Science.gov

Sample records for nile river delta

  1. Nile River Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The Nile River Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population. The capital city of Cairo is at the apex of the delta. Just across the river from Cairo can be seen the ancient three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  2. Nile Delta

    Atmospheric Science Data Center

    2013-04-15

    article title:  The Nile River Delta     View Larger Image ... of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids ...

  3. Determining the Palaeodrainage of the Nile River from a Provenance Study of the Nile Delta Cone Sediments

    NASA Astrophysics Data System (ADS)

    Fielding, L.; Najman, Y.; Millar, I.; Butterworth, P.; Garzanti, E.; Kneller, B. C.

    2014-12-01

    This study documents the palaeodrainage history of the Nile River, in particular the time of its transition from a small locally sourced drainage network to the initiation of an extensive catchment. Today, the Nile drains as far south as Lake Victoria, with the White Nile draining largely cratonic rocks of Archean to Proterozoic age and the Blue Nile draining Cenozoic Ethiopian Continental Flood Basalts and Neoproterozoic basement. However, the timing of catchment expansion to the river's current extent is highly debated. Two end member models are: A) The Blue Nile did not connect with the lower Nile until the Late Messinian, and the White Nile not until 0.5 Ma. In this model, the pre-Messinian Nile delta sediments are locally derived from the Red Sea Hills (RSH) (Issawi and McCauley 1992). B) The Blue Nile has been connected to the lower Nile since the Oligocene (Burke and Wells 1989). Onshore fieldwork characterised each possible source area (Ethiopian flood basalts, Archean craton, and Neoproterozoic basement and Phanerozoic cover sequences of the RSH) using petrography, geochemistry and isotope studies. Tertiary-aged Nile delta sediments provide a unique archive of the river's palaeodrainage history, which were analysed from conventional core from exploration and appraisal wells in order to identify the occurrence (if any) of these sources in the delta geological record. Heavy mineral, petrographic, U/Pb rutile and Lu/Hf zircon analyses indicate Blue Nile and/or RSH input to the Nile delta since at least the Oligocene with very little input from the White Nile. Sr and Nd whole-rock analyses of mud samples allow discrimination between the Blue Nile and RSH sources and may, subject to further analyses, confirm Blue Nile input to the delta since the Oligocene. U-Pb zircon analyses reveal the presence of 20-30 Ma zircons in both the modern river sediments from the Ethiopian Highlands and the Nile Delta core from the early Miocene to present day indicating a

  4. Nile Delta, Egypt

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The Nile Delta of Egypt (30.0N, 31.0E) irrigated by the Nile River and its many distributaries, is some of the richest farm land in the world and home to some 45 million people, over half of Egypt's population of 57 million. The capital city of Cairo is at the apex of the delta in the middle of the scene. Across the river from Cairo can be seen the three big pyramids and sphinx at Giza and the Suez Canal is just to the right of the delta.

  5. Nile River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Nile River Fluctuations Near Khartoum, Sudan     ... history, the rising and falling waters of the mighty Nile River have directly impacted the lives of the people who live along its banks. ... the area around Sudan's capital city of Khartoum capture the river's dynamic nature. Acquired by the Multi-angle Imaging SpectroRadiometer ...

  6. SAR Interferometry as a Tool for Monitoring Coastal Changes in the Nile River Delta of Egypt

    NASA Technical Reports Server (NTRS)

    Aly, Mohamed H.; Klein, Andrew G.; Giardino, John R.

    2005-01-01

    The Nile River Delta is experiencing rapid rates of coastal change. The rate of both coastal retreat and accretion in the Eastern Nile Delta requires regular, accurate detection and measurement. Current techniques used to monitor coastal changes in the delta are point measurements and, thus, they provide a spatially limited view of the ongoing coastal changes. SAR interferometry can provide measurements of subtle coastal change at a significantly improved spatial resolution and over large areas (100 sq km). Using data provided by the ERS-1&2 satellites, monitoring can be accomplished as frequently as every 35 days when needed. Radar interferometry is employed in this study to detect segments of erosion and accretion during the 1993-2000 period. The average rates of erosion and accretion in the Eastern Nile Delta are measured to be -11.64 m/yr and +5.12 m/yr, respectively. The results of this interferometric study can be used effectively for coastal zone management and integrated sustainable development for the Nile River Delta.

  7. Hydro-environmental status and soil management of the River Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Elewa, H. H.; El Nahry, A. H.

    2009-04-01

    The sea level rise has its own-bearing on the coastal recession and hydro-environmental degradation of the River Nile Delta. Attempts are made here to use remote sensing to detect the coastal recession in some selected parts and delineating the chemistry of groundwater aquifers and surface water, which lie along south-mid-northern and coastal zone of the Nile Delta. Eight water samples from groundwater monitoring wells and 13 water samples from surface water were collected and analyzed for various hydrochemical parameters. The groundwater samples are classified into five hydrochemical facies on Hill-Piper trilinear diagram based on the dominance of different cations and anions: facies 1: Ca-Mg-Na-HCO3-Cl-SO4 type I; facies 2: Na-Cl-HCO3 type II; facies 3: Na-Ca-Mg-Cl type III, facies 4: Ca-Na-Mg-Cl-HCO3 type IV and facies 5: Na-Mg-Cl type V. The hydrochemical facies showed that the majority of samples were enriched in sodium, bicarbonate and chloride types and, which reflected that the sea water and tidal channel play a major role in controlling the groundwater chemical composition in the Quaternary shallow aquifers, with a severe degradation going north of Nile Delta. Also, the relationship between the dissolved chloride (Cl, mmol/l), as a variable, and other major ion combinations (in mmol/l) were considered as another criterion for chemical classification system. The low and medium chloride groundwater occurs in southern and mid Nile Delta (Classes A and B), whereas the high and very high chloride (classes D and C) almost covers the northern parts of the Nile Delta indicating the severe effect of sea water intrusion. Other facets of hydro-environmental degradation are reflected through monitoring the soil degradation process within the last two decades in the northern part of Nile Delta. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing/GIS techniques. The main types of human induced soil

  8. The Nile River

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the northern portion of the Nile River was captured by MISR's nadir camera on January 30, 2001 (Terra orbit 5956). The Nile is the longest river in the world, extending for about 6700 kilometers from its headwaters in the highlands of eastern Africa. At the apex of the fertile Nile River Delta is the Egyptian capital city of Cairo. To the west are the Great Pyramids of Giza. North of here the Nile branches into two distributaries, the Rosetta to the west and the Damietta to the east. Also visible in this image is the Suez Canal, a shipping waterway connecting Port Said on the Mediterranean Sea with the Gulf of Suez. The Gulf is an arm of the Red Sea, and is located on the righthand side of the picture. Image credit: NASA/GSFC/LaRC/JPL, MISR Team.

  9. An Integrated Hydrological and Water Management Study of the Entire Nile River System - Lake Victoria to Nile Delta

    NASA Technical Reports Server (NTRS)

    Habib, Shahid; Zaitchik, Benjamin; Alo, Clement; Ozdogan, Mutlu; Anderson, Martha; Policelli, Fritz

    2011-01-01

    The Nile basin River system spans 3 million km(exp 2) distributed over ten nations. The eight upstream riparian nations, Ethiopia, Eretria, Uganda, Rwanda, Burundi, Congo, Tanzania and Kenya are the source of approximately 86% of the water inputs to the Nile, while the two downstream riparian countries Sudan and Egypt, presently rely on the river's flow for most of the their needs. Both climate and agriculture contribute to the complicated nature of Nile River management: precipitation in the headwaters regions of Ethiopia and Lake Victoria is variable on a seasonal and inter-annual basis, while demand for irrigation water in the arid downstream region is consistently high. The Nile is, perhaps, one of the most difficult trans-boundary water issue in the world, and this study would be the first initiative to combine NASA satellite observations with the hydrologic models study the overall water balance in a to comprehensive manner. The cornerstone application of NASA's Earth Science Research Results under this project are the NASA Land Data Assimilation System (LDAS) and the USDA Atmosphere-land Exchange Inverse (ALEXI) model. These two complementary research results are methodologically independent methods for using NASA observations to support water resource analysis in data poor regions. Where an LDAS uses multiple sources of satellite data to inform prognostic simulations of hydrological process, ALEXI diagnoses evapotranspiration and water stress on the basis of thermal infrared satellite imagery. Specifically, this work integrates NASA Land Data Assimilation systems into the water management decision support systems that member countries of the Nile Basin Initiative (NBI) and Regional Center for Mapping of Resources for Development (RCMRD, located in Nairobi, Kenya) use in water resource analysis, agricultural planning, and acute drought response to support sustainable development of Nile Basin water resources. The project is motivated by the recognition that

  10. Prevalence and characterization of Cryptosporidium spp. in dairy cattle in Nile River delta provinces, Egypt.

    PubMed

    Amer, Said; Zidan, Shereif; Adamu, Haileeyesus; Ye, Jianbin; Roellig, Dawn; Xiao, Lihua; Feng, Yaoyu

    2013-11-01

    Molecular characterizations of Cryptosporidium spp. in dairy cattle in industrialized nations have mostly shown a dominance of Cryptosporidium parvum, especially its IIa subtypes in pre-weaned calves. Few studies, however, have been conducted on the distribution of Cryptosporidium species and C. parvum subtypes in various age groups of dairy cattle in developing countries. In this study, we examined the prevalence and molecular characteristics of Cryptosporidium in dairy cattle in four Nile River delta provinces in Egypt. Modified Ziehl-Neelsen acid-fast microscopy was used to screen for Cryptosporidium oocysts in 1974 fecal specimens from animals of different ages on 12 farms. Positive fecal specimens were identified from all studied farms with an overall prevalence of 13.6%. By age group, the infection rates were 12.5% in pre-weaned calves, 10.4% in post-weaned calves, 22.1% in heifers, and 10.7% in adults. PCR-RFLP and DNA sequence analyses of microscopy-positive fecal specimens revealed the presence of four major Cryptosporidium species. In pre-weaned calves, C. parvum was most common (30/69 or 43.5%), but Cryptosporidium ryanae (13/69 or 18.8%), Cryptosporidium bovis (7/69 or 10.2%), and Cryptosporidium andersoni (7/69 or 10.2%) were also present at much higher frequencies seen in most industrialized nations. Mixed infections were seen in 12/69 (17.4%) of genotyped specimens. In contrast, C. andersoni was the dominant species (193/195 or 99.0%) in post-weaned calves and older animals. Subtyping of C. parvum based on sequence analysis of the 60kDa glycoprotein gene showed the presence of subtypes IIdA20G1 in nine specimens, IIaA15G1R1 in 27 specimens, and a rare subtype IIaA14G1R1r1b in one specimen. The common occurrence of non-C. parvum species and IId subtypes in pre-weaned calves is a distinct feature of cryptosporidiosis transmission in dairy cattle in Egypt. The finding of the same two dominant IIa and IId C. parvum subtypes recently found in humans in

  11. Tracking Nile Delta vulnerability to Holocene change.

    PubMed

    Marriner, Nick; Flaux, Clément; Morhange, Christophe; Stanley, Jean-Daniel

    2013-01-01

    Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important challenge for the earth sciences in characterizing the full range of present and future wetland responses to global warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in Nile Delta accretion rates is consistent with insolation-driven changes in the 'monsoon pacemaker', attested throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile's deltaic plain, sediment losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the Saharan 'depeopling', reduced river flow underpinned by a weakening of monsoonal precipitation appears to have been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history of vulnerability to extreme events (e.g. floods and storms) and sea-level rise, although the present sediment-starved system does not have a direct Holocene analogue. This study highlights the importance of the world's deltas as sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal interaction. PMID:23922692

  12. Tracking Nile Delta Vulnerability to Holocene Change

    PubMed Central

    Marriner, Nick; Flaux, Clément; Morhange, Christophe; Stanley, Jean-Daniel

    2013-01-01

    Understanding deltaic resilience in the face of Holocene climate change and human impacts is an important challenge for the earth sciences in characterizing the full range of present and future wetland responses to global warming. Here, we report an 8000-year mass balance record from the Nile Delta to reconstruct when and how this sedimentary basin has responded to past hydrological shifts. In a global Holocene context, the long-term decrease in Nile Delta accretion rates is consistent with insolation-driven changes in the ‘monsoon pacemaker’, attested throughout the mid-latitude tropics. Following the early to mid-Holocene growth of the Nile’s deltaic plain, sediment losses and pronounced erosion are first recorded after ~4000 years ago, the corollaries of falling sediment supply and an intensification of anthropogenic impacts from the Pharaonic period onwards. Against the backcloth of the Saharan ‘depeopling’, reduced river flow underpinned by a weakening of monsoonal precipitation appears to have been particularly conducive to the expansion of human activities on the delta by exposing productive floodplain lands for occupation and irrigation agriculture. The reconstruction suggests that the Nile Delta has a particularly long history of vulnerability to extreme events (e.g. floods and storms) and sea-level rise, although the present sediment-starved system does not have a direct Holocene analogue. This study highlights the importance of the world’s deltas as sensitive archives to investigate Holocene geosystem responses to climate change, risks and hazards, and societal interaction. PMID:23922692

  13. Discover the Nile River

    ERIC Educational Resources Information Center

    Project WET Foundation, 2009

    2009-01-01

    Bordering on the Fantastic. As the longest river on earth, the Nile passes through 10 countries. Presented through a wide range of activities and a winning array of games, it's also unsurpassed at taking young minds into exploring the world of water, as well as natural and man made wonders.

  14. Geochemistry of sediments and surface soils from the Nile Delta and lower Nile valley studied by epithermal neutron activation analysis

    NASA Astrophysics Data System (ADS)

    Arafa, Wafaa M.; Badawy, Wael M.; Fahmi, Naglaa M.; Ali, Khaled; Gad, Mohamed S.; Duliu, Octavian G.; Frontasyeva, Marina V.; Steinnes, Eiliv

    2015-07-01

    The distributions of 36 major and trace elements in 40 surface soil and sediment samples collected from the Egyptian section of the river Nile were determined by epithermal neutron activation analysis and compared with corresponding data for the Upper Continental Crust and North American Shale Composite. Their relative distributions indicate the presence of detrital material of igneous origin, most probably resulting from weathering on Ethiopian highlands and transported by the Blue Nile, the Nile main tributary. The distributions of the nickel, zinc, and arsenic contents suggest that the lower part of the Nile and its surroundings including the Nile Delta is not seriously polluted with metals from local human activity. The geographical distributions of Na, Cl, and I as well as results of principal component analysis suggest atmospheric supply of these elements from the ocean. In general the present data may contribute to a better understanding of the geochemistry of the Nile sediments.

  15. Nile River, Lake Nasser, Aswan Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Egypt's High Aswan Dam on the Nile River at the first cataracts, Nile River, (24.0N, 33.0E) was completed in 1971 to provide cheap hydroelectric power and to regulate the historically uneven flow of the Nile River. The contrast between the largely base rock desert east of the Nile versus the sand covered desert west of the river and the ancient irrigated floodplain downstream from the damsite is clearly shown.

  16. Facies analysis of Nile delta continental shelf sediments off Egypt

    NASA Astrophysics Data System (ADS)

    Frihy, Omran E.; Gamai, Ibrahim H.

    This study evaluates the texture and coarse fraction composition of 108 bottom samples from the Nile delta continental shelf. In total 19 petrological variables were considered for each of the samples, and Q-mode factor analysis of the textural and mineralogical variables yielded 4 factors (facies groups): Facies I. Fine and very fine sands, light minerals, heavy minerals and 'glauconite', extending from the shoreline to the inner shelf and decreasing away from the shoreline. Facies II. Silty sand rich in biogenic components occupies the entire outer shelf and its contiguous lower terraces. Facies III. Mud (silt plus clay), mica and 'glauconite', covering the middle shelf and the upper terraces. Facies IV. Fine to coarse-grained sediments and 'glauconite', locally distributed along the coast off lake ldku, Burullus headland, and Damietta promontory and El Gamil. The configuration patterns of facies I (delta-front), facies III (prodelta) and facies IV (distributary mouth bar or progradational coastal sand) help identify delta lobes related to former distributary branches of the Nile river (Canopic, Saitic, Sebennitic, Atribic and Mendisian). The 4 facies-forming shelf sediments have resulted from sediment dynamics, sea-level fluctuation and differences in sediment input and provenance.

  17. Impact of climate change on water and agriculture: Challenges and possible solutions for the Nile Delta

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Arafa, Salah; Farahat, Hany; Badr, Marmar; Gampe, David; Ludwig, Ralf

    2013-04-01

    The Nile-Delta is subjected to continuous changes; including shoreline changes either erosion or accretion, subsidence of the delta, as well as sea level rise due to climate change. The impacts of climate change on the Nile Delta have been addressed on local and international level as the Nile Delta coastal zones are vulnerable to sea level rise. The poster presents recent research activities and findings from the CLIMB project in the Nile Delta and costal zones of Egypt. Lots of field data have been collected such as aquifer geometry data, soil properties data, well data and contamination sources. All of these data support a coupled modeling approach of the land surface hydrological model WASIM-ETH and the hydrological model MOD-Flow to simulate and project the future impact translation of climate projections into hydrological impacts. Results confirm intensified threads to water security. Increasing potential evaporation (in response to increasing temperature) in combination with decreasing water levels in the Nile river, reduced precipitation and groundwater recharge and deteriorating groundwater quality, imposes great challenges to ensure the supply of drinking water and irrigation. Current irrigation strategies are highly inefficient and must be replaced by new and adapted systems. Based on the results of the coupled modeling approach, various scenarios can be evaluated. The vision is to develop a road map for climate change and green economy that maximizes wellbeing of the Egyptian citizens, operates with environmental limits, and is capable of adapting to global environmental change.

  18. Modeling river delta formation.

    PubMed

    Seybold, Hansjörg; Andrade, José S; Herrmann, Hans J

    2007-10-23

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  19. Modeling river delta formation

    PubMed Central

    Seybold, Hansjörg; Andrade, José S.; Herrmann, Hans J.

    2007-01-01

    A model to simulate the time evolution of river delta formation process is presented. It is based on the continuity equation for water and sediment flow and a phenomenological sedimentation/erosion law. Different delta types are reproduced by using different parameters and erosion rules. The structures of the calculated patterns are analyzed in space and time and compared with real data patterns. Furthermore, our model is capable of simulating the rich dynamics related to the switching of the mouth of the river delta. The simulation results are then compared with geological records for the Mississippi River. PMID:17940031

  20. Nile Delta vegetation response to Holocene climate variability

    USGS Publications Warehouse

    Bernhardt, Christopher E.; Horton, Benjamin P.; Stanley, Jean-Daniel

    2012-01-01

    A 7000 yr palynologic record from Burullus Lagoon, Nile Delta, Egypt, is assessed to investigate changes in terrestrial vegetation in response to Nile flow. Previous studies in this region have shown that sea-level rise in the early to mid-Holocene, and markedly increased human land use during the past several centuries, altered vegetation in and around the lagoon. The pollen record from this study documents changes in delta vegetation that likely reflect variations in Nile flow. We suggest that Cyperaceae pollen is a sensitive marker of precipitation over the Nile headwaters and the resultant Nile flow. Decreases in Cyperaceae pollen, interpreted as a marker for diminished Nile flow, as well as the increase in relative abundance of microscopic charcoal, occurred at ca. 6000–5500, ca. 5000, ca. 4200, and ca. 3000 cal. yr B.P. (calibrated years before present). These correspond to extreme regional and global aridity events associated with a more southerly mean position of the Intertropical Convergence Zone. These changes, also recorded by other proxy studies, indicate that several marked regional drought events affected the Nile Delta region and impacted ancient Egyptian and Middle Eastern civilizations.

  1. Pre-Pliocene history and depositional facies, Nile Delta, Egypt

    SciTech Connect

    Harms, J.C.; Wray, J.L.

    1988-08-01

    The Nile delta area has a long history of subsidence and deposition that is inferred to extend back to Jurassic or earlier times. Depositional environments, rates of subsidence, and structural events are quite varied during this time span. Deposition was dominated by platform-to-basin carbonate facies from Jurassic to Eocene time and by detrital sediments from the Oligocene onward. Deposits are truly deltaic, in the sense of representing focused deposition at the shoreline by a large integrated river, only from latest Miocene time onward. A probable transition from continental to oceanic crust typical of the southern Mediterranean margin is overlain in the delta area by Mesozoic platform carbonates that appear to change in seismic data northward into slope and basinal facies. This platform margin, which trends east-west through the central delta, is reflected in later stratigraphic and structural characteristics; very thick Tertiary deposits, bathyal facies of Oligocene to Pliocene age, and large rotated fault blocks of Miocene strata occur only north of this margin.

  2. Nile delta: recent geological evolution and human impact.

    PubMed

    Stanley, D J; Warne, A G

    1993-04-30

    Few countries in the world are as dependent on water from a single source as Egypt. The natural Nile cycle of flow and sediment discharge has been disrupted by human intervention, including closure of the High Aswan Dam; this intervention has resulted in a series of responses that now threaten the northern Nile delta. Erosion, salinization, and pollution are inducing a marked decline in agricultural productivity and loss of land and coastal lagoons at a time when the population is expanding exponentially. Geological analyses of radiocarbon-dated cores across the northern delta are used to interpret the interaction of sea-level changes, climatic oscillations, subsidence, and transport processes during the past 35,000 years. Recognition of long-term trends of these natural factors provides a basis to evaluate the profound impact of human activity and to assess future changes in the Nile delta ecosystem. PMID:17812219

  3. Subsidence in the northeastern nile delta: rapid rates, possible causes, and consequences.

    PubMed

    Stanley, D J

    1988-04-22

    Holocene fluvial and marine deposits have accumulated in a graben-like structure on the northeastern margin of the Nile delta. This part of the delta, which includes Lake Manzala, Port Said, and the northern Suez Canal, has subsided rapidly at rates of up to 0.5 centimeter per year since about 7500 years ago. This subsidence has diverted at last four major distributaries of the Nile River into this region. The combined effects of continued subsidence and sea level rise may flood a large part of the northern delta plain by as much as 1 meter by the year 2100. The impact of continued subsidence, now occurring when sediment input along the coast has been sharply reduced because of the Aswan High Dam, is likely to be substantial, particularly in the Port Said area and as far inland as south of Lake Manzala. PMID:17784071

  4. Measurements of Land Subsidence Rates on the North-western Portion of the Nile Delta Using Radar Interferometry Techniques

    NASA Astrophysics Data System (ADS)

    Fugate, Joseph M.

    The Nile Delta is home to around 75 million people and most of Egypt's farmland and agricultural production. This area is currently threatened by Mediterranean Sea waters due to factors such as sediment starvation, climate change, and sea level fluctuations as well as subsidence. The low elevation and relief of the Nile Delta exposes many coastal communities, including the city of Alexandria, to potential inundation. This situation has become a concern for the area's residents but a better understanding of the processes occurring there can aid in deciding a suitable response. Recent studies have documented Holocene subsidence rates in the northeast part of the Nile Delta that average up to 8mm/year. In this study, PS-InSAR techniques are used to measure modern land subsidence rates on the north-central and north-western Nile Delta. Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) techniques were applied to 23 ESA radar scenes from 2 orbital tracks spanning from 1992 to 2000 in the north-central and north-west portions of the Nile Delta. The area includes the cities of Alexandria, Greater Mahala, and Mansoura as well as the Rosetta promontory and lake Burullus, Idku Lagoon, and Maryut Lagoon. Results indicate that modern average-vertical ground motion velocities for the north-western and north-central Nile Delta range from emergent to subsidence of 8.5 mm/yr. The range of velocities measured are spatially varied in a complex way across the study area. Patterns of subsidence correlate closely to areas of most recent sediment deposition such as along coastlines and rivers, as well as in lagoons and lakes. Average subsidence velocities are also lower across the western sections of the Nile Delta than in the northeastern delta.

  5. Monitoring the urbanization of the Nile Delta, Egypt.

    SciTech Connect

    Sultan, M.; Fiske, M.; Stein, T.; Gamal, M.; El Araby, H.; Madani, A.; Mehanee, S.; Becker, R.; Environmental Research; Washington Univ.; Cairo Univ. Center for Environmental Hazard Mitigation

    1999-11-01

    Comparisons of satellite images of the Nile Delta, acquired in 1972, 1984 and 1990, indicate that urban growth is endangering Egypt's agricultural productivity. Urban areas occupied a minimum of 3.6%, 4.7% and 5.7% of the Delta in 1972, 1984 and 1990, respectively, an increase of 58% in 18 years. Approximately half of this increase occurred between 1984 and 1990. If this trend continues, Egypt could lose 12% of its total agricultural area to urbanization by 2010. Despite the fact that growth is pronounced around the cities, it is the growth around the thousands of small villages that poses the largest threat to the agricultural productivity of the Nile Delta. The cumulative growth rate for the cities and large villages between 1972 and 1990 is 37%, and that for the small villages is 77% for the same time period.

  6. STS-56 Earth observation of the northeastern Nile Delta

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-56 Earth observation of the northeastern Nile Delta was photographed from the Earth-orbiting Discovery, Orbiter Vehicle (OV) 103. The branch of the Nile featured in the frame is Daimietta. The Suez Canal marks the boundary of the Nile Delta agriculture and the Sinai Desert to the right. Lake Masada, the dark waterlogged area to the west (left) of Port Said is becoming more saline as the Aswan Dam has reduced sediment downstream. This sediment reduction, according to NASA scientists studying the STS-56 photography, has resulted in increased coastal erosion and the intrusion of a salt-water lens to the ground water, particularly in the northeastern portions of the delta. Center pivot irrigation fields are located along either side of the Ramses Canal, which connects the Daimietta Nile with Great Bitter Lake. This canal has been re-dug three or four times in the past 3,000 years. Historians note that the canal's most famous use was as the departure point of the fleet of Pharaoh Necho.

  7. Colorado River Delta

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Colorado River ends its 2330 km journey in the Gulf of Mexico in Baja California. The heavy use of the river as an irrigation source for the Imperial Valley has dessicated the lower course of the river in Mexico such that it no longer consistently reaches the sea. Prior to the mid 20th century, the Colorado River Delta provided a rich estuarine marshland that is now essentially desiccated, but nonetheless is an important ecological resource.

    The image was acquired May 29, 2006, covers an area of 44.3 x 57.5 km, and is located at 32.1 degrees north latitude, 115.1 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  8. Mackenzie River Delta, Canada

    NASA Technical Reports Server (NTRS)

    2007-01-01

    The Mackenzie River in the Northwest Territories, Canada, with its headstreams the Peace and Finley, is the longest river in North America at 4241 km, and drains an area of 1,805,000 square km. The large marshy delta provides habitat for migrating Snow Geese, Tundra Swans, Brant, and other waterfowl. The estuary is a calving area for Beluga whales. The Mackenzie (previously the Disappointment River) was named after Alexander Mackenzie who travelled the river while trying to reach the Pacific in 1789.

    The image was acquired on August 4, 2005, covers an area of 55.8 x 55.8 km, and is located at 68.6 degrees north latitude, 134.7 degrees west longitude.

    The U.S. science team is located at NASA's Jet Propulsion Laboratory, Pasadena, Calif. The Terra mission is part of NASA's Science Mission Directorate.

  9. ITCZ and ENSO-like pacing of Nile delta hydro-geomorphology during the Holocene

    NASA Astrophysics Data System (ADS)

    Marriner, Nick; Flaux, Clément; Kaniewski, David; Morhange, Christophe; Leduc, Guillaume; Moron, Vincent; Chen, Zhongyuan; Gasse, Françoise; Empereur, Jean-Yves; Stanley, Jean-Daniel

    2012-06-01

    The Nile valley accommodates the world's longest river and shaped the development of numerous complex societies, providing a reliable source of water for farming and linking populations to sub-Saharan Africa and the Mediterranean Sea. Its fertile delta lay at the heart of ancient Egyptian civilization, however little is known of its morpho-sedimentary response to basin-wide changes in Holocene hydrology. Here, we present two well-resolved records from the Nile delta (based on ˜320 radiocarbon dates) to reconstruct the timing and rhythm of catchment-scale modifications during the past 8000 years. On the orbital timescale, we demonstrate that Nilotic hydrology and sedimentation have responded to low-latitude insolation forcing while, on sub-millennial timescales, many of the major phases of deltaic modification were mediated by climate events linked to El Niño Southern Oscillation-type (ENSO) variability.

  10. Mississippi River Delta

    NASA Technical Reports Server (NTRS)

    2002-01-01

    As the Mississippi River enters the Gulf of Mexico, it loses energy and dumps its load of sediment that it has carried on its journey through the mid continent. This pile of sediment, or mud, accumulates over the years building up the delta front. As one part of the delta becomes clogged with sediment, the delta front will migrate in search of new areas to grow. The area shown on this image is the currently active delta front of the Mississippi. The migratory nature of the delta forms natural traps for oil. Most of the land in the image consists of mud flats and marsh lands. There is little human settlement in this area due to the instability of the sediments. The main shipping channel of the Mississippi River is the broad stripe running northwest to southeast.

    This image was acquired on May 24, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER will image Earth for the next 6 years to map and monitor the changing surface of our planet.

    ASTER is one of five Earth-observing instruments launched December 18,1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, California, is the U.S. Science team leader; Bjorn Eng of JPL is the project manager. The Terra mission is part of NASA's Earth Science Enterprise, a long-term research and technology program designed to examine Earth's land, oceans, atmosphere, ice and life as a total integrated system.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping

  11. Natural equilibria and anthropic effects on sediment transport in big river systems: The Nile case

    NASA Astrophysics Data System (ADS)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~ 6700 km, from Burundi and Rwanda highlands south of the Equator to the Mediterranean Sea at northern subtropical latitudes. It is thus the longest natural laboratory on Earth, a unique setting in which we are carrying out a continuing research project to investigate changes in sediment composition associated with a variety of chemical and physical processes, including weathering in equatorial climate and hydraulic sorting during transport and deposition. Petrographic, mineralogical, chemical, and isotopic fingerprints of sand and mud have been monitored along all Nile branches, from the Kagera and White Nile draining Archean, Paleoproterozoic and Mesoproterozoic basements uplifted along the western branch of the East African rift, to the Blue Nile and Atbara Rivers sourced in Ethiopian volcanic highlands made of Oligocene basalt. Downstream of the Atbara confluence, the Nile receives no significant tributary water and hardly any rainfall across the Sahara. After construction of the Aswan High Dam in 1964, the Nile ceased to be an active conveyor-belt in Egypt, where the mighty river has been tamed to a water canal; transported sediments are thus chiefly reworked from older bed and levee deposits, with minor contributions from widyan sourced in the Red Sea Hills and wind-blown desert sand and dust. Extensive dam construction has determined a dramatic sediment deficit at the mouth, where deltaic cusps are undergoing ravaging erosion. Nile delta sediments are thus recycled under the effect of dominant waves from the northwest, the longest Mediterranean fetch direction. Nile sands, progressively enriched in more stable minerals such as quartz and amphiboles relative to volcanic rock fragments and pyroxene, thus undergo multistep transport by E- and NE-directed longshore currents all along the coast of Egypt and Palestine, and are carried as far as Akko Bay in northern Israel. Nile mud reaches the Iskenderun Gulf in southern Turkey. A full

  12. Using Persistent Scatterers Interferometry to create a subsidence map of the Nile Delta in Egypt

    NASA Astrophysics Data System (ADS)

    Bouali, E. Y.; Sultan, M.; Becker, R.; Cherif, O.

    2013-12-01

    subsidence rates vary widely across the Nile Delta, with the highest rates occurring in cities near the mouth of the Damietta branch of the Nile River and around the Mansala Lagoon, such as Ras El Bar (up to 15 mm/year), Damietta (up to 10 mm/year), and Port Said (up to 7 mm/year). The complexity of these subsidence rates is spatially evident: many cities display a wide range of subsidence rates - for example Port Said, where a majority of the city is undergoing minimal to no subsidence (< 1 mm/year) there are two regions - near the Mediterranean coast and near the Mansala Lagoon - where subsidence rates are quite high (5-7 mm/year). There are also a few overall trends observed across the delta: (1) subsidence rates are greatest in the northeast region of the delta (average: > 5 mm/year) than anywhere else (e.g., average western subsidence: 1-4 mm/year) and (2) cities generally more proximal to the Mediterranean coast exhibit greater subsidence rates (average subsidence rates: Ras El Bar: 8 mm/year, Port Said: 5 mm/year, and Damietta: 6 mm/year)than cities in the middle (e.g., Mansoura and Al Mahallah: 4 mm/year) or south regions (e.g., Tanta: <4 mm/year) of the delta.

  13. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt

    PubMed Central

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A.; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A.

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt. PMID:26798844

  14. Polychlorinated Biphenyls Water Pollution along the River Nile, Egypt.

    PubMed

    Megahed, Ayman Mohamed; Dahshan, Hesham; Abd-El-Kader, Mahdy A; Abd-Elall, Amr Mohamed Mohamed; Elbana, Mariam Hassan; Nabawy, Ehab; Mahmoud, Hend A

    2015-01-01

    Ten polychlorinated biphenyl (PCB) congeners were determined in water samples collected along the River Nile using gas chromatography-electron capture detector (GC-ECD). PCB concentrations ranged from 14 to 20 μg/L, which were higher than those reported in previous studies, indicating serious PCB pollution in the River Nile. PCB congener profiles varied depending on the sampling sties. PCB-138 was the predominant congener accounting for more than 18% of total PCBs. The composition of PCB congeners in the water revealed that highly chlorinated PCB technical mixtures such as Aroclor 1254 was the main PCB production historically used in Egypt. An increasing trend in PCB levels from the upper stream to the Nile estuaries was observed. The calculated flux of PCBs indicated that 6.8 tons of PCBs is dumped into the Mediterranean Sea each year from the River Nile. The hazard quotients and carcinogenic risk caused by PCB pollution in the River Nile were above the acceptable level indicating that PCBs in the River Nile water pose adverse health effects for all age groups. Our findings revealed that PCBs possess a serious risk to the Egyptian population that depends mainly on the River Nile as a source of water. Thus, stricter legislation and regulatory controls should be applied to reduce the risk of PCBs in Egypt. PMID:26798844

  15. STS-56 view of freeflying SPARTAN-201 and Earth observation of Nile River,Egypt

    NASA Technical Reports Server (NTRS)

    1993-01-01

    During STS-56, the Shuttle Pointed Autonomous Research Tool for Astronomy 201 (SPARTAN-201), a freeflying payload, is captured as it orbits the Earth above the Nile River Valley in Egypt. This synoptic view taken aboard Discovery, Orbiter Vehicle (OV) 103, reveals the landscapes of the Sinai and the Gulf of Suez on the left and the Qatara Depression on the right. The Nile River Valley and the base of the delta feature are in the center. The leaf-like appearance of El Fayum is clearly seen. The city of Cairo is also easily recognized at the base of the delta. SPARTAN-201 was later captured by OV-103's remote manipulator system (RMS) and returned to Earth with the astronaut crew.

  16. Use of Persistent Scatterer Interferometry to Assess Land Deformation in the Nile Delta and its Controlling Factors

    NASA Astrophysics Data System (ADS)

    Gebremichael, E.; Sultan, M.; Becker, R.; Emil, M.; Ahmed, M.; Chouinard, K.

    2015-12-01

    We applied Persistent scatterer interferometry (PSInSAR) to assess land deformation (subsidence and uplift) across the entire Nile delta and its surroundings and to identify possible causes of the observed deformation. For the purpose of the present study, 100 Envisat Advanced Synthetic Aperture Radar (ASAR; level 0) scenes that were acquired along four tracks and covering a time span of seven years (2004 to 2010) were used. The scenes extend from the Mediterranean coast in the north to Cairo city in the south. These scenes were focused using Repeat Orbit Interferometry PACkage (ROI_PAC) software and the subsequent PSI processing was done using the Stanford Method for Persistent Scatterers (StaMPS) method. A low coherence threshold (0.2) was used to decrease the impact of vegetation-related poor coherence and decorrelation of the scenes over the investigated time span. Subsidence was observed over: (1) the Demietta Nile River branch (3 to 14 mm/yr) where it intersects the Mediterranean coastline, (2) thick (~ 40 m) Holocene sediments in lake Manzala (up to 9 mm/yr), (3) reclaimed desert areas (west of Nile Delta; up to 12 mm/yr) of high groundwater extraction, (4) along parts of a previously proposed flexure line (up to 10 mm/yr), and (5) along the eastern sections of the Mediterranean coastline (up to 15.7 mm/yr). The city of Alexandria (underlain by carbonate platform) and the terminus of the Rosetta branch of the Nile River seem to experience almost no ground movement (mean subsidence of 0.28 mm/yr and 0.74 mm/yr respectively) while the cities of Ras Elbar and Port Said (underlain by thick Holocene sediment) exhibit the highest subsidence values (up to 14 mm/yr and 8.5 mm/yr respectively). The city of Cairo has also experienced subsidence in limited areas of up to 7.8 mm/yr. High spatial correlation was also observed between the subsiding areas and the Abu Madi incised valley; the largest gas field in the Nile Delta. Most of the area undergoing subsidence in the

  17. Effect of regulation of the Nile River on the bioproductivity of Southeastern Mediterranean Sea

    SciTech Connect

    Wadia, W.

    1982-01-01

    The Nile River previously brought a large quantity of dissolved nutrients and organic matter into the Southeastern Mediterranean Sea. Since completion of the Aswan hydrocomplex, reduction in the river flow has caused significant change in the distribution of the physico-chemical indices of the sea water as well as in the formation and distribution of the water masses in the region located north of the Nile delta. In recent years changes have been recorded in the dynamics and distribution of water temperature. From 1966 the sediment runoff of the Nile began dropping sharply due not only to reduction in the volume of river water reaching the sea, but also due to a significant reduction in the suspended particles in the flow. This has had a harmful effect on the formation and dynamics of grounds and banks near the delta and north of it. The reproduction of the shrimp in the area has changed significantly in timing and the food supplies for the young shrimp have deteriorated. Shrimp catches in 1966 were half what they had been in 1963. Commercial fishes have also decreased in numbers. Thus all links of the trophic chain have been affected from the phytoplankton to the pelagic and benthic fishes. 11 references, 3 tables.

  18. Mosquitoes and the Environment in Nile Delta Villages with Previous Rift Valley Fever Activity.

    PubMed

    Zayed, Abdelbaset B; Britch, Seth C; Soliman, Mohamed I; Linthicum, Kenneth J

    2015-06-01

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from 3 key governorates before and after 2012 seasonal flooding. We found that environmental effects varied among species, life stages, pre- and postflood groupings, and geographic populations of the same species, and that mosquito community composition could change after flooding. Our study provides preliminary data for modeling mosquitoes and mosquito-borne diseases in the Nile Delta region. PMID:26181689

  19. Diatoms from the Quaternary sediments of the Nile Delta, Egypt, and their palaeoecological significance

    NASA Astrophysics Data System (ADS)

    Zalat, Abdelfattah A.

    1995-02-01

    This study represents the first contribution describing diatom taxa from the Quaternary sediments of the Nile Delta, Egypt. A total of 99 diatom species and varieties belonging to 28 genera were identified. The palaeoecological conditions during the time of deposition (pH salinity, eutrophication and dissolved silica concentration) are discussed. Deposition of the Quaternary Nile Delta sediments occurred in slightly alkaline, fresh water of oligohalobian type, which was of variable trophic status with a high dissolved silica concentration. The variations visible in the ratio of planktic to epiphytic and benthic diatoms generally reflect shallow environments with water-level changes related to climatic fluctuations.

  20. Using delta-front bathymetry to understand river delta progradation

    NASA Astrophysics Data System (ADS)

    Shaw, J. B.; Mohrig, D. C.

    2010-12-01

    We investigate the delta-front bathymetry of the Wax Lake Delta in Louisiana, USA; a sand rich river delta prograding quickly (~100 m/yr) into a shallow (~2.5 m) basin. The delta-front is the zone separating the bottomset from the topset of the delta. Bottomset sedimentation covers the bed evenly whereas topset sediment transport is focused by flow through distributary channels. The delta front connects these two disparate transport regimes and has a profound effect on channel-network evolution and sedimentary structure of river deltas. Predictions of delta-front topography made by models of delta progradation have rarely been compared to the bathymetry of field-scale deltas. We have mapped 60 km2 of delta front bathymetry immediately seaward of two sub-aerial distributary channels. Subaqueous channels extend up to 2 km seaward of their subaerial portions. These channels lose definition at their distal ends through a combination of channel-bed shoaling and loss of bank relief. Little bathymetric relief is observed at the fronts of the subaqueous channels, calling into question the role of channel-mouth bars in generating the bifurcations observed in this delta-channel network. Near the subaerial to subaqueous transition, steep and eroding sidewalls transition to constructional banks with gentle grades. Grab samples of bed material have been collected throughout the study area in order to detect proximal to distal fining and to constrain the shear stresses connected with delta-front sedimentation. A better understanding of sediment transport in the delta front and its affiliated patterns of erosion and deposition is essential for progress in understanding how river deltas prograde and fill their basins.

  1. Decadal biogeochemical history of the south east Levantine basin: Simulations of the river Nile regimes

    NASA Astrophysics Data System (ADS)

    Suari, Yair; Brenner, Steve

    2015-08-01

    The south eastern Mediterranean is characterized by antiestuarine circulation which leads to extreme oligotrophic conditions. The Nile river that used to transport fresh water and nutrients into the basin was dammed in 1964 which led to a drastic reduction of fresh water fluxes, and later, changes in Egyptian agriculture and diet led to increased nutrient fluxes. In this paper we present the results of simulations with a biogeochemical model of the south eastern Mediterranean. Four experiments were conducted: (1) present day without riverine inputs; (2) Nile before damming (pre-1964); (3) post-damming 1995 Nile; and (4) fresh water and nutrient discharges of Israeli coastal streams. The present day input simulation (control run) successfully reproduced measured nutrient concentrations, with the exception of simulated chlorophyll concentrations which were slightly higher than observed. The pre-1964 Nile simulation showed a salinity reduction of 2 psu near the Egyptian coast and 0.5 psu along the Israeli coast, as well as elevated chlorophyll a concentrations mostly east of the Nile delta and north to Cyprus. The spring bloom extended from its present peak during February-March to a peak during February-May. The 1995 Nile simulation showed increased chlorophyll a concentrations close to the Egyptian coast. The Israeli coastal stream simulation showed that the effect of the Israeli coastal stream winter flow on chlorophyll converged to control concentrations within about one month, demonstrating the stability and sensitivity of the model to external forcing. The results of this study demonstrate the significance of fresh water fluxes in maintaining marine productivity, which may have large scale effects on the marine ecosystem.

  2. Normal haematology and blood biochemistry of wild Nile crocodiles (Crocodylus niloticus) in the Okavango Delta, Botswana.

    PubMed

    Lovely, C J; Pittman, J M; Leslie, A J

    2007-09-01

    Wild Nile crocodiles (Crocodylus niloticus) of various size classes were captured in the Okavango Delta, Botswana. Blood was collected from the post occipital sinus and used for the determination of a wide range of haematological and biochemical parameters. These values were compared between the sexes and between 3 size classes. The values were also compared with the limited data available from farmed Nile crocodiles, as well as from other wild Nile crocodiles. The Okavango crocodiles were comparatively anaemic, and had comparatively low total protein and blood glucose levels. There was a high prevalence of Hepatozoon pettiti infection, however, there was no significant difference in haematological values between the infected and uninfected crocodiles. The values reported here will be useful in diagnostic investigations in both zoo and farmed Nile crocodiles. PMID:18237036

  3. Nile River, Lake Nasser, Aswan High Dam, Egypt, Africa

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Lake Nasser, (24.0N, 33.0E) at the Aswan High Dam on the Nile River, in Egypt is the world's second largest artificial lake, extending 500 km, in length and about 5000 sq. km. in area. The lake has a storage capacity sufficient to irrigate farms in Egypt and Sudan year round allowing up to three harvests per year. Other benefits include year round river navagation, hydroelectric power, more fish harvests, reduced flooding and more industrial employment. opportunites.

  4. Assessment of Undiscovered Oil and Gas Resources of the Nile Delta Basin Province, Eastern Mediterranean

    USGS Publications Warehouse

    Kirschbaum, Mark A.; Schenk, Christopher J.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Cook, Troy A.; Tennyson, Marilyn E.

    2010-01-01

    The U.S. Geological Survey estimated means of 1.8 billion barrels of recoverable oil, 223 trillion cubic feet of recoverable gas, and 6 billion barrels of natural gas liquids in the Nile Delta Basin Province using a geology-based assessment methodology.

  5. Mosquitoes and the environment in Nile Delta villages with previous rift valley fever activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Egypt is affected by serious human and animal mosquito-borne diseases such as Rift Valley fever (RVF). We investigated how potential RVF virus mosquito vector populations are affected by environmental conditions in the Nile Delta region of Egypt by collecting mosquitoes and environmental data from t...

  6. Dynamics of Wind Setdown at Suez and the Eastern Nile Delta

    PubMed Central

    Drews, Carl; Han, Weiqing

    2010-01-01

    Background Wind setdown is the drop in water level caused by wind stress acting on the surface of a body of water for an extended period of time. As the wind blows, water recedes from the upwind shore and exposes terrain that was formerly underwater. Previous researchers have suggested wind setdown as a possible hydrodynamic explanation for Moses crossing the Red Sea, as described in Exodus 14. Methodology/Principal Findings This study analyzes the hydrodynamic mechanism proposed by earlier studies, focusing on the time needed to reach a steady-state solution. In addition, the authors investigate a site in the eastern Nile delta, where the ancient Pelusiac branch of the Nile once flowed into a coastal lagoon then known as the Lake of Tanis. We conduct a satellite and modeling survey to analyze this location, using geological evidence of the ancient bathymetry and a historical description of a strong wind event in 1882. A suite of model experiments are performed to demonstrate a new hydrodynamic mechanism that can cause an angular body of water to divide under wind stress, and to test the behavior of our study location and reconstructed topography. Conclusions/Significance Under a uniform 28 m/s easterly wind forcing in the reconstructed model basin, the ocean model produces an area of exposed mud flats where the river mouth opens into the lake. This land bridge is 3–4 km long and 5 km wide, and it remains open for 4 hours. Model results indicate that navigation in shallow-water harbors can be significantly curtailed by wind setdown when strong winds blow offshore. PMID:20827299

  7. Vulnerability of the Nile Delta coastal areas to inundation by sea level rise.

    PubMed

    Hassaan, M A; Abdrabo, M A

    2013-08-01

    Sea level changes are typically caused by several natural phenomena, including ocean thermal expansion, glacial melt from Greenland and Antarctica. Global average sea level is expected to rise, through the twenty-first century, according to the IPCC projections by between 0.18 and 0.59 cm. Such a rise in sea level will significantly impact coastal area of the Nile Delta, consisting generally of lowland and is densely populated areas and accommodates significant proportion of Egypt's economic activities and built-up areas. The Nile Delta has been examined in several previous studies, which worked under various hypothetical sea level rise (SLR) scenarios and provided different estimates of areas susceptible to inundation due to SLR. The paper intends, in this respect, to identify areas, as well as land use/land cover, susceptible to inundation by SLR based upon most recent scenarios of SLR, by the year 2100 using GIS. The results indicate that about 22.49, 42.18, and 49.22 % of the total area of coastal governorates of the Nile Delta would be susceptible to inundation under different scenarios of SLR. Also, it was found that 15.56 % of the total areas of the Nile Delta that would be vulnerable to inundation due to land subsidence only, even in the absence of any rise in sea level. Moreover, it was found that a considerable proportion of these areas (ranging between 32.32 and 53.66 %) are currently either wetland or undeveloped areas. Furthermore, natural and/or man-made structures, such as the banks of the International Coastal Highway, were found to provide unintended protection to some of these areas. This suggests that the inundation impact of SLR on the Nile Delta is less than previously reported. PMID:23271694

  8. Wetland vegetation in Manzala lagoon, Nile Delta coast, Egypt: Rapid responses of pollen to altered nile hydrology and land use

    USGS Publications Warehouse

    Bernhardt, C.E.; Stanley, J.-D.; Horton, B.P.

    2011-01-01

    The pollen record in a sediment core from Manzala lagoon on the Nile delta coastal margin of Egypt, deposited from ca. AD 1860 to 1990, indicates rapid coastal wetland vegetation responses to two primary periods of human activity. These are associated with artificially altered Nile hydrologic regimes in proximal areas and distal sectors located to ???1200 km south of Manzala. Freshwater wetland plants that were dominant, such as Typha and Phragmites, decreased rapidly, whereas in the early 1900s, brackish water wetland species (e.g., Amaranthaceae) increased. This change occurred after closure of the Aswan Low Dam in 1902. The second major modification in the pollen record occurred in the early 1970s, after Aswan High Dam closure from 1965 to 1970, when Typha pollen abundance increased rapidly. Massive population growth occurred along the Nile during the 130 years represented by the core section. During this time, the total volume of lagoon water decreased because of conversion of wetland areas to agricultural land, and input of organic-rich sediment, sewage (municipal, agricultural, industrial), and fertilizer in Manzala lagoon increased markedly. Although the wetland plant community has continued to respond to increasingly intensified and varied human-induced pressures in proximal sectors, the two most marked changes in Manzala pollen best correlate with distal events (i.e., closure of the two dams at Aswan). The study also shows that the two major vegetation changes in Manzala lagoon each occurred less than 10 years after closure upriver of the Low and High dams that markedly altered the Nile regime from Upper Egypt to the coast. ?? 2011, the Coastal Education & Research Foundation (CERF).

  9. Beach response to sea level rise along the Nile Delta Coast of Egypt

    NASA Astrophysics Data System (ADS)

    Frihy, Omran E.

    Dramatic erosion has occurred on some beaches of the Nile Delta. This erosion is greatest at the tips of the Nile promontories, with shoreline retreat up to 60 m/yr. Studies of the Nile Delta coast have indicated wide values of local subsidence ranging from 0.4 to 5.0 mm/yr. The relationship between sea level rise and shoreline retreat according to the "Bruun Rule" has been applied on the eroded stretches along the 275 km coast of the Nile Delta. The Bruun Rule was applied individually to 55 beach profile lines extending from Alexandria to 35 km east of Port Said. Projected future shoreline retreat is predicted using EPA sea level rise expectations for scenarios of 0.5, 1.0, 1.5, and 2.0 m sea level rise. The predicted lower and higher sea level rise rates predicted by the EPA (5 mm and 30 mm/yr) would result in a 2 m rise in sea-level by the year 2400 or 2058, respectively. With these rise values, the coastal areas of the western part of Abu Quir Bay, the Lake Manzala and the western part of Tineh Bay might attain a maximum land loss of 1.7, 1.9 and 1.4 km, respectively. These regions appear to be the most vulnerable areas to sea level rise. The first region of Lake Manzala area lies on low-lying topography and the more rapidly subsiding area of the delta, while the other areas lie on a land surface of about one meter below MSL (mean sea level). The estimated shoreline retreat along the delta resulted from sea level rise combined with other major factors of sediment deficiency and coastal processes could accelerate coastal erosion, inundate wetlands and lowlands, and increase the salinity of lagoons and aquifers.

  10. 20,000 years of Nile River dynamics and environmental changes in the Nile catchment area as inferred from Nile upper continental slope sediments

    NASA Astrophysics Data System (ADS)

    Revel, Marie; Ducassou, E.; Skonieczny, C.; Colin, C.; Bastian, L.; Bosch, D.; Migeon, S.; Mascle, J.

    2015-12-01

    Multi-proxy analysis of two marine sediment cores (MS27PT and MD04-2726) from the Nile continental slope provides evidence of changes in Nile sediment discharge related to changes in Ethiopian African Monsoon (EAM) precipitation, and allows us to reconstruct changes in Nile River runoff, vegetation and erosion in the Nile headwaters. Sediment element composition and neodymium isotopic composition reveal significant changes in clastic sediment provenance, with sources oscillating between a Saharan aeolian contribution during the Last Glacial Maximum/deglacial transition and during the Late Holocene, and a Blue/Atbara Nile fluvial contribution during the African Humid Period (AHP). This study provides a new understanding of past environmental changes. Between 14.6 and 14.13 ka there was a major input of sediments from the Ethiopian Highlands, consistent with a stronger EAM at that time. Climate in the Nile basin was wetter between 14.8 and 8.4 ka, with a corresponding increase in Blue Nile water and sediment discharge via the main Nile into the Eastern Mediterranean. The gradual climatic transition from the AHP to the present-day dry climate was reflected in a decrease in Blue Nile sediment deposition and flood discharge between 8.4 and 3.7 ka, with aridity at a maximum between 3.7 and 2.6 ka. The onset of drier conditions in the Blue Nile basin seems to have begun before the 8.2 ka cooling event in the North Atlantic. We speculate that the climatic change from the wet AHP to the dry late Holocene may have been a result of a break in the low latitude dynamic equilibrium between climate, vegetation and erosion, which may in turn have affected the climate in higher latitudes. Reduced Nile flow may also have had an impact on Levantine Intermediate Water originating in the Eastern Mediterranean through an increase in intermediate water formation.

  11. An overview on selected Middle Miocene slope channel complexes, offshore east Nile Delta of Egypt

    NASA Astrophysics Data System (ADS)

    F. Sharaf, Essam; Khaled, Khaled A.; Abushady, Ahmed I.

    2015-12-01

    Middle Miocene turbidite channel reservoirs offshore Nile Delta of Egypt are difficult to develop efficiently. The depositional mechanism of these channels defines sand bodies with variable thickness and quality over short distances. Akhen Field is a turbidite high pressure and high temperature reservoir offshore in the East Nile Delta, Egypt. The turbidite deposits at Akhen area reflect varied depositional fabrics from poorly to moderately sorted and non-graded to graded. Well logs and core data suggest at least 3 sand packages in a cyclic pattern. Each package exhibits variable sedimentological and petrophysical properties and forms a separate reservoir, sealed by shale. A conceptual geologic model showing facies geometry based on 3D seismic mapping and core analysis was used for evaluation of the reservoir quality of the Field. Integrating sedimentologic and other subsurface data such as seismic attributes, pressure data, core analysis, was crucial to predict the fluid flow between the different reservoir units.

  12. Measurement of radioactivity levels in soil in the Nile Delta and middle Egypt.

    PubMed

    Ibrahiem, N M; Abd el Ghani, A H; Shawky, S M; Ashraf, E M; Farouk, M A

    1993-06-01

    Concentrations of radionuclides in surface soil across the Nile Delta, the north coast of Egypt, and Middle Egypt have been measured using a hyperpure germanium spectrometer. The concentrations obtained for 40K, the 232Th series, and the 226Ra series are expressed in Bq kg-1 of dry weight, and the exposure rates are expressed in nGy h-1 of wet weight. The activity concentrations of 137Cs in soil are expressed in Bq m-2. PMID:8491618

  13. A 7500-year strontium isotope record from the northwestern Nile delta (Maryut lagoon, Egypt)

    NASA Astrophysics Data System (ADS)

    Flaux, Clément; Claude, Christelle; Marriner, Nick; Morhange, Christophe

    2013-10-01

    During the Holocene, delta evolution has been collectively mediated by relative sea-level changes, continental hydrology and human impacts. In this paper, we present a strontium isotope record from the Maryut lagoon (northwestern Nile delta) to quantify the interplay between relative sea-level variations and Nile flow changes during the past 7500 years. 87Sr/86Sr stratigraphy allows five hydrological stages to be defined. (1) The marine transgression of the area is dated to ˜7.5 ka cal. BP, with a clear marine 87Sr/86Sr signature (0.70905-0.7091). (2) Between ˜7 and ˜5.5 ka, in the context of the so-called African Humid Period (AHP), freshwater inputs became progressively predominant in the Maryut's hydrology. Deceleration of sea-level rise coupled with high Nile discharge induced coastal progradation which led to the progressive closure of the Maryut lagoon. (3) Between ˜5.5 and ˜3.8 ka, the end of the AHP is translated by a progressive hydrological shift from a Nile-dominated to a marine-dominated lagoon (87Sr/86Sr shifts from 0.70865 to 0.7088 to 0.70905-0.70915). (4) From ˜2.8 to ˜1.7 ka, 87Sr/86Sr ratios shift towards lower values (0.7084). Although this change is not precisely resolved because of a hiatus in the Maryut's sedimentary record, the 87Sr/86Sr transition from sea-like to Nile-dominated values is attributed to irrigation practices since the early Ptolemaic period (i.e. since ˜2.3 ka), including the Alexandria canal which played a key role in isolating the Maryut from the Mediterranean sea. (5) The final phase of the record covers the period between ˜1.7 and ˜0.2 ka. 87Sr/86Sr ratios indicate high freshwater inputs (from 0.7080 to 0.7085), except between 1.2 and 1.1 to ˜0.7 ka, when a Maryut lowstand and seawater intrusion are attested. In modern times, the Nile's coastal lagoons have been increasingly supplied by freshwater linked to the diversion of waters from the two Nile branches into the irrigation system. It is suggested that this

  14. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    SciTech Connect

    Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into the Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.

  15. From Natural to Design River Deltas

    NASA Astrophysics Data System (ADS)

    Giosan, Liviu

    2016-04-01

    Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.

  16. High resolution sequence stratigraphic analysis of the Late Miocene Abu Madi Formation, Northern Nile Delta Basin

    NASA Astrophysics Data System (ADS)

    Sarhan, Mohammad Abdelfattah

    2015-12-01

    Abu Madi Formation represents the Upper Miocene Messinian age in the Nile Delta basin. It consists mainly of sandstones and shale intercalations and because of its richness in hydrocarbon, it has been subdivided by the petroleum companies into Level-I, Level-II and Level-III, respectively according to the increase in the sandstone to the shale ratio. The Miocene cycle in the northern subsurface section of the Nile Delta encompasses three main formations namely from the base; Sidi Salim formation, Qawasim Formation and Abu Madi Formation at the top. The high resolution sequence stratigraphic analysis, using gamma ray responses, has been done for the Late Miocene formation in the northern part of the Nile delta subsurface section. For this purpose, the gamma-ray logs of ten deep wells, arranged in four cross-sections trending in almost north-south direction throughout the northern region of the Nile Delta, were analyzed. The analysis has revealed that the interpreted 4th order depositional cycles within Abu Madi Formation display great variations in both number and gamma ray responses in each investigated well, and cannot be traced laterally, even in the nearest well. These variations in the interpreted 4th order depositional sequences could be attributed to the presence of normal faults buried in the inter-area laying between the investigated wells. This finding matches with the conclusion of that Abu Madi Formation represents a part of the Upper Miocene Nile Delta syn-rift megasequence, developed during the Upper Miocene rift phase of the Red Sea - Gulf of Suez province in Egypt. Accordingly, in the sequence stratigraphic approach, the depositional history of Abu Madi Formation was strongly overprinted by the tectonic controls rather than the relative sea-level changes which are assumed to be of a secondary influence. Regarding the hydrocarbon aspects of the Abu Madi Formation, the present work recommends to direct the drilling efforts into the stratigraphic traps

  17. Morphological changes of Gumara River channel over 50 years, upper Blue Nile basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Abate, Mengiste; Nyssen, Jan; Steenhuis, Tammo S.; Moges, Michael M.; Tilahun, Seifu A.; Enku, Temesgen; Adgo, Enyew

    2015-06-01

    In response to anthropogenic disturbances, alluvial rivers adjust their geometry. The alluvial river channels in the upper Blue Nile basin have been disturbed by human-induced factors since a longtime. This paper examines channel adjustment along a 38-km stretch of the Gumara River which drains towards Lake Tana and then to the Blue Nile. Over a 50 years period, agriculture developed rapidly in the catchment and flooding of the alluvial plain has become more frequent in recent times. The objectives of this study were to document the changes in channel planform and cross-section of the Gumara River and to investigate whether the changes could have contributed to the frequent flooding or vice versa. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified. Recent channel planform information was extracted from SPOT images of 2006 and Google Earth. Channel planform and bed morphology (vertical changes) were determined for these nearly 50 years period. The vertical changes were determined based on aggradation along a permanent structure, historic information on river cross-sections at a hydrological gauging station, and field observations. The results indicate that the lower reach of Gumara near its mouth has undergone major planform changes. A delta with approx. 1.12 km2 of emerged land was created between 1957 and 1980 and an additional 1 km2 of land has been added between 1980 and 2006. The sinuosity of the river changed only slightly: negatively (-1.1% i.e. meandering decreased) for the period from 1957 to 1980 and positively (+3.0%) for the period 1980-2006. Comparison of cross-sections at the hydrological gauging station showed that the deepest point in the river bed aggraded by 2.91 m for the period 1963-2009. The importance of sediment deposition in the stream and on its banks is related to land degradation in the upper catchment, and to artificial rising of Lake Tana level that creates a backwater effect and sediment deposition in

  18. Nile River, Lake Nasser, Aswan High Dam, Egypt

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Aswan High Dam, 2.5 miles across and 364 feet high, (24.0N, 33.0E) completed in 1971, was constructed to supply cheap hydroelectric power to both Egypt and Sudan by impounding, controling and regulating the flood waters of the Nile River in Lake Nasser, the world's second largest artifical lake. The lake extends over 500 miles in length, covers an area of some 2,000 square miles and is as much as 350 feet deep at the face of the dam.

  19. STS-57 Earth observation of the Eastern Mediterranean, Nile River, Asia Minor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    STS-57 Earth observation of the Eastern Mediterranean. From a high vantage point over the Nile River, this north-looking view shows the eastern Mediterranean and the entire landmass of Asia Minor, with the Black Sea dimly visible at the horizon. Many of the Greek islands can be seen in the Aegean Sea (top left), off the coast of Asia Minor. Cyprus is visible under atmospheric dust in the northeastern corner of the Mediterranean. The dust cloud covers the east end of the Mediterranean, its western edge demarcated by a line that cuts the center of the Nile Delta. This dust cloud originated far to the west, in Algeria, and moved northeast. A gyre of clouds in the southeast corner of the Mediterranean indicates a complementary counterclockwise (cyclonic) circulation of air. The Euphrates River appears as a thin green line (upper right) in the yellow Syrian desert just south of the mountains of Turkey. The Dead Sea (lower right) lies in a rift valley which extends north into Turkey and sout

  20. Water Management Strategy in Assessing the Water Scarcity in Northern Western Region of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Arafa, Salah; Gemajl, Khaled

    2015-04-01

    Sustainable development in the Nile Delta of Egypt is retarded by serious environmental problems, where land-use and land-cover of the region are subjected to continuous changes; including shoreline changes either by erosion or accretion, subsidence of the delta, as well as by sea level rise due to climate change. The current research attempts to; (1) study the vulnerability of the northern western region of the Nile Delta coastal zone to climate change/sea level rise while setting basic challenges, review adaptation strategies based on adaptation policy framework, and highlight recommended programs for preparedness to climate change, (2) study the scarcity of water resources in the area of study with review of the socioeconomic impacts and the critical need of establishing desalination plants with new standards assessing the environmental situation and population clusters, and (3) monitor of the brine water extracted from the desalination plants and injected to subsurface strata. This monitoring process is divided into 3 main directions: 1) studying the chemical characteristics of water extracted from the water desalinations plants qualitatively and quantitatively. 2) mapping the subsurface of which that brine water will be injected to it and the flow directions and effects using resistivity data, and 3) using GIS and suitable numerical models in order to study the effect, volume, flow of the brine water and its long term environmental impacts on the area. The results indicate that the area is particularly vulnerable to the impact of SLR, salt water intrusion, the deterioration of coastal tourism and the impact of extreme dust storms. This in turn will directly affect the agricultural productivity and human settlements in coastal zones. The paper presents different scenarios for water management and recommends the most suitable scenarios in order to establish a core for water management strategy in the region according to existing socio-economic and environmental

  1. A new model of river dynamics, hydroclimatic change and human settlement in the Nile Valley derived from meta-analysis of the Holocene fluvial archive

    NASA Astrophysics Data System (ADS)

    Macklin, Mark G.; Toonen, Willem H. J.; Woodward, Jamie C.; Williams, Martin A. J.; Flaux, Clément; Marriner, Nick; Nicoll, Kathleen; Verstraeten, Gert; Spencer, Neal; Welsby, Derek

    2015-12-01

    In the Nile catchment, a growing number of site- and reach-based studies employ radiocarbon and, more recently, OSL dating to reconstruct Holocene river histories, but there has been no attempt to critically evaluate and synthesise these data at the catchment scale. We present the first meta-analysis of published and publically available radiocarbon and OSL dated Holocene fluvial units in the Nile catchment, including the delta region, and relate this to changing climate and river dynamics. Dated fluvial units are separated both geographically (into the Nile Delta and White, Blue, and Desert Nile sub-regions) and into depositional environment (floodplain and palaeochannel fills). Cumulative probability density frequency (CPDF) plots of floodplain and palaeochannel units show a striking inverse relationship during the Holocene, reflecting abrupt (<100 years) climate-related changes in flooding regime. The CPDF plot of dated floodplain units is interpreted as a record of over-bank river flows, whilst the CPDF plot of palaeochannel units reflect periods of major flooding associated with channel abandonment and contraction, as well as transitions to multi-centennial length episodes of greater aridity and low river flow. This analysis has identified major changes in river flow and dynamics in the Nile catchment with phases of channel and floodplain contraction at c. 6150-5750, 4400-4150, 3700-3450, 2700-2250, 1350-900, 800-550 cal. BC and cal. AD 1600, timeframes that mark shifts to new hydrological and geomorphological regimes. We discuss the impacts of these changing hydromorphological regimes upon riverine civilizations in the Nile Valley.

  2. Spectroscopic analyses of soil samples outside Nile Delta of Egypt.

    PubMed

    Fakhry, Ahmed; Osman, Osama; Ezzat, Hend; Ibrahim, Medhat

    2016-11-01

    Soil in Egypt, especially around Delta is exposed to various pollutants which are affecting adversely soil fertility and stability. Humic Acids (HA) as a main part of soil organic matter (SOM) represent the heart of the interaction process of inorganic pollutants with soil. Consequently, Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonances (NMR) were used to characterize soil, sediment and extracted HA. Resulting data confirmed that the HA was responsible for transporting inorganic pollutants from surface to subsurface reaching the ground water, which may represent a high risk on public health. The transport process is coming as carboxyl in surface soil changed into metal carboxylate then transferred into the carboxyl in bottom soil. PMID:27294554

  3. Serum Cadmium Levels in Pancreatic Cancer Patients from the East Nile Delta Region of Egypt

    PubMed Central

    Kriegel, Alison M.; Soliman, Amr S.; Zhang, Qing; El-Ghawalby, Nabih; Ezzat, Farouk; Soultan, Ahmed; Abdel-Wahab, Mohamed; Fathy, Omar; Ebidi, Gamal; Bassiouni, Nadia; Hamilton, Stanley R.; Abbruzzese, James L.; Lacey, Michelle R.; Blake, Diane A.

    2006-01-01

    The northeast Nile Delta region exhibits a high incidence of early-onset pancreatic cancer. It is well documented that this region has one of the highest levels of pollution in Egypt. Epidemiologic studies have suggested that cadmium, a prevalent pollutant in the northeast Nile Delta region, plays a role in the development of pancreatic cancer. Objective: We aimed to assess serum cadmium levels as markers of exposure in pancreatic cancer patients and noncancer comparison subjects from the same region in Egypt. Design and Participants: We assessed serum cadmium levels of 31 newly diagnosed pancreatic cancer patients and 52 hospital comparison subjects from Mansoura, Egypt. Evaluation/Measurements: Serum cadmium levels were measured using a novel immunoassay procedure. Results: We found a significant difference between the mean serum cadmium levels in patients versus comparison subjects (mean ± SD, 11.1 ± 7.7 ng/mL vs. 7.1 ± 5.0 ng/mL, respectively; p = 0.012) but not in age, sex, residence, occupation, or smoking status. The odds ratio (OR) for pancreatic cancer risk was significant for serum cadmium level [OR = 1.12; 95% confidence interval (CI), 1.04–1.23; p = 0.0089] and farming (OR = 3.25; 95% CI, 1.03–11.64; p = 0.0475) but not for age, sex, residence, or smoking status. Conclusions: The results from this pilot study suggest that pancreatic cancer in the East Nile Delta region is significantly associated with high levels of serum cadmium and farming. Relevance to Clinical Practice/Public Health: Future studies should further investigate the etiologic relationship between cadmium exposure and pancreatic carcinogenesis in cadmium-exposed populations. PMID:16393667

  4. Ecological implications of heavy metal concentrations in the sediments of Burullus Lagoon of Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Chen, Zhongyuan; Salem, Alaa; Xu, Zhuang; Zhang, Weiguo

    2010-02-01

    This paper examines the spatial and temporal distribution of heavy metals (Fe, Al, Cu, Zn, Mn, Cd, Pb and Ni) from three short sediment cores collected from Burullus lagoon of the Nile delta, Egypt. 210Pb and 137Cs measurement is applied to understand sedimentation rate and related chronology. Remarkably low isotopic activities and intensive bioturbation in the lagoonal sediments rendered age determination difficult. Samples with detectable 137Cs in the upper core sediments together with sediment lithology could help infer a sedimentation rate of about 2.0 mm yr -1, thereby indicating post-dam (after 1964) sedimentation of the upper 10-cm core sediments. Our results demonstrate that most heavy metals in the surficial sediments after normalization to Al decrease seaward, showing a function of distance to the sewerage outlet on the inland lake coast. Also, there is an upwardly increasing trend of normalized heavy metals, especially in the upper 10-cm core sediments. Relevancy analysis has identified Mn, Pb and Cd as the diagnostic heavy metals in Burullus lagoon, most likely derived from Tanta and Kafrelsheihk, the major downtowns in the central Nile delta plain, from where wastewaters are directly discharging into the lake via canal networks. Although Burullus lagoon is presently least affected by pollution as compared to other major lagoons of the Nile delta, the increasing quantities of diagnostic metals, especially Mn, are extremely toxic, as they are potentially linked to the risks of digestive issues and pancreatic cancer reportedly. The situation calls for a rational planning for sewerage treatment in the protected Burullus coast.

  5. Lena River delta formation during the Holocene

    NASA Astrophysics Data System (ADS)

    Bolshiyanov, D.; Makarov, A.; Savelieva, L.

    2015-01-01

    The Lena River delta, the largest delta of the Arctic Ocean, differs from other deltas because it consists mainly of organomineral sediments, commonly called peat, that contain a huge organic carbon reservoir. The analysis of delta sediment radiocarbon ages showed that they could not have formed as peat during floodplain bogging; rather, they accumulated when Laptev Sea water level was high and green mosses and sedges grew and were deposited on the surface of flooded marshes. The Lena River delta formed as organomineral masses and layered sediments accumulated during transgressive phases when sea level rose. In regressive phases, the islands composed of these sediments and other, more ancient islands were eroded. Each new sea transgression led to further accumulation of layered sediments. As a result of alternating transgressive and regressive phases, the first alluvial-marine terrace formed, consisting of geological bodies of different ages. Determining the formation age of different areas of the first terrace and other marine terraces on the coast allowed the periods of increasing (8000-6000 BP (years before present), 4500-4000, 2500-1500, and 400-200 BP) and decreasing (5000, 3000, and 500 BP) Laptev Sea levels to be distinguished in the Lena Delta area.

  6. Lena River Delta formation during the Holocene

    NASA Astrophysics Data System (ADS)

    Bolshiyanov, D.; Makarov, A.; Savelieva, L.

    2014-03-01

    The Lena River Delta, the largest delta of the Arctic Ocean, differs from other deltas because it consists mainly of organomineral sediments, commonly called peat, that contain a huge organic carbon reservoir. The analysis of Delta sediment radiocarbon ages showed that they could not have formed as peat during floodplain bogging, but accumulated when Laptev Sea water level was high and green mosses and sedges grew and were deposited on the surface of flooded marshes. The Lena River Delta formed as organomineral masses and layered sediments accumulated during transgressive phases when sea level rose. In regressive phases, the islands composed of these sediments and other, more ancient islands were eroded. Each new sea transgression led to further accumulation of layered sediments. As a result of alternating transgressive and regressive phases the first alluvial-marine terrace formed, consisting of geological bodies of different ages. Determining the formation age of different areas of the first terrace and other marine terraces on the coast allowed the periods of increasing (8-6 Ka, 4.5-4 Ka, 2.5-1.5 Ka, 0.4-0.2 Ka) and decreasing (5 Ka, 3 Ka, 0.5 Ka) Laptev Sea levels to be distinguished in the Lena Delta area.

  7. River deltas: channelizing sandpiles with memory

    NASA Astrophysics Data System (ADS)

    Jerolmack, Douglas; Reitz, Meredith

    2013-03-01

    River deltas are wedges of sediment that are built via the lateral migration of self-channelizing rivers, but the timescale of this process is prohibitively long to observe in nature. Here we present laboratory results that allow us to examine how channels form and fill space to create a delta. Flow collapses into a single channel whose dimensions adjust to threshold transport conditions for the imposed sediment load. This channelization causes localized shoreline growth until the slope drops below a threshold value for sediment transport. This leads to deposition within the channel, with an upstream-migrating step akin to a stopping front in granular flows, which causes widespread flooding and the selection of a new (steeper) channel path. This cycle is remarkably periodic; delta slope oscillates between two thresholds - entrainment and distrainment - analogous to static and dynamic angles of repose. Selection of a new flow path is inherently stochastic, but previously abandoned channels act as significant attractors for the flow. Once a critical density of flow paths has been established, the flow oscillates among the same 3-5 channels indefinitely. These dynamics result in self-similar (quasi-)radial growth of delta lobes, which can be described using a simple geometric model. Despite its simplicity, the experimental system agrees well with what can be measured from natural deltas Thus, temporal and spatial patterns of deltas appear to be a robust result of mass conservation and transport thresholds.

  8. Investigation of potential sea level rise impact on the Nile Delta, Egypt using digital elevation models.

    PubMed

    Hasan, Emad; Khan, Sadiq Ibrahim; Hong, Yang

    2015-10-01

    In this study, the future impact of Sea Level Rise (SLR) on the Nile Delta region in Egypt is assessed by evaluating the elevations of two freely available Digital Elevation Models (DEMs): the SRTM and the ASTER-GDEM-V2. The SLR is a significant worldwide dilemma that has been triggered by recent climatic changes. In Egypt, the Nile Delta is projected to face SLR of 1 m by the end of the 21th century. In order to provide a more accurate assessment of the future SLR impact on Nile Delta's land and population, this study corrected the DEM's elevations by using linear regression model with ground elevations from GPS survey. The information for the land cover types and future population numbers were derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and the Gridded Population of the Worlds (GPWv3) datasets respectively. The DEM's vertical accuracies were assessed using GPS measurements and the uncertainty analysis revealed that the SRTM-DEM has positive bias of 2.5 m, while the ASTER-GDEM-V2 showed a positive bias of 0.8 m. The future inundated land cover areas and the affected population were illustrated based on two SLR scenarios of 0.5 m and 1 m. The SRTM DEM data indicated that 1 m SLR will affect about 3900 km(2) of cropland, 1280 km(2) of vegetation, 205 km(2) of wetland, 146 km(2) of urban areas and cause more than 6 million people to lose their houses. The overall vulnerability assessment using ASTER-GDEM-V2 indicated that the influence of SLR will be intense and confined along the coastal areas. For instance, the data indicated that 1 m SLR will inundate about 580 Km(2) (6%) of the total land cover areas and approximately 887 thousand people will be relocated. Accordingly, the uncertainty analysis of the DEM's elevations revealed that the ASTER-GDEM-V2 dataset product was considered the best to determine the future impact of SLR on the Nile Delta region. PMID:26410824

  9. Normal intestinal flora of wild Nile crocodiles (Crocodylus niloticus) in the Okavango Delta, Botswana.

    PubMed

    Lovely, C J; Leslie, A J

    2008-06-01

    Bacterial and fungal cultures were performed from cloacal swabs collected from 29 wild Nile crocodiles, captured in the Okavango Delta, Botswana. Sixteen species of bacteria and 6 fungal species were cultured. Individual crocodiles yielded 1-4 bacterial species, and 0-2 fungal species. The most commonly isolated bacteria were Microbacterium, Enterococcus faecalis, Aeromonas hydrophila, and Escherichia coli. No salmonellae were cultured. The most commonly occurring fungus was Cladosporium. Several of the bacterial and fungal species isolated have been implicated in cases of septicaemia in crocodilians. Knowledge of the normal intestinal flora will contribute towards the development of a crocodile-specific probiotic for use in farmed crocodiles. PMID:18846850

  10. Lake Nasser on Nile River in Egypt as seen from the Apollo 7 spacecraft

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Lake Nasser on the Nile River in southeastern United Arab Republic (Egypt) as seen from the Apollo 7 spacecraft during its 10th revolution of the earth. Photographed from an altitude of 130 nautical miles, at ground elapsed time of 14 hours and 56 minutes. Lake Nasser was created by the contruction of the Aswan Dam on the Nile.

  11. Black cloud and transport of anthropogenic pollution across the Mediterranean Sea over Nile Delta region in Egypt during Fall season

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Prasad, A. K.; Kafatos, M.

    2010-12-01

    The Nile River Delta is the most populous region of Egypt with major agricultural and industrial activities. The region suffers from intense episodes of natural and anthropogenic pollution especially during Spring (March-April-May), Summer (June-July-August), Fall (September-October-November), and Winter (December-January-February) seasons. Previous studies found that the summer season shows long range transport of pollutants from Europe which is widely accepted. Recent studies attribute the local biomass burning in open fields to be the major culprit behind increased levels of pollution over major cities of the Delta region (such as Cairo) especially during the Fall season. Such episodes result in dense fog and haze which is locally known as "Black Cloud". We have analyzed multiple satellite datasets such as Moderate Resolution Imaging Spectroradiometer (MODIS) higher resolution aerosol parameters, vertical profiles from AIRS (meteorological and other parameters), Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), Goddard Chemistry Aerosol Radiation and Transport (GOCART) Model, and ground collected data (AOD, PM10, SO2 and NO2) to study the cause of Fall-time pollution over the Delta region. We show that the major episodes of pollution, even during Fall season, is attributed to the inter-continental transport of pollution especially across the Mediterranean. The back-trajectories from HYSPLIT model and satellite data clearly show the source of the plume visible in the MODIS data. We have computed month-to-month mean of the back-trajectories during Fall season (2004-2009) and classified the back trajectories using available ground data to identify major sources of pollution during Fall. The vertical profile of the atmosphere from AIRS shows arrival of plume from northern regions affecting the air quality over all the major cities of the Delta region. Similar analysis can be applied to major population centers in the Indo-Gangetic region in

  12. Tidal river dynamics: Implications for deltas

    NASA Astrophysics Data System (ADS)

    Hoitink, A. J. F.; Jay, D. A.

    2016-03-01

    Tidal rivers are a vital and little studied nexus between physical oceanography and hydrology. It is only in the last few decades that substantial research efforts have been focused on the interactions of river discharge with tidal waves and storm surges into regions beyond the limit of salinity intrusion, a realm that can extend inland hundreds of kilometers. One key phenomenon resulting from this interaction is the emergence of large fortnightly tides, which are forced long waves with amplitudes that may increase beyond the point where astronomical tides have become extinct. These can be larger than the linear tide itself at more landward locations, and they greatly influence tidal river water levels and wetland inundation. Exploration of the spectral redistribution and attenuation of tidal energy in rivers has led to new appreciation of a wide range of consequences for fluvial and coastal sedimentology, delta evolution, wetland conservation, and salinity intrusion under the influence of sea level rise and delta subsidence. Modern research aims at unifying traditional harmonic tidal analysis, nonparametric regression techniques, and the existing understanding of tidal hydrodynamics to better predict and model tidal river dynamics both in single-thread channels and in branching channel networks. In this context, this review summarizes results from field observations and modeling studies set in tidal river environments as diverse as the Amazon in Brazil, the Columbia, Fraser and Saint Lawrence in North America, the Yangtze and Pearl in China, and the Berau and Mahakam in Indonesia. A description of state-of-the-art methods for a comprehensive analysis of water levels, wave propagation, discharges, and inundation extent in tidal rivers is provided. Implications for lowland river deltas are also discussed in terms of sedimentary deposits, channel bifurcation, avulsion, and salinity intrusion, addressing contemporary research challenges.

  13. Explaining and Forecasting Interannual Variability in the Flow of the Nile River

    NASA Astrophysics Data System (ADS)

    Eltahir, E. A.; Siam, M.

    2013-12-01

    The natural interannual variability in the flow of Nile River had a significant impact on the ancient civilizations and cultures that flourished on the banks of the river. Here, we analyze extensive data sets collected during the 20th century and define four modes of natural variability in the flow of Nile River, identifying a new significant potential for improving predictability of floods and droughts. Previous studies have identified a significant teleconnection between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the interannual variability in the Nile flow. Here, we identify, for the first time, a region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface Temperature (SST) in the region (60oE-90oE and 25oS-35oS) explains 28% of the interannual variability in the Nile flow. During those years with anomalous SST conditions in both Oceans, we estimate that indices of the SSTs in the Pacific and Indian Oceans can collectively explain up to 84% of the interannual variability in the flow of Nile. Building on these findings, we use classical Bayesian theorem to develop a new hybrid forecasting algorithm that predicts the Nile flow based on indices of the SST in the Eastern Pacific and Southern Indian Oceans.

  14. Explaining and forecasting interannual variability in the flow of the Nile River

    NASA Astrophysics Data System (ADS)

    Siam, M. S.; Eltahir, E. A. B.

    2014-05-01

    The natural interannual variability in the flow of Nile River had a significant impact on the ancient civilizations and cultures that flourished on the banks of the river. This is evident from stories in the Bible and Koran, and from the numerous Nilometers discovered near ancient temples. Here, we analyze extensive data sets collected during the 20th century and define four modes of natural variability in the flow of Nile River, identifying a new significant potential for improving predictability of floods and droughts. Previous studies have identified a significant teleconnection between the Nile flow and the Eastern Pacific Ocean. El Niño-Southern Oscillation (ENSO) explains about 25% of the interannual variability in the Nile flow. Here, we identify, for the first time, a region in the southern Indian Ocean with similarly strong teleconnection to the Nile flow. Sea Surface Temperature (SST) in the region (50-80° E and 25-35° S) explains 28% of the interannual variability in the Nile flow. During those years with anomalous SST conditions in both Oceans, we estimate that indices of the SSTs in the Pacific and Indian Oceans can collectively explain up to 84% of the interannual variability in the flow of Nile. Building on these findings, we use classical Bayesian theorem to develop a new hybrid forecasting algorithm that predicts the Nile flow based on global models predictions of indices of the SST in the Eastern Pacific and Southern Indian Oceans.

  15. A Journey on Three Rivers: The Nile, The Rhine, The Mississippi.

    ERIC Educational Resources Information Center

    Allen, Anita

    1996-01-01

    Focuses on the Nile, the Rhine, and the Mississippi, the greatest rivers of Africa, Europe, and North America, respectively. Highlights the rich diversity of subjects associated with rivers including geography, history, literature, and art. Includes 12 learning activities for each river. (MJP)

  16. Lagoons of the Nile delta, Egypt, heavy metal sink: With a special reference to the Yangtze estuary of China

    NASA Astrophysics Data System (ADS)

    Gu, Jiawei; Salem, Alaa; Chen, Zhongyuan

    2013-01-01

    Lagoons of the Nile delta are a vital aquacultural base for millions of people in Egypt. Since the 1960s, when the Aswan High Dam was completed, the estuary has changed from high to low turbidity and this has dramatically altered the eco-hydrological environment. In this study we attempt to explore the spatial and temporal distribution of heavy metals (Al, Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) based on 6 short sediment cores recovered from Manzala, Burullus and Edku lagoons on the Nile delta. Radiometric dating indicates that the upper 10-15 cm of the core sediment is post-Aswan Dam. Manzala on the eastern delta coast is severely polluted by almost all metals analyzed in the present study, especially Mn, Pb, Zn and Cd, due to its connection to the city of Cairo, and the direct human input from neighboring megacities, where the petro-chemical industry is thought to be a major source. Although Burullus on the central delta coast has the lowest concentrations of Mn and Pb, there is an increasing trend, implying a linkage to local agricultural sources, and the recently expanding megacities in the central delta plain. Edku on western delta coast seems remote from any major pollution sources, but higher Mn, Pb, and Zn in the upper portion of the lake sediment suggest human influences from Alexandria to the west via the littoral current. The horse-saddle distribution pattern of polluted metals along the Nile coast, as evidenced by the Enrichment Factor (EF), is closely associated with the regulated runoff to the lower delta plain and coast, where extremely low precipitation occurs. This physical setting is certainly prone to concentrating anthropogenic heavy metals in the lagoons. The opposite example is the intensively-cultivated Yangtze estuary in China, where monsoonal precipitation flushes out a huge amount of metals as manifested by the lower EF than that of the Nile.

  17. Nile Delta

    Atmospheric Science Data Center

    2013-04-16

    ... waterway, although in the twentieth century that role became less important. The false color image uses the infrared, red, ... NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Science Mission Directorate, Washington, D.C. The Terra spacecraft is managed ...

  18. Shifting sediment sources in the world's longest river: A strontium isotope record for the Holocene Nile

    NASA Astrophysics Data System (ADS)

    Woodward, Jamie; Macklin, Mark; Fielding, Laura; Millar, Ian; Spencer, Neal; Welsby, Derek; Williams, Martin

    2015-12-01

    We have reconstructed long-term shifts in catchment sediment sources by analysing, for the first time, the strontium (Sr) and neodymium (Nd) isotope composition of dated floodplain deposits in the Desert Nile. The sediment load of the Nile has been dominated by material from the Ethiopian Highlands for much of the Holocene, but tributary wadis and aeolian sediments in Sudan and Egypt have also made major contributions to valley floor sedimentation. The importance of these sources has shifted dramatically in response to global climate changes. During the African Humid Period, before c. 4.5 ka, when stronger boreal summer insolation produced much higher rainfall across North Africa, the Nile floodplain in northern Sudan shows a tributary wadi input of 40-50%. Thousands of tributary wadis were active at this time along the full length of the Saharan Nile in Egypt and Sudan. As the climate became drier after 4.5 ka, the valley floor shows an abrupt fall in wadi inputs and a stronger Blue Nile/Atbara contribution. In the arid New Kingdom and later periods, in palaeochannel fills on the margins of the valley floor, aeolian sediments replace wadi inputs as the most important secondary contributor to floodplain sedimentation. Our sediment source data do not show a measurable contribution from the White Nile to the floodplain deposits of northern Sudan over the last 8500 years. This can be explained by the distinctive hydrology and sediment delivery dynamics of the upper Nile basin. High strontium isotope ratios observed in delta and offshore records - that were previously ascribed to a stronger White Nile input during the African Humid Period - may have to be at least partly reassessed. Our floodplain Sr records also have major implications for bioarchaeologists who carry out Sr isotope-based investigations of ancient human remains in the Nile Valley because the isotopic signature of Nile floodplain deposits has shifted significantly over time.

  19. Holocene palaeo-environments on the western coast of the Nile Delta: local and basin-wide forcing factors

    NASA Astrophysics Data System (ADS)

    Flaux, Clément; Véron, Alain; Marriner, Nick; el-Assal, Mena; Claude, Christelle; Morhange, Christophe

    2014-05-01

    The Canopic branch, which is today either silted up and cultivated or re-used in the modern drainage network, was the main channel for the western Nile Delta during Antiquity. Ancient Canopic flow used to supply the water network on the deltaic margin, including secondary tributaries, the Maryut lake, and irrigation agriculture and urban needs. We present new data obtained from a sediment core taken close to the palaeo-Canopic channel. Lead (Pb) isotopic analyses of bulk sediments, together with sedimentology, macro- and micro-fauna assemblages, magnetic susceptibility and radiocarbon dates provide evidence for environmental changes at the Canopic mouth in addition to changes in Nile sediment sources during the last 6000 years. Alternation of estuarine to lagoonal and peaty biofacies have recorded stages of transgression and progradation. 206Pb/207Pb analyses suggest a change in dominant sediment load from the White Nile to Blue Nile between 6000 and 5000 years cal. BP. The dataset is then compared and contrasted with previous studies, including: (1) a dense grid of dated bio-sedimentological cores data from the northwestern Nile Delta; (2) strontium isotope records of water and sediment fluxes on the delta; and (3) geochemical records from offshore sediment cores. Our analysis attempts to date and discriminate between basin-wide and regional to local forcing agents driving environmental changes at the mouth of the Canopic. The three main factors discussed will include climatic forcing of Nile flow and load changes, relative sea-level variations, and human impacts on the Canopic flow.

  20. Serological tests for detecting Rift Valley fever viral antibodies in sheep from the Nile Delta.

    PubMed Central

    Scott, R M; Feinsod, F M; Allam, I H; Ksiazek, T G; Peters, C J; Botros, B A; Darwish, M A

    1986-01-01

    To determine the accuracy of serological methods in detecting Rift Valley fever (RVF) viral antibodies, we examined serum samples obtained from 418 sheep in the Nile Delta by using five tests. The plaque reduction neutralization test (PRNT) was considered the standard serological method against which the four other tests were compared. Twenty-four serum samples had RVF viral antibodies detected by PRNT. Hemagglutination inhibition and enzyme-linked immunosorbent assay antibodies to RVF virus were also present in the same 24 serum samples. Indirect immunofluorescence was less sensitive in comparison with PRNT, and complement fixation was the least sensitive. These results extend observations made with laboratory animals to a large field-collected group of Egyptian sheep. PMID:3533977

  1. Aerosol Climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Gille, J. C.; El-Askary, H. M.; Shalaby, E. A.; El-Raey, M. E.

    2011-04-01

    Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) at 550 nm were examined for the 10 yr 2000-2009. Significant monthly variability is observed with maxima in April or May (~0.5) and October (~0.45), and a minimum in December and January (~0.2). Monthly mean values of UV Aerosol Index (UVAI) retrieved by the Ozone Monitoring Instrument (OMI) for 4 yr (2005-2008) exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL), while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR) data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  2. Aerosol climatology over Nile Delta based on MODIS, MISR and OMI satellite data

    NASA Astrophysics Data System (ADS)

    Marey, H. S.; Gille, J. C.; El-Askary, H. M.; Shalaby, E. A.; El-Raey, M. E.

    2011-10-01

    Since 1999 Cairo and the Nile delta region have suffered from air pollution episodes called the "black cloud" during the fall season. These have been attributed to either burning of agriculture waste or long-range transport of desert dust. Here we present a detailed analysis of the optical and microphysical aerosol properties, based on satellite data. Monthly mean values of Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD) at 550 nm were examined for the 10 yr period from 2000-2009. Significant monthly variability is observed in the AOD with maxima in April or May (~0.5) and October (~0.45), and a minimum in December and January (~0.2). Monthly mean values of UV Aerosol Index (UVAI) retrieved by the Ozone Monitoring Instrument (OMI) for 4 yr (2005-2008) exhibit the same AOD pattern. The carbonaceous aerosols during the black cloud periods are confined to the planetary boundary layer (PBL), while dust aerosols exist over a wider range of altitudes, as shown by Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol profiles. The monthly climatology of Multi-angle Imaging SpectroRadiometer (MISR) data show that the aerosols during the black cloud periods are spherical with a higher percentage of small and medium size particles, whereas the spring aerosols are mostly large non-spherical particles. All of the results show that the air quality in Cairo and the Nile delta region is subject to a complex mixture of air pollution types, especially in the fall season, when biomass burning contributes to a background of urban pollution and desert dust.

  3. 3-D Seismic Images of Mud Volcano North Alex, West-Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Bialas, J.; Klaeschen, D.; Papenberg, C. A.; Gehrmann, R.; Sommer, M.

    2009-12-01

    Mud volcanoes within shelf areas are the bathymetric expression of mobilized overpressured sediments causing a feature of possible instability within the slope. Such a scene is given in the West-Nile Delta offshore Alexandria, Egypt at 700 m water depth. The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. Deep-cutting channel systems like the Rosetta channel characterize the continental slope. Bathymetric expressions of slides and numerous mud volcanoes in the area are expressions of active processes, which contribute to the ongoing modification of the slope. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A grid of 2-D seismic profiles did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. They can be tracked up to the seafloor indicating ongoing tectonic activity of the slope area. A recently build 3-D acquisition system suitable for mid-size research vessels was applied to collect an active seismic cube of the mud volcano. Based on the P-Cable design 11 parallel streamers (each 12.5 m long with 1.5 m group interval) were used to record shots of a single 210 cinch GI airgun. After stacking a 3D time migration within the cube provided final signal to noise reduction and filled

  4. Hydroclimate variability in the Nile River Basin during the past 28,000 years

    NASA Astrophysics Data System (ADS)

    Castañeda, Isla S.; Schouten, Stefan; Pätzold, Jürgen; Lucassen, Friedrich; Kasemann, Simone; Kuhlmann, Holger; Schefuß, Enno

    2016-03-01

    It has long been known that extreme changes in North African hydroclimate occurred during the late Pleistocene yet many discrepancies exist between sites regarding the timing, duration and abruptness of events such as Heinrich Stadial (HS) 1 and the African Humid Period (AHP). The hydroclimate history of the Nile River is of particular interest due to its lengthy human occupation history yet there are presently few continuous archives from the Nile River corridor, and pre-Holocene studies are rare. Here we present new organic and inorganic geochemical records of Nile Basin hydroclimate from an eastern Mediterranean (EM) Sea sediment core spanning the past 28 ka BP. Our multi-proxy records reflect the fluctuating inputs of Blue Nile versus White Nile material to the EM Sea in response to gradual changes in local insolation and also capture abrupt hydroclimate events driven by remote climate forcings, such as HS1. We find strong evidence for extreme aridity within the Nile Basin evolving in two distinct phases during HS1, from 17.5 to 16 ka BP and from 16 to 14.5 ka BP, whereas peak wet conditions during the AHP are observed from 9 to 7 ka BP. We find that zonal movements of the Congo Air Boundary (CAB), and associated shifts in the dominant moisture source (Atlantic versus Indian Ocean moisture) to the Nile Basin, likely contributed to abrupt hydroclimate variability in northern East Africa during HS1 and the AHP as well as to non-linear behavior of hydroclimate proxies. We note that different proxies show variable gradual and abrupt responses to individual hydroclimate events, and thus might have different inherent sensitivities, which may be a factor contributing to the controversy surrounding the abruptness of past events such as the AHP. During the Late Pleistocene the Nile Basin experienced extreme hydroclimate fluctuations, which presumably impacted Paleolithic cultures residing along the Nile corridor.

  5. Implications of high altitude desert dust transport from Western Sahara to Nile Delta during biomass burning season.

    PubMed

    Prasad, Anup K; El-Askary, Hesham; Kafatos, Menas

    2010-11-01

    The air over major cities and rural regions of the Nile Delta is highly polluted during autumn which is the biomass burning season, locally known as black cloud. Previous studies have attributed the increased pollution levels during the black cloud season to the biomass or open burning of agricultural waste, vehicular, industrial emissions, and secondary aerosols. However, new multi-sensor observations (column and vertical profiles) from satellites, dust transport models and associated meteorology present a different picture of the autumn pollution. Here we show, for the first time, the evidence of long range transport of dust at high altitude (2.5-6 km) from Western Sahara and its deposition over the Nile Delta region unlike current Models. The desert dust is found to be a major contributor to the local air quality which was previously considered to be due to pollution from biomass burning enhanced by the dominant northerly winds coming from Europe. PMID:20797813

  6. Elwha River Delta: Geomorphology of a Mixed-Sediment Beach

    NASA Astrophysics Data System (ADS)

    George, D. A.; Warrick, J. J.

    2007-12-01

    The Elwha River drains the Olympic Peninsula of Washington and forms a mixed grain-size delta in the Strait of Juan de Fuca. The Elwha River has been dammed for almost a century, and a pending dam removal project is expected to reconnect upstream sediment sources to the river mouth. Topographic and grain-size mapping of the delta during 1939-2007 is synthesized and the geomorphology and shoreline changes of this system are described. Data sources include historical aerial photographs, airborne LIDAR, semiannual RTK DGPS topographic surveys and grain-size analyses from digital photographs. The delta is divided into three geomorphic regions: west delta, river mouth and east delta. The river mouth is the most complex region due to the river channel movement, side-channels, and bars immediately offshore of the mouth. The east and west delta differ in beach profile and shoreline change rates. The west delta is steep, cuspate and lacks a low-tide terrace. Further, the west delta has exhibited little semi-annual or inter-annual shoreline change. In contrast, the east delta has a steep foreshore, flat low tide terrace that is dominated by cobble, and a consistent trend of erosion during the surveys. These observations can be used to track coastal changes following dam removal on the Elwha River..

  7. The Influence of Atmospheric Aerosols on Air Quality Status of the Egyptian Nile Delta

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Zakey, A.

    2014-12-01

    Due to the combination of natural and anthropogenic sources of emission over the Nile Delta region, the air quality status is very poor and has a significant health hazards impacts on the population. Here we focused on the optical and chemical characterizations of atmospheric aerosols in the Nile Delta using the online integrated Environmental-Climate Aerosols model (EnvClimA) during a 10 year period 2000-2010. Observations from MODIS and SeaWiFS measurements supplemented by CALIPSO and some ground-based data from AERONET, are used to validate the EnvClimA model and to illustrate the aerosol characteristics and their sources. CALIPSO measurements were used to characterize the vertical structure of aerosols and their shapes (spherical and non-spherical) for major dust storms and biomass burning events. In this study we discussed the synoptic patterns and features, which are associated with either the dust storm or high pollution events. We used MODIS derived aerosol parameters to study seasonal changes in aerosol parameters due to the influence of dust storms, anthropogenic pollution and biomass (crop residue) burning. MODIS derived deep blue AOD provided better representation of aerosol loading over north Africa (Sahara region) along with dark-target AOD and related parameters. AERONET data provided aerosol optical depth, angstrom, fine mode fraction, size fraction, volume, effective radius, refractive index, single scattering albedo, and radiative forcing during different seasons dominated by dust storms, anthropogenic pollution and biomass burning (black cloud phenomena). The results indicated that the observed AOD decreases in the summer and increases again in the fall due to agricultural burning events. Ground-based AERONET data support the "Dark Product" MODIS retrievals, as they typically show a fall peak in the 500 nm region. The number of dust distribution frequencies over Egypt has more frequency in the southeast and northwest of Egypt (5-7.5 days

  8. 3-D Seismic Images of Mud Volcano North Alex, West-Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Bialas, Joerg; Klaeschen, Dirk; Papenberg, Cord; Gehrmann, Romina; Sommer, Malte

    2010-05-01

    Mud volcanoes within shelf areas are the bathymetric expression of mobilized overpressured sediments causing a feature of possible instability within the slope. Such a scene is given in the West-Nile Delta offshore Alexandria, Egypt at 700 m water depth, ,which was studied during a RWE Dea funded research project. The West Nile Delta forms part of the source of the large turbiditic Nile Deep Sea Fan. Since the late Miocene sediments have formed an up to 10 km thick pile, which includes about 1 - 3 km of Messinian evaporates. The sediment load of the overburden implies strong overpressures and salt-related tectonic deformation. Both are favourable for fluid migration towards the seafloor guided by the fractured margin. Deep-cutting channel systems like the Rosetta channel characterize the continental slope. Bathymetric expressions of slides and numerous mud volcanoes in the area are expressions of active processes, which contribute to the ongoing modification of the slope. The western deltaic system, Rosetta branch, has formed an 80 km wide continental shelf. Here at 700 m water depth the mud volcano North Alex developed his circular bathymetric feature, which proved to be an active gas and mud-expelling structure. A grid of 2-D seismic profiles did reveal a large set of faults located within the main mud volcano as well as surrounding the structure. Internal faults are mainly related to episodic mud expulsion processes and continuous gas and fluid production. Deep cutting external faults surround the structure in a half circle shape. They can be tracked up to the seafloor indicating ongoing tectonic activity of the slope area. A recently build 3-D acquisition system (funded by RWE Dea) suitable for mid-size research vessels was applied to collect an active seismic cube of the mud volcano. Based on the P-Cable design 11 parallel streamers (each 12.5 m long with 1.5 m group interval) were used to record shots of a single 210 cinch GI airgun. Based on GPS positions of

  9. Near infrared spectroscopy techniques for soil contamination assessment in the Nile Delta

    NASA Astrophysics Data System (ADS)

    Mohamed, E. S.; Ali, A. M.; El Shirbeny, M. A.; Abd El Razek, Afaf A.; Savin, I. Yu.

    2016-06-01

    Heavy metals concentration is considered one of the factors directly affecting soil and crop quality and, thus, human health. The objective of the current work was to critically examine the suitability of Vis- NIR (350-2500 nm) measurements for calibration procedures and methods to predict contaminated soil. 25 different sites were selected adjacent to drain Bahr El-Baqar east of Nile Delta. Spectroradiometer ASD was used to measure the spectral reflectance profile of each soil site. The concentrations of three heavy metals (Cr, Mn and Cu) were determined in the studied samples. Stepwise multiple linear regression (SMLR) was used to construct calibration models subjected to the independent validation. The obtained regression models were of good quality ( R 2 = 0.82, 0.75, and 0.65 for Cr, Mn, and Cu, respectively). Thus, Visible and Nearinfrared (Vis-NIR) reflection spectroscopy is cost- and time-effective procedure that can be used as an alternative to the traditional methods of determination of heavy metals in soils.

  10. Tradeoff Analysis Between Economic Development and Climate Change Adaptation Strategies for River Nile Basin Water Resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent Intergovernmental Panel on Climate Change (IPCC) briefings have declared that the growing population in the Nile river basin region (about 160 million, or 57% of the entire population of the basin’s ten riparian countries) is at risk of water scarcity. Adjustment strategies in response to cl...

  11. Occurrence of pesticides in fish tissues, water and soil sediment from Manzala Lake and River Nile.

    PubMed

    Osfor, M M; Abd el Wahab, A M; el Dessouki, S A

    1998-02-01

    Pesticides constitute the major source of potential environmental hazard to man and animal as they are present and concentrated in the food chain. This study was conducted on 136 samples of water, sediment and fish for detection and determination of pesticide residues in this ecosystem. Highly significant differences were found in levels of Indian, heptachlor, endrin, dieldrin, P,P'-DDE and propoxur in River Nile water when compared with that of Manzala Lake. Levels of Indian, endrin, malathion and diazinon were significantly higher in soil sediment of Manzala Lake, while the levels of heptachlor, aldrine, P,P'-DDE, DDT, parathion, propoxur and zectran were significantly higher in soil sediment of River Nile. Boury fish of Manzala Lake contained higher levels of heptachlor, aldrin, P,P'-DDE and malathion, while boury fish of River Nile contained a higher level of zectran only. This survey, thus indicated that Manzala Lake and even the River Nile which was used as control are heavily contaminated with chlorinated hydrocarbons (Indian, heptachlor, aldrin, endrin, dieldrin, P,P'-DDE and DDT), organic phosphorus compounds (malathion, dimethoat, diazinon and parathion) and carbamate pesticides (propoxur and zectran). PMID:9584277

  12. Quantifying Knick Point Migration Rates Related to the Messinian Crisis. The Case of the Nile River

    NASA Astrophysics Data System (ADS)

    Stüwe, Kurt; Pucher, Christoph; Robl, Jörg; Hergarten, Stefan

    2016-04-01

    The Messinian crisis is a temporally well-constrained period between 5.3 my and 5.9 my, when the strait of Gibraltar was tectonically closed and the Mediterranean Sea had consequently desiccated. This dramatic base level drop by about 1500 vertical meters had a profound influence on the geomorphic evolution of the major drainages surrounding the Mediterranean basin. In particular, it caused substantial knickpoints in the major rivers including the Rhone, the Ebro, the Po and the Nile. While the knickpoints of the Rhone and Ebro have been studied previously and the knickpoints created by the Po may lie today underneath the Po plains, the knickpoint and its migration along the Nile has not been studied and would have migrated along its current river channel. In this contribution we focus on numerical modelling of the knickpoint migration in the Nile and use our modelling results in comparison with the present day morphological analyses of the river to constrain absolute migration rates. We suspect that the first Nile cataract near Assuan, some 1000 km upstream of today's river mouth may be the relict of the Messinian salinity crisis making it to one of the fastest migrating knickpoints in the world.

  13. Adaptation to the impact of sea level rise in the Northeastern Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Mabrouk, Badr; Farhat Abd-Elhamid, Hany; Badr, Marmar; Ludwig, Ralf

    2013-04-01

    Northeastern Delta is one of the most promising developmental areas in Egypt. This area is characterized by a prominent watershed having abundant water resources (especially groundwater). Currently, this area undergoes a rapid environmental degradation, such as land subsidence, water and soil salinaization. It accommodates about 60% of the total arable lands of the Delta, and inhabited by about 45 % of its total population. In addition, the northern part of this area comprises about 25% of the total Mediterranean wetlands. In this area a number of desalination plants were installed to desalinate brackish water and inject the brine to the aquifer using deep wells. This work aims to evaluate the environmental impact of injecting brine water on groundwater quality. Also, the impact of climate change and sea level rise are considered. The work is a combination of field work and simulation processes of groundwater flow and seawater intrusion using numerical models. The field work was used to collect and analyze data, information pertaining to the groundwater resources, interpretation of aerial photos and satellite images and preparation of ground water potential maps has. This was followed by detailed test boring wells as chemical analysis of seawater intrusion detection and pollution flow mapping were done. Numerical models (MODFLOW and MT3D) were used to evaluate both current and future situation of the groundwater flow and seawater intrusion in the Nile Delta aquifer in the studied area. The aquifer in the studied area is divided into five barrier beds according to its hydrological characteristics. The increase in extraction rates of brackish water and increasing the salinity of groundwater were experienced in details. Different scenarios to mitigate the severe salinity effect of injected brine water of high salinity rejected from desalination process. The brine water is assumed to be injected into deep wells to different depths and observation of changes in salinity

  14. Is Solar Variability Reflected in the Nile River?

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, Alexander; Feynman, Joan; Yung, Yuk L.

    2006-01-01

    We investigate the possibility that solar variability influences North African climate by using annual records of the water level of the Nile collected in 622-1470 A.D. The time series of these records are nonstationary, in that the amplitudes and frequencies of the quasi-periodic variations are time-dependent. We apply the Empirical Mode Decomposition technique especially designed to deal with such time series. We identify two characteristic timescales in the records that may be linked to solar variability: a period of about 88 years and one exceeding 200 years. We show that these timescales are present in the number of auroras reported per decade in the Northern Hemisphere at the same time. The 11-year cycle is seen in the Nile's high-water level variations, but it is damped in the low-water anomalies. We suggest a possible physical link between solar variability and the low-frequency variations of the Nile water level. This link involves the influence of solar variability on the atmospheric Northern Annual Mode and on its North Atlantic Ocean and Indian Ocean patterns that affect the rainfall over the sources of the Nile in eastern equatorial Africa.

  15. Ecosystem Services Assessment of the Nemunas River Delta

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. The Nemunas River Delta, in Lithuania, provides many ecosystem services to the people of the area, including food, fuel, transportation, climate regulation, water purificati...

  16. Human-induced changes in the geomorphology of the northeastern coast of the Nile delta, Egypt

    NASA Astrophysics Data System (ADS)

    El Banna, Mahmoud M.; Frihy, Omran E.

    2009-06-01

    Landsat Enhanced Thematic Mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret geomorphological changes in the coastal zone between Kitchener drain and Damietta spit in the northeastern Nile delta previously recognized as a vulnerable zone to the effects of any sea-level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km 2 to the agricultural deltaic land. About 48 km 2 of sand dunes, marshes, sabkhas and salt pans have been converted to productive fish farms. The main urban centers have expanded, and new urban centers (Damietta harbor and the New Damietta city) have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As the consequence of human activities the size of Manzala lagoon has been reduced to less than 50%. Short-term shoreline changes along the coast of the study area established from beach profile survey, spanning the years of 1990 to 2000, reveal longshore patterns of erosion versus accretion. The rate of shoreline retreat has increased in the downdrift side of Damietta harbor (- 14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwater system, with a maximum shoreline advance of ~ 15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man-made coastal protection structures.

  17. Altamaha River Delta, Georgia Sea Islands

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The history of sea islands in the Altamaha River delta on the coast of Georgia is revealed in this image produced from data acquired by the Airborne Synthetic Aperture Radar (AIRSAR), developed and operated by NASA's Jet Propulsion Laboratory, Pasadena, Calif. The outlines of long-lost plantation rice fields, canals, dikes and other inlets are clearly defined. Salt marshes are shown in red, while dense cypress and live oak tree canopies are seen in yellow-greens.

    Agricultural development of the Altamaha delta began soon after the founding of the Georgia Colony in 1733. About 25 plantations were located on the low-lying islands and shores by the 19th century, taking advantage of the rich alluvial flow and annual inundation of water required by some crops. The first major crop was indigo; when demand for that faded, rice and cotton took its place. A major storm in 1824 destroyed much of the town of Darien (upper right) and put many of the islands under 20 feet of water. The Civil War ended the plantation system, and many of the island plantations disappeared under heavy brush and new growth pine forests. Some were used as tree farms for paper and pulp industries, while the Butler Island (center left) plantation became a wildlife conservation site growing wild sea rice for migrating ducks and other waterfowl. Margaret Mitchell is reputed to have used the former owner of the Butler Plantation as a basis for the Rhett Butler character in her novel 'Gone With The Wind,' taking the first name from Rhett's Island (lower right).

    These data were obtained during a 1994-95 campaign along the Georgia coast. AIRSAR's ability to detect vegetation canopy density, hydrological features and other topographic characteristics is a useful tool in landscape archaeology. AIRSAR flies aboard a NASA DC-8 based at NASA's Dryden Flight Research Center, Edwards, Calif. The analysis on the data shown was accomplished by Dr. Gary Mckay, Department of Archaeology and Geography, and Ian

  18. Nile Delta exhibited a spatial reversal in the rates of shoreline retreat on the Rosetta promontory comparing pre- and post-beach protection

    NASA Astrophysics Data System (ADS)

    Ghoneim, Eman; Mashaly, Jehan; Gamble, Douglas; Halls, Joanne; AbuBakr, Mostafa

    2015-01-01

    The coastline of the Nile Delta experienced accelerated erosion since the construction of the Aswan High Dam in 1964 and, consequently, the entrapment of a large amount of river sediments behind it. The coastline of the Rosetta promontory showed the highest erosion in the Delta with an average retreat rate of 137.4 m year- 1. In 1991, in an effort to mitigate sediment loss, a 4.85 km long seawall was built on the outer margin of the promontory. For additional beach protection, 15 groins were constructed along the eastern and western sides of the seawall in 2003 and 2005. To quantify erosion and accretion patterns along the Rosetta promontory, 11 Landsat images acquired at unequal intervals during a 40 year time span (1972 and 2012) were analyzed. The positions of shorelines were automatically extracted from satellite imagery and compared with three very high resolution QuickBird and WorldView2 images for data validation. Analysis of the rates of shoreline change revealed that the construction of the seawall was largely successful in halting the recession along the tip of the promontory, which lost 10.8 km2 prior to coastal protection. Conversely, the construction of the 15 groins has negatively affected the coastal morphology of the promontory and caused a reversal from accretion to fast erosion along the promontory leeside, where some segments of the shoreline have undergone as much as 30.8 m year- 1 of erosion. Without hard structures, the tip of the Rosetta promontory would have retreated 2.3 km by 2013 and lost 7.2 km2 of land. About 10% of this land is deltaic fertile cultivated farms. Moreover, without additional protection the sides of the promontory will lose about 1.3 km2 of land and the coastline would recede at an average rate of 200 m by 2020. Unless action is taken, coastal erosion, enhanced by rising sea level, will steadily eat away the Nile Delta at an alarming rate. The successful demonstration of the advocated procedures in this study could be

  19. Natural and anthropogenic influences in the northeastern coast of the Nile delta, Egypt

    NASA Astrophysics Data System (ADS)

    El Banna, Mahmoud M.; Frihy, Omran E.

    2009-06-01

    Landsat enhanced thematic mapper imagery (ETM) of 2002 and aerial photography of 1955, combined with published charts and field observations were used to interpret coastal changes in the zone between Kitchener drain and Damietta spit in the northeastern Nile delta, previously recognized as a vulnerable zone to the effects of any sea level rise resulting from global warming. The interpretation resulted in recognition of several changes in nine identified geomorphological land types: beach and coastal flat, coastal dunes, agricultural deltaic land, sabkhas, fish farms, Manzala lagoon, saltpans, marshes and urban centers. Reclamation of vast areas of the coastal dunes and of Manzala lagoon added about 420 km² to the agricultural deltaic land. About 48 km² of backshore flats, marshes, salt pans and Manzala lagoon have been converted to productive fish farms. The main urban centers have expanded; nearly 12.1 km2 have been added to their areas, and new urban centers (Damietta harbor and the New Damietta city) with total area reach of ~35.3 km2 have been constructed at the expense of vast areas of Manzala lagoon, coastal dunes, and backshore flats. As a consequence of human activities, the size of Manzala lagoon has been reduced to more than 65%. Shoreline changes have been determined from beach profile survey (1990-2000), and comparison of 1955 aerial photographs and ETM satellite image of 2002 reveal alongshore patterns of erosion versus accretion. The short-term rate of shoreline retreat (1990-2000) has increased in the downdrift side of Damietta harbor (≃14 m/year), whereas areas of accretion exist within the embayment of Gamasa and in the shadow of Ras El Bar detached breakwaters system, with a maximum shoreline advance of ~15 m/year. A sandy spit, 12 km long, has developed southeast of Damietta promontory. These erosion/accretion patterns denote the natural processes of wave-induced longshore currents and sediment transport, in addition, the impact of man

  20. Soil Degradation Assessment in North Nile Delta Using Remote Sensing and GIS Techniques

    NASA Astrophysics Data System (ADS)

    El Nahry, A. H.; Ibraheim, M. M.; El Baroudy, A. A.

    2015-04-01

    The present work aims at monitoring soil degradation process within the last two decades in the northern part of Nile Delta. The investigated area lies between longitudes 31° 00- & 31° 15- E and latitudes 31° 00' & 31° 37' N., covering an area of about 161760 feddans. Detecting soil degradation and recognizing its various types is a necessity to take the practical measures for combating it as well as conserving and keeping the agricultural soil healthy. Land degradation was assessed by adopting new approach through the integration of GLASOD/FAO approach and Remote Sensing / GIS techniques .The main types of human induced soil degradation that observed in the studied area are salinity, alkalinity (sodicity), compaction and water logging .On the other hand water erosion because of sea rise is assessed. The obtained data showed that, areas that were affected by compaction increment have been spatially enlarged by 40.9 % and those affected by compaction decrease have been spatially reduced by 22.6 % of the total area ,meanwhile areas that have been unchanged were estimated by 36.5% of the total area. The areas that were affected by water logging increase have been spatially enlarged by 52.2 % and those affected by water logging decrease have been spatially reduced by 10.1 % of the total area, meanwhile the areas which have been unchanged were represented by 37.7 % of the total area. Areas that were affected by salinity increase have been spatially enlarged by 31.4 % of the total area and those affected by salinity decrease have been reduced by 43.3 % of the total area. An area represented by 25.2 % of the total area has been unchanged. Alkalinization (sodicity) was expressed by the exchangeable sodium percentage (ESP).Areas that were affected by sodicity increase have been spatially enlarged by 33.7 %, meanwhile those affected by sodicity decrease have been spatially reduced by 33.6 % of the total area. An area represented by 32.6 % of the total area has been

  1. Age and origin of the Gezira alluvial fan between the Blue and White Nile rivers

    NASA Astrophysics Data System (ADS)

    Williams, martin

    2014-05-01

    The Gezira is a low-angle alluvial fan bounded by the Blue Nile to the east and the White Nile to the west. It is the main agricultural region of Sudan and produces high quality long-staple cotton for export. Dark cracking clays (vertisols) cover much of the Gezira and range in age from 50 kyr to Holocene. The Gezira is traversed by a series of defunct sandy channels that originate between Sennar and Wad Medani on the present-day Blue Nile. With a radius of 300 km and an area of 40,000 km2 the Gezira is a mega-fan. The younger channels range in age from early Holocene to 100 kyr, while near surface channels filled with rolled quartz and carbonate gravels have ages back to >250 kyr. Boreholes in the Gezira reveal coarse alluvial sands and gravels in now buried channels overlain by alluvial clays, forming a repetitive sequence of fining-upwards alluvial units. that probably extend back to Pliocene times. The fan is up to 180 m thick with a volume of ~1,800 km3. The sandy or gravelly bed-load channels coincide with colder drier climates and sparse vegetation in the Ethiopian headwaters of the Blue Nile and the alluvial clays denote widespread flooding during times of stronger summer monsoon. The early stages of such flood events were often accompanied by mass burial of Nile oyster (Etheria elliptica) beds, such as the 45-50 kyr floods that deposited up to 5 m of clay in the northern Gezira. A unique feature of the eastern Gezira is a former Blue Nile channel at least 80 km long running parallel to the present river and entirely filled with volcanic ash. The channel was only 3-4 m deep and 20-30 m wide. Very fine laminations and cross-beds, together with locally abundant phytoliths and sponge spicules, suggest slow-moving water, with flow dispersed across many distributary channels. The ash geochemistry is similar to that in the lower part of the Kibish Formation in the lower Omo valley of southern Ethiopia and points to a minimum age of 100 kyr and a maximum age of

  2. Assessing and managing water scarcity within the Nile River Transboundary Basin

    NASA Astrophysics Data System (ADS)

    Butts, M. B.; Wendi, D.; Jessen, O. Z.; Riegels, N. D.

    2012-04-01

    The Nile Basin is the main source of water in the North Eastern Region of Africa and is perhaps one of the most critical river basins in Africa as the riparian countries constitute 40% of the population on the continent but only 10% of the area. This resource is under considerable stress with rising levels of water scarcity, high population growth, watershed degradation, and loss of environmental services. The potential impacts of climate change may significantly exacerbate this situation as the water resources in the Nile Basin are critically sensitive to climate change (Conway, Hanson, Doherty, & Persechino, 2007). The motivation for this study is an assessment of climate change impacts and adaptation potential for floods and droughts within the UNEP project "Adapting to climate change induced water stress in the Nile River Basin", supported by SIDA. This project is being carried out as collaboration between DHI, the UK Met Office, and the Nile Basin Initiative (NBI). The Nile Basin exhibits highly diverse climatological and hydrological characteristics. Thus climate change impacts and adaptive capacity must be addressed at both regional and sub-basin scales. While the main focus of the project is the regional scale, sub-basin scale modelling is required to reflect variability within the basin. One of the major challenges in addressing this variability is the scarcity of data. This paper presents an initial screening modelling study of the water balance of the Nile Basin along with estimates of expected future impacts of climate change on the water balance. This initial study is focussed on the Ethiopian Highlands and the Lake Victoria regions, where the impact of climate change on rainfall is important. A robust sub-basin based monthly water balance model is developed and applied to selected sub-basins. The models were developed and calibrated using publicly available data. One of the major challenges in addressing this variability within the basin is the

  3. Anatomy of a river drainage reversal in the Neogene Kivu Nile Rift

    NASA Astrophysics Data System (ADS)

    Holzförster, F.; Schmidt, U.

    2007-07-01

    The Neogene geological history of East Africa is characterised by the doming and extension in the course of development of the East African Rift System with its eastern and western branches. In the centre of the Western Rift Rise Rwanda is situated on Proterozoic basement rocks exposed in the strongly uplifted eastern rift shoulder of the Kivu-Nile Rift segment, where clastic sedimentation is largely restricted to the rift axis itself. A small, volcanically and tectonically controlled depository in northwestern Rwanda preserved the only Neogene sediments known from the extremely uplifted rift shoulder. Those (?)Pliocene to Pleistocene/Holocene fluvio-lacustrine muds and sands of the Palaeo-Nyabarongo River record the influence of Virunga volcanism on the major drainage reversal that affected East Africa in the Plio-/Pleistocene, when the originally rift-parallel upper Nile drainage system became diverted to the East in order to enter the Nile system via Lake Victoria. Sedimentary facies development, heavy mineral distributions and palaeobiological controls, including hominid artefacts, signal a short time interval of <300-350 ka to complete this major event for the sediment supply system of the Kivu-Nile Rift segment.

  4. Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom E.; Bayumy, Dina A.

    2016-02-01

    Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

  5. Use of the subsurface thermal regime as a groundwater-flow tracer in the semi-arid western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Salem, Zenhom E.; Bayumy, Dina A.

    2016-06-01

    Temperature profiles from 25 boreholes were used to understand the spatial and vertical groundwater flow systems in the Western Nile Delta region of Egypt, as a case study of a semi-arid region. The study area is located between the Nile River and Wadi El Natrun. The recharge areas, which are located in the northeastern and the northwestern parts of the study area, have low subsurface temperatures. The discharge areas, which are located in the western (Wadi El Natrun) and southern (Moghra aquifer) parts of the study area, have higher subsurface temperatures. In the deeper zones, the effects of faults and the recharge area in the northeastern direction disappear at 80 m below sea level. For that depth, one main recharge and one main discharge area are recognized. The recharge area is located to the north in the Quaternary aquifer, and the discharge area is located to the south in the Miocene aquifer. Two-dimensional groundwater-flow and heat-transport models reveal that the sealing faults are the major factor disturbing the regional subsurface thermal regime in the study area. Besides the main recharge and discharge areas, the low permeability of the faults creates local discharge areas in its up-throw side and local recharge areas in its down-throw side. The estimated average linear groundwater velocity in the recharge area is 0.9 mm/day to the eastern direction and 14 mm/day to the northwest. The average linear groundwater discharge velocities range from 0.4 to 0.9 mm/day in the southern part.

  6. Morphology of river deltas on Titan and Earth

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2016-07-01

    The Cassini-Huygens mission is entering its final phase. The landing of Huygens on Titan and flybys performed by the Cassini probe during the last ten years revolutionized our knowledge about that moon, revealing a complex fluvio-lacustrine environment. Despite significant differences in composition, temperature and gravity, the processes of sediment transport and deposition are similar on Earth and Titan. We performed numerical simulations of development of river deltas in Titanian and terrestrial conditions, under various discharges and with different dominant grain sizes. We found that evolution of deltaic deposits is more rapid on Titan due to higher efficiency of transport, but the flat, lobate river deltas may form in narrower range of parameters than on Earth. Our results help in understanding the evolution of sedimentary deposits and may partially explain the paucity of river deltas in Titan's lakes.

  7. Quantitative metrics that describe river deltas and their channel networks

    NASA Astrophysics Data System (ADS)

    Edmonds, Douglas A.; Paola, Chris; Hoyal, David C. J. D.; Sheets, Ben A.

    2011-12-01

    Densely populated river deltas are losing land at an alarming rate and to successfully restore these environments we must understand the details of their morphology. Toward this end we present a set of five metrics that describe delta morphology: (1) the fractal dimension, (2) the distribution of island sizes, (3) the nearest-edge distance, (4) a synthetic distribution of sediment fluxes at the shoreline, and (5) the nourishment area. The nearest-edge distance is the shortest distance to channelized or unchannelized water from a given location on the delta and is analogous to the inverse of drainage density in tributary networks. The nourishment area is the downstream delta area supplied by the sediment coming through a given channel cross section and is analogous to catchment area in tributary networks. As a first step, we apply these metrics to four relatively simple, fluvially dominated delta networks. For all these deltas, the average nearest-edge distances are remarkably constant moving down delta suggesting that the network organizes itself to maintain a consistent distance to the nearest channel. Nourishment area distributions can be predicted from a river mouth bar model of delta growth, and also scale with the width of the channel and with the length of the longest channel, analogous to Hack's law for drainage basins. The four delta channel networks are fractal, but power laws and scale invariance appear to be less pervasive than in tributary networks. Thus, deltas may occupy an advantageous middle ground between complete similarity and complete dissimilarity, where morphologic differences indicate different behavior.

  8. Hydro-economic Risk Assessment in the Eastern Nile River Basin

    NASA Astrophysics Data System (ADS)

    Arjoon, D.; Tilmant, A.; Mohamed, Y.

    2013-12-01

    In 2011, the Ethiopian government announced plans for the construction of the Grand Renaissance Dam (GRD) on the Blue Nile, just east of its border with Sudan, at a cost of almost 5 billion dollars. The project is expected to generate over 15 TWh of energy and will include a reservoir of more than 60 km3 capacity, which roughly corresponds to the average annual flow of the Blue Nile. This project is part of a larger scheme, by the government, to expand its hydroelectric power capacity, however, the scheme faces strong opposition from downstream Egypt and Sudan. Egypt and Sudan are highly dependent on flows that originate in Ethiopia (it has been estimated that 86% of Nile flow originates in the Ethiopian highlands). The Ethiopian government argues that the dam would supply electricity for Ethiopians as well as generate surplus energy for export to neighboring countries. The Ethiopians also argue that the huge reservoir would generate positive externalities downstream by reducing floods and providing more constant and predictable lows. This study attempts to provide an independent analysis of the hydrologic and economic risks faced by downstream countries when GRD will be online. To achieve this, an integrated, stochastic hydro-economic model of the entire Eastern Nile basin is used to analyze various development and management scenarios. The results indicate that if countries agree to co- operative management of the Eastern Nile River basin, GRD would indeed significantly increase basin-wide benefits, especially in Ethiopia and in Sudan. An alternative management scenario, whereby GRD would be operated by Sudan and Egypt, does not yield significant economic gains in these countries. However, massive unilateral irrigation developments in Ethiopia will be detrimental for all countries, including Ethiopia itself, due to the huge opportunity costs involved.

  9. Do river deltas in east India retreat? A case of the Krishna Delta

    NASA Astrophysics Data System (ADS)

    Gamage, Nilantha; Smakhtin, Vladimir

    2009-02-01

    The construction of multiple dams and barrages in many Indian River basins over the last few decades significantly reduced river flow to the sea and affected the sediment regime. More reservoir construction is planned through the proposed National River Linking Project (NRLP), which will transfer massive amounts of water from the North to the South of India. The impacts of these developments on fertile and ecologically sensitive deltaic environments are poorly understood and quantified at present. In this paper an attempt is made to identify, locate and quantify coastal erosion and deposition processes in one of the major river basins in India—the Krishna—using a time series of Landsat images for 1977, 1990 and 2001 with a spatial resolution ranging from 57.0 m to 28.5 m. The dynamics of these processes are analyzed together with the time series of river flow, sediment discharge and sediment storage in the basin. Comparisons are made with similar processes identified and quantified earlier in the delta of a neighboring similarly large river basin—the Godavari. The results suggest that coastal erosion in the Krishna Delta progressed over the last 25 years at the average rate of 77.6 ha yr - 1 , dominating the entire delta coastline and exceeding the deposition rate threefold. The retreat of the Krishna Delta may be explained primarily by the reduced river inflow to the delta (which is three times less at present than 50 years ago) and the associated reduction of sediment load. Both are invariably related to upstream reservoir storage development.

  10. Sequence Stratigraphic Analysis for Delineating the Sedimentation Characteristic and Modeling of Nidoco Area, Off-Shore Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El Deen, Ahmed; Abu El-Ata, Ahmed; El-Gendy, Nader

    2014-05-01

    The Egyptian Nile Delta has recognized over the different human civilizations, as the source of life/ basket of wheat. In the recent time, the Nile Delta revealed another hidden treasure that hidden below the Mediterranean Sea within its sediments. This treasure reflects a number of giant gas reservoirs that require only the suitable technology and the assured ideas to commence injecting gas into the industrial veins of the growing Egyptian economy. The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore of the Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied for a selected area, using a variety of subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as biostratigraphic data. The well data comprise well markers, and electric logs (e.g. gamma ray, density, neutron and sonic logs), where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Different methods and techniques were applied by using different softwares such as Petrel and Interactive petrophysical software. Four missing times were identified intra-Pleistocene, Late Pliocene, Late Pliocene-Early Pliocene and Messinian. It has concluded that, the depositional environments ranged from shallow marine to middle nerritic and may reach upper bathyal toward the northern part of the study area. The top of Abu Madi Formation dated with the calcareous nannofossils zone NN12a, while the base dated with NN11c, and its age varied from 5.2 Ma to 5.7 Ma. The maximum flooding surface is dated with the calcareous nannofossils zone NN13 and the planktonic foraminiferal zone SN18 at 5 Ma (the acme presence of the Sphaeroidinellopsis sp.). From the utility of wireline logs for

  11. The Role of Sequence Stratigraphic Analysis in the Messinian crisis at Baltim Area, Off-Shore Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M.; Abu El-Ata, A. S.; El-Gendy, N. H.

    2013-12-01

    The Egyptian Nile Delta has recognized over the different human civilizations, as the source of life/ basket of wheat. In the recent time, the Nile Delta revealed another hidden treasure that hidden below the Mediterranean Sea within its sediments. This treasure reflects a number of giant gas reservoirs that require only the suitable technology and the assured ideas to commence injecting gas into the industrial veins of the growing Egyptian economy. The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore of the Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied for a selected area, using a variety of subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as biostratigraphic data. The well data comprise well markers, and electric logs (e.g. gamma ray, density, neutron and sonic logs), where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Different methods and techniques were applied by using different softwares such as Petrel and Interactive petrophysical software. Four missing times were identified intra-Pleistocene, Late Pliocene, Late Pliocene-Early Pliocene and Messinian. It has concluded that, the depositional environments ranged from shallow marine to middle nerritic and may reach upper bathyal toward the northern part of the study area. The top of Abu Madi Formation dated with the calcareous nannofossils zone NN12a, while the base dated with NN11c, and its age varied from 5.2 Ma to 5.7 Ma. The maximum flooding surface is dated with the calcareous nannofossils zone NN13 and the planktonic foraminiferal zone SN18 at 5 Ma (the acme presence of the Sphaeroidinellopsis sp.). From the utility of wireline logs for

  12. Underground and Previously Undiscovered Rivers in the Mississippi Delta

    NASA Astrophysics Data System (ADS)

    Kolker, A.; Breaux, A.; Coleman, D.; Inniss, L. V.; Telfeyan, K.; Kim, J.; Schneider, A.; Allison, M. A.; Cable, J. E.; Johannesson, K. H.

    2013-12-01

    In this study we show that there are large, and previously undiscovered, groundwater pathways by which water from the Mississippi River is transported to the wetlands and estuaries of the Mississippi River Delta. Results from multiple methodologies suggest that the total flux of groundwater to the coastal zone in the Mississippi River Delta averages 1,000 m3 s-1, and can reach 5,000 m3 s-1 at high flow. We suggest that flow preferentially occurs through paleo-crevasse channels, relict bayous, and other buried deposits of permeable and coarse grained material. These conduits were formed during the present and previous stages of the delta cycle, which occurred in historical (102 y) and late Holocene(103 y) times, respectively. Flow is driven by the hydrological head difference between the river and the estuary, which is seasonally variable in magnitudeand can reach 5-8 m during peak river floods. This talk will present data from hydrological budgets that show a missing fraction in the Mississippi River water budget, and a missing source of fresh water to a large estuary. We will show that water levels in wells in New Orleans fluctuate with the stage of the Mississippi River. Data of Rn concentration indicate advective submarine groundwater flow, whereas Ba concentrations suggest geochemical leachates are entering the estuary. Furthermore, seismic data indicate the prevalence of paleochannels and other buried features that could carry flow. Given the importance of deltas to global geochemical budgets, we suggest that these results may be generalizable: submarine groundwater discharge in deltas may prove to be an important but understudied pathway by which dissolved materials are transported from the continents to the ocean.

  13. Sandy River Delta Habitat Restoration Project, Annual Report 2001.

    SciTech Connect

    Kelly, Virginia; Dobson, Robin L.

    2002-11-01

    The Sandy River Delta is located at the confluence of the Sandy and Columbia Rivers, just east of Troutdale, Oregon. It comprises about 1,400 land acres north of Interstate 84, managed by the USDA Forest Service, and associated river banks managed by the Oregon Division of State Lands. Three islands, Gary, Flag and Catham, managed by Metro Greenspaces and the State of Oregon lie to the east, the Columbia River lies to the north and east, and the urbanized Portland metropolitan area lies to the west across the Sandy River. Sandy River Delta was historically a wooded, riparian wetland with components of ponds, sloughs, bottomland woodland, oak woodland, prairie, and low and high elevation floodplain. It has been greatly altered by past agricultural practices and the Columbia River hydropower system. Restoration of historic landscape components is a primary goal for this land. The Forest Service is currently focusing on restoration of riparian forest and wetlands. Restoration of open upland areas (meadow/prairie) would follow substantial completion of the riparian and wetland restoration. The Sandy River Delta is a former pasture infested with reed canary grass, blackberry and thistle. The limited over story is native riparian species such as cottonwood and ash. The shrub and herbaceous layers are almost entirely non-native, invasive species. Native species have a difficult time naturally regenerating in the thick, competing reed canary grass, Himalayan blackberry and thistle. A system of drainage ditches installed by past owners drains water from historic wetlands. The original channel of the Sandy River was diked in the 1930's, and the river diverted into the ''Little Sandy River''. The original Sandy River channel has subsequently filled in and largely become a slough. The FS acquired approximately 1,400 acres Sandy River Delta (SRD) in 1991 from Reynolds Aluminum (via the Trust for Public Lands). The Delta had been grazed for many years but shortly after FS

  14. Revisiting the Tectono-Stratigraphic Evolution of the Eastern Mediterranean Offshore Levant and Nile Delta

    NASA Astrophysics Data System (ADS)

    Al-Balushi, Abdulaziz; Fraser, Alastair; A-L Jackson, Christopher; Bell, Rebecca; Kusznir, Nick

    2015-04-01

    Although the Eastern Mediterranean has become the focus for increased oil and gas exploration following significant discoveries in the pre-Messinian succession offshore Egypt and the Levant Margin, understanding its tectono-stratigraphic evolution is the first and most important step towards building reliable geological models that underpin petroleum play assessment. The Eastern Mediterranean Basin has evolved through a complex and poorly understood tectonic history. Disagreement within the scientific community relates to the age of rifting, the orientation of the crustal stretching direction and the type of crust underlying the Levant Basin and, by proxy, the magnitude of stretching. We present, for the first time, an interpretation of deep (i.e. 12-20 sec TWT) regional 2D seismic lines covering the entire Levant Basin. We have interpreted nine seismic surfaces (from top basement to seabed) from which depth and isopach maps for key surfaces and intervals have been generated. To constrain the rifting age, we have used a reverse subsidence modelling technique and restored the Middle Jurassic and the Late Cretaceous basin geometry along a NW-trending seismic profile from the Levant Basin. The restorations, for a specific rifting age, that meet geological constraints on water depth that are obtained from well data and seismic stratigraphy, are considered as viable solutions. The type of crust that underlies the Levant Margin has been inferred from the magnitude of the lithospheric stretching derived from gravity inversion and crustal thinning. Our interpretation of top basement and the Middle Jurassic depth-structure maps suggests that rifting in the Levant Basin led to the development of two main depocentres; in the northern Levant and the southern Levant, in the vicinity of the Nile Delta. These depocentres are separated by a series of NE-trending, fault- bound structural highs (i.e. Jonah and Leviathan). The orientation of the faults suggests they formed in

  15. HUMAN INTESTINAL PARASITIC INFECTIONS AND ENVIRONMENTAL HEALTH FACTORS IN RURAL EGYPTIAN COMMUNITIES. A REPORT OF THE U.S.-EGYPTIAN RIVER NILE AND LAKE NASSER RESEARCH PROJECT

    EPA Science Inventory

    A survey of common intestinal parasites was completed in three areas of the Egyptian Nile Valley: The Nile Delta, Upper Middle Egypt and Upper Egypt. The relocated Nubian population was also included. The total sampling included 15,664 persons in 41 villages. More than 95% attend...

  16. Distribution pattern of 90Sr and 137Cs in the Nile delta and the adjacent regions after Chernobyl accident.

    PubMed

    Shawky, S; el-Tahawy, M

    1999-02-01

    Strontium and cesium contents in surface soil samples across the Nile Delta and the north coast of Egypt after the Chernobyl accident have been investigated. The concentration of 137Cs and 90Sr was determined using a high resolution gamma spectrometer based on hyperpure germanium detector (HPGe) and a liquid scintillation counter (LSC) respectively. 90Sr was determined through its decay product 90Y using Cerenkov counting. The determination of 90Sr was based on tributylphosphate (TBP) extraction of yttrium from nitric acid extract of ashed samples. The radioactivity of soils ranged between 18.5 and 2175 Bq/m2 with a mean of 652 Bq/m2 and 234 and 3129 Bq/m2 with a mean of 760 Bq/m2 for 137Cs and 90Sr respectively. An estimated absorbed dose equivalent due to the measured deposit of 137Cs was found to be 0.062 murem/h. PMID:10081145

  17. Ecosystem Services Assessment of the Nemunas River Delta

    EPA Science Inventory

    The concept of ecosystem services recognizes the services, and benefits, provided to people by ecosystems. The Nemunas River Delta, in Lithuania, is a valued area that can provide a range of services. We conducted a meta-analysis of existing studies done on the region to identify...

  18. Metal binding by humic acids isolated from water hyacinth plants (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae) in the Nile Delta, Egypt.

    PubMed

    Ghabbour, Elham A; Davies, Geoffrey; Lam, Yam-Yuen; Vozzella, Marcy E

    2004-10-01

    Humic acids (HAs) are animal and plant decay products that confer water retention, metal and organic solute binding functions and texture/workability in soils. HAs assist plant nutrition with minimal run-off pollution. Recent isolation of HAs from several live plants prompted us to investigate the HA content of the water hyacinth (Eichhornia crassipes [Mart.] Solm-Laubach: Pontedericeae), a delicately flowered plant from Amazonian South America that has invaded temperate lakes, rivers and waterways with devastating economic effects. Hyacinth thrives in nutrient-rich and polluted waters. It has a high affinity for metals and is used for phytoremediation. In this work, HAs isolated from the leaves, stems and roots of live water hyacinth plants from the Nile Delta, Egypt were identified by chemical and spectral analysis and by comparison with authentic soil and plant derived HAs. Similar carbohydrate and amino acid distributions and tight metal binding capacities of the HAs and their respective plant components suggest that the presence of HAs in plants is related to their metal binding properties. PMID:15261408

  19. Flow patterns and morphology of a prograding river delta

    NASA Astrophysics Data System (ADS)

    Shaw, John B.; Mohrig, David; Wagner, R. Wayne

    2016-02-01

    The transition of flow between laterally confined channels and the unchannelized delta front controls the morphodynamic evolution of river deltas but has rarely been measured at the field scale. We quantify flow patterns and bathymetry that define the evolution of the subaqueous delta front on the Wax Lake Delta, a rapidly prograding delta in coastal Louisiana. A significant portion of flow (˜59%) departs the channel network over lateral channel margins as opposed to the downstream channel tips. Bathymetric surveys and remotely sensed estimates of flow direction allow spatial changes in flow velocity to be quantified and patterns of erosion and deposition to be estimated. Shallowing along channel margins produces spatial acceleration and erosion. Lateral spreading, deceleration, and deposition occur within three to eight channel widths outside of the channel margins. In interdistributary bays, the shape of each flow path is constrained by "nourishment boundaries" that separate the outflows from neighboring channels. Deposit elevation decreases with a basinward slope of 2.4 × 10-4 with distance from a channel margin along any flow path, regardless of the channel or location that flow departed the network. Bathymetric depressions called "interdistributary troughs" form along nourishment boundaries where flow paths are the longest and deposit elevation is correspondingly low. We conclude that the deposit morphology exerts a strong control on bathymetric evolution and that interaction between neighboring channels and even neighboring deltas can influence delta front morphology.

  20. Pen Branch Delta and Savannah River Swamp Hydraulic Model

    SciTech Connect

    Chen, K.F.

    1999-05-13

    The proposed Savannah River Site (SRS) Wetlands Restoration Project area is located in Barnwell County, South Carolina on the southwestern boundary of the SRS Reservation. The swamp covers about 40.5 km2 and is bounded to the west and south by the Savannah River and to the north and east by low bluffs at the edge of the Savannah River floodplain. Water levels within the swamp are determined by stage along the Savannah River, local drainage, groundwater seepage, and inflows from four tributaries, Beaver Dam Creek, Fourmile Branch, Pen Branch, and Steel Creek. Historic discharges of heated process water into these tributaries scoured the streambed, created deltas in the adjacent wetland, and killed native vegetation in the vicinity of the delta deposits. Future releases from these tributaries will be substantially smaller and closer to ambient temperatures. One component of the proposed restoration project will be to reestablish indigenous wetland vegetation on the Pen Branch delta that covers about 1.0 km2. Long-term predictions of water levels within the swamp are required to determine the characteristics of suitable plants. The objective of the study was to predict water levels at various locations within the proposed SRS Wetlands Restoration Project area for a range of Savannah River flows and regulated releases from Pen Branch. TABS-MD, a United States Army Corps of Engineer developed two-dimensional finite element open channel hydraulic computer code, was used to model the SRS swamp area for various flow conditions.

  1. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Haas, Jan; Ban, Yifang

    2014-08-01

    This study investigates land cover changes, magnitude and speed of urbanization and evaluates possible impacts on the environment by the concepts of landscape metrics and ecosystem services in China's three largest and most important urban agglomerations: Jing-Jin-Ji, the Yangtze River Delta and the Pearl River Delta. Based on the classifications of six Landsat TM and HJ-1A/B remotely sensed space-borne optical satellite image mosaics with a superior random forest decision tree ensemble classifier, a total increase in urban land of about 28,000 km2 could be detected alongside a simultaneous decrease in natural land cover classes and cropland. Two urbanization indices describing both speed and magnitude of urbanization were derived and ecosystem services were calculated with a valuation scheme adapted to the Chinese market based on the classification results from 1990 and 2010 for the predominant land cover classes affected by urbanization: forest, cropland, wetlands, water and aquaculture. The speed and relative urban growth in Jing-Jin-Ji was highest, followed by the Yangtze River Delta and Pearl River Delta, resulting in a continuously fragmented landscape and substantial decreases in ecosystem service values of approximately 18.5 billion CNY with coastal wetlands and agriculture being the largest contributors. The results indicate both similarities and differences in urban-regional development trends implicating adverse effects on the natural and rural landscape, not only in the rural-urban fringe, but also in the cities' important hinterlands as a result of rapid urbanization in China.

  2. A Comparative Study Environmental and Radiological Causes Of Cancer In River Nile State, Sudan

    NASA Astrophysics Data System (ADS)

    Hamid, Eyad; Khair, Hatim

    The causes of cancer in River Nile state are differ between environmental and radiological, this paper tried to make comparison between the two causes, to determine the real cause behind the large rising of cancer cases in this state, considering the daily habits for the patients and the possible contamination in the natural resources around them. The noticeable thing that most of cancer cases are might be due to the high concentration of nitrate pollutant detected in natural resources such as drinking water; also by looking to the radioactive elements we see there's high concentration of some radioactive elements specially the K-40 which found in Portulaca Oleracea.

  3. Interplay between river discharge and tides in a delta distributary

    NASA Astrophysics Data System (ADS)

    Leonardi, Nicoletta; Kolker, Alexander S.; Fagherazzi, Sergio

    2015-06-01

    The hydrodynamics of distributary channels has tremendous impact on nutrient and dissolved oxygen circulation, transport of sediments, and delta formation and evolution; yet many processes acting at the river-marine interface of a delta are poorly understood. This paper investigates the combined effect of river hydrograph and micro-tides on the hydrodynamics of a delta distributary. As the ratio between river flow to tidal flow increases, tidal flood duration at the distributary mouth decreases, up to the point when flow reversal is absent. Field measurements in a distributary of the Apalachicola Delta, Florida, USA, reveal that, once the flow becomes unidirectional, high-discharge events magnify tidal velocity amplitudes. On the contrary, while the flow is bidirectional, increasing fluvial discharge decreases tidal velocity amplitudes down to a minimum value, reached at the limit between bidirectional and unidirectional flow. Due to the different response of the system to tides, the transition from a bidirectional to a unidirectional flow triggers a change in phase lag between high water and high water slack. In the presence of high riverine flow, tidal dynamics also promote seaward directed Eulerian residual currents. During discharge peaks, these residual currents almost double mean velocity values. Our results show that, even in micro-tidal environments, tides strongly impact distributary hydrodynamics during both high and low fluvial discharge regimes.

  4. Coastal eutrophication near the Mississippi river delta

    NASA Astrophysics Data System (ADS)

    Turner, R. Eugene; Rabalais, Nancy N.

    1994-04-01

    CHANGES in delivery of river-borne nutrients such as dissolved phosphate, nitrate and silicate, owing to land-use changes and anthropogenic emissions, are known to result in eutrophication1- enhanced phytoplankton blooms-and more severe hypoxic events2-1 in many enclosed bays and seas. Although similar ecological effects might be expected on continental shelves, the occurrence of such eutrophication has remained unresolved5. Here we present evidence of eutrophication of the continental shelf near the outflow of the Mississippi river, obtained by quantifying biologically bound silica (BSi) in diatom remnants within dated sediment cores. BSi accumulation rates are greatest in water depths of 20 to 50 m within 100 km of the river mouth, and have increased by as much as 100% this century. The increases were substantial by 1980, by which time riverine nitrogen loading had doubled relative to the beginning of the century, even though the silica loading had declined by 50% over the same period. Thus changes in river-borne nutrient loadings can modify coastal food webs and affect the amount and distribution of oxygen in bottom waters on the scale of continental shelves.

  5. Ecological Risk Assessment of Metal Pollution along Greater Cairo Sector of the River Nile, Egypt, Using Nile Tilapia, Oreochromis niloticus, as Bioindicator

    PubMed Central

    Omar, Wael A.; Mikhail, Wafai Z. A.; Abdo, Hanaa M.; Abou El Defan, Tarek A.; Poraas, Mamdouh M.

    2015-01-01

    The present work aims to evaluate seasonal metal pollution along Greater Cairo sector of the River Nile, Egypt, using wild Nile tilapia, Oreochromis niloticus, as bioindicator and to conduct a risk assessment for human consumers. Greater Cairo is the largest populated area along the whole course of River Nile with a wide range of anthropogenic activities. Effects of metal pollution on fish body indices were studied using condition factor (CF) and scaled mass index (SMI). Metal pollution index (MPI) showed that the total metal load in fish organs followed the follwoing order: kidney > liver > gill > muscle which gives a better idea about the target organs for metal accumulation. Metal concentrations in fish muscle (edible tissue) showed the following arrangement: Fe > Zn > Cu > Mn > Pb > Cd. Metal's bioaccumulation factor (BAF) in fish muscle showed the following arrangement: Zn > Cu > Fe > Mn > Cd and Pb. The hazard index (HI) as an indicator of human health risks associated with fish consumption showed that adverse health effects are not expected to occur in most cases. However, the metals' cumulative risk effects gave an alarming sign specifically at high fish consumption rates. PMID:26617637

  6. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied

  7. Interdisciplinary assessment of sea-level rise and climate change impacts on the lower Nile delta, Egypt.

    PubMed

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Baumert, Niklas; Kloos, Julia; Renaud, Fabrice G; La Jeunesse, Isabelle; Mabrouk, Badr; Savić, Dragan A; Kapelan, Zoran; Ludwig, Ralf; Fischer, Georg; Roson, Roberto; Zografos, Christos

    2015-01-15

    CLImate-induced changes on WAter and SECurity (CLIWASEC) was a cluster of three complementary EC-FP7 projects assessing climate-change impacts throughout the Mediterranean on: hydrological cycles (CLIMB - CLimate-Induced changes on the hydrology of Mediterranean Basins); water security (WASSERMed - Water Availability and Security in Southern EuRope and the Mediterranean) and human security connected with possible hydro-climatic conflicts (CLICO - CLImate change hydro-COnflicts and human security). The Nile delta case study was common between the projects. CLIWASEC created an integrated forum for modelling and monitoring to understand potential impacts across sectors. This paper summarises key results from an integrated assessment of potential challenges to water-related security issues, focusing on expected sea-level rise impacts by the middle of the century. We use this common focus to illustrate the added value of project clustering. CLIWASEC pursued multidisciplinary research by adopting a single research objective: sea-level rise related water security threats, resulting in a more holistic view of problems and potential solutions. In fragmenting research, policy-makers can fail to understand how multiple issues can materialize from one driver. By combining efforts, an integrated assessment of water security threats in the lower Nile is formulated, offering policy-makers a clearer picture of inter-related issues to society and environment. The main issues identified by each project (land subsidence, saline intrusion - CLIMB; water supply overexploitation, land loss - WASSERMed; employment and housing security - CLICO), are in fact related. Water overexploitation is exacerbating land subsidence and saline intrusion, impacting on employment and placing additional pressure on remaining agricultural land and the underdeveloped housing market. All these have wider implications for regional development. This richer understanding could be critical in making better

  8. Tide and river influences on distributary channels of the Mekong River delta

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Nguyen, V. L.; Ta, T. K. O.; Tamura, T.; Kanai, Y.; Nakashima, R.

    2015-12-01

    The Mekong River delta, one of the world's largest deltas, has extended from Phnom Penh in Cambodia (apex) to the coast from the Saigon River mouth to Cape Camau in Vietnam with a triangular-shape area of more than 60,000 km2. The delta has prograded more than 200 km over at least the last 6-7 ka. The river-mouth area of the delta is meso-tidal with the mean tidal range of 2.5 ± 0.1 m and the maximum tidal range is 3.2-3.8 m. The mean wave height is 0.9 m. Its water discharge is 470 km3/y and its sediment discharge is 160 million t/y, or tenth and ninth largest in the world, respectively. The water discharge varies by season because most of the drainage area is under a monsoonal tropical regime. The flow at Phnom Penh, Cambodia, reaches a maximum in October (typically 39,000 m3/s) and a minimum in May (about 1700 m3/s). Tidal water-level changes are observed in Cambodia, more than 200 km upstream from the river mouth. To understand the combined influenced of river and tide on river bottom sediments, we have collected ~210 surface samples from river bottoms of the whole Mekong River delta in Vietnam, covering five distributaries during dry season from January to May 2015. Sediment characteristics show clearly tide- and river-influenced areas, which are closely linked with river morphology.

  9. Mineralogy and source rock evaluation of the marine Oligo-Miocene sediments in some wells in the Nile Delta and North Sinai, Egypt

    NASA Astrophysics Data System (ADS)

    El sheikh, Hassan; Faris, Mahmoud; Shaker, Fatma; Kumral, Mustafa

    2016-06-01

    This paper aims to study the mineralogical composition and determine the petroleum potential of source rocks of the Oligocene-Miocene sequence in the Nile Delta and North Sinai districts. The studied interval in the five wells can be divided into five rock units arranged from the top to base; Qawasim, Sidi Salem, Kareem, Rudeis, and Qantara formations. The bulk rock mineralogy of the samples was investigated using X-Ray Diffraction technique (XRD). The results showed that the sediments of the Nile Delta area are characterized by the abundance of quartz and kaolinite with subordinate amounts of feldspars, calcite, gypsum, dolomite, and muscovite. On the other hand, the data of the bulk rock analysis at the North Sinai wells showed that kaolinite, quartz, feldspar and calcite are the main constituents associated with minor amounts of dolomite, gypsum, mica, zeolite, and ankerite. Based on the organic geochemical investigations (TOC and Rock-Eval pyrolysis analyses), all studied formations in both areas are thermally immature but in the Nile delta area, Qawasim, Sidi Salem and Qantara formations (El-Temsah-2 Well) are organically-rich and have a good petroleum potential (kerogen Type II-oil-prone), while Rudeis Formation is a poor petroleum potential source rock (kerogen Type III-gas-prone). In the North Sinai area, Qantara Formation has a poor petroleum potential (kerogen Type III-gas-prone) and Sidi Salem Formation (Bardawil-1 Well) is a good petroleum potential source rock (kerogen Type II-oil-prone).

  10. Asynchronous changes in vegetation, runoff and erosion in the nile river watershed during the holocene.

    PubMed

    Blanchet, Cécile L; Frank, Martin; Schouten, Stefan

    2014-01-01

    The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African hunter-gatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and ∼6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations. PMID:25551633

  11. Asynchronous Changes in Vegetation, Runoff and Erosion in the Nile River Watershed during the Holocene

    PubMed Central

    Blanchet, Cécile L.; Frank, Martin; Schouten, Stefan

    2014-01-01

    The termination of the African Humid Period in northeastern Africa during the early Holocene was marked by the southward migration of the rain belt and the disappearance of the Green Sahara. This interval of drastic environmental changes was also marked by the initiation of food production by North African hunter-gatherer populations and thus provides critical information on human-environment relationships. However, existing records of regional climatic and environmental changes exhibit large differences in timing and modes of the wet/dry transition at the end of the African Humid Period. Here we present independent records of changes in river runoff, vegetation and erosion in the Nile River watershed during the Holocene obtained from a unique sedimentary sequence on the Nile River fan using organic and inorganic proxy data. This high-resolution reconstruction allows to examine the phase relationship between the changes of these three parameters and provides a detailed picture of the environmental conditions during the Paleolithic/Neolithic transition. The data show that river runoff decreased gradually during the wet/arid transition at the end of the AHP whereas rapid shifts of vegetation and erosion occurred earlier between 8.7 and ∼6 ka BP. These asynchronous changes are compared to other regional records and provide new insights into the threshold responses of the environment to climatic changes. Our record demonstrates that the degradation of the environment in northeastern Africa was more abrupt and occurred earlier than previously thought and may have accelerated the process of domestication in order to secure sustainable food resources for the Neolithic African populations. PMID:25551633

  12. Volga River Delta and Caspian Sea

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This true-color MODIS image from May 10, 2002, captures Russia's Volga River (running south through the center) emptying into the northern portion of the Caspian Sea. The waters of the Caspian Sea are quite murky in this image, highlighting the water quality problems plaguing the sea. The sea is inundated with sewage and industrial and agricultural waste, which is having measurable impact on human health and wildlife. According reports from the Department of Energy, in less than a decade the sturgeon catch dropped from 30,000 tons to just over 2,000 tons. National and international groups are currently joining together to find strategies of dealing with the environmental problems of the Caspian Sea. Credit: Jacques Descloitres, MODIS Land Rapid Response Team, NASA/GSFC

  13. Groundwater - surface water interactions in the Ayeyarwady river delta, Myanmar

    NASA Astrophysics Data System (ADS)

    Miyaoka, K.; Haruyama, S.; Kuzuha, Y.; Kay, T.

    2012-12-01

    Groundwater is widely used as a water resource in the Ayeyarwady River delta. But, Groundwater has some chemical problem in part of the area. To use safety groundwater for health, it is important to make clear the actual conditions of physical and chemical characteristics of groundwater in this delta. Besides, Ayeyarwady River delta has remarkable wet and dry season. Surface water - groundwater interaction is also different in each season, and it is concerned that physical and chemical characteristics of groundwater is affected by the flood and high waves through cyclone or monsoon. So, it is necessary to research a good aquifer distribution for sustainable groundwater resource supply. The purposes of this study are evaluate to seasonal change of groundwater - surface water interactions, and to investigate the more safety aquifer to reduce the healthy risk. Water samples are collected at 49 measurement points of river and groundwater, and are analyzed dissolved major ions and oxygen and hydro-stable isotope compositions. There are some groundwater flow systems and these water qualities are different in each depth. These showed that physical and chemical characteristics of groundwater are closely related to climatological, geomorphogical, geological and land use conditions. At the upper Alluvium, groundwater quality changes to lower concentration in wet season, so Ayeyarwady River water is main recharge water at this layer in the wet season. Besides, in the dry season, water quality is high concentration by artificial activities. Shallower groundwater is affected by land surface conditions such as the river water and land use in this layer. At lower Alluvium, Arakan and Pegu mountains are main recharge area of good water quality aquifers. Oxygen18 value showed a little affected by river water infiltration in the wet season, but keep stable good water quality through the both seasons. In the wet season, the same groundwater exists and water quality changes through

  14. Changes in the areal extents of the Athabasca River, Birch River, and Cree Creek Deltas, 1950-2014, Peace-Athabasca Delta, Canada

    NASA Astrophysics Data System (ADS)

    Timoney, Kevin; Lee, Peter

    2016-04-01

    Deltas form where riverborne sediment accumulates at the interface of river mouths and their receiving water bodies. Their areal extent is determined by the net effect of processes that increase their extent, such as sediment accumulation, and processes that decrease their extent, such as erosion and subsidence. Through sequential mapping and construction of river discharge and sediment histories, this study examined changes in the subaerial extents of the Cree Creek and Athabasca River Deltas (both on the Athabasca River system) and the Birch River Delta in northern Canada over the period 1950-2014. The purpose of the study was to determine how, when, and why the deltas changed in areal extent. Temporal growth patterns were similar across the Athabasca and Birch River systems indicative of a climatic signal. Little or no areal growth occurred from 1950 to 1968; moderate growth occurred between 1968 and the early to mid-1980s; and rapid growth occurred between 1992 and 2012. Factors that affected delta progradation included dredging, sediment supply, isostatic drowning, delta front bathymetry, sediment capture efficiency, and storms. In relation to sediment delivered, areal growth rates were lowest in the Athabasca Delta, intermediate in the Birch Delta, and highest in the Cree Creek Delta. Annual sediment delivery is increasing in the Cree Creek Delta; there were no significant trends in annual sediment delivery in the Birch and Athabasca Deltas. There was a lag of up to several years between sediment delivery events and progradation. Periods of delta progradation were associated with low water levels of the receiving basins. Predicted climate-change driven declines in river discharge and lake levels may accelerate delta progradation in the region. In the changing ecosystems of northeastern Alberta, inadequate monitoring of vegetation, landforms, and sediment regimes hampers the elucidation of the nature, rate, and causality of ecosystem changes.

  15. Fluvial geoarchaeology in Avaris, the Hyksos capital in the Eastern Nile Delta (2nd Mill. B.C.)

    NASA Astrophysics Data System (ADS)

    Schmitt, Laurent; Goiran, Jean-Philippe; Tronchère, Hervé; Forstner-Muller, Irene

    2014-05-01

    Tell el-Dab'a, the ancient city of Avaris, is a key site for understanding the complex alluvial environment of the Nile delta in northern Egypt which is characterized by a palaeo-network of anastomosing branches. Avaris, the capital of the Hyksos kings, is located on the Pelusiac palaeo-branch, near the eastern margin of the delta. Avaris was an important harbour town from the late 12th Dynasty until the end of the Hyksos Period and then again in the Ramesside Period. For the first time, OSL, radiocarbon and archaeological datings have been combined on the fluvial archives. This database helps us to understand better the chrono-stratigraphy and the evolution of the palaeo-environments. Sedimentary analyses have been conducted on (i) the stratigraphy on the main harbour basin revealed by an excavation in spring 2013 (ii) the sediments that gradually silted in the pelusiac branch: coarse bedload at the bottom and sands to fine silts above. A complete bankfull cross section of the Pelusiac branch has been obtained. Thus, we get 3 important characteristics of the main branch: (1) the width, (2) the depth (3) and the palaeo-discharge has been computed. In order to get an idea of the palaeo-processes, C/M diagrams have been done thanks to the micro-granulometric data. By combining these results, a 5 millennium diachronic cartography of the evolution of the Pelusiac palaeo-branch near Avaris has been produced, providing new insights into the natural landscape evolution that may have accelerated the demise of the great city.

  16. A preliminary disease survey in the wild Nile crocodile (Crocodylus niloticus) population in the Okavango Delta, Botswana.

    PubMed

    Leslie, A J; Lovely, C J; Pittman, J M

    2011-09-01

    The objective of this study was to conduct a preliminary survey of diseases that might be present in the wild Nile crocodile population in the Okavango Delta, Botswana. Blood samples were collected from crocodiles ranging in size from 34.0 cm to 463.0 cm total length. Samples were examined for blood parasites and underwent a haematological analysis. Before release the crocodiles were examined for various clinical abnormalities. Of the 144 crocodiles examined, none were visibly sick or displayed any signs of disease. No antibodies to Mycoplasma crocodyli were detected. Hepatozoon pettiti was present in 55.3% of blood smears examined, but there was no significant difference in any of the haematological values between the infected and uninfected crocodiles, and a high prevalence of Hepatozoon infection is not uncommon in other species. Only 7.6% of the examined crocodiles were infested with leeches. Further research is required for several of the crocodilian diseases, in particular to elucidate the role of wild crocodilians as reservoirs of infection. PMID:22332299

  17. Electrical resistivity mapping of the buried stream channel of the Canopic branch in the western Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    El-Gamili, M. M.; Shaaban, F. F.; El-Morsi, O. A.

    1994-08-01

    Buried stream channels, which can often be mapped accurately by resistivity, are favoured targets for exploration. Horizontal profiling, electrical soundings, or both, are generally used. In the western Nile Delta, the electrical sounding method was applied using a Schlumberger electrode array with the maximum AB distance being 200 m. The field survey was conducted along profiles extending NE-SW, perpendicular to the expected historical Canopic buried stream channel. About 107 vertical electrical soundings (VES) were measured along eleven profiles. The (VES) field curves were interpreted using the automatic interpretation method of Zohdy and Bisdorf (1989) in which a layered model is obtained directly from a digitized sounding curve. The interpreted results were correlated with borehole data to delineate the main lithological units and to help construct geoelectrical cross-sections based on layer thicknesses and their corresponding ranges in litho-resistivity. The lithological information from borehole data, surface geology and the present layer resistivities indicate three major lithofacies: Holocene clay and silt at the top, Pleistocene sands, and then gravelly sands and gravels (El-Tahrir gravels) at the bottom. From the thickness of the riverine topmost clay-silt facies and the paleotopograph of the Pleistocene sands, the buried stream channels can be delineated. It is evident that two streams existed for the defunct Canopic branch. These defunct streams are discussed and correlated with the historical records.

  18. Shifting Sediment Sources in the Quaternary Nile

    NASA Astrophysics Data System (ADS)

    Woodward, Jamie; Macklin, Mark; Fielding, Laura; Millar, Ian; Williams, Martin

    2016-04-01

    Invited Paper The Nile basin contains the longest river channel system in the world and drains about one tenth of the African continent. A dominant characteristic of the modern Nile is the marked spatial and temporal variability in the flux of water and sediment. Because the major headwater basins of the Nile are linked to key elements of the global climate system, the sedimentary records in the basin have attracted good deal of attention from the Quaternary palaeoclimate and palaeohydrology communities. Various approaches (from heavy minerals to strontium isotopes) have been employed to examine present and past patterns of sediment yield in the basin. A good deal of work has been carried out on the long sediment records in the delta and offshore which provide high resolution archives of hydrological changes in the upstream basin as well fluctuations in the input of dust from the desert. The sediment load of the modern desert Nile (downstream of Khartoum) is dominated by sediment inputs from the Blue Nile (61 +/- 5%) and Atbara (35 +/- 4%), whilst the White Nile contribution is meagre (3 +/- 2%) (Padoan et al. 2011). Recent work has shown that these values were very different during humid phases of the Quaternary when stronger Northern Hemisphere summer insolation produced wetter conditions across North Africa. In the early Holocene, for example, the Nile floodplain in Northern Sudan shows a tributary wadi input of 40-50%. This paper will review three decades of work on the sediment delivery dynamics of the Quaternary Nile and explore their palaeoclimatic implications. Padoan, M., Garzanti, E., Harlavan, Y., Villa, I.M. (2011) Tracing Nile sediment sources by Sr and Nd isotope signatures (Uganda, Ethiopia, Sudan). Geochim. Cosmochim. Acta 75 (12), 3627-3644.

  19. Mosquitoes and West Nile virus along a river corridor from prairie to montane habitats in eastern Colorado.

    PubMed

    Barker, Christopher M; Bolling, Bethany G; Black, William C; Moore, Chester G; Eisen, Lars

    2009-12-01

    We conducted studies on mosquitoes and West Nile virus (WNV) along a riparian corridor following the South Platte River and Big Thompson River in northeastern Colorado and extending from an elevation of 1,215 m in the prairie landscape of the eastern Colorado plains to 1,840 m in low montane areas at the eastern edge of the Rocky Mountains in the central part of the state. Mosquito collection during June-September 2007 in 20 sites along this riparian corridor yielded a total of 199,833 identifiable mosquitoes of 17 species. The most commonly collected mosquitoes were, in descending order: Aedes vexans, Culex tarsalis, Ae. dorsalis, Ae. trivittatus, Ae. melanimon, Cx. pipiens, and Culiseta inornata. Species richness was higher in the plains than in foothills-montane areas, and abundances of several individual species, including the WNV vectors Cx. tarsalis and Cx. pipiens and the nuisance-biter and potential secondary WNV vector Ae. vexans, decreased dramatically from the plains (1,215-1,487 m) to foothills-montane areas (1,524-1,840 m). Ae. vexans and Cx. tarsalis had a striking pattern of uniformly high abundances between 1,200-1,450 m followed by a gradual decrease in abundance above 1,450 m to reach very low numbers above 1,550 m. Culex species were commonly infected with WNV in the plains portion of the riparian corridor in 2007, with 14 of 16 sites yielding WNV-infected Cx. tarsalis and infection rates for Cx. tarsalis females exceeding 2.0 per 1,000 individuals in ten of the sites. The Vector Index for abundance of WNV-infected Cx. tarsalis females during June-September exceeded 0.5 in six plains sites along the South Platte River but was uniformly low (0-0.1) in plains, foothills and montane sites above 1,500 m along the Big Thompson River. A population genetic analysis of Cx. tarsalis revealed that all collections from the ≈190 km riparian transect in northeastern Colorado were genetically uniform but that these collections were genetically distinct from

  20. Assessing the impacts of climate change on river basin management: A new method with application to the Nile River

    NASA Astrophysics Data System (ADS)

    Tidwell, Amy C.

    A framework is developed for the assessment of climate change impacts on water resources systems. The applied techniques include: quantifying global climate model (GCM) skill over a range of time scales; developing future climate scenarios based on GCM data that are found to skillfully represent the observed climate over an historical baseline period; and using the climate scenarios together with hydrologic and water resources models to make assessments of the potential impacts and implications of climate change on water resources systems. A statistical analysis of GCM skill in East Africa shows that temperature is well represented in the GCMs at monthly to annual time scales. Precipitation is found to be much less reliable in the models and shows skill in fewer seasons and nodes than temperature. Eight climate scenarios, stemming from three global climate models and two atmospheric emissions scenarios, project temperature increases between 2 and 5° Celsius by the year 2080. Precipitation projections vary widely across models as well as regionally. The scenarios project changes in precipitation from -38% to +42%. The climate change impact methodology is applied to the Nile River Basin. It is shown that, in spite of widely varying precipitation projections, the major sub-basins of the Nile River will experience decreases in watershed runoff under all eight climate scenarios. Detailed water resources models are employed to assess the system wide response to the climate-induced hydrologic changes. The assessments indicate that water supply deficits will emerge by 2030 and continue to grow in frequency and magnitude by 2080. Additional impacts include reservoir depletion and reduced hydropower generation. An assessment of the river system response to basin development projects, including additional water storage and wetlands water conservation, indicates that adverse climate impacts may be mitigated for 30 to 40 years. The assessments demonstrate the relevance of

  1. On the dust long range transport contribution to the dynamics of the biomass burning, and black cloud formation over the Nile Delta

    NASA Astrophysics Data System (ADS)

    El-Askary, H. M.; Prasad, A. K.; Marey, H. S.; El-Raey, M.; Asrar, G. R.; Kafatos, M.

    2012-12-01

    The Nile Delta is the lifeline of Egypt as it is the major industrial, agricultural, and economic hub of the Sahara region. The delta region is also characterized by dense human settlement around major cities such as Cairo, Alexandria, Tanta, and Mahalla. The region suffers from numerous dust storms along with local emissions or transported anthropogenic pollution and biomass burning (locally known as black cloud phenomena) in different seasons. We have used a decade of aerosol and fire data derived from MODIS (2000-2011) over Nile Delta to study the characteristics of aerosols due to the influence of dust storms, anthropogenic pollution, and biomass burning over the region. The daily MODIS derived aerosol parameters (at 10km resolution, level 2, version 5.1) have been used to validate the ground measured Microtops derived AOD at multiple channels. The major pathways of dust transport have been studied using the space based observations and NCEP meteorological data. The seasonal source and sink relationship have been identified and categorized using Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The pathways further are clustered into seasonal high and low AOD based on MODIS AOD. Vertical atmospheric profiles of major dust storms and biomass burning, using CALIPSO measurements, have been used to characterize the vertical structure of aerosols and its characteristics (spherical and non-spherical). The seasonal characteristics of aerosols such as, AOD, angstrom, fine mode fraction, size fraction, and volume distribution derived from AERONET observations will be presented. Trajectory statistics and climatology coupled with seasonal aerosol statistics provide critical information on the underlying cause and type partitioning for high aerosol loading days over Nile Delta during period 2000-2011.

  2. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Halleux, C.; Mohamed, Y.; Tilmant, A.

    2010-10-01

    The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at (1) examining the (re-)operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and (2) assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: (i) understand the effect of the hydrologic uncertainty on management decisions, (ii) determine allocation policies that naturally hedge against the hydrological risk, and (iii) assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border) in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage. Moreover, the

  3. Optimal operation of a multipurpose multireservoir system in the Eastern Nile River Basin

    NASA Astrophysics Data System (ADS)

    Goor, Q.; Halleux, C.; Mohamed, Y.; Tilmant, A.

    2010-07-01

    The upper Blue Nile River Basin in Ethiopia is a largely untapped resource despite its huge potential for hydropower generation and irrigated agriculture. Controversies exist as to whether the numerous infrastructural development projects that are on the drawing board in Ethiopia will generate positive or negative externalities downstream in Sudan and Egypt. This study attempts at 1) examining the (re-)operation of infrastructures, in particular the proposed reservoirs in Ethiopia and the High Aswan Dam and 2) assessing the economic benefits and costs associated with the storage infrastructures in Ethiopia and their spatial and temporal distribution. To achieve this, a basin-wide integrated hydro-economic model has been developed. The model integrates essential hydrologic, economic and institutional components of the river basin in order to explore both the hydrologic and economic consequences of various policy options and planned infrastructural projects. Unlike most of the deterministic economic-hydrologic models reported in the literature, a stochastic programming formulation has been adopted in order to: i) understand the effect of the hydrologic uncertainty on management decisions, ii) determine allocation policies that naturally hedge against the hydrological risk, and iii) assess the relevant risk indicators. The study reveals that the development of four mega dams in the upper part of the Blue Nile Basin would change the drawdown refill cycle of the High Aswan Dam. Should the operation of the reservoirs be coordinated, they would enable an average annual saving of at least 2.5 billion m3 through reduced evaporation losses from the Lake Nasser. Moreover, the new reservoirs (Karadobi, Beko-Abo, Mandaya and Border) in Ethiopia would have significant positive impacts on hydropower generation and irrigation in Ethiopia and Sudan: at the basin scale, the annual energy generation is boosted by 38.5 TWh amongst which 14.2 TWh due to storage. Moreover, the

  4. Morphology of river deltas on Earth and Titan

    NASA Astrophysics Data System (ADS)

    Witek, Piotr; Czechowski, Leszek

    2016-04-01

    Presently volatile cycles are known to operate on surfaces of two planetary bodies in the Solar System, Earth and Titan. Fluvial erosion, transport and deposition of rocky material modify parts of the surface. Numerous indications of geologically recent sediment transport have been discovered on Titan by the Cassini-Huygens mission. Theoretical calculations suggest greater mobility of Titanian sediments in comparison to terrestrial, due to lower gravity and lower density of typical crustal material. Using numerical model of flow and sediment transport, we compare the development and morphology of deposits forming in lakes in terrestrial and Titanian conditions. We explore the range of possible river discharges, including natural variability, and several dominant grain sizes. We consider several compositions of sediments on Titan, on Earth we model the transport of quartz grains by water. We perform simulations for the same initial geometry of river channel and lake basin, for a given discharge and dominant grain diameter in each environment. Morphology and evolution of the deltaic deposits are compared. We observe that the erosion has dominant role for the smallest grains, and the effect is more pronounced on Titan than on Earth. The largest grains usually form steep-sloped fan-like deltas on both planetary bodies. The processes of formation and development of the sedimentary landforms are generally similar in both environments. Particular types of deposits may however form in different ranges of discharge and grain size, due to differences in environmental parameters. Greater mobility of sediments on Titan result in easier displacement of loose granular material, especially for smallest considered grains. The flat, lobate deltas can form in narrower range of discharges and grain sizes than on Earth. This fact might be partially responsible for scarcity of river deltas on that active moon, where other signs of fluvial processes are widespread.

  5. Biogeochemical features of aquatic plants in the Selenga River delta

    NASA Astrophysics Data System (ADS)

    Shinkareva, Galina; Lychagin, Mikhail

    2014-05-01

    The Selenga River system provides more than a half of the Lake Baikal total inflow. The river collects a significant amount of pollutants (e.g. heavy metals) from the whole basin. These substances are partially deposited within the Selenga delta, and partially are transported further to the lake. A generous amount of aquatic plants grow in the delta area according to its favorable conditions. This vegetation works as a specific biofilter. It accumulates suspended particles and sorbs some heavy metals from the water. The study aimed to reveal the species of macrophytes which could be mostly important for biomonitoring according to their chemical composition. The field campaign took place in the Selenga River delta in July-August of 2011 (high water period) and in June of 2012 (low water period). 14 species of aquatic plants were collected: water starwort Callitriche hermaphroditica, small yellow pond lily Nuphar pumila, pondweeds Potamogeton crispus, P. pectinatus, P. friesii, broadleaf cattail Typha latifolia, hornwort or coontail Ceratophyllum demersum, arrowhead Sagittaria natans, flowering rush (or grass rush) Butomus umbellatus, reed Phragmites australis, parrot's feather Myriophyllum spicatum, the common mare's tail Hippuris vulgaris, Batrachium trichophyllum, canadian waterweed Elodea canadensis. The samples were dried, grinded up and digested in a mixture of HNO3 and H2O2. The chemical composition of the plant material was defined using ICP-MS and ICP-AES methods. Concentrations of Fe, Mn, Cr, Ni, Cu, B, Zn, V, Co, As, Mo, Pb, and U were considered. The study revealed that Potamogeton pectinatus and Myriophyllum spicatum concentrate elements during both high and low water periods. Conversely the Butomus umbellatus and Phragmites australis contain small amount of heavy metals. The reed as true grasses usually accumulates fewer amounts of elements than other macrophytes. To compare biogeochemical specialization of different species we suggest to use

  6. Natural and Technogenic Factors of Heavy Metal Accumulation In Sediments of The Caspian River Deltas

    NASA Astrophysics Data System (ADS)

    Kasimov, N. S.; Lychagin, M. Yu.

    Content of chemical elements and compounds in deltaic sediments is determined by mineralogical and geochemical peculiarities of feeding provinces, features of sub- stance transportation in dissolved and suspended forms, sediment lithology, pH and Redox conditions, and technogenic factors of sediment pollution. River deltas consider to be undergone by the highest technogenic pressure. It is caused by a transportation of pollutants from the whole river basin. Pollutant accumulation in reservoir sediments decreases a value of this factor. Heavy metal (HM) levels in specific cases of river deltas depend on a complex of natural and technogenic conditions. The conditions are quite different in deltas of the Caspian rivers. Heavy metal levels in sediments of the deltas are strongly related to mineralogical and geochemical features of feeding provinces. In accordance with them, HM levels were found as the lowest in sediments of the Volga delta. Terek delta sediments show higher values of Zn, Cu and Pb. Kura delta sediments are characterized by the highest values of Cu, Ni, Co and Cr. Sediments in the Sefidrud delta, as well as in mouths of smaller rivers of the Iranian coast, show intermediate HM levels. HM levels in sediments of Volga, Terek and Kura deltas are strongly related to miner- alogical and geochemical features of feeding provinces. Input of technogenic pollutant sources depends on many factors. Presence of these sources is evident from discor- dance in geochemistry of bottom sediments and soils of specific deltas. HM levels in river sediments of the Volga delta are close to that in soils. Sediments of Kura delta, and especially Terek delta contain essentially more HM than corresponding soils. Ef- fect of river control structures on Volga and Kura rivers in this case is definite. Terek delta is undergone to the higher technogenic pressure due to the absence of large water reservoirs in its basin.

  7. Effects of Bahir Dar Textile Factory Effluents on the Water Quality of the Head Waters of Blue Nile River, Ethiopia

    PubMed Central

    Mehari, Abrehet Kahsay; Gebremedhin, Shewit; Ayele, Belayneh

    2015-01-01

    The study was conducted in 2013/14 with the objective of determining the effects of Bahir Dar textile factory effluents on the head of Blue Nile River water quality. Dissolve oxygen was higher at the upstream site of the river, whereas BOD5, TDS, and total alkalinity values were higher at wastewater outlet of the factory site. The mean values of dissolved oxygen, BOD5, and total alkalinity were above maximum permissible limits set by WHO for drinking water at head of Blue Nile River. The mean value of BOD5 was above permissible limit of IFC for textile effluents to be discharged to surface water. A total of 836 aquatic macroinvertebrate individuals belonging to 21 families were collected. The Shannon-Wiener Diversity Index, the Hilsenhoff family-level biotic index, family richness, and percent dipterans were calculated. Hilsenhoff family-level biotic index and percent dipterans metrics differed significantly among sampling sites (P < 0.05). Hilsenhoff family-level biotic index was higher at the most downstream site but percent dipterans were higher at site of discharge of effluent to the head of Blue Nile River. Therefore, there is indication that effluent demands frequent control and proper treatment before being discharged to the environment. PMID:26688685

  8. Salt geometry influence on present-day stress orientations in the Nile Delta: Insights from numerical modeling

    NASA Astrophysics Data System (ADS)

    Eckert, Andreas; Zhang, Weicheng

    2016-02-01

    The offshore Nile Delta displays sharply contrasting orientations of the maximum horizontal stress, SH, in regions above Messinian evaporites (suprasalt) and regions below Messinian evaporites (subsalt). Published stress orientation data predominantly show margin-normal suprasalt SH orientations but a margin-parallel subsalt SH orientation. While these data sets provide the first major evidence that evaporite sequences can act as mechanical detachment horizons, the cause for the stress orientation contrast remains unclear. In this study, 3D finite element analysis is used to investigate the causes for stress re-orientation based on two different hypotheses. The modeling study evaluates the influence of different likely salt geometries and whether stress reorientations are the result of basal drag forces induced by gravitational gliding or whether they represent localized variations due to mechanical property contrasts. The modeling results show that when salt is present as a continuous layer, gravitational gliding occurs and basal drag forces induced in the suprasalt layers result in the margin-normal principal stress becoming the maximum horizontal stress. With the margin-normal stress increase being confined to the suprasalt layers, the salt acts as a mechanical detachment horizon, resulting in different SH orientations in the suprasalt compared to the subsalt layers. When salt is present as isolated bodies localized stress variations occur due to the mechanical property contrasts imposed by the salt, also resulting in different SH orientations in the suprasalt compared to the subsalt layers. The modeling results provide additional quantitative evidence to confirm the role of evaporite sequences as mechanical detachment horizons.

  9. Ruminant Brucellosis in the Kafr El Sheikh Governorate of the Nile Delta, Egypt: Prevalence of a Neglected Zoonosis

    PubMed Central

    Hegazy, Yamen M.; Moawad, Amgad; Osman, Salama; Ridler, Anne; Guitian, Javier

    2011-01-01

    Background Brucellosis is a neglected tropical zoonosis allegedly reemerging in Middle Eastern countries. Infected ruminants are the primary source of human infection; consequently, estimates of the frequency of ruminant brucellosis are useful elements for building effective control strategies. Unfortunately, these estimates are lacking in most Middle East countries including Egypt. Our objectives are to estimate the frequency of ruminant brucellosis and to describe its spatial distribution in Kafr El Sheikh Governorate, Nile Delta, Egypt. Methodology/Principal Findings We conducted a cross-sectional study in which 791 sheep, 383 goats, 188 cattle milk tanks and 173 buffalo milk tanks were randomly selected in 40 villages and tested for the presence of antibodies against Brucella spp. The seroprevalence among different species was estimated and visualized using choropleth maps. A spatial scanning method was used to identify areas with significantly higher proportions of seropositive flocks and milk tanks. We estimated that 12.2% of sheep and 11.3% of goats in the study area were seropositive against Brucella spp. and that 12.2% and 12% of cattle and buffalo milk tanks had antibodies against Brucella spp. The southern part of the governorate had the highest seroprevalence with significant spatial clustering of seropositive flocks in the proximity of its capital and around the main animal markets. Conclusions/ Significance Our study revealed that brucellosis is endemic at high levels in all ruminant species in the study area and questions the efficacy of the control measures in place. The high intensity of infection transmission among ruminants combined with high livestock and human density and widespread marketing of unpasteurized milk and dairy products may explain why Egypt has one of the highest rates of human brucellosis worldwide. An effective integrated human-animal brucellosis control strategy is urgently needed. If resources are not sufficient for nationwide

  10. A statistical approach for the assessment and redesign of the Nile Delta drainage system water-quality-monitoring locations.

    PubMed

    Khalil, B; Ouarda, T B M J; St-Hilaire, A

    2011-08-01

    There are several deficiencies in the statistical approaches proposed in the literature for the assessment and redesign of surface water-quality-monitoring locations. These deficiencies vary from one approach to another, but generally include: (i) ignoring the attributes of the basin being monitored; (ii) handling multivariate water quality data sequentially rather than simultaneously; (iii) focusing mainly on locations to be discontinued; and (iv) ignoring the reconstitution of information at discontinued locations. In this paper, a methodology that overcomes these deficiencies is proposed. In the proposed methodology, the basin being monitored is divided into sub-basins, and a hybrid-cluster analysis is employed to identify groups of sub-basins with similar attributes. A stratified optimum sampling strategy is then employed to identify the optimum number of monitoring locations at each of the sub-basin groups. An aggregate information index is employed to identify the optimal combination of locations to be discontinued. The proposed approach is applied for the assessment and redesign of the Nile Delta drainage water quality monitoring locations in Egypt. Results indicate that the proposed methodology allows the identification of (i) the optimal combination of locations to be discontinued, (ii) the locations to be continuously measured and (iii) the sub-basins where monitoring locations should be added. To reconstitute information about the water quality variables at discontinued locations, regression, artificial neural network (ANN) and maintenance of variance extension (MOVE) techniques are employed. The MOVE record extension technique is shown to result in a better performance than regression or ANN for the estimation of information about water quality variables at discontinued locations. PMID:21677941

  11. Bathymetry of the Hong and Luoc River Junction, Red River Delta, Vietnam, 2010

    USGS Publications Warehouse

    Kinzel, Paul J.; Nelson, Jonathan M.; Toan, Duong Duc; Thanh, Mung Dinh; Shimizu, Yasuyuki

    2012-01-01

    The U.S. Geological Survey, in collaboration with the Water Resources University in Hanoi, Vietnam, conducted a bathymetric survey of the junction of the Hong and Luoc Rivers. The survey was done to characterize the channel morphology of this delta distributary network and provide input for hydrodynamic and sediment transport models. The survey was carried out in December 2010 using a boat-mounted multibeam echo sounder integrated with a global positioning system. A bathymetric map of the Hong and Luoc River junction was produced which was referenced to the datum of the Trieu Duong tide gage on the Luoc River.

  12. Hydrodynamic modeling for river delta salt marshes using lidar topography

    NASA Astrophysics Data System (ADS)

    Hodges, Ben R.

    2014-05-01

    Topographic data from lidar and multi-beam sonar create new challenges for hydrodynamic models of estuaries, tidelands, and river deltas. We now can readily obtain detailed elevation data on 1 m scales and finer, but solving hydrodynamics with model grid cells at these small scales remains computationally prohibitive (primarily because of the small time step required for small grid cells). Practical estuarine models for the next decade or so will likely have grid scales in the range of 5 to 15 m. So how should we handle known subgrid-scale features? Simply throwing out known data does not seem like a good idea, but there is no consensus on how best to incorporate knowledge of subgrid topography into either hydrodynamic or turbulence models. This presentation discusses both the theoretical foundations for modeling subgrid-scale features and the challenges in applying these ideas in the salt marshes of a river delta. The subgrid problem highlights some important areas for field and laboratory research to provide calibration parameters for new models that upscale the effects of known subgrid features.

  13. River, delta and coastal morphological response accounting for biological dynamics

    NASA Astrophysics Data System (ADS)

    Goldsmith, W.; Bernardi, D.; Schippa, L.

    2015-03-01

    Management and construction can increase resilience in the face of climate change, and benefits can be enhanced through integration of biogenic materials including shells and vegetation. Rivers and coastal landforms are dynamic systems that respond to intentional and unintended manipulation of critical factors, often with unforeseen and/or undesirable resulting effects. River management strategies have impacts that include deltas and coastal areas which are increasingly vulnerable to climate change with reference to sea level rise and storm intensity. Whereas conventional assessment and analysis of rivers and coasts has relied on modelling of hydrology, hydraulics and sediment transport, incorporating additional biological factors can offer more comprehensive, beneficial and realistic alternatives. Suitable modelling tools can provide improved decision support. The question has been whether current models can effectively address biological responses with suitable reliability and efficiency. Since morphodynamic evolution exhibits its effects on a large timescale, the choice of mathematical model is not trivial and depends upon the availability of data, as well as the spatial extent, timelines and computation effort desired. The ultimate goal of the work is to set up a conveniently simplified river morphodynamic model, coupled with a biological dynamics plant population model able to predict the long-term evolution of large alluvial river systems managed through bioengineering. This paper presents the first step of the work related to the application of the model accounting for stationary vegetation condition. Sensitivity analysis has been performed on the main hydraulic, sedimentology, and biological parameters. The model has been applied to significant river training in Europe, Asia and North America, and comparative analysis has been used to validate analytical solutions. Data gaps and further areas for investigation are identified.

  14. Impacts of the Indian Rivers Inter-link Project on Sediment Transport to River Deltas

    NASA Astrophysics Data System (ADS)

    Higgins, S.; Overeem, I.; Syvitski, J. P.

    2015-12-01

    The Indian Rivers Inter-link project is a proposal by the Indian government to link several of India's major rivers via a network of reservoirs and canals. Variations of the IRI have been discussed since 1980, but the current plan has recently received increased support from the Indian government. Construction on three canals has controversially begun. If the Inter-link project moves forward, fourteen canals will divert water from tributaries of the Ganges and Brahmaputra rivers to areas in the west, where fresh water is needed for irrigation. Additional canals would transport Himalayan sediments 500 km south to the Mahanadi delta and more than 1000 km south to the Godavari and Krishna deltas. We investigate the impacts of the proposed diversions on sediment transport to the Mahanadi/Brahmani, Godavari, and Krishna deltas in India and the Ganges-Brahmaputra Delta in Bangladesh. We map the entire river network and the proposed new nodes and connections. Changing watersheds are delineated using the Terrain Analysis Using Digital Elevation Models (TauDEM) Suite. Climate data comes from interpolation between observed precipitation stations located in China, Nepal, India, Bhutan and Bangladesh. Changes in water discharge due to the proposed canals are simulated using HydroTrend, a climate-driven hydrological water balance and transport model that incorporates drainage area, discharge, relief, temperature, basin-average lithology, and anthropogenic influences. Simulated river discharge is validated against observations from gauging stations archived by the Global Runoff Data Center (GRDC). HydroTrend is then used to investigate sediment transport changes that may result from the proposed canals. We also quantify changes in contributing areas for the outlets of nine major Indian rivers, showing that more than 50% of the land in India will contribute a portion of its runoff to a new outlet should the entire canal system be constructed.

  15. Plan form changes of Gumara River channel over 50 years (Upper Blue Nile basin, Ethiopia)

    NASA Astrophysics Data System (ADS)

    Abate, Mengiste; Nyssen, Jan; Mehari, Michael

    2014-05-01

    Channel plan form changes were investigated along the 65 km long Gumara River in Lake Tana basin (Ethiopia) by overlaying information from aerial photographs and SPOT imagery. Two sets of aerial photographs (1957 and 1980) were scanned, and then orthorectified in ENVI 4.2 environment. Recent channel plan form information was extracted from SPOT images of 2006. ERDAS 2010 and ArcGIS 10.1 tools were used for the data preparation and analysis. The information on river plan form changes spans from 1957 to 2006 (49 years), during which time the Gumara catchment has been subjected to changes in land use/cover and increasing water abstraction, which may have affected its hydrogeomorphology. The results indicated that the lower reach of Gumara at its mouth has undergone major plan form changes. A delta of 1.12 km² was created between 1957 and 1980 and additional 1.00 km² land has been created between 1980 and 2006. The sinuosity of the plan form changed only slightly through the study period: 1.78 in 1957, 1.76 in 1980, and 1.81 in 2006. Comparison of cross sections at the hydrological gauging station showed that the river bed aggraded in the order of 1.5 m to 2.5 m for the period 1963-2009. The trend analysis of stream flow of Gumara River versus rainfall in the catchment also indicated that the bed level of the Gumara river at its gauging station has risen. From field observations, the impact of direct human interventions was identified. The building of artificial levees along the river banks has contributed to huge deposition in the river bed. At locations where intensive irrigation takes place in the floodplain, seepage water through the banks created river bank failure and modifications in plan form. The unstable segments of the river reach were identified and will be further analysed.

  16. Hydrologic Modeling of a Tropical River Delta by Applying Remote Sensing Data: the Niger Delta and its Distributaries.

    NASA Astrophysics Data System (ADS)

    Hannon, M. T.; Syvitski, J. P.; Kettner, A. J.

    2008-12-01

    Delta regions offer rich resources to coastal human populations with their large upstream freshwater sources. Tropical deltas such as the Niger, Nigeria, whose drainage basin incorporates arid regions, receive a significant portion of their runoff from precipitation falling directly on the delta. Between 1970 and 2006, the Niger discharged (Lokoja station) 5000 ± 890 m3/s into upper delta. Here we apply Tropical Rainfall Measurement Mission (TRMM) based precipitation estimates (SB42), with a 0.25° x 0.25° spatial resolution (~100 grid points across the Niger Delta at 3 hourly intervals 1998-2008), and MODIS evapotranspiration (ET) estimates (MOD16), to determine the impact of massive local precipitation events on the routing of water and sediment flux through the Niger Delta's distributaries. The Niger delta receives 2275 mm/y ± 264 mm/y of rainfall with the SE area exceeding 3500 mm/y. The delta's ET varies seasonally between 45 and 65 mm/mo. The in situ generated hydrological runoff is 1675 mm/y, or an equivalent of a discharge 73% the size of the river flux entering the delta. With maximum annual daily discharge from the Niger often exceeding 15,000 m3/s, in combination with the significant in situ runoff, much of the delta's surface is seasonally under floodwaters. LandSat7 imagery indicates delta distributaries that are disconnected from the Niger River, and only drain local precipitation events. This disconnection plays into the discharge and sediment fluxes of these distributaries.

  17. The Riverbed Evolution, Avulsions and Backwater Hydrodynamics on the Huanghe River Delta

    NASA Astrophysics Data System (ADS)

    Chu, Z.; Ganti, V.; Lamb, M. P.

    2013-12-01

    The Huanghe River is known for high suspended sediment concentration and resultant heavy sedimentation and frequent channel-shifting among major rivers in the world. This plain coastal river is the main contributor of terrestrial sediment to the Bohai Sea and the Yellow Sea. Since 1855, there have been 11 major avulsions (versus 4 avulsions on the Mississippi River during the Holocene) on the lower reach with an recurrence interval of ~10 years, developing individual lobes that build up the modern Huanghe River delta. We summarize the main features of riverbed evolution on the delta with a database of measured data. The observed avulsions on the delta often occurred along a persistent spatial node, whose distance from the shoreline scales with the computed backwater length. In order to explain the avulsion locations on the delta, and meanwhile to test the viewpoint of river backwater controls on avulsion locations on deltas, we simulate the long profile evolution of the riverbed on the delta considering river discharge, river plume spreading, land subsidence and sea level rise, with a 1D fluvial morphodynamic model. The main results from the numerical simulations provide insights into how the long profile of the river on the delta evolves at the time scales of flood events and avulsions.

  18. Reliability characteristics of a platform in the Mississippi River delta

    SciTech Connect

    Bea, R.G.

    1998-08-01

    In August 1995, the Energy Development Corporation installed a conventional drilling and production platform in South Pass Block 47. Due to its proximity to the delta of the Mississippi River, this platform is exposed to the environmental forces developed by hurricanes and movements of the seafloor. This paper summarizes results from probability-based study of the oceanographic, geotechnical, and structural reliability characteristics of a conventional platform installed in South Pass Block 47. Experience with other structures installed in this area that have failed due to seafloor slides is correlated with results from these analyses. The analyses indicated that a conventional platform could be safely installed at the proposed location. The platform has experienced several severe hurricanes without signs of distress.

  19. 78 FR 39314 - Notice of Availability of the Decision Record for the Delta River Special Recreation Management...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-01

    ... Bureau of Land Management Notice of Availability of the Decision Record for the Delta River Special... the availability of the Decision Record (DR) for the Delta River Special Recreation Management Area... Assessment (EA) for the Delta River Special Recreation Management Area (SRMA) Plan and East Alaska...

  20. Contribution of geoelectrical resistivity sounding for paleoenvironment assessment at Saft El-Henna and Tell El-Dab'a archaeological sites, eastern Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    El-Kenawy, Abeer 1Metwaly, Mohamed 2345Gemail, Khalid 1El-Raouf, Amr Abd

    2013-09-01

    Vertical electrical sounding (VES), a resistivity sounding technique, has been applied at two important archaeological sites in the eastern part of the Nile Delta to trace the paleoenvironment, particularly the defunct canals. Like many other archaeological sites in the Nile Delta of Egypt, these two sites have been subjected to urbanisation and agricultural invasion from the local farmers. Therefore, studying the paleoenvironment is an important task for guiding the excavation process and highlighting the importance of these two archaeological sites. The VES stations were arranged to cover the two sites, in the form of traverse profiles for tracing the subsurface sand and gravel facies that intercalated with clay deposits. The acquired VES data were processed based on the available borehole lithological information for the purpose of establishing the resistivity-depth models. Both 1D and 2D processing schemes were applied to the VES data sets to increase the confidence of the obtained results. The clay and silt deposits are characterised by low resistivity values, whereas the sand facies has a relatively high resistivity character. From the constructed cross-sections at the two sites, it was possible to define a consistent character for the clay deposits, which can be inferred as the defunct canals that supplied water to the two sites.

  1. An application of remotely derived climatological fields for risk assessment of vector-borne diseases : a spatial study of filariasis prevalence in the Nile Delta, Egypt.

    SciTech Connect

    Crombie, M. K.; Gillies, R. R.; Arvidson, R. E.; Brookmeyer, P.; Weil, G. J.; Sultan, M.; Harb, M.; Environmental Research; Washington Univ.; Utah State Univ.; Egyptian Ministry of Health

    1999-12-01

    This paper applies a relatively straightforward remote sensing method that is commonly used to derive climatological variables. Measurements of surface reflectance and surface radiant temperature derived from Landsat Thematic Mapper data were used to create maps of fractional vegetation and surface soil moisture availability for the southern Nile delta in Egypt. These climatological variables were subsequently used to investigate the spatial distribution of the vector borne disease Bancroftian filariasis in the Nile delta where it is focally endemic and a growing problem. Averaged surface soil moisture values, computed for a 5-km border area around affected villages, were compared to filariasis prevalence rates. Prevalence rates were found to be negligible below a critical soil moisture value of 0.2, presumably because of a lack of appropriate breeding sites for the Culex Pipiens mosquito species. With appropriate modifications to account for local conditions and vector species, this approach should be useful as a means to map, predict, and control insect vector-borne diseases that critically depend on wet areas for propagation. This type of analysis may help governments and health agencies that are involved in filariasis control to better focus limited resources to identifiable high-risk areas.

  2. Water management in the Senegal River Delta: a continuing uncertainty

    NASA Astrophysics Data System (ADS)

    Mietton, M.; Dumas, D.; Hamerlynck, O.; Kane, A.; Coly, A.; Duvail, S.; Pesneaud, F.; Baba, M. L. O.

    2007-11-01

    Water management is the driving force behind the productivity of the ecosystems of the Senegal River Estuary and floodplains. It is dependent on human decision-making, but has been separated from the River's flooding since the building of the Diama Dam. The current objectives of the Office de Mise en Valeur du fleuve Sénégal (OMVS: Senegal River Development Agency) are mainly turned towards the development of irrigated agriculture on the former floodplains and since 2002 the production of hydroelectric power at Manantali. In October 2003, a four-metre-wide runoff canal, which quickly widened into a breach several hundred metres across, was dug in the Barbary Spit area to protect the city of Saint-Louis from heavy flooding. The hydraulic quality of the area downstream from the dam has improved to the extent that there is no longer any flooding there, but as the management of the dams concerns only the section of the river between Manantali and Diama, a certain amount of flood risk probably still persists. The intrusion of seawater into the estuary is also threatening ecosystems and fresh water supplies, and abruptly altering agricultural practices such as fruit and vegetable growing in the Gandiolais district. When added to the tentative efforts to coordinate the management of the two dams, with no management objective downstream from Diama, such permanent modifications impose serious constraints on the managers and residents of the lower delta. This paper presents an overview of the constraints and uncertainties at different levels and scales. This wholly human-wrought environment can be considered as a learning experience, where a large number of variables need to be monitored closely and an ongoing process of participatory analysis should be backed up by multidisciplinary research.

  3. Groundwater quality assessment of the shallow aquifers west of the Nile Delta (Egypt) using multivariate statistical and geostatistical techniques

    NASA Astrophysics Data System (ADS)

    Masoud, Alaa A.

    2014-07-01

    Extensive urban, agricultural and industrial expansions on the western fringe of the Nile Delta of Egypt have exerted much load on the water needs and lead to groundwater quality deterioration. Documenting the spatial variation of the groundwater quality and their controlling factors is vital to ensure sustainable water management and safe use. A comprehensive dataset of 451 shallow groundwater samples were collected in 2011 and 2012. On-site field measurements of the total dissolved solids (TDS), electric conductivity (EC), pH, temperature, as well as lab-based ionic composition of the major and trace components were performed. Groundwater types were derived and the suitability for irrigation use was evaluated. Multivariate statistical techniques of factor analysis and K-means clustering were integrated with the geostatistical semi-variogram modeling for evaluating the spatial hydrochemical variations and the driving factors as well as for hydrochemical pattern recognition. Most hydrochemical parameters showed very wide ranges; TDS (201-24,400 mg/l), pH (6.72-8.65), Na+ (28.30-7774 mg/l), and Cl- (7-12,186 mg/l) suggesting complex hydrochemical processes of multiple sources. TDS violated the limit (1200 mg/l) of the Egyptian standards for drinking water quality in many localities. Extreme concentrations of Fe2+, Mn2+, Zn2+, Cu2+, Ni2+, are mostly related to their natural content in the water-bearing sediments and/or to contamination from industrial leakage. Very high nitrate concentrations exceeding the permissible limit (50 mg/l) were potentially maximized toward hydrologic discharge zones and related to wastewater leakage. Three main water types; NaCl (29%), Na2SO4 (26%), and NaHCO3 (20%), formed 75% of the groundwater dominated in the saline depressions, sloping sides of the coastal ridges of the depressions, and in the cultivated/newly reclaimed lands intensely covered by irrigation canals, respectively. Water suitability for irrigation use clarified that the

  4. Surveillance of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli in Dairy Cattle Farms in the Nile Delta, Egypt

    PubMed Central

    Braun, Sascha D.; Ahmed, Marwa F. E.; El-Adawy, Hosny; Hotzel, Helmut; Engelmann, Ines; Weiß, Daniel; Monecke, Stefan; Ehricht, Ralf

    2016-01-01

    Introduction: Industrial livestock farming is a possible source of multi-resistant Gram-negative bacteria, including producers of extended spectrum beta-lactamases (ESBLs) conferring resistance to 3rd generation cephalosporins. Limited information is currently available on the situation of ESBL producers in livestock farming outside of Western Europe. A surveillance study was conducted from January to May in 2014 in four dairy cattle farms in different areas of the Nile delta, Egypt. Materials and Methods: In total, 266 samples were collected from 4 dairy farms including rectal swabs from clinically healthy cattle (n = 210), and environmental samples from the stalls (n = 56). After 24 h pre-enrichment in buffered peptone water, all samples were screened for 3rd generation cephalosporin-resistant Escherichia coli using Brilliance™ ESBL agar. Suspected colonies of putatively ESBL-producing E. coli were sub-cultured and subsequently genotypically and phenotypically characterized. Susceptibility testing using the VITEK-2 system was performed. All suspect isolates were genotypically analyzed using two DNA-microarray based assays: CarbDetect AS-1 and E. coli PanType AS-2 kit (ALERE). These tests allow detection of a multitude of genes and their alleles associated with resistance toward carbapenems, cephalosporins, and other frequently used antibiotics. Serotypes were determined using the E. coli SeroGenotyping AS-1 kit (ALERE). Results: Out of 266 samples tested, 114 (42.8%) ESBL-producing E. coli were geno- and phenotypically identified. 113 of 114 phenotypically 3rd generation cephalosporin-resistant isolates harbored at least one of the ESBL resistance genes covered by the applied assays [blaCTX-M15 (n = 105), blaCTX-M9 (n = 1), blaTEM (n = 90), blaSHV (n = 1)]. Alarmingly, the carbapenemase genes blaOXA-48 (n = 5) and blaOXA-181 (n = 1) were found in isolates that also were phenotypically resistant to imipenem and meropenem. Using the array-based serogenotyping

  5. Rain event properties and dimensionless rain event hyetographs at the source of the Blue Nile River

    NASA Astrophysics Data System (ADS)

    Haile, A. T.; Rientjes, T.; Habib, E.; Jetten, V.

    2010-08-01

    In the present study, the spatial and temporal patterns of the rain event properties are analysed. The event properties are rain event depth, event duration, mean event intensity, peak intensity and the time span between two consecutive rain events which is referred to as inter-event time (IET). Dimensionless event hyetographs are established by relating fractions of event intensities to the corresponding fractions of event durations. The spatial variation of the characteristics of the hyetographs is also evaluated. A model in the form of the beta distribution function is applied to reproduce the dimensionless hyetographs. Rainfall data is obtained from a field campaign in two wet seasons of June-August (JJA) of 2007 and 2008 in the Gilgel Abbay watershed that is situated at the source basin of the upper Blue Nile River in Ethiopia. The rainfall data was recorded at eight stations. The results reveal that rain event depth is more related to peak intensity than to event duration. At the start and towards the end of the wet season, the rain events have larger depth with longer duration and longer IET than the rain events in the mid-season. Mean event intensity and IET are strongly related to terrain elevation. Sekela which is on a mountain area has the shortest IET while Bahir Dar which is at the south shore of the lake has the longest IET.

  6. Integrating Delta Building Physics & Economics: Optimizing the Scale of Engineered Avulsions in the Mississippi River Delta

    NASA Astrophysics Data System (ADS)

    Kenney, M. A.; Mohrig, D.; Hobbs, B. F.; Parker, G.

    2011-12-01

    Land loss in the Mississippi River Delta caused by subsidence and erosion has resulted in habitat loss, interference with human activities, and increased exposure of New Orleans and other settled areas to storm surge risks. Prior to dam and levee building and oil and gas production in the 20th century, the long term rates of land building roughly balanced land loss through subsidence. Now, however, sediment is being deposited at dramatically lower rates in shallow areas in and adjacent to the Delta, with much of the remaining sediment borne by the Mississippi being lost to the deep areas of the Gulf of Mexico. A few projects have been built in order to divert sediment from the river to areas where land can be built, and many more are under consideration as part of State of Louisiana and Federal planning processes. Most are small scale, although there have been some proposals for large engineered avulsions that would divert a significant fraction of the remaining available sediment (W. Kim, et al. 2009, EOS). However, there is debate over whether small or large diversions are the economically optimally and socially most acceptable size of such land building projects. From an economic point of view, the optimal size involves tradeoffs between scale economies in civil work construction, the relationship between depth of diversion and sediment concentration in river water, effects on navigation, and possible diminishing returns to land building at a single location as the edge of built land progresses into deeper waters. Because land building efforts could potentially involve billions of dollars of investment, it is important to gain as much benefit as possible from those expenditures. We present the result of a general analysis of scale economies in land building from engineered avulsions. The analysis addresses the question: how many projects of what size should be built at what time in order to maximize the amount of land built by a particular time? The analysis

  7. Holocene Floods and Sediment Sources in the Desert Nile: a Strontium Isotope Record from Northern Sudan

    NASA Astrophysics Data System (ADS)

    Woodward, Jamie; Macklin, Mark; Millar, Ian; Williams, Martin; Welsby, Derek; Duller, Geoff; Williams, Frances

    2014-05-01

    Strontium isotope ratios can be used to explore changes in Nile sediment sources and flood regime because the Blue Nile/Atbara and White Nile headwater catchments lie in markedly contrasting geological settings. Most of the existing Sr isotope data for the Holocene Nile has been obtained from lagoonal/lacustrine environments rather than directly from the fluvial sediments of the desert Nile. Northern Sudan contains some of the best preserved Holocene river deposits and landforms in the desert Nile. Using Optically Stimulated Luminescence (OSL) and radiocarbon dating, we have compiled a detailed record of Holocene river history in the Northern Dongola Reach (NDR) that spans the last c. 8500 years. This period includes major changes in global climate and Nile hydrological regime. In the palaeochannel fills and floodplain deposits of the NDR, we have sampled sedimentary units that represent discrete flood events. We have measured Sr and Nd isotopes on the fine-grained fraction of dated alluvial units. The Sr isotope signature of the NDR fluvial sediments is discussed and compared to published datasets for the Nile delta.

  8. The evolution of a subaqueous delta in the Anthropocene: A stratigraphic investigation of the Brazos River delta, TX USA

    NASA Astrophysics Data System (ADS)

    Carlin, Joseph A.; Dellapenna, Timothy M.

    2015-12-01

    Globally, deltas are increasingly threatened by anthropogenic activities. As a result, deltas now evolve through the combined effects of natural and human-induced processes occurring throughout the fluvial-deltaic system. The Brazos River delta, located along the Texas coast in the northwestern Gulf of Mexico, and its watershed have been impacted by direct and indirect human activities since the late 19th century. This provides an opportunity to investigate how such alterations have shaped the evolution of a delta in the Anthropocene, a time when humans are drivers of geological change. Historic alteration to the delta and watershed include extensive agricultural activity, jetty construction at the mouth in the late 1890s, mouth diversion ~10 km to the southwest in 1929, and reservoir construction throughout the early and mid 20th Century. Three subaerial deltaic geometries provided the framework to connect subaerial deltaic responses, to the anthropogenic alterations, to the resulting stratigraphic characteristics observed in the subaqueous delta. This study utilized high-resolution geophysical data (swath bathymetry, side scan sonar, CHIRP subbottom profiling) on the subaqueous delta to investigate the subaqueous delta stratigraphy and infer the processes that shaped the deltaic record over time. The results showed distinct areas across the subaqueous delta that were dominated by erosion and deposition. Erosional areas corresponded to earlier growth phase depocenters being exposed at the surface, while the depositional areas corresponded to areas with the most recent growth phase depocenter overlying the earlier depocenters. These results highlight that the subaqueous depocenter has migrated westward over time, consistent with the observed changes to the subaerial delta. Additionally, the data showed that evidence for these past growth phases and depocenters may be preserved within the subaqueous delta, even after subaerial portions of the delta returned to pre

  9. The Potential of Time Series Based Earth Observation for the Monitoring of Large River Deltas

    NASA Astrophysics Data System (ADS)

    Kuenzer, C.; Leinenkugel, P.; Huth, J.; Ottinger, M.; Renaud, F.; Foufoula-Georgiou, E.; Vo Khac, T.; Trinh Thi, L.; Dech, S.; Koch, P.; Le Tissier, M.

    2015-12-01

    Although river deltas only contribute 5% to the overall land surface, nearly six hundred million people live in these complex social-ecological environments, which combine a variety of appealing locational advantages. In many countries deltas provide the major national contribution to agricultural and industrial production. At the same time these already very dynamic environments are exposed to a variety of threats, including the disturbance and replacement of valuable ecosystems, increasing water, soil, and air pollution, human induced land subsidence, sea level rise, as well upstream developments impacting water and sediment supplies. A constant monitoring of delta systems is thus of utmost relevance for understanding past and current land surface change and anticipating possible future developments. We present the potential of Earth Observation based analyses and derived novel information products that can play a key role in this context. Along with the current trend of opening up numerous satellite data archives go increasing capabilities to explore big data. Whereas in past decades remote sensing data were analysed based on the spectral-reflectance-defined 'finger print' of individual surfaces, we mainly exploit the 'temporal fingerprints' of our land surface in novel pathways of data analyses at differing spatial-, and temporally-dense scales. Following our results on an Earth Observation based characterization of large deltas globally, we present in depth results from the Mekong Delta in Vietnam, the Yellow River Delta in China, the Niger Delta in Nigeria, as well as additional deltas, focussing on the assessment of river delta flood and inundation dynamics, river delta coastline dynamics, delta morphology dynamics including the quantification of erosion and accretion processes, river delta land use change and trends, as well as the monitoring of compliance to environmental regulations.

  10. Experimental river delta size set by multiple floods and backwater hydrodynamics

    PubMed Central

    Ganti, Vamsi; Chadwick, Austin J.; Hassenruck-Gudipati, Hima J.; Fuller, Brian M.; Lamb, Michael P.

    2016-01-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node—the location where the river course periodically and abruptly shifts—that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  11. Experimental river delta size set by multiple floods and backwater hydrodynamics.

    PubMed

    Ganti, Vamsi; Chadwick, Austin J; Hassenruck-Gudipati, Hima J; Fuller, Brian M; Lamb, Michael P

    2016-05-01

    River deltas worldwide are currently under threat of drowning and destruction by sea-level rise, subsidence, and oceanic storms, highlighting the need to quantify their growth processes. Deltas are built through construction of sediment lobes, and emerging theories suggest that the size of delta lobes scales with backwater hydrodynamics, but these ideas are difficult to test on natural deltas that evolve slowly. We show results of the first laboratory delta built through successive deposition of lobes that maintain a constant size. We show that the characteristic size of delta lobes emerges because of a preferential avulsion node-the location where the river course periodically and abruptly shifts-that remains fixed spatially relative to the prograding shoreline. The preferential avulsion node in our experiments is a consequence of multiple river floods and Froude-subcritical flows that produce persistent nonuniform flows and a peak in net channel deposition within the backwater zone of the coastal river. In contrast, experimental deltas without multiple floods produce flows with uniform velocities and delta lobes that lack a characteristic size. Results have broad applications to sustainable management of deltas and for decoding their stratigraphic record on Earth and Mars. PMID:27386534

  12. Marine productivity leads organic matter preservation in sapropel S1: palynological evidence from a core east of the Nile River outflow

    NASA Astrophysics Data System (ADS)

    van Helmond, Niels A. G. M.; Hennekam, Rick; Donders, Timme H.; Bunnik, Frans P. M.; de Lange, Gert J.; Brinkhuis, Henk; Sangiorgi, Francesca

    2015-01-01

    The formation of Eastern Mediterranean organic matter rich deposits known as sapropels is the results of two mechanisms: (enhanced) marine productivity and preservation of organic material at depth. However, their relative contribution and their leads and lags with respect to each other remain elusive. Here, we address these questions by studying sediments deposited prior to, during, and after the most recent sapropel (S1, ˜10-6 calibrated ka before present, BP) with an integrated marine and terrestrial palynological approach, combined with existing and newly generated geochemical data. The studied core was retrieved from an area under strong influence of the Nile outflow and has high average sediment accumulation rates allowing a high temporal resolution (of several decades to centuries). Marine productivity, as reconstructed with total dinocyst accumulation rates (ARs) and biogenic CaCO3 content, starts to increase ˜1 ka prior to sapropel formation. A shift in the dinocyst taxa contributing to the productivity signal at sapropel onset indicates the rapid development of (seasonal) water column stratification. Pollen and spore ARs also increase prior to sapropel onset, but a few centuries after the increase in marine productivity. Hence, the first shift to a high marine productivity system before sapropel deposition may have been mostly favoured by the injection of nutrients via shoaling of the nutricline with a minor contribution of nutrients from land via river input and flooding of the shelves. Pollen assemblages indicate a gradual change across the sapropel onset from a savanna-like, through coastal marsh expansion, toward an open woodland assemblage, which is consistent with enhanced Nile influence and delta development. At sapropel onset a marked shift in pollen ARs could suggest increased preservation under anoxia. However, major shifts in pollen assemblages and signs of selective- or partial decomposition of terrestrial palynomorphs are absent. We

  13. Barrier island arcs along abandoned Mississippi River deltas

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.; Boyd, Ron

    1985-01-01

    Generation of transgressive barrier island arcs along the Mississippi River delta plain and preservation of barrier shoreline facies in their retreat paths on the inner shelf is controlled by: (1) shoreface translation; (2) age of the transgression; and (3) the thickness of the barrier island arc sediment package. Barrier island arcs experience an average relative sea level rise of 0.50-1.00 cm yr-1 and shoreface retreat rates range from 5-15 m yr-1. Young barrier island arc sediment packages (Isles Dernieres) are thin and have experienced limited landward retreat of the shoreface. Older barrier island arcs (Chandeleur Islands) are thicker and have experienced significant landward movement of the shoreface because of the greater time available for retreat. If the transgressed barrier shoreline sediment package lies above the advancing ravinement surface, the entire sequence is truncated. A thin reworked sand sheet marks the shoreface retreat path. The base of the transgressive sediment package can lie below the ravinement surface in older barrier shorelines. In this setting, the superstructure of the barrier shoreline is truncated, leaving the basal portion of the transgressive sequence preserved on the inner shelf. A variety of transgressive stratigraphic sequences from sand sheets to truncated barrier islands to sand-filled tidal inlet scars have been identified by high resolution seismic profiling across the shoreface retreat paths of Mississippi delta barrier island arcs. One of these examples, the Isles Dernieres, represents a recently detached barrier island arc in the early stages of transgression. An older example, the Chandeleur Islands, represents a barrier island arc experiencing long-term shoreface retreat. This paper describes the stratigraphic character and preserved transgressive facies for the Isles Dernieres and Chandeleur Islands. ?? 1985.

  14. Morpho-tectonic analysis of the Tekeze River and the Blue Nile drainage systems on the Northwestern Plateau, Ethiopia

    NASA Astrophysics Data System (ADS)

    Ismail, Elamin H.; Abdelsalam, Mohamed G.

    2012-07-01

    This study examines the morpho-tectonic evolution of the drainage system in the Northwestern Plateau in Ethiopia dominated by the Tekeze River and the Blue Nile. The Northwestern Plateau is underlain by Precambrian crystalline rocks, followed by Mesozoic sedimentary section and topped with Oligocene-Quaternary volcanic rocks. The plateau is bounded in the east and southeast by the Afar Depression and the Main Ethiopian Rift, respectively. Digital Elevation Models (DEMs) from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) data are analyzed to extract morpho-tectonic parameters including the Normalized Steepness Index (Ksn), the Concavity (θ) and the Regression Fit (r2) between the observed and predicted channel profiles from the sub-basins and the tributaries of the Tekeze River and the Blue Nile. Analysis of these morpho-tectonic parameters has shown that the evolution of the drainage systems on the Northwestern Plateau was influenced by three tectonic and geological events. The first event resulted in a broad and regional uplift of the plateau, most likely due to the rise of the Afar mantle plume ˜30 Ma. This regional uplift was accompanied by moderate incision rate of the Tekeze River and the Blue Nile drainage systems within the entire Northwestern Plateau. The second event, which was in the form of shield volcanoes build-up, occurred at ˜22 Ma and resulted in localized increase in the incision rate around these volcanoes. The third event is manifested by rift-flank uplift at ˜11 Ma on the western escarpments of the Afar Depression and the northwestern escarpments of the Main Ethiopian Rift. This event resulted in an increase in the incision rate of the Tekeze River and the Blue Nile drainage systems, but this increase seems to diminish towards the west and northwest leaving the drainage systems in the lower reaches of the two rivers relatively tectonically undisturbed, hence

  15. Seasonal variation and enrichment of metals in sediments of Rosetta branch, Nile River, Egypt.

    PubMed

    Redwan, Mostafa; Elhaddad, Engy

    2016-06-01

    This study investigated heavy metal pollution in sediments of the Rosetta branch of the River Nile of Egypt to quantify the toxic distribution potential of metals into the surrounding environment. Sediment samples were collected at 9 sites during in four seasons. Organic matter and total metal concentrations were determined using loss on ignition and inductively coupled plasma spectrometry, respectively. Principal component analysis has been applied to evaluate the metal sources and the relationships between metals in sediments. Metal concentrations showed the following order: winter > autumn > spring > summer. Mean concentrations of Cu, Zn, Cd, and Pb in sediments were above the average background value of metals in shale. Pb and Cd showed higher enrichment during all seasons at stations N3/N4, Zn at stations N1 to N4, and Cu at stations N6/N8. The variations in heavy metal total concentration and organic matter are due to different input sources, physico-chemical conditions, and adsorption/precipitation/redox conditions in sediments. Mean values of Geo-accumulation index (Igeo) for Fe, Mn, and Cu were below 0 which were classified as unpolluted during spring, summer, and autumn, except Cu increased from unpolluted to moderately polluted during winter. Igeo values for Cd, Pb, and Zn increased from unpolluted-moderately polluted to highly-very highly polluted during autumn and winter. Pollution Load Index was recorded in highest values during winter, especially at Fuwwah/Basioun and in lowest values during summer at after the Edfina Barrage/before Kafer El-Zayat due to industrial/human activities. Both natural and anthropogenic sources contributed to the metal accumulations in sediments, and industrial, agricultural, and municipal sewage effluents discharged from non-point sources may be the main anthropogenic sources for metals in the Rosetta branch. PMID:27194230

  16. The Selenga River delta - a geochemical barrier for the waters of Lake Baikal

    NASA Astrophysics Data System (ADS)

    Chalov, Sergey; Thorslund, Josefin; Pietron, Jan; Jarsjö, Jerker

    2016-04-01

    Delta systems play an important role in retention of sediments and contaminants to downstream recipients, through processes such as gravitational sedimentation, flocculation and biofiltration. The Selenga river delta is one of the world's largest inland deltas, providing a huge buffer zone between Lake Baikal and upstream waters of the Selenga river basin. Understanding the delta functioning is critical for the planning of water management measures in the Selenga River Basin and for protection of the waters of Lake Baikal. We here study the current state and functioning of the delta's ecosystem and hydrogeochemical processes. More specifically, we considered spatio-temporal changes in water flow, morphology and transport of sediments and metals within the delta and what potential impacts these changes may have on the delta functions. Results show that the delta network has a large influence on the mass of metals reaching the Lake Baikal at the delta outlet. Regions with high density of wetlands and small channels, in contrast to main channel regions, show a consistent pattern of considerable contaminant filtering and removal (between 77-99% for key metals), during both high and low flow conditions, following with a significant increase (2-3 times) of bottom sediment pollution. Geomorphological processes also governs the barrier function of the delta, due to partitioning of flow between different channel systems. These results are particularly relevant in the light of recent and expected future changes involving both the hydrology and water quality in the Lake Baikal basin. Taken together, this emphasizes the importance of understanding the interface between flow partitioning, delta morphology, and sediment and metal patterns and storage rates for fully capturing and quantifying the variety in delta functions. This is particularly relevant coupled to hydroclimatic changes in the region, which could lead to significant decline in barrier functions of the delta due to

  17. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta

    NASA Astrophysics Data System (ADS)

    Sassi, Maximiliano G.; Hoitink, A. J. F.; de Brye, Benjamin; Vermeulen, Bart; Deleersnijder, Eric

    2011-12-01

    Bifurcations in tidally influenced deltas distribute river discharge over downstream channels, asserting a strong control over terrestrial runoff to the coastal ocean. Whereas the mechanics of river bifurcations is well-understood, junctions in tidal channels have received comparatively little attention in the literature. This paper aims to quantify the tidal impact on subtidal discharge distribution at the bifurcations in the Mahakam Delta, East Kalimantan, Indonesia. The Mahakam Delta is a regular fan-shaped delta, composed of a quasi-symmetric network of rectilinear distributaries and sinuous tidal channels. A depth-averaged version of the unstructured-mesh, finite-element model second-generation Louvain-la-Neuve Ice-ocean Model has been used to simulate the hydrodynamics driven by river discharge and tides in the delta channel network. The model was forced with tides at open sea boundaries and with measured and modeled river discharge at upstream locations. Calibration was performed with water level time series and flow measurements, both spanning a simulation period. Validation was performed by comparing the model results with discharge measurements at the two principal bifurcations in the delta. Results indicate that within 10 to 15 km from the delta apex, the tides alter the river discharge division by about 10% in all bifurcations. The tidal impact increases seaward, with a maximum value of the order of 30%. In general, the effect of tides is to hamper the discharge division that would occur in the case without tides.

  18. Plant community succession in modern Yellow River Delta, China.

    PubMed

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-08-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land-->community Suaeda salsa-->community Tamarix chinensis-->grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  19. Latest Quaternary stratigraphic framework of the Mississippi River delta region

    USGS Publications Warehouse

    Kulp, Mark; Howell, Paul; Adiau, Sandra; Penland, Shea; Kindinger, Jack; Williams, S. Jeffress

    2002-01-01

    Previous researchers separated the uppermost Quaternary stratigraphy of the Mississippi River delta region into two major lithofacies. The stratigraphically lower of these, "substratum," primarily consists of coarse-grained sediment deposited within lowstand-incised stream valleys. Relatively finer-grained "topstratum" overlies substratum; above interfluves, topstratum directly overlies weathered late Pleistocene sediments. However, the onshore to offshore distribution and architecture of these lithofacies was not well constrained. This study integrates published and unpublished lithostratigraphic data with high-resolution seismic profiles from the continental shelf to aid in mapping the regional distribution of major substratum deposits and thickness of topstratum sediments. A transgressive sand sheet commonly marks the base of the topstratum deposits, providing a stratigraphic marker to aid in regional lithostratigraphic correlations. Radiocarbondated deposits and boreholes tied to oxygen isotope chronologies provide chronostratigraphic control. Excellent correlation between these multiple datasets has been found to exist, enabling construction of regional isopachous and structural elevation maps and cross sections detailing elements of the Late Quaternary stratigraphy.

  20. Plant community succession in modern Yellow River Delta, China*

    PubMed Central

    Zhang, Gao-sheng; Wang, Ren-qing; Song, Bai-min

    2007-01-01

    Data were collected in different successional stages using a simultaneous sampling method and analyzed through quantitative classification method. Three large groups and 12 classes were made to represent the community patterns of three succession stages and 12 succession communities. The succession series of plant community in the study area was as follows: saline bare land→community Suaeda salsa→community Tamarix chinensis→grassland. Succession degree and succession process of 12 succession communities were calculated. Most of these communities were in the lower succession stage, however, community Phragmites communis+Glycine soja and community Imperata cylindrica+G. soja were close to the succession stage of grassland climax. Five species diversity indices were used to study the changes in species richness, species evenness and diversity during succession of community. Heterogeneity index and richness index increased gradually during the community succession process, but species evenness tended to decrease with succession development. The relation between succession and environment was studied by ordination technique, and the results showed that the soil salt content was an important factor to halarch succession of the modern Yellow River Delta. It affected community structure, species composition and succession process. PMID:17657854

  1. Spatial analysis of lymphatic filariasis distribution in the Nile Delta in relation to some environmental variables using geographic information system technology.

    PubMed

    Hassan, A N; Dister, S; Beck, L

    1998-04-01

    Geographic information system (GIS) was used to analyze the spatial distribution of filariasis in the Nile Delta. The study involved 201 villages belonging to Giza, Qalubiya, Monoufiya, Gharbiya, and Dakahliya governorates. Villages with similar microfilarial (mf) prevalence rates were observed to cluster within 1-2 km distance, then, clustering started to decrease significantly with distance up to 5 km (Pearson correlation coefficient = -0.98). the likelihood of negative and high prevalence villages being contiguous was very low (approximately 1.8%, n = 612 village-pairs) indicating homogeneity in disease processes within the defined spatial scales. Of the villages located within 2 km from the main Nile branches (n = 46), 95% exhibited low prevalence. In addition, the spatial pattern of mf prevalence was shown to be negatively associated with annual rainfall and relative humidity, while it was positively associated with annual daily temperature. Average mf prevalence in warmer, relatively drier areas receiving 25 mm of rain was significantly higher (3.9%) than that in less warmer but more humid areas receiving 50 mm of rain (1.6%) (P < 0.0001). Based on the results of the present study, GIS was used to generate a "filariasis risk map" that could be used by health authorities to efficiently direct surveillance and control efforts. This investigation identified some of the factors underlying filariasis spatial pattern, quantified clustering and demonstrated the potential of GIS application in vector-borne disease epidemiology. PMID:9617048

  2. River salinity on a mega-delta, an unstructured grid model approach.

    NASA Astrophysics Data System (ADS)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  3. Site Response in the San Joaquin/Sacramento River Delta

    NASA Astrophysics Data System (ADS)

    Fletcher, J. B.; Boatwright, J.

    2007-12-01

    The Sacramento/San Joaquin River Delta lies on the western edge of the Great Valley and contains a system of levees that are thought to be prone to catastrophic failure from a major earthquake in the San Francisco Bay area or on faults along the western border of the Great Valley. To assess this risk we deployed digital recorders and broadband sensors in late 2006 and 2007 at 3 levee sites in the Delta (each site had a top and base sensor) and at one reference site to the west. Cone penetrometer data show that at the base, the soils have low S-wave velocities of 170 to 240 m/s. Upper soil layers are typically peats and aeolian sands. During the nine months of deployment, we recorded 3 local events (45kmDelta (Byron Hot Springs , BYR) or Black Diamond Mine (BDM, part of the Berkeley Digital Seismic Network). Spectra are normalized for distance. Each spectrum is smoothed with an algorithm that tries to preserve peaks; a running mean filter is also applied to the spectra from the reference site to reduce the possibility of holes in the reference spectrum appearing as a resonance in the ratio. Our primary observation is that many of the spectral ratios show large resonances, typically at 1-3 Hz and may represent a substantial risk to the levees. Sites at the tops of levees typically have stronger resonances in the 1-3 Hz range compared to base sites. The character of these ratios, however, differs substantially for each event. For example, the top site at Bethel Isl. has peaks in the site response with amplitudes between 6 and 15 (2-3Hz) for an earthquake located near Berkeley using either reference site, but is only apparent in the ratios using BDM for the other two events. This is because BYR has more amplitude in the 2- 3

  4. Sediment and water chemistry of the San Juan River and Escalante River deltas of Lake Powell, Utah, 2010-2011

    USGS Publications Warehouse

    Hornewer, Nancy J.

    2014-01-01

    Recent studies have documented the presence of trace elements, organic compounds including polycyclic aromatic hydrocarbons, and radionuclides in sediment from the Colorado River delta and from sediment in some side canyons in Lake Powell, Utah and Arizona. The fate of many of these contaminants is of significant concern to the resource managers of the National Park Service Glen Canyon National Recreation Area because of potential health impacts to humans and aquatic and terrestrial species. In 2010, the U.S. Geological Survey began a sediment-core sampling and analysis program in the San Juan River and Escalante River deltas in Lake Powell, Utah, to help the National Park Service further document the presence or absence of contaminants in deltaic sediment. Three sediment cores were collected from the San Juan River delta in August 2010 and three sediment cores and an additional replicate core were collected from the Escalante River delta in September 2011. Sediment from the cores was subsampled and composited for analysis of major and trace elements. Fifty-five major and trace elements were analyzed in 116 subsamples and 7 composited samples for the San Juan River delta cores, and in 75 subsamples and 9 composited samples for the Escalante River delta cores. Six composited sediment samples from the San Juan River delta cores and eight from the Escalante River delta cores also were analyzed for 55 low-level organochlorine pesticides and polychlorinated biphenyls, 61 polycyclic aromatic hydrocarbon compounds, gross alpha and gross beta radionuclides, and sediment-particle size. Additionally, water samples were collected from the sediment-water interface overlying each of the three cores collected from the San Juan River and Escalante River deltas. Each water sample was analyzed for 57 major and trace elements. Most of the major and trace elements analyzed were detected at concentrations greater than reporting levels for the sediment-core subsamples and composited

  5. The sediment-starved Yellow River Delta as remotely controlled by human activities in the river basin

    NASA Astrophysics Data System (ADS)

    Wang, H.; Bi, N.

    2015-12-01

    Human presented significant disturbances on the natural processes of land-ocean interactions in context of global change. Here we illustrate how the signals of human activities in the river basin have been transferred to the coastal ocean along the hydrological pathway and remotely controlled the Yellow River Delta. Dam-orientated water and sediment regulation scheme (WSRS) has resulted in effective erosion of the lower channel and mitigation of siltation within the reservoirs. However, significant impacts have been identified on the delta morphology and coastal ecosystem ten years after the WSRS, which was unexpected at the beginning of engineering efforts. The coarser sediment derived from the channel erosion during the first phase of WSRS was directly contributed to the rapid accretion of present river mouth, whereas the delta was starved and declined due to insufficient sediment supply and regime shift of sediment transport. The fine-grained sediment exported from the Xiaolangdi Reservoir during the second phase of WSRS seemed to be a critical carrier for the nutrients and pollutants. The human-altered hydrological cycle, enhanced delivery of nutrient and pollutants and the changing estuarine environment present unpredictable impacts on both terrestrial and aquatic ecosystem in the delta region. These confirm that humans are modifying the river-coast system in ways that go well beyond climate change, and an integrated management of the river-coast continuum is crucially important for the sustainability of the river-delta system.

  6. A new record of Myxobolus brachysporus and M. israelensis in the tilapia (Oreochromis niloticus) collected from the Nile River, Egypt

    PubMed Central

    Abdel-Baki, Abdel-Azeem S.; Zayed, Eman; Sakran, Thabet; Al-Quraishy, Saleh

    2015-01-01

    The present study was carried out as part of an ongoing general survey for myxosporean parasites infecting tilapias in the River Nile, Egypt. In the present study, 77 Nile tilapia (Oreochromis niloticus) were collected from boat landing sites at Beni-Suef governorate, Egypt and examined for the myxosporean infection. The infection was encountered as a huge number of free spores in the kidney and the spleen. The infection showed a prevalence of 51.9% (40/77) for Myxobolus brachysporus while it was 25.9% (20/77) for Myxobolus israelensis. Mature spores of M. brachysporus were ellipsoidal and measured 8.6 × 13.2 μm. The polar capsules were subcircular with 5–6 filament turns and measured 4.7 × 3.6 μm. Spores of M. israelensis were ellipsoidal in the frontal view and fusiform in the lateral view. Spore measurements were 13.4 μm long and 8.7 μm wide. The polar capsules were elongated with 6–7 filament coils and measured 8.6 × 3.1 μm. The findings presented here proved that tilapia fishes in the Nile River are still suffering from infections with Myxobolus species. Therefore, further studies should be carried out to survey the Myxobolus infection among tilapias under culture conditions to clarify the pathological impacts of this parasite in tilapias aquaculture. PMID:26286347

  7. Morphology and Sediment Transport Dynamics of the Selenga River Delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Il'icheva, L.; Nittrouer, J. A.; Pavolv, M.

    2013-12-01

    The Selenga River fan delta is a lacustrine system located in southeastern Siberia, Russia, where Selenga River flows into Lake Baikal. The Selenga River is the largest source of sediment and water entering Lake Baikal. Covering ~550 km2, the Selenga delta is one of the largest freshwater deltas in the world. Evaluating the Selenga delta and its morphology is very important for local residents who rely upon the delta for both ecological and agricultural welfare. However, a sediment budget remains poorly constrained, as do estimates for the partitioning of water and sediment amongst the numerous bifurcating delta channels. This information is critical for addressing how the delta morphology evolves and influences the stratigraphic composition of the delta. To investigate the morphological characteristics of the delta, a field expedition was undertaken during July 2013 in collaboration with Russian scientists. The overall goal of the field work was to constrain delta dynamics through data collection. Field measurements included single-beam bathymetry data and sidescan sonar data to characterize: 1) channel geometries of the delta; 2) bedform sizes and distribution; and 3) grain-size composition of the channel bed. Flow velocity measurements were collected within the bifurcating channels to measure water discharge. Bedload samples were obtained within the active distributary channels to measure downstream sediment fining. Additionally, channel island cores were collected in order to analyze the internal architecture of the delta. The data reveal a systematic downstream sediment fining, from a predominantly gravel bed near the delta apex, to a fine-sand bed at the delta-lake interface (~40 km total distance). Bathymetry data document how width-to-depth ratios systematically decrease downstream in association with increasing channel bifurcations and decreasing channel-bed grain size. Furthermore, the investigations reveal that the delta is actively terraced, with the

  8. Geochemical flows of heavy metals in the Don and Kuban Rivers deltas

    NASA Astrophysics Data System (ADS)

    Tkachenko, Oleg; Tkachenko, Anna; Lychagin, Mikhael

    2015-04-01

    Don and Kuban are the two biggest rivers of the Azov sea basin. Deltaic areas of Don and Kuban Rivers have been influenced by agricultural and industry for a long time. A significant amount of heavy metals and biogenic elements comes into the rivers downstream annually. However, in the deltaic areas these geochemical flows are transformed due to changing of the environment conditions, some pollutions are excluded from the flows and accumulated in the deltaic landscapes. In this way Don and Kuban Rivers deltas can be considered as the biogeochemical filters on the way of the heavy metals and biogenic elements flows in to the Azov Sea. The paper presents the results of the heavy metals flows investigation in the Don and Kuban Rivers deltas. This investigation is based on the field studies of the water flow and sediment load distributions and heavy metals (Fe, Mn, Zn, Cu, Cd, Ni, Cr, Co, Pb) content in the water and suspended matter of the deltas. Quantities arriving of heavy metals in the delta apex in the low water period are calculated; seasonal patterns of flows are considered. Is shown that greater number of heavy metals flow into the delta during the flood period, especially with respect to the dissolved forms of zinc and copper; it is also shown a significant increase of the heavy metals flows downstream of the large cities (Rostov-on-Don, Azov, Temryuk). All these facts indicate anthropogenic impact on the heavy metals inflow. In comparing the heavy metals flow in the Don and Kuban Rivers deltas investigated that Don River flows is an order of magnitude greater than the Kuban River flows. When it comes about the structure of the flows, shown that Don River characterized increased content of dissolved form of heavy metals; Kuban River originates in the Caucasus Mountains so the proportion of suspended forms is higher.

  9. Network topology, Transport dynamics, and Vulnerability Analysis in River Deltas: A Graph-Theoretic Approach

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Foufoula-Georgiou, E.; Longjas, A.; Zaliapin, I. V.

    2014-12-01

    River deltas are intricate landscapes with complex channel networks that self-organize to deliver water, sediment, and nutrients from the apex to the delta top and eventually to the coastal zone. The natural balance of material and energy fluxes which maintains a stable hydrologic, geomorphologic, and ecological state of a river delta, is often disrupted by external factors causing topological and dynamical changes in the delta structure and function. A formal quantitative framework for studying river delta topology and transport dynamics and their response to change is lacking. Here we present such a framework based on spectral graph theory and demonstrate its value in quantifying the complexity of the delta network topology, computing its steady state fluxes, and identifying upstream (contributing) and downstream (nourishment) areas from any point in the network. We use this framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way of systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  10. The Challenges and Opportunities of Hydrologic Remote Sensing in Data-Poor Regions: Case Study of Nile River Basin

    NASA Astrophysics Data System (ADS)

    Hasan, E.; Kirstetter, P.; Zhang, K.; Hong, Y.

    2015-12-01

    The Nile River Basin (NRB) is one of the largest trans-boundary watercourses; it is the lifeline for more than 300 million people belonging to 11 African nations sharing the NRB. The riparian countries are challenged by their infirm relationships, lack of information sharing and insufficient monitoring stations. Thus, to understand the water future along the NRB under the changing climate, reliable, and sufficient information are needed. This to assess and understand: whether will be more rainfall and induced flooding events, or the drought conditions with less surface runoff will be dominant over the Nile Basin? In addition, to what extent the available remote sensing and model reanalysis data can substitute the lack of detailed ground information, and help to determine the size and risk associated to the climatic impact on the Nile Basin? In the current study, we utilizing multi-scale remote sensing, and model reanalysis datasets for hydrologic monitoring along the NRB in Africa. The list of remote sensing, and model reanalysis datasets that implemented: several MODIS satellite products such as the NDVI, LAI, LST, and LULC datasets. Three GRACE satellite derivative products: TWS, EWT, and DTWS, and TRMM satellite precipitation product. In addition to number of model reanalysis datasets including Global Precipitation Climatological Center (GPCC) datasets, Global Land Data Assimilation System (GLDAS) products, Climate Research Unit (CRU) datasets, Physical Science Division (PSD) gridded climate dataset, and in situ Global Runoff Data Centre (GRDC) datasets. The main objective of our research is to monitor the hydrological changes and the variation in water balance along the NRB. The study approach accomplished through: (1) developing a distributed storage changes based grid, (2) trend analysis and inter-annual variability shift detections using regime shift analysis, (3) define the water stress and water deficit periods along the Nile Basins, (4) applying multi

  11. A historical perspective of river basin management in the Pearl River Delta of China.

    PubMed

    Weng, Qihao

    2007-12-01

    Three innovations in water and soil conservancy technology in the Pearl River Delta of South China, i.e., dike building, land reclamation, and dike-pond systems, were examined from a historical perspective. They were found to best reflect local farmers' efforts to cope with the challenges of various water disasters and to build a harmonious relationship with the changed environment. These technologies were critical to the agricultural success and sustainability over the past 2000 years, and reflected local farmers' wisdom in balancing land use and environmental conservation. Imprudent use of a new agricultural technology could damage the environment, and could disturb the human-environment relationship, as evidenced by the more frequent flooding that followed inappropriate dike building and premature reclamation. It is suggested that as the urbanization and industrialization process in the delta region continues, the kind of thinking that made the water and soil conservancy sustainable needs to be incorporated into the design of similar technologies for water use and river basin management today. PMID:17240525

  12. 3D Depositional Model in a Complex Incised Valley Fill: An Example from the Late Messinian Abu Madi Formation, Nile Delta Basin, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.

    2015-12-01

    The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.

  13. Numerical investigation of surface water-groundwater interactions in a river-dominated delta

    NASA Astrophysics Data System (ADS)

    Sawyer, Audrey; Edmonds, Douglas; Knights, Deon

    2015-04-01

    Deltas are fragile coastal wetland systems that are rapidly vanishing due to subsidence and sea level rise. In most wetland environments, groundwater plays a central role in carbon and nutrient cycles, vegetation community structure, and contaminant transport, yet little is known about groundwater in vanishing delta wetlands. Here, we characterize the basic patterns, rates, and residence times of groundwater flow in a model delta wetland. Delta topography was simulated by growing the delta in Delft3D, a morphodynamic flow and sediment transport model. Water surface elevations under mean annual discharge conditions were used to drive a steady groundwater flow model. Under these average hydrologic conditions, surface water-groundwater exchange represents a small fraction (<1%) of river discharge to the coast, but storm surge, waves, and tides likely increase exchange rates periodically. Groundwater residence times range widely from hours to years. The residence time distribution exhibits power-law tailing that is characteristic of surface water-groundwater exchange in single-threaded river channels. The patterns of groundwater residence times within delta networks are likely to control redox chemistry and may therefore influence the community structure of microbes, benthic invertebrates, and plants. This study illustrates the tremendous potential for numerical approaches to characterizing groundwater flow in delta wetlands. Continued efforts are needed to understand the role of groundwater in delta wetlands, particularly in light of growing initiatives to restore deltas and their ecosystems.

  14. Morphologic and stratigraphic evolution of muddy ebb-tidal deltas along a subsiding coast: Barataria Bay, Mississippi River delta

    USGS Publications Warehouse

    FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.

    2004-01-01

    The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet

  15. Reconstructing the late-Holocene fluvial dynamics of the River Nile in central Egypt

    NASA Astrophysics Data System (ADS)

    Verstraeten, G.; Willems, H.; Notebaert, B.; Dusar, B.; de Laet, V.; Marinova, E.; Kaniewski, D.

    2009-04-01

    From 2004 on, geoarchaeological research is being carried out in the Nile floodplain near Dayr al Bershah, an important ancient Egyptian funeral site in central Egypt covering burial sites from the Old to the New Kingdom. The reconstruction of the ancient Nilotic landscape and human-environment interactions alongside the transition from the lower desert to the Nile floodplain was approached multidisciplinarily. On the one hand, in the floodplain more than 300 detailed hand augerings up to 6 m depth were made, and compared with electrical resistivity imaging profiles with lengths up to 1200 m and depths from 20-45 m. These data were complemented with information obtained from historical map analysis, remote sensing imagery (ASTER, Quickbird, Corona) and digital elevation models (SRTM). Preliminary results show good correspondence between the sedimentological analysis of the hand augerings and the electrical resistivity values: sandy paleochannel deposits show high resistivity values, whereas silty to clay-rich floodplain deposits show very low ER-values. All information sources show several Nile branches being active prior to the closure of the Aswan Dam in 1964, and most branches can also be traced applying topographical analysis, confirming the sedimentological and ER analyses. However, one major branch relatively close to the eastern edge of the floodplain and the current village of Dayr al Bershah could only be traced by coring and ER as it is no longer topographically visible. First dating results suggest this Nile branch being at least 600 years old and some parts being active up to 2000 years ago. Moreover, several radiocarbon dates from the Nile floodplain show there is no clear age-depth relationship present within the floodplain sediments, as a strong negative exponential relationship between the sedimentation rate in mm.a-1 and the sediment age has been proven. This indicates large parts of the floodplain near Dayr al Bershah have been reworked over the

  16. Recent morphodynamic evolution of coastline of Mekong river Delta, towards an increased vulnerability

    NASA Astrophysics Data System (ADS)

    Besset, Manon; Brunier, Guillaume; Anthony, Edward

    2015-04-01

    Key words: Mekong river delta - Coastal deltaic morphodynamic - Deltaic vulnerability The complexity of coastal river deltas lies in part in aspects of sediment supply and redistribution, trapping and readjustment. The sediment supply and involved processes are governed by river-marine forcing, weather and climate, increasingly affected by humans, all within a frame of interactivity and morphodynamic equilibrium/disequilibrium that determine the evolution of the delta. The Mekong river delta is the third largest delta in the world. It is subject to important tidal influence, alluvial contribution from the fourth largest Asian river, seasonal monsoons and associated swell and other high-energy events. After a strong advance of over 200 km from 6.0 ka to near present (Tamura et al., 2012), the delta shoreline is rapidly and irregularly retreating, constraining the 20 million people living off the delta to suffer or adapt. This study documents changes over the last 50 years affecting the 700 km-long shoreline of the delta based on analysis of USGS topographic maps (1965), low-resolution Landsat (1973-2014) and very high-resolution SPOT 5 (2003-2011) satellite imagery. The results show widespread erosion of nearly 10 m/year over the period corresponding to the Second Indochinese conflict (1962-1972). Then followed a multi-decadal phase of accretion of about 8 m/yr, with spatial fluctuations of up to nearly -20 m/yr. This variability could reflect alternation of periods of resilience and self-organization in coastal sediment cells. A deceleration of accretion in the 2000s (+0.63 m/yr) and even a shift to erosion since 2011 (-1 m/s) are observed in parallel with the intensification of land-use changes, exploitation of the river-bed by sand mining, and hydropower dams (Brunier et al., 2014), and deforestation of deltaic wetlands for agriculture and fisheries(Thu et al., 2007). These erosion trends and their spatiotemporal disparities exacerbate the vulnerability of the

  17. Sand as a stable and sustainable resource for nourishing the Mississippi River delta

    NASA Astrophysics Data System (ADS)

    Nittrouer, Jeffrey A.; Viparelli, Enrica

    2014-05-01

    The Mississippi River delta is undergoing a catastrophic drowning, whereby 5,000 km2 of low-lying wetlands have converted to open water over at least the past eight decades, as a result of many anthropogenic and natural factors. Continued net land loss has been thought inevitable due to a decline in the load of total suspended sediment--both sand and mud--carried by the river. However, sand--which accounts for ~50-70% of modern and ancient Mississippi delta deposits but comprises only ~20% of the sampled portion of the total load--could be more important than mud for subaerial delta growth. Historically, half of the Mississippi River sediment load is supplied by the Missouri River. Here we analyse suspended sediment load data from two locations downstream from the lowest Missouri River dam to show that the measured sand load in the lower 1,100 km of the Mississippi River has not significantly diminished since dam construction. A one-dimensional numerical model of river morphodynamics predicts that the sand load feeding the delta will decrease only gradually over the next several centuries, with an estimated decline from current values of no more than about 17% within the coming six centuries. We conclude that the lower Mississippi River channel holds a significant reservoir of sand that is available to replenish diminished loads via bed scour and substantially mitigate land loss.

  18. Sediment transport and morphodynamic changes in Ziarat Estuary and Mond River Delta, the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Razavi Arab, Azadeh; Haghshenas, S. Abbas; Samsami, Farzin

    2014-05-01

    The Mond River, which is considered as one of the Major Iranian rivers discharging in to the Persian Gulf, is bounded within the region from 51°10' to 54°28' E and 27°20' to 29°51' N, flowing in two provinces of Fars and Boushehr. The latest part of the river is completely meandered and the river mouth has been migrating twice during the past 50 years. Total sediment discharge of the river is estimated as 12 million cubic meter per year. Analysis of meandering river phenomenon and river mouth migration as well as evolution of the down-stream sand spits has long been one of the challenges in hydrodynamic discussions. This natural process usually takes place in rivers to provide energy equilibrium and its integration with human desires has posed as a management issue. The sediment discharging to the Persian Gulf plays an essential role in formation of Mond River Delta as well as a set of sand spits formed in downstream of the river mouth. The morpho-dynamic of entire environment of the Mond River - Mond Delta highly affects marine environment in the surrounding area. The present study offers the results of a numerical and field investigation of various features of river-delta interaction on Ziarat Estuary and the Mond Delta area. A numerical model has been utilized to investigate cases of flow and sediment transport behaviour in the coastal Mond area and future migration patterns of the River Mouth is estimated. Sediment sources and relevant contributions in morphodynamic changes of the sand spits are widely investigated through sediment constituent analysis. The results of the numerical model are compared with field observations and comprehensive GIS based analysis of historic shoreline changes from aerial photos and satellite imagery. It is concluded that the model achievements are capable to predict the observed phenomena. Management guidelines and suggestions are deducted and drawn from the calibration and verification of the results with field observations

  19. Grain size controls on the morphology and stratigraphy of river-dominated deltas

    NASA Astrophysics Data System (ADS)

    Burpee, Alex; Parsons, Daniel; Slingerland, Rudy; Edmonds, Doug; Best, Jim; Cederberg, James; McGuffin, Andrew; Caldwell, Rebecca; Nijhuis, Austin

    2015-04-01

    The proportions of sand and mud that make up a river-dominated delta strongly determine its topset morphology, which in turn controls its internal facies and clinoform geometry. These relationships allow prediction of the stratigraphy of a delta using the character of its topset and reconstruction of deltaic planform from measures of clinoform geometry. This paper presents results from the Delft3D modeling system which was used to simulate nine self-formed deltas that possess different sediment loads and critical shear stresses that are required for re-entrainment of mud. The simulated deltas were set to prograde into a shallow basin without waves, tides, Coriolis forcing, and buoyancy. Model results indicate that sand-dominated deltas are more fan-shaped whilst mud-dominated deltas are more birdsfoot in planform, because the sand-dominated deltas have more active distributaries, a smaller variance of topset elevations, and thereby experience a more equitable distribution of sediment to their perimeters. This results in a larger proportion of channel facies in sand-dominated deltas, and more uniformly-distributed clinoform dip directions, steeper dips, and greater clinoform concavity. These conclusions are consistent with data collected from the Goose River Delta, a coarse-grained fan delta prograding into Goose Bay, Labrador, Canada and also allow us to undertake a re-interpretation of the Kf-1 parasequence set of the Cretaceous Last Chance Delta, a unit of the Ferron Sandstone near Emery, Utah, USA. We argue that the Last Chance delta likely possessed numerous distributaries with at least five orders of bifurcation.

  20. Linking rapid erosion of the Mekong River delta to human activities.

    PubMed

    Anthony, Edward J; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world's third largest delta, densely populated, considered as Southeast Asia's most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river's discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  1. Sediment transport dynamics linked to morphological evolution of the Selenga River delta, Lake Baikal, Russia

    NASA Astrophysics Data System (ADS)

    Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Czapiga, M. J.; Il'icheva, E.; Pavolv, M.; Parker, G.

    2014-12-01

    The Selenga River delta, Lake Baikal, Russia, is approximately 700 km2 in size and contains three active lobes that receive varying amounts of water and sediment discharge. This delta represents a unique end-member in so far that the system is positioned along the deep-water (~1500 m) margin of Lake Baikal and therefore exists as a shelf-edge delta. In order to evaluate the morphological dynamics of the Selenga delta, field expeditions were undertaken during July 2013 and 2014, to investigate the morphologic, sedimentologic, and hydraulic nature of this delta system. Single-beam bathymetry data, sidescan sonar data, sediment samples, and aerial survey data were collected and analyzed to constrain: 1) channel geometries within the delta, 2) bedform sizes and spatial distributions, 3) grain size composition of channel bed sediment as well as bank sediment, collected from both major and minor distributary channels, and 4) elevation range of the subaerial portion of the delta. Our data indicate that the delta possesses downstream sediment fining, ranging from predominantly gravel and sand near the delta apex to silt and sand at the delta-lake interface. Field surveys also indicate that the Selenga delta has both eroding and aggrading banks, and that the delta is actively incising into some banks that consist of terraces, which are defined as regions that are not inundated by typical 2- to 4-year flood discharge events. Therefore the terraces are distinct from the actively accreting regions of the delta that receive sedimentation via water inundation during regular river floods. We spatially constrain the regions of the Selenga delta that are inundated during floods versus terraced using a 1-D water-surface hydrodynamic model that produces estimates of stage for flood water discharges, whereby local water surface elevations produced with the model are compared to the measured terrestrial elevations. Our analyses show that terrace elevations steadily decrease downstream

  2. Quantifying the signature of sediment composition on the topologic and dynamic complexity of river delta channel networks and inferences toward delta classification

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Longjas, Anthony; Caldwell, Rebecca; Edmonds, Douglas A.; Zaliapin, Ilya; Foufoula-Georgiou, Efi

    2016-04-01

    Deltas contain complex self-organizing channel networks that nourish the surface with sediment and nutrients. Developing a quantitative understanding of how controlling physical mechanisms of delta formation relate to the channel networks they imprint on the landscape remains an open problem, hindering further progress on quantitative delta classification and understanding process from form. Here we isolate the effect of sediment composition on network structure by analyzing Delft3D river-dominated deltas within the recently introduced graph-theoretic framework for quantifying complexity of delta channel networks. We demonstrate that deltas with coarser incoming sediment tend to be more complex topologically (increased number of pathways) but simpler dynamically (reduced flux exchange between subnetworks) and that once a morphodynamic steady state is reached, complexity also achieves a steady state. By positioning simulated deltas on the so-called TopoDynamic complexity space and comparing with field deltas, we propose a quantitative framework for exploring complexity toward systematic inference and classification.

  3. Food web implications of delta13C and delta15N variability over 370 km of the regulated Colorado River USA.

    PubMed

    Shannon, J P; Blinn, D W; Haden, G A; Benenati, E P; Wilson, K P

    2001-01-01

    Dual stable isotope analysis in the regulated Colorado River through Grand Canyon National Park, USA, revealed a food web that varied spatially through this arid biome. Down-river enrichment of delta13C data was detected across three trophic levels resulting in shifted food webs. Humpack chub delta13C and delta15N values from muscle plugs and fin clips did not differ significantly. Humpback chub and rainbow trout trophic position is positively correlated with standard length indicating an increase in piscivory by larger fishes. Recovery of the aquatic community from impoundment by Glen Canyon Dam and collecting refinements for stable isotope analysis within large rivers are discussed. PMID:11924849

  4. Quantifying the effects of tidal amplitude on river delta network flow partitioning

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Sendrowski, A.; Passalacqua, P.

    2014-12-01

    Deltas are generally classified as river-, tide-, or wave-dominated systems, but the influences of all environmental forces cannot be ignored when fully addressing the dynamics of the system. For example, in river-dominated deltas, river flow from the feeder channel acts as the primary driver of dynamics within the system by delivering water, sediment, and nutrients through the distributary channels, but tides and waves may affect their allocation within the network. There has been work on the asymmetry of environmental fluxes at bifurcations, but relatively few studies exist on the water partitioning at the network scale. Understanding the network and environmental effects on the flux of water, sediment, and nutrients would benefit delta restoration projects and management practices. In this study, we investigate the allocation of water flow among the five major distributary channels at Wax Lake Delta (WLD), a micro-tidal river-dominated delta in coastal Louisiana, and the effects of tidal amplitude on distributary channel discharges. We collect and compare discharge results from acoustic Doppler current profiler (ADCP) velocity transects between spring and neap tide and between falling and rising tide. The results show that discharges increased from spring to neap tide and from rising to falling tide. We investigate the spatial gradients of tidal influence within the network and validate hydraulic geometry relations for tidally influenced channels. Our results give insight into the control of network structure on flow partitioning and show the degree of tidal influence on channel flow in the river-dominated WLD.

  5. EAARL Coastal Topography-Pearl River Delta 2008: First Surface

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Michael, D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived first surface (FS) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  6. EAARL Coastal Topography-Pearl River Delta 2008: Bare Earth

    USGS Publications Warehouse

    Nayegandhi, Amar; Brock, John C.; Wright, C. Wayne; Miner, Michael D.; Yates, Xan; Bonisteel, Jamie M.

    2009-01-01

    These remotely sensed, geographically referenced elevation measurements of Lidar-derived bare earth (BE) topography were produced as a collaborative effort between the U.S. Geological Survey (USGS), Florida Integrated Science Center (FISC), St. Petersburg, FL; the University of New Orleans (UNO), Pontchartrain Institute for Environmental Sciences (PIES), New Orleans, LA; and the National Aeronautics and Space Administration (NASA), Wallops Flight Facility, VA. This project provides highly detailed and accurate datasets of a portion of the Pearl River Delta in Louisiana and Mississippi, acquired March 9-11, 2008. The datasets are made available for use as a management tool to research scientists and natural resource managers. An innovative airborne Lidar instrument originally developed at the NASA Wallops Flight Facility, and known as the Experimental Advanced Airborne Research Lidar (EAARL), was used during data acquisition. The EAARL system is a raster-scanning, waveform-resolving, green-wavelength (532-nanometer) Lidar designed to map near-shore bathymetry, topography, and vegetation structure simultaneously. The EAARL sensor suite includes the raster-scanning, water-penetrating full-waveform adaptive Lidar, a down-looking red-green-blue (RGB) digital camera, a high-resolution multi-spectral color infrared (CIR) camera, two precision dual-frequency kinematic carrier-phase GPS receivers, and an integrated miniature digital inertial measurement unit, which provide for submeter georeferencing of each laser sample. The nominal EAARL platform is a twin-engine Cessna 310 aircraft, but the instrument may be deployed on a range of light aircraft. A single pilot, a Lidar operator, and a data analyst constitute the crew for most survey operations. This sensor has the potential to make significant contributions in measuring sub-aerial and submarine coastal topography within cross-environmental surveys. Elevation measurements were collected over the survey area using the

  7. Cyclone Nargis survey in Myanmar's Ayeyarwady River delta

    NASA Astrophysics Data System (ADS)

    Fritz, H. M.; Blount, C.; Thwin, S.; Thu, M. K.; Chan, N.

    2008-12-01

    Tropical cyclone Nargis (Cat. 4) made landfall on May 2, 2008, causing the worst natural disaster in Myanmar's recorded history. Official death toll estimates exceed 130,000 fatalities making it the 7th deadliest cyclone ever recorded worldwide. Nargis took a rare nearly eastern track over the Bay of Bengal while developing sustained winds over 210 km/h with gusts up to 260 km/h hours prior to landfall in Myanmar at untypically low latitude near 16°N. It then proceeded northeast and approximately 12 hours later weakened to a Category 1 storm with sustained wind speeds of 130 km/h as it passed over Yangon. The first independent storm surge reconnaissance team was deployed to Myanmar from 9 to 23 August 2008. Cyclone Nargis struck low-lying coastal plains particularly vulnerable to storm surge flooding due to the lack of effective barriers. The team surveyed coastal and inland villages from Pyapon to Purian Point, encompassing the Bogale and Ayeyarwady River mouths. The survey by boat spanned more than 150 km parallel to the cyclone track between Pyapon and Pyinkhayan encompassing 20 hardest hit settlements such as Pyinsalu. More than 1m vertical erosion and 150 m land loss were measured at various coastal locations such as Aya. Massive deforestation of mangroves and land use were documented. Maximum storm surge elevations and overland flow depths were measured based on water marks on buildings, scars on trees, and rafted debris. The storm surge peaked in the landfall area south of Pyinkhayan and eastwards in Pyinsalu exceeding 5m. Storm waves more than 2m high were superimposed on the storm surge level in most areas according to eyewitnesses. Inundation distances reached beyond 50 km inland. Catastrophic peak fatality rates exceeded 80% in hardest hit villages with the majority being children and women. The high water marks and fatality rates significantly exceeded corresponding 2004 Indian Ocean tsunami values at every location. Eyewitnesses were interviewed to

  8. Subaquatic soils in the Volga, Don and Kuban Rivers deltas.

    NASA Astrophysics Data System (ADS)

    Tkachenko, Anna; Gerasimova, Maria; Lychagin, Mikhail

    2015-04-01

    River deltas occupy a special interface position in the environment and are characterized by contrasting hydrological and landscape-geochemical regimes. Small depth of water and weak currents contribute to suspended matter deposition. Significant spread of aquatic plants provides the enrichment of subaquatic soils in organic matter. All these factors contribute to the formation of different subaquatic soils. Possibility of including them in the classification systems is discussed by many authors (Demas and Rabenhorst, 2001; Stolt et al., 2011); there is also a special subaquatic qualifier for submerged soils in WRB; however, they are still absent in many national classification systems, as well as in the recent Russian one (2008). The purpose of this research is to reveal the properties of the subaquatic soils in the Volga, Don and Kuban Rivers deltaic areas and to propose pedogenetic approaches to categorize AQUAZEMS. Investigations of deltaic areas were performed in 2010-2012 in deltaic lagoons, fresh-water bays, small channels, oxbow lakes, and also in the part of deltaic near-shore zone. Morphological descriptions of distinguishable layers (colour, texture, thickness, boundaries, consistence, plant residues and shell debris) were made in columns obtained by augering as it is done by other researchers (Stolt et al., 2011), and supplemented with analytical data (pH, Eh, TDS, particle-size composition, and Corg). It is suggested to name the horizons in aquazems in the same way as in terrestrial soils in the recent Russian soil classification system, and apply symbols starting with the combination of caps - AQ. Most typical for aquazems is their aquagley AQG horizon that has features similar to terrestrial gleys - homogeneity in color and consistence, permeation by clay, predominance of dove grey colour. The AQG horizon gradually merges into parent material - stratified bottom sediments. The "topsoil" is usually enriched in organic matter and may be different in

  9. First account on the sedimentological, geochemical and petrophysical record of the Messinian Salinity Crisis in the subsurface of onshore Nile Delta, Egypt.

    NASA Astrophysics Data System (ADS)

    Leila, Mahmoud; Moscariello, Andrea

    2016-04-01

    The giant Cenozoic Nile Delta system in the extreme northern part of Egypt occupies the southeastern part of the Eastern Mediterranean Basin and represents the most prolific gas province in Egypt with estimates more than 62 tcf of proven reserves (Niazi and Dahi, 2004). Despite the importance of the Messinian sediments in the Nile Delta hosting excellent petroleum reservoirs and seals (Dolson et al., 2001), they are still poorly studied. A multidisciplinary sedimentological, geochemical and petrophysical study is being carried out to unravel the depositional environment and tectonic setting before, during and after the important Messinian Salinity Crisis (MSC) period in the Eastern Mediterranean, and how this affected the eastern part of the onshore Nile Delta. The Lower Messinian Qawasim Formation consists of high to low-density turbiditic sandstones displaying several vertical stacked patterns of coarsening and fining upwards trends reflecting different pulses of sedimentation suggesting a sedimentation in a submarine fan developed at the base of shelf slope. The deeply incised valley infill, dating the Upper Messinian consists of the Abu Madi Formation made of lowstand braided and meandering fluvial sandstone interbedded with fine-grained floodplain sandstones and siltstones. The base of this unit is erosional and contains large mud clasts embedded in a fine-grained matrix. The Upper Miocene lowstand fluvial sandstones are capped by estuarine fine-grained cross laminated sandstones, siltstones/mudstones followed by an open marine mudstones of the Early Pliocene Kafr El-Sheikh Formation representing the end of the MSC and the subsequent transgression episode after the re-establishment of the connection between the Mediterranean and the Atlantic Ocean. Both the Qawasim and Abu Madi Formations display similar geochemical fingerprints from the clastic components. Recycled Cretaceous and Eocene sedimentary and granodioritic to intermediate igneous rocks located in

  10. A graph-theoretic approach to River Deltas: Studying complexity, universality, and vulnerability to change.

    NASA Astrophysics Data System (ADS)

    Tejedor, Alejandro; Longjas, Anthony; Zaliapin, Ilya; Foufoula-Georgiou, Efi

    2015-04-01

    River deltas are landforms with complex channel networks that deliver water, sediment and nutrient fluxes from rivers to oceans or inland water bodies via multiple pathways. Most of the deltas are subject to anthropogenic and natural perturbations causing topological and dynamical changes in the delta structure and function. We present a quantitative framework based on spectral graph theory within which a systematic study of the topology, transport dynamics and response to change of river deltas can be performed, as well as computation of sub-networks (from apex to shoreline outlets), and contributing/nourishing areas. We introduce metrics of topologic and dynamic complexity and define a multidimensional complexity space where each delta projects. By analysis of seven deltas of different morphodynamic and environmental settings, we report a surprising power law relationship between sub-network size and its dynamic exchange with surrounding sub-networks within the deltaic system. The exponent of the relationship is universal (predicting that a sub-network twice as large leaks out to other sub-networks only 1.3 times its total flux) and the pre-exponent depends on the topologic complexity of the delta network as a whole, i.e., the ensemble of the interacting sub-sub-networks. We also use the developed framework to construct vulnerability maps that quantify the relative change of sediment and water delivery to the shoreline outlets in response to possible perturbations in hundreds of upstream links. This enables us to evaluate which links (hotspots) and what management scenarios would most influence flux delivery to the outlets, paving the way for systematically examining how local or spatially distributed delta interventions can be studied within a systems approach for delta sustainability.

  11. Retrospective Montioring of Ecosystem Changes Using Published Data, Lessons Learned from Egypt's Nile River Delta

    EPA Science Inventory

    Monitoring programs for riverine and wetland ecosystems often do not begin until some substantial shift in ecosystem structure or loss of ecosystem service has taken place. Sometimes a lack of resources or interest may impede monitoring efforts. In the case of the large brackis...

  12. Linking rapid erosion of the Mekong River delta to human activities

    PubMed Central

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-01-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams. PMID:26446752

  13. Linking rapid erosion of the Mekong River delta to human activities

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Brunier, Guillaume; Besset, Manon; Goichot, Marc; Dussouillez, Philippe; Nguyen, Van Lap

    2015-10-01

    As international concern for the survival of deltas grows, the Mekong River delta, the world’s third largest delta, densely populated, considered as Southeast Asia’s most important food basket, and rich in biodiversity at the world scale, is also increasingly affected by human activities and exposed to subsidence and coastal erosion. Several dams have been constructed upstream of the delta and many more are now planned. We quantify from high-resolution SPOT 5 satellite images large-scale shoreline erosion and land loss between 2003 and 2012 that now affect over 50% of the once strongly advancing >600 km-long delta shoreline. Erosion, with no identified change in the river’s discharge and in wave and wind conditions over this recent period, is consistent with: (1) a reported significant decrease in coastal surface suspended sediment from the Mekong that may be linked to dam retention of its sediment, (2) large-scale commercial sand mining in the river and delta channels, and (3) subsidence due to groundwater extraction. Shoreline erosion is already responsible for displacement of coastal populations. It is an additional hazard to the integrity of this Asian mega delta now considered particularly vulnerable to accelerated subsidence and sea-level rise, and will be exacerbated by future hydropower dams.

  14. Birds of the Indigirka River Delta, Russia: Historical and biogeographic comparisons

    USGS Publications Warehouse

    Pearce, J.M.; Esler, Daniel; Degtyarev, A.G.

    1998-01-01

    We documented the breeding status and relative abundance of all avian species on the coastal portion of the Indigirka River Delta during spring and summer 1993-95. Data on avifaunal composition were then compared to data from adjacent areas from Eastern Siberia to the Chukotka Peninsula to evaluate how species composition changes longitudinally within the arctic and typical tundra zones of northern Russia. We recorded 63 species on the Indigirka River Delta, 37 (58.7 %) of which were confirmed breeders during at least one of the three years. Five new species were recorded breeding (Arenaria interpres, Calidris acuminata, Limnodromus scolopaceus, Stercorarius parasiticus, and Asio flammeus), and 13 previously unrecorded species were observed during this study. We also identified several species of rare or threatened status in Russia and North America, including Branta bernicla, Somateria fischeri, Polysticta stelleri, and Rhodostethia rosea. We used parsimony and distance matrix methods to compare the breeding species richness on the Indigirka River Delta to that of six other Russian Arctic areas. Biogeographic comparisons revealed the presence of two clades in the Russian Arctic: the Lena River Delta east to Chaun Delta and the Chukotka Peninsula.

  15. River Delta Subsidence Measured with Interferometric Synthetic Aperture Radar (InSAR)

    NASA Astrophysics Data System (ADS)

    Higgins, Stephanie

    This thesis addresses the need for high-resolution subsidence maps of major world river deltas. Driven by a combination of rising water, sediment compaction, and reduced sediment supply due to damming and flood control, many deltas are sinking relative to sea level. A lack of data constraining rates and patterns of subsidence has made it difficult to determine the relative contributions of each factor in any given delta, however, or to assess whether the primary drivers of land subsidence are natural or anthropogenic. In recent years, Interferometric Synthetic Aperture Radar (InSAR) has emerged as a satellite-based technique that can map ground deformation with mm-scale accuracy over thousands of square kilometers. These maps could provide critical insight into the drivers of subsidence in deltas, but InSAR is not typically applied to non-urban delta areas due to the difficulties of performing the technique in wet, vegetated settings. This thesis addresses those difficulties and achieves high-resolution measurements of ground deformation in rural deltaic areas. Chapter 1 introduces the processes that drive relative sea level rise in river deltas and investigates open questions in delta subsidence research. Chapter 2 assesses the performance of InSAR in delta settings and reviews interferogram generation in the context of delta analysis, presenting delta-specific processing details and guiding interpretation in these challenging areas. Chapter 3 applies Differential (D-) InSAR to the coast of the Yellow River Delta in China. Results show that subsidence rates are as high as 250 mm/y due to groundwater extraction at aquaculture facilities, a rate that exceeds local and global average sea level rise by nearly two orders of magnitude and suggests a significant hazard for Asian megadeltas. Chapter 4 applies interferometric stacking and Small Baseline Subset (SBAS)-InSAR to the Ganges-Brahmaputra Delta, Bangladesh. Results show that stratigraphy controls subsidence in

  16. Estimating sediment budgets at the interface between rivers and estuaries with application to the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Wright, S.A.; Schoellhamer, D.H.

    2005-01-01

    [1] Where rivers encounter estuaries, a transition zone develops where riverine and tidal processes both affect sediment transport processes. One such transition zone is the Sacramento-San Joaquin River Delta, a large, complex system where several rivers meet to form an estuary (San Francisco Bay). Herein we present the results of a detailed sediment budget for this river/estuary transitional system. The primary regional goal of the study was to measure sediment transport rates and pathways in the delta in support of ecosystem restoration efforts. In addition to achieving this regional goal, the study has produced general methods to collect, edit, and analyze (including error analysis) sediment transport data at the interface of rivers and estuaries. Estimating sediment budgets for these systems is difficult because of the mixed nature of riverine versus tidal transport processes, the different timescales of transport in fluvial and tidal environments, and the sheer complexity and size of systems such as the Sacramento-San Joaquin River Delta. Sediment budgets also require error estimates in order to assess whether differences in inflows and outflows, which could be small compared to overall fluxes, are indeed distinguishable from zero. Over the 4 year period of this study, water years 1999-2002, 6.6 ?? 0.9 Mt of sediment entered the delta and 2.2 ?? 0.7 Mt exited, resulting in 4.4 ?? 1.1 Mt (67 ?? 17%) of deposition. The estimated deposition rate corresponding to this mass of sediment compares favorably with measured inorganic sediment accumulation on vegetated wetlands in the delta.

  17. Geoarcheological investigations on the development of the Neva River delta (Gulf of Finland) during the Holocene

    NASA Astrophysics Data System (ADS)

    Kulkova, M. A.; Gusentsova, T. M.; Sapelko, T. V.; Nesterov, E. M.; Sorokin, P. E.; Ludikova, A. V.; Ryabchuk, D. V.; Markova, M. A.

    2014-01-01

    The article is devoted to the formation of the Neva River in the context of geoarcheological investigations carried out on the archeological site Okhta 1, which is located at the mouth of the Okhta River in the St. Petersburg city region (NW Russia). The site is multilayered and includes cultural layers from the Neolithic, Early Metal Age, Iron Age, and the Landskrona 13th century and Nienschanz 17th century fortresses. The Neva River's formation has long been a controversial question. The transgression of Ladoga Lake around 5950-2950 cal BP had an effect on the formation of the Neva River. By reviewing the complex investigations of the deposits and artifacts by geological and archeological methods, we may reconstruct the developmental stages of the Litorina Sea Bay and Neva River delta in this area. The formation of delta river sediments occurred from 3589 to 3078 cal BP. The end of the delta river formation can be associated with the appearance of ancient Early Iron Age people in the region in 2750-2350 cal BP.

  18. Effect of tides, river flow, and gate operations on entrainment of juvenile salmon into the interior Sacramento–San Joaquin River Delta

    USGS Publications Warehouse

    Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.

    2015-01-01

    Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to

  19. LIS-HYMAP coupled Hydrological Modeling in the Nile River Basin and the Greater Horn of Africa

    NASA Astrophysics Data System (ADS)

    Jung, H. C.; Getirana, A.; Policelli, F. S.

    2015-12-01

    Water scarcity and resources in Africa have been exacerbated by periodic droughts and floods. However, few studies show the quantitative analysis of water balance or basin-scale hydrological modeling in Northeast Africa. The NASA Land Information System (LIS) is implemented to simulate land surface processes in the Nile River Basin and the Greater Horn of Africa. In this context, the Noah land surface model (LSM) and the Hydrological Modeling and Analysis Platform (HYMAP) are used to reproduce the water budget and surface water (rivers and floodplains) dynamics in that region. The Global Data Assimilation System (GDAS) meteorological dataset is used to force the system . Due to the unavailability of recent ground-based observations, satellite data are considered to evaluate first model outputs. Water levels at 10 Envisat virtual stations and water discharges at a gauging station are used to provide model performance coefficients (e.g. Nash-Sutcliffe, delay index, relative error). We also compare the spatial and temporal variations of flooded areas from the model with the Global Inundation Extent from Multi-Satellites (GIEMS) and the Alaska Satellite Facility (ASF)'s MEaSUREs Wetland data. Finally, we estimate surface water storage variations using a hypsographic curve approach with Shuttle Radar Topography Mission (SRTM) topographic data and evaluate the model-derived water storage changes in both river and floodplain. This study demonstrates the feasibility of using LIS-HYMAP coupled modeling to support seasonal forecast methods for prediction of decision-relevant metrics of hydrologic extremes.

  20. An Observed Step Change in River Delta Turbidity Following 1982-1983 El Nino Floods

    NASA Astrophysics Data System (ADS)

    Hestir, E. L.; Schoellhamer, D. H.; Morgan-King, T.; Ustin, S.

    2010-12-01

    Sediment transport influences the geomorphology, biogeochemical cycling, pollutant load, and ecology of river deltas and estuaries. In the Sacramento-San Joaquin Delta, turbidity is largely considered a surrogate of suspended sediment concentration, and has been declining over the past 30 years. This has contributed to dramatic changes in the ecology of the Delta and to the decline of the endemic and endangered delta smelt. The declining turbidity trend in the Delta has been attributed to reduced sediment inputs and expansion of invasive submerged aquatic vegetation. In this study, we analyzed historic monthly turbidity records collected by the California Department of Water Resources Environmental Monitoring Program from 1975-2008. We investigated structural changes in the turbidity trend, and identified a significant step decrease in turbidity after the beginning of the 1984 water year at nine different sites within the Delta. This significant decrease in Delta turbidity appears to have been caused by the combination of large El-Nino driven winter floods from both the San Joaquin and Sacramento Rivers in 1982-1983 and the high inflows throughout the summer. We suggest that these extended high flow events flushed the erodible sediment pool from the Delta into the San Francisco Bay. This event has left the Delta in its current, low-turbidity state. Another study found that a step decrease in suspended sediment concentration in San Francisco Bay in 1999 may have been caused by depletion of erodible sediment. This indicates that depletion of erodible sediment may have progressed downstream and, if the erodible sediment pools were created by hydraulic mining in the late 1800s, sedimentation in the estuary has largely recovered from hydraulic mining.

  1. Increasing nutrient concentrations and the rise and fall of a coastal fishery; a review of data from the Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Oczkowski, Autumn; Nixon, Scott

    2008-04-01

    There is a conceptual basis, and some empirical evidence, that increasing nutrient loads to coastal waterbodies will initially increase ecosystem productivity up to a threshold, beyond which secondary productivity and fishery yields will decline. Here we have compiled data from the Egyptian and international literature for fish landings and inorganic nutrient (nitrogen and phosphorus) data from four large coastal lagoons (63-500 km 2) on Egypt's Nile Delta to provide evidence for the initially positive, but then negative, response of fishery yields to increased nutrient supply across a very wide range of enrichment (up to 1 mM dissolved organic nitrogen, DIN). Taking the data from the four lagoons as an aggregate, fish landings increase with increased nutrients up to a peak in landings at approximately 100 μM DIN, beyond which there was an exponential decline in landings. It appears that pesticide and heavy metal contamination and overfishing played only minor roles in the lowered fishery yield at highest DIN concentrations. We do not have sufficient evidence about the specific mechanisms that led to the decline of the fishery, but suspect that some feature of eutrophication—low oxygen, for example, may have been involved.

  2. Source and composition of sediments and organic carbon delivered to the Mackenzie River delta

    NASA Astrophysics Data System (ADS)

    Vonk, J. E.; Blusztajn, J.; Giosan, L.; Montlucon, D. B.; Graf-Pannatier, E.; Eglinton, T. I.

    2012-12-01

    The Mackenzie River is believed to represent the largest fluvial sediment flux to the Arctic Ocean (124 Mt/yr), delivering as much sediment as all other major Arctic Rivers combined. This flux is based on river inflow prior to its entry into the delta, and consists of Mackenzie River mainstem sediments (103 Mt/yr; including Arctic Red River) entering the delta from the southeast, and Peel River sediments (21 Mt/yr) entering from the southwest. The Mackenzie River delta, the second largest river delta in the world, is covered with thousands of small, shallow lakes. In-lake sedimentation, in addition to overbank and point bar sedimentation, is substantial and estimated to be around 102 Mt/yr. Erosion of banks and channels may account for approximately half of this flux, so the "true" offshore sediment flux might be lower than is typically reported. Improved estimates are required for the flux and provenance of fluvial sediment delivered to the delta, and to the adjacent Beaufort Sea, to be able to increase our understanding of Arctic deltas, particularly in the light of ongoing and future climatic change. Here we investigate the source and composition of sediments in the Mackenzie delta and near-coastal zone, based on a blend of sedimentological (grain size, mineral surface area), organic (%TOC, %TN, δ13C, δ15N, Δ14C) and inorganic (major/trace elements, Nd/Sr isotopes) properties of suspended river particulates (n=6), bank sediments (n=8), lake sediments (n=21), and shelf sediments (n=9). Bank and shelf sediments showed fairly constant bulk %TOC contents and δ13C values (1.0±0.3%, and -26.7±0.3‰; 1.3±0.3%, and -25.5±0.7‰, respectively) whereas lake sediments revealed greater spatial variability (2.2±1.2%, and -26.8±1.3‰). The variability in Nd isotopes of the detrital sediment component is significant (ɛNd of suspended matter -12.7 to -13.9; banks -12.4 to -14.5; lakes -11.4 to -14.5; and shelf -12.5 to -13.0). This suggests strong variations in

  3. Origin of the Sinai-Negev erg, Egypt and Israel: mineralogical and geochemical evidence for the importance of the Nile and sea level history

    USGS Publications Warehouse

    Muhs, Daniel R.; Roskin, Joel; Tsoar, Haim; Skipp, Gary; Budahn, James R.; Sneh, Amihai; Porat, Naomi; Stanley, Jean-Daniel; Katra, Itzhak; Blumberg, Dan G.

    2013-01-01

    The Sinai–Negev erg occupies an area of 13,000 km2 in the deserts of Egypt and Israel. Aeolian sand of this erg has been proposed to be derived from the Nile Delta, but empirical data supporting this view are lacking. An alternative source sediment is sand from the large Wadi El Arish drainage system in central and northern Sinai. Mineralogy of the Negev and Sinai dunes shows that they are high in quartz, with much smaller amounts of K-feldspar and plagioclase. Both Nile Delta sands and Sinai wadi sands, upstream of the dunes, also have high amounts of quartz relative to K-feldspar and plagioclase. However, Sinai wadi sands have abundant calcite, whereas Nile Delta sands have little or no calcite. Overall, the mineralogical data suggest that the dunes are derived dominantly from the Nile Delta, with Sinai wadi sands being a minor contributor. Geochemical data that proxy for both the light mineral fraction (SiO2/10–Al2O3 + Na2O + K2O–CaO) and heavy mineral fraction (Fe2O3–MgO–TiO2) also indicate a dominant Nile Delta source for the dunes. Thus, we report here the first empirical evidence that the Sinai–Negev dunes are derived dominantly from the Nile Delta. Linkage of the Sinai–Negev erg to the Nile Delta as a source is consistent with the distribution of OSL ages of Negev dunes in recent studies. Stratigraphic studies show that during the Last Glacial period, when dune incursions in the Sinai–Negev erg began, what is now the Nile Delta area was characterized by a broad, sandy, minimally vegetated plain, with seasonally dry anastomosing channels. Such conditions were ideal for providing a ready source of sand for aeolian transport under what were probably much stronger glacial-age winds. With the post-glacial rise in sea level, the Nile River began to aggrade. Post-glacial sedimentation has been dominated by fine-grained silts and clays. Thus, sea level, along with favorable climatic conditions, emerges as a major influence on the timing of dune

  4. STS-65 Earth observation of Omo River Delta, Lake Turkana in Ethiopia / Kenya

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Earth observation taken aboard Columbia, Orbiter Vehicle (OV) 102, is of Omo River Delta and Lake Turkana in Ethiopia / Kenya. The Omo Delta at the north end of Lake Turkana (Rudolph) is one of the long-term environmental study sites of the Space Shuttle program. The environmental interest in this instance is the documentation of the delta's extension into the lake. This delta extension, or aggradation, is felt to be the result of large-scale soil erosion in the recently deforested areas of Ethiopia in the watershed of the Omo River. Using digitized, rectified, machine-classified, and mensurated NASA photography, it has been determined that the Omo Delta has increased in area by approximately 400% to about 1,800 square kilometers since it was first photographed during the Gemini program in 1965. This photograph documents the long-term and increasing turbidity of Lake Turkana and the continuing delta extension southward by both the northwest and northeast distributaries of the Om

  5. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    PubMed Central

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads. PMID:26628104

  6. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-12-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  7. Research Spotlight: What controls the shape of sediment channels in river deltas?

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-03-01

    When turbulent, sediment-filled rivers empty into oceans and lakes, the channels often divide repeatedly to form triangular deltas. Some channels, however, travel long distances before bifurcating, creating elongated channels. Understanding how these patterns arise could be useful for designing wetland restoration schemes on river deltas. Seeking to explain the conditions under which elongated channels form, Falcini and Jerolmack considered an analogy with cold filaments in ocean currents, in which high potential vorticity (a measure that combines the rotation of a flow with its thermal gradient) helps a filament hold a coherent structure over long distances. The researchers introduced a model that incorporates sediment concentration and fluid vorticity, to derive a new “potential vorticity” equation that describes sedimentation patterns at the river mouth. Their model shows that a high potential vorticity is needed for the creation of elongated channels, and their comparison to modeling, laboratory, and field studies confirms that potential vorticity is a primary control on channel morphology. The new model could help to understand the shape of the iconic Mississippi River delta and may aid in the design of proposed channel diversions there and in other deltas. (Journal of Geophysical Research-Earth Surface, doi:10.1029/2010JF001802, 2010)

  8. Dead delta's former productivity: Two trillion shells at the mouth of the Colorado River

    NASA Astrophysics Data System (ADS)

    Kowalewski, Michal; Avila Serrano, Guillermo E.; Flessa, Karl W.; Goodfriend, Glenn A.

    2000-12-01

    The diversion of the Colorado River by dams and irrigation projects, started in the 1930s, triggered the collapse of the Colorado delta ecosystem. Paleontological, ecological, geochronological, stable isotope, field, and satellite image data provide estimates of the delta's benthic productivity during the 1 k.y. directly preceding the artificial shutdown of the river. At least 2 × 1012 shells of bivalve mollusks make up the current beaches and islands of the delta. The 125 individual valves dated using 14C-calibrated amino acid racemization indicate that these shells range in age from A.D. 950 to 1950. Seasonal intrashell cycles in δ180 values indicate that average-sized bivalves lived at least 3 yr. The most conservative calculation based on these numbers indicates that during the time of natural river flow, an average standing population of ˜6 × 109 bivalve mollusks (population density ˜50/m2) thrived on the delta. In contrast, the present abundance of shelly benthic macroinvertebrates is ˜94% lower (3/m2 in 1999 2000). The dramatic decrease in abundance testifies to the severe loss of benthic productivity resulting from diversion of the river's flow and the inadequacy of its partial resumption (1981 to present). An integration of paleontological records with geomorphological, geochemical, and geochronological data can provide quantitative insights into human impact on coastal ecosystems.

  9. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    PubMed

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads. PMID:26628104

  10. Sediment consolidation settlement of Chengbei Sea area in the northern Huanghe River subaqueous delta, China

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Feng, Xiuli; Liu, Xiao

    2016-06-01

    One of the most important factors controlling the morphology of the modern Huanghe (Yellow) River delta is consolidation settlement, which is impacted by fast deposition, high water content, and low density of seafloor sediment. Consolidation settlement of the Huanghe River subaqueous delta was studied based on field data, laboratory experiments on 12 drill holes, and the one-dimensional consolidation theory. Results show that vertical sediment characteristics varied greatly in the rapidly forming sedimentary bodies of the modern Huanghe River subaqueous delta. Sediments in the upper parts of drill holes were coarser than those in the deeper parts, and other physical and mechanical properties changed accordingly. On the basis of the one-dimensional consolidation theory and drilling depth, the final consolidation settlement of drill holes was between 0.6 m and 2.8 m, and the mean settlement of unit depth was at 1.5-3.5 cm/m. It takes about 15-20 years for the consolidation degree to reach 90% and the average sedimentation rate within the overlying 50 m strata was at 5 cm/a to 12 cm/a. This study helps to forecast the final consolidation settlement and settlement rate of the modern Huanghe River subaqueous delta, which provides key geotechnical information for marine engineers.

  11. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  12. HABITAT ASSESSMENT USING A RANDOM PROBABILITY BASED SAMPLING DESIGN: ESCAMBIA RIVER DELTA, FLORIDA

    EPA Science Inventory

    Smith, Lisa M., Darrin D. Dantin and Steve Jordan. In press. Habitat Assessment Using a Random Probability Based Sampling Design: Escambia River Delta, Florida (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems...

  13. Biological assessment: water hyacinth control program for the Sacramento/ San Joaquin River Delta of California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A detailed Biological Assessment was developed for the proposed Areawide Water Hyacinth Control Program to outline the procedures that will be used to control this invasive aquatic plant in the Sacramento/ San Joaquin River Delta, and to help determine if this action is expected to threaten endanger...

  14. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: The marked impact of river-bed mining and implications for delta destabilisation

    NASA Astrophysics Data System (ADS)

    Brunier, Guillaume; Anthony, Edward J.; Goichot, Marc; Provansal, Mireille; Dussouillez, Philippe

    2014-11-01

    The Mekong delta, in Vietnam, is the world's third largest delta. Densely populated, the delta has been significantly armoured with engineering works and dykes to protect populations and infrastructure from storms, and shrimp farms from saltwater intrusion. Considerable development pressures in Vietnam and in the upstream countries have resulted in the construction of several dams in China and in important channel-bed aggregate extractions especially in Cambodia. The effects of these developments impact the delta dynamics in various ways. In this study, changes in the channel morphology of the Mekong proper and the Bassac, the two main distributaries in the 250 km-long deltaic reach from the Cambodian border to the coast, were analysed using channel depth data for 1998 and 2008. The channels display important and irregular bed changes over the 10-year comparison period, including significant incision and expansion and deepening of numerous pools. The mean depth of both channels increased by more than 1.3 m. Both channels also showed correlative significant bed material losses: respectively 90 million m3 in the Mekong and 110 million m3 in the Bassac over the 10-year period. These important losses over a relatively short period, and weak correlations between bed incision and hydraulic parameters suggest that the marked morphological changes are not in equilibrium with flow and sediment entrainment conditions, and are therefore not related to changes in river hydrology. We claim that aggregate extraction, currently practised on a very large scale in the Mekong delta channels and upstream of the delta, is the main cause of these recent morphological changes. These changes are deemed to contribute actively to rampant bank erosion in the delta as well as to erosion of the Mekong delta shoreline. Other contributory activities include the numerous dykes and embankments. The role of existing dams in bed losses remains unclear in the absence of reliable data on the Mekong

  15. Detection of Area Changes in River Mouthbars at the Mekong River Delta using ALOS/PALSAR data

    NASA Astrophysics Data System (ADS)

    Tanaka, A.; Uehara, K.; Tamura, T.; Saito, Y.

    2011-12-01

    Projected sea-level rise by the year 2100 would be ~1m recently and its negative impact on the coastal zone has been pointed out, particularly for mega-deltas in Asia by the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2007). The relative sea-level rise varies with specific conditions and processes over broad spatial and temporal scales. Therefore, long-term monitoring of geomorphological changes in coastal areas over wide areas is of highly interest and importance for coastal management. However, due to limited data availability and accessibility in developing countries, there is not enough systematic coastal monitoring. The Mekong River Delta is one of typical mega-deltas in Asia, which has a low-lying wide delta-plain located in Cambodia to South Vietnam. Sediment and water discharges of the Mekong River are controlled by the monsoon with high and low discharge in summer (wet season) and winter (dry season), respectively. Therefore, technologies such as SAR (Synthetic Aperture Radar) not affected by the cloud conditions offer potential for monitoring in the monsoon Asia region. In this study, ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band SAR) data acquired over a period from December 2006 to January 2011 are analyzed to investigate the relation between the sea level and the shape of mouthbars in the Mekong River. Level-1.0 PALSAR data were processed, coregistered, and geocoded to make SAR backscatter intensity images. River mouthbars with strong backscatter, which is surrounded by the water with weak backscatter, are successfully extracted using a histogram thresholding algorithm. Estimated areas of river mouthbars, which are located at the central part of the delta and openly faced to the South China Sea, gradually increase on an annual time scale. These river mouthbars are growing to the seaward. Besides this overall increasing trend, seasonal variations of areas are observed; these correlate with

  16. Long-term NO2 monitoring by satellite in the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Li, Long; Shi, Runhe; Liu, Pudong; Zhang, Jie

    2013-09-01

    Recently, the air quality has been continuing to deteriorate and threaten public health in the Pearl River Delta. China, the host country for the 2010 Asian Games, faced the great challenge of air quality issues, particularly in the Pearl River Delta, where the Asian Games were held. The major aim of this study is to reveal the spatial and temporal characteristics of NO2 in the Pearl River Delta during October 2004 to December 2010. The long-term characteristics and variations of the NO2 column concentration before and during the 2010 Asian Games were analyzed by using the NO2 product OMNO2e from the Ozone Monitoring Instrument (OMI). Results show that the annual average of the NO2 column concentration has a significant downward trend from 2005 to 2010 in the Pearl River Delta: the total column concentration of NO2 (TotNO2) in the atmosphere decreased from 9.207×1015 molec/cm2 to 8.173×1015 molec/cm2, with an average annual rate of -2.247%; the tropospheric column concentration of NO2 (TropNO2)decreased from 6.685×1015 molec/cm2 to 5.646×1015 molec/cm2, with an average annual rate of -3.109%. The ratio TropNO2/TotNO2 indicating the amount of NO2 exhausted by human activities also decreased from 0.726 in 2005 to 0.691 in 2010. During the 2010 Asian Games, the weekly average of the TropNO2 in Pearl River Delta was maintained at a low level. The NO2 average distribution in the Pearl River Delta is characterized by the maximum in the geometric center, outwardly smaller, and the shrinking areas with high TropNO2 concentration from 2005 to 2010. Foshan, Jiangmen and Kwangchowan were severely polluted cities during the Games. However, the air quality of the Pearl River Delta was improved compared to its historical periods due to governmental preventive/control measures during the 2010 Asian Games.

  17. Integration of Seismic Sequence Analysis and High Resolution Sequence Stratigraphy for Delineating the Sedimentation Characteristics and Modeling of Baltim Area, Off-Shore Nile Delta, Egypt

    NASA Astrophysics Data System (ADS)

    Nasr El-Deen Badawy, A. M. E. S.; Abu El-Ata, A. S. A.; El-Gendy, N. H.

    2014-12-01

    The current study is aiming to discuss the Messinian Prospectivity of the concerned area, which is located in the offshore Nile Delta, about 25 Km from the Mediterranean Sea shoreline. An integrated exploration approach applied, using a variety of the 2D/3D seismic data, subsurface borehole geologic and log data of the selected wells distributed in the study area, as well as the geophysical and biostratigraphic data. The well data comprise well markers, and electric logs, where the geological data represented by litho-stratigraphic information, as well as ditch samples analysis of the studied interval. The geophysical data include check shots, VSP, velocity cubes and 3D seismic lines. Biostratigraphic data include biozones, benthonic to planktonic ratios, nannofossils and foraminiferal data. Seismic interpretation and seismic stratigraphic analysis, in the form of seismic sequence analysis, seismic facies analysis, seismic unit analysis and geologic confirmation have been done by the aid of Petrel and Kingdom computer softwares. The seismic lines were interpreted for defining the different parasequences and picking the various smaller sequences for mapping, after picking each sequence from the seismic correlation, it is facilitated the mapping of every sequence laterally. In addition, the interpretation of structures and isopach of every sequence has been carried out, and the seismic attributes for every sequence were possible, to extract the sands present in each sequence, and to study the extensions of these sands that act as a reservoir. The integration of all results was taken as a base to produce the various models for the study area. The first one was the depositional environmental model, which showed that, the area varies from intertidal-littoral southward at Nidoco wells to inner-middle neritic at Baltim East wells then to outer neritic, and changes to bathyal and then to abyssal at the extreme north. The geologic model for the area was constructed

  18. Identification of the main attribute of river flow temporal variations in the Nile Basin

    NASA Astrophysics Data System (ADS)

    Onyutha, C.; Willems, P.

    2015-11-01

    Temporal variation of monthly flows was investigated at 18 Discharge Measurement Stations (DMS) within the Nile Basin in Africa. The DMS were grouped using a clustering procedure based on the similarity in the flow variation patterns. The co-variation of the rainfall and flow was assessed in each group. To investigate the possible change in catchment behavior, which may interfere with the flow-rainfall relationship, three rainfall-runoff models were applied to the major catchment in each group based on the data time period falling within 1940-2003. The co-occurrence of the changes in the observed and simulated overland flow was examined using the cumulative rank difference (CRD) technique and the quantile perturbation method (QPM). Two groups of the DMS were obtained. Group 1 comprises the DMS from the equatorial region and/or South Sudan, while those in Sudan, Ethiopia and Egypt form group 2. In the selected catchment of each group, the patterns of changes in terms of the CRD sub-trends and QPM anomalies for both the observed and simulated flows were in a close agreement. These results indicate that change in catchment behavior due to anthropogenic influence in the Nile basin over the selected time period was minimal. Thus, the overall rainfall-runoff generation processes of the catchments were not impacted upon in a significant way. The temporal flow variations could be attributed mainly to the rainfall variations.

  19. Hydrological Response to Climate Change for Gilgel Abay River, in the Lake Tana Basin - Upper Blue Nile Basin of Ethiopia

    PubMed Central

    Dile, Yihun Taddele; Berndtsson, Ronny; Setegn, Shimelis G.

    2013-01-01

    Climate change is likely to have severe effects on water availability in Ethiopia. The aim of the present study was to assess the impact of climate change on the Gilgel Abay River, Upper Blue Nile Basin. The Statistical Downscaling Tool (SDSM) was used to downscale the HadCM3 (Hadley centre Climate Model 3) Global Circulation Model (GCM) scenario data into finer scale resolution. The Soil and Water Assessment Tool (SWAT) was set up, calibrated, and validated. SDSM downscaled climate outputs were used as an input to the SWAT model. The climate projection analysis was done by dividing the period 2010-2100 into three time windows with each 30 years of data. The period 1990-2001 was taken as the baseline period against which comparison was made. Results showed that annual mean precipitation may decrease in the first 30-year period but increase in the following two 30-year periods. The decrease in mean monthly precipitation may be as much as about -30% during 2010-2040 but the increase may be more than +30% in 2070-2100. The impact of climate change may cause a decrease in mean monthly flow volume between -40% to -50% during 2010-2040 but may increase by more than the double during 2070-2100. Climate change appears to have negligible effect on low flow conditions of the river. Seasonal mean flow volume, however, may increase by more than the double and +30% to +40% for the Belg (small rainy season) and Kiremit (main rainy season) periods, respectively. Overall, it appears that climate change will result in an annual increase in flow volume for the Gilgel Abay River. The increase in flow is likely to have considerable importance for local small scale irrigation activities. Moreover, it will help harnessing a significant amount of water for ongoing dam projects in the Gilgel Abay River Basin. PMID:24250755

  20. Sediment Bypassing of River Mouths: Mechanisms and Effects on Delta Evolution

    NASA Astrophysics Data System (ADS)

    Nienhuis, J.; Ashton, A. D.; Giosan, L.; Nardin, W.; Fagherazzi, S.

    2014-12-01

    Wave-influenced deltas are shaped by wave-driven transport of river-borne sediments. Near the river mouth, combined jet and wave dynamics, along with morphodynamic feedbacks, control the fraction of sediment transported alongshore by littoral currents that can bypass the river channel. Here we study how different bypassing rates influence large-scale delta evolution and examine the effect of waves and the river mouth jet on alongshore sediment bypassing. First, we use a modified version of the Coastline Evolution Model (CEM) to look at the effects of wave climate, fluvial sediment supply, and alongshore sediment bypassing rates on channel orientation. This modified version of CEM progrades the channel in a direction perpendicular to the local shoreline orientation at the river mouth, allowing feedbacks between alongshore sediment transport and fluvial sediment delivery to steer the river channel. Additionally, we allow a prescribed fraction of littoral sediment to bypass the river mouth. We find that deltas that have a large fluvial sediment flux can orient themselves into the direction of dominant wave approach. Lower fluvial inputs result in channels that are deflected downdrift, with increasing deflection as bypassing is reduced. In contrast, channels do not deflect downdrift (but can reorient themselves updrift for large fluvial fluxes) when full bypassing is allowed. These results demonstrate the importance of river mouth sediment bypassing on delta growth patterns, but, as we explore arbitrary bypassing laws, the simulations cannot help us constrain natural bypassing fluxes. To further investigate the natural extent and mechanisms of bypassing, we use the coupled hydrodynamic and morphodynamic model Delft3D-SWAN. With a simplified shoreface and river channel, the model is able to construct river mouth morphology from the combined action of alongshore transport and a river mouth jet. Exploring river mouth morphology and sediment bypassing under various wave

  1. Geomorphic evolution of the Lilas River fan delta (Central Evia, Greece), during the Quaternary

    NASA Astrophysics Data System (ADS)

    Karymbalis, Efthimios; Valkanou, Kanella; Tsironis, Giorgos; Tsodoulos, Ioannis; Iliopoulos, George; Tsanakas, Konstantinos; Batzakis, Vasilis

    2015-04-01

    This study deals with the geomorphic evolution of the Lilas river fan delta, which is a late Holocene fan delta with an area of about 25 km2, extended mainly towards the south Evoikos Gulf and a secondary extension of approximately 5 km2 towards the north Evoikos Gulf (Central Evia Isl., Greece). This work has combined field geomorphological mapping with the study of the stratigraphy of late Pleistocene - Holocene deltaic sediments. A detailed geomorphic map at the scale of 1:5,000 has been prepared showing both the deltaic plain and the coastal zone features using GIS techniques. Comparative interpretation of aerial photographs taken in different dates and reliable maps of the last two centuries along with field observations depict recent changes of the delta morphology. Profiles of seven drill cores up to the depth of 70 m, provided by the municipality authorities, were considered in order to study the late Pleistocene - Holocene stratigraphy of the broader fan delta plain. Additionally, two boreholes reaching the depth of 4.75 m were drilled with a portable drilling set. The stratigraphy of the late Holocene sediments was studied in detail and 41 sediment samples, collected from selected sedimentary layers, were analyzed using micropaleontological and grain size analysis methods, while samples were dated using OSL. The study of the stratigraphy of the late Holocene deltaic sediments showed that during this period the sea invaded the area of the northwestern delta and created a shallow open marine environment which at times was disturbed by multiple quiet lagoonal phases of fine sediment deposition. Geomorphological mapping showed that among the most important factor for the recent development of the delta is fluvial sedimentation. The dominant landforms in the deltaic plain are the numerous abandoned palaeochannels. The main channel of the river changed its course several times leading to the building and subsequent abandonment of at least four fan delta lobes

  2. Assessment of climate change impact on hydrological extremes in two source regions of the Nile River Basin

    NASA Astrophysics Data System (ADS)

    Taye, M. T.; Ntegeka, V.; Ogiramoi, N. P.; Willems, P.

    2011-01-01

    The potential impact of climate change was investigated on the hydrological extremes of Nyando River and Lake Tana catchments, which are located in two source regions of the Nile River basin. Climate change scenarios were developed for rainfall and potential evapotranspiration (ETo), considering 17 General Circulation Model (GCM) simulations to better understand the range of possible future change. They were constructed by transferring the extracted climate change signals to the observed series using a frequency perturbation downscaling approach, which accounts for the changes in rainfall extremes. Projected changes under two future SRES emission scenarios A1B and B1 for the 2050s were considered. Two conceptual hydrological models were calibrated and used for the impact assessment. Their difference in simulating the flows under future climate scenarios was also investigated. The results reveal increasing mean runoff and extreme peak flows for Nyando catchment for the 2050s while unclear trend is observed for Lake Tana catchment for mean volumes and high/low flows. The hydrological models for Lake Tana catchment, however, performed better in simulating the hydrological regimes than for Nyando, which obviously also induces a difference in the reliability of the extreme future projections for both catchments. The unclear impact result for Lake Tana catchment implies that the GCM uncertainty is more important for explaining the unclear trend than the hydrological models uncertainty. Nevertheless, to have a better understanding of future impact, hydrological models need to be verified for their credibility of simulating extreme flows.

  3. Estimation of evaporation over the upper Blue Nile basin by combining observations from satellites and river flow gauges

    NASA Astrophysics Data System (ADS)

    Allam, Mariam M.; Jain Figueroa, Anjuli; McLaughlin, Dennis B.; Eltahir, Elfatih A. B.

    2016-02-01

    Reliable estimates of regional evapotranspiration are necessary to improve water resources management and planning. However, direct measurements of evaporation are expensive and difficult to obtain. Some of the difficulties are illustrated in a comparison of several satellite-based estimates of evapotranspiration for the Upper Blue Nile (UBN) basin in Ethiopia. These estimates disagree both temporally and spatially. All the available data products underestimate evapotranspiration leading to basin-scale mass balance errors on the order of 35 percent of the mean annual rainfall. This paper presents a methodology that combines satellite observations of rainfall, terrestrial water storage as well as river-flow gauge measurements to estimate actual evapotranspiration over the UBN basin. The estimates derived from these inputs are constrained using a one-layer soil water balance and routing model. Our results describe physically consistent long-term spatial and temporal distributions of key hydrologic variables, including rainfall, evapotranspiration, and river-flow. We estimate an annual evapotranspiration over the UBN basin of about 2.55 mm per day. Spatial and temporal evapotranspiration trends are revealed by dividing the basin into smaller subbasins. The methodology described here is applicable to other basins with limited observational coverage that are facing similar future challenges of water scarcity and climate change.

  4. Dispersal of larval suckers at the Williamson River Delta, Upper Klamath Lake, Oregon, 2006-09

    USGS Publications Warehouse

    Wood, Tamara M.; Hendrixson, Heather A.; Markle, Douglas F.; Erdman, Charles S.; Burdick, Summer M.; Ellsworth, Craig M.; Buccola, Norman L.

    2012-01-01

    An advection/diffusion modeling approach was used to simulate the transport of larval suckers from spawning areas in the Williamson River, through the newly restored Williamson River Delta, to Upper Klamath Lake. The density simulations spanned the years of phased restoration, from 2006/2007 prior to any levee breaching, to 2008 when the northern part of the delta was reconnected to the lake, and 2009 when levees on both sides of the delta had been breached. Model simulation results from all four years were compared to field data using rank correlation. Spearman ρ correlation coefficients were usually significant and in the range 0.30 to 0.60, providing moderately strong validation of the model. The correlation coefficients varied with fish size class in a way that suggested that the model best described the distribution of smaller fish near the Williamson River channel, and larger fish away from the channel. When Lost River and shortnose/Klamath largescale suckers were simulated independently, the correlation results suggested that the model better described the transport and dispersal of the latter species. The incorporation of night-time-only drift behavior in the Williamson River channel neither improved nor degraded correlations with field data. The model showed that advection by currents is an important factor in larval dispersal.

  5. Changing river courses in the western part of the Ganga-Brahmaputra delta

    NASA Astrophysics Data System (ADS)

    Rudra, Kalyan

    2014-12-01

    The Ganga-Brahmaputra delta is the largest on Earth, the product of two of the world's largest and siltiest rivers. It is formed in a basin located over the zone where the Indian plate subducts beneath the Himalaya to the north and the Indo-Burman ranges to the east. The distributaries in the south-western part of the delta remain disconnected from the Ganga-Padma during the lean season, although they are still active in bank erosion and sediment transport during the monsoon. Four distributaries of the Bhagirathi-Hugli (the westernmost branch of the Ganga) have gone dry during known historical period. In many cases, the natural decay of rivers has been exacerbated by the human intervention, especially where rivers are embanked and no allowance made for their migration through meandering and avulsion. In the coastal zone where mangroves were cleared and creeks were embanked since the late 18th century, decay of channels, and advancement of the sea towards inland have been aggravated. The subsequent attempt of flushing the sediment load to the sea from the estuary to improve the status of navigation in the Bhagirathi-Hugli River was not successful to the level of expectation. This paper deals with the decay and changing courses of rivers in the western part of the Ganga-Brahmaputra delta.

  6. Another unique river: a consideration of some of the characteristics of the trunk tributaries of the Nile River in northwestern Ethiopia in relationship to their aquatic food resources.

    PubMed

    Kappelman, John; Tewabe, Dereje; Todd, Lawrence; Feseha, Mulugeta; Kay, Marvin; Kocurek, Gary; Nachman, Brett; Tabor, Neil; Yadeta, Meklit

    2014-12-01

    Aquatic food resources are important components of many modern human hunter-gatherer diets and yet evidence attesting to the widespread exploitation of this food type appears rather late in the archaeological record. While there are times when, for example, the capture of fish and shellfish requires sophisticated technology, there are other cases when the exact ecological attributes of an individual species and the particulars of its environment make it possible for these foods to be incorporated into the human diet with little or no tool use and only a minimal time investment. In order to better understand the full set of variables that are considered in these sorts of foraging decisions, it is necessary to detail the attributes of each particular aquatic environment. We discuss here some of the characteristics of the trunk tributaries of the Nile and Blue Rivers in the Horn of Africa. Unlike typical perennial rivers, these 'temporary' rivers flow only during a brief but intense wet season; during the much longer dry season, the rivers are reduced to a series of increasingly disconnected waterholes, and the abundant and diverse fish and mollusk populations are trapped in ever smaller evaporating pools. The local human population today utilizes a number of diverse capture methods that range from simple to complex, and vary according to the size and depth of the waterhole and the time of the year. When we view the particular characteristics of an individual river system, we find that each river is 'unique' in its individual attributes. The Horn of Africa is believed to be along the route that modern humans followed on their migration out of Africa, and it is likely that the riverine-based foraging behaviors of these populations accompanied our species on its movement into the rest of the Old World. PMID:25017504

  7. Long-term process-based morphodynamic modeling of the Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Wei, Xing; Wu, Chaoyu

    2014-12-01

    The Pearl River Delta (PRD) is one of the most complex large-scale estuarine systems in China. A long-term morphodynamic model is developed to simulate the evolution of the PRD and its estuarine system. The driving forces and control factors considered in the model include river discharge, representative tides, and sediment supply from the Pearl River system; sediment compaction; neotectonic movement; and sea-level variation. Core data with 14C dating at 40 locations are used to validate the model output with satisfactory results. New findings on the mid-Holocene evolution of the PRD show that the delta's chronological and spatial evolution pattern is different from those found in previous studies in several respects. The model confirms that complex morphologies, e.g., rocky islands in shallow estuarine bays, are some of the most important factors affecting the long-term evolution of the PRD.

  8. Delta distributary dynamics in the Skagit River Delta (Washington, USA): Extending, testing, and applying avulsion theory in a tidal system

    NASA Astrophysics Data System (ADS)

    Hood, W. Gregory

    2010-11-01

    Analysis of historical aerial photos shows that Skagit Delta (Washington, USA) distributary dynamics are consistent with the Slingerland and Smith model of avulsion dynamics where the ratio of the water surface slopes of the two branches of a bifurcation predicts avulsion stability. This model was extended to predict distributary inlet (upstream) width and bankfull cross-sectional area. The water surface gradient ratio for a bifurcation pair predicted distributary width well; the lowest R2 was 0.61 for the 1937 data points, but R2 ranged from 0.83 to 0.90 for other year-specific regression lines. Gradient ratios were not constant over the historical record; from 1937 to 1972 the mainstem river channel lengthened by 1250 m in the course of marsh progradation, while distributary lengthening was comparatively negligible. Consequently, the gradient advantage of the distributaries increased and their channels widened. After the mainstem river terminus stabilized from 1972 to the present, the distributaries continued to lengthen with marsh progradation, so that distributary gradient advantage steadily declined and the distributaries narrowed. While distributary cross sections were not available for the historical period, they were surveyed in 2007 near the distributary inlets. Gradient ratio was more closely related to distributary inlet bankfull cross-sectional area ( R2 = 0.95) than to minimum distributary width for any photo year examined. Applying this form of analysis to Skagit Delta distributaries that have been dammed in the course of agricultural development suggests that their restoration to stabilize eroding marshes at their outlets and recover salmon migration pathways would be feasible without significant risk of full river avulsion.

  9. A brief history and summary of the effects of river engineering and dams on the Mississippi River system and delta

    USGS Publications Warehouse

    Alexander, Jason S.; Wilson, Richard C.; Green, W. Reed

    2012-01-01

    The U.S. Geological Survey Forecast Mekong project is providing technical assistance and information to aid management decisions and build science capacity of institutions in the Mekong River Basin. A component of this effort is to produce a synthesis of the effects of dams and other engineering structures on large-river hydrology, sediment transport, geomorphology, ecology, water quality, and deltaic systems. The Mississippi River Basin (MRB) of the United States was used as the backdrop and context for this synthesis because it is a continental scale river system with a total annual water discharge proportional to the Mekong River, has been highly engineered over the past two centuries, and the effects of engineering have been widely studied and documented by scientists and engineers. The MRB is controlled and regulated by dams and river-engineering structures. These modifications have resulted in multiple benefits including navigation, flood control, hydropower, bank stabilization, and recreation. Dams and other river-engineering structures in the MRB have afforded the United States substantial socioeconomic benefits; however, these benefits also have transformed the hydrologic, sediment transport, geomorphic, water-quality, and ecologic characteristics of the river and its delta. Large dams on the middle Missouri River have substantially reduced the magnitude of peak floods, increased base discharges, and reduced the overall variability of intraannual discharges. The extensive system of levees and wing dikes throughout the MRB, although providing protection from intermediate magnitude floods, have reduced overall channel capacity and increased flood stage by up to 4 meters for higher magnitude floods. Prior to major river engineering, the estimated average annual sediment yield of the Mississippi River Basin was approximately 400 million metric tons. The construction of large main-channel reservoirs on the Missouri and Arkansas Rivers, sedimentation in dike

  10. Holocene evolution in weathering and erosion patterns in the Pearl River delta

    NASA Astrophysics Data System (ADS)

    Hu, Dengke; Clift, Peter D.; BöNing, Philipp; Hannigan, Robyn; Hillier, Stephen; Blusztajn, Jerzy; Wan, Shiming; Fuller, Dorian Q.

    2013-07-01

    Sediments in the Pearl River delta have the potential to record the weathering response of this river basin to climate change since 9.5 ka, most notably weakening of the Asian monsoon since the Early Holocene (˜8 ka). Cores from the Pearl River delta show a clear temporal evolution of weathering intensity, as measured by K/Al, K/Rb, and clay mineralogy, that shows deposition of less weathered sediment at a time of weakening monsoon rainfall in the Early-Mid Holocene (6.0-2.5 ka). This may reflect an immediate response to a less humid climate, or more likely reduced reworking of older deposits from river terraces as the monsoon weakened. Human settlement of the Pearl River basin may have had a major impact on landscape and erosion as a result of the establishment of widespread agriculture. After around 2.5 ka weathering intensity sharply increased, despite limited change in the monsoon, but at a time when anthropogenic pollutants (e.g., Cu, Zn, and Pb) increased and when the flora of the basin changed. 87Sr/86Sr covaries with these other proxies but is also partly influenced by the presence of carbonate. The sediments in the modern Pearl River are even more weathered than the youngest material from the delta cores. We infer that the spread of farming into the Pearl River basin around 2.7 ka was followed by a widespread reworking of old, weathered soils after 2.5 ka, and large-scale disruption of the river system that was advanced by 2.0 ka.