaf apoplast showed resistance to infection. Our results demonstrate that in vivo expression of a synthetic fused native-phylloplanin-GFP gene in plants can potentially achieve natural protection against microbial plant pathogens, including P. tabacina in tobacco. PMID:24778589

  11. Analysis of the antioxidant response of Nicotiana benthamiana to infection with two strains of Pepper mild mottle virus

    PubMed Central

    Hakmaoui, A.; Pérez-Bueno, M. L.; Barón, M.

    2012-01-01

    The present study was carried out to investigate the role of reactive oxygen species (ROS) metabolism in symptom development and pathogenesis in Nicotiana benthamiana plants upon infection with two strains of Pepper mild mottle virus, the Italian (PMMoV-I) and the Spanish (PMMoV-S) strains. In this host, it has been shown that PMMoV-I is less virulent and plants show the capability to recover 21 d after inoculation. Analyses of oxidative stress biomarkers, ROS-scavenging enzyme activities, and antioxidant compounds were conducted in plants at different post-infection times. Only PMMoV-I stimulated a defence response through: (i) up-regulation of different superoxide dismutase isozymes; (ii) maintenance of adequate levels of three peroxiredoxins (2-Cys Prx, Prx IIC, and Prx IIF); and (iii) adjustments in the glutathione pool to maintain the total glutathione content. Moreover, there was an increase in the level of oxidized glutathione and ascorbate in the recovery phase of PMMoV-I-infected plants. The antioxidant response and the extent of oxidative stress in N. benthamiana plants correlates to: (i) the severity of the symptoms elicited by either strain of PMMoV; and (ii) the high capacity of PMMoV-I-infected plants for symptom recovery and delayed senescence, compared with PMMoV-S-infected plants. PMID:22915745

  12. Clostridium difficile colitis: pathogenesis and host defence.

    PubMed

    Abt, Michael C; McKenney, Peter T; Pamer, Eric G

    2016-10-01

    Clostridium difficile is a major cause of intestinal infection and diarrhoea in individuals following antibiotic treatment. Recent studies have begun to elucidate the mechanisms that induce spore formation and germination and have determined the roles of C. difficile toxins in disease pathogenesis. Exciting progress has also been made in defining the role of the microbiome, specific commensal bacterial species and host immunity in defence against infection with C. difficile. This Review will summarize the recent discoveries and developments in our understanding of C. difficile infection and pathogenesis. PMID:27573580

  13. Bacterial strategies to overcome insect defences.

    PubMed

    Vallet-Gely, Isabelle; Lemaitre, Bruno; Boccard, Frédéric

    2008-04-01

    Recent genetic and molecular analyses have revealed how several strategies enable bacteria to persist and overcome insect immune defences. Genetic and genomic tools that can be used with Drosophila melanogaster have enabled the characterization of the pathways that are used by insects to detect bacterial invaders and combat infection. Conservation of bacterial virulence factors and insect immune repertoires indicates that there are common strategies of host invasion and pathogen eradication. Long-term interactions of bacteria with insects might ensure efficient dissemination of pathogens to other hosts, including humans. PMID:18327270

  14. Iron homeostasis in host defence and inflammation

    PubMed Central

    Ganz, Tomas; Nemeth, Elizabeta

    2016-01-01

    Iron is an essential trace element for multicellular organisms and nearly all microorganisms. Although iron is abundant in the environment, common forms of iron are minimally soluble and therefore poorly accessible to biological organisms. Microorganisms entering a mammalian host face multiple mechanisms that further restrict their ability to obtain iron and thereby limit their pathogenicity. Iron levels also modulate host defence, as iron content in macrophages regulates their cytokine production. Here, we review recent advances that highlight the role of systemic and cellular iron-regulating mechanisms in protecting hosts from infection, emphasizing aspects that are applicable to human health and disease. PMID:26160612

  15. In Defence of Multimodal Re-Signification: A Response to Havard Skaar's "In Defence of Writing"

    ERIC Educational Resources Information Center

    Adami, Elisabetta

    2011-01-01

    Responding to "In defence of writing" by Havard Skaar, published in issue 43.1 of this journal (April 2009), the present article argues that (1) compared with text production "from scratch," producing texts through copy-and-paste requires a different type of--rather than less--semiotic work, and that (2) digitally produced writing may involve the…

  16. Genetic analysis of Phytophthora nicotianae populations from different hosts using microsatellite markers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two hundred thirty-one isolates of P. nicotianae representing 14 populations from different host genera, including agricultural crops (Citrus, Nicotiana, and Lycopersicon), potted ornamental species in nurseries (Lavandula, Convolvulus, Myrtus, Correa and Ruta) and other plant genera of lesser econo...

  17. Large-scale detection and application of expressed sequence tag single nucleotide polymorphisms in Nicotiana.

    PubMed

    Wang, Y; Zhou, D; Wang, S; Yang, L

    2015-01-01

    Single nucleotide polymorphisms (SNPs) are widespread in the Nicotiana genome. Using an alignment and variation detection method, we developed 20,607,973 SNPs, based on the expressed sequence tag sequences of 10 Nicotiana species. The replacement rate was much higher than the transversion rate in the SNPs, and SNPs widely exist in the Nicotiana. In vitro verification indicated that all of the SNPs were high quality and accurate. Evolutionary relationships between 15 varieties were investigated by polymerase chain reaction with a special primer; the specific 302 locus of these sequence results clearly indicated the origin of Zhongyan 100. A database of Nicotiana SNPs (NSNP) was developed to store and search for SNPs in Nicotiana. NSNP is a tool for researchers to develop SNP markers of sequence data. PMID:26214460

  18. Science and outreach for planetary defence

    NASA Astrophysics Data System (ADS)

    Stavinschi, M.

    2011-10-01

    The recent IAA Planetary Defence Conference held in Romania, focused on a hot topic: from Threat to Action. It is true that we ought to protect the planet but also educate the population in this direction. Increasing rumours about pseudo-scientific issues, such as the impact with asteroids, comets or debris of spatial missions, the effects of the growing solar activity, the displacement of the terrestrial rotation axis following major earthquakes, let alone spreading news about the end-of-the-world, show how crucial it is to prepare people to understand what is going on in the universe and, in particular, on our planet, and how to deal with inevitable events. Another central question is in order: who should be in charge of this education? Perhaps the journalists, but they lack the necessary preparation to present correct and updated information to the public. Or the scientists, but they are extremely busy and concentrated on their projects aimed at defending the planet and at answering the vast array of questions that their research stirs up. Our goal is to answer the following question: to what extent is it the scientist's responsibility and to what extent the journalist's to educate people for the planetary defence? In addition, we shall suggest how they can effectively co-ordinate efforts to solve the current problems of a society submerged in increasingly sophisticated but decreasingly informed technologies.

  19. Costs of Inducible Defence along a Resource Gradient

    PubMed Central

    Brönmark, Christer; Lakowitz, Thomas; Nilsson, P. Anders; Ahlgren, Johan; Lennartsdotter, Charlotte; Hollander, Johan

    2012-01-01

    In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness. PMID:22291961

  20. Costs of inducible defence along a resource gradient.

    PubMed

    Brönmark, Christer; Lakowitz, Thomas; Nilsson, P Anders; Ahlgren, Johan; Lennartsdotter, Charlotte; Hollander, Johan

    2012-01-01

    In addition to having constitutive defence traits, many organisms also respond to predation by phenotypic plasticity. In order for plasticity to be adaptive, induced defences should incur a benefit to the organism in, for example, decreased risk of predation. However, the production of defence traits may include costs in fitness components such as growth, time to reproduction, or fecundity. To test the hypothesis that the expression of phenotypic plasticity incurs costs, we performed a common garden experiment with a freshwater snail, Radix balthica, a species known to change morphology in the presence of molluscivorous fish. We measured a number of predator-induced morphological and behavioural defence traits in snails that we reared in the presence or absence of chemical cues from fish. Further, we quantified the costs of plasticity in fitness characters related to fecundity and growth. Since plastic responses may be inhibited under limited resource conditions, we reared snails in different densities and thereby levels of competition. Snails exposed to predator cues grew rounder and thicker shells, traits confirmed to be adaptive in environments with fish. Defence traits were consistently expressed independent of density, suggesting strong selection from predatory molluscivorous fish. However, the expression of defence traits resulted in reduced growth rate and fecundity, particularly with limited resources. Our results suggest full defence in predator related traits regardless of resource availability, and costs of defence consequently paid in traits related to fitness. PMID:22291961

  1. Computed Tomography Technology: Development and Applications for Defence

    NASA Astrophysics Data System (ADS)

    Baheti, G. L.; Saxena, Nisheet; Tripathi, D. K.; Songara, K. C.; Meghwal, L. R.; Meena, V. L.

    2008-09-01

    Computed Tomography(CT) has revolutionized the field of Non-Destructive Testing and Evaluation (NDT&E). Tomography for industrial applications warrants design and development of customized solutions catering to specific visualization requirements. Present paper highlights Tomography Technology Solutions implemented at Defence Laboratory, Jodhpur (DLJ). Details on the technological developments carried out and their utilization for various Defence applications has been covered.

  2. A saponin-detoxifying enzyme mediates suppression of plant defences

    NASA Astrophysics Data System (ADS)

    Bouarab, K.; Melton, R.; Peart, J.; Baulcombe, D.; Osbourn, A.

    2002-08-01

    Plant disease resistance can be conferred by constitutive features such as structural barriers or preformed antimicrobial secondary metabolites. Additional defence mechanisms are activated in response to pathogen attack and include localized cell death (the hypersensitive response). Pathogens use different strategies to counter constitutive and induced plant defences, including degradation of preformed antimicrobial compounds and the production of molecules that suppress induced plant defences. Here we present evidence for a two-component process in which a fungal pathogen subverts the preformed antimicrobial compounds of its host and uses them to interfere with induced defence responses. Antimicrobial saponins are first hydrolysed by a fungal saponin-detoxifying enzyme. The degradation product of this hydrolysis then suppresses induced defence responses by interfering with fundamental signal transduction processes leading to disease resistance.

  3. Ionomic profiling of Nicotiana langsdorffii wild-type and mutant genotypes exposed to abiotic stresses.

    PubMed

    Ardini, Francisco; Soggia, Francesco; Abelmoschi, Maria Luisa; Magi, Emanuele; Grotti, Marco

    2013-01-01

    To provide a new insight into the response of plants to abiotic stresses, the ionomic profiles of Nicotiana langsdorffii specimens have been determined before and after exposure to toxic metals (chromium) or drought conditions. The plants were genetically transformed with the rat glucocorticoid receptor (GR) or the gene for Agrobacterium rhizogenes rolC, because these modifications are known to produce an imbalance in phytohormone equilibria and a significant change in the defence response of the plant. Elemental profiles were obtained by developing and applying analytical procedures based on inductively coupled plasma atomic emission and mass spectrometry (ICP-AES/MS). In particular, the removal of isobaric interferences affecting the determination of Cr and V by ICP-MS was accomplished by use of a dynamic reaction cell, after optimization of the relevant conditions. The combined use of ICP atomic emission and mass spectrometry enabled the determination of 29 major and trace elements (Ba, Bi, Ca, Cd, Co, Cr, Cu, Eu, Fe, Ga, K, Li, Mg, Mn, Mo, Na, P, Pb, Pt, Rb, S, Sb, Sn, Sr, Te, V, W, Y, and Zn) in different parts of the plants (roots, stems, and leaves), with high accuracy and precision. Multivariate data processing and study of element distribution patterns provided new information about the ionomic response of the target organism to chemical treatment or water stress. Genetic modification mainly affected the distribution of Bi, Cr, Mo, Na, and S, indicating that these elements were involved in biochemical processes controlled by the GR or rolC genes. Chemical stress strongly affected accumulation of several elements (Ba, Ca, Fe, Ga, K, Li, Mn, Mo, Na, P, Pb, Rb, S, Sn, Te, V, and Zn) in different ways; for Ca, Fe, K, Mn, Na, and P the effect was quite similar to that observed in other studies after treatment with other transition elements, for example Cu and Cd. The effect of water deficit was less evident, mainly consisting in a decrease of Ba, Cr, Na, and Sr

  4. Acute respiratory failure due to Nicotiana glauca ingestion

    PubMed Central

    Ntelios, D; Kargakis, M; Topalis, T; Drouzas, A; Potolidis, E

    2013-01-01

    Background: A variety of organisms produce potent toxins that impact human health through compromising respiratory function. Case report: We describe a rare case of abrupt respiratory failure afterNicotiana glaucaingestion in a previously healthy sixty years old female patient. She presented complaining for gait instability and malaise after ingestion of cooked leaves of the wild plant and two hours after the onset she developed respiratory failurefor which she was intubated and mechanically ventilated for two days. The patient fully recovered and was discharged from the hospital. Conclusion: Anabasine, the plant’s main active ingredient, can cause severe systemic intoxication due to its nicotinic receptor agonist action with respiratory muscle paralysis being the main effect. PMID:24376330

  5. Specificity in Mesograzer-Induced Defences in Seagrasses.

    PubMed

    Martínez-Crego, Begoña; Arteaga, Pedro; Ueber, Alexandra; Engelen, Aschwin H; Santos, Rui; Molis, Markus

    2015-01-01

    Grazing-induced plant defences that reduce palatability to herbivores are widespread in terrestrial plants and seaweeds, but they have not yet been reported in seagrasses. We investigated the ability of two seagrass species to induce defences in response to direct grazing by three associated mesograzers. Specifically, we conducted feeding-assayed induction experiments to examine how mesograzer-specific grazing impact affects seagrass induction of defences within the context of the optimal defence theory. We found that the amphipod Gammarus insensibilis and the isopod Idotea chelipes exerted a low-intensity grazing on older blades of the seagrass Cymodocea nodosa, which reflects a weak grazing impact that may explain the lack of inducible defences. The isopod Synischia hectica exerted the strongest grazing impact on C. nodosa via high-intensity feeding on young blades with a higher fitness value. This isopod grazing induced defences in C. nodosa as indicated by a consistently lower consumption of blades previously grazed for 5, 12 and 16 days. The lower consumption was maintained when offered tissues with no plant structure (agar-reconstituted food), but showing a reduced size of the previous grazing effect. This indicates that structural traits act in combination with chemical traits to reduce seagrass palatability to the isopod. Increase in total phenolics but not in C:N ratio and total nitrogen of grazed C. nodosa suggests chemical defences rather than a modified nutritional quality as primarily induced chemical traits. We detected no induction of defences in Zostera noltei, which showed the ability to replace moderate losses of young biomass to mesograzers via compensatory growth. Our study provides the first experimental evidence of induction of defences against meso-herbivory that reduce further consumption in seagrasses. It also emphasizes the relevance of grazer identity in determining the level of grazing impact triggering resistance and compensatory

  6. Specificity in Mesograzer-Induced Defences in Seagrasses

    PubMed Central

    Martínez-Crego, Begoña; Arteaga, Pedro; Ueber, Alexandra; Engelen, Aschwin H.; Santos, Rui; Molis, Markus

    2015-01-01

    Grazing-induced plant defences that reduce palatability to herbivores are widespread in terrestrial plants and seaweeds, but they have not yet been reported in seagrasses. We investigated the ability of two seagrass species to induce defences in response to direct grazing by three associated mesograzers. Specifically, we conducted feeding-assayed induction experiments to examine how mesograzer-specific grazing impact affects seagrass induction of defences within the context of the optimal defence theory. We found that the amphipod Gammarus insensibilis and the isopod Idotea chelipes exerted a low-intensity grazing on older blades of the seagrass Cymodocea nodosa, which reflects a weak grazing impact that may explain the lack of inducible defences. The isopod Synischia hectica exerted the strongest grazing impact on C. nodosa via high-intensity feeding on young blades with a higher fitness value. This isopod grazing induced defences in C. nodosa as indicated by a consistently lower consumption of blades previously grazed for 5, 12 and 16 days. The lower consumption was maintained when offered tissues with no plant structure (agar-reconstituted food), but showing a reduced size of the previous grazing effect. This indicates that structural traits act in combination with chemical traits to reduce seagrass palatability to the isopod. Increase in total phenolics but not in C:N ratio and total nitrogen of grazed C. nodosa suggests chemical defences rather than a modified nutritional quality as primarily induced chemical traits. We detected no induction of defences in Zostera noltei, which showed the ability to replace moderate losses of young biomass to mesograzers via compensatory growth. Our study provides the first experimental evidence of induction of defences against meso-herbivory that reduce further consumption in seagrasses. It also emphasizes the relevance of grazer identity in determining the level of grazing impact triggering resistance and compensatory

  7. Cytokinin inhibition of senescence and its effect on Nicotiana-Pseudomonas interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Responses of cytokinin overproducing transgenic Nicotiana plants to infections with compatible and incompatible Pseudomonas syringae pathovars were compared. Plants used were transformed with the ipt (isopentenyl transferase) gene that catalyzes the synthesis of cytokinin. In cytokinin overproduci...

  8. Two modalities of manic defences: their function in adolescent breakdown.

    PubMed

    Bronstein, Catalina

    2010-06-01

    The aim of this paper is to explore two different modalities of manic defences and their specific underlying anxieties. I will describe the relation between these defences and the role of the superego and their specific function in adolescent breakdown. While one type of manic defence operates by the ego's identification with a sadistic superego the other one operates via evacuation of a guilt-inducing superego. I will illustrate the proposed ideas with clinical examples from the analysis of two adolescents. This paper stresses the specific differences between these two modalities and the clinical importance of both identifying and addressing the enactment in the transference of the unconscious phantasies and anxieties (paranoid and depressive) that give rise to these two types of defences. PMID:20590929

  9. Two mitogen-activated protein kinase kinases, MKK1 and MEK2, are involved in wounding- and specialist lepidopteran herbivore Manduca sexta-induced responses in Nicotiana attenuata

    PubMed Central

    Heinrich, Maria; Baldwin, Ian T.; Wu, Jianqiang

    2011-01-01

    In a wild tobacco plant, Nicotiana attenuata, two mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK), play central roles in modulating herbivory-induced phytohormone and anti-herbivore secondary metabolites. However, the identities of their upstream MAPK kinases (MAPKKs) were elusive. Ectopic overexpression studies in N. benthamiana and N. tabacum suggested that two MAPKKs, MKK1 and MEK2, may activate SIPK and WIPK. The homologues of MKK1 and MEK2 were cloned in N. attenuata (NaMKK1 and NaMEK2) and a virus-induced gene silencing approach was used to knock-down the transcript levels of these MAPKK genes. Plants silenced in NaMKK1 and NaMEK2 were treated with wounding or simulated herbivory by applying the oral secretions of the specialist herbivore Manduca sexta to wounds. MAPK activity assay indicated that after wounding or simulated herbivory NaMKK1 is not required for the phosphorylation of NaSIPK and NaWIPK; in contrast, NaMEK2 and other unknown MAPKKs are important for simulated herbivory-elicited activation of NaSIPK and NaWIPK, and after wounding NaMEK2 probably does not activate NaWIPK but plays a minor role in activating NaSIPK. Consistently, NaMEK2 and certain other MAPKKs, but not NaMKK1, are needed for wounding- and simulated herbivory-elicited accumulation of jasmonic acid (JA), JA–isoleucine, and ethylene. Furthermore, both NaMEK2 and NaMKK1 regulate the levels of trypsin proteinase inhibitors. The findings underscore the complexity of MAPK signalling pathways and highlight the importance of MAPKKs in regulating wounding- and herbivory-induced responses. PMID:21610019

  10. L-type lectin receptor kinases in Nicotiana benthamiana and tomato and their role in Phytophthora resistance

    PubMed Central

    Wang, Yan; Weide, Rob; Govers, Francine; Bouwmeester, Klaas

    2015-01-01

    Membrane-bound receptors play crucial roles as sentinels of plant immunity against a large variety of invading microbes. One class of receptors known to be involved in self/non-self-surveillance and plant resistance comprises the L-type lectin receptor kinases (LecRKs). Previously, we reported that several Arabidopsis LecRKs play a role in resistance to Phytophthora pathogens. In this study, we determined whether homologues of these LecRKs from the Solanaceous plants Nicotiana benthamiana and tomato (Solanum lycopersicum) play similar roles in defence against Phytophthora. In genome-wide screenings, a total of 38 (Nb)LecRKs were identified in N. benthamiana and 22 (Sl)LecRKs in tomato, each consisting of both a lectin and a kinase domain. Phylogenetic analysis revealed that, in contrast to Arabidopsis, which has a LecRK family comprising nine clades, Solanaceous species have just five of these nine clades (i.e. IV, VI, VII, VIII, and IX), plus four additional clades that lack Arabidopsis homologues. Several of the Solanaceous LecRKs were selected for functional analysis using virus-induced gene silencing. Infection assays with Phytophthora capsici and Phytophthora infestans on LecRK-silenced plants revealed that N. benthamiana and tomato homologues in clade IX play a role in Phytophthora resistance similar to the two Arabidopsis LecRKs in this clade, suggesting conserved functions of clade IX LecRKs across different plant families. This study provides a first insight into the diversity of Solanaceous LecRKs and their role in plant immunity, and shows the potential of LecRKs for Phytophthora resistance breeding. PMID:26248665

  11. Between-Population Outbreeding Affects Plant Defence

    PubMed Central

    Leimu, Roosa; Fischer, Markus

    2010-01-01

    Between-population crosses may replenish genetic variation of populations, but may also result in outbreeding depression. Apart from direct effects on plant fitness, these outbreeding effects can also alter plant-herbivore interactions by influencing plant tolerance and resistance to herbivory. We investigated effects of experimental within- and between-population outbreeding on herbivore resistance, tolerance and plant fitness using plants from 13 to 19 Lychnis flos-cuculi populations. We found no evidence for outbreeding depression in resistance reflected by the amount of leaf area consumed. However, herbivore performance was greater when fed on plants from between-population compared to within-population crosses. This can reflect outbreeding depression in resistance and/or outbreeding effects on plant quality for the herbivores. The effects of type of cross on the relationship between herbivore damage and plant fitness varied among populations. This demonstrates how between-population outbreeding effects on tolerance range from outbreeding depression to outbreeding benefits among plant populations. Finally, herbivore damage strengthened the observed outbreeding effects on plant fitness in several populations. These results raise novel considerations on the impact of outbreeding on the joint evolution of resistance and tolerance, and on the evolution of multiple defence strategies. PMID:20838662

  12. Salinity change impairs pipefish immune defence.

    PubMed

    Birrer, Simone C; Reusch, Thorsten B H; Roth, Olivia

    2012-12-01

    Global change is associated with fast and severe alterations of environmental conditions. Superimposed onto existing salinity variations in a semi-enclosed brackish water body such as the Baltic Sea, a decrease in salinity is predicted due to increased precipitation and freshwater inflow. Moreover, we predict that heavy precipitation events will accentuate salinity fluctuations near shore. Here, we investigated how the immune function of the broad-nosed pipefish (Syngnathus typhle), an ecologically important teleost with sex-role reversal, is influenced by experimentally altered salinities (control: 18 PSU, lowered: 6 PSU, increased: 30 PSU) upon infection with bacteria of the genus Vibrio. Salinity changes resulted in increased activity and proliferation of immune cells. However, upon Vibrio infection, individuals at low salinity were unable to mount specific immune response components, both in terms of monocyte and lymphocyte cell proliferation and immune gene expression compared to pipefish kept at ambient salinities. We interpret this as resource allocation trade-off, implying that resources needed for osmoregulation under salinity stress are lacking for subsequent activation of the immune defence upon infection. Our data suggest that composition of small coastal fish communities may change due to elevated environmental stress levels and the incorporated consequences thereof. PMID:22982326

  13. Middle Devonian liverwort herbivory and antiherbivore defence.

    PubMed

    Labandeira, Conrad C; Tremblay, Susan L; Bartowski, Kenneth E; VanAller Hernick, Linda

    2014-04-01

    To test the extent of herbivory in early terrestrial ecosystems, we examined compression-impression specimens of the late Middle Devonian liverwort Metzgeriothallus sharonae, from the Catskill Delta deposit of eastern New York state. Shale fragments of field-collected specimens were processed by applying liquid nitrocellulose on exposed surfaces. After drying, the film coatings were lifted off and mounted on microscope slides for photography. Unprocessed fragments were photographed under cedarwood oil for enhanced contrast. An extensive repertoire of arthropodan-mediated herbivory was documented, representing three functional feeding groups and nine subordinate plant-arthropod damage types (DTs). The herbivory is the earliest occurrence of external foliage-feeding and galling in the terrestrial fossil record. Our evidence indicates that thallus oil body cells, similar to the terpenoid-containing oil bodies of modern liverworts, were probably involved in the chemical defence of M. sharonae against arthropod herbivores. Based on damage patterns of terrestrial plants and an accompanying but sparse body-fossil record, Devonian arthropodan herbivores were significantly smaller compared to those of the later Palaeozoic. These data collectively suggest that a broad spectrum herbivory may have had a more important role in early terrestrial ecosystems than previously thought. PMID:24372344

  14. Simulation, human factors and defence anaesthesia.

    PubMed

    Mercer, S J; Whittle, C; Siggers, B; Frazer, R S

    2010-12-01

    Simulation in healthcare has come a long way since it's beginnings in the 1960s. Not only has the sophistication of simulator design increased, but the educational concepts of simulation have become much clearer. One particularly important area is that of non-technical skills (NTS) which has been developed from similar concepts in the aviation and nuclear industries. NTS models have been developed for anaesthetists and more recently for surgeons too. This has clear value for surgical team working and the recently developed Military Operational Surgical Training (MOST) course uses simulation and NTS to improve such team working. The scope for simulation in Defence medicine and anaesthesia does not stop here. Uses of simulation include pre-deployment training of hospital teams as well as Medical Emergency Response Team (MERT) and Critical Care Air Support Team (CCAST) staff. Future projects include developing Role 1 pre-deployment training. There is enormous scope for development in this important growth area of education and training. PMID:21302658

  15. Innate immune defences in the human endometrium

    PubMed Central

    King, Anne E; Critchley, Hilary OD; Kelly, Rodney W

    2003-01-01

    The human endometrium is an important site of innate immune defence, giving protection against uterine infection. Such protection is critical to successful implantation and pregnancy. Infection is a major cause of preterm birth and can also cause infertility and ectopic pregnancy. Natural anti-microbial peptides are key mediators of the innate immune system. These peptides, between them, have anti-bacterial, anti-fungal and anti-viral activity and are expressed at epithelial surfaces throughout the female genital tract. Two families of natural anti-microbials, the defensins and the whey acidic protein (WAP) motif proteins, appear to be prominent in endometrium. The human endometrial epithelium expresses beta-defensins 1–4 and the WAP motif protein, secretory leukocyte protease inhibitor. Each beta-defensin has a different expression profile in relation to the stage of the menstrual cycle, providing potential protection throughout the cycle. Secretory leukocyte protease inhibitor is expressed during the secretory phase of the cycle and has a range of possible roles including anti-protease and anti-microbial activity as well as having effects on epithelial cell growth. The leukocyte populations in the endometrium are also a source of anti-microbial production. Neutrophils are a particularly rich source of alpha-defensins, lactoferrin, lysozyme and the WAP motif protein, elafin. The presence of neutrophils during menstruation will enhance anti-microbial protection at a time when the epithelial barrier is disrupted. Several other anti-microbials including the natural killer cell product, granulysin, are likely to have a role in endometrium. The sequential production of natural anti-microbial peptides by the endometrium throughout the menstrual cycle and at other sites in the female genital tract will offer protection from many pathogens, including those that are sexually transmitted. PMID:14641912

  16. Ultrastructural detection of ribulose-1,5-bisphosphate carboxylase protein and its subunit mRNAs in wild-type and holoenzyme-deficient Nicotiana using immuno-gold and in-situ-hybridization techniques.

    PubMed

    Brangeon, J; Nato, A; Forchioni, A

    1989-02-01

    In-situ-localization techniques have been adapted to the ultrastructural detection of the holoenzyme ribulose-1,5-bisphosphate carboxylase (RuBPCase) and its composite large- and smallsubunit mRNAs in wild-type and mutant RuBPCase deficient plantlets of Nicotiana tabacum L. Immuno-gold techniques which show the distribution of target proteins have confirmed visually the presence of the holoenzyme in the wild-type plastids and its total absence in the enzyme-less mutant. Using in-situ hybridization coupled with electron microscopy and biotinylated probes for the two subunits, we have directly visualized specific small-subunit mRNAs located in the cytoplasm and large-subunit mRNAs confined to plastids in the enzyme-deficient mutant, and with apparent distributions comparable to those visualized in the wild-type counterpart. These results show that (i) gene products can be visualized in situ by electronmicroscopy techniques under conditions where the respective cellular compartments are readily recognizable and (ii) that an accumulation of mRNAs corresponding to the composite subunits can occur without translation and-or assembly of the protein. PMID:24212337

  17. Virus infection suppresses Nicotiana benthamiana adaptive phenotypic plasticity.

    PubMed

    Bedhomme, Stéphanie; Elena, Santiago F

    2011-01-01

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana--potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked. PMID:21359142

  18. Virus Infection Suppresses Nicotiana benthamiana Adaptive Phenotypic Plasticity

    PubMed Central

    Bedhomme, Stéphanie; Elena, Santiago F.

    2011-01-01

    Competition and parasitism are two important selective forces that shape life-histories, migration rates and population dynamics. Recently, it has been shown in various pathosystems that parasites can modify intraspecific competition, thus generating an indirect cost of parasitism. Here, we investigated if this phenomenon was present in a plant-potyvirus system using two viruses of different virulence (Tobacco etch virus and Turnip mosaic virus). Moreover, we asked if parasitism interacted with the shade avoidance syndrome, the plant-specific phenotypic plasticity in response to intraspecific competition. Our results indicate that the modification of intraspecific competition by parasitism is not present in the Nicotiana benthamiana – potyvirus system and suggests that this phenomenon is not universal but depends on the peculiarities of each pathosystem. However, whereas the healthy N. benthamiana presented a clear shade avoidance syndrome, this phenotypic plasticity totally disappeared when the plants were infected with TEV and TuMV, very likely resulting in a fitness loss and being another form of indirect cost of parasitism. This result suggests that the suppression or the alteration of adaptive phenotypic plasticity might be a component of virulence that is often overlooked. PMID:21359142

  19. Differential contributions of plant Dicer-like proteins to antiviral defences against potato virus X in leaves and roots.

    PubMed

    Andika, Ida Bagus; Maruyama, Kazuyuki; Sun, Liying; Kondo, Hideki; Tamada, Tetsuo; Suzuki, Nobuhiro

    2015-03-01

    Members of the plant Dicer-like (DCL) protein family are the critical components of the RNA-silencing pathway that mediates innate antiviral defence. The distinct antiviral role of each individual DCL protein has been established with mostly based on observations of aerial parts of plants. Thus, although the roots are closely associated with the life cycle of many plant viruses, little is known about the antiviral activities of DCL proteins in roots. We observed that antiviral silencing strongly inhibits potato virus X (PVX) replication in roots of some susceptible Solanaceae species. Silencing of the DCL4 homolog in Nicotiana benthamiana partially elevated PVX replication levels in roots. In Arabidopsis thaliana, which was originally considered a non-host plant of PVX, high levels of PVX accumulation in inoculated leaves were achieved by inactivation of DCL4, while in the upper leaves and roots, it required the additional inactivation of DCL2. In transgenic A. thaliana carrying the PVX amplicon with a green fluorescent protein (GFP) gene insertion in the chromosome (AMP243 line), absence of DCL4 enabled high levels of PVX-GFP accumulation in various aerial organs but not in the roots, suggesting that DCL4 is critical for intracellular antiviral silencing in shoots but not in roots, where it can be functionally compensated by other DCL proteins. Together, the high level of functional redundancies among DCL proteins may contribute to the potent antiviral activities against PVX replication in roots. PMID:25619543

  20. Defence and Security Research Coexistence, Coherence, and Convergence

    NASA Astrophysics Data System (ADS)

    Breant, Christian; Karock, Ulrich

    Defence and security research have coexisted at the European Union level since the inception of the European Defence Agency (EDA). The agency was established under a Joint Action of the Council of Ministers on 12 July 2004, "to support the Member States and the Council in their effort to improve European defence capabilities in the field of crisis management and to sustain the European Security and Defence Policy as it stands now and develops in the future".1 The political decision to create the EDA was taken at the Thessaloniki European Council on 19 and 20 June 2003. Heads of State or Government tasked the Council bodies to undertake the requisite actions, in the course of 2004, to create an intergovernmental agency in the field of defence capabilities development, research, acquisition and armaments. The EDA has been located in Brussels right from the start. It is an intergovernmental EU agency under the Council's authority within the single institutional framework of the Union. It performs its mission in close cooperation with its participating Member States (pMS) and the European institutional actors.

  1. Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus

    PubMed Central

    Wattanachai, Pongnak; Kasem, Soytong; Poeaim, Supattra

    2015-01-01

    Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 µg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen. PMID:26539045

  2. Nicotiana benthamiana as a Production Platform for Artemisinin Precursors

    PubMed Central

    van Herpen, Teun W. J. M.; Cankar, Katarina; Nogueira, Marilise; Bosch, Dirk; Bouwmeester, Harro J.; Beekwilder, Jules

    2010-01-01

    Background Production of pharmaceuticals in plants provides an alternative for chemical synthesis, fermentation or natural sources. Nicotiana benthamiana is deployed at commercial scale for production of therapeutic proteins. Here the potential of this plant is explored for rapid production of precursors of artemisinin, a sesquiterpenoid compound that is used for malaria treatment. Methodology/Principal Findings Biosynthetic genes leading to artemisinic acid, a precursor of artemisinin, were combined and expressed in N. benthamiana by agro-infiltration. The first committed precursor of artemisinin, amorpha-4,11-diene, was produced upon infiltration of a construct containing amorpha-4,11-diene synthase, accompanied by 3-hydroxy-3-methylglutaryl-CoA reductase and farnesyl diphosphate synthase. Amorpha-4,11-diene was detected both in extracts and in the headspace of the N. benthamiana leaves. When the amorphadiene oxidase CYP71AV1 was co-infiltrated with the amorphadiene-synthesizing construct, the amorpha-4,11-diene levels strongly decreased, suggesting it was oxidized. Surprisingly, no anticipated oxidation products, such as artemisinic acid, were detected upon GC-MS analysis. However, analysis of leaf extracts with a non-targeted metabolomics approach, using LC-QTOF-MS, revealed the presence of another compound, which was identified as artemisinic acid-12-β-diglucoside. This compound accumulated to 39.5 mg.kg−1 fwt. Apparently the product of the heterologous pathway that was introduced, artemisinic acid, is further metabolized efficiently by glycosyl transferases that are endogenous to N. benthamiana. Conclusion/Significance This work shows that agroinfiltration of N. bentamiana can be used as a model to study the production of sesquiterpenoid pharmaceutical compounds. The interaction between the ectopically introduced pathway and the endogenous metabolism of the plant is discussed. PMID:21151979

  3. Spatial and temporal regulation of sterol biosynthesis in Nicotiana benthamiana.

    PubMed

    Suza, Walter P; Chappell, Joe

    2016-06-01

    Nicotiana benthamiana was used as a model to investigate the spatial and developmental relationship between sterol synthesis rates and sterol content in plants. Stigmasterol levels were approximately twice the level in roots as that found in aerial tissues, while its progenitor sterol sitosterol was the inverse. When incorporation of radiolabeled precursors into sterols was used as measure of in vivo synthesis rates, acetate incorporation was similar across all tissue types, but approximately twofold greater in roots than any other tissue. In contrast, mevalonate incorporation exhibited the greatest differential with the rate of incorporation in roots approximately one-tenth that in apical shoots. Similar to acetate, incorporation of farnesol was higher in roots but remained fairly constant in aerial tissues, suggesting less regulation of the downstream sterol biosynthetic steps. Consistent with the precursor incorporation data, analysis of gene transcript and measurements of putative rate-limiting enzyme activities for 3-hydroxy-3-methylglutaryl-coenzyme A synthase (EC 2.3.3.10) and reductase (EC 1.1.1.34) showed the greatest modulation of levels, while the activity levels for isopentenyl diphosphate isomerase (EC 5.3.3.2) and prenyltransferases (EC 2.5.1.10 and EC 2.5.1.1) also exhibited a strong but moderate correlation with the development age of the aerial tissues of the plants. Overall, the data suggest a multitude of means from transcriptional to posttranslational control affecting sterol biosynthesis and accumulation across an entire plant, and point to some particular control points that might be manipulated using molecular genetic approaches to better probe the role of sterols in plant growth and development. PMID:26671544

  4. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana.

    PubMed

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L; Arzola, Lucas; Lebrilla, Carlito B; Dandekar, Abhaya M; Falk, Bryce W; Nandi, Somen; Rodriguez, Raymond L; McDonald, Karen A

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  5. Transient Expression of Tetrameric Recombinant Human Butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Alkanaimsh, Salem; Karuppanan, Kalimuthu; Guerrero, Andrés; Tu, Aye M.; Hashimoto, Bryce; Hwang, Min Sook; Phu, My L.; Arzola, Lucas; Lebrilla, Carlito B.; Dandekar, Abhaya M.; Falk, Bryce W.; Nandi, Somen; Rodriguez, Raymond L.; McDonald, Karen A.

    2016-01-01

    To optimize the expression, extraction and purification of plant-derived tetrameric recombinant human butyrylcholinesterase (prBChE), we describe the development and use of plant viral amplicon-based gene expression system; Tobacco Mosaic Virus (TMV) RNA-based overexpression vector (TRBO) to express enzymatically active FLAG-tagged plant made recombinant butyrylcholinesterase (rBChE) in Nicotiana benthamiana leaves using transient agroinfiltration. Two gene expression cassettes were designed to express the recombinant protein in either the ER or to the apoplastic compartment. Leaf homogenization was used to isolate ER-retained recombinant butyrylcholinesterase (prBChE-ER) while apoplast-targeted rBChE was isolated by either leaf homogenization (prBChE) or vacuum-extraction of apoplastic wash fluid (prBChE-AWF). rBChE from apoplast wash fluid had a higher specific activity but lower enzyme yield than leaf homogenate. To optimize the isolation and purification of total recombinant protein from leaf homogenates, an acidic extraction buffer was used. The acidic extraction buffer yielded >95% enzymatically active tetrameric rBChE as verified by Coomassie stained and native gel electrophoresis. Furthermore, when compared to human butyrylcholinesterase, the prBChE was found to be similar in terms of tetramerization and enzyme kinetics. The N-linked glycan profile of purified prBChE-ER was found to be mostly high mannose structures while the N-linked glycans on prBChE-AWF were primarily complex. The glycan profile of the prBChE leaf homogenates showed a mixture of high mannose, complex and paucimannose type N-glycans. These findings demonstrate the ability of plants to produce rBChE that is enzymatically active and whose oligomeric state is comparable to mammalian butyrylcholinesterase. The process of plant made rBChE tetramerization and strategies for improving its pharmacokinetics properties are also discussed. PMID:27379103

  6. Chloroform-induced insanity defence confounds lawyer Lincoln.

    PubMed

    Spiegel, A D; Suskind, P B

    1997-12-01

    During an 1857 trial, the defence claimed that the accused should be absolved of wilful murder because an overdose of chloroform during surgery induced insanity. In a rare appearance as a prosecutor, Abraham Lincoln tried the case for the State of Illinois. Expert medical witnesses testified about the side effects of chloroform and chloroform-induced insanity. Significantly, Lincoln was not knowledgeable about medical jurisprudence and overlooked potential sources of evidence and expert witnesses. Defence lawyers presented an impressive array of physicians to testify about insanity, about chloroform and about the results of an overdosage during anaesthesia. Considering the state of scientific knowledge at the time, the trial was notable. PMID:11619819

  7. Supramolecular amphipathicity for probing antimicrobial propensity of host defence peptides.

    PubMed

    Ravi, Jascindra; Bella, Angelo; Correia, Ana J V; Lamarre, Baptiste; Ryadnov, Maxim G

    2015-06-28

    Host defence peptides (HDPs) are effector components of innate immunity that provide defence against pathogens. These are small-to-medium sized proteins which fold into amphipathic conformations toxic to microbial membranes. Here we explore the concept of supramolecular amphipathicity for probing antimicrobial propensity of HDPs using elementary HDP-like amphiphiles. Such amphiphiles are individually inactive, but when ordered into microscopic micellar assemblies, respond to membrane binding according to the orthogonal type of their primary structure. The study demonstrates that inducible supramolecular amphipathicity can discriminate against bacterial growth and colonisation thereby offering a physico-chemical rationale for tuneable targeting of biological membranes. PMID:25966444

  8. Comparative genomics tools applied to bioterrorism defence.

    PubMed

    Slezak, Tom; Kuczmarski, Tom; Ott, Linda; Torres, Clinton; Medeiros, Dan; Smith, Jason; Truitt, Brian; Mulakken, Nisha; Lam, Marisa; Vitalis, Elizabeth; Zemla, Adam; Zhou, Carol Ecale; Gardner, Shea

    2003-06-01

    Rapid advances in the genomic sequencing of bacteria and viruses over the past few years have made it possible to consider sequencing the genomes of all pathogens that affect humans and the crops and livestock upon which our lives depend. Recent events make it imperative that full genome sequencing be accomplished as soon as possible for pathogens that could be used as weapons of mass destruction or disruption. This sequence information must be exploited to provide rapid and accurate diagnostics to identify pathogens and distinguish them from harmless near-neighbours and hoaxes. The Chem-Bio Non-Proliferation (CBNP) programme of the US Department of Energy (DOE) began a large-scale effort of pathogen detection in early 2000 when it was announced that the DOE would be providing bio-security at the 2002 Winter Olympic Games in Salt Lake City, Utah. Our team at the Lawrence Livermore National Lab (LLNL) was given the task of developing reliable and validated assays for a number of the most likely bioterrorist agents. The short timeline led us to devise a novel system that utilised whole-genome comparison methods to rapidly focus on parts of the pathogen genomes that had a high probability of being unique. Assays developed with this approach have been validated by the Centers for Disease Control (CDC). They were used at the 2002 Winter Olympics, have entered the public health system, and have been in continual use for non-publicised aspects of homeland defence since autumn 2001. Assays have been developed for all major threat list agents for which adequate genomic sequence is available, as well as for other pathogens requested by various government agencies. Collaborations with comparative genomics algorithm developers have enabled our LLNL team to make major advances in pathogen detection, since many of the existing tools simply did not scale well enough to be of practical use for this application. It is hoped that a discussion of a real-life practical application of

  9. S-Nitrosoglutathione reductase (GSNOR) mediates the biosynthesis of jasmonic acid and ethylene induced by feeding of the insect herbivore Manduca sexta and is important for jasmonate-elicited responses in Nicotiana attenuata

    PubMed Central

    Wünsche, Hendrik; Baldwin, Ian T.; Wu, Jianqiang

    2011-01-01

    S-nitrosoglutathione reductase (GSNOR) reduces the nitric oxide (NO) adduct S-nitrosoglutathione (GSNO), an essential reservoir for NO bioactivity. In plants, GSNOR has been found to be important in resistance to bacterial and fungal pathogens, but whether it is also involved in plant–herbivore interactions was not known. Using a virus-induced gene silencing (VIGS) system, the activity of GSNOR in a wild tobacco species, Nicotiana attenuata, was knocked down and the function of GSNOR in defence against the insect herbivore Manduca sexta was examined. Silencing GSNOR decreased the herbivory-induced accumulation of jasmonic acid (JA) and ethylene, two important phytohormones regulating plant defence levels, without compromising the activity of two mitogen-activated protein kinases (MAPKs), salicylic acid-induced protein kinase (SIPK) and wound-induced protein kinase (WIPK). Decreased activity of trypsin proteinase inhibitors (TPIs) were detected in GSNOR-silenced plants after simulated M. sexta feeding and bioassays indicated that GSNOR-silenced plants have elevated susceptibility to M. sexta attack. Furthermore, GSNOR is required for methyl jasmonate (MeJA)-induced accumulation of defence-related secondary metabolites (TPI, caffeoylputrescine, and diterpene glycosides) but is not needed for the transcriptional regulation of JAZ3 (jasmonate ZIM-domain 3) and TD (threonine deaminase), indicating that GSNOR mediates certain but not all jasmonate-inducible responses. This work highlights the important role of GSNOR in plant resistance to herbivory and jasmonate signalling and suggests the potential involvement of NO in plant–herbivore interactions. Our data also suggest that GSNOR could be a target of genetic modification for improving crop resistance to herbivores. PMID:21622839

  10. Photorespiratory Properties of Mesophyll Protoplasts of Nicotiana plumbaginifolia

    PubMed Central

    Rey, Pascal; Peltier, Gilles

    1989-01-01

    The photorespiratory activity of mesophyll protoplasts of Nicotiana plumbaginifolia has been clearly demonstrated by the presence of a Warburg-effect, the occurrence of an important CO2-sensitive O2 uptake and the effect of some photorespiratory inhibitors on photosynthetic activity. At a nonsaturating dissolved inorganic carbon (DIC) concentration (0.1 millimolar), we observed that the rate of CO2 fixation was 60% lower at 50% O2 compared to that measured at 2% O2. Using 18O2 and mass spectrometry, we measured O2 exchange as a function of light intensity and of DIC concentration. Oxygen uptake measured at the CO2 compensation point (47.4 micromoles O2 per hour per milligram chlorophyll) was three-fold higher than that measured at a saturating CO2 concentration. Cyanide or iodoacetamide, inhibitors of the Calvin cycle, were found to reduce the O2 uptake to the same extent as CO2 saturation. We conclude from these results that the major part of the CO2-sensitive O2 uptake is due to photorespiration. Further, we investigated the effect on net photosynthesis of some inhibitors of the glycolate pathway. At CO2 saturation (10 millimolar DIC), 5 millimolar aminoacetonitrile (AAN), and 1 millimolar aminooxyacetate (AOA) did not cause any significant decrease in net photosynthesis. However, when these two inhibitors were added under a period of active photorespiration (10 minutes at the CO2 compensation point at 20% O2), we observed a decrease in the rate of net photosynthesis at 10 millimolar DIC measured afterward (respectively, 18 and 29%). This inhibition did not appear at 2% O2, but was stronger at 50% O2 (40% for AAN and 47% for AOA). With 0.05 millimolar butyl 2-hydroxy-3-butynoate (BHB) or 0.5 millimolar l-methionine-dl-sulfoximine (l-MSO), rates of net photosynthesis at 10 millimolar DIC were decreased by 10 to 15%. Additional decreases were observed after a period at the CO2 compensation point at 20% O2 (30% for BHB and 20% for l-MSO). From the sites of action of

  11. Long-term familiarity promotes joining in neighbour nest defence.

    PubMed

    Grabowska-Zhang, A M; Sheldon, B C; Hinde, C A

    2012-08-23

    Familiarity plays an important role in the evolution of sociality and cooperation. Familiar individuals may gain a reputation for participating in, or defecting from, cooperative tasks. Previous research suggests that long-term familiarity with territorial neighbours benefits breeders. We tested the hypothesis that great tits (Parus major) are more likely to join in neighbours' nest defence if those neighbours are familiar from the previous year. We show that neighbours that shared a territory boundary the previous year are more likely to join their neighbours' nest defence than neighbours that did not share a boundary before. Closer neighbours did not differ from distant neighbours in their latency to join. For familiar neighbours that joined, there was no difference in call rate in relation to whether one or both members of the focal pair were familiar. First-time breeders (by definition unfamiliar) did not join each other's nest defence. This is the first evidence of a relationship between familiarity and joining in nest defence. Such direct benefits of familiarity may have important implications in the evolution of sociality. PMID:22535641

  12. Evolution of hosts paying manifold costs of defence

    PubMed Central

    Cressler, Clayton E.; Graham, Andrea L.; Day, Troy

    2015-01-01

    Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature. PMID:25740895

  13. A Strong Remedy to a Weak Ethical Defence of Homeopathy.

    PubMed

    Shaw, David

    2015-12-01

    In this article, I indicate and illustrate several flaws in a recent "ethical defence" of homeopathy. It transpires that the authors' arguments have several features in common with homeopathic remedies, including strong claims, a lack of logic or evidence, and no actual effect. PMID:26659862

  14. Communal range defence in primates as a public goods dilemma.

    PubMed

    Willems, Erik P; Arseneau, T Jean M; Schleuning, Xenia; van Schaik, Carel P

    2015-12-01

    Classic socio-ecological theory holds that the occurrence of aggressive range defence is primarily driven by ecological incentives, most notably by the economic defendability of an area or the resources it contains. While this ecological cost-benefit framework has great explanatory power in solitary or pair-living species, comparative work on group-living primates has always found economic defendability to be a necessary, but not sufficient condition to account for the distribution of effective range defence across the taxon. This mismatch between theory and observation has recently been ascribed to a collective action problem among group members in, what is more informatively viewed as, a public goods dilemma: mounting effective defence of a communal range against intrusions by outgroup conspecifics. We here further develop this framework, and report on analyses at three levels of biological organization: across species, across populations within a single lineage and across groups and individuals within a single population. We find that communal range defence in primates very rarely involves collective action sensu stricto and that it is best interpreted as the outcome of opportunistic and strategic individual-level decisions. Whether the public good of a defended communal range is produced by solitary, joint or collective action is thus the outcome of the interplay between the unique characteristics of each individual, local and current socio-ecological conditions, and fundamental life-history traits of the species. PMID:26503678

  15. Landscape settings as part of earth wall systems for defence

    NASA Astrophysics Data System (ADS)

    van den Ancker, Hanneke; Jungerius, Pieter Dirk

    2013-04-01

    Remnants of earth wall systems from different periods are preserved in many European countries. They were built for different functions, such as defence, demarcating ownership or keeping wild animals or cattle in or out a terrain, and often changed function over time. Earth walls date from a past in which man had limited access to man- and horsepower. In the case of defence systems, our ancestors made use of the landscape settings to improve the strength. The poster gives an overview of landscape settings used for this purpose, from prehistoric up to medieval age, for building round and linear earth wall defence systems. Round earth walls systems are found on: • High viewpoints along a river, often in combination with marshland at its feet, • Almost completely cut-off meanders of antecedent rivers. This natural setting offered an ideal defence. It allowed an almost 360 degree view and exposed the enemy for a long time when passing the river, while the steep slopes and narrow entrance made the hill fort difficult to access, • Islands in lakes, • Bordering a lake at one side, • Confluences of rivers, • Hills near the sea and a natural harbour with possibilities for defence, • High flat hill tops of medium size with steep sides. Of each situation examples are presented. Linear earth wall defence systems For linear defence earth walls no overview of landscape settings can be given, for lack of sufficient data. The Celtic, 10 m steep Beech Bottom Dyke earth wall system from around 20 A.D. connects two steeply incised river valleys. For building the Hadrian Wall (UK) the Romans made use of earth walls paralleling the steepest cuesta of the Cheviot hills. The Viking Danewerk (Ger), was built on push moraines and used the coastal marsh lands at their feet for defence. And the defence of the earth wall around the Velder (NL, probably 13th century) made use of the many small streams crossing this marshy coversand landscape, by diverting them into a canal

  16. Genetic characterization of Phytophthora nicotianae by the analysis of polymorphic regions of the mitochondrial DNA.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method based on the analysis of mitochondrial intergenic regions characterized by intraspecific variation in DNA sequences was developed and applied to the study of the plant pathogen Phytophthora nicotianae. Two regions flanked by genes trny and rns and trnw and cox2 were identified by compa...

  17. Physiological and molecular changes during opening and senescence of Nicotiana mutabilis flowers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flowers of Nicotiana mutabilis, a tobacco species recently discovered in southern Brazil, have petals that undergo a striking colour change from white through pink to red as they open and senesce over a typical 7-d lifespan. Colouration in petals was associated with an increase in chalcone synt...

  18. NICOTIANA MUTABILIS-A NOVEL SYSTEM FOR STUDYING ETHYLENE-MEDIATED FLORAL SENESCENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As its specific epithet indicates, Nicotiana mutabilis, a tobacco species recently discovered in southern Brazil, has flowers that change color during their display life. Opening buds are white, and as the flower ages, the color changes, at first gradually, and then rapidly through light pink to da...

  19. PHYSIOLOGICAL AND MOLECULAR CHANGES DURING OPENING AND SENESCENCE OF NICOTIANA MUTABILIS FLOWERS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The flowers of Nicotiana mutabilis, a tobacco species recently discovered in southern Brazil, have petals that undergo a striking colour change from white through pink to red as they open and senesce over a typical 7-d lifespan. Colouration in petals was associated with an increase in chalcone synt...

  20. Effects of hydrostatic pressure, agitation and CO2 stress on Phytophthora nicotianae zoospore survival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytophthora nicotianae Breda de Haan was used as a model pathogen to investigate the effects of hydrostatic pressure, agitation, and aeration with CO2 or breathable air on the survival of Phytophthora zoospores in water. Injecting CO2 into 2 liters of zoospore-infested water for 5 min at 110.4 ml ...

  1. Genetic Analysis of Phytophthora nicotianae Populations from Different Hosts Using Microsatellite Markers.

    PubMed

    Biasi, Antonio; Martin, Frank N; Cacciola, Santa O; di San Lio, Gaetano Magnano; Grünwald, Niklaus J; Schena, Leonardo

    2016-09-01

    In all, 231 isolates of Phytophthora nicotianae representing 14 populations from different host genera, including agricultural crops (Citrus, Nicotiana, and Lycopersicon), potted ornamental species in nurseries (Lavandula, Convolvulus, Myrtus, Correa, and Ruta), and other plant genera were characterized using simple-sequence repeat markers. In total, 99 multilocus genotypes (MLG) were identified, revealing a strong association between genetic grouping and host of recovery, with most MLG being associated with a single host genus. Significant differences in the structure of populations were revealed but clonality prevailed in all populations. Isolates from Citrus were found to be genetically related regardless of their geographic origin and were characterized by high genetic uniformity and high inbreeding coefficients. Higher variability was observed for other populations and a significant geographical structuring was determined for isolates from Nicotiana. Detected differences were related to the propagation and cultivation systems of different crops. Isolates obtained from Citrus spp. are more likely to be distributed worldwide with infected plant material whereas Nicotiana and Lycopersicon spp. are propagated by seed, which would not contribute to the spread of the pathogen and result in a greater chance for geographic isolation of lineages. With regard to ornamental species in nurseries, the high genetic variation is likely the result of the admixture of diverse pathogen genotypes through the trade of infected plant material from various geographic origins, the presence of several hosts in the same nursery, and genetic recombination through sexual reproduction of this heterothallic species. PMID:27111805

  2. CYP94A5, a new cytochrome P450 from Nicotiana tabacum is able to catalyze the oxidation of fatty acids to the omega-alcohol and to the corresponding diacid.

    PubMed

    Le Bouquin, R; Skrabs, M; Kahn, R; Benveniste, I; Salaün, J P; Schreiber, L; Durst, F; Pinot, F

    2001-05-01

    A full length cDNA encoding a new cytochrome P450-dependent fatty acid hydroxylase (CYP94A5) was isolated from a tobacco cDNA library. CYP94A5 was expressed in S. cerevisiae strain WAT11 containing a P450 reductase from Arabidopsis thaliana necessary for catalytic activity of cytochrome P450 enzymes. When incubated for 10 min in presence of NADPH with microsomes of recombinant yeast, 9,10-epoxystearic acid was converted into one major metabolite identified by GC/MS as 18-hydroxy-9,10-epoxystearic acid. The kinetic parameters of the reaction were Km,app = 0.9 +/- 0.2 microM and Vmax,app = 27 +/- 1 nmol x min(-1) x nmol(-1) P450. Increasing the incubation time to 1 h led to the formation of a compound identified by GC/MS as 9,10-epoxy-octadecan-1,18-dioic acid. The diacid was also produced in microsomal incubations of 18-hydroxy-9,10-epoxystearic acid. Metabolites were not produced in incubations with microsomes of yeast transformed with a control plasmid lacking CYP94A5 and their production was inhibited by antibodies raised against the P450 reductase, demonstrating the involvement of CYP94A5 in the reactions. The present study describes a cytochrome P450 able to catalyze the complete set of reactions oxidizing a terminal methyl group to the corresponding carboxyl. This new fatty acid hydroxylase is enantioselective: after incubation of a synthetic racemic mixture of 9,10-epoxystearic acid, the chirality of the residual epoxide was 40/60 in favor of 9R,10S enantiomer. CYP94A5 also catalyzed the omega-hydroxylation of saturated and unsaturated fatty acids with aliphatic chain ranging from C12 to C18. PMID:11358528

  3. A Comparative Analysis of Sonic Defences in Bombycoidea Caterpillars.

    PubMed

    Bura, Veronica L; Kawahara, Akito Y; Yack, Jayne E

    2016-01-01

    Caterpillars have long been used as models for studying animal defence. Their impressive armour, including flamboyant warning colours, poisonous spines, irritating sprays, and mimicry of plant parts, snakes and bird droppings, has been extensively documented. But research has mainly focused on visual and chemical displays. Here we show that some caterpillars also exhibit sonic displays. During simulated attacks, 45% of 38 genera and 33% of 61 species of silk and hawkmoth caterpillars (Bombycoidea) produced sounds. Sonic caterpillars are found in many distantly-related groups of Bombycoidea, and have evolved four distinct sound types- clicks, chirps, whistles and vocalizations. We propose that different sounds convey different messages, with some designed to warn of a chemical defence and others, to startle predators. This research underscores the importance of exploring acoustic communication in juvenile insects, and provides a model system to explore how different signals have evolved to frighten, warn or even trick predators. PMID:27510510

  4. A Comparative Analysis of Sonic Defences in Bombycoidea Caterpillars

    PubMed Central

    Bura, Veronica L.; Kawahara, Akito Y.; Yack, Jayne E.

    2016-01-01

    Caterpillars have long been used as models for studying animal defence. Their impressive armour, including flamboyant warning colours, poisonous spines, irritating sprays, and mimicry of plant parts, snakes and bird droppings, has been extensively documented. But research has mainly focused on visual and chemical displays. Here we show that some caterpillars also exhibit sonic displays. During simulated attacks, 45% of 38 genera and 33% of 61 species of silk and hawkmoth caterpillars (Bombycoidea) produced sounds. Sonic caterpillars are found in many distantly-related groups of Bombycoidea, and have evolved four distinct sound types- clicks, chirps, whistles and vocalizations. We propose that different sounds convey different messages, with some designed to warn of a chemical defence and others, to startle predators. This research underscores the importance of exploring acoustic communication in juvenile insects, and provides a model system to explore how different signals have evolved to frighten, warn or even trick predators. PMID:27510510

  5. The Morality and Economics of Safety in Defence Procurement

    NASA Astrophysics Data System (ADS)

    Clement, Tim

    Ministry of Defence policy is to conform as closely as possible to UK health and safety legislation in all its operations. We consider the implications of the law and the guidance provided by the Health and Safety Executive for the arguments we need to make for the safety of defence procurements, and extract four general principles to help in answering the questions that arise when considering the safety of systems with complex behaviour. One of these principles is analysed further to identify how case law and the guidance interpret the requirement for risks to be reduced so far as is reasonably practicable. We then apply the principles to answer some questions that have arisen in our work as Independent Safety Auditors, including the limits to the tolerability of risk to armed forces personnel and civilians in wartime, and the acceptability of the transfer of risk from one group to another when controls on risk are introduced.

  6. Signalling Network Construction for Modelling Plant Defence Response

    PubMed Central

    Miljkovic, Dragana; Stare, Tjaša; Mozetič, Igor; Podpečan, Vid; Petek, Marko; Witek, Kamil; Dermastia, Marina; Lavrač, Nada; Gruden, Kristina

    2012-01-01

    Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for

  7. Insects had it first: surfactants as a defence against predators

    PubMed Central

    Rostás, Michael; Blassmann, Katrin

    2008-01-01

    Insects have evolved an astonishing array of defences to ward off enemies. Well known and widespread is the regurgitation of oral secretion (OS), fluid that repels attacking predators. In herbivores, the effectiveness of OS has been ascribed so far to the presence of deterrent secondary metabolites sequestered from the host plant. This notion implies, however, that generalists experience less protection on plants with low amounts of secondary metabolites or with compounds ineffective against potential enemies. Resolving the dilemma, we describe a novel defence mechanism that is independent of deterrents as it relies on the intrinsic detergent properties of the OS. The OS of Spodoptera exigua (and other species) was found to be highly amphiphilic and well capable of wetting the hydrophobic cuticle of predatory ants. As a result, affected ants stopped attacking and engaged in extensive cleansing. The presence of surfactants was sufficient to explain the defensive character of herbivore OS. We hypothesize that detergency is a common but unrecognized mode of defence, which provides a base level of protection that may or may not be further enhanced by plant-derived deterrents. Our study also proves that insects ‘invented’ the use of defensive surfactants long before modern agriculture had started applying them as insecticides. PMID:18986976

  8. Focal accumulation of defences at sites of fungal pathogen attack

    PubMed Central

    Underwood, William; Somerville, Shauna C.

    2008-01-01

    Plants resist attack by haustorium-forming biotrophic and hemi-biotrophic fungi through fortification of the cell wall to prevent penetration through the wall and the subsequent establishment of haustorial feeding structures by the fungus. While the existence of cell wall-based defences has been known for many years, only recently have the molecular components contributing to such defences been identified. Forward genetic screens identified Arabidopsis mutants impaired in penetration resistance to powdery mildew fungi that were normally halted at the cell wall. Several loci contributing to penetration resistance have been identified and a common feature is the striking focal accumulation of proteins associated with penetration resistance at sites of interaction with fungal appressoria and penetration pegs. The focal accumulation of defence-related proteins and the deposition of cell wall reinforcements at sites of attempted fungal penetration represent an example of cell polarization and raise many questions of relevance, not only to plant pathology but also to general cell biology. PMID:18703493

  9. Complement in disease: a defence system turning offensive.

    PubMed

    Ricklin, Daniel; Reis, Edimara S; Lambris, John D

    2016-07-01

    Although the complement system is primarily perceived as a host defence system, a more versatile, yet potentially more harmful side of this innate immune pathway as an inflammatory mediator also exists. The activities that define the ability of the complement system to control microbial threats and eliminate cellular debris - such as sensing molecular danger patterns, generating immediate effectors, and extensively coordinating with other defence pathways - can quickly turn complement from a defence system to an aggressor that drives immune and inflammatory diseases. These host-offensive actions become more pronounced with age and are exacerbated by a variety of genetic factors and autoimmune responses. Complement can also be activated inappropriately, for example in response to biomaterials or transplants. A wealth of research over the past two decades has led to an increasingly finely tuned understanding of complement activation, identified tipping points between physiological and pathological behaviour, and revealed avenues for therapeutic intervention. This Review summarizes our current view of the key activating, regulatory, and effector mechanisms of the complement system, highlighting important crosstalk connections, and, with an emphasis on kidney disease and transplantation, discusses the involvement of complement in clinical conditions and promising therapeutic approaches. PMID:27211870

  10. The protein quality control system manages plant defence compound synthesis.

    PubMed

    Pollier, Jacob; Moses, Tessa; González-Guzmán, Miguel; De Geyter, Nathan; Lippens, Saskia; Vanden Bossche, Robin; Marhavý, Peter; Kremer, Anna; Morreel, Kris; Guérin, Christopher J; Tava, Aldo; Oleszek, Wieslaw; Thevelein, Johan M; Campos, Narciso; Goormachtig, Sofie; Goossens, Alain

    2013-12-01

    Jasmonates are ubiquitous oxylipin-derived phytohormones that are essential in the regulation of many development, growth and defence processes. Across the plant kingdom, jasmonates act as elicitors of the production of bioactive secondary metabolites that serve in defence against attackers. Knowledge of the conserved jasmonate perception and early signalling machineries is increasing, but the downstream mechanisms that regulate defence metabolism remain largely unknown. Here we show that, in the legume Medicago truncatula, jasmonate recruits the endoplasmic-reticulum-associated degradation (ERAD) quality control system to manage the production of triterpene saponins, widespread bioactive compounds that share a biogenic origin with sterols. An ERAD-type RING membrane-anchor E3 ubiquitin ligase is co-expressed with saponin synthesis enzymes to control the activity of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), the rate-limiting enzyme in the supply of the ubiquitous terpene precursor isopentenyl diphosphate. Thus, unrestrained bioactive saponin accumulation is prevented and plant development and integrity secured. This control apparatus is equivalent to the ERAD system that regulates sterol synthesis in yeasts and mammals but that uses distinct E3 ubiquitin ligases, of the HMGR degradation 1 (HRD1) type, to direct destruction of HMGR. Hence, the general principles for the management of sterol and triterpene saponin biosynthesis are conserved across eukaryotes but can be controlled by divergent regulatory cues. PMID:24213631

  11. The N-terminal fragment of the tomato torrado virus RNA1-encoded polyprotein induces a hypersensitive response (HR)-like reaction in Nicotiana benthamiana.

    PubMed

    Wieczorek, Przemysław; Obrępalska-Stęplowska, Aleksandra

    2016-07-01

    The hypersensitive response (HR) is a defence reaction observed during incompatible plant-pathogen interactions in plants infected with a wide range of fungi, bacteria and viruses. Here, we show that an N-terminal polyprotein fragment encoded by tomato torrado virus RNA1, located between the first ATG codon and the protease cofactor (ProCo) motif, induces an HR-like reaction in Nicotiana benthamiana. Agrobacterium tumefaciens-mediated transient expression of the first 105 amino acids (the calculated molecular weight of the fragment was ca. 11.33 kDa, hereafter refered to as the 11K domain) from ToTV RNA1 induced an HR-like phenotype in infiltrated leaves. To investigate whether the 11K domain could influence the virulence and pathogenicity of a recombinant virus, we created a potato virus X (PVX) with the 11K coding sequence inserted under a duplicated coat protein promoter. We found that 11K substantially increased the virulence of the recombinant virus. Disease phenotype induced in N. benthamiana by PVX-11K was characterized by strong local and systemic necrosis. This was not observed when the 11K domain was expressed from PVX in an antisense orientation. Further analyses revealed that the 11K domain could not suppress posttranscriptional gene silencing (PTGS) of green fluorescent protein (GFP) in the N. benthamiana 16c line. In silico analysis of the predicted secondary structure of the 11K domain indicated the presence of two putative helices that are highly conserved in tomato-infecting representatives of the genus Torradovirus. PMID:27072852

  12. Identification and genome organization of saponin pathway genes from a wild crucifer, and their use for transient production of saponins in Nicotiana benthamiana.

    PubMed

    Khakimov, Bekzod; Kuzina, Vera; Erthmann, Pernille Ø; Fukushima, Ery Odette; Augustin, Jörg M; Olsen, Carl Erik; Scholtalbers, Jelle; Volpin, Hanne; Andersen, Sven Bode; Hauser, Thure P; Muranaka, Toshiya; Bak, Søren

    2015-11-01

    The ability to evolve novel metabolites has been instrumental for the defence of plants against antagonists. A few species in the Barbarea genus are the only crucifers known to produce saponins, some of which make plants resistant to specialist herbivores, like Plutella xylostella, the diamondback moth. Genetic mapping in Barbarea vulgaris revealed that genes for saponin biosynthesis are not clustered but are located in different linkage groups. Using co-location with quantitative trait loci (QTLs) for resistance, transcriptome and genome sequences, we identified two 2,3-oxidosqualene cyclases that form the major triterpenoid backbones. LUP2 mainly produces lupeol, and is preferentially expressed in insect-susceptible B. vulgaris plants, whereas LUP5 produces β-amyrin and α-amyrin, and is preferentially expressed in resistant plants; β-amyrin is the backbone for the resistance-conferring saponins in Barbarea. Two loci for cytochromes P450, predicted to add functional groups to the saponin backbone, were identified: CYP72As co-localized with insect resistance, whereas CYP716As did not. When B. vulgaris sapogenin biosynthesis genes were transiently expressed by CPMV-HT technology in Nicotiana benthamiana, high levels of hydroxylated and carboxylated triterpenoid structures accumulated, including oleanolic acid, which is a precursor of the major resistance-conferring saponins. When the B. vulgaris gene for sapogenin 3-O-glucosylation was co-expressed, the insect deterrent 3-O-oleanolic acid monoglucoside accumulated, as well as triterpene structures with up to six hexoses, demonstrating that N. benthamiana further decorates the monoglucosides. We argue that saponin biosynthesis in the Barbarea genus evolved by a neofunctionalized glucosyl transferase, whereas the difference between resistant and susceptible B. vulgaris chemotypes evolved by different expression of oxidosqualene cyclases (OSCs). PMID:26333142

  13. The rapidly evolving associations among herbivore associated elicitor-induced phytohormones in Nicotiana

    PubMed Central

    Xu, Shuqing; Zhou, Wenwu; Baldwin, Ian T

    2015-01-01

    In response to herbivore attack, plants perceive herbivore associated elicitors (HAE) and rapidly accumulate jasmonic acid (JA) and other phytohormones, which interact in complex ways, such as the crosstalk between JA and salicylic acid (SA). Although recent studies have shown that HAE-induced individual phytohormones can be highly specific among closely related species, it remains unclear how conserved and specific the relationships among HAE-induced phytohormones are. Here we analyzed the correlations among 4 different phytohormones, JA, JA-isoleucine (JA-Ile), SA, and abscisic acid (ABA) in 6 closely related Nicotiana species that were induced by 3 different HAEs. Our results showed that while no clear association between ABA and other phytohormones were found, the positive association between JA and JA-Ile is mostly conserved among closely related Nicotiana species. Interestingly, the association between JA and SA are highly variable and can be regulated by different HAEs. PMID:26107988

  14. Transgressive phenotypes and generalist pollination in the floral evolution of Nicotiana polyploids.

    PubMed

    McCarthy, Elizabeth W; Chase, Mark W; Knapp, Sandra; Litt, Amy; Leitch, Andrew R; Le Comber, Steven C

    2016-01-01

    Polyploidy is an important driving force in angiosperm evolution, and much research has focused on genetic, epigenetic and transcriptomic responses to allopolyploidy. Nicotiana is an excellent system in which to study allopolyploidy because half of the species are allotetraploids of different ages, allowing us to examine the trajectory of floral evolution over time. Here, we study the effects of allopolyploidy on floral morphology in Nicotiana, using corolla tube measurements and geometric morphometrics to quantify petal shape. We show that polyploid morphological divergence from the intermediate phenotype expected (based on progenitor morphology) increases with time for floral limb shape and tube length, and that most polyploids are distinct or transgressive in at least one trait. In addition, we show that polyploids tend to evolve shorter and wider corolla tubes, suggesting that allopolyploidy could provide an escape from specialist pollination via reversion to more generalist pollination strategies. PMID:27501400

  15. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum).

    PubMed

    Stamler, Rio A; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay. PMID:26020237

  16. BABA and Phytophthora nicotianae Induce Resistance to Phytophthora capsici in Chile Pepper (Capsicum annuum)

    PubMed Central

    Stamler, Rio A.; Holguin, Omar; Dungan, Barry; Schaub, Tanner; Sanogo, Soumaila; Goldberg, Natalie; Randall, Jennifer J.

    2015-01-01

    Induced resistance in plants is a systemic response to certain microorganisms or chemicals that enhances basal defense responses during subsequent plant infection by pathogens. Inoculation of chile pepper with zoospores of non-host Phytophthora nicotianae or the chemical elicitor beta-aminobutyric acid (BABA) significantly inhibited foliar blight caused by Phytophthora capsici. Tissue extract analyses by GC/MS identified conserved change in certain metabolite concentrations following P. nicotianae or BABA treatment. Induced chile pepper plants had reduced concentrations of sucrose and TCA cycle intermediates and increased concentrations of specific hexose-phosphates, hexose-disaccharides and amino acids. Galactose, which increased significantly in induced chile pepper plants, was shown to inhibit growth of P. capsici in a plate assay. PMID:26020237

  17. Protection of Citrus Rootstocks Against Phytophthora spp. with a Hypovirulent Isolate of Phytophthora nicotianae.

    PubMed

    Colburn, G C; Graham, J H

    2007-08-01

    ABSTRACT Phytophthora root rot of citrus in Florida is caused by Phytophthora nicotianae and P. palmivora. A naturally occurring isolate of P. nicotianae (Pn117) was characterized as hypovirulent on citrus roots. Pn117 infected and colonized fibrous roots, but caused significantly less disease than the virulent isolates P. nicotianae Pn198 and P. palmivora Pp99. Coincident inoculation of rootstock seedlings of Cleopatra mandarin (Citrus reticulata) or Swingle citrumelo (C. paradisi x Poncirus trifoliata) with the hypovirulent Pn117 and the virulent isolates Pn198 and Pp99 did not reduce the severity of disease caused by the virulent Phytophthora spp. When either rootstock was inoculated with the hypovirulent Pn117 for 3 days prior to inoculation with virulent isolates, preinoculated seedlings had significantly less disease and greater root weight compared with seedlings inoculated with the virulent isolates alone. Recovery of the different colony types of Phytophthora spp. from roots of sweet orange (C. sinensis) or Swingle citrumelo was evaluated on semiselective medium after sequential inoculations with the hypovirulent Pn117 and virulent Pp99. Pn117 was isolated from roots at the same level as the Pp99 at 3 days post inoculation. Preinoculation of Pn117 for 3 days followed by inoculation with Pp99 resulted in greater recovery of the hypovirulent isolate and lower recovery of the virulent compared with coincident inoculation. PMID:18943635

  18. Identification of plant defence regulators through transcriptional profiling of Arabidopsis thaliana cdd1 mutant.

    PubMed

    Swain, Swadhin; Singh, Nidhi; Nandi, Ashis Kumar

    2015-03-01

    A sustainable balance between defence and growth is essential for optimal fitness under pathogen stress. Plants activate immune response at the cost of normal metabolic requirements. Thus, plants that constitutively activate defence are deprived of growth. Arabidopsis thaliana mutant constitutive defence without defect in growth and development1 (cdd1) is an exception. The cdd1 mutant is constitutive for salicylic acid accumulation, signalling, and defence against biotrophic and hemibiotrophic pathogens, without having much impact on growth. Thus, cdd1 offers an ideal genetic background to identify novel regulators of plant defence. Here we report the differential gene expression profile between cdd1 and wild-type plants as obtained by microarray hybridization. Expression of several defence-related genes also supports constitutive activation of defence in cdd1. We screened T-DNA insertion mutant lines of selected genes, for resistance against virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). Through bacterial resistance, callose deposition and pathogenesis-associated expression analyses, we identified four novel regulators of plant defence. Resistance levels in the mutants suggest that At2g19810 and [rom] At5g05790 are positive regulators, whereas At1g61370 and At3g42790 are negative regulators of plant defence against bacterial pathogens. PMID:25740148

  19. Neutrophils: Between Host Defence, Immune Modulation, and Tissue Injury

    PubMed Central

    Kruger, Philipp; Saffarzadeh, Mona; Weber, Alexander N. R.; Rieber, Nikolaus; Radsak, Markus; von Bernuth, Horst; Benarafa, Charaf; Roos, Dirk; Skokowa, Julia; Hartl, Dominik

    2015-01-01

    Neutrophils, the most abundant human immune cells, are rapidly recruited to sites of infection, where they fulfill their life-saving antimicrobial functions. While traditionally regarded as short-lived phagocytes, recent findings on long-term survival, neutrophil extracellular trap (NET) formation, heterogeneity and plasticity, suppressive functions, and tissue injury have expanded our understanding of their diverse role in infection and inflammation. This review summarises our current understanding of neutrophils in host-pathogen interactions and disease involvement, illustrating the versatility and plasticity of the neutrophil, moving between host defence, immune modulation, and tissue damage. PMID:25764063

  20. Analysis of direct punch velocity in professional defence

    NASA Astrophysics Data System (ADS)

    Lapkova, Dora; Adamek, Milan

    2016-06-01

    This paper is focused on analysis of a direct punch. Nowadays, professional defence is basic part of effective protection of people and property. There are many striking techniques and the goal of this research was to analyze the direct punch. The analysis is aimed to measure the velocity with help of high speed camera Olympus i-Speed 2 and then find the dependences of this velocity on input parameters. For data analysis two pieces of software were used - i-Speed Control Software and MINITAB. 111 participants took part in this experiment. The results are presented in this paper - especially dependence of mean velocity on time and difference in velocity between genders.

  1. "Defence-in-Depth" Strategy in Transport Risk Management

    NASA Astrophysics Data System (ADS)

    Szymanek, Andrzej

    Safety management is a kind of system management, that is management by purposes. Taking "defence-in-depth" strategy, DDS - there can be defined four main aims and four method groups of risk management in transport: 1. minimizing transport accidents risk; 2. minimizing number of undesirable transport events (incidents, conflicts, collisions, accidents). Above purposes relate stages of safety management in transport. At each level of management should be elaborated methods, procedures and technologies of minimizing transport accidents risk. According to DDS any management system of transport safety should have a structure of multilevel chain protections which supervise main transport processes. About those problems in the paper.

  2. Interspecific assistance: fiddler crabs help heterospecific neighbours in territory defence.

    PubMed

    Booksmythe, Isobel; Jennions, Michael D; Backwell, Patricia R Y

    2010-12-23

    Theory predicts that territory owners will help established neighbours to repel intruders, when doing so is less costly than renegotiating boundaries with successful usurpers of neighbouring territories. Here, we show for the first time, to our knowledge, cooperative territory defence between heterospecific male neighbours in the fiddler crabs Uca elegans and Uca mjoebergi. We show experimentally that resident U. elegans were equally likely to help a smaller U. mjoebergi or U. elegans neighbour during simulated intrusions by intermediate sized U. elegans males (50% of cases for both). Helping was, however, significantly less likely to occur when the intruder was a U. mjoebergi male (only 15% of cases). PMID:20534601

  3. Microstructured fibres: a positive impact on defence technology?

    NASA Astrophysics Data System (ADS)

    O'Driscoll, E. J.; Watson, M. A.; Delmonte, T.; Petrovich, M. N.; Feng, X.; Flanagan, J. C.; Hayes, J. R.; Richardson, D. J.

    2006-09-01

    In this paper we seek to assess the potential impact of microstructured fibres for security and defence applications. Recent literature has presented results on using microstructured fibre for delivery of high power, high quality radiation and also on the use of microstructured fibre for broadband source generation. Whilst these two applications may appear contradictory to one another the inherent design flexibility of microstructured fibres allows fibres to be fabricated for the specific application requirements, either minimising (for delivery) or maximising (for broadband source generation) the nonlinear effects. In platform based laser applications such as infrared counter measures, remote sensing and laser directed-energy weapons, a suitable delivery fibre providing high power, high quality light delivery would allow a laser to be sited remotely from the sensor/device head. This opens up the possibility of several sensor/device types sharing the same multi-functional laser, thus reducing the complexity and hence the cost of such systems. For applications requiring broadband source characteristics, microstructured fibres can also offer advantages over conventional sources. By exploiting the nonlinear effects it is possible to realise a multifunctional source for applications such as active hyperspectral imaging, countermeasures, and biochemical sensing. These recent results suggest enormous potential for these novel fibre types to influence the next generation of photonic systems for security and defence applications. However, it is important to establish where the fibres can offer the greatest advantages and what research still needs to be done to drive the technology towards real platform solutions.

  4. Mutualistic ants as an indirect defence against leaf pathogens.

    PubMed

    González-Teuber, Marcia; Kaltenpoth, Martin; Boland, Wilhelm

    2014-04-01

    Mutualistic ants are commonly considered as an efficient indirect defence against herbivores. Nevertheless, their indirect protective role against plant pathogens has been scarcely investigated. We compared the protective role against pathogens of two different ant partners, a mutualistic and a parasitic ant, on the host plant Acacia hindsii (Fabaceae). The epiphytic bacterial community on leaves was evaluated in the presence and absence of both ant partners by cultivation and by 454 pyrosequencing of the 16S rRNA gene. Pathogen-inflicted leaf damage, epiphytic bacterial abundance (colony-forming units) and number of operational taxonomic units (OTUs) were significantly higher in plants inhabited by parasitic ants than in plants inhabited by mutualistic ants. Unifrac unweighted and weighted principal component analyses showed that the bacterial community composition on leaves changed significantly when mutualistic ants were removed from plants or when plants were inhabited by parasitic ants. Direct mechanisms provided by ant-associated bacteria would contribute to the protective role against pathogens. The results suggest that the indirect defence of mutualistic ants also covers the protection from bacterial plant pathogens. Our findings highlight the importance of considering bacterial partners in ant-plant defensive mutualisms, which can contribute significantly to ant-mediated protection from plant pathogens. PMID:24392817

  5. Lessons from the battlefield: human factors in defence anaesthesia.

    PubMed

    Mercer, S J; Whittle, C L; Mahoney, P F

    2010-07-01

    Anaesthetists in the Defence Medical Services spend most of their clinical time in the National Health Service and deploy on military operations every 6-18 months. The deployed operational environment has a number of key differences particularly as there is more severe trauma than an average UK hospital and injury patterns are mainly due to blast or ballistics. Equipment may also be unfamiliar and there is an expectation to be conversant with specific standard operating procedures. Anaesthetists must be ready to arrive and work in an established team and effective non-technical skills (or human factors) are important to ensure success. This article looks at some of the ways that the Department of Military Anaesthesia, Pain and Critical Care prepares Defence Anaesthetists to work in the deployed environment and focuses on the importance of human factors. This includes current work in the field hospital in Afghanistan and also preparing to work for the Royal Air Force and Royal Navy. We highlight the importance of human factors with reference to the type of case mix seen in the field hospital. We also detail the current pre-deployment training package, which employs multiple educational tools including high-fidelity simulation. PMID:20551025

  6. Investigations of host defence in patients with sickle cell disease.

    PubMed

    Boghossian, S H; Wright, G; Webster, A D; Segal, A W

    1985-03-01

    Parameters of host defence were investigated in 30 patients with sickle cell disease (SCD). A newly devised perfusion system was used to study the kinetics in whole blood of leucocyte adherence, phagocytosis, killing and solubilization of a mixture of Staph. aureus and Str. pneumoniae, and secretion of lactoferrin. A skin window technique was used to examine the accumulation of leucocytes at inflammatory foci and their subsequent rate of movement through a filter. Serum concentrations of C3, C4, total haemolytic complement and immunoglobulins were also measured. The rate of neutrophil migration into filters was slightly reduced in patients with SCD. The proportion of monocytes that emigrated from the skin windows and their rate of migration were markedly diminished. The adhesion of neutrophils and their ability to kill staphylococci were also reduced, particularly in patients of the haemoglobin (Hb) SS and Hb S-beta-thalassaemia genotypes. Neutrophil function was mostly impaired in patients with the greatest frequency of bacterial infection. The rate of clearance of pneumococci was related to the concentration of type specific immunoglobulin G but not M. Serum concentrations of immunoglobulins and complement were normal. We were unable to define a defect of host defence of sufficient magnitude to explain the susceptibility of these patients to severe infection. PMID:3882140

  7. In defence of utility: the medical humanities and medical education.

    PubMed

    Blease, Charlotte

    2016-06-01

    The idea that a study of the humanities helps to humanise doctors has become a leitmotif within the field. It is argued that the humanities (especially, literature) help to foster insights beyond those provided by biomedical training. Healthy young medics, it is claimed, can thereby gain significant insights into patienthood, and obtain important skills that may be valuable for their professional life. But the instrumentality of the humanities is not the only justification proffered for its inclusion in medical curricula. In this paper I critically examine the two overarching justifications recurrently cited in the mainstream literature-namely, (1) the instrumental worth and (2) the intrinsic value of the medical humanities in educating doctors. Examining these theses (and focusing on the views of a leading medical humanities scholar) I show that the bifurcation into instrumental versus non-instrumental justifications is not supported by the argumentation. Instead, I find that the particulars of the supposedly intrinsic justifications amount to an unambiguously instrumental defence of the humanities. Contextualizing the present investigation to probe further, I describe a long history of debate about the role of the humanities in British education and find that it rests on unsupported dichotomies (utility vs non-utility, theoretical vs applied, educated vs trained). I conclude that the medical humanities' manifesto would be more intellectually honest and coherent, and provide a more robust defence of its value in medical education, if it chose to embrace a wholly instrumental rationale for its role. PMID:26842744

  8. Effects of light on direct and indirect defences against herbivores of young plants of Mallotus japonicus demonstrate a trade-off between two indirect defence traits

    PubMed Central

    Yamawo, Akira; Hada, Yoshio

    2010-01-01

    Background and Aims Although most studies on plant defence strategies have focused on a particular defence trait, some plant species develop multiple defence traits. To clarify the effects of light on the development of multiple defence traits, the production of direct and indirect defence traits of young plants of Mallotus japonicus were examined experimentally under different light conditions. Methods The young plants were cultivated under three light conditions in the experimental field for 3 months from May to July. Numbers of ants and pearl bodies on leaves in July were examined. After cultivation, the plants were collected and the developments of trichomes and pellucid dots, and extrafloral nectaries (EFNs) on the leaves were examined. On plants without nectar-collecting insects, the size of EFNs and the volume of extrafloral nectar secreted from the EFNs were examined. Key results Densities of trichomes and pellucid dots did not differ significantly among the plants under the different light conditions, suggesting that the chemical and physical defences function under both high and low light availability. The number of EFNs on the leaves did not differ significantly among the plants under the different light conditions, but there appeared to be a trade-off between the size of EFNs and the number of pearl bodies; the largest EFNs and the smallest number of pearl bodies were found under high light availability. EFN size was significantly correlated with the volume of extrafloral nectar secreted for 24 h. The number of ants on the plants was smaller under low light availability than under high and moderate light availability. Conclusions These results suggest that direct defence traits function regardless of light conditions, but light conditions affected the development of indirect defence traits. PMID:20472698

  9. An Exploratory Study of the Defence Mechanisms Used in Psychotherapy by Adults Who Have Intellectual Disabilities

    ERIC Educational Resources Information Center

    Newman, D. W.; Beail, N.

    2010-01-01

    Problem: A significant concept in psychodynamic theory and practice is that of defence mechanisms. The identifications of defences is a key task of the therapist and these are then used in the formulation and form part of the therapist's interventions. Case studies of psychotherapy with adults who have intellectual disabilities (IDs) suggest that…

  10. The role of ecological feedbacks in the evolution of host defence: what does theory tell us?

    PubMed Central

    Boots, Michael; Best, Alex; Miller, Martin R.; White, Andrew

    2008-01-01

    Hosts have evolved a diverse range of defence mechanisms in response to challenge by infectious organisms (parasites and pathogens). Whether defence is through avoidance of infection, control of the growth of the parasite once infected, clearance of the infection, tolerance to the disease caused by infection or innate and/or acquired immunity, it will have important implications for the population ecology (epidemiology) of the host–parasite interaction. As a consequence, it is important to understand the evolutionary dynamics of defence in the light of the ecological feedbacks that are intrinsic to the interaction. Here, we review the theoretical models that examine how these feedbacks influence the nature and extent of the defence that will evolve. We begin by briefly comparing different evolutionary modelling approaches and discuss in detail the modern game theoretical approach (adaptive dynamics) that allows ecological feedbacks to be taken into account. Next, we discuss a number of models of host defence in detail and, in particular, make a distinction between ‘resistance’ and ‘tolerance’. Finally, we discuss coevolutionary models and the potential use of models that include genetic and game theoretical approaches. Our aim is to review theoretical approaches that investigate the evolution of defence and to explain how the type of defence and the costs associated with its acquisition are important in determining the level of defence that evolves. PMID:18930880

  11. Simple Growth Patterns Can Create Complex Trajectories for the Ontogeny of Constitutive Chemical Defences in Seaweeds

    PubMed Central

    Paul, Nicholas A.; Svensson, Carl Johan; de Nys, Rocky; Steinberg, Peter D.

    2014-01-01

    All of the theory and most of the data on the ecology and evolution of chemical defences derive from terrestrial plants, which have considerable capacity for internal movement of resources. In contrast, most macroalgae – seaweeds – have no or very limited capacity for resource translocation, meaning that trade-offs between growth and defence, for example, should be localised rather than systemic. This may change the predictions of chemical defence theories for seaweeds. We developed a model that mimicked the simple growth pattern of the red seaweed Asparagopsis armata which is composed of repeating clusters of somatic cells and cells which contain deterrent secondary chemicals (gland cells). To do this we created a distinct growth curve for the somatic cells and another for the gland cells using empirical data. The somatic growth function was linked to the growth function for defence via differential equations modelling, which effectively generated a trade-off between growth and defence as these neighbouring cells develop. By treating growth and defence as separate functions we were also able to model a trade-off in growth of 2–3% under most circumstances. However, we found contrasting evidence for this trade-off in the empirical relationships between growth and defence, depending on the light level under which the alga was cultured. After developing a model that incorporated both branching and cell division rates, we formally demonstrated that positive correlations between growth and defence are predicted in many circumstances and also that allocation costs, if they exist, will be constrained by the intrinsic growth patterns of the seaweed. Growth patterns could therefore explain contrasting evidence for cost of constitutive chemical defence in many studies, highlighting the need to consider the fundamental biology and ontogeny of organisms when assessing the allocation theories for defence. PMID:24497991

  12. Effector-triggered defence against apoplastic fungal pathogens.

    PubMed

    Stotz, Henrik U; Mitrousia, Georgia K; de Wit, Pierre J G M; Fitt, Bruce D L

    2014-08-01

    R gene-mediated host resistance against apoplastic fungal pathogens is not adequately explained by the terms pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) or effector-triggered immunity (ETI). Therefore, it is proposed that this type of resistance is termed 'effector-triggered defence' (ETD). Unlike PTI and ETI, ETD is mediated by R genes encoding cell surface-localised receptor-like proteins (RLPs) that engage the receptor-like kinase SOBIR1. In contrast to this extracellular recognition, ETI is initiated by intracellular detection of pathogen effectors. ETI is usually associated with fast, hypersensitive host cell death, whereas ETD often triggers host cell death only after an elapsed period of endophytic pathogen growth. In this opinion, we focus on ETD responses against foliar fungal pathogens of crops. PMID:24856287

  13. Defence R&D Canada's autonomous intelligent systems program

    NASA Astrophysics Data System (ADS)

    Digney, Bruce L.; Hubbard, Paul; Gagnon, Eric; Lauzon, Marc; Rabbath, Camille; Beckman, Blake; Collier, Jack A.; Penzes, Steven G.; Broten, Gregory S.; Monckton, Simon P.; Trentini, Michael; Kim, Bumsoo; Farell, Philip; Hopkin, Dave

    2004-09-01

    The Defence Research and Development Canada's (DRDC has been given strategic direction to pursue research to increase the independence and effectiveness of military vehicles and systems. This has led to the creation of the Autonomous Intelligent Systems (AIS) prgram and is notionally divide into air, land and marine vehicle systems as well as command, control and decision support systems. This paper presents an overarching description of AIS research issues, challenges and directions as well as a nominal path that vehicle intelligence will take. The AIS program requires a very close coordination between research and implementation on real vehicles. This paper briefly discusses the symbiotic relationship between intelligence algorithms and implementation mechanisms. Also presented are representative work from two vehicle specific research program programs. Work from the Autonomous Air Systems program discusses the development of effective cooperate control for multiple air vehicle. The Autonomous Land Systems program discusses its developments in platform and ground vehicle intelligence.

  14. The immunology of host defence peptides: beyond antimicrobial activity.

    PubMed

    Hancock, Robert E W; Haney, Evan F; Gill, Erin E

    2016-05-01

    Host defence peptides (HDPs) are short, cationic amphipathic peptides with diverse sequences that are produced by various cells and tissues in all complex life forms. HDPs have important roles in the body's response to infection and inflammation. This Review focuses on human HDPs and explores the diverse immunomodulatory effects of HDPs from a systems biology perspective, which highlights the interconnected nature of the effect (or effects) of HDPs on the host. Studies have demonstrated that HDPs are expressed throughout the body and mediate a broad range of activities, which explains their association with various inflammatory diseases and autoimmune disorders. The diverse actions of HDPs, such as their roles in wound healing and in the maintenance of the microbiota, are also explored, in addition to potential therapeutic applications. PMID:27087664

  15. Modelling an infrared Man Portable Air Defence System

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard P.; Richardson, Mark A.; Brian, Butters; Roy, Walmsley

    2010-09-01

    The global proliferation of shoulder launched IR Man Portable Air Defence Systems (ManPADS) has resulted in the existence of a serious threat to both civilian and military aircraft from terrorist attack. Some of the older generations of ManPADS can be defeated with modern countermeasures but even the most sophisticated protection still has vulnerabilities to the latest family of ManPADS. This paper describes the work undertaken by the authors to model a second generation ManPAD, based on the Russian SA-14, and assess the vulnerabilities of aircraft both with and without flare countermeasures from these systems. The conclusions are the results of over 11,000 simulated firings against targets of varying aspects, velocities and altitudes.

  16. Circling the enemy: cyclic proteins in plant defence.

    PubMed

    Craik, David J

    2009-06-01

    Cyclotides are ultra-stable plant proteins that have a circular peptide backbone crosslinked by a cystine knot of disulfide bonds. They are produced in large quantities by plants of the Violaceae and Rubiaceae families and have a role in plant defence against insect predation. As I discuss here, recent studies have begun to reveal how their unique circular topology evolved. Cyclization is achieved by hijacking existing plant proteolytic enzymes and operating them in 'reverse' to form a peptide bond between the N- and C-termini of a linear precursor. Such studies suggest that circular proteins are more common in the plant kingdom than was previously thought, and their exceptional stability has led to their application as protein-engineering templates in drug design. PMID:19423383

  17. Antioxidant defence systems in the protozoan pathogen Giardia intestinalis.

    PubMed

    Mastronicola, Daniela; Falabella, Micol; Forte, Elena; Testa, Fabrizio; Sarti, Paolo; Giuffrè, Alessandro

    2016-01-01

    The microaerophilic protist Giardia intestinalis is the causative agent of giardiasis, one of the most common intestinal infectious diseases worldwide. The pathogen lacks not only respiratory terminal oxidases (being amitochondriate), but also several conventional antioxidant enzymes, including catalase, superoxide dismutase and glutathione peroxidase. In spite of this, since living attached to the mucosa of the proximal small intestine, the parasite should rely on an efficient antioxidant system to survive the oxidative and nitrosative stress conditions found in this tract of the human gut. Here, we review current knowledge on the antioxidant defence systems in G. intestinalis, focusing on the progress made over the last decade in the field. The relevance of this research and future perspectives are discussed. PMID:26672398

  18. Duodenal ulcer: a model of impaired mucosal defence.

    PubMed Central

    Gompertz, R H; Michalowski, A S; Man, W K; Spencer, J; Baron, J H

    1992-01-01

    There is a new model of chronic duodenal ulcer in which the ulcer is generated by irradiating the lower mediastinum of mice with a single dose of 18 Gy 250 kV x rays. Single ulcers develop in the proximal duodenum of about half the animals. Previous studies have shown a remarkable morphological and behavioural similarity to duodenal ulcer in man. Ulceration occurs because of an imbalance between aggressive and defensive forces within the duodenum and an attempt has been made to elucidate the pathomechanism of this ulcer by determining acid and pepsin secretion. The basal and pentagastrin stimulated secretion of acid, pepsin, and histamine were measured and no changes in acid or pepsin secretion were shown to occur (risk of type II error < 1%). It is therefore concluded that this chronic ulcer is a model of impaired duodenal defence. Images Figure 1 PMID:1383098

  19. Potato skin proteome is enriched with plant defence components

    PubMed Central

    Barel, Gilli; Ginzberg, Idit

    2008-01-01

    Periderm is a tissue of secondary origin that replaces damaged epidermis. It can be found in underground plant organs, as an above-ground tissue of woody species (cork), and as a wound-healing tissue. Its outer layers are composed of phellem cells with suberized walls that constitute a protective barrier, preventing pathogen invasion and fluid loss. In potato, a model for periderm studies, periderm tissue replaces the epidermis early in tuber development and the suberized phellems constitute the tuber's skin. To identify factors involved in phellem/skin development and that play a role in its defensive characteristics, two-dimensional gel electrophoresis was used to compare the skin and parenchymatic flesh proteomes of young developing tubers. Proteins exhibiting differentially high signal intensity in the skin were sorted by functional categories. As expected, the differential skin proteome was enriched in proteins whose activity is characteristic of actively dividing tissues such as cell proliferation, C1 metabolism, and the oxidative respiratory chain. Interestingly, the major functional category consisted of proteins (63%) involved in plant defence responses to biotic and abiotic stresses. This group included three isozymes of caffeoyl-CoA O-methyltransferase and five isozymes of peroxidase that may play a role in suberization processes. The differential expression of these proteins in the skin was further verified by RT-PCR of their corresponding transcripts in skin and tuber flesh samples. The results presented here shed light on the early events in skin development and further expand the concept of the periderm as a protective tissue containing an array of plant defence components. PMID:18653692

  20. Brood parasitism selects for no defence in a cuckoo host.

    PubMed

    Krüger, Oliver

    2011-09-22

    In coevolutionary arms races, like between cuckoos and their hosts, it is easy to understand why the host is under selection favouring anti-parasitism behaviour, such as egg rejection, which can lead to parasites evolving remarkable adaptations to 'trick' their host, such as mimetic eggs. But what about cases where the cuckoo egg is not mimetic and where the host does not act against it? Classically, such apparently non-adaptive behaviour is put down to evolutionary lag: given enough time, egg mimicry and parasite avoidance strategies will evolve. An alternative is that absence of egg mimicry and of anti-parasite behaviour is stable. Such stability is at first sight highly paradoxical. I show, using both field and experimental data to parametrize a simulation model, that the absence of defence behaviour by Cape bulbuls (Pycnonotus capensis) against parasitic eggs of the Jacobin cuckoo (Clamator jacobinus) is optimal behaviour. The cuckoo has evolved massive eggs (double the size of bulbul eggs) with thick shells, making it very hard or impossible for the host to eject the cuckoo egg. The host could still avoid brood parasitism by nest desertion. However, higher predation and parasitism risks later in the season makes desertion more costly than accepting the cuckoo egg, a strategy aided by the fact that many cuckoo eggs are incorrectly timed, so do not hatch in time and hence do not reduce host fitness to zero. Selection will therefore prevent the continuation of any coevolutionary arms race. Non-mimetic eggs and absence of defence strategies against cuckoo eggs will be the stable, if at first sight paradoxical, result. PMID:21288944

  1. Silicon-based plant defences, tooth wear and voles.

    PubMed

    Calandra, Ivan; Zub, Karol; Szafrańska, Paulina A; Zalewski, Andrzej; Merceron, Gildas

    2016-02-01

    Plant-herbivore interactions are hypothesized to drive vole population cycles through the grazing-induced production of phytoliths in leaves. Phytoliths act as mechanical defences because they deter herbivory and lower growth rates in mammals. However, how phytoliths impair herbivore performance is still unknown. Here, we tested whether the amount of phytoliths changes tooth wear patterns. If confirmed, abrasion from phytoliths could play a role in population crashes. We applied dental microwear texture analysis (DMTA) to laboratory and wild voles. Lab voles were fed two pelleted diets with differing amounts of silicon, which produced similar dental textures. This was most probably due to the loss of food mechanical properties through pelletization and/or the small difference in silicon concentration between diets. Wild voles were trapped in Poland during spring and summer, and every year across a population cycle. In spring, voles feed on silica-rich monocotyledons, while in the summer they also include silica-depleted dicotyledons. This was reflected in the results; the amount of silica therefore leaves a traceable record in the dental microwear texture of voles. Furthermore, voles from different phases of population cycles have different microwear textures. We tentatively propose that these differences result from grazing-induced phytolith concentrations. We hypothesize that the high amount of phytoliths in response to intense grazing in peak years may result in malocclusion and other dental abnormalities, which would explain how these silicon-based plant defences help provoke population crashes. DMTA could then be used to reconstruct vole population dynamics using teeth from pellets or palaeontological material. PMID:26889000

  2. Mechanisms and ecological consequences of plant defence induction and suppression in herbivore communities

    PubMed Central

    Kant, M. R.; Jonckheere, W.; Knegt, B.; Lemos, F.; Liu, J.; Schimmel, B. C. J.; Villarroel, C. A.; Ataide, L. M. S.; Dermauw, W.; Glas, J. J.; Egas, M.; Janssen, A.; Van Leeuwen, T.; Schuurink, R. C.; Sabelis, M. W.; Alba, J. M.

    2015-01-01

    Background Plants are hotbeds for parasites such as arthropod herbivores, which acquire nutrients and energy from their hosts in order to grow and reproduce. Hence plants are selected to evolve resistance, which in turn selects for herbivores that can cope with this resistance. To preserve their fitness when attacked by herbivores, plants can employ complex strategies that include reallocation of resources and the production of defensive metabolites and structures. Plant defences can be either prefabricated or be produced only upon attack. Those that are ready-made are referred to as constitutive defences. Some constitutive defences are operational at any time while others require activation. Defences produced only when herbivores are present are referred to as induced defences. These can be established via de novo biosynthesis of defensive substances or via modifications of prefabricated substances and consequently these are active only when needed. Inducibility of defence may serve to save energy and to prevent self-intoxication but also implies that there is a delay in these defences becoming operational. Induced defences can be characterized by alterations in plant morphology and molecular chemistry and are associated with a decrease in herbivore performance. These alterations are set in motion by signals generated by herbivores. Finally, a subset of induced metabolites are released into the air as volatiles and function as a beacon for foraging natural enemies searching for prey, and this is referred to as induced indirect defence. Scope The objective of this review is to evaluate (1) which strategies plants have evolved to cope with herbivores and (2) which traits herbivores have evolved that enable them to counter these defences. The primary focus is on the induction and suppression of plant defences and the review outlines how the palette of traits that determine induction/suppression of, and resistance/susceptibility of herbivores to, plant defences can

  3. Collective defence portfolios of ant hosts shift with social parasite pressure

    PubMed Central

    Jongepier, Evelien; Kleeberg, Isabelle; Job, Sylwester; Foitzik, Susanne

    2014-01-01

    Host defences become increasingly costly as parasites breach successive lines of defence. Because selection favours hosts that successfully resist parasitism at the lowest possible cost, escalating coevolutionary arms races are likely to drive host defence portfolios towards ever more expensive strategies. We investigated the interplay between host defence portfolios and social parasite pressure by comparing 17 populations of two Temnothorax ant species. When successful, collective aggression not only prevents parasitation but also spares host colonies the cost of searching for and moving to a new nest site. However, once parasites breach the host's nest defence, host colonies should resort to flight as the more beneficial resistance strategy. We show that under low parasite pressure, host colonies more likely responded to an intruding Protomognathus americanus slavemaker with collective aggression, which prevented the slavemaker from escaping and potentially recruiting nest-mates. However, as parasite pressure increased, ant colonies of both host species became more likely to flee rather than to fight. We conclude that host defence portfolios shift consistently with social parasite pressure, which is in accordance with the degeneration of frontline defences and the evolution of subsequent anti-parasite strategies often invoked in hosts of brood parasites. PMID:25100690

  4. Involvement of Thylakoid Overenergization in Tentoxin-Induced Chlorosis in Nicotiana spp.

    PubMed Central

    Holland, N.; Evron, Y.; Jansen, MAK.; Edelman, M.; Pick, U.

    1997-01-01

    The purpose of this work was to clarify the mechanism of tentoxin-induced chlorosis in Nicotiana spp. seedlings. We found that chlorosis does not correlate with the inhibition of chloroplast ATP synthesis in vivo, since it occurs at tentoxin concentrations far higher than that required for the inhibition of photophosphorylation measured in the same seedlings. However, tentoxin-induced chlorosis does correlate with in vivo overenergization of thylakoids. We show that tentoxin induces overenergization in intact plants and isolated thylakoids, probably via multiple interactions with ATP synthase. Furthermore, gramicidin D, a protonophore that relieves overenergization, also relieves chlorosis. Two lines of evidence suggest that reactive oxygen species may be involved in the process of chlorosis: ascorbate, a quencher of oxygen radicals, significantly protects against chlorosis, whereas transgenic Nicotiana spp. mutants overexpressing chloroplast superoxide dismutase are partially resistant to tentoxin-induced chlorosis. It is proposed that chlorosis in developing seedlings results from overenergization of thylakoids, which leads to the generation of oxygen radicals. PMID:12223749

  5. Genetic Diversity and Phylogeny of Antagonistic Bacteria against Phytophthora nicotianae Isolated from Tobacco Rhizosphere

    PubMed Central

    Jin, Fengli; Ding, Yanqin; Ding, Wei; Reddy, M.S.; Fernando, W.G. Dilantha; Du, Binghai

    2011-01-01

    The genetic diversity of antagonistic bacteria from the tobacco rhizosphere was examined by BOXAIR-PCR, 16S-RFLP, 16S rRNA sequence homology and phylogenetic analysis methods. These studies revealed that 4.01% of the 6652 tested had some inhibitory activity against Phytophthora nicotianae. BOXAIR-PCR analysis revealed 35 distinct amplimers aligning at a 91% similarity level, reflecting a high degree of genotypic diversity among the antagonistic bacteria. A total of 25 16S-RFLP patterns were identified representing over 33 species from 17 different genera. Our results also found a significant amount of bacterial diversity among the antagonistic bacteria compared to other published reports. For the first time; Delftia tsuruhatensis, Stenotrophomonas maltophilia, Advenella incenata, Bacillus altitudinis, Kocuria palustris, Bacillus licheniformis, Agrobacterium tumefaciens and Myroides odoratimimus are reported to display antagonistic activity towards Phytophthora nicotianae. Furthermore, the majority (75%) of the isolates assayed for antagonistic activity were Gram-positives compared to only 25% that were Gram-negative bacteria. PMID:21686169

  6. Metabolomic Assessment of Induced and Activated Chemical Defence in the Invasive Red Alga Gracilaria vermiculophylla

    PubMed Central

    Nylund, Göran M.; Weinberger, Florian; Rempt, Martin; Pohnert, Georg

    2011-01-01

    In comparison with terrestrial plants the mechanistic knowledge of chemical defences is poor for marine macroalgae. This restricts our understanding in the chemically mediated interactions that take place between algae and other organisms. Technical advances such as metabolomics, however, enable new approaches towards the characterisation of the chemically mediated interactions of organisms with their environment. We address defence responses in the red alga Gracilaria vermiculophylla using mass spectrometry based metabolomics in combination with bioassays. Being invasive in the north Atlantic this alga is likely to possess chemical defences according to the prediction that well-defended exotics are most likely to become successful invaders in systems dominated by generalist grazers, such as marine macroalgal communities. We investigated the effect of intense herbivore feeding and simulated herbivory by mechanical wounding of the algae. Both processes led to similar changes in the metabolic profile. Feeding experiments with the generalist isopod grazer Idotea baltica showed that mechanical wounding caused a significant increase in grazer resistance. Structure elucidation of the metabolites of which some were up-regulated more than 100 times in the wounded tissue, revealed known and novel eicosanoids as major components. Among these were prostaglandins, hydroxylated fatty acids and arachidonic acid derived conjugated lactones. Bioassays with pure metabolites showed that these eicosanoids are part of the innate defence system of macroalgae, similarly to animal systems. In accordance with an induced defence mechanism application of extracts from wounded tissue caused a significant increase in grazer resistance and the up-regulation of other pathways than in the activated defence. Thus, this study suggests that G. vermiculophylla chemically deters herbivory by two lines of defence, a rapid wound-activated process followed by a slower inducible defence. By unravelling

  7. The cytoskeleton in cell-autonomous immunity: structural determinants of host defence

    PubMed Central

    Mostowy, Serge; Shenoy, Avinash R.

    2016-01-01

    Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton — actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement — have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence. PMID:26292640

  8. Chronic ozone exacerbates the reduction in photosynthesis and acceleration of senescence caused by limited N availability in Nicotiana sylvestris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated ozone (O3) and limiting soil nitrogen (N) availability both negatively affect crop performance. However, little is known about how the combination of elevated O3 and limiting N affect crop growth and metabolism. In this study, we grew tobacco (Nicotiana sylvestris) in ambient and elevated O...

  9. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element.

    PubMed

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-08-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  10. BjMYB1, a transcription factor implicated in plant defence through activating BjCHI1 chitinase expression by binding to a W-box-like element

    PubMed Central

    Gao, Ying; Jia, Shuangwei; Wang, Chunlian; Wang, Fujun; Wang, Fajun; Zhao, Kaijun

    2016-01-01

    We previously identified the W-box-like-4 (Wbl-4) element (GTAGTGACTCAT), one of six Wbl elements in the BjC-P promoter of the unusual chitinase gene BjCHI1 from Brassica juncea, as the core element responsive to fungal infection. Here, we report the isolation and characterization of the cognate transcription factor interacting with the Wbl-4 element. Using Wbl-4 as a target, we performed yeast one-hybrid screening of a B. juncea cDNA library and isolated an R2R3-MYB transcription factor designated as BjMYB1. BjMYB1 was localized in the nucleus of plant cells. EMSA assays confirmed that BjMYB1 binds to the Wbl-4 element. Transiently expressed BjMYB1 up-regulated the activity of the BjC-P promoter through its binding to the Wbl-4 element in tobacco (Nicotiana benthamiana) leaves. In B. juncea, BjMYB1 displayed a similar induced expression pattern as that of BjCHI1 upon infection by the fungus Botrytis cinerea. Moreover, heterogeneous overexpression of BjMYB1 significantly elevated the resistance of transgenic Arabidopsis thaliana to the fungus B. cinerea. These results suggest that BjMYB1 is potentially involved in host defence against fungal attack through activating the expression of BjCHI1 by binding to the Wbl-4 element in the BjC-P promoter. This finding demonstrates a novel DNA target of plant MYB transcription factors. PMID:27353280

  11. In vitro cytotoxicity of Nicotiana gossei leaves, used in the Australian Aboriginal smokeless tobacco known as pituri or mingkulpa.

    PubMed

    Moghbel, Nahid; Ryu, BoMi; Cabot, Peter J; Steadman, Kathryn J

    2016-07-01

    The Aboriginal population of Central Australia use endemic Nicotiana species to make a smokeless tobacco product known usually as pituri or mingkulpa. Nicotiana leaves are masticated with wood ash into a 'quid' that is chewed/sucked for absorption of nicotine. In addition to nicotine, smokeless tobacco products contain a spectrum of biologically active compounds that may contribute to effects on health. The objective of this study was to quantify nicotine, and related alkaloids and tobacco specific nitrosamines (TSNAs), in Nicotiana leaves used in pituri, and compare in vitro toxicity of pure nicotine with Nicotiana leaf extract at the same concentration of nicotine. An aqueous extract of dry leaves of Nicotiana gossei and a reference smokeless tobacco (CORESTA CRP2) were quantified for major pyridine alkaloids and TSNAs using HPLC-UV and LC-MS/MS. A range of extract concentrations and corresponding concentrations of nicotine standard were tested using an MTS assay to measure human lung epithelium cell (A549) survival. Cells treated for 24h with the maximum concentration of 1.5mg/ml of nicotine resulted in 77% viability. In contrast, extracts from N. gossei leaves and CRP2 containing a similar concentration of nicotine (1.3mg/ml) resulted in remarkably lower viability of 1.5 and 6%, respectively. Comparison of cytotoxicity of pure nicotine with that of the extracts revealed that nicotine was not the source of their cytotoxicity. Other biologically active compounds such as the known carcinogens NNK and NNN, derived from nicotine and nornicotine and found to be present in the smokeless tobacco extracts, may be responsible. PMID:27178269

  12. An overview of the Defence Research Agency photovoltaic programme

    NASA Astrophysics Data System (ADS)

    Goodbody, C.; Davies, M. A. H.

    1993-05-01

    The Defense Research Agency (DRA) has been active in the photovoltaic field since the early 1960's, then as the Royal Aircraft Establishment (RAE). The early work was aimed at developing silicon cells, solar panels, and light-weight flexible arrays in support of the 'UK' and 'X' series of British scientific and technology satellites, for which the RAE was either the design authority or technical advisor. The X3 satellite - Prospero, launched in 1971 test flew 50 micron wrap-round silicon cells. The X4 satellite - Miranda, launched in 1974 test flew a deployable flexible silicon array which was developed at the DRA. During this period an extensive range of test equipment was developed which was maintained, modernized, and extended to date. Following a period of reduced activity in the late 1970's and early 1980's the current program evolved. The programs that have been undertaken since 1983 are briefly summarized. These range from various cell developments, new types of coverglasses, flight experiments, radiation testing, primary cell calibration, and environmental testing. The current photovoltaic program is mainly funded by the UK Ministry of Defence and by the Department of Trade and Industry through the British National Space Center (BNSC). The program is aimed at research and development, both internally and with industry, to meet the customer's technical objectives and requirements and to provide them with technical advice. The facilities are also being used on contract work for various national and international organizations.

  13. AhR sensing of bacterial pigments regulates antibacterial defence.

    PubMed

    Moura-Alves, Pedro; Faé, Kellen; Houthuys, Erica; Dorhoi, Anca; Kreuchwig, Annika; Furkert, Jens; Barison, Nicola; Diehl, Anne; Munder, Antje; Constant, Patricia; Skrahina, Tatsiana; Guhlich-Bornhof, Ute; Klemm, Marion; Koehler, Anne-Britta; Bandermann, Silke; Goosmann, Christian; Mollenkopf, Hans-Joachim; Hurwitz, Robert; Brinkmann, Volker; Fillatreau, Simon; Daffe, Mamadou; Tümmler, Burkhard; Kolbe, Michael; Oschkinat, Hartmut; Krause, Gerd; Kaufmann, Stefan H E

    2014-08-28

    The aryl hydrocarbon receptor (AhR) is a highly conserved ligand-dependent transcription factor that senses environmental toxins and endogenous ligands, thereby inducing detoxifying enzymes and modulating immune cell differentiation and responses. We hypothesized that AhR evolved to sense not only environmental pollutants but also microbial insults. We characterized bacterial pigmented virulence factors, namely the phenazines from Pseudomonas aeruginosa and the naphthoquinone phthiocol from Mycobacterium tuberculosis, as ligands of AhR. Upon ligand binding, AhR activation leads to virulence factor degradation and regulated cytokine and chemokine production. The relevance of AhR to host defence is underlined by heightened susceptibility of AhR-deficient mice to both P. aeruginosa and M. tuberculosis. Thus, we demonstrate that AhR senses distinct bacterial virulence factors and controls antibacterial responses, supporting a previously unidentified role for AhR as an intracellular pattern recognition receptor, and identify bacterial pigments as a new class of pathogen-associated molecular patterns. PMID:25119038

  14. Terahertz technology in biological and chemical sensing for defence

    NASA Astrophysics Data System (ADS)

    Woodward, Ruth M.

    2004-12-01

    The terahertz (1 THz = 1012 Hz, 3 mm or 33 cm-1) region of the electromagnetic spectrum is typically defined in the frequency range 100 GHz to 10 THz, corresponding to a wavelength range of 3 mm to 30 microns. Owing to a lack of suitable coherent sources and detectors, this region has only been investigated in earnest in the last ten years for terrestrial imaging and spectroscopy applications. Its role in the medical, pharmaceutical, non-destructive testing and more recently security industries is now being examined. The terahertz frequency range is of particular interest since it is able to probe several molecular interactions including the intermolecular vibrations, large amplitude vibrations and twisting and torsional modes. Molecules have also shown polarization sensitivity to the incident terahertz radiation. The ability of terahertz radiation to investigate conformational change makes it an important part of the electromagnetic spectrum. Terahertz radiation has the potential to provide additional information, which may complement other optically based sensing technologies. The use of terahertz technology in the security and defence industry is discussed, with a specific focus on biological and chemical sensing. The challenges faced in bringing terahertz technology into the market place will be discussed.

  15. Psychic skin: psychotic defences, borderline process and delusions.

    PubMed

    Schmidt, Martin

    2012-02-01

    In this paper, I apply the concept of psychic skin to analytic work with people suffering from personality disorders and psychoses. When psychoses emerge, the defensive skin which protects the ego is breached and violent unconscious forces rip through the personality. Some of the patients diagnosed as schizophrenic with whom I work have identified with archetypal characters such as Christ, Satan, John Lennon and the Queen. I attempt to show how the adoption of these inflated personas can serve as secondary psychic skins. Such delusional identifications can provide a protective shield to hide the denuded self and prevent intrusion from the external world. Through clinical example, I try to demonstrate how these archetypal 'second skins' can preserve life until internal and external conditions make it possible for the self to emerge. I contrast such psychotic identifications with 'thin-skinned' and 'thick-skinned' narcissism as well as 'defences of the self' in borderline states where the psychic skin may be damaged but does not disintegrate. I also look at the ways in which Jung's own personal experience was different from this and how he managed to avert psychotic breakdown. PMID:22288539

  16. An overview of the Defence Research Agency photovoltaic programme

    NASA Technical Reports Server (NTRS)

    Goodbody, C.; Davies, M. A. H.

    1993-01-01

    The Defense Research Agency (DRA) has been active in the photovoltaic field since the early 1960's, then as the Royal Aircraft Establishment (RAE). The early work was aimed at developing silicon cells, solar panels, and light-weight flexible arrays in support of the 'UK' and 'X' series of British scientific and technology satellites, for which the RAE was either the design authority or technical advisor. The X3 satellite - Prospero, launched in 1971 test flew 50 micron wrap-round silicon cells. The X4 satellite - Miranda, launched in 1974 test flew a deployable flexible silicon array which was developed at the DRA. During this period an extensive range of test equipment was developed which was maintained, modernized, and extended to date. Following a period of reduced activity in the late 1970's and early 1980's the current program evolved. The programs that have been undertaken since 1983 are briefly summarized. These range from various cell developments, new types of coverglasses, flight experiments, radiation testing, primary cell calibration, and environmental testing. The current photovoltaic program is mainly funded by the UK Ministry of Defence and by the Department of Trade and Industry through the British National Space Center (BNSC). The program is aimed at research and development, both internally and with industry, to meet the customer's technical objectives and requirements and to provide them with technical advice. The facilities are also being used on contract work for various national and international organizations.

  17. Thermal Imaging And Its Application In Defence Systems

    NASA Astrophysics Data System (ADS)

    Akula, Aparna; Ghosh, Ripul; Sardana, H. K.

    2011-10-01

    Thermal imaging is a boon to the armed forces namely army, navy and airforce because of its day night working capability and ability to perform well in all weather conditions. Thermal detectors capture the infrared radiation emitted by all objects above absolute zero temperature. The temperature variations of the captured scene are represented as a thermogram. With the advent of infrared detector technology, the bulky cooled thermal detectors having moving parts and demanding cryogenic temperatures have transformed into small and less expensive uncooled microbolometers having no moving parts, thereby making systems more rugged requiring less maintenance. Thermal imaging due to its various advantages has a large number of applications in military and defence. It is popularly used by the army and navy for border surveillance and law enforcement. It is also used in ship collision avoidance and guidance systems. In the aviation industry it has greatly mitigated the risks of flying in low light and night conditions. They are widely used in military aviation to identify, locate and target the enemy forces. Recently, they are also being incorporated in civil aviation for health monitoring of aircrafts.

  18. Faba bean forisomes can function in defence against generalist aphids.

    PubMed

    Medina-Ortega, Karla J; Walker, Gregory P

    2015-06-01

    Phloem sieve elements have shut-off mechanisms that prevent loss of nutrient-rich phloem sap when the phloem is damaged. Some phloem proteins such as the proteins that form forisomes in legume sieve elements are one such mechanism and in response to damage, they instantly form occlusions that stop the flow of sap. It has long been hypothesized that one function of phloem proteins is defence against phloem sap-feeding insects such as aphids. This study provides the first experimental evidence that aphid feeding can induce phloem protein occlusion and that the aphid-induced occlusions inhibit phloem sap ingestion. The great majority of phloem penetrations in Vicia faba by the generalist aphids Myzus persicae and Macrosiphum euphorbiae triggered forisome occlusion and the aphids eventually withdrew their stylets without ingesting phloem sap. This contrasts starkly with a previous study on the legume-specialist aphid, Acyrthosiphon pisum, where penetration of faba bean sieve elements did not trigger forisome occlusion and the aphids readily ingested phloem sap. Next, forisome occlusion was demonstrated to be the cause of failed phloem ingestion attempts by M. persicae: when occlusion was inhibited by the calcium channel blocker lanthanum, M. persicae readily ingested faba bean phloem sap. PMID:25311512

  19. Symbiotic bacteria enable olive fly larvae to overcome host defences

    PubMed Central

    Ben-Yosef, Michael; Pasternak, Zohar; Jurkevitch, Edouard; Yuval, Boaz

    2015-01-01

    Ripe fruit offer readily available nutrients for many animals, including fruit fly larvae (Diptera: Tephritidae) and their associated rot-inducing bacteria. Yet, during most of their ontogeny, fruit remain chemically defended and effectively suppress herbivores and pathogens by high levels of secondary metabolites. Olive flies (Bactrocera oleae) are uniquely able to develop in unripe olives. Unlike other frugivorous tephritids, the larvae maintain bacteria confined within their midgut caeca. We examined the interaction between larvae, their associated bacteria, and fruit chemical defence, hypothesizing that bacterial contribution to larval development is contingent on the phenology of fruit defensive chemistry. We demonstrate that larvae require their natural complement of bacteria (Candidatus Erwinia dacicola: Enterobacteriaceae) in order to develop in unripe olives. Conversely, when feeding on ripe fruit, larval development proceeds independently of these bacteria. Our experiments suggest that bacteria counteract the inhibitory effect of oleuropein—the principal phenolic glycoside in unripe olives. In light of these results, we suggest that the unique symbiosis in olive flies, compared with other frugivorous tephritids, is understood by considering the relationship between the fly, bacteria and fruit chemistry. When applied in an evolutionary context, this approach may also point out the forces which shaped symbioses across the Tephritidae. PMID:26587275

  20. Anxiety, defence and the elevated plus-maze.

    PubMed

    Rodgers, R J; Dalvi, A

    1997-11-01

    The elevated plus-maze test has been in use as a rodent model of anxiety for a decade, and is representative of those tests that are based upon the study of spontaneous behaviour patterns and which have high ecological validity. The origins of the test in studies of the relationship between exploration and fear are reviewed, and attention is drawn to the distinct possibility that variation in the pharmacosensitivity of the procedure may be attributable to often extreme methodological variation between laboratories. In considering further this issue, attention is also drawn to the need to collect data under constant test conditions and to provide the minimum database necessary to reach conclusions regarding the behavioural specificity of drug action. Recent research, which has extended the conventional plus-maze scoring technique to include specific behavioural acts and postures (in particular, those relating to defensive behaviour), is described. The value of such an ethological approach to the plus-maze is then exemplified with original data that demonstrate behaviourally selective, anti-anxiety effects of the GABAA receptor agonist, muscimol (0.125-1.0 mg/kg). It is concluded that, when used appropriately, the elevated plus-maze test can be a very valuable tool in drug screening and in the study of the neurobiology of anxiety and defence. More attention to behaviour and somewhat less emphasis on test simplicity and convenience would seem to be warranted. PMID:9415905

  1. A transcriptional reference map of defence hormone responses in potato.

    PubMed

    Wiesel, Lea; Davis, Jayne L; Milne, Linda; Redondo Fernandez, Vanesa; Herold, Miriam B; Middlefell Williams, Jill; Morris, Jenny; Hedley, Pete E; Harrower, Brian; Newton, Adrian C; Birch, Paul R J; Gilroy, Eleanor M; Hein, Ingo

    2015-01-01

    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies. PMID:26477733

  2. Abnormal antioxidant defence in some tissues of congenitally obese mice.

    PubMed Central

    Capel, I D; Dorrell, H M

    1984-01-01

    The concentration of lipoperoxides (estimated as thiobarbituric acid-reactive material) and some components of the antioxidant defence system have been compared in various tissues of lean and congenitally obese mice. NADPH-stimulated lipoperoxide generation in vitro was significantly higher in microsomes (microsomal fractions) prepared from obese hepatic tissue than lean. Plasma, liver and brain lipoperoxide concentration was significantly higher in obese mice. In blood derived from obese mice the concentration of non-enzymic antioxidants including caeruloplasmin and vitamin A was higher, but hepatic retinol concentration was lower in these animals. In all the tissues assayed the glutathione peroxidase activity against H2O2 was less than its activity against cumene hydroperoxide. Assayed with either substrate, glutathione peroxidase activity was significantly higher in the brain and blood of obese mice than their lean counterparts. Conversely, liver glutathione peroxidase was decreased in obese animals, representing 43% of the activity of the lean-mouse liver enzyme against H2O2 and 81% of the cumene hydroperoxide-reducing activity. The liver of obese mice had significantly less, and the kidneys more, oxidized glutathione than the corresponding tissues of lean mice. Further investigations on hepatic tissue indicated that glutathione reductase activity was lower in the obese animals, but there was no significant difference between glucose-6-phosphate dehydrogenase activity in obese and lean mice. PMID:6721863

  3. Diving bradycardia: a mechanism of defence against hypoxic damage.

    PubMed

    Alboni, Paolo; Alboni, Marco; Gianfranchi, Lorella

    2011-06-01

    A feature of all air-breathing vertebrates, diving bradycardia is triggered by apnoea and accentuated by immersion of the face or whole body in cold water. Very little is known about the afferents of diving bradycardia, whereas the efferent part of the reflex circuit is constituted by the cardiac vagal fibres. Diving bradycardia is associated with vasoconstriction of selected vascular beds and a reduction in cardiac output. The diving response appears to be more pronounced in mammals than in birds. In humans, the bradycardic response to diving varies greatly from person to person; the reduction in heart rate generally ranges from 15 to 40%, but a small proportion of healthy individuals can develop bradycardia below 20 beats/min. During prolonged dives, bradycardia becomes more pronounced because of activation of the peripheral chemoreceptors by a reduction in the arterial partial pressure of oxygen (O2), responsible for slowing of heart rate. The vasoconstriction is associated with a redistribution of the blood flow, which saves O2 for the O2-sensitive organs, such as the heart and brain. The results of several investigations carried out both in animals and in humans show that the diving response has an O2-conserving effect, both during exercise and at rest, thus lengthening the time to the onset of serious hypoxic damage. The diving response can therefore be regarded as an important defence mechanism for the organism. PMID:21330930

  4. A transcriptional reference map of defence hormone responses in potato

    PubMed Central

    Wiesel, Lea; Davis, Jayne L.; Milne, Linda; Redondo Fernandez, Vanesa; Herold, Miriam B.; Middlefell Williams, Jill; Morris, Jenny; Hedley, Pete E.; Harrower, Brian; Newton, Adrian C.; Birch, Paul R. J.; Gilroy, Eleanor M.; Hein, Ingo

    2015-01-01

    Phytohormones are involved in diverse aspects of plant life including the regulation of plant growth, development and reproduction, as well as governing biotic and abiotic stress responses. We have generated a comprehensive transcriptional reference map of the early potato responses to exogenous application of the defence hormones abscisic acid, brassinolides (applied as epibrassinolide), ethylene (applied as the ethylene precursor aminocyclopropanecarboxylic acid), salicylic acid and jasmonic acid (applied as methyl jasmonate). Of the 39000 predicted genes on the microarray, a total of 2677 and 2473 genes were significantly differentially expressed at 1 h and 6 h after hormone treatment, respectively. Specific marker genes newly identified for the early hormone responses in potato include: a homeodomain 20 transcription factor (DMG400000248) for abscisic acid; a SAUR gene (DMG400016561) induced in epibrassinolide treated plants; an osmotin gene (DMG400003057) specifically enhanced by aminocyclopropanecarboxylic acid; a gene weakly similar to AtWRKY40 (DMG402007388) that was induced by salicylic acid; and a jasmonate ZIM-domain protein 1 (DMG400002930) which was specifically activated by methyl jasmonate. An online database has been set up to query the expression patterns of potato genes represented on the microarray that can also incorporate future microarray or RNAseq-based expression studies. PMID:26477733

  5. Trained immunity: A smart way to enhance innate immune defence.

    PubMed

    van der Meer, Jos W M; Joosten, Leo A B; Riksen, Niels; Netea, Mihai G

    2015-11-01

    The innate arm of the immune system is generally viewed as primitive and non-specific and - in contrast to the adaptive immune arm - not to possess memory. However in plants and invertebrate animals that lack adaptive immunity, innate immunity will exhibit a prolonged enhanced functional state after adequate priming. A similar enhancement of function of the innate immunity has occasionally been described in vertebrates, including humans. Over the past few years we have studied this phenomenon in greater detail and we have coined the term 'Trained (innate) immunity' (TI). TI can be induced by a variety of stimuli, of which we have studied BCG and β-glucan in greater detail. The non-specific protective effects of BCG that have been observed in vaccination studies in the literature are probably due to TI. Monocytes and macrophages are among the main cells of the innate immune arm that can be trained. We have discovered that both BCG (via NOD2 signalling) and β-glucan (via dectin-1) induce epigenetic reprogramming, in particular stable changes in histone trimethylation at H3K4. These epigenetic changes lead to cellular activation, enhanced cytokine production and a change in the metabolic state of the cell with a shift from oxidative phosphorylation to aerobic glycolysis. TI is not only important for host defence and vaccine responses, but most probably also for diseases like atherosclerosis. Modulation of TI is a promising area for new treatments. PMID:26597205

  6. PLANT OLIGOSACCHARIDES ENHANCE WHEAT DEFENCE RESPONSE AGAINST SEPTORIA LEAF BLOTCH.

    PubMed

    Somai-Jemmali, L; Siah, A; Randoux, B; Reignault, Ph; Halama, P; Rodriguez, R; Hamada, W

    2015-01-01

    Our work provides the first evidence for elicitation and protection effects of preventive treatments with oligosaccharides (20%)-based new formulation (Oligos) against Mycosphaerella graminicola, a major pathogen of bread wheat (BW) and durum wheat (DW). In planta Oligos treatment led to strongly reduced hyphal growth, penetration, mesophyll colonization and fructification. During the necrotrophic phase, Oligos also drastically decreased the production of M. graminicola CWDE activities, such as xylanase and glucanase as well as protease activity in both wheat species, suggesting their correlation with disease severity. Concerning plant defence markers, PR2, Chi 4 precursor-, Per- and LOX-1-encoding genes were up-regulated, while glucanase (GLUC), catalase (CAT) and lipoxygenase (LOX) activities and total phenolic compound (PC) accumulation were induced in both (non-inoculated and inoculated contexts. In inoculated context, a localized accumulation of H2O2 and PC at fungal penetration sites and a specific induction of phenylalanine ammonia-Lyase (PAL) enzymatic activity were observed. Moreover, our experiment exhibited some similarities and differences in both wheat species responses. GLUC and CAT activities and H2O2 accumulation were more responsive in DW leaves, while LOX and PAL activities and PC accumulation occurred earlier and to a stronger extent in BW leaves. The tested Oligos formulation showed an interesting resistance induction activity characterized by a high and stable efficiency whatever the wheat species, suggesting it integration in common control strategies against STB on both DW and BW. PMID:27141743

  7. Contrasting ontogenetic trajectories for phenolic and terpenoid defences in Eucalyptus froggattii

    PubMed Central

    Goodger, Jason Q. D.; Heskes, Allison M.; Woodrow, Ian E.

    2013-01-01

    Background and Aims Plant defence metabolites are considered costly due to diversion of energy and nutrients away from growth. These costs combined with changes in resource availability and herbivory throughout plant ontogeny are likely to promote changes in defence metabolites. A comprehensive understanding of plant defence strategy requires measurement of lifetime ontogenetic trajectories – a dynamic component largely overlooked in plant defence theories. This study aimed to compare ontogenetic trajectories of foliar phenolics and terpenoids. Phenolics are predicted to be inexpensive to biosynthesize, whereas expensive terpenoids also require specialized, non-photosynthetic secretory structures to avoid autotoxicity. Based on these predicted costs, it is hypothesized that phenolics would be maximally deployed early in ontogeny, whereas terpenoids would be maximally deployed later, once the costs of biosynthesis and foregone photosynthesis could be overcome by enhanced resource acquisition. Methods Leaves were harvested from a family of glasshouse-grown Eucalyptus froggattii seedlings, field-grown saplings and the maternal parent tree, and analysed for total terpenoids and phenolics. Key Results Foliar phenolics were highest in young seedlings and lowest in the adult tree. Indeed the ratio of total phenolics to total terpenoids decreased in a significantly exponential manner with plant ontogeny. Most individual terpene constituents increased with plant ontogeny, but some mono- and sesquiterpenes remained relatively constant or even decreased in concentration as plants aged. Conclusions Plant ontogeny can influence different foliar defence metabolites in directionally opposite ways, and the contrasting trajectories support our hypothesis that phenolics would be maximally deployed earlier than terpenoids. The results highlight the importance of examining ontogenetic trajectories of defence traits when developing and testing theories of plant defence, and

  8. Trade-off among different anti-herbivore defence strategies along an altitudinal gradient.

    PubMed

    Dostálek, Tomáš; Rokaya, Maan Bahadur; Maršík, Petr; Rezek, Jan; Skuhrovec, Jiří; Pavela, Roman; Münzbergová, Zuzana

    2016-01-01

    The type and intensity of plant-herbivore interactions are likely to be altered under climate change as a consequence of differential dispersal rates of plants and their herbivores. Here, we studied variation in herbivore damage on Salvia nubicola in the field and compared its growth and defence strategies against herbivores in controlled conditions using seeds from populations along a broad altitudinal gradient. Our work is one of the first studies to simultaneously measure complex intraspecific variation in plant growth, direct and indirect defences as well as plant tolerance (ability to regrow) as a consequence of herbivore attack simulated by clipping. In the field, we found that plants experienced higher herbivore pressure in lower altitudes. In the greenhouse, plants grown from seeds collected in lower-altitude populations grew better and produced a higher content of phenolic compounds (direct defence) and volatile organic compounds (indirect defence) in response to simulated herbivory. However, there were no differences in tolerance and effect of S. nubicola extracts on the model generalist herbivore Spodoptera littoralis (direct defence) along the altitudinal gradient. Although we found that S. nubicola developed a range of defence strategies, the strategies do not seem to be used simultaneously in all populations even though most of them are correlated with altitudinal gradient. Our finding is in agreement with the current knowledge that co-expression of multiple defences might be costly for a plant, since investment in defensive traits is assumed to reduce the resource availability for growth and reproduction. Our study thus shows the importance of simultaneous study of different defence strategies since understanding these trade-offs could be necessary for detecting the mechanisms by which plants are able to cope with future climate change. PMID:27169609

  9. Trade-off among different anti-herbivore defence strategies along an altitudinal gradient

    PubMed Central

    Dostálek, Tomáš; Rokaya, Maan Bahadur; Maršík, Petr; Rezek, Jan; Skuhrovec, Jiří; Pavela, Roman; Münzbergová, Zuzana

    2016-01-01

    The type and intensity of plant–herbivore interactions are likely to be altered under climate change as a consequence of differential dispersal rates of plants and their herbivores. Here, we studied variation in herbivore damage on Salvia nubicola in the field and compared its growth and defence strategies against herbivores in controlled conditions using seeds from populations along a broad altitudinal gradient. Our work is one of the first studies to simultaneously measure complex intraspecific variation in plant growth, direct and indirect defences as well as plant tolerance (ability to regrow) as a consequence of herbivore attack simulated by clipping. In the field, we found that plants experienced higher herbivore pressure in lower altitudes. In the greenhouse, plants grown from seeds collected in lower-altitude populations grew better and produced a higher content of phenolic compounds (direct defence) and volatile organic compounds (indirect defence) in response to simulated herbivory. However, there were no differences in tolerance and effect of S. nubicola extracts on the model generalist herbivore Spodoptera littoralis (direct defence) along the altitudinal gradient. Although we found that S. nubicola developed a range of defence strategies, the strategies do not seem to be used simultaneously in all populations even though most of them are correlated with altitudinal gradient. Our finding is in agreement with the current knowledge that co-expression of multiple defences might be costly for a plant, since investment in defensive traits is assumed to reduce the resource availability for growth and reproduction. Our study thus shows the importance of simultaneous study of different defence strategies since understanding these trade-offs could be necessary for detecting the mechanisms by which plants are able to cope with future climate change. PMID:27169609

  10. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed

    PubMed Central

    Rasher, Douglas B.; Hay, Mark E.

    2014-01-01

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral–seaweed–herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332

  11. Parental risk management in relation to offspring defence: bad news for kids

    PubMed Central

    Mahr, Katharina; Riegler, Georg; Hoi, Herbert

    2015-01-01

    Do parents defend their offspring whenever necessary, and do self-sacrificing parents really exist? Studies recognized that parent defence is dynamic, mainly depending on the threat predators pose. In this context, parental risk management should consider the threat to themselves and to their offspring. Consequently, the observed defence should be a composite of both risk components. Surprisingly, no study so far has determined the influence of these two threat components on parental decision rules. In a field experiment, we investigated parental risk taking in relation to the threat posed to themselves and their offspring. To disentangle the two threat components, we examined defence behaviours of parent blue tits Cyanistes caeruleus towards three different predators and during different nestling developmental stages. Nest defence strategies in terms of alarm call intensity and nearest predator approach differed between the three predators. Defence intensity was only partly explained by threat level. Most importantly, parental risk management varied in relation to their own, but not offspring risk. Parent defence investment was independent of nestling risk when parents followed a high-risk strategy. However, parents considered nestling as well as parental risk when following a low-risk strategy. Our findings could have general implications for the economy of risk management and decision-making strategies in living beings, including humans. PMID:25392467

  12. Competition induces allelopathy but suppresses growth and anti-herbivore defence in a chemically rich seaweed.

    PubMed

    Rasher, Douglas B; Hay, Mark E

    2014-02-22

    Many seaweeds and terrestrial plants induce chemical defences in response to herbivory, but whether they induce chemical defences against competitors (allelopathy) remains poorly understood. We evaluated whether two tropical seaweeds induce allelopathy in response to competition with a reef-building coral. We also assessed the effects of competition on seaweed growth and seaweed chemical defence against herbivores. Following 8 days of competition with the coral Porites cylindrica, the chemically rich seaweed Galaxaura filamentosa induced increased allelochemicals and became nearly twice as damaging to the coral. However, it also experienced significantly reduced growth and increased palatability to herbivores (because of reduced chemical defences). Under the same conditions, the seaweed Sargassum polycystum did not induce allelopathy and did not experience a change in growth or palatability. This is the first demonstration of induced allelopathy in a seaweed, or of competitors reducing seaweed chemical defences against herbivores. Our results suggest that the chemical ecology of coral-seaweed-herbivore interactions can be complex and nuanced, highlighting the need to incorporate greater ecological complexity into the study of chemical defence. PMID:24403332

  13. Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants

    PubMed Central

    Song, Yuan Yuan; Ye, Mao; Li, Chuanyou; He, Xinhua; Zhu-Salzman, Keyan; Wang, Rui Long; Su, Yi Juan; Luo, Shi Ming; Zeng, Ren Sen

    2014-01-01

    Common mycorrhizal networks (CMNs) link multiple plants together. We hypothesized that CMNs can serve as an underground conduit for transferring herbivore-induced defence signals. We established CMN between two tomato plants in pots with mycorrhizal fungus Funneliformis mosseae, challenged a ‘donor' plant with caterpillar Spodoptera litura, and investigated defence responses and insect resistance in neighbouring CMN-connected ‘receiver' plants. After CMN establishment caterpillar infestation on ‘donor' plant led to increased insect resistance and activities of putative defensive enzymes, induction of defence-related genes and activation of jasmonate (JA) pathway in the ‘receiver' plant. However, use of a JA biosynthesis defective mutant spr2 as ‘donor' plants resulted in no induction of defence responses and no change in insect resistance in ‘receiver' plants, suggesting that JA signalling is required for CMN-mediated interplant communication. These results indicate that plants are able to hijack CMNs for herbivore-induced defence signal transfer and interplant defence communication. PMID:24468912

  14. Parental risk management in relation to offspring defence: bad news for kids.

    PubMed

    Mahr, Katharina; Riegler, Georg; Hoi, Herbert

    2015-01-01

    Do parents defend their offspring whenever necessary, and do self-sacrificing parents really exist? Studies recognized that parent defence is dynamic, mainly depending on the threat predators pose. In this context, parental risk management should consider the threat to themselves and to their offspring. Consequently, the observed defence should be a composite of both risk components. Surprisingly, no study so far has determined the influence of these two threat components on parental decision rules. In a field experiment, we investigated parental risk taking in relation to the threat posed to themselves and their offspring. To disentangle the two threat components, we examined defence behaviours of parent blue tits Cyanistes caeruleus towards three different predators and during different nestling developmental stages. Nest defence strategies in terms of alarm call intensity and nearest predator approach differed between the three predators. Defence intensity was only partly explained by threat level. Most importantly, parental risk management varied in relation to their own, but not offspring risk. Parent defence investment was independent of nestling risk when parents followed a high-risk strategy. However, parents considered nestling as well as parental risk when following a low-risk strategy. Our findings could have general implications for the economy of risk management and decision-making strategies in living beings, including humans. PMID:25392467

  15. Uncoupling of reactive oxygen species accumulation and defence signalling in the metal hyperaccumulator plant Noccaea caerulescens.

    PubMed

    Fones, Helen N; Eyles, Chris J; Bennett, Mark H; Smith, J Andrew C; Preston, Gail M

    2013-09-01

    The metal hyperaccumulator plant Noccaea caerulescens is protected from disease by the accumulation of high concentrations of metals in its aerial tissues, which are toxic to many pathogens. As these metals can lead to the production of damaging reactive oxygen species (ROS), metal hyperaccumulator plants have developed highly effective ROS tolerance mechanisms, which might quench ROS-based signals. We therefore investigated whether metal accumulation alters defence signalling via ROS in this plant. We studied the effect of zinc (Zn) accumulation by N. caerulescens on pathogen-induced ROS production, salicylic acid accumulation and downstream defence responses, such as callose deposition and pathogenesis-related (PR) gene expression, to the bacterial pathogen Pseudomonas syringae pv. maculicola. The accumulation of Zn caused increased superoxide production in N. caerulescens, but inoculation with P. syringae did not elicit the defensive oxidative burst typical of most plants. Defences dependent on signalling through ROS (callose and PR gene expression) were also modified or absent in N. caerulescens, whereas salicylic acid production in response to infection was retained. These observations suggest that metal hyperaccumulation is incompatible with defence signalling through ROS and that, as metal hyperaccumulation became effective as a form of elemental defence, normal defence responses became progressively uncoupled from ROS signalling in N. caerulescens. PMID:23758201

  16. A terpenoid phytoalexin plays a role in basal defense of Nicotiana benthamiana against Potato virus X.

    PubMed

    Li, Ran; Tee, Chuan-Sia; Jiang, Yu-Lin; Jiang, Xi-Yuan; Venkatesh, Prasanna Nori; Sarojam, Rajani; Ye, Jian

    2015-01-01

    Terpenoid phytoalexins function as defense compound against a broad spectrum of pathogens and pests in the plant kingdom. However, the role of phytoalexin in antiviral defense is still elusive. In this study, we identified the biosynthesis pathway of a sesquiterpenoid phytoalexin, capsidiol 3-acetate as an antiviral response against RNA virus Potato Virus X (PVX) in Nicotiana benthamiana. NbTPS1 and NbEAH genes were found strongly induced by PVX-infection. Enzymatic activity and genetic evidence indicated that both genes were involved in the PVX-induced biosynthesis of capsidiol 3-acetate. NbTPS1- or NbEAH-silenced plant was more susceptible to PVX. The accumulation of capsidiol 3-acetate in PVX-infected plant was partially regulated by jasmonic acid signaling receptor COI1. These findings provide an insight into a novel mechanism of how plant uses the basal arsenal machinery to mount a fight against virus attack even in susceptible species. PMID:25993114

  17. Identifying Growth Conditions for Nicotiana benthimiana Resulting in Predictable Gene Expression of Promoter-Gus Fusion

    NASA Astrophysics Data System (ADS)

    Sandoval, V.; Barton, K.; Longhurst, A.

    2012-12-01

    Revoluta (Rev) is a transcription factor that establishes leaf polarity inArabidopsis thaliana. Through previous work in Dr. Barton's Lab, it is known that Revoluta binds to the ZPR3 promoter, thus activating the ZPR3 gene product inArabidopsis thaliana. Using this knowledge, two separate DNA constructs were made, one carrying revgene and in the other, the ZPR3 promoter fussed with the GUS gene. When inoculated in Nicotiana benthimiana (tobacco), the pMDC32 plasmid produces the Rev protein. Rev binds to the ZPR3 promoter thereby activating the transcription of the GUS gene, which can only be expressed in the presence of Rev. When GUS protein comes in contact with X-Gluc it produce the blue stain seen (See Figure 1). In the past, variability has been seen of GUS expression on tobacco therefore we hypothesized that changing the growing conditions and leaf age might improve how well it's expressed.

  18. Redox-activated expression of the cytosolic copper/zinc superoxide dismutase gene in Nicotiana.

    PubMed Central

    Hérouart, D; Van Montagu, M; Inzé, D

    1993-01-01

    Superoxide dismutases (SODs; superoxide: superoxide oxidoreductase, EC 1.15.1.1) play a key role in protection against oxygen radicals, and SOD gene expression is highly induced during environmental stress. To determine the conditions of SOD induction, the promoter of the cytosolic copper/zinc SOD (Cu/ZnSODcyt) gene was isolated in Nicotiana plumbaginifolia and fused to the beta-glucuronidase reporter gene. Oxidative stress is likely to alter the cellular redox in favor of the oxidized status. Surprisingly, the expression of the Cu/ZnSODcyt gene is induced by sulfhydryl antioxidants such as reduced glutathione, cysteine, and dithiothreitol, whereas the oxidized forms of glutathione and cysteine have no effect. It is therefore possible that reduced glutathione directly acts as an antioxidant and simultaneously activates the Cu/ZnSODcyt gene during oxidative stress. Images Fig. 2 PMID:8464930

  19. Production of Recombinant Cholera Toxin B Subunit in Nicotiana benthamiana Using GENEWARE® Tobacco Mosaic Virus Vector.

    PubMed

    Moore, Lauren; Hamorsky, Krystal; Matoba, Nobuyuki

    2016-01-01

    Here, we describe a method to produce a recombinant cholera toxin B subunit in Nicotiana benthamiana plants (CTBp) using the GENEWARE(®) tobacco mosaic virus vector system. Infectious transcripts of the vector RNA are generated in vitro and inoculated on N. benthamiana seedlings. After 11 days, CTBp is extracted in a simple tris buffer at room temperature. No protease inhibitor is required. The leaf homogenate is treated with mild heat and a pH shift to selectively precipitate host-derived proteins. CTBp is purified to >95 % homogeneity by two-step chromatography using immobilized metal affinity and ceramic hydroxyapatite resins. This procedure yields on average 400 mg of low-endotoxin CTBp from 1 kg of fresh leaf material. PMID:26614286

  20. Multiple interactions of NaHER1 protein with abscisic acid signaling in Nicotiana attenuata plants

    PubMed Central

    Dinh, Son Truong; Baldwin, Ian T; Gális, Ivan

    2013-01-01

    Previously, we identified a novel herbivore elicitor-regulated protein in Nicotiana attenuata (NaHER1) that is required to suppress abscisic acid (ABA) catabolism during herbivore attack and activate a full defense response against herbivores. ABA, in addition to its newly defined role in defense activation, mainly controls seed germination and stomatal function of land plants. Here we show that N. attenuata seeds silenced in the expression of NaHER1 by RNA interference (irHER1) accumulated less ABA during germination, and germinated faster on ABA-containing media compared to WT. Curiously, epidermal cells of irHER1 plants were wrinkled, possibly due to the previously demonstrated increase in transpiration of irHER1 plants that may affect turgor and cause wrinkling of the cells. We conclude that NaHER1 is a highly pleiotropic regulator of ABA responses in N. attenuata plants. PMID:24022276

  1. Metabolomic analysis of wild and transgenic Nicotiana langsdorffii plants exposed to abiotic stresses: unraveling metabolic responses.

    PubMed

    Scalabrin, Elisa; Radaelli, Marta; Rizzato, Giovanni; Bogani, Patrizia; Buiatti, Marcello; Gambaro, Andrea; Capodaglio, Gabriele

    2015-08-01

    Nicotiana langsdorffii plants, wild and transgenic for the Agrobacterium rhizogenes rol C gene and the rat glucocorticoid receptor (GR) gene, were exposed to different abiotic stresses (high temperature, water deficit, and high chromium concentrations). An untargeted metabolomic analysis was carried out in order to investigate the metabolic effects of the inserted genes in response to the applied stresses and to obtain a comprehensive profiling of metabolites induced during abiotic stresses. High-performance liquid chromatography separation (HPLC) coupled to high-resolution mass spectrometry (HRMS) enabled the identification of more than 200 metabolites, and statistical analysis highlighted the most relevant compounds for each plant treatment. The plants exposed to heat stress showed a unique set of induced secondary metabolites, some of which were known while others were not previously reported for this kind of stress; significant changes were observed especially in lipid composition. The role of trichome, as a protection against heat stress, is here suggested by the induction of both acylsugars and glykoalkaloids. Water deficit and Cr(VI) stresses resulted mainly in enhanced antioxidant (HCAs, polyamine) levels and in the damage of lipids, probably as a consequence of reactive oxygen species (ROS) production. Moreover, the ability of rol C expression to prevent oxidative burst was confirmed. The results highlighted a clear influence of GR modification on plant stress response, especially to water deficiency-a phenomenon whose applications should be further investigated. This study provides new insights into the field of system biology and demonstrates the importance of metabolomics in the study of plant functioning. Graphical Abstract Untargeted metabolomic analysis was applied to wild type, GR and RolC modified Nicotiana Langsdorffii plants exposed to heat, water and Cr(VI) stresses. The key metabolites, highly affected by stress application, were identified

  2. Membrane transporters in self resistance of Cercospora nicotianae to the photoactivated toxin cercosporin.

    PubMed

    Beseli, Aydin; Amnuaykanjanasin, Alongkorn; Herrero, Sonia; Thomas, Elizabeth; Daub, Margaret E

    2015-11-01

    The goal of this work is to characterize membrane transporter genes in Cercospora fungi required for autoresistance to the photoactivated, active-oxygen-generating toxin cercosporin they produce for infection of host plants. Previous studies implicated a role for diverse membrane transporters in cercosporin resistance. In this study, transporters identified in a subtractive cDNA library between a Cercospora nicotianae wild type and a cercosporin-sensitive mutant were characterized, including two ABC transporters (CnATR2, CnATR3), an MFS transporter (CnMFS2), a uracil transporter, and a zinc transport protein. Phylogenetic analysis showed that only CnATR3 clustered with transporters previously characterized to be involved in cercosporin resistance. Quantitative RT-PCR analysis of gene expression under conditions of cercosporin toxicity, however, showed that only CnATR2 was upregulated, thus this gene was selected for further characterization. Transformation and expression of CnATR2 in the cercosporin-sensitive fungus Neurospora crassa significantly increased cercosporin resistance. Targeted gene disruption of CnATR2 in the wild type C. nicotianae, however, did not decrease resistance. Expression analysis of other transporters in the cnatr2 mutant under conditions of cercosporin toxicity showed significant upregulation of the cercosporin facilitator protein gene (CFP), encoding an MFS transporter previously characterized as playing an important role in cercosporin autoresistance in Cercospora species. We conclude that cercosporin autoresistance in Cercospora is mediated by multiple genes, and that the fungus compensates for mutations by up-regulation of other resistance genes. CnATR2 may be a useful gene, alone or in addition to other known resistance genes, for engineering Cercospora resistance in crop plants. PMID:25862648

  3. Microcins in action: amazing defence strategies of Enterobacteria.

    PubMed

    Rebuffat, Sylvie

    2012-12-01

    Probably the oldest and most widespread antimicrobial strategy in living organisms is the use of antimicrobial peptides. Bacteria secrete such defence peptides, termed bacteriocins, that they use for microbial competitions. Microcins are bacteriocins of less than 10 kDa produced by Escherichia coli and related enterobacteria through the ribosomal pathway. They are synthesized as linear precursors, which can further undergo complex post-translational modifications resulting from dedicated maturation enzymes encoded in the microcin gene clusters, and are processed by proteolytic cleavage. Microcins exert potent bactericidal activities that use subtle and clever mechanisms to cross outer and inner membranes of Gram-negative bacteria. To cross the outer membrane, siderophore-microcins hijack receptors involved in iron acquisition. The lasso-peptide microcin J25, which is characterized by a knotted arrangement where the C-terminal tail is threaded through an N-terminal macrolactam ring, uses a hydroxamate siderophore receptor and the inner-membrane protein SbmA for import in sensitive bacteria, where it inhibits bacterial transcription through binding to RNAP (RNA polymerase). Microcin C produced as a heptapeptide adenylate, requires an outer-membrane porin and an inner-membrane ABC (ATP-binding-cassette) transporter to reach the cytoplasm of target bacteria, where it is processed by proteases into a non-hydrolysable aspartyl-adenylate analogue. Therefore, despite showing different killing mechanisms and the absence of any structural homology, microcins have the common characteristic to use Trojan horse strategies to destroy their competitors. They offer new and promising tracks for further design and engineering of novel efficient antibiotics. PMID:23176498

  4. Fiber Bragg Grating Temperature Sensor for Defence and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Gebru, Haftay Abadi; Padhy, B. B.

    2011-10-01

    This paper presents the design and development of fiber Bragg grating (FBG) temperature sensor suitable for naval applications like temperature monitoring of onboard ships. The Bragg gratings used here have a reflection Bragg wavelength of 1550 nm and are inscribed by phase mask technique using ultraviolet (UV) laser beam at 255.3 nm. The high-resolution temperature sensor has been designed and developed based on the principle of converting the strain to temperature. This is achieved by using bimetallic configuration. Here lead and tungsten metals are used. The expansion of lead is concentrated on the Bragg grating, thus imparting strain on it. The wavelength shift with change of temperature is recorded with optical spectrum analyzer. The minimum temperature that could be measured accurately by the sensor with repeatability is of the order of 10-2. We have achieved thermal sensitivity of 46 pm/°C and 72 pm/°C for sensor lengths (length of the metallic strips) of 60 mm and 100 mm respectively. The thermal sensitivity achieved is approximately 3.5 times and 5.5 times that of bare FBG with thermal sensitivity of 13 pm/°C for the respective sensor lengths. This type of sensor can play vital role in defence and industrial applications like monitoring fresh water/lubricating oil temperatures of machinery in onboard ships, temperature monitoring of airframe of the aircraft, aircraft engine control system sensors, temperature measurement of hot gases from propellant combustion to protect the rocket motor casing, monitoring and control of temperature of copper bars of the power generators etc.

  5. Evolution of behavioural and cellular defences against parasitoid wasps in the Drosophila melanogaster subgroup.

    PubMed

    Lynch, Z R; Schlenke, T A; de Roode, J C

    2016-05-01

    It may be intuitive to predict that host immune systems will evolve to counter a broad range of potential challenges through simultaneous investment in multiple defences. However, this would require diversion of resources from other traits, such as growth, survival and fecundity. Therefore, ecological immunology theory predicts that hosts will specialize in only a subset of possible defences. We tested this hypothesis through a comparative study of a cellular immune response and a putative behavioural defence used by eight fruit fly species against two parasitoid wasp species (one generalist and one specialist). Fly larvae can survive infection by melanotically encapsulating wasp eggs, and female flies can potentially reduce infection rates in their offspring by laying fewer eggs when wasps are present. The strengths of both defences varied significantly but were not negatively correlated across our chosen host species; thus, we found no evidence for a trade-off between behavioural and cellular immunity. Instead, cellular defences were significantly weaker against the generalist wasp, whereas behavioural defences were similar in strength against both wasps and positively correlated between wasps. We investigated the adaptive significance of wasp-induced oviposition reduction behaviour by testing whether wasp-exposed parents produce offspring with stronger cellular defences, but we found no support for this hypothesis. We further investigated the sensory basis of this behaviour by testing mutants deficient in either vision or olfaction, both of which failed to reduce their oviposition rates in the presence of wasps, suggesting that both senses are necessary for detecting and responding to wasps. PMID:26859227

  6. Elicitin-like proteins Oli-D1 and Oli-D2 from Pythium oligandrum trigger hypersensitive response in Nicotiana benthamiana and induce resistance against Botrytis cinerea in tomato.

    PubMed

    Ouyang, Zhigang; Li, Xiaohui; Huang, Lei; Hong, Yongbo; Zhang, Yafen; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2015-04-01

    The biocontrol agent Pythium oligandrum and its elicitin-like proteins oligandrins have been shown to induce disease resistance in a range of plants. In the present study, the ability of two oligandrins, Oli-D1 and Oli-D2, to induce an immune response and the possible molecular mechanism regulating the defence responses in Nicotiana benthamiana and tomato were investigated. Infiltration of recombinant Oli-D1 and Oli-D2 proteins induced a typical immune response in N. benthamiana including the induction of a hypersensitive response (HR), accumulation of reactive oxygen species and production of autofluorescence. Agrobacterium-mediated transient expression assays revealed that full-length Oli-D1 and Oli-D2 were required for full HR-inducing activity in N. benthamiana, and virus-induced gene silencing-mediated knockdown of some of the signalling regulatory genes demonstrated that NbSGT1 and NbNPR1 were required for Oli-D1 and Oli-D2 to induce HR in N. benthamiana. Subcellular localization analyses indicated that both Oli-D1 and Oli-D2 were targeted to the plasma membrane of N. benthamiana. When infiltrated or transiently expressed in leaves, Oli-D1 and Oli-D2 induced resistance against Botrytis cinerea in tomato and activated the expression of a set of genes involved in the jasmonic acid/ethylene (JA/ET)-mediated signalling pathway. Our results demonstrate that Oli-D1 and Oli-D2 are effective elicitors capable of inducing immune responses in plants, probably through the JA/ET-mediated signalling pathway, and that both Oli-D1 and Oli-D2 have potential for the development of bioactive formulae for crop disease control in practice. PMID:25047132

  7. Simultaneous Detection and Quantification of Phytophthora nicotianae and P. cactorum, and Distribution Analyses in Strawberry Greenhouses by Duplex Real-time PCR

    PubMed Central

    Li, Mingzhu; Inada, Minoru; Watanabe, Hideki; Suga, Haruhisa; Kageyama, Koji

    2013-01-01

    Phytophthora nicotianae and P. cactorum cause Phytophthora rot of strawberry. A duplex real-time PCR technique for simultaneous detection and quantification of the two pathogens was developed. Species-specific primers for P. nicotianae and P. cactorum were designed based on the internal transcribed spacer regions (ITS) of rDNA and the ras-related protein gene Ypt1, respectively. TaqMan probes were labeled with FAM for P. nicotianae and HEX for P. cactorum. Specificities were demonstrated using 52 isolates, including various soil-borne pathogens. Sensitivities for P. nicotianae and P. cactorum DNAs were 10 fg and 1 pg, respectively. The technique was applied to naturally infested soil and root samples; the two pathogens were detected and the target DNA concentrations were quantified. Significant correlations of DNA quantities in roots and the surrounding soils were found. The minimum soil DNA concentration predicting the development of disease symptoms was estimated as 20 pg (g soil)−1. In three strawberry greenhouses examined, the target DNA concentrations ranged from 1 to 1,655 pg (g soil)−1 for P. nicotianae and from 13 to 233 pg (g soil)−1 for P. cactorum. The method proved fast and reliable, and provides a useful tool to monitor P. nicotianae and P. cactorum in plants or soils. PMID:23614901

  8. Predator-induced defences in Daphnia longicephala: location of kairomone receptors and timeline of sensitive phases to trait formation

    PubMed Central

    Weiss, Linda C.; Leimann, Julian; Tollrian, Ralph

    2015-01-01

    ABSTRACT The freshwater crustacean Daphnia adapts to changing predation risks by forming inducible defences. These are only formed when they are advantageous, saving associated costs when the defence is superfluous. However, in order to be effective, the time lag between the onset of predation and the defence formation has to be short. Daphnia longicephala develop huge protective crests upon exposure to chemical cues (kairomones) from its predator the heteropteran backswimmer Notonecta glauca. To analyse time lags, we determined kairomone-sensitive stages and the developmental time frames of inducible defences. Moreover, we looked at additive effects that could result from the summation of prolonged kairomone exposure. Kairomones are perceived by chemoreceptors and integrated by the nervous system, which alters the developmental program leading to defence formation. The underlying neuronal and developmental pathways are not thoroughly described and surprisingly, the location of the kairomone receptors is undetermined. We show that D. longicephala start to sense predator cues at the onset of the second juvenile instar, defences develop with a time lag of one instar and prolonged kairomone exposure does not impact the magnitude of the defence. By establishing a method to reversibly impair chemosensors, we show the first antennae as the location of kairomone-detecting chemoreceptors. This study provides fundamental information on kairomone perception, kairomone-sensitive stages, developmental time frames and lag times of inducible defences in D. longicephala that will greatly contribute to the further understanding of the neuronal and developmental mechanisms of predator-induced defences in Daphnia. PMID:26400980

  9. Members of the XB3 Family from Diverse Plant Species Induce Programmed Cell Death in Nicotiana benthamiana

    PubMed Central

    Huang, Xiaoen; Liu, Xueying; Chen, Xiuhua; Snyder, Anita; Song, Wen-Yuan

    2013-01-01

    Programmed cell death has been associated with plant immunity and senescence. The receptor kinase XA21 confers resistance to bacterial blight disease of rice (Oryza sativa) caused by Xanthomonas oryzae pv. oryzae (Xoo). Here we show that the XA21 binding protein 3 (XB3) is capable of inducing cell death when overexpressed in Nicotiana benthamiana. XB3 is a RING finger-containing E3 ubiquitin ligase that has been positively implicated in XA21-mediated resistance. Mutation abolishing the XB3 E3 activity also eliminates its ability to induce cell death. Phylogenetic analysis of XB3-related sequences suggests a family of proteins (XB3 family) with members from diverse plant species. We further demonstrate that members of the XB3 family from rice, Arabidopsis and citrus all trigger a similar cell death response in Nicotiana benthamiana, suggesting an evolutionarily conserved role for these proteins in regulating programmed cell death in the plant kingdom. PMID:23717500

  10. Light acclimation, retrograde signalling, cell death and immune defences in plants.

    PubMed

    Karpiński, Stanisław; Szechyńska-Hebda, Magdalena; Wituszyńska, Weronika; Burdiak, Paweł

    2013-04-01

    This review confronts the classical view of plant immune defence and light acclimation with recently published data. Earlier findings have linked plant immune defences to nucleotide-binding site leucine-rich repeat (NBS-LRR)-dependent recognition of pathogen effectors and to the role of plasma membrane-localized NADPH-dependent oxidoreductase (AtRbohD), reactive oxygen species (ROS) and salicylic acid (SA). However, recent results suggest that plant immune defence also depends on the absorption of excessive light energy and photorespiration. Rapid changes in light intensity and quality often cause the absorption of energy, which is in excess of that required for photosynthesis. Such excessive light energy is considered to be a factor triggering photoinhibition and disturbance in ROS/hormonal homeostasis, which leads to cell death in foliar tissues. We highlight here the tight crosstalk between ROS- and SA-dependent pathways leading to light acclimation, and defence responses leading to pathogen resistance. We also show that LESION SIMULATING DISEASE 1 (LSD1) regulates and integrates these processes. Moreover, we discuss the role of plastid-nucleus signal transduction, photorespiration, photoelectrochemical signalling and 'light memory' in the regulation of acclimation and immune defence responses. All of these results suggest that plants have evolved a genetic system that simultaneously regulates systemic acquired resistance (SAR), cell death and systemic acquired acclimation (SAA). PMID:23046215

  11. Targeted predation of extrafloral nectaries by insects despite localized chemical defences.

    PubMed

    Gish, Moshe; Mescher, Mark C; De Moraes, Consuelo M

    2015-10-01

    Extrafloral (EF) nectaries recruit carnivorous arthropods that protect plants from herbivory, but they can also be exploited by nectar thieves. We studied the opportunistic, targeted predation (and destruction) of EF nectaries by insects, and the localized chemical defences that plants presumably use to minimize this effect. In field and laboratory experiments, we identified insects that were possibly responsible for EF nectary predation in Vicia faba (fava bean) and determined the extent and accuracy of the feeding damage done to the EF nectaries by these insects. We also performed biochemical analyses of plant tissue samples in order to detect microscale distribution patterns of chemical defences in the area of the EF nectary. We observed selective, targeted feeding on EF nectaries by several insect species, including some that are otherwise not primarily herbivorous. Biochemical analyses revealed high concentrations of l-3,4-dihydroxyphenylalanine, a non-protein amino acid that is toxic to insects, near and within the EF nectaries. These results suggest that plants allocate defences to the protection of EF nectaries from predation, consistent with expectations of optimal defence theory, and that this may not be entirely effective, as insects limit their exposure to these defences by consuming only the secreting tissue of the nectary. PMID:26446809

  12. Leaf Colour as a Signal of Chemical Defence to Insect Herbivores in Wild Cabbage (Brassica oleracea)

    PubMed Central

    Wilkins, Lucas; Osorio, Daniel; Hartley, Susan E.

    2015-01-01

    Leaf colour has been proposed to signal levels of host defence to insect herbivores, but we lack data on herbivory, leaf colour and levels of defence for wild host populations necessary to test this hypothesis. Such a test requires measurements of leaf spectra as they would be sensed by herbivore visual systems, as well as simultaneous measurements of chemical defences and herbivore responses to leaf colour in natural host-herbivore populations. In a large-scale field survey of wild cabbage (Brassica oleracea) populations, we show that variation in leaf colour and brightness, measured according to herbivore spectral sensitivities, predicts both levels of chemical defences (glucosinolates) and abundance of specialist lepidopteran (Pieris rapae) and hemipteran (Brevicoryne brassicae) herbivores. In subsequent experiments, P. rapae larvae achieved faster growth and greater pupal mass when feeding on plants with bluer leaves, which contained lower levels of aliphatic glucosinolates. Glucosinolate-mediated effects on larval performance may thus contribute to the association between P. rapae herbivory and leaf colour observed in the field. However, preference tests found no evidence that adult butterflies selected host plants based on leaf coloration. In the field, B. brassicae abundance varied with leaf brightness but greenhouse experiments were unable to identify any effects of brightness on aphid preference or performance. Our findings suggest that although leaf colour reflects both levels of host defences and herbivore abundance in the field, the ability of herbivores to respond to colour signals may be limited, even in species where performance is correlated with leaf colour. PMID:26353086

  13. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer

    PubMed Central

    Fatouros, Nina E.; Pineda, Ana; Huigens, Martinus E.; Broekgaarden, Colette; Shimwela, Methew M.; Figueroa Candia, Ilich A.; Verbaarschot, Patrick; Bukovinszky, Tibor

    2014-01-01

    Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure. PMID:25009068

  14. "New Sport" in the street: self-defence, security and space in belle epoque Paris.

    PubMed

    Freundschuh, Aaron

    2006-01-01

    Near the turn of the twentieth century, traditional self-defence methods (for example, jiu-jitsu) were revamped into a more accessible and practical set of techniques and tactics for everyday use in urban public space. Framed as a "new sport" with broad public utility, early urban self-defence developed against the backdrop of heightening fears of violent crime and a burgeoning politics of security, as well as tensions provoked by the increasingly common appearance of unchaperoned, middle-class women in public. Self-defence masters pitched their innovations in an inclusive rhetoric, always with separate lessons for men and women and their respective spaces of risk. This article places modern self-defence practices in tension with historical transformations in the urban landscape, arguing that urban self-defence posited a certain subjective relation to the city that tapped simultaneously into the desire for empowerment, fantasies of criminal danger and a law-and-order tone that shaded into urban vigilantism. PMID:20737722

  15. Synergistic effects of direct and indirect defences on herbivore egg survival in a wild crucifer.

    PubMed

    Fatouros, Nina E; Pineda, Ana; Huigens, Martinus E; Broekgaarden, Colette; Shimwela, Methew M; Figueroa Candia, Ilich A; Verbaarschot, Patrick; Bukovinszky, Tibor

    2014-08-22

    Evolutionary theory of plant defences against herbivores predicts a trade-off between direct (anti-herbivore traits) and indirect defences (attraction of carnivores) when carnivore fitness is reduced. Such a trade-off is expected in plant species that kill herbivore eggs by exhibiting a hypersensitive response (HR)-like necrosis, which should then negatively affect carnivores. We used the black mustard (Brassica nigra) to investigate how this potentially lethal direct trait affects preferences and/or performances of specialist cabbage white butterflies (Pieris spp.), and their natural enemies, tiny egg parasitoid wasps (Trichogramma spp.). Both within and between black mustard populations, we observed variation in the expression of Pieris egg-induced HR. Butterfly eggs on plants with HR-like necrosis suffered lower hatching rates and higher parasitism than eggs that did not induce the trait. In addition, Trichogramma wasps were attracted to volatiles of egg-induced plants that also expressed HR, and this attraction depended on the Trichogramma strain used. Consequently, HR did not have a negative effect on egg parasitoid survival. We conclude that even within a system where plants deploy lethal direct defences, such defences may still act with indirect defences in a synergistic manner to reduce herbivore pressure. PMID:25009068

  16. An inducible morphological defence is a passive by-product of behaviour in a marine snail

    PubMed Central

    Bourdeau, Paul E.

    2010-01-01

    Many organisms have evolved inducible defences in response to spatial and temporal variability in predation risk. These defences are assumed to incur large costs to prey; however, few studies have investigated the mechanisms and costs underlying these adaptive responses. I examined the proximate cause of predator-induced shell thickening in a marine snail (Nucella lamellosa) and tested whether induced thickening leads to an increase in structural strength. Results indicate that although predators (crabs) induce thicker shells, the response is a passive by-product of reduced feeding and somatic growth rather than an active physiological response to predation risk. Physical tests indicate that although the shells of predator-induced snails are significantly stronger, the increase in performance is no different than that of snails with limited access to food. Increased shell strength is attributable to an increase in the energetically inexpensive microstructural layer rather than to material property changes in the shell. This mechanism suggests that predator-induced shell defences may be neither energetically nor developmentally costly. Positive correlations between antipredator behaviour and morphological defences may explain commonly observed associations between growth reduction and defence production in other systems and could have implications for the evolutionary potential of these plastic traits. PMID:19846462

  17. A review of the phytochemical support for the shifting defence hypothesis.

    PubMed

    Doorduin, Leonie J; Vrieling, Klaas

    2011-03-01

    Several theories have been developed to explain why invasive species are very successful and develop into pest species in their new area. The shifting defence hypothesis (SDH) argues that invasive plant species quickly evolve towards new defence levels in the invaded area because they lack their specialist herbivores but are still under attack by local (new) generalist herbivores. The SDH predicts that plants should increase their cheap, toxic defence compounds and lower their expensive digestibility reducing compounds. As a net result resources are saved that can be allocated to growth and reproduction giving these plants a competitive edge over the local plant species. We conducted a literature study to test whether toxic defence compounds in general are increased in the invaded area and if digestibility reducing compounds are lowered. We specifically studied the levels of pyrrolizidine alkaloids, a toxin which is known for its beneficial and detrimental impact against specialists and generalists, respectively. Digestibility reducers did not show a clear trend which might be due to the small number of studies and traits measured. The meta analysis showed that toxic compounds in general and pyrrolizidine alkaloid levels specifically, increased significantly in the invaded area, supporting the predictions of the SDH that a fast evolution takes place in the allocation towards defence. PMID:21475397

  18. Rapid evolution of antioxidant defence in a natural population of Daphnia magna.

    PubMed

    Oexle, S; Jansen, M; Pauwels, K; Sommaruga, R; De Meester, L; Stoks, R

    2016-07-01

    Natural populations can cope with rapid changes in stressors by relying on sets of physiological defence mechanisms. Little is known onto what extent these physiological responses reflect plasticity and/or genetic adaptation, evolve in the same direction and result in an increased defence ability. Using resurrection ecology, we studied how a natural Daphnia magna population adjusted its antioxidant defence to ultraviolet radiation (UVR) during a period with increasing incident UVR reaching the water surface. We demonstrate a rapid evolution of the induction patterns of key antioxidant enzymes under UVR exposure in the laboratory. Notably, evolutionary changes strongly differed among enzymes and mainly involved the evolution of UV-induced plasticity. Whereas D. magna evolved a strong plastic up-regulation of glutathione peroxidase under UVR, it evolved a lower plastic up-regulation of glutathione S-transferase and superoxide dismutase and a plastic down-regulation of catalase. The differentially evolved antioxidant strategies were collectively equally effective in dealing with oxidative stress because they resulted in the same high levels of oxidative damage (to lipids, proteins and DNA) and lowered fitness (intrinsic growth rate) under UVR exposure. The lack of better protection against UVR may suggest that the UVR exposure did not increase between both periods. Predator-induced evolution to migrate to lower depths that occurred during the same period may have contributed to the evolved defence strategy. Our results highlight the need for a multiple trait approach when focusing on the evolution of defence mechanisms. PMID:27018861

  19. A mathematical model of the defence mechanism of a bombardier beetle

    PubMed Central

    James, Alex; Morison, Ken; Todd, Simon

    2013-01-01

    Previous studies of bombardier beetles have shown that some species have a continuous discharge while others exhibit a pulsed discharge. Here, a mathematical model of the defence mechanism of the bombardier beetle is developed and the hypothesis that almost all bombardiers' defences have some sort of cyclic behaviour at frequencies much higher than previously thought is put forward. The observation of pulses arises from secondary lower frequency cycles that appear for some parameter values. For realistic parameter values, the model can exhibit all the characteristics seen in the various species of bombardier. The possibility that all bombardiers have the same underlying defence mechanism gives weight to the theory that all bombardiers' explosive secretory mechanisms have diversified from a common ancestral mechanism. PMID:23173197

  20. Overtopping failure analysis of coastal flood defences affected by climate change

    NASA Astrophysics Data System (ADS)

    Bahari Mehrabani, Mehrdad; Chen, Hua-Peng; Stevenson, Morris W.

    2015-07-01

    Sea defence structures are expected to protect coasts for a long period, hence requiring reliable performance assessment strategies, in order to ensure their integrity and functionality. It has been demonstrated that rising sea level together with changing wave height can lead to increase risks of the failure to coastal defence structures. This paper presents a method for assessing the risk of wave overtopping failure, analysing the joint probability of sea water level and significant wave height under future hydraulic conditions due to climate change. Monte Carlo simulations are utilised to analyse the time-dependant overtopping failure probability of a seawall in the UK subjected to sea level rise. The numerical results for the flood defence example show that the seawall subjected to the sea level rise with high emission scenario could face to a significant increase of the frequency and the rate of overtopping discharge in comparison with the present date conditions without consideration of seawall crest settlement.

  1. Can genetically based clines in plant defence explain greater herbivory at higher latitudes?

    PubMed

    Anstett, Daniel N; Ahern, Jeffrey R; Glinos, Julia; Nawar, Nabanita; Salminen, Juha-Pekka; Johnson, Marc T J

    2015-12-01

    Greater plant defence is predicted to evolve at lower latitudes in response to increased herbivore pressure. However, recent studies question the generality of this pattern. In this study, we tested for genetically based latitudinal clines in resistance to herbivores and underlying defence traits of Oenothera biennis. We grew plants from 137 populations from across the entire native range of O. biennis. Populations from lower latitudes showed greater resistance to multiple specialist and generalist herbivores. These patterns were associated with an increase in total phenolics at lower latitudes. A significant proportion of the phenolics were driven by the concentrations of two major ellagitannins, which exhibited opposing latitudinal clines. Our analyses suggest that these findings are unlikely to be explained by local adaptation of herbivore populations or genetic variation in phenology. Rather greater herbivory at high latitudes can be explained by latitudinal clines in the evolution of plant defences. PMID:26482702

  2. Immigration of susceptible hosts triggers the evolution of alternative parasite defence strategies.

    PubMed

    Chabas, Hélène; van Houte, Stineke; Høyland-Kroghsbo, Nina Molin; Buckling, Angus; Westra, Edze R

    2016-08-31

    Migration of hosts and parasites can have a profound impact on host-parasite ecological and evolutionary interactions. Using the bacterium Pseudomonas aeruginosa UCBPP-PA14 and its phage DMS3vir, we here show that immigration of naive hosts into coevolving populations of hosts and parasites can influence the mechanistic basis underlying host defence evolution. Specifically, we found that at high levels of bacterial immigration, bacteria switched from clustered regularly interspaced short palindromic repeats (CRISPR-Cas) to surface modification-mediated defence. This effect emerges from an increase in the force of infection, which tips the balance from CRISPR to surface modification-based defence owing to the induced and fixed fitness costs associated with these mechanisms, respectively. PMID:27581884

  3. Technical and Organizational Aspects of Protection from Ionizing Radiations within the Defence

    SciTech Connect

    Sabbatini, Vittorio

    2000-12-31

    When the Defence is not interested in the nuclear aspects connected with energy production or basic research, it must feel compelled to follow the nuclear activities for what concerns the nuclear protection needs within the operational forces. During the years, this has caused the installation and utilization of a nuclear reactor, laboratories specialized in radiological and nuclear matters and the management and utilization of radioactive material and radiogenic machines to satisfy additional requirements. A specific structure (CISAM) has been created within the Defence for these activities; it is able both to offer a valid protection organization to the forces assigned to operate militarily and to operate in peace time for the safety of personnel and the protection of environment. The purpose of this paper is to conduct a quick analysis of the Defence nuclear and radioprotection needs and to illustrate CISAM's function, the technical methods adopted and some specific protection arrangements connected with radiological emergencies.

  4. AlGaInN laser diode technology and systems for defence and security applications

    NASA Astrophysics Data System (ADS)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-05-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications such as underwater communications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries.

  5. LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against Aspergillus fumigatus.

    PubMed

    Sprenkeler, Evelien G G; Gresnigt, Mark S; van de Veerdonk, Frank L

    2016-09-01

    LC3-associated phagocytosis (LAP) is a non-canonical autophagy pathway involved in the maturation of single-membrane phagosomes and subsequent killing of ingested pathogens by phagocytes. This pathway is initiated following recognition of pathogens by pattern recognition receptors and leads to the recruitment of LC3 into the phagosomal membrane. This form of phagocytosis is utilized for the antifungal host defence and is required for an efficient fungal killing. Here, we provide an overview of the LAP pathway and review the role of LAP in anti-Aspergillus host defence, as well as mechanisms induced by Aspergillus that modulate LAP to promote its survival in the host. PMID:27185357

  6. Interactions between nutritional approaches and defences against microbial diseases in small ruminants.

    PubMed

    Caroprese, M; Giannenas, I; Fthenakis, G C

    2015-12-14

    Objective of this review is to discuss the role of small ruminant diet in the defence of these animals against microbial diseases, in relation to different experimental approaches and various stressors acting on animals. The effects of various diets in immune reactions and animal defences are presented. Also, effects in relation to the species studied and the type of stressors acting on animals are discussed. Evidence is provided about the significance of the diet in enhancing immune responses of small ruminants during specific conditions, e.g., around parturition, during lactation, as well as in growing lambs or kids. PMID:26228834

  7. Novel system for the simultaneous analysis of geminivirus DNA replication and plant interactions in Nicotiana benthamiana.

    PubMed

    Hong, Yiguo; Stanley, John; van Wezel, Rene

    2003-12-01

    The origin of replication of African cassava mosaic virus (ACMV) and a gene expression vector based on Potato virus X were exploited to devise an in planta system for functional analysis of the geminivirus replication-associated protein (Rep) in transgenic Nicotiana benthamiana line pOri-2. This line contains an integrated copy of a tandem repeat of the ACMV origin of replication flanking nonviral sequences that can be mobilized and replicated by Rep as an episomal replicon. A Rep-GFP fusion protein can also mobilize and amplify the replicon, facilitating Rep detection in planta. The activity of Rep and its mutants, Rep-mediated host response, and the correlation between Rep intracellular localization and biological functions could be effectively assessed by using this in planta system. Our results indicate that modification of amino acid residues R(2), R(5), R(7) and K(11) or H(56), L(57) and H(58) prevent Rep function in replication. This defect correlates with possible loss of Rep nuclear localization and inability to trigger the host defense mechanism resembling a hypersensitive response. PMID:14645587

  8. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana.

    PubMed

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our goal of creating a rich source of glucoraphanin for dietary supplements, we have previously reported the feasibility of engineering glucoraphanin in Nicotiana benthamiana through transient expression of glucoraphanin biosynthetic genes from A. thaliana (Mikkelsen et al., 2010). As side-products, we obtained fivefold to eightfold higher levels of chain-elongated leucine-derived glucosinolates, not found in the native plant. Here, we investigated two different strategies to improve engineering of the methionine chain elongation part of the glucoraphanin pathway in N. benthamiana: (1) coexpression of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g(-1) fresh weight that is equivalent to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production in a heterologous host. PMID:26909347

  9. The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana

    PubMed Central

    Deng, Xing-Guang; Zhu, Tong; Zhang, Da-Wei; Lin, Hong-Hui

    2015-01-01

    Brassinosteroids (BRs), plant steroid hormones, play essential roles in modulating cell elongation, vascular differentiation, senescence, and stress responses. However, the mechanisms by which BRs regulate plant mitochondria and resistance to abiotic stress remain largely unclear. Mitochondrial alternative oxidase (AOX) is involved in the plant response to a variety of environmental stresses. In this report, the role of AOX in BR-induced tolerance against cold, polyethylene glycol (PEG), and high-light stresses was investigated. Exogenous applied brassinolide (BL, the most active BR) induced, while brassinazole (BRZ, a BR biosynthesis inhibitor) reduced alternative respiration and AOX1 expression in Nicotiana benthamiana. Chemical scavenging of H2O2 and virus-induced gene silencing (VIGS) of NbRBOHB compromised the BR-induced alternative respiratory pathway, and this result was further confirmed by NbAOX1 promoter analysis. Furthermore, inhibition of AOX activity by chemical treatment or a VIGS-based approach decreased plant resistance to environmental stresses and compromised BR-induced stress tolerance. Taken together, our results indicate that BR-induced AOX capability might contribute to the avoidance of superfluous reactive oxygen species accumulation and the protection of photosystems under stress conditions in N. benthamiana. PMID:26175355

  10. Zoospore density-dependent behaviors of Phytophthora nicotianae are autoregulated by extracellular products.

    PubMed

    Kong, Ping; Hong, Chuanxue

    2010-07-01

    Phytophthora species are destructive fungus-like plant pathogens that use asexual single-celled flagellate zoospores for dispersal and plant infection. Many of the zoospore behaviors are density-dependent although the underlying mechanisms are poorly understood. Here, we use P. nicotianae as a model and demonstrate autoregulation of some zoospore behaviors using signal molecules that zoospores release into the environment. Specifically, zoospore aggregation, plant targeting, and infection required or were enhanced by threshold concentrations of these signal molecules. Below the threshold concentration, zoospores did not aggregate and move toward a cauline leaf of Arabidopsis thaliana (Col-0) and failed to individually attack annual vinca (Catharanthus roseus cv. Little Bright Eye). These processes were reversed when supplemented with zoospore-free fluid (ZFF) prepared from a zoospore suspension above threshold densities but not with calcium chloride at a concentration equivalent to extracellular Ca(2+) in ZFF. These results suggest that Ca(2+) is not a primary signal molecule regulating these communal behaviors. Zoospores coordinated their communal behaviors by releasing, detecting, and responding to signal molecules. This chemical communication mechanism raises the possibility that Phytophthora plant infection may not depend solely on zoospore number in the real world. Single zoospore infection may take place if it is signaled by a common molecule available in the environment which contributes to the destructiveness of these plant pathogens. PMID:20528180

  11. Natural variation in floral nectar proteins of two Nicotiana attenuata accessions

    PubMed Central

    2013-01-01

    Background Floral nectar (FN) contains not only energy-rich compounds to attract pollinators, but also defense chemicals and several proteins. However, proteomic analysis of FN has been hampered by the lack of publically available sequence information from nectar-producing plants. Here we used next-generation sequencing and advanced proteomics to profile FN proteins in the opportunistic outcrossing wild tobacco, Nicotiana attenuata. Results We constructed a transcriptome database of N. attenuata and characterized its nectar proteome using LC-MS/MS. The FN proteins of N. attenuata included nectarins, sugar-cleaving enzymes (glucosidase, galactosidase, and xylosidase), RNases, pathogen-related proteins, and lipid transfer proteins. Natural variation in FN proteins of eleven N. attenuata accessions revealed a negative relationship between the accumulation of two abundant proteins, nectarin1b and nectarin5. In addition, microarray analysis of nectary tissues revealed that protein accumulation in FN is not simply correlated with the accumulation of transcripts encoding FN proteins and identified a group of genes that were specifically expressed in the nectary. Conclusions Natural variation of identified FN proteins in the ecological model plant N. attenuata suggests that nectar chemistry may have a complex function in plant-pollinator-microbe interactions. PMID:23848992

  12. Insect herbivory elicits genome-wide alternative splicing responses in Nicotiana attenuata.

    PubMed

    Ling, Zhihao; Zhou, Wenwu; Baldwin, Ian T; Xu, Shuqing

    2015-10-01

    Changes in gene expression and alternative splicing (AS) are involved in many responses to abiotic and biotic stresses in eukaryotic organisms. In response to attack and oviposition by insect herbivores, plants elicit rapid changes in gene expression which are essential for the activation of plant defenses; however, the herbivory-induced changes in AS remain unstudied. Using mRNA sequencing, we performed a genome-wide analysis on tobacco hornworm (Manduca sexta) feeding-induced AS in both leaves and roots of Nicotiana attenuata. Feeding by M. sexta for 5 h reduced total AS events by 7.3% in leaves but increased them in roots by 8.0% and significantly changed AS patterns in leaves and roots of existing AS genes. Feeding by M. sexta also resulted in increased (in roots) and decreased (in leaves) transcript levels of the serine/arginine-rich (SR) proteins that are involved in the AS machinery of plants and induced changes in SR gene expression that were jasmonic acid (JA)-independent in leaves but JA-dependent in roots. Changes in AS and gene expression elicited by M. sexta feeding were regulated independently in both tissues. This study provides genome-wide evidence that insect herbivory induces changes not only in the levels of gene expression but also in their splicing, which might contribute to defense against and/or tolerance of herbivory. PMID:26306554

  13. WRKY Transcription Factors Phosphorylated by MAPK Regulate a Plant Immune NADPH Oxidase in Nicotiana benthamiana.

    PubMed

    Adachi, Hiroaki; Nakano, Takaaki; Miyagawa, Noriko; Ishihama, Nobuaki; Yoshioka, Miki; Katou, Yuri; Yaeno, Takashi; Shirasu, Ken; Yoshioka, Hirofumi

    2015-09-01

    Pathogen attack sequentially confers pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) after sensing of pathogen patterns and effectors by plant immune receptors, respectively. Reactive oxygen species (ROS) play pivotal roles in PTI and ETI as signaling molecules. Nicotiana benthamiana RBOHB, an NADPH oxidase, is responsible for both the transient PTI ROS burst and the robust ETI ROS burst. Here, we show that RBOHB transactivation mediated by MAPK contributes to R3a/AVR3a-triggered ETI (AVR3a-ETI) ROS burst. RBOHB is markedly induced during the ETI and INF1-triggered PTI (INF1-PTI), but not flg22-tiggered PTI (flg22-PTI). We found that the RBOHB promoter contains a functional W-box in the R3a/AVR3a and INF1 signal-responsive cis-element. Ectopic expression of four phospho-mimicking mutants of WRKY transcription factors, which are MAPK substrates, induced RBOHB, and yeast one-hybrid analysis indicated that these mutants bind to the cis-element. Chromatin immunoprecipitation assays indicated direct binding of the WRKY to the cis-element in plants. Silencing of multiple WRKY genes compromised the upregulation of RBOHB, resulting in impairment of AVR3a-ETI and INF1-PTI ROS bursts, but not the flg22-PTI ROS burst. These results suggest that the MAPK-WRKY pathway is required for AVR3a-ETI and INF1-PTI ROS bursts by activation of RBOHB. PMID:26373453

  14. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana.

    PubMed

    Pitino, Marco; Armstrong, Cheryl M; Cano, Liliana M; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus "Las" is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  15. Oligomerization status influences subcellular deposition and glycosylation of recombinant butyrylcholinesterase in Nicotiana benthamiana

    PubMed Central

    Schneider, Jeannine D; Marillonnet, Sylvestre; Castilho, Alexandra; Gruber, Clemens; Werner, Stefan; Mach, Lukas; Klimyuk, Victor; Mor, Tsafrir S; Steinkellner, Herta

    2014-01-01

    Plants have a proven track record for the expression of biopharmaceutically interesting proteins. Importantly, plants and mammals share a highly conserved secretory pathway that allows similar folding, assembly and posttranslational modifications of proteins. Human butyrylcholinesterase (BChE) is a highly sialylated, tetrameric serum protein, investigated as a bioscavenger for organophosphorous nerve agents. Expression of recombinant BChE (rBChE) in Nicotiana benthamiana results in accumulation of both monomers as well as assembled oligomers. In particular, we show here that co-expression of BChE with a novel gene-stacking vector, carrying six mammalian genes necessary for in planta protein sialylation, resulted in the generation of rBChE decorated with sialylated N-glycans. The N-glycosylation profile of monomeric rBChE secreted to the apoplast largely resembles the plasma-derived orthologue. In contrast, rBChE purified from total soluble protein extracts was decorated with a significant portion of ER-typical oligomannosidic structures. Biochemical analyses and live-cell imaging experiments indicated that impaired N-glycan processing is due to aberrant deposition of rBChE oligomers in the endoplasmic reticulum or endoplasmic-reticulum-derived compartments. In summary, we show the assembly of rBChE multimers, however, also points to the need for in-depth studies to explain the unexpected subcellular targeting of oligomeric BChE in plants. PMID:24618259

  16. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction.

    PubMed

    Villarroel, Carlos A; Jonckheere, Wim; Alba, Juan M; Glas, Joris J; Dermauw, Wannes; Haring, Michel A; Van Leeuwen, Thomas; Schuurink, Robert C; Kant, Merijn R

    2016-04-01

    Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses. PMID:26946468

  17. Transient Expression of Candidatus Liberibacter Asiaticus Effector Induces Cell Death in Nicotiana benthamiana

    PubMed Central

    Pitino, Marco; Armstrong, Cheryl M.; Cano, Liliana M.; Duan, Yongping

    2016-01-01

    Candidatus Liberibacter asiaticus “Las” is a phloem-limited bacterial plant pathogen, and the most prevalent species of Liberibacter associated with citrus huanglongbing (HLB), a devastating disease of citrus worldwide. Although, the complete sequence of the Las genome provides the basis for studying functional genomics of Las and molecular mechanisms of Las-plant interactions, the functional characterization of Las effectors remains a slow process since remains to be cultured. Like other plant pathogens, Las may deliver effector proteins into host cells and modulate a variety of host cellular functions for their infection progression. In this study, we identified 16 putative Las effectors via bioinformatics, and transiently expressed them in Nicotiana benthamiana. Diverse subcellular localization with different shapes and aggregation patterns of the effector candidates were revealed by UV- microscopy after transient expression in leaf tissue. Intriguingly, one of the 16 candidates, Las5315mp (mature protein), was localized in the chloroplast and induced cell death at 3 days post inoculation (dpi) in N. benthamiana. Moreover, Las5315mp induced strong callose deposition in plant cells. This study provides new insights into the localizations and potential roles of these Las effectors in planta. PMID:27458468

  18. Cytokinin levels and signaling respond to wounding and the perception of herbivore elicitors in Nicotiana attenuata

    PubMed Central

    Schäfer, Martin; Meza-Canales, Ivan D; Navarro-Quezada, Aura; Brütting, Christoph; Vanková, Radomira; Baldwin, Ian T; Meldau, Stefan

    2015-01-01

    Nearly half a century ago insect herbivores were found to induce the formation of green islands by manipulating cytokinin (CK) levels. However, the response of the CK pathway to attack by chewing insect herbivores remains unclear. Here, we characterize the CK pathway of Nicotiana attenuata (Torr. ex S. Wats.) and its response to wounding and perception of herbivore-associated molecular patterns (HAMPs). We identified 44 genes involved in CK biosynthesis, inactivation, degradation, and signaling. Leaf wounding rapidly induced transcriptional changes in multiple genes throughout the pathway, as well as in the levels of CKs, including isopentenyladenosine and cis-zeatin riboside; perception of HAMPs present in the oral secretions (OS) of the specialist herbivore Manduca sexta amplified these responses. The jasmonate pathway, which triggers many herbivore-induced processes, was not required for these HAMP-triggered changes, but rather suppressed the CK responses. Interestingly CK pathway changes were observed also in systemic leaves in response to wounding and OS application indicating a role of CKs in mediating long distance systemic processes in response to herbivory. Since wounding and grasshopper OS elicited similar accumulations of CKs in Arabidopsis thaliana L., we propose that CKs are integral components of wounding and HAMP-triggered responses in many plant species. PMID:24924599

  19. A molecular description of mutations affecting the pollen component of the Nicotiana alata S locus.

    PubMed Central

    Golz, J F; Su, V; Clarke, A E; Newbigin, E

    1999-01-01

    Mutations affecting the self-incompatibility response of Nicotiana alata were generated by irradiation. Mutants in the M1 generation were selected on the basis of pollen tube growth through an otherwise incompatible pistil. Twelve of the 18 M1 plants obtained from the mutagenesis screen were self-compatible. Eleven self-compatible plants had mutations affecting only the pollen function of the S locus (pollen-part mutants). The remaining self-compatible plant had a mutation affecting only the style function of the S locus (style-part mutant). Cytological examination of the pollen-part mutant plants revealed that 8 had an extra chromosome (2n + 1) and 3 did not. The pollen-part mutation in 7 M1 plants was followed in a series of crosses. DNA blot analysis using probes for S-RNase genes (encoding the style function of the S locus) indicated that the pollen-part mutation was associated with an extra S allele in 4 M1 plants. In 3 of these plants, the extra S allele was located on the additional chromosome. There was no evidence of an extra S allele in the 3 remaining M1 plants. The breakdown of self-incompatibility in plants with an extra S allele is discussed with reference to current models of the molecular basis of self-incompatibility. PMID:10388830

  20. Effects of Iron Excess on Nicotiana plumbaginifolia Plants (Implications to Oxidative Stress).

    PubMed Central

    Kampfenkel, K.; Van Montagu, M.; Inze, D.

    1995-01-01

    Fe excess is believed to generate oxidative stress. To contribute to the understanding of Fe metabolism, Fe excess was induced in Nicotiana plumbaginifolia grown in hydroponic culture upon root cutting. Toxicity symptoms leading to brown spots covering the leaf surface became visible after 6 h. Photosynthesis was greatly affected within 12 h; the photosynthetic rate was decreased by 40%. Inhibition of photosynthesis was accompanied by photoinhibition, increased reduction of photosystem II, and higher thylakoid energization. Fe excess seemed to stimulate photorespiration because catalase activity doubled. To cope with cellular damage, respiration rate increased and cytosolic glucose-6-phosphate dehydrogenase activity more than doubled. Simultaneously, the content of free hexoses was reduced. Indicative of generation of oxidative stress was doubling of ascorbate peroxidase activity within 12 h. Contents of the antioxidants ascorbate and glutathione were reduced by 30%, resulting in equivalent increases of dehydroascorbate and oxidized glutathione. Taken together, moderate changes in leaf Fe content have a dramatic effect on plant metabolism. This indicates that cellular Fe concentrations must be finely regulated to avoid cellular damage most probably because of oxidative stress induced by Fe. PMID:12228397

  1. Detection of Nicotiana DNA in Tobacco Products Using a Novel Multiplex Real-Time PCR Assay.

    PubMed

    Korchinski, Katie L; Land, Adrian D; Craft, David L; Brzezinski, Jennifer L

    2016-07-01

    Establishing that a product contains tobacco is a requirement for the U.S. Food and Drug Administration's regulation and/or prosecution of tobacco products. Therefore, a multiplex real-time PCR method was designed to determine if Nicotiana (tobacco) DNA is present in tobacco products. The PCR method simultaneously amplifies a 73 bp fragment of the cytochrome P450 monoxygenase CYP82E4 gene and 66 bp fragment in the nia-1 gene for nitrate reductase, which are detected using dual-labeled TaqMan probes. The assay is capable of detecting approximately 7.8 pg purified tobacco DNA, with a similar sensitivity for either gene target while incorporating an internal positive control (IPC). DNA was extracted from prepared tobacco products-including chewing tobacco, pipe tobacco, and snuff-or from the cut fill (no wrapper) of cigarettes and cigars. Of the 13 products analyzed, 12 were positive for both tobacco-specific markers and the IPC. DNA was also extracted from the fill of five varieties of herbal cigarettes, which were negative for both tobacco-specific gene targets and positive for the IPC. Our method expands on current assays by introducing a multiplex reaction, targeting two sequences in two different genes of interest, incorporating an IPC into the reaction, and lowering the LOD and LOQ while increasing the efficiency of the PCR. PMID:27143320

  2. An efficient Potato virus X -based microRNA silencing in Nicotiana benthamiana

    PubMed Central

    Zhao, Jinping; Liu, Qingtao; Hu, Pu; Jia, Qi; Liu, Na; Yin, Kangquan; Cheng, Ye; Yan, Fei; Chen, Jianping; Liu, Yule

    2016-01-01

    Plant microRNAs (miRNAs) play pivotal roles in many biological processes. Although many miRNAs have been identified in various plant species, the functions of these miRNAs remain largely unknown due to the shortage of effective genetic tools to block their functional activity. Recently, miRNA target mimic (TM) technologies have been applied to perturb the activity of specific endogenous miRNA or miRNA families. We previously reported that Tobacco rattle virus (TRV)-based TM expression can successfully mediate virus-based miRNA silencing/suppression (VbMS) in plants. In this study, we show the Potato virus X (PVX)-based TM expression causes strong miRNA silencing in Nicotiana benthamiana. The PVX-based expression of short tandem target mimic (STTMs) against miR165/166 and 159 caused the corresponding phenotype in all infected plants. Thus, a PVX-based VbMS is a powerful method to study miRNA function and may be useful for high-throughput investigation of miRNA function in N. benthamiana. PMID:26837708

  3. Optimization of Engineered Production of the Glucoraphanin Precursor Dihomomethionine in Nicotiana benthamiana

    PubMed Central

    Crocoll, Christoph; Mirza, Nadia; Reichelt, Michael; Gershenzon, Jonathan; Halkier, Barbara Ann

    2016-01-01

    Glucosinolates are natural products characteristic of the Brassicales order, which include vegetables such as cabbages and the model plant Arabidopsis thaliana. Glucoraphanin is the major glucosinolate in broccoli and associated with the health-promoting effects of broccoli consumption. Toward our goal of creating a rich source of glucoraphanin for dietary supplements, we have previously reported the feasibility of engineering glucoraphanin in Nicotiana benthamiana through transient expression of glucoraphanin biosynthetic genes from A. thaliana (Mikkelsen et al., 2010). As side-products, we obtained fivefold to eightfold higher levels of chain-elongated leucine-derived glucosinolates, not found in the native plant. Here, we investigated two different strategies to improve engineering of the methionine chain elongation part of the glucoraphanin pathway in N. benthamiana: (1) coexpression of the large subunit (LSU1) of the heterodimeric isopropylmalate isomerase and (2) coexpression of BAT5 transporter for efficient transfer of intermediates across the chloroplast membrane. We succeeded in raising dihomomethionine (DHM) levels to a maximum of 432 nmol g−1 fresh weight that is equivalent to a ninefold increase compared to the highest production of this intermediate, as previously reported (Mikkelsen et al., 2010). The increased DHM production without increasing leucine-derived side-product levels provides new metabolic engineering strategies for improved glucoraphanin production in a heterologous host. PMID:26909347

  4. Transient fusion and selective secretion of vesicle proteins in Phytophthora nicotianae zoospores.

    PubMed

    Zhang, Weiwei; Blackman, Leila M; Hardham, Adrienne R

    2013-01-01

    Secretion of pathogen proteins is crucial for the establishment of disease in animals and plants. Typically, early interactions between host and pathogen trigger regulated secretion of pathogenicity factors that function in pathogen adhesion and host penetration. During the onset of plant infection by spores of the Oomycete, Phytophthora nicotianae, proteins are secreted from three types of cortical vesicles. Following induction of spore encystment, two vesicle types undergo full fusion, releasing their entire contents onto the cell surface. However, the third vesicle type, so-called large peripheral vesicles, selectively secretes a small Sushi domain-containing protein, PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the plasma membrane. Selective secretion of PnCcp is associated with its compartmentalization within the vesicle periphery. Pharmacological inhibition of dynamin function, purportedly in vesicle fission, by dynasore treatment provides evidence that selective secretion of PnCcp requires transient fusion of the large peripheral vesicles. This is the first report of selective protein secretion via transient fusion outside mammalian cells. Selective secretion is likely to be an important aspect of plant infection by this destructive pathogen. PMID:24392285

  5. Reduced Susceptibility to Xanthomonas citri in Transgenic Citrus Expressing the FLS2 Receptor From Nicotiana benthamiana.

    PubMed

    Hao, Guixia; Pitino, Marco; Duan, Yongping; Stover, Ed

    2016-02-01

    Overexpression of plant pattern-recognition receptors by genetic engineering provides a novel approach to enhance plant immunity and broad-spectrum disease resistance. Citrus canker disease associated with Xanthomonas citri is one of the most important diseases damaging citrus production worldwide. In this study, we cloned the FLS2 gene from Nicotiana benthamiana cDNA and inserted it into the binary vector pBinPlus/ARS to transform Hamlin sweet orange and Carrizo citrange. Transgene presence was confirmed by polymerase chain reaction (PCR) and gene expression of NbFLS2 was compared by reverse transcription quantitative PCR. Reactive oxygen species (ROS) production in response to flg22Xcc was detected in transgenic Hamlin but not in nontransformed controls. Low or no ROS production was detected from nontransformed Hamlin seedlings challenged with flg22Xcc. Transgenic plants highly expressing NbFLS2 were selected and were evaluated for resistance to canker incited by X. citri 3213. Our results showed that the integration and expression of the NbFLS2 gene in citrus can increase canker resistance and defense-associated gene expression when challenged with X. citri. These results suggest that canker-susceptible Citrus genotypes lack strong basal defense induced by X. citri flagellin and the resistance of these genotypes can be enhanced by transgenic expression of the flagellin receptor from a resistant species. PMID:26554734

  6. In vivo effects of NbSiR silencing on chloroplast development in Nicotiana benthamiana.

    PubMed

    Kang, Yong-Won; Lee, Jae-Yong; Jeon, Young; Cheong, Gang-Won; Kim, Moonil; Pai, Hyun-Sook

    2010-04-01

    Sulfite reductase (SiR) performs dual functions, acting as a sulfur assimilation enzyme and as a chloroplast (cp-) nucleoid binding protein. In this study, we examined the in vivo effects of SiR deficiency on chloroplast development in Nicotiana benthamiana. Virus-induced gene silencing of NbSiR resulted in leaf yellowing and growth retardation phenotypes, which were not rescued by cysteine supplementation. NbSiR:GFP fusion protein was targeted to chloroplasts and colocalized with cp-nucleoids. Recombinant full-length NbSiR protein and the C-terminal half of NbSiR possessed cp-DNA compaction activities in vitro, and expression of full-length NbSiR in E. coli caused condensation of genomic DNA. NbSiR silencing differentially affected expression of plastid-encoded genes, inhibiting expression of several genes more severely than others. In the later stages, depletion of NbSiR resulted in chloroplast ablation. In NbSiR-silenced plants, enlarged cp-nucleoids containing an increased amount of cp-DNA were observed in the middle of the abnormal chloroplasts, and the cp-DNAs were predominantly of subgenomic sizes based on pulse field gel electrophoresis. The abnormal chloroplasts developed prolamellar body-like cubic lipid structures in the light without accumulating NADPH:protochlorophyllide oxidoreductase proteins. Our results suggest that NbSiR plays a role in cp-nucleoid metabolism, plastid gene expression, and thylakoid membrane development. PMID:20047069

  7. S1 domain-containing STF modulates plastid transcription and chloroplast biogenesis in Nicotiana benthamiana.

    PubMed

    Jeon, Young; Jung, Hyun Ju; Kang, Hunseung; Park, Youn-Il; Lee, Soon Hee; Pai, Hyun-Sook

    2012-01-01

    • In this study, we examined the biochemical and physiological functions of Nicotiana benthamiana S1 domain-containing Transcription-Stimulating Factor (STF) using virus-induced gene silencing (VIGS), cosuppression, and overexpression strategies. • STF : green fluorescent protein (GFP) fusion protein colocalized with sulfite reductase (SiR), a chloroplast nucleoid-associated protein also present in the stroma. Full-length STF and its S1 domain preferentially bound to RNA, probably in a sequence-nonspecific manner. • STF silencing by VIGS or cosuppression resulted in severe leaf yellowing caused by disrupted chloroplast development. STF deficiency significantly perturbed plastid-encoded multimeric RNA polymerase (PEP)-dependent transcript accumulation. Chloroplast transcription run-on assays revealed that the transcription rate of PEP-dependent plastid genes was reduced in the STF-silenced leaves. Conversely, the exogenously added recombinant STF protein increased the transcription rate, suggesting a direct role of STF in plastid transcription. Etiolated seedlings of STF cosuppression lines showed defects in the light-triggered transition from etioplasts to chloroplasts, accompanied by reduced light-induced expression of plastid-encoded genes. • These results suggest that STF plays a critical role as an auxiliary factor of the PEP transcription complex in the regulation of plastid transcription and chloroplast biogenesis in higher plants. PMID:22050604

  8. Molecular cloning and functional characterization of a putative sulfite oxidase (SO) ortholog from Nicotiana benthamiana.

    PubMed

    Xia, Zongliang; Su, Xinhong; Wu, Jianyu; Wu, Ke; Zhang, Hua

    2012-03-01

    Sulfite oxidase (SO) catalyzes the oxidation of sulfite to sulfate and thus has important roles in diverse metabolic processes. However, systematic molecular and functional investigations on the putative SO from tobacco (Nicotiana benthamiana) have hitherto not been reported. In this work, a full-length cDNA encoding putative sulfite oxidase from N. benthamiana (NbSO) was isolated. The deduced NbSO protein shares high homology and typical structural features with other species SOs. Phylogenetic analysis indicates that NbSO cDNA clone encodes a tobacco SO isoform. Southern blot analysis suggests that NbSO is a single-copy gene in the N. benthamiana genome. The NbSO transcript levels were higher in aerial tissues and were up-regulated in N. benthamiana during sulfite stress. Reducing the SO expression levels through virus-induced gene silencing caused a substantial accumulation in sulfite content and less sulfate accumulation in N. benthamiana leaves when exposed to sulfite stress, and thus resulted in decreased tolerance to sulfite stress. Taken together, this study improves our understanding on the molecular and functional properties of plant SO and provides genetic evidence on the involvement of SO in sulfite detoxification in a sulfite-oxidizing manner in N. benthamiana plants. PMID:21667106

  9. The Subcellular Localization and Functional Analysis of Fibrillarin2, a Nucleolar Protein in Nicotiana benthamiana

    PubMed Central

    Zheng, Luping; Yao, Jinai; Gao, Fangluan; Chen, Lin; Zhang, Chao; Lian, Lingli; Xie, Liyan; Wu, Zujian; Xie, Lianhui

    2016-01-01

    Nucleolar proteins play important roles in plant cytology, growth, and development. Fibrillarin2 is a nucleolar protein of Nicotiana benthamiana (N. benthamiana). Its cDNA was amplified by RT-PCR and inserted into expression vector pEarley101 labeled with yellow fluorescent protein (YFP). The fusion protein was localized in the nucleolus and Cajal body of leaf epidermal cells of N. benthamiana. The N. benthamiana fibrillarin2 (NbFib2) protein has three functional domains (i.e., glycine and arginine rich domain, RNA-binding domain, and α-helical domain) and a nuclear localization signal (NLS) in C-terminal. The protein 3D structure analysis predicted that NbFib2 is an α/β protein. In addition, the virus induced gene silencing (VIGS) approach was used to determine the function of NbFib2. Our results showed that symptoms including growth retardation, organ deformation, chlorosis, and necrosis appeared in NbFib2-silenced N. benthamiana. PMID:26885505

  10. Drought Stress Acclimation Imparts Tolerance to Sclerotinia sclerotiorum and Pseudomonas syringae in Nicotiana benthamiana

    PubMed Central

    Ramegowda, Venkategowda; Senthil-Kumar, Muthappa; Ishiga, Yasuhiro; Kaundal, Amita; Udayakumar, Makarla; Mysore, Kirankumar S.

    2013-01-01

    Acclimation of plants with an abiotic stress can impart tolerance to some biotic stresses. Such a priming response has not been widely studied. In particular, little is known about enhanced defense capacity of drought stress acclimated plants to fungal and bacterial pathogens. Here we show that prior drought acclimation in Nicotiana benthamiana plants imparts tolerance to necrotrophic fungus, Sclerotinia sclerotiorum, and also to hemi-biotrophic bacterial pathogen, Pseudomonas syringae pv. tabaci. S. sclerotiorum inoculation on N. benthamiana plants acclimated with drought stress lead to less disease-induced cell death compared to non-acclimated plants. Furthermore, inoculation of P. syringae pv. tabaci on N. benthamiana plants acclimated to moderate drought stress showed reduced disease symptoms. The levels of reactive oxygen species (ROS) in drought acclimated plants were highly correlated with disease resistance. Further, in planta growth of GFPuv expressing P. syringae pv. tabaci on plants pre-treated with methyl viologen showed complete inhibition of bacterial growth. Taken together, these experimental results suggested a role for ROS generated during drought acclimation in imparting tolerance against S. sclerotiorum and P. syringae pv. tabaci. We speculate that the generation of ROS during drought acclimation primed a defense response in plants that subsequently caused the tolerance against the pathogens tested. PMID:23644883

  11. Shifting Nicotiana attenuata's diurnal rhythm does not alter its resistance to the specialist herbivore Manduca sexta.

    PubMed

    Herden, Jasmin; Meldau, Stefan; Kim, Sang-Gyu; Kunert, Grit; Joo, Youngsung; Baldwin, Ian T; Schuman, Meredith C

    2016-07-01

    Arabidopsis thaliana plants are less resistant to attack by the generalist lepidopteran herbivore Trichoplusia ni when plants and herbivores are entrained to opposite, versus identical diurnal cycles and tested under constant conditions. This effect is associated with circadian fluctuations in levels of jasmonic acid, the transcription factor MYC2, and glucosinolate contents in leaves. We tested whether a similar effect could be observed in a different plant-herbivore system: the wild tobacco Nicotiana attenuata and its co-evolved specialist herbivore, Manduca sexta. We measured larval growth on plants under both constant and diurnal conditions following identical or opposite entrainment, profiled the metabolome of attacked leaf tissue, quantified specific metabolites known to reduce M. sexta growth, and monitored M. sexta feeding activity under all experimental conditions. Entrainment did not consistently affect M. sexta growth or plant defense induction. However, both were reduced under constant dark conditions, as was M. sexta feeding activity. Our data indicate that the response induced by M. sexta in N. attenuata is robust to diurnal cues and independent of plant or herbivore entrainment. We propose that while the patterns of constitutive or general damage-induced defense may undergo circadian fluctuation, the orchestration of specific induced responses is more complex. PMID:26699809

  12. DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata.

    PubMed

    Bozorov, Tohir Ahmadovich; Pandey, Shree Prakash; Dinh, Son Truong; Kim, Sang-Gyu; Heinrich, Maria; Gase, Klaus; Baldwin, Ian T

    2012-03-01

    DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions. PMID:22313877

  13. The effect of intermittent dosing of Nicotiana glauca on teratogenesis in goats.

    PubMed

    Welch, K D; Panter, K E; Lee, S T; Gardner, D R

    2015-01-01

    Sustained inhibition of fetal movement in livestock species, induced by several poisonous plants, can result in numerous skeletal-contracture malformations. Lupines are responsible for a condition in cattle referred to as "crooked calf syndrome" that occurs when pregnant cattle graze teratogenic lupines. Similar malformations are also seen in animals poisoned by Conium maculatum (coniine) and Nicotiana glauca (anabasine). A proposed management strategy to limit these types of birth defects includes utilizing an intermittent grazing schedule to allow short durations of grazing lupine-infested areas interrupted by movement to a lupine-free pasture. The objective of this study was to use a goat model to determine if an intermittent schedule of five continuous days on treatment followed by two days off treatment would be sufficient to decrease, or prevent, the incidence of anabasine-induced malformations. The data from this study suggest that, for N. glauca in goats, the intermittent grazing program of five days exposure with two days of non-exposure is insufficient to prevent significant skeletal malformations from occurring. However, this study did demonstrate an inverse relationship between the amount of serum anabasine in the dam and the extent of fetal movement. PMID:25451537

  14. Citrus leaf blotch virus invades meristematic regions in Nicotiana benthamiana and citrus.

    PubMed

    Agüero, Jesús; Vives, María Carmen; Velázquez, Karelia; Ruiz-Ruiz, Susana; Juárez, Jose; Navarro, Luis; Moreno, Pedro; Guerri, José

    2013-08-01

    To invade systemically host plants, viruses need to replicate in the infected cells, spread to neighbouring cells through plasmodesmata and move to distal parts of the plant via sieve tubes to start new infection foci. To monitor the infection of Nicotiana benthamiana plants by Citrus leaf blotch virus (CLBV), leaves were agroinoculated with an infectious cDNA clone of the CLBV genomic RNA expressing green fluorescent protein (GFP) under the transcriptional control of a duplicate promoter of the coat protein subgenomic RNA. Fluorescent spots first appeared in agroinfiltrated leaves 11-12 days after infiltration, indicating CLBV replication. Then, after entering the phloem vascular system, CLBV was unloaded in the upper parts of the plant and invaded all tissues, including flower organs and meristems. GFP fluorescence was not visible in citrus plants infected with CLBV-GFP. Therefore, to detect CLBV in meristematic regions, Mexican lime (Citrus aurantifolia) plants were graft inoculated with CLBV, with Citrus tristeza virus (CTV), a virus readily eliminated by shoot-tip grafting in vitro, or with both simultaneously. Although CLBV was detected by hybridization and real-time reverse transcription-polymerase chain reaction (RT-PCR) in 0.2-mm shoot tips in all CLBV-inoculated plants, CTV was not detected. These results explain the difficulty in eliminating CLBV by shoot-tip grafting in vitro. PMID:23560714

  15. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana

    PubMed Central

    Deng, Xing-Guang; Zhu, Tong; Peng, Xing-Ji; Xi, De-Hui; Guo, Hongqing; Yin, Yanhai; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Plant steroid hormones, brassinosteroids (BRs), play essential roles in plant growth, development and stress responses. However, mechanisms by which BRs interfere with plant resistance to virus remain largely unclear. In this study, we used pharmacological and genetic approaches in combination with infection experiments to investigate the role of BRs in plant defense against Tobacco Mosaic Virus (TMV) in Nicotiana benthamiana. Exogenous applied BRs enhanced plant resistance to virus infection, while application of Bikinin (inhibitor of glycogen synthase kinase-3), which activated BR signaling, increased virus susceptibility. Silencing of NbBRI1 and NbBSK1 blocked BR-induced TMV resistance, and silencing of NbBES1/BZR1 blocked Bikinin-reduced TMV resistance. Silencing of NbMEK2, NbSIPK and NbRBOHB all compromised BR-induced virus resistance and defense-associated genes expression. Furthermore, we found MEK2-SIPK cascade activated while BES1/BZR1 inhibited RBOHB-dependent ROS production, defense gene expression and virus resistance induced by BRs. Thus, our results revealed BR signaling had two opposite effects on viral defense response. On the one hand, BRs enhanced virus resistance through MEK2-SIPK cascade and RBOHB-dependent ROS burst. On the other hand, BES1/BZR1 inhibited RBOHB-dependent ROS production and acted as an important mediator of the trade-off between growth and immunity in BR signaling. PMID:26838475

  16. Role of brassinosteroid signaling in modulating Tobacco mosaic virus resistance in Nicotiana benthamiana.

    PubMed

    Deng, Xing-Guang; Zhu, Tong; Peng, Xing-Ji; Xi, De-Hui; Guo, Hongqing; Yin, Yanhai; Zhang, Da-Wei; Lin, Hong-Hui

    2016-01-01

    Plant steroid hormones, brassinosteroids (BRs), play essential roles in plant growth, development and stress responses. However, mechanisms by which BRs interfere with plant resistance to virus remain largely unclear. In this study, we used pharmacological and genetic approaches in combination with infection experiments to investigate the role of BRs in plant defense against Tobacco Mosaic Virus (TMV) in Nicotiana benthamiana. Exogenous applied BRs enhanced plant resistance to virus infection, while application of Bikinin (inhibitor of glycogen synthase kinase-3), which activated BR signaling, increased virus susceptibility. Silencing of NbBRI1 and NbBSK1 blocked BR-induced TMV resistance, and silencing of NbBES1/BZR1 blocked Bikinin-reduced TMV resistance. Silencing of NbMEK2, NbSIPK and NbRBOHB all compromised BR-induced virus resistance and defense-associated genes expression. Furthermore, we found MEK2-SIPK cascade activated while BES1/BZR1 inhibited RBOHB-dependent ROS production, defense gene expression and virus resistance induced by BRs. Thus, our results revealed BR signaling had two opposite effects on viral defense response. On the one hand, BRs enhanced virus resistance through MEK2-SIPK cascade and RBOHB-dependent ROS burst. On the other hand, BES1/BZR1 inhibited RBOHB-dependent ROS production and acted as an important mediator of the trade-off between growth and immunity in BR signaling. PMID:26838475

  17. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids

    PubMed Central

    Reynolds, Kyle B.; Taylor, Matthew C.; Zhou, Xue-Rong; Vanhercke, Thomas; Wood, Craig C.; Blanchard, Christopher L.; Singh, Surinder P.; Petrie, James R.

    2015-01-01

    Various research groups are investigating the production of oil in non-seed biomass such as leaves. Recently, high levels of oil accumulation have been achieved in plant biomass using a combination of biotechnological approaches which also resulted in significant changes to the fatty acid composition of the leaf oil. In this study, we were interested to determine whether medium-chain fatty acids (MCFA) could be accumulated in leaf oil. MCFA are an ideal feedstock for biodiesel and a range of oleochemical products including lubricants, coatings, and detergents. In this study, we explore the synthesis, accumulation, and glycerolipid head-group distribution of MCFA in leaves of Nicotiana benthamiana after transient transgenic expression of C12:0-, C14:0-, and C16:0-ACP thioesterase genes. We demonstrate that the production of these MCFA in leaf is increased by the co-expression of the WRINKLED1 (WRI1) transcription factor, with the lysophosphatidic acid acyltransferase (LPAAT) from Cocos nucifera being required for the assembly of tri-MCFA TAG species. We also demonstrate that the newly-produced MCFA are incorporated into the triacylglycerol of leaves in which WRI1 + diacylglycerol acyltransferase1 (DGAT1) genes are co-expressed for increased oil accumulation. PMID:25852716

  18. Purification of monoclonal antibody against Ebola GP1 protein expressed in Nicotiana benthamiana

    PubMed Central

    Fulton, Andrew; Lai, Huafang; Chen, Qiang; Zhang, Chenming

    2016-01-01

    Monoclonal antibodies (mAbs) are one of the fastest growing drug molecules targeting the treatment of diseases ranging from arthritis, immune disorders, and infectious diseases to cancer. Due to its unique application principle, antibodies are commonly produced in large quantities. Plants, such as Nicotiana benthamiana, offer a unique production platform for bio-therapeutics due to their ability to produce large amounts of biomolecules in a relatively quick manner. However, purification of a target protein from plant is an arduous task due to the presence of toxic compounds in ground plant tissue and the large quantities of plant tissues to be processed. Here, a process was developed prior to the chromatographic purification of a mAb against Ebola GP1 protein expressed in N. benthamiana. The process includes a diafiltration step and a charged polyelectrolyte precipitation. The diafiltration step significantly improved the precipitation efficiency, reducing the usage of polyelectrolyte by more than 2000 fold while improving the native plant protein removed from 60% to 80%. The mAb can then be purified to near homogeneity judging from SDS-PAGE by either Protein A affinity chromatography or a tandem of hydrophobic interaction chromatography and a hydrophobic charge induction chromatography. The purified mAbs were shown to retain their binding specificity to irradiated Ebola virus. PMID:25746758

  19. Sex-related differences in growth and carbon allocation to defence in Populus tremula as explained by current plant defence theories.

    PubMed

    Randriamanana, Tendry R; Nybakken, Line; Lavola, Anu; Aphalo, Pedro J; Nissinen, Katri; Julkunen-Tiitto, Riitta

    2014-05-01

    Plant defence theories have recently evolved in such a way that not only the quantity but also the quality of mineral nutrients is expected to influence plant constitutive defence. Recently, an extended prediction derived from the protein competition model (PCM) suggested that nitrogen (N) limitation is more important for the production of phenolic compounds than phosphorus (P). We aimed at studying sexual differences in the patterns of carbon allocation to growth and constitutive defence in relation to N and P availability in Populus tremula L. seedlings. We compared the gender responses in photosynthesis, growth and whole-plant allocation to phenolic compounds at different combination levels of N and P, and studied how they are explained by the main plant defence theories. We found no sexual differences in phenolic concentrations, but interestingly, slow-growing females had higher leaf N concentration than did males, and genders differed in their allocation priority. There was a trade-off between growth and the production of flavonoid-derived phenylpropanoids on one hand, and between the production of salicylates and flavonoid-derived phenylpropanoids on the other. Under limited nutrient conditions, females prioritized mineral nutrient acquisition, flavonoid and condensed tannin (CT) production, while males invested more in above-ground biomass. Salicylate accumulation followed the growth differentiation balance hypothesis as low N mainly decreased the production of leaf and stem salicylate content while the combination of both low N and low P increased the amount of flavonoids and CTs allocated to leaves and to a lesser extent stems, which agrees with the PCM. We suggest that such a discrepancy in the responses of salicylates and flavonoid-derived CTs is linked to their clearly distinct biosynthetic origins and/or their metabolic costs. PMID:24852570

  20. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation.

    PubMed

    Rajeevan, M S; Lang, A

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in flowering plants of several species, cultivars, and lines of Nicotiana differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied greatly, depending on genotype, source tissue and its developmental stage, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The finding that capacity to form flower buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, the source plants were all in the flowering stage, and no flower-bud formation can be obtained in explants from strictly vegetative Nicotiana plants. Hence, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state

  1. Infantile defences in parent-infant psychotherapy: The example of gaze avoidance.

    PubMed

    Salomonsson, Björn

    2016-02-01

    Findings from parent-infant observational research have stimulated the development of intersubjective models of psychotherapeutic action. These models have brought out the infant as an interactive partner with the parent. Conversely, interest in describing the individual psyche of the baby has decreased, especially the unconscious levels of his/her experiences and representations. In parallel, clinicians and researchers have been less prone to apply classical psychoanalytic concepts when describing the internal world of the infant. The author argues that this is inconsistent with the fact that psychoanalytic theory, from its inception, was founded on speculations of the infant's mind. He investigates one such concept from classical theory; the defence. Specifically, he investigates if selective gaze avoidance in young babies may be described as a defence or even a defence mechanism. The investigation links with Selma Fraiberg's discussion of the phenomenon and also with Freud's conception of defence. The author also compares his views on the baby as a subject with those suggested by infant researchers, for example, Stern and Beebe. The discussion is illustrated by vignettes from a psychoanalytic therapy with a 3 month-old girl and her mother. PMID:25988970

  2. Civil Defence Pedagogies and Narratives of Democracy: Disaster Education in Germany

    ERIC Educational Resources Information Center

    Chadderton, Charlotte

    2015-01-01

    "Disaster education" is a fledgling area of study in lifelong education. Many countries educate their populations for disasters, to mitigate potential damage and loss of life, as well as contribute to national security. In this paper, which draws on interview data from the German Federal Office for Civil Defence and Disaster Assistance…

  3. The Art of Loving in the Classroom: A Defence of Affective Pedagogy

    ERIC Educational Resources Information Center

    Patience, Allan

    2008-01-01

    This essay proposes a defence of a form of teaching eroded by what Sennet (2006) calls "the culture of the new capitalism". The term coined for the form under consideration here is "affective pedagogy." Affective pedagogy is evident in teachers who: (1) value a discipline (or disciplines) and their associated practices; (2)…

  4. Dopamine is a key regulator in the signalling pathway underlying predator-induced defences in Daphnia.

    PubMed

    Weiss, Linda C; Leese, Florian; Laforsch, Christian; Tollrian, Ralph

    2015-10-01

    The waterflea Daphnia is a model to investigate the genetic basis of phenotypic plasticity resulting from one differentially expressed genome. Daphnia develops adaptive phenotypes (e.g. morphological defences) thwarting predators, based on chemical predator cue perception. To understand the genomic basis of phenotypic plasticity, the description of the precedent cellular and neuronal mechanisms is fundamental. However, key regulators remain unknown. All neuronal and endocrine stimulants were able to modulate but not induce defences, indicating a pathway of interlinked steps. A candidate able to link neuronal with endocrine responses is the multi-functional amine dopamine. We here tested its involvement in trait formation in Daphnia pulex and Daphnia longicephala using an induction assay composed of predator cues combined with dopaminergic and cholinergic stimulants. The mere application of both stimulants was sufficient to induce morphological defences. We determined dopamine localization in cells found in close association with the defensive trait. These cells serve as centres controlling divergent morphologies. As a mitogen and sclerotization agent, we anticipate that dopamine is involved in proliferation and structural formation of morphological defences. Furthermore, dopamine pathways appear to be interconnected with endocrine pathways, and control juvenile hormone and ecdysone levels. In conclusion, dopamine is suggested as a key regulator of phenotypic plasticity. PMID:26423840

  5. Protect and Survive: "Whiteness" and the Middle-Class Family in Civil Defence Pedagogies

    ERIC Educational Resources Information Center

    Preston, John

    2008-01-01

    "Civil defence pedagogies" normalise continuous emergency through educational channels such as school, community and adult education. Using critical whiteness studies, and critiques of white supremacy from critical race theory, as a conceptual base, the protection of whiteness, and particularly the white middle-class family, is considered to be…

  6. Behavioural flexibility of the chemical defence in the parasitoid wasp Leptopilina heterotoma

    NASA Astrophysics Data System (ADS)

    Stökl, Johannes; Machacek, Zora; Ruther, Joachim

    2015-12-01

    Many insects use chemical defence mechanisms to defend themselves against predators. However, defensive secretions are costly to produce and should thus only be used in cases of real danger. This would require that insects are able to discriminate between predators to adjust their chemical defence. Here, we show that females of the parasitoid wasp Leptopilina heterotoma adjust the intensity of their chemical defence to differently sized predators. If attacked by Myrmica ants, the females always released their defensive secretion, which consists mainly of (-)-iridomyrmecin. However, if attacked by smaller Cardiocondyla ants, most females did not release any defensive spray, irrespective of the duration of the ant's aggression. When in contact with non-aggressive Nasonia wasps, the females of L. heterotoma did not release any defensive secretion. Our data show that females of L. heterotoma are able to discriminate between two predators and suggest that a predator of a certain size or strength is necessary to trigger the chemical defence mechanism of L. heterotoma.

  7. Pollen feeding, resource allocation and the evolution of chemical defence in passion vine butterflies.

    PubMed

    Cardoso, M Z; Gilbert, L E

    2013-06-01

    Evolution of pollen feeding in Heliconius has allowed exploitation of rich amino acid sources and dramatically reorganized life-history traits. In Heliconius, eggs are produced mainly from adult-acquired resources, leaving somatic development and maintenance to larva effort. This innovation may also have spurred evolution of chemical defence via amino acid-derived cyanogenic glycosides. In contrast, nonpollen-feeding heliconiines must rely almost exclusively on larval-acquired resources for both reproduction and defence. We tested whether adult amino acid intake has an immediate influence on cyanogenesis in Heliconius. Because Heliconius are more distasteful to bird predators than close relatives that do not utilize pollen, we also compared cyanogenesis due to larval input across Heliconius species and nonpollen-feeding relatives. Except for one species, we found that varying the amino acid diet of an adult Heliconius has negligible effect on its cyanide concentration. Adults denied amino acids showed no decrease in cyanide and no adults showed cyanide increase when fed amino acids. Yet, pollen-feeding butterflies were capable of producing more defence than nonpollen-feeding relatives and differences were detectable in freshly emerged adults, before input of adult resources. Our data points to a larger role of larval input in adult chemical defence. This coupled with the compartmentalization of adult nutrition to reproduction and longevity suggests that one evolutionary consequence of pollen feeding, shifting the burden of reproduction to adults, is to allow the evolution of greater allocation of host plant amino acids to defensive compounds by larvae. PMID:23662837

  8. Comparing Presidents and Their Actions "To Provide for the Common Defence"

    ERIC Educational Resources Information Center

    O'Brien, Joe; Hood, Jack

    2009-01-01

    As noted by Onosko, the nature of the social studies curriculum typically results in superficial and disconnected coverage of the content with few opportunities for in-depth investigation and discussion of that content. Engaging students in a comparative study of U.S. Presidents and actions they took "to provide for the common defence" offers one…

  9. Behavioural flexibility of the chemical defence in the parasitoid wasp Leptopilina heterotoma.

    PubMed

    Stökl, Johannes; Machacek, Zora; Ruther, Joachim

    2015-12-01

    Many insects use chemical defence mechanisms to defend themselves against predators. However, defensive secretions are costly to produce and should thus only be used in cases of real danger. This would require that insects are able to discriminate between predators to adjust their chemical defence. Here, we show that females of the parasitoid wasp Leptopilina heterotoma adjust the intensity of their chemical defence to differently sized predators. If attacked by Myrmica ants, the females always released their defensive secretion, which consists mainly of (-)-iridomyrmecin. However, if attacked by smaller Cardiocondyla ants, most females did not release any defensive spray, irrespective of the duration of the ant's aggression. When in contact with non-aggressive Nasonia wasps, the females of L. heterotoma did not release any defensive secretion. Our data show that females of L. heterotoma are able to discriminate between two predators and suggest that a predator of a certain size or strength is necessary to trigger the chemical defence mechanism of L. heterotoma. PMID:26492890

  10. Predator responses to novel haemolymph defences of Western corn rootworm (Diabrotica virgifera) larvae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many herbivorous arthropods use defensive chemistry to discourage predators from attacking. This chemistry relies on the ability of predators to rapidly learn to recognize and avoid offensive stimuli. Western corn rootworm (WCR) employs multifaceted chemical defences in its haemolymph, which may c...

  11. The Learning Management System at the Defence University: Awareness and Application

    ERIC Educational Resources Information Center

    Juhary, Jowati

    2013-01-01

    This brief paper examines the issues of awareness and application of a Learning Management System (LMS) used at the National Defence University of Malaysia (NDUM), Kuala Lumpur Malaysia. The paper argues that due to the discouraging responses from academics at the university on using the LMS, proactive measures must be taken immediately in order…

  12. Responses of foliar antioxidative and photoprotective defence systems of trees to drought: a meta-analysis.

    PubMed

    Wujeska, Agnieszka; Bossinger, Gerd; Tausz, Michael

    2013-10-01

    Current climate change predictions hint to more frequent extreme weather events, including extended droughts, making better understanding of the impacts of water stress on trees even more important. At the individual plant level, stomatal closure as a result of water deficit leads to reduced CO2 availability in the leaf, which can lead to photo-oxidative stress. Photorespiration and the Mehler reaction can maintain electron transport rates under low internal CO2, but result in production of reactive oxygen species (ROS). If electron consumption is decreased, upstream photochemical processes can be affected and light energy is absorbed in excess of photochemical requirements. Trees evolved to cope with excess energy and elevated concentration of ROS by activating photoprotective and antioxidative defence systems. The meta-analysis we present here assessed responses of these defence systems reported in 50 studies. We found responses to vary depending on stress intensity, foliage type and habitat, and on whether experiments were done in the field or in controlled environments. In general, drought increased concentrations of antioxidants and photoprotective pigments. However, severe stress caused degradation of antioxidant concentrations and oxidation of antioxidant pools. Evergreen trees seemed to preferentially reinforce membrane-bound protection systems zeaxanthin and tocopherol, whereas deciduous species showed greater responses in water-soluble antioxidants ascorbic acid and glutathione. Trees and shrubs from arid versus humid habitats vary in their antioxidative and photoprotective defence responses. In field experiments, drought had greater effects on some defence compounds than under controlled conditions. PMID:24178981

  13. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences.

    PubMed

    Narayan, Siddharth; Beck, Michael W; Reguero, Borja G; Losada, Iñigo J; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A

    2016-01-01

    There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences-i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more cost

  14. Spatial scales of foraging in fallow deer: Implications for associational effects in plant defences

    NASA Astrophysics Data System (ADS)

    Rautio, Pasi; Kesti, Kari; Bergvall, Ulrika A.; Tuomi, Juha; Leimar, Olof

    2008-07-01

    Large herbivores select food at several spatial scales: plant communities are chosen at a landscape scale, plant patches are chosen within a plant community, and individual plants within a patch. Foraging decision at the patch level can result in associational effects in plant communities and populations. Several studies have shown that herbivore attack and consumption rates may not only depend on a plant's own defence traits, but also on the defence traits of its neighbours. In the present experiment we investigated whether the spatial scale of the food distribution affects food selection by fallow deer and whether the foraging behaviour gives rise to associational effects in plant defences. In a population of captured wild fallow deer we simulated a natural situation where two separate plant patches are exposed to intense herbivory pressure. We presented different spatial arrangements of low- and high-tannin food to the deer, varying the frequency of the feeder types within and between patches. We found that the deer consumed palatable food among the unpalatable food on average as much as they consumed palatable food among other palatable feeders. However, when unpalatable food occurred among the palatable food it was more consumed than among other unpalatable feeders. Hence, we did not find support for associational defence, but our results supported associational susceptibility. At the between patch level a patch of mainly high-tannin feeders was consumed less when presented near to a patch of mainly low-tannin feeders, suggesting that for well-defended plants having palatable neighbours in a nearby patch might accentuate the effectiveness of their defence.

  15. Influence of Trichobilharzia regenti (Digenea: Schistosomatidae) on the Defence Activity of Radix lagotis (Lymnaeidae) Haemocytes

    PubMed Central

    Skála, Vladimír; Černíková, Alena; Jindrová, Zuzana; Kašný, Martin; Vostrý, Martin; Walker, Anthony J.; Horák, Petr

    2014-01-01

    Radix lagotis is an intermediate snail host of the nasal bird schistosome Trichobilharzia regenti. Changes in defence responses in infected snails that might be related to host-parasite compatibility are not known. This study therefore aimed to characterize R. lagotis haemocyte defence mechanisms and determine the extent to which they are modulated by T. regenti. Histological observations of R. lagotis infected with T. regenti revealed that early phases of infection were accompanied by haemocyte accumulation around the developing larvae 2–36 h post exposure (p.e.) to the parasite. At later time points, 44–92 h p.e., no haemocytes were observed around T. regenti. Additionally, microtubular aggregates likely corresponding to phagocytosed ciliary plates of T. regenti miracidia were observed within haemocytes by use of transmission electron microscopy. When the infection was in the patent phase, haemocyte phagocytic activity and hydrogen peroxide production were significantly reduced in infected R. lagotis when compared to uninfected counterparts, whereas haemocyte abundance increased in infected snails. At a molecular level, protein kinase C (PKC) and extracellular-signal regulated kinase (ERK) were found to play an important role in regulating these defence reactions in R. lagotis. Moreover, haemocytes from snails with patent infection displayed lower PKC and ERK activity in cell adhesion assays when compared to those from uninfected snails, which may therefore be related to the reduced defence activities of these cells. These data provide the first integrated insight into the immunobiology of R. lagotis and demonstrate modulation of haemocyte-mediated responses in patent T. regenti infected snails. Given that immunomodulation occurs during patency, interference of snail-host defence by T. regenti might be important for the sustained production and/or release of infective cercariae. PMID:25372492

  16. Actin as Deathly Switch? How Auxin Can Suppress Cell-Death Related Defence

    PubMed Central

    Chang, Xiaoli; Riemann, Michael; Liu, Qiong; Nick, Peter

    2015-01-01

    Plant innate immunity is composed of two layers – a basal immunity, and a specific effector-triggered immunity, which is often accompanied by hypersensitive cell death. Initiation of cell death depends on a complex network of signalling pathways. The phytohormone auxin as central regulator of plant growth and development represents an important component for the modulation of plant defence. In our previous work, we showed that cell death is heralded by detachment of actin from the membrane. Both, actin response and cell death, are triggered by the bacterial elicitor harpin in grapevine cells. In this study we investigated, whether harpin-triggered actin bundling is necessary for harpin-triggered cell death. Since actin organisation is dependent upon auxin, we used different auxins to suppress actin bundling. Extracellular alkalinisation and transcription of defence genes as the basal immunity were examined as well as cell death. Furthermore, organisation of actin was observed in response to pharmacological manipulation of reactive oxygen species and phospholipase D. We find that induction of defence genes is independent of auxin. However, auxin can suppress harpin-induced cell death and also counteract actin bundling. We integrate our findings into a model, where harpin interferes with an auxin dependent pathway that sustains dynamic cortical actin through the activity of phospholipase D. The antagonism between growth and defence is explained by mutual competition for signal molecules such as superoxide and phosphatidic acid. Perturbations of the auxin-actin pathway might be used to detect disturbed integrity of the plasma membrane and channel defence signalling towards programmed cell death. PMID:25933033

  17. Production of an active anti-CD20-hIL-2 immunocytokine in Nicotiana benthamiana.

    PubMed

    Marusic, Carla; Novelli, Flavia; Salzano, Anna M; Scaloni, Andrea; Benvenuto, Eugenio; Pioli, Claudio; Donini, Marcello

    2016-01-01

    Anti-CD20 murine or chimeric antibodies (Abs) have been used to treat non-Hodgkin lymphomas (NHLs) and other diseases characterized by overactive or dysfunctional B cells. Anti-CD20 Abs demonstrated to be effective in inducing regression of B-cell lymphomas, although in many cases patients relapse following treatment. A promising approach to improve the outcome of mAb therapy is the use of anti-CD20 antibodies to deliver cytokines to the tumour microenvironment. In particular, IL-2-based immunocytokines have shown enhanced antitumour activity in several preclinical studies. Here, we report on the engineering of an anti-CD20-human interleukin-2 (hIL-2) immunocytokine (2B8-Fc-hIL2) based on the C2B8 mAb (Rituximab) and the resulting ectopic expression in Nicotiana benthamiana. The scFv-Fc-engineered immunocytokine is fully assembled in plants with minor degradation products as assessed by SDS-PAGE and gel filtration. Purification yields using protein-A affinity chromatography were in the range of 15-20 mg/kg of fresh leaf weight (FW). Glycopeptide analysis confirmed the presence of a highly homogeneous plant-type glycosylation. 2B8-Fc-hIL2 and the cognate 2B8-Fc antibody, devoid of hIL-2, were assayed by flow cytometry on Daudi cells revealing a CD20 binding activity comparable to that of Rituximab and were effective in eliciting antibody-dependent cell-mediated cytotoxicity of human PBMC versus Daudi cells, demonstrating their functional integrity. In 2B8-Fc-hIL2, IL-2 accessibility and biological activity were verified by flow cytometry and cell proliferation assay. To our knowledge, this is the first example of a recombinant immunocytokine based on the therapeutic Rituximab antibody scaffold, whose expression in plants may be a valuable tool for NHLs treatment. PMID:25879373

  18. Characterization and Distribution Analysis of a Densovirus Infecting Myzus persicae nicotianae (Hemiptera: Aphididae).

    PubMed

    Tang, Shihao; Song, Xueru; Xue, Lin; Wang, Xinwei; Wang, Xiufang; Xu, Pengjun; Ren, Guangwei

    2016-04-01

    Densoviruses (DVs) are a group of viruses that contain a linear single-stranded DNA genome between 4–6 kb in length. Herein, we report a DV with a 5,480-nt genome, isolated from tobacco aphid (Myzus persicae nicotianae Blackman), named MpnDV. Unlike the genome of M. persicae densovirus (MpDV), which possesses five open reading frames (ORFs), the genome of MpnDV contains four putative ORFs—the nonstructural protein 1 (NS1) and NS2 from MpnDV are 98- and 52-amino acids longer than those of MpDV, respectively, at the N-terminus, and the capsid proteins (VP) are 102 amino acids longer at the C-terminus than those of MpDV. Mapping of the MpnDV transcripts by RACE method indicated that the ORF of NS2 started at nt 340 and the right two putative ORFs were combined together by deleting two introns, one of 95 bp located at nt 2,932–3,026 and the other of 145 bp located at nt 4,715–4,859, suggesting transcript mapping was necessary for analyzing of genome organization. Alignment analysis indicated that MpnDV shows 97% sequence identity with MpDV, and that the shortened ORFs resulted from nucleotide indels, suggesting MpnDV and MpDV were two isolates of the same virus. Thus, MpnDV and MpDV clustered together in a tree-based analysis. The prevalence of MpnDV infection in wild populations of tobacco aphids differed among 29 locations; 34% of the 622 individuals sampled were positive. The genome organization, transcript strategy, and widespread distribution in wild populations suggest that MpnDV might possess a biological function different from that of MpDV. PMID:26791818

  19. Geographic variation of floral traits in Nicotiana glauca : Relationships with biotic and abiotic factors

    NASA Astrophysics Data System (ADS)

    Nattero, Julieta; Sérsic, Alicia N.; Cocucci, Andrea A.

    2011-09-01

    Geographic pattern of phenotypic variation can appear in a clinal or a mosaic fashion and can evidence adaptive or non-adaptive variation. To shed light on the mechanisms underlying this variation, we studied the relationships between geographic variation of floral traits and both biotic and abiotic factors of the hummingbird-pollinated plant, Nicotiana glauca, across its natural range. We obtained floral measures of 38 populations from an area about 1600 km long and 1050 km wide and an altitude range from 7 to over 3400 m. We used a MANOVA to detect between-population differentiations in flower traits and a DFA to determine the traits that best discriminate between populations. To test for associations between floral traits and climatic variables we used correlation analysis. We explored any possible distance-based pattern of variation (either geographic or altitudinal) in floral traits or bill length of pollinators using Mantel tests. Finally, we used a multiple regression to analyze simultaneously the effects and relative importance of abiotic predictor variables and bill length on corolla length. We found a high variation in flower traits among populations. Morphometric traits were the ones that best discriminated across populations. There was a clinal pattern of floral phenotypic variation explained by climatic factors. Differences in floral phenotypic distances were structured by altitudinal distances but not by geographic distances. Bill length of the hummingbird pollinators was structured both by altitudinal and geographic distances. Differences in bill length of hummingbird pollinators explained differences in corolla length across populations. Our findings support the assumption of flower evolution at a broad geographic scale. Floral traits seem to be structured not only by altitude but also by climatic factors.

  20. Expression of Aspergillus nidulans phy Gene in Nicotiana benthamiana Produces Active Phytase with Broad Specificities

    PubMed Central

    Oh, Tae-Kyun; Oh, Sung; Kim, Seongdae; Park, Jae Sung; Vinod, Nagarajan; Jang, Kyung Min; Kim, Sei Chang; Choi, Chang Won; Ko, Suk-Min; Jeong, Dong Kee; Udayakumar, Rajangam

    2014-01-01

    A full-length phytase gene (phy) of Aspergillus nidulans was amplified from the cDNA library by polymerase chain reaction (PCR), and it was introduced into a bacterial expression vector, pET-28a. The recombinant protein (rPhy-E, 56 kDa) was overexpressed in the insoluble fraction of Escherichia coli culture, purified by Ni-NTA resin under denaturing conditions and injected into rats as an immunogen. To express A. nidulans phytase in a plant, the full-length of phy was cloned into a plant expression binary vector, pPZP212. The resultant construct was tested for its transient expression by Agrobacterium-infiltration into Nicotiana benthamiana leaves. Compared with a control, the agro-infiltrated leaf tissues showed the presence of phy mRNA and its high expression level in N. benthamiana. The recombinant phytase (rPhy-P, 62 kDa) was strongly reacted with the polyclonal antibody against the nonglycosylated rPhy-E. The rPhy-P showed glycosylation, two pH optima (pH 4.5 and pH 5.5), an optimum temperature at 45~55 °C, thermostability and broad substrate specificities. After deglycosylation by peptide-N-glycosidase F (PNGase-F), the rPhy-P significantly lost the phytase activity and retained 1/9 of the original activity after 10 min of incubation at 45 °C. Therefore, the deglycosylation caused a significant reduction in enzyme thermostability. In animal experiments, oral administration of the rPhy-P at 1500 U/kg body weight/day for seven days caused a significant reduction of phosphorus excretion by 16% in rat feces. Besides, the rPhy-P did not result in any toxicological changes and clinical signs. PMID:25192284

  1. Multiplexed, targeted gene editing in Nicotiana benthamiana for glyco-engineering and monoclonal antibody production.

    PubMed

    Li, Jin; Stoddard, Thomas J; Demorest, Zachary L; Lavoie, Pierre-Olivier; Luo, Song; Clasen, Benjamin M; Cedrone, Frederic; Ray, Erin E; Coffman, Andrew P; Daulhac, Aurelie; Yabandith, Ann; Retterath, Adam J; Mathis, Luc; Voytas, Daniel F; D'Aoust, Marc-André; Zhang, Feng

    2016-02-01

    Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and β(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two β(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked β(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and β(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products. PMID:26011187

  2. Identification and characterization of circadian clock genes in a native tobacco, Nicotiana attenuata

    PubMed Central

    2012-01-01

    Background A plant’s endogenous clock (circadian clock) entrains physiological processes to light/dark and temperature cycles. Forward and reverse genetic approaches in Arabidopsis have revealed the mechanisms of the circadian clock and its components in the genome. Similar approaches have been used to characterize conserved clock elements in several plant species. A wild tobacco, Nicotiana attenuata has been studied extensively to understand responses to biotic or abiotic stress in the glasshouse and also in their native habitat. During two decades of field experiment, we observed several diurnal rhythmic traits of N. attenuata in nature. To expand our knowledge of circadian clock function into the entrainment of traits important for ecological processes, we here report three core clock components in N. attenuata. Results Protein similarity and transcript accumulation allowed us to isolate orthologous genes of the core circadian clock components, LATE ELONGATED HYPOCOTYL (LHY), TIMING OF CAB EXPRESSION 1/PSEUDO-RESPONSE REGULATOR 1 (TOC1/PRR1), and ZEITLUPE (ZTL). Transcript accumulation of NaLHY peaked at dawn and NaTOC1 peaked at dusk in plants grown under long day conditions. Ectopic expression of NaLHY and NaZTL in Arabidopsis resulted in elongated hypocotyl and late-flowering phenotypes. Protein interactions between NaTOC1 and NaZTL were confirmed by yeast two-hybrid assays. Finally, when NaTOC1 was silenced in N. attenuata, late-flowering phenotypes under long day conditions were clearly observed. Conclusions We identified three core circadian clock genes in N. attenuata and demonstrated the functional and biochemical conservation of NaLHY, NaTOC1, and NaZTL. PMID:23006446

  3. Reduced gravitropic sensitivity in roots of a starch-deficient mutant of Nicotiana sylvestris

    NASA Technical Reports Server (NTRS)

    Kiss, J. Z.; Sack, F. D.

    1989-01-01

    Gravitropism was studied in seedlings of Nicotiana sylvestris Speg. et Comes wild-type (WT) and mutant NS 458 which has a defective plastid phosphoglucomutase (EC 2.7.5.1.). Starch was greatly reduced in NS 458 compared to the WT, but small amounts of starch were detected in rootcap columella cells in NS 458 by light and electron microscopy. The roots of WT are more sensitive to gravity than mutant NS 458 roots since: (1) in mutant roots, curvature was reduced and delayed in the time course of curvature; (2) curvature of mutant roots was 24-56% that of WT roots over the range of induction periods tested; (3) in intermittent-stimulation experiments, curvature of mutant roots was 37% or less than that of WT roots in all treatments tested. The perception time, determined by intermittent-stimulation experiments, was < or = 5 s for WT roots and 30-60 s for mutant roots. The growth rates for WT and NS 458 roots were essentially equal. These results and our previous results with WT and starchless mutant Arabidopsis roots (Kiss et al. 1989, Planta 177, 198-206) support the conclusions that a full complement of starch is necessary for full gravitropic sensitivity and that amyloplasts function in gravity perception. Since a presumed relatively small increase in plastid buoyant mass (N. sylvestris mutant versus Arabidopsis mutant) significantly improves the orientation of the N. sylvestris mutant roots, we suggest that plastids are the likeliest candidates to be triggering gravity perception in roots of both mutants.

  4. Ethylene and the Regulation of Senescence Processes in Transgenic Nicotiana sylvestris Plants

    PubMed Central

    Yang, Thomas F.; Gonzalez-Carranza, Zinnia H.; Maunders, Martin J.; Roberts, Jeremy A.

    2008-01-01

    Background and Aims Exposure of plants to ethylene can influence a spectrum of developmental processes including organ senescence and abscission. The aim of this study was to examine the role of the gaseous regulator in Nicotiana sylvestris plants exhibiting a silenced or constitutive ethylene response. Methods Transgenic N. sylvestris plants were generated that either ectopically expressed the Arabidopsis mutant ethylene receptor ETR1-1 or the tomato EIN3-like (LeEIL1) gene. Highly expressing homozygous lines were selected and the time-course of development, from germination to organ senescence, was studied. Key Results Fifty percent of the homozygous Pro35S:ETR1-1 lines examined showed a high susceptibility to collapse prior to flowering, with plant death occurring within a few days of leaf wilting. The time-course of leaf senescence in the remaining Pro35S:ETR1-1 lines was visibly arrested compared to wild type (negative segregant) plants and this observation was reaffirmed by chlorophyll and protein analysis. Petal necrosis was also delayed in Pro35S:ETR1-1 lines and corolla abscission did not take place. When senescence of Pro35S:ETR1-1 plants did take place this was accompanied by leaf bleaching, but tissues remained fully turgid and showed no signs of collapse. A single Pro35S:LeEIL1 line was found to exhibit consistently accelerated leaf and flower senescence and precocious flower bud shedding. Conclusions These observations support a role for ethylene in regulating a spectrum of developmental events associated with organ senescence and tissue necrosis. Furthermore, the transgenic lines generated during this study may provide a valuable resource for exploring how senescence processes are regulated in plants. PMID:17901061

  5. The production of human glucocerebrosidase in glyco-engineered Nicotiana benthamiana plants.

    PubMed

    Limkul, Juthamard; Iizuka, Sayoko; Sato, Yohei; Misaki, Ryo; Ohashi, Takao; Ohashi, Toya; Fujiyama, Kazuhito

    2016-08-01

    For the production of therapeutic proteins in plants, the presence of β1,2-xylose and core α1,3-fucose on plants' N-glycan structures has been debated for their antigenic activity. In this study, RNA interference (RNAi) technology was used to down-regulate the endogenous N-acetylglucosaminyltransferase I (GNTI) expression in Nicotiana benthamiana. One glyco-engineered line (NbGNTI-RNAi) showed a strong reduction of plant-specific N-glycans, with the result that as much as 90.9% of the total N-glycans were of high-mannose type. Therefore, this NbGNTI-RNAi would be a promising system for the production of therapeutic glycoproteins in plants. The NbGNTI-RNAi plant was cross-pollinated with transgenic N. benthamiana expressing human glucocerebrosidase (GC). The recombinant GC, which has been used for enzyme replacement therapy in patients with Gaucher's disease, requires terminal mannose for its therapeutic efficacy. The N-glycan structures that were presented on all of the four occupied N-glycosylation sites of recombinant GC in NbGNTI-RNAi plants (GC(gnt1) ) showed that the majority (ranging from 73.3% up to 85.5%) of the N-glycans had mannose-type structures lacking potential immunogenic β1,2-xylose and α1,3-fucose epitopes. Moreover, GC(gnt1) could be taken up into the macrophage cells via mannose receptors, and distributed and taken up into the liver and spleen, the target organs in the treatment of Gaucher's disease. Notably, the NbGNTI-RNAi line, producing GC, was stable and the NbGNTI-RNAi plants were viable and did not show any obvious phenotype. Therefore, it would provide a robust tool for the production of GC with customized N-glycan structures. PMID:26868756

  6. Leaf proteome rebalancing in Nicotiana benthamiana for upstream enrichment of a transiently expressed recombinant protein.

    PubMed

    Robert, Stéphanie; Goulet, Marie-Claire; D'Aoust, Marc-André; Sainsbury, Frank; Michaud, Dominique

    2015-10-01

    A key factor influencing the yield of biopharmaceuticals in plants is the ratio of recombinant to host proteins in crude extracts. Postextraction procedures have been devised to enrich recombinant proteins before purification. Here, we assessed the potential of methyl jasmonate (MeJA) as a generic trigger of recombinant protein enrichment in Nicotiana benthamiana leaves before harvesting. Previous studies have reported a significant rebalancing of the leaf proteome via the jasmonate signalling pathway, associated with ribulose 1,5-bisphosphate carboxylase oxygenase (RuBisCO) depletion and the up-regulation of stress-related proteins. As expected, leaf proteome alterations were observed 7 days post-MeJA treatment, associated with lowered RuBisCO pools and the induction of stress-inducible proteins such as protease inhibitors, thionins and chitinases. Leaf infiltration with the Agrobacterium tumefaciens bacterial vector 24 h post-MeJA treatment induced a strong accumulation of pathogenesis-related proteins after 6 days, along with a near-complete reversal of MeJA-mediated stress protein up-regulation. RuBisCO pools were partly restored upon infiltration, but most of the depletion effect observed in noninfiltrated plants was maintained over six more days, to give crude protein samples with 50% less RuBisCO than untreated tissue. These changes were associated with net levels reaching 425 μg/g leaf tissue for the blood-typing monoclonal antibody C5-1 expressed in MeJA-treated leaves, compared to less than 200 μg/g in untreated leaves. Our data confirm overall the ability of MeJA to trigger RuBisCO depletion and recombinant protein enrichment in N. benthamiana leaves, estimated here for C5-1 at more than 2-fold relative to host proteins. PMID:26286859

  7. Isolation of genes predominantly expressed in guard cells and epidermal cells of Nicotiana glauca.

    PubMed

    Smart, L B; Cameron, K D; Bennett, A B

    2000-04-01

    Guard cells are specialized and metabolically active cells which arise during the differentiation of the epidermis. Using Nicotiana glauca epidermal peels as a source of purified guard cells, we have constructed a cDNA library from guard cell RNA. In order to isolate genes that are predominantly expressed in guard cells, we performed a differential screen of this library, comparing the hybridization of a radiolabeled cDNA probe synthesized from guard cell RNA to that from a mesophyll cell cDNA probe. Sixteen clones were isolated based on their greater level of hybridization with the guard cell probe. Of these, eight had high homology to lipid transfer protein (LTP), two were similar to glycine-rich protein (GRP), and one displayed high homology to proline-rich proteins from Arabidopsis thaliana (AtPRP2, AtPRP4) and from potato guard cells (GPP). Northern analysis confirmed that one or more NgLTP genes, NgGRP1, and NgGPP1 are all differentially expressed, with highest levels in guard cells, and low or undetectable levels in mesophyll cells and in roots. In addition, all are induced to some degree in drought-stressed guard cells. NgLTP and NgGRP1 expression was localized by in situ hybridization to the guard cells and pavement cells in the epidermis. NgGRP1 expression was also detected in cells of the vasculature. Genomic Southern analysis indicated that LTP is encoded by a family of highly similar genes in N. glauca. This work has identified members of a subset of epidermis- and guard cell-predominant genes, whose protein products are likely to contribute to the unique properties acquired by guard cells and pavement cells during differentiation. PMID:10890533

  8. Cytokinins and auxins control the expression of a gene in Nicotiana plumbaginifolia cells by feedback regulation.

    PubMed Central

    Dominov, J A; Stenzler, L; Lee, S; Schwarz, J J; Leisner, S; Howell, S H

    1992-01-01

    Both cytokinin (N6-benzyladenine [BA]) and auxin (2,4-dichlorophenoxyacetic acid [2,4-D]) stimulate the accumulation of an mRNA, represented by the cDNA pLS216, in Nicotiana plumbaginifolia suspension culture cells. The kinetics of RNA accumulation were different for the two hormones; however, the response to both was transient, and the magnitude of the response was dose dependent. Runoff transcription experiments demonstrated that the transient appearance of the RNA could be accounted for by feedback regulation of transcription and not by the induction of an RNA degradation system. The feedback mechanism appeared to desensitize the cells to further exposure of the hormone. In particular, cells became refractory to the subsequent addition of 2,4-D after the initial RNA accumulation response subsided. A very different response was observed when the second hormone was added to cells that had been desensitized to the first hormone. Under such conditions, BA produced a heightened response in cells desensitized to 2,4-D and vice versa. These findings support a model in which cytokinin further enhances the auxin response or prevents its feedback inhibition. The hormone-induced RNA accumulation was blocked by the protein kinase inhibitor staurosporin. On the other hand, the protein phosphatase inhibitor okadaic acid stimulated expression, and, in particular, okadaic acid was able to stimulate RNA accumulation in cells desensitized to auxin. This suggests that hormone activation involves phosphorylation of critical proteins on the hormone signaling pathway, whereas feedback inhibition may involve dephosphorylation of these proteins. The sequence of pLS216 is similar to genes in other plants that are stimulated by multiple agonists such as auxins, elicitors, and heavy metals, and to the gene encoding the stringent starvation protein in Escherichia coli. It is proposed that this gene family in various plants be called multiple stimulus response (msr) genes. PMID:1498603

  9. A century of tobamovirus evolution in an Australian population of Nicotiana glauca.

    PubMed Central

    Fraile, A; Escriu, F; Aranda, M A; Malpica, J M; Gibbs, A J; García-Arenal, F

    1997-01-01

    The evolution over the past century of two tobamoviruses infecting populations of the immigrant plant Nicotiana glauca in New South Wales (NSW), Australia, has been studied. This plant species probably entered Australia in the 1870s. Isolates of the viruses were obtained from N. glauca specimens deposited in the NSW Herbarium between 1899 and 1972, and others were obtained from living plants in 1985 and 1993. It was found that the NSW N. glauca population was infected with tobacco mosaic tobamovirus (TMV) and tobacco mild green mosaic tobamovirus (TMGMV) before 1950 but only with TMGMV after that date. Half the pre-1950 infections were mixtures of the two viruses, and one was a recombinant. Remarkably, sequence analyses showed no increase in the genetic diversity among the TMGMV isolates over the period. However, for TMV, the genetic diversity of synonymous (but not of nonsynonymous) differences between isolates varied and was correlated with their time of isolation. TMV accumulated to smaller concentrations than TMGMV in N. glauca plants, and in mixed experimental infections, the accumulation of TMV, but not of TMGMV, was around 1/10 that in single infections. However, no evidence was found of isolate-specific interaction between the viruses. We conclude that although TMV may have colonized N. glauca in NSW earlier or faster than TMGMV, the latter virus caused a decrease of the TMV population below a threshold at which deleterious mutations were eliminated. This phenomenon, called Muller's ratchet, or a "mutational meltdown," probably caused the disappearance of TMV from the niche. PMID:9343184

  10. Glyphosate inhibition of 5-enolpyruvylshikimate 3-phosphate synthease from suspension-cultured cells of Nicotiana silvestris

    SciTech Connect

    Rubin, J.L.; Gaines, C.G.; Jensen, R.A.

    1984-07-01

    Treatment of isogenic suspension-cultured cells of Nicotiana silvestris Speg, et Comes with glyphosate (N-(phosphonomethyl)glycine) led to elevated levels of intracellular shikimate (364-fold increase by 1.0 millimolar glyphosate). In the presence of glyphosate, it is likely that most molecules of shikimate originate from the action of 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase-Mn since this isozyme, in contrast to the DAHP synthase-Co isozyme, is insensitive to inhibition by glyphosate. 5-Enolpyruvylshikimate 3-phosphate (EPSP) synthase (EC 2.5.1.19) from N. silvestris was sensitive to micromolar concentrations of glyphosate and possessed a single inhibitor binding site. Rigorous kinetic studies of EPSP synthase required resolution from the multiple phosphatase activities present in crude extracts, a result achieved by ion-exchange column chromatography. Although EPSP synthase exhibited a broad pH profile (50% of maximal activity between pH 6.2 and 8.5), sensitivity to glyphosate increased dramatically with increasing pH within this range. In accordance with these data and the pK/sub a/ values of glyphosate, it is likely that the ionic form of glyphosate inhibiting EPSP synthase is COO/sup -/CH/sub 2/NH/sub 2//sup +/CH/sub 2/PO/sub 3//sup 2 -/, and that a completely ionized phosphono group is essential for inhibition. At pH 7.0, inhibition was competitive with respect to phosphoenolpyruvate (K/sub i/ = 1.25 micromolar) and uncompetitive with respect to shikimate-3-P (K/sub i/ = 18.3 micromolar). All data were consistent with a mechanism of inhibition in which glyphosate competes with PEP for binding to an (enzyme:shikimate-3-P) complex and ultimately forms the dead-end complex of (enzyme:shikimate-3-P:glyphosate). 36 references, 8 figures, 1 table.

  11. Molecular Linkage Mapping and Marker-Trait Associations with NlRPT, a Downy Mildew Resistance Gene in Nicotiana langsdorffii

    PubMed Central

    Zhang, Shouan; Gao, Muqiang; Zaitlin, David

    2012-01-01

    Nicotiana langsdorffii is one of two species of Nicotiana known to express an incompatible interaction with the oomycete Peronospora tabacina, the causal agent of tobacco blue mold disease. We previously showed that incompatibility is due to the hypersensitive response (HR), and plants expressing the HR are resistant to P. tabacina at all stages of growth. Resistance is due to a single dominant gene in N. langsdorffii accession S-4-4 that we have named NlRPT. In further characterizing this unique host-pathogen interaction, NlRPT has been placed on a preliminary genetic map of the N. langsdorffii genome. Allelic scores for five classes of DNA markers were determined for 90 progeny of a “modified backcross” involving two N. langsdorffii inbred lines and the related species N. forgetiana. All markers had an expected segregation ratio of 1:1, and were scored in a common format. The map was constructed with JoinMap 3.0, and loci showing excessive transmission distortion were removed. The linkage map consists of 266 molecular marker loci defined by 217 amplified fragment length polymorphisms (AFLPs), 26 simple-sequence repeats (SSRs), 10 conserved orthologous sequence markers, nine inter-simple sequence repeat markers, and four target region amplification polymorphism markers arranged in 12 linkage groups with a combined length of 1062 cM. NlRPT is located on linkage group three, flanked by four AFLP markers and one SSR. Regions of skewed segregation were detected on LGs 1, 5, and 9. Markers developed for N. langsdorffii are potentially useful genetic tools for other species in Nicotiana section Alatae, as well as in N. benthamiana. We also investigated whether AFLPs could be used to infer genetic relationships within N. langsdorffii and related species from section Alatae. A phenetic analysis of the AFLP data showed that there are two main lineages within N. langsdorffii, and that both contain populations expressing dominant resistance to P. tabacina. PMID

  12. Virus-induced gene silencing reveals signal transduction components required for the Pvr9-mediated hypersensitive response in Nicotiana benthamiana.

    PubMed

    Tran, Phu-Tri; Choi, Hoseong; Choi, Doil; Kim, Kook-Hyung

    2016-08-01

    Resistance to pathogens mediated by plant resistance (R) proteins requires different signaling transduction components and pathways. Our previous studies revealed that a potyvirus resistance gene in pepper, Pvr9, confers a hypersensitive response (HR) to pepper mottle virus in Nicotiana benthamiana. Our results show that the Pvr9-mediated HR against pepper mottle virus infection requires HSP90, SGT1, NDR1, but not EDS1. These results suggest that the Pvr9-mediated HR is possibly related to the SA pathway but not the ET, JA, ROS or NO pathways. PMID:27236305

  13. Flower-bud formation in explants of photoperiodic and day-neutral Nicotiana biotypes and its bearing on the regulation of flower formation

    SciTech Connect

    Rajeevan, M.S.; Lang, A. )

    1993-05-15

    The capacity to form flower buds in thin-layer explants was studied in Nicotiana of several species, cultivars, and lines of differing in their response to photoperiod. This capacity was found in all biotypes examined and could extend into sepals and corolla. It varied depending on genotype, source tissue and its developmental state, and composition of the culture medium, particularly the levels of glucose, auxin, and cytokinin. It was greatest in the two day-neutral plants examined, Samsun tobacco and Nicotiana rustica, where it extended from the inflorescence region down the vegetative stem, in a basipetally decreasing gradient; it was least in the two qualitative photoperiodic plants studied, the long-day plant Nicotiana silvestris and the short-day plant Maryland Mammoth tobacco, the quantitative long-day plant Nicotiana alata and the quantitative short-day plant Nicotiana otophora line 38-G-81, where it was limited to the pedicels (and, in some cases, the sepals). Regardless of the photoperiodic response of the source plants, the response was the same in explants cultured under long and short days. The capacity to form flow buds in explants is present in all Nicotiana biotypes studied supports the idea that it is regulated by the same mechanism(s), regardless of the plant's photoperiodic character. However, flower formation in the explants is not identical with de novo flower formation in a hitherto vegetative plant: it is rather the expression of a floral state already established in the plant, although it can vary widely in extent and spatial distribution. Culture conditions that permit flower-bud formation in an explant are conditions that maintain the floral state and encourage its expression; conditions under which no flower buds are formed reduce this state and/or prevent its expression. 14 refs., 5 figs., 3 tabs.

  14. The Effectiveness, Costs and Coastal Protection Benefits of Natural and Nature-Based Defences

    PubMed Central

    Narayan, Siddharth; Beck, Michael W.; Reguero, Borja G.; Losada, Iñigo J.; van Wesenbeeck, Bregje; Pontee, Nigel; Sanchirico, James N.; Ingram, Jane Carter; Lange, Glenn-Marie; Burks-Copes, Kelly A.

    2016-01-01

    There is great interest in the restoration and conservation of coastal habitats for protection from flooding and erosion. This is evidenced by the growing number of analyses and reviews of the effectiveness of habitats as natural defences and increasing funding world-wide for nature-based defences–i.e. restoration projects aimed at coastal protection; yet, there is no synthetic information on what kinds of projects are effective and cost effective for this purpose. This paper addresses two issues critical for designing restoration projects for coastal protection: (i) a synthesis of the costs and benefits of projects designed for coastal protection (nature-based defences) and (ii) analyses of the effectiveness of coastal habitats (natural defences) in reducing wave heights and the biophysical parameters that influence this effectiveness. We (i) analyse data from sixty-nine field measurements in coastal habitats globally and examine measures of effectiveness of mangroves, salt-marshes, coral reefs and seagrass/kelp beds for wave height reduction; (ii) synthesise the costs and coastal protection benefits of fifty-two nature-based defence projects and; (iii) estimate the benefits of each restoration project by combining information on restoration costs with data from nearby field measurements. The analyses of field measurements show that coastal habitats have significant potential for reducing wave heights that varies by habitat and site. In general, coral reefs and salt-marshes have the highest overall potential. Habitat effectiveness is influenced by: a) the ratios of wave height-to-water depth and habitat width-to-wavelength in coral reefs; and b) the ratio of vegetation height-to-water depth in salt-marshes. The comparison of costs of nature-based defence projects and engineering structures show that salt-marshes and mangroves can be two to five times cheaper than a submerged breakwater for wave heights up to half a metre and, within their limits, become more

  15. Production of the Main Celiac Disease Autoantigen by Transient Expression in Nicotiana benthamiana

    PubMed Central

    Marín Viegas, Vanesa S.; Acevedo, Gonzalo R.; Bayardo, Mariela P.; Chirdo, Fernando G.; Petruccelli, Silvana

    2015-01-01

    Celiac Disease (CD) is a gluten sensitive enteropathy that remains widely undiagnosed and implementation of massive screening tests is needed to reduce the long term complications associated to untreated CD. The main CD autoantigen, human tissue transglutaminase (TG2), is a challenge for the different expression systems available since its cross-linking activity affects cellular processes. Plant-based transient expression systems can be an alternative for the production of this protein. In this work, a transient expression system for the production of human TG2 in Nicotiana benthamiana leaves was optimized and reactivity of plant-produced TG2 in CD screening test was evaluated. First, a subcellular targeting strategy was tested. Cytosolic, secretory, endoplasmic reticulum (C-terminal SEKDEL fusion) and vacuolar (C-terminal KISIA fusion) TG2 versions were transiently expressed in leaves and recombinant protein yields were measured. ER-TG2 and vac-TG2 levels were 9- to 16-fold higher than their cytosolic and secretory counterparts. As second strategy, TG2 variants were co-expressed with a hydrophobic elastin-like polymer (ELP) construct encoding for 36 repeats of the pentapeptide VPGXG in which the guest residue X were V and F in ratio 8:1. Protein bodies (PB) were induced by the ELP, with a consequent two-fold-increase in accumulation of both ER-TG2 and vac-TG2. Subsequently, ER-TG2 and vac-TG2 were produced and purified using immobilized metal ion affinity chromatography. Plant purified ER-TG2 and vac-TG2 were recognized by three anti-TG2 monoclonal antibodies that bind different epitopes proving that plant-produced antigen has immunochemical characteristics similar to those of human TG2. Lastly, an ELISA was performed with sera of CD patients and healthy controls. Both vac-TG2 and ER-TG2 were positively recognized by IgA of CD patients while they were not recognized by serum from non-celiac controls. These results confirmed the usefulness of plant-produced TG2 to

  16. Somatic hybrid plants of Nicotiana × sanderae (+) N. debneyi with fungal resistance to Peronospora tabacina

    PubMed Central

    Patel, Deval; Power, J. Brian; Anthony, Paul; Badakshi, Farah; (Pat) Heslop-Harrison, J. S.; Davey, Michael R.

    2011-01-01

    Background and Aims The genus Nicotiana includes diploid and tetraploid species, with complementary ecological, agronomic and commercial characteristics. The species are of economic value for tobacco, as ornamentals, and for secondary plant-product biosynthesis. They show substantial differences in disease resistance because of their range of secondary products. In the last decade, sexual hybridization and transgenic technologies have tended to eclipse protoplast fusion for gene transfer. Somatic hybridization was exploited in the present investigation to generate a new hybrid combination involving two sexually incompatible tetraploid species. The somatic hybrid plants were characterized using molecular, molecular cytogenetic and phenotypic approaches. Methods Mesophyll protoplasts of the wild fungus-resistant species N. debneyi (2n = 4x = 48) were electrofused with those of the ornamental interspecific sexual hybrid N. × sanderae (2n = 2x = 18). From 1570 protoplast-derived cell colonies selected manually in five experiments, 580 tissues were sub-cultured to shoot regeneration medium. Regenerated plants were transferred to the glasshouse and screened for their morphology, chromosomal composition and disease resistance. Key Results Eighty-nine regenerated plants flowered; five were confirmed as somatic hybrids by their intermediate morphology compared with parental plants, cytological constitution and DNA-marker analysis. Somatic hybrid plants had chromosome complements of 60 or 62. Chromosomes were identified to parental genomes by genomic in situ hybridization and included all 18 chromosomes from N. × sanderae, and 42 or 44 chromosomes from N. debneyi. Four or six chromosomes of one ancestral genome of N. debneyi were eliminated during culture of electrofusion-treated protoplasts and plant regeneration. Both chloroplasts and mitochondria of the somatic hybrid plants were probably derived from N. debneyi. All somatic hybrid plants were fertile. In contrast to

  17. The Cotton WRKY Gene GhWRKY41 Positively Regulates Salt and Drought Stress Tolerance in Transgenic Nicotiana benthamiana

    PubMed Central

    Chen, Xiaobo; Lu, Wenjing; Li, Han; Wang, Xiuling; Hao, Lili; Guo, Xingqi

    2015-01-01

    WRKY transcription factors constitute a very large family of proteins in plants and participate in modulating plant biological processes, such as growth, development and stress responses. However, the exact roles of WRKY proteins are unclear, particularly in non-model plants. In this study, Gossypium hirsutum WRKY41 (GhWRKY41) was isolated and transformed into Nicotiana benthamiana. Our results showed that overexpression of GhWRKY41 enhanced the drought and salt stress tolerance of transgenic Nicotiana benthamiana. The transgenic plants exhibited lower malondialdehyde content and higher antioxidant enzyme activity, and the expression of antioxidant genes was upregulated in transgenic plants exposed to osmotic stress. A β-glucuronidase (GUS) staining assay showed that GhWRKY41 was highly expressed in the stomata when plants were exposed to osmotic stress, and plants overexpressing GhWRKY41 exhibited enhanced stomatal closure when they were exposed to osmotic stress. Taken together, our findings demonstrate that GhWRKY41 may enhance plant tolerance to stress by functioning as a positive regulator of stoma closure and by regulating reactive oxygen species (ROS) scavenging and the expression of antioxidant genes. PMID:26562293

  18. Analyses of the population structure in a global collection of Phytophthora nicotianae isolates inferred from mitochondrial and nuclear DNA sequences.

    PubMed

    Mammella, Marco A; Martin, Frank N; Cacciola, Santa O; Coffey, Michael D; Faedda, Roberto; Schena, Leonardo

    2013-06-01

    Genetic variation within the heterothallic cosmopolitan plant pathogen Phytophthora nicotianae was determined in 96 isolates from a wide range of hosts and geographic locations by characterizing four mitochondrial (10% of the genome) and three nuclear loci. In all, 52 single-nucleotide polymorphisms (SNPs) (an average of 1 every 58 bp) and 313 sites with gaps representing 5,450 bases enabled the identification of 50 different multilocus mitochondrial haplotypes. Similarly, 24 SNPs (an average of 1 every 69 bp), with heterozygosity observed at each locus, were observed in three nuclear regions (hyp, scp, and β-tub) differentiating 40 multilocus nuclear genotypes. Both mitochondrial and nuclear markers revealed a high level of dispersal of isolates and an inconsistent geographic structuring of populations. However, a specific association was observed for host of origin and genetic grouping with both nuclear and mitochondrial sequences. In particular, the majority of citrus isolates from Italy, California, Florida, Syria, Albania, and the Philippines clustered in the same mitochondrial group and shared at least one nuclear allele. A similar association was also observed for isolates recovered from Nicotiana and Solanum spp. The present study suggests an important role of nursery populations in increasing genetic recombination within the species and the existence of extensive phenomena of migration of isolates that have been likely spread worldwide with infected plant material. PMID:23384862

  19. A serpin mutant links Toll activation to melanization in the host defence of Drosophila

    PubMed Central

    Ligoxygakis, Petros; Pelte, Nadège; Ji, Chuanyi; Leclerc, Vincent; Duvic, Bernard; Belvin, Marcia; Jiang, Haobo; Hoffmann, Jules A.; Reichhart, Jean-Marc

    2002-01-01

    A prominent response during the Drosophila host defence is the induction of proteolytic cascades, some of which lead to localized melanization of pathogen surfaces, while others activate one of the major players in the systemic antimicrobial response, the Toll pathway. Despite the fact that gain-of-function mutations in the Toll receptor gene result in melanization, a clear link between Toll activation and the melanization reaction has not been firmly established. Here, we present evidence for the coordination of hemolymph-borne melanization with activation of the Toll pathway in the Drosophila host defence. The melanization reaction requires Toll pathway activation and depends on the removal of the Drosophila serine protease inhibitor Serpin27A. Flies deficient for this serpin exhibit spontaneous melanization in larvae and adults. Microbial challenge induces its removal from the hemolymph through Toll-dependent transcription of an acute phase immune reaction component. PMID:12456640

  20. A Simplified Approach To Include Essential Facilities In Risk Scenarios For Civil Defence Plans.

    NASA Astrophysics Data System (ADS)

    González, M.; Susagna, T.; Goula, X.; Roca, A.; Safina, S.

    Given the importance of essential facilities in an earthquake crisis, it is recommended that detailed studies for assessing their functional vulnerability should be carried out. Although there have been many experiences in past earthquakes showing the problems associated to the damages to these facilities, like hospitals and police and firemen departments, many civil defence plans do not take into account their vulnerability. In some cases the reason is that there has not been opportunity to perform detailed vulnerability studies for these buildings before the issue of the prevention plans. A simplified statistical approach for the quick evaluation of the functional vulnerability of firemen stations and hospitals has been developed. This method allows these building to be at least considered in a first approach within the emergency plans. The method has been applied to facilities in Catalonia, Spain and have been incorporated to the recent developed plans of the Civil Defence department.

  1. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems.

    PubMed

    Burstein, David; Sun, Christine L; Brown, Christopher T; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J; Thomas, Brian C; Banfield, Jillian F

    2016-01-01

    Current understanding of microorganism-virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  2. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea.

    PubMed

    Bibby, Ruth; Cleall-Harding, Polly; Rundle, Simon; Widdicombe, Steve; Spicer, John

    2007-12-22

    Carbon dioxide-induced ocean acidification is predicted to have major implications for marine life, but the research focus to date has been on direct effects. We demonstrate that acidified seawater can have indirect biological effects by disrupting the capability of organisms to express induced defences, hence, increasing their vulnerability to predation. The intertidal gastropod Littorina littorea produced thicker shells in the presence of predation (crab) cues but this response was disrupted at low seawater pH. This response was accompanied by a marked depression in metabolic rate (hypometabolism) under the joint stress of high predation risk and reduced pH. However, snails in this treatment apparently compensated for a lack of morphological defence, by increasing their avoidance behaviour, which, in turn, could affect their interactions with other organisms. Together, these findings suggest that biological effects from ocean acidification may be complex and extend beyond simple direct effects. PMID:17939976

  3. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    PubMed Central

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-01-01

    Current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth's ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation-independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. We correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides. PMID:26837824

  4. Invertebrate extracellular phagocyte traps show that chromatin is an ancient defence weapon

    PubMed Central

    Robb, Calum T.; Dyrynda, Elisabeth A.; Gray, Robert D.; Rossi, Adriano G.; Smith, Valerie J.

    2014-01-01

    Controlled release of chromatin from the nuclei of inflammatory cells is a process that entraps and kills microorganisms in the extracellular environment. Now termed ETosis, it is important for innate immunity in vertebrates. Paradoxically, however, in mammals, it can also contribute to certain pathologies. Here we show that ETosis occurs in several invertebrate species, including, remarkably, an acoelomate. Our findings reveal that the phenomenon is primordial and predates the evolution of the coelom. In invertebrates, the released chromatin participates in defence not only by ensnaring microorganisms and externalizing antibacterial histones together with other haemocyte-derived defence factors, but crucially, also provides the scaffold on which intact haemocytes assemble during encapsulation; a response that sequesters and kills potential pathogens infecting the body cavity. This insight into the early origin of ETosis identifies it as a very ancient process that helps explain some of its detrimental effects in mammals. PMID:25115909

  5. Health protection during the Ebola crisis: the Defence Medical Services approach.

    PubMed

    Bricknell, Martin; Terrell, A; Ross, D; White, D

    2016-06-01

    This paper is a narrative of the policies, procedures, mitigations and observations of the application of Force Health Protection measures applied by the Ministry of Defence (MOD) for the deployment of military personnel to West Africa as part of the UK contribution to the international response to the Ebola crisis from July 2014 to July 2015. The MOD divided the threat into three risk categories: risk from disease and non-battle injury, Ebola risk for non-clinical duties and Ebola risk for healthcare workers. Overall risk management was directed and monitored by the OP GRITROCK Force Health Protection Board. There were six cases of malaria, four outbreaks of gastrointestinal disease, two needlestick injuries in Ebola-facing healthcare workers, one MOD Ebola case and five non-needlestick, high-risk exposures. This experience reinforces the requirement for the Defence Medical Services to have a high level of organisational competence to advise on Force Health Protection for the MOD. PMID:26744191

  6. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems

    DOE PAGESBeta

    Burstein, David; Sun, Christine L.; Brown, Christopher T.; Sharon, Itai; Anantharaman, Karthik; Probst, Alexander J.; Thomas, Brian C.; Banfield, Jillian F.

    2016-02-03

    Here, current understanding of microorganism–virus interactions, which shape the evolution and functioning of Earth’s ecosystems, is based primarily on cultivated organisms. Here we investigate thousands of viral and microbial genomes recovered using a cultivation independent approach to study the frequency, variety and taxonomic distribution of viral defence mechanisms. CRISPR-Cas systems that confer microorganisms with immunity to viruses are present in only 10% of 1,724 sampled microorganisms, compared with previous reports of 40% occurrence in bacteria and 81% in archaea. We attribute this large difference to the lack of CRISPR-Cas systems across major bacterial lineages that have no cultivated representatives. Wemore » correlate absence of CRISPR-Cas with lack of nucleotide biosynthesis capacity and a symbiotic lifestyle. Restriction systems are well represented in these lineages and might provide both non-specific viral defence and access to nucleotides.« less

  7. Human selection and the relaxation of legume defences against ineffective rhizobia.

    PubMed

    Kiers, E Toby; Hutton, Mark G; Denison, R Ford

    2007-12-22

    Enforcement mechanisms are thought to be important in maintaining mutualistic cooperation between species. A clear example of an enforcement mechanism is how legumes impose sanctions on rhizobial symbionts that fail to provide sufficient fixed N2. However, with domestication and breeding in high-soil-N environments, humans may have altered these natural legume defences and reduced the agricultural benefits of the symbiosis. Using six genotypes of soya beans, representing 60 years of breeding, we show that, as a group, older cultivars were better able to maintain fitness than newer cultivars (seed production) when infected with a mixture of effective and ineffective rhizobial strains. Additionally, we found small differences among cultivars in the ratio of effective:ineffective rhizobia released from their nodules, an indicator of future rhizobial strain fitness. When infected by symbionts varying in quality, legume defences against poor-quality partners have apparently worsened under decades of artificial selection. PMID:17939985

  8. Drought-induced trans-generational tradeoff between stress tolerance and defence: consequences for range limits?

    PubMed Central

    Alsdurf, Jacob D.; Ripley, Tayler J.; Matzner, Steven L.; Siemens, David H.

    2013-01-01

    Areas just across species range boundaries are often stressful, but even with ample genetic variation within and among range-margin populations, adaptation towards stress tolerance across range boundaries often does not occur. Adaptive trans-generational plasticity should allow organisms to circumvent these problems for temporary range expansion; however, range boundaries often persist. To investigate this dilemma, we drought stressed a parent generation of Boechera stricta (A.Gray) A. Löve & D. Löve, a perennial wild relative of Arabidopsis, representing genetic variation within and among several low-elevation range margin populations. Boechera stricta is restricted to higher, moister elevations in temperate regions where generalist herbivores are often less common. Previous reports indicate a negative genetic correlation (genetic tradeoff) between chemical defence allocation and abiotic stress tolerance that may prevent the simultaneous evolution of defence and drought tolerance that would be needed for range expansion. In growth chamber experiments, the genetic tradeoff became undetectable among offspring sib-families whose parents had been drought treated, suggesting that the stress-induced trans-generational plasticity may circumvent the genetic tradeoff and thus enable range expansion. However, the trans-generational effects also included a conflict between plastic responses (environmental tradeoff); offspring whose parents were drought treated were more drought tolerant, but had lower levels of glucosinolate toxins that function in defence against generalist herbivores. We suggest that either the genetic or environmental tradeoff between defence allocation and stress tolerance has the potential to contribute to range limit development in upland mustards. PMID:24307931

  9. Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences

    PubMed Central

    Boddy, Amy M.; Kokko, Hanna; Breden, Felix; Wilkinson, Gerald S.; Aktipis, C. Athena

    2015-01-01

    The factors influencing cancer susceptibility and why it varies across species are major open questions in the field of cancer biology. One underexplored source of variation in cancer susceptibility may arise from trade-offs between reproductive competitiveness (e.g. sexually selected traits, earlier reproduction and higher fertility) and cancer defence. We build a model that contrasts the probabilistic onset of cancer with other, extrinsic causes of mortality and use it to predict that intense reproductive competition will lower cancer defences and increase cancer incidence. We explore the trade-off between cancer defences and intraspecific competition across different extrinsic mortality conditions and different levels of trade-off intensity, and find the largest effect of competition on cancer in species where low extrinsic mortality combines with strong trade-offs. In such species, selection to delay cancer and selection to outcompete conspecifics are both strong, and the latter conflicts with the former. We discuss evidence for the assumed trade-off between reproductive competitiveness and cancer susceptibility. Sexually selected traits such as ornaments or large body size require high levels of cell proliferation and appear to be associated with greater cancer susceptibility. Similar associations exist for female traits such as continuous egg-laying in domestic hens and earlier reproductive maturity. Trade-offs between reproduction and cancer defences may be instantiated by a variety of mechanisms, including higher levels of growth factors and hormones, less efficient cell-cycle control and less DNA repair, or simply a larger number of cell divisions (relevant when reproductive success requires large body size or rapid reproductive cycles). These mechanisms can affect intra- and interspecific variation in cancer susceptibility arising from rapid cell proliferation during reproductive maturation, intrasexual competition and reproduction. PMID:26056364

  10. The single functional blast resistance gene Pi54 activates a complex defence mechanism in rice.

    PubMed

    Gupta, Santosh Kumar; Rai, Amit Kumar; Kanwar, Shamsher Singh; Chand, Duni; Singh, Nagendera Kumar; Sharma, Tilak Raj

    2012-01-01

    The Pi54 gene (Pi-k(h)) confers a high degree of resistance to diverse strains of the fungus Magnaporthe oryzae. In order to understand the genome-wide co-expression of genes in the transgenic rice plant Taipei 309 (TP) containing the Pi54 gene, microarray analysis was performed at 72 h post-inoculation of the M. oryzae strain PLP-1. A total of 1154 differentially expressing genes were identified in TP-Pi54 plants. Of these, 587 were up-regulated, whereas 567 genes were found to be down-regulated. 107 genes were found that were exclusively up-regulated and 58 genes that were down- regulated in the case of TP-Pi54. Various defence response genes, such as callose, laccase, PAL, and peroxidase, and genes related to transcription factors like NAC6, Dof zinc finger, MAD box, bZIP, and WRKY were found to be up-regulated in the transgenic line. The enzymatic activities of six plant defence response enzymes, such as peroxidase, polyphenol oxidase, phenylalanine ammonia lyase, β-glucosidase, β-1,3-glucanase, and chitinase, were found to be significantly high in TP-Pi54 at different stages of inoculation by M. oryzae. The total phenol content also increased significantly in resistant transgenic plants after pathogen inoculation. This study suggests the activation of defence response and transcription factor-related genes and a higher expression of key enzymes involved in the defence response pathway in the rice line TP-Pi54, thus leading to incompatible host-pathogen interaction. PMID:22058403

  11. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function

    PubMed Central

    Jackrel, Sara L.; Wootton, J. Timothy

    2015-01-01

    Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:25788602

  12. Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine.

    PubMed

    Farace, Giovanni; Fernandez, Olivier; Jacquens, Lucile; Coutte, François; Krier, François; Jacques, Philippe; Clément, Christophe; Barka, Essaid Ait; Jacquard, Cédric; Dorey, Stéphan

    2015-02-01

    Non-self-recognition of microorganisms partly relies on the perception of microbe-associated molecular patterns (MAMPs) and leads to the activation of an innate immune response. Bacillus subtilis produces three main families of cyclic lipopeptides (LPs), namely surfactins, iturins and fengycins. Although LPs are involved in induced systemic resistance (ISR) activation, little is known about defence responses induced by these molecules and their involvement in local resistance to fungi. Here, we showed that purified surfactin, mycosubtilin (iturin family) and plipastatin (fengycin family) are perceived by grapevine plant cells. Although surfactin and mycosubtilin stimulated grapevine innate immune responses, they differentially activated early signalling pathways and defence gene expression. By contrast, plipastatin perception by grapevine cells only resulted in early signalling activation. Gene expression analysis suggested that mycosubtilin activated salicylic acid (SA) and jasmonic acid (JA) signalling pathways, whereas surfactin mainly induced an SA-regulated response. Although mycosubtilin and plipastatin displayed direct antifungal activity, only surfactin and mycosubtilin treatments resulted in a local long-lasting enhanced tolerance to the necrotrophic fungus Botrytis cinerea in grapevine leaves. Moreover, challenge with specific strains overproducing surfactin and mycosubtilin led to a slightly enhanced stimulation of the defence response compared with the LP-non-producing strain of B. subtilis. Altogether, our results provide the first comprehensive view of the involvement of LPs from B. subtilis in grapevine plant defence and local resistance against the necrotrophic pathogen Bo. cinerea. Moreover, this work is the first to highlight the ability of mycosubtilin to trigger an immune response in plants. PMID:25040001

  13. Cascading effects of induced terrestrial plant defences on aquatic and terrestrial ecosystem function.

    PubMed

    Jackrel, Sara L; Wootton, J Timothy

    2015-04-22

    Herbivores induce plants to undergo diverse processes that minimize costs to the plant, such as producing defences to deter herbivory or reallocating limited resources to inaccessible portions of the plant. Yet most plant tissue is consumed by decomposers, not herbivores, and these defensive processes aimed to deter herbivores may alter plant tissue even after detachment from the plant. All consumers value nutrients, but plants also require these nutrients for primary functions and defensive processes. We experimentally simulated herbivory with and without nutrient additions on red alder (Alnus rubra), which supplies the majority of leaf litter for many rivers in western North America. Simulated herbivory induced a defence response with cascading effects: terrestrial herbivores and aquatic decomposers fed less on leaves from stressed trees. This effect was context dependent: leaves from fertilized-only trees decomposed most rapidly while leaves from fertilized trees receiving the herbivory treatment decomposed least, suggesting plants funnelled a nutritionally valuable resource into enhanced defence. One component of the defence response was a decrease in leaf nitrogen leading to elevated carbon : nitrogen. Aquatic decomposers prefer leaves naturally low in C : N and this altered nutrient profile largely explains the lower rate of aquatic decomposition. Furthermore, terrestrial soil decomposers were unaffected by either treatment but did show a preference for local and nitrogen-rich leaves. Our study illustrates the ecological implications of terrestrial herbivory and these findings demonstrate that the effects of selection caused by terrestrial herbivory in one ecosystem can indirectly shape the structure of other ecosystems through ecological fluxes across boundaries. PMID:25788602

  14. Defence force activities in marine protected areas: environmental management of Shoalwater Bay Training Area, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Wu, Wen; Wang, Xiaohua; Paull, David; Kesby, Julie

    2010-05-01

    Environmental management of military activities is of growing global concern by defence forces. As one of the largest landholders in Australia, the Australian Defence Force (ADF) is increasingly concerned with sustainable environmental management. This paper focuses on how the ADF is maintaining effective environmental management, especially in environmentally sensitive marine protected areas. It uses Shoalwater Bay Training Area (SWBTA) as a research example to examine environmental management strategies conducted by the ADF. SWBTA is one of the most significant Defence training areas in Australia, with a large number of single, joint and combined military exercises conducted in the area. With its maritime component contained in the Great Barrier Reef Marine Park (GBRMP), the Great Barrier Reef World Heritage Area (GBRWHA), and abutting Queensland’s State Marine Parks, it has high protection values. It is therefore vital for the ADF to adopt environmentally responsible management while they are conducting military activities. As to various tools employed to manage environmental performance, the ISO 14001 Environmental Management System (EMS) is widely used by the ADF. This paper examines military activities and marine environmental management within SWBTA, using the Talisman Saber (TS) exercise series as an example. These are extensive joint exercises conducted by the ADF and the United States defence forces. The paper outlines relevant legislative framework and environmental policies, analyses how the EMS operates in environmental management of military activities, and how military activities comply with these regulations. It discusses the implementation of the ADF EMS, including risk reduction measures, environmental awareness training, consultation and communication with stakeholders. A number of environmental management actions used in the TS exercises are presented to demonstrate the EMS application. Our investigations to this point indicate that the ADF is

  15. DELLA proteins modulate Arabidopsis defences induced in response to caterpillar herbivory

    PubMed Central

    Bede, Jacqueline C.

    2014-01-01

    Upon insect herbivory, many plant species change the direction of metabolic flux from growth into defence. Two key pathways modulating these processes are the gibberellin (GA)/DELLA pathway and the jasmonate pathway. In this study, the effect of caterpillar herbivory on plant-induced responses was compared between wild-type Arabidopsis thaliana (L.) Heynh. and quad-della mutants that have constitutively elevated GA responses. The labial saliva (LS) of caterpillars of the beet armyworm, Spodoptera exigua, is known to influence induced plant defence responses. To determine the role of this herbivore cue in determining metabolic shifts, plants were subject to herbivory by caterpillars with intact or impaired LS secretions. In both wild-type and quad-della plants, a jasmonate burst is an early response to caterpillar herbivory. Negative growth regulator DELLA proteins are required for the LS-mediated suppression of hormone levels. Jasmonate-dependent marker genes are induced in response to herbivory independently of LS, with the exception of AtPDF1.2 that showed LS-dependent expression in the quad-della mutant. Early expression of the salicylic acid (SA)-marker gene, AtPR1, was not affected by herbivory which also reflected SA hormone levels; however, this gene showed LS-dependent expression in the quad-della mutant. DELLA proteins may positively regulate glucosinolate levels and suppress laccase-like multicopper oxidase activity in response to herbivory. The present results show a link between DELLA proteins and early, induced plant defences in response to insect herbivory; in particular, these proteins are necessary for caterpillar LS-associated attenuation of defence hormones. PMID:24399173

  16. Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses

    PubMed Central

    Li, Tao; Blande, James D.; Gundel, Pedro E.; Helander, Marjo; Saikkonen, Kari

    2014-01-01

    Epichloë endophytes are common symbionts living asymptomatically in pooid grasses and may provide chemical defences against herbivorous insects. While the mechanisms underlying these fungal defences have been well studied, it remains unknown whether endophyte presence affects the host's own defences. We addressed this issue by examining variation in the impact of Epichloë on constitutive and herbivore-induced emissions of volatile organic compounds (VOC), a well-known indirect plant defence, between two grass species, Schedonorus phoenix (ex. Festuca arundinacea; tall fescue) and Festuca pratensis (meadow fescue). We found that feeding by a generalist aphid species, Rhopalosiphum padi, induced VOC emissions by uninfected plants of both grass species but to varying extents, while mechanical wounding failed to do so in both species after one day of damage. Interestingly, regardless of damage treatment, Epichloë uncinata-infected F. pratensis emitted significantly lower quantities of VOCs than their uninfected counterparts. In contrast, Epichloë coenophiala-infected S. phoenix did not differ from their uninfected counterparts in constitutive VOC emissions but tended to increase VOC emissions under intense aphid feeding. A multivariate analysis showed that endophyte status imposed stronger differences in VOC profiles of F. pratensis than damage treatment, while the reverse was true for S. phoenix. Additionally, both endophytes inhibited R. padi population growth as measured by aphid dry biomass, with the inhibition appearing greater in E. uncinata-infected F. pratensis. Our results suggest, not only that Epichloë endophytes may play important roles in mediating host VOC responses to herbivory, but also that the magnitude and direction of such responses may vary with the identity of the Epichloë–grass symbiosis. Whether Epichloë-mediated host VOC responses will eventually translate into effects on higher trophic levels merits future investigation. PMID:24978701

  17. Some potentialities for using aerospace information in the field of national security and defence

    NASA Astrophysics Data System (ADS)

    Getsov, Petar; Penev, Pavel

    The modern tendencies in using remote sensing techniques and systems for studying the Earth from space are formulated. The potentialities to use dual-destination space monitoring commercial satellites on the territory of the Republic of Bulgaria are outlined. General formulation of the tasks in the field of defence and security resolved through the space segment is given. A structure for a sovereign National Space Information Centre is suggested.

  18. Cancer susceptibility and reproductive trade-offs: a model of the evolution of cancer defences.

    PubMed

    Boddy, Amy M; Kokko, Hanna; Breden, Felix; Wilkinson, Gerald S; Aktipis, C Athena

    2015-07-19

    The factors influencing cancer susceptibility and why it varies across species are major open questions in the field of cancer biology. One underexplored source of variation in cancer susceptibility may arise from trade-offs between reproductive competitiveness (e.g. sexually selected traits, earlier reproduction and higher fertility) and cancer defence. We build a model that contrasts the probabilistic onset of cancer with other, extrinsic causes of mortality and use it to predict that intense reproductive competition will lower cancer defences and increase cancer incidence. We explore the trade-off between cancer defences and intraspecific competition across different extrinsic mortality conditions and different levels of trade-off intensity, and find the largest effect of competition on cancer in species where low extrinsic mortality combines with strong trade-offs. In such species, selection to delay cancer and selection to outcompete conspecifics are both strong, and the latter conflicts with the former. We discuss evidence for the assumed trade-off between reproductive competitiveness and cancer susceptibility. Sexually selected traits such as ornaments or large body size require high levels of cell proliferation and appear to be associated with greater cancer susceptibility. Similar associations exist for female traits such as continuous egg-laying in domestic hens and earlier reproductive maturity. Trade-offs between reproduction and cancer defences may be instantiated by a variety of mechanisms, including higher levels of growth factors and hormones, less efficient cell-cycle control and less DNA repair, or simply a larger number of cell divisions (relevant when reproductive success requires large body size or rapid reproductive cycles). These mechanisms can affect intra- and interspecific variation in cancer susceptibility arising from rapid cell proliferation during reproductive maturation, intrasexual competition and reproduction. PMID:26056364

  19. An Apparent Trade-Off between Direct and Signal-Based Induced Indirect Defence against Herbivores in Willow Trees

    PubMed Central

    Yoneya, Kinuyo; Uefune, Masayoshi; Takabayashi, Junji

    2012-01-01

    Signal-based induced indirect defence refers to herbivore-induced production of plant volatiles that attract carnivorous natural enemies of herbivores. Relationships between direct and indirect defence strategies were studied using tritrophic systems consisting of six sympatric willow species, willow leaf beetles (Plagiodera versicolora), and their natural predators, ladybeetles (Aiolocaria hexaspilota). Relative preferences of ladybeetles for prey-infested willow plant volatiles, indicating levels of signal-based induced indirect defence, were positively correlated with the vulnerability of willow species to leaf beetles, assigned as relative levels of direct defence. This correlation suggested a possible trade-off among the species, in terms of resource limitation between direct defence and signal-based induced indirect defence. However, analyses of volatiles from infested and uninfested plants showed that the specificity of infested volatile blends (an important factor determining the costs of signal-based induced indirect defence) did not affect the attractiveness of infested plant volatiles. Thus, the suggested trade-off in resource limitation was unlikely. Rather, principal coordinates analysis showed that this ‘apparent trade-off’ between direct and signal-based induced indirect defence was partially explained by differential preferences of ladybeetles to infested plant volatiles of the six willow species. We also showed that relative preferences of ladybeetles for prey-infested willow plant volatiles were positively correlated with oviposition preferences of leaf beetles and with the distributions of leaf beetles in the field. These correlations suggest that ladybeetles use the specificity of infested willow plant volatiles to find suitable prey patches. PMID:23251559

  20. The synthetic cationic lipid diC14 activates a sector of the Arabidopsis defence network requiring endogenous signalling components.

    PubMed

    Cambiagno, Damián Alejandro; Lonez, Caroline; Ruysschaert, Jean-Marie; Alvarez, María Elena

    2015-12-01

    Natural and synthetic elicitors have contributed significantly to the study of plant immunity. Pathogen-derived proteins and carbohydrates that bind to immune receptors, allow the fine dissection of certain defence pathways. Lipids of a different nature that act as defence elicitors, have also been studied, but their specific effects have been less well characterized, and their receptors have not been identified. In animal cells, nanoliposomes of the synthetic cationic lipid 3-tetradecylamino-tert-butyl-N-tetradecylpropionamidine (diC14) activate the TLR4-dependent immune cascade. Here, we have investigated whether this lipid induces Arabidopsis defence responses. At the local level, diC14 activated early and late defence gene markers (FRK1, WRKY29, ICS1 and PR1), acting in a dose-dependent manner. This lipid induced the salicylic acid (SA)-dependent, but not jasmonic acid (JA)-dependent, pathway and protected plants against Pseudomonas syringae pv. tomato (Pst), but not Botrytis cinerea. diC14 was not toxic to plant or pathogen, and potentiated pathogen-induced callose deposition. At the systemic level, diC14 induced PR1 expression and conferred resistance against Pst. diC14-induced defence responses required the signalling protein EDS1, but not NDR1. Curiously, the lipid-induced defence gene expression was lower in the fls2/efr/cerk1 triple mutant, but still unchanged in the single mutants. The amidine headgroup and chain length were important for its activity. Given the robustness of the responses triggered by diC14, its specific action on a defence pathway and the requirement for well-known defence components, this synthetic lipid is emerging as a useful tool to investigate the initial events involved in plant innate immunity. PMID:25727690

  1. Food supplementation mitigates dispersal-dependent differences in nest defence in a passerine bird.

    PubMed

    Récapet, Charlotte; Daniel, Grégory; Taroni, Joëlle; Bize, Pierre; Doligez, Blandine

    2016-05-01

    Dispersing and non-dispersing individuals often differ in phenotypic traits (e.g. physiology, behaviour), but to what extent these differences are fixed or driven by external conditions remains elusive. We experimentally tested whether differences in nest-defence behaviour between dispersing and non-dispersing individuals changed with local habitat quality in collared flycatchers, by providing additional food during the nestling rearing period. In control (non-food-supplemented) nests, dispersers were less prone to defend their brood compared with non-dispersers, whereas in food-supplemented nests, dispersing and non-dispersing individuals showed equally strong nest defence. We discuss the importance of dispersal costs versus adaptive flexibility in reproductive investment in shaping these differences in nest-defence behaviour between dispersing and non-dispersing individuals. Irrespective of the underlying mechanisms, our study emphasizes the importance of accounting for environmental effects when comparing traits between dispersing and non-dispersing individuals, and in turn assessing the costs and benefits of dispersal. PMID:27194287

  2. Chemical Diversity and Defence Metabolism: How Plants Cope with Pathogens and Ozone Pollution

    PubMed Central

    Iriti, Marcello; Faoro, Franco

    2009-01-01

    Chemical defences represent a main trait of the plant innate immune system. Besides regulating the relationship between plants and their ecosystems, phytochemicals are involved both in resistance against pathogens and in tolerance towards abiotic stresses, such as atmospheric pollution. Plant defence metabolites arise from the main secondary metabolic routes, the phenylpropanoid, the isoprenoid and the alkaloid pathways. In plants, antibiotic compounds can be both preformed (phytoanticipins) and inducible (phytoalexins), the former including saponins, cyanogenic glycosides and glucosinolates. Chronic exposure to tropospheric ozone (O3) stimulates the carbon fluxes from the primary to the secondary metabolic pathways to a great extent, inducing a shift of the available resources in favour of the synthesis of secondary products. In some cases, the plant defence responses against pathogens and environmental pollutants may overlap, leading to the unspecific synthesis of similar molecules, such as phenylpropanoids. Exposure to ozone can also modify the pattern of biogenic volatile organic compounds (BVOC), emitted from plant in response to herbivore feeding, thus altering the tritrophic interaction among plant, phytophagy and their natural enemies. Finally, the synthesis of ethylene and polyamines can be regulated by ozone at level of S-adenosylmethionine (SAM), the biosynthetic precursor of both classes of hormones, which can, therefore, mutually inhibit their own biosynthesis with consequence on plant phenotype. PMID:20111684

  3. Cellular basis of host defence in pyelonephritis. III. Deletion of individual components.

    PubMed Central

    Miller, T. E.; Findon, G.; Cawley, S.

    1987-01-01

    Hosts were depleted of individual cellular components to determine the effects of these manipulations on cellular defence mechanisms in acute and chronic pyelonephritis. T-lymphocytes were found to have little or no involvement in host protection but cyclosporin A administration had a dramatic effect on the gross pathology and bacteriological status of experimentally induced pyelonephritis. This change represented a major depression of host defence status. Cyclosporin A also activated resolved lesions in chronic pyelonephritis, associated with an increase in bacterial numbers. Administration of antineutrophil serum also led to a 1000-fold increase in bacterial numbers in the acute phase but had little effect on the host-parasite balance in chronic pyelonephritis. Macrophage blockade, on the other hand, did not affect the course of either acute or chronic infection. These studies have provided additional information on the immunobiology of experimental pyelonephritis and have focussed attention on the role of neutrophils, and an unidentified mechanism, affected by cyclosporin A, in host defence to renal infection. PMID:3040066

  4. Armed Rollers: Does Nestling’s Vomit Function as a Defence against Predators?

    PubMed Central

    Parejo, Deseada; Avilés, Jesús M.; Peña, Aránzazu; Sánchez, Lourdes; Ruano, Francisca; Zamora-Muñoz, Carmen; Martín-Vivaldi, Manuel

    2013-01-01

    Chemical defences against predators are widespread in the animal kingdom although have been seldom reported in birds. Here, we investigate the possibility that the orange liquid that nestlings of an insectivorous bird, the Eurasian roller (Coracias garrulus), expel when scared at their nests acts as a chemical defence against predators. We studied the diet of nestling rollers and vomit origin, its chemical composition and deterrent effect on a mammal generalist predator. We also hypothesized that nestling rollers, as their main prey (i.e. grasshoppers) do from plants, could sequester chemicals from their prey for their use. Grasshoppers, that also regurgitate when facing to a threat, store the harmful substances used by plants to defend themselves against herbivores. We found that nestling rollers only vomit after being grasped and moved. The production of vomit depended on food consumption and the vomit contained two deterrent chemicals (hydroxycinnamic and hydroxybenzoic acids) stored by grasshoppers and used by plants to diminish herbivory, suggesting that they originate from the rollers’ prey. Finally, we showed for the first time that the oral secretion of a vertebrate had a deterrent effect on a model predator because vomit of nestling rollers made meat distasteful to dogs. These results support the idea that the vomit of nestling rollers is a chemical defence against predators. PMID:23874791

  5. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria.

    PubMed

    Shui, Jr-Wen; Larange, Alexandre; Kim, Gisen; Vela, Jose Luis; Zahner, Sonja; Cheroutre, Hilde; Kronenberg, Mitchell

    2012-08-01

    The herpes virus entry mediator (HVEM), a member of the tumour-necrosis factor receptor family, has diverse functions, augmenting or inhibiting the immune response. HVEM was recently reported as a colitis risk locus in patients, and in a mouse model of colitis we demonstrated an anti-inflammatory role for HVEM, but its mechanism of action in the mucosal immune system was unknown. Here we report an important role for epithelial HVEM in innate mucosal defence against pathogenic bacteria. HVEM enhances immune responses by NF-κB-inducing kinase-dependent Stat3 activation, which promotes the epithelial expression of genes important for immunity. During intestinal Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli infection, Hvem−/− mice showed decreased Stat3 activation, impaired responses in the colon, higher bacterial burdens and increased mortality. We identified the immunoglobulin superfamily molecule CD160 (refs 7 and 8), expressed predominantly by innate-like intraepithelial lymphocytes, as the ligand engaging epithelial HVEM for host protection. Likewise, in pulmonary Streptococcus pneumoniae infection, HVEM is also required for host defence. Our r