Science.gov

Sample records for nile virus transmission

  1. Epidemiology and Transmission Dynamics of West Nile Virus Disease

    PubMed Central

    Komar, Nicholas; Nasci, Roger S.; Montgomery, Susan P.; O'Leary, Daniel R.; Campbell, Grant L.

    2005-01-01

    From 1937 until 1999, West Nile virus (WNV) garnered scant medical attention as the cause of febrile illness and sporadic encephalitis in parts of Africa, Asia, and Europe. After the surprising detection of WNV in New York City in 1999, the virus has spread dramatically westward across the United States, southward into Central America and the Caribbean, and northward into Canada, resulting in the largest epidemics of neuroinvasive WNV disease ever reported. From 1999 to 2004, >7,000 neuroinvasive WNV disease cases were reported in the United States. In 2002, WNV transmission through blood transfusion and organ transplantation was described for the first time, intrauterine transmission was first documented, and possible transmission through breastfeeding was reported. This review highlights new information regarding the epidemiology and dynamics of WNV transmission, providing a new platform for further research into preventing and controlling WNV disease. PMID:16102302

  2. West Nile virus transmission and ecology in birds

    USGS Publications Warehouse

    McLean, R.G.; Ubico, S.R.; Docherty, D.E.; Hansen, W.R.; Sileo, L.; Mcnamara, T.S.

    2001-01-01

    The ecology of the strain of West Nile virus (WNV) introduced into the United States in 1999 has similarities to the native flavivirus, St. Louis encephalitis (SLE) virus, but has unique features not observed with SLE virus or with WNV in the old world. The primary route of transmission for most of the arboviruses in North America is by mosquito, and infected native birds usually do not suffer morbidity or mortality. An exception to this pattern is eastern equine encephalitis virus, which has an alternate direct route of transmission among nonnative birds, and some mortality of native bird species occurs. The strain of WNV circulating in the northeastern United States is unique in that it causes significant mortality in exotic and native bird species, especially in the American crow (Corvus brachyrhynchos). Because of the lack of information on the susceptibility and pathogenesis of WNV for this species, experimental studies were conducted at the USGS National Wildlife Health Center. In two separate studies, crows were inoculated with a 1999 New York strain of WNV, and all experimentally infected crows died. In one of the studies, control crows in regular contact with experimentally inoculated crows in the same room but not inoculated with WNV succumbed to infection. The direct transmission between crows was most likely by the oral route. Inoculated crows were viremic before death, and high titers of virus were isolated from a variety of tissues. The significance of the experimental direct transmission among captive crows is unknown.

  3. Does reservoir host mortality enhance transmission of West Nile virus?

    PubMed Central

    Foppa, Ivo M; Spielman, Andrew

    2007-01-01

    Background Since its 1999 emergence in New York City, West Nile virus (WNV) has become the most important and widespread cause of mosquito-transmitted disease in North America. Its sweeping spread from the Atlantic to the Pacific coast was accompanied by widespread mortality among wild birds, especially corvids. Only sporadic avian mortality had previously been associated with this infection in the Old World. Here, we examine the possibility that reservoir host mortality may intensify transmission, both by concentrating vector mosquitoes on remaining hosts and by preventing the accumulation of "herd immunity". Results Inspection of the Ross-Macdonald expression of the basic reproductive number (R0) suggests that this quantity may increase with reservoir host mortality. Computer simulation confirms this finding and indicates that the level of virulence is positively associated with the numbers of infectious mosquitoes by the end of the epizootic. The presence of reservoir incompetent hosts in even moderate numbers largely eliminated the transmission-enhancing effect of host mortality. Local host die-off may prevent mosquitoes to "waste" infectious blood meals on immune host and may thus facilitate perpetuation and spread of transmission. Conclusion Under certain conditions, host mortality may enhance transmission of WNV and similarly maintained arboviruses and thus facilitate their emergence and spread. The validity of the assumptions upon which this argument is built need to be empirically examined. PMID:17498307

  4. Hydrologic variability and the dynamics of West Nile virus transmission

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.

    2011-12-01

    West Nile virus (WNV) first emerged in North America in New York City during 1999 and since that time has spread throughout the continent and settled into a pattern of local endemicity in which outbreaks of variable size develop in some years but not others. Predicting where and when these outbreaks will develop is an issue of considerable public health importance. Spillover transmission of WNV to humans typically occurs when infection rates among vector mosquitoes are elevated. Mosquito infection rates are not constant through time but instead increase when newly emergent mosquitoes can more readily acquire WNV by blood-meal feeding on available, infected animal hosts. Such an increase of vector mosquito infection rates is termed amplification and is facilitated for WNV by intense zoonotic transmission of the virus among vector mosquitoes and avian hosts. Theory, observation and model simulations indicate that amplification is favored when mosquito breeding habitats and bird nesting and roosting habitats overlap. Both vector mosquitoes and vertebrate hosts depend on water resources; mosquitoes are critically dependent on the availability of standing water, as the first 3 stages of the mosquito life cycle, egg, larvae, pupae, are aquatic. Here it is shown that hydrologic variability often determines where and when vector mosquitoes and avian hosts congregate together, and when the amplification of WNV is more likely. Measures of land surface wetness and pooling, from ground observation, satellite observation, or numerical modeling, can provide reliable estimates of where and when WNV transmission hotspots will arise. Examples of this linkage between hydrology and WNV activity are given for Florida, Colorado and New York, and an operational system for monitoring and forecasting WNV risk in space and time is presented for Florida.

  5. Vector-Virus Interactions and Transmission Dynamics of West Nile Virus

    PubMed Central

    Ciota, Alexander T.; Kramer, Laura D.

    2013-01-01

    West Nile virus (WNV; Flavivirus; Flaviviridae) is the cause of the most widespread arthropod-borne viral disease in the world and the largest outbreak of neuroinvasive disease ever observed. Mosquito-borne outbreaks are influenced by intrinsic (e.g., vector and viral genetics, vector and host competence, vector life-history traits) and extrinsic (e.g., temperature, rainfall, human land use) factors that affect virus activity and mosquito biology in complex ways. The concept of vectorial capacity integrates these factors to address interactions of the virus with the arthropod host, leading to a clearer understanding of their complex interrelationships, how they affect transmission of vector-borne disease, and how they impact human health. Vertebrate factors including host competence, population dynamics, and immune status also affect transmission dynamics. The complexity of these interactions are further exacerbated by the fact that not only can divergent hosts differentially alter the virus, but the virus also can affect both vertebrate and invertebrate hosts in ways that significantly alter patterns of virus transmission. This chapter concentrates on selected components of the virus-vector-vertebrate interrelationship, focusing specifically on how interactions between vector, virus, and environment shape the patterns and intensity of WNV transmission. PMID:24351794

  6. Predictive Modeling of West Nile Virus Transmission Risk in the Mediterranean Basin: How Far from Landing?

    PubMed Central

    Chevalier, Véronique; Tran, Annelise; Durand, Benoit

    2013-01-01

    The impact on human and horse health of West Nile fever (WNF) recently and dramatically increased in Europe and neighboring countries. Involving several mosquito and wild bird species, WNF epidemiology is complex. Despite the implementation of surveillance systems in several countries of concern, and due to a lack of knowledge, outbreak occurrence remains unpredictable. Statistical models may help identifying transmission risk factors. When spatialized, they provide tools to identify areas that are suitable for West Nile virus transmission. Mathematical models may be used to improve our understanding of epidemiological process involved, to evaluate the impact of environmental changes or test the efficiency of control measures. We propose a systematic literature review of publications aiming at modeling the processes involved in WNF transmission in the Mediterranean Basin. The relevance of the corresponding models as predictive tools for risk mapping, early warning and for the design of surveillance systems in a changing environment is analyzed. PMID:24362544

  7. Predictive modeling of West Nile virus transmission risk in the Mediterranean Basin: how far from landing?

    PubMed

    Chevalier, Véronique; Tran, Annelise; Durand, Benoit

    2014-01-01

    The impact on human and horse health of West Nile fever (WNF) recently and dramatically increased in Europe and neighboring countries. Involving several mosquito and wild bird species, WNF epidemiology is complex. Despite the implementation of surveillance systems in several countries of concern, and due to a lack of knowledge, outbreak occurrence remains unpredictable. Statistical models may help identifying transmission risk factors. When spatialized, they provide tools to identify areas that are suitable for West Nile virus transmission. Mathematical models may be used to improve our understanding of epidemiological process involved, to evaluate the impact of environmental changes or test the efficiency of control measures. We propose a systematic literature review of publications aiming at modeling the processes involved in WNF transmission in the Mediterranean Basin. The relevance of the corresponding models as predictive tools for risk mapping, early warning and for the design of surveillance systems in a changing environment is analyzed. PMID:24362544

  8. West Nile virus

    MedlinePlus

    West Nile virus is a disease spread by mosquitoes. The condition ranges from mild to severe. ... West Nile virus was first identified in 1937 in Uganda in eastern Africa. It was first discovered in the U.S. in ...

  9. Reduced West Nile Virus Transmission Around Communal Roosts of Great-Tailed Grackle (Quiscalus mexicanus)

    PubMed Central

    Komar, Nicholas; Colborn, James M.; Horiuchi, Kalanthe; Delorey, Mark; Biggerstaff, Brad; Damian, Dan; Smith, Kirk; Townsend, John

    2016-01-01

    West Nile virus has caused several outbreaks among humans in the Phoenix metropolitan area (Arizona, southwest USA) within the last decade. Recent ecologic studies have implicated Culex quinquefasciatus and Culex tarsalis as the mosquito vectors and identified three abundant passerine birds—great-tailed grackle (Quiscalus mexicanus), house sparrow (Passer domesticus), and house finch (Haemorhous mexicanus)—as key amplifiers among vertebrates. Nocturnal congregations of certain species have been suggested as critical for late summer West Nile virus amplification. We evaluated the hypothesis that house sparrow (P. domesticus) and/or great-tailed grackle (Q. mexicanus) communal roost sites (n = 22 and n = 5, respectively) in a primarily suburban environment were spatially associated with West Nile virus transmission indices during the 2010 outbreak of human neurological disease in metropolitan Phoenix. Spatial associations between human case residences and communal roosts were non-significant for house sparrows, and were negative for great-tailed grackle. Several theories that explain these observations are discussed, including the possibility that grackle communal roosts are protective. PMID:25480320

  10. Climate change impacts on West Nile virus transmission in a global context.

    PubMed

    Paz, Shlomit

    2015-04-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  11. Climate change impacts on West Nile virus transmission in a global context

    PubMed Central

    Paz, Shlomit

    2015-01-01

    West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change. PMID:25688020

  12. Repeated West Nile virus epidemic transmission in Kern County, California, 2004-2007.

    PubMed

    Reisen, William K; Carroll, Brian D; Takahashi, Richard; Fang, Ying; Garcia, Sandra; Martinez, Vincent M; Quiring, Rob

    2009-01-01

    West Nile virus (WNV) has remained epidemic in Kern County, CA, since its introduction in 2004 through 2007 when the human case annual incidence increased from 6-8 to 17 per 100,000, respectively. The 2007 increase in human infection was associated with contradicting surveillance indicators, including severe drought, warm spring but cool summer temperature anomalies, decreased rural and urban mosquito abundance but increased early season infection in urban Culex quinquefasciatus Say, moderate avian "herd immunity," and declines in the catch of competent (western scrub-jay and house finch) and noncompetent (California quail and mourning dove) avian species. The decline in these noncompetent avian hosts may have increased contact with competent avian hosts and perhaps humans. The marked increase in home foreclosures and associated neglected swimming pools increased urban mosquito production sites, most likely contributing to the urban mosquito population and the WNV outbreak within Bakersfield. Coalescing five surveillance indicators into a risk assessment score measured each half month provided 2- to 6-wk early warning for emergency planning and was followed consistently by the onset of human cases after reaching epidemic conditions. St. Louis encephalitis virus (SLEV) antibody was detected rarely in wild birds but not mosquitoes or sentinel chickens, indicating that previously infected birds were detected in Kern County, but SLEV reintroduction was not successful. In contrast, western equine encephalitis virus (WEEV) was detected during 3 of 5 yr in Culex tarsalis Coquillett, sentinel chickens, and wild birds, but failed to amplify to levels where tangential transmission was detected in Aedes mosquitoes or humans. A comparison of transmission patterns in Kern County to Coachella Valley in the southeastern desert of California showed the importance of mosquito phenology and spatial distribution, corvids, or other avian "super spreaders" and anthropogenic factors in

  13. Repeated West Nile Virus Epidemic Transmission in Kern County, California, 2004–2007

    PubMed Central

    REISEN, WILLIAM K.; CARROLL, BRIAN D.; TAKAHASHI, RICHARD; FANG, YING; GARCIA, SANDRA; MARTINEZ, VINCENT M.; QUIRING, ROB

    2009-01-01

    West Nile virus (WNV) has remained epidemic in Kern County, CA, since its introduction in 2004 through 2007 when the human case annual incidence increased from 6 – 8 to 17 per 100,000, respectively. The 2007 increase in human infection was associated with contradicting surveillance indicators, including severe drought, warm spring but cool summer temperature anomalies, decreased rural and urban mosquito abundance but increased early season infection in urban Culex quinquefasciatus Say, moderate avian “herd immunity,” and declines in the catch of competent (western scrub-jay and house finch) and noncompetent (California quail and mourning dove) avian species. The decline in these noncompetent avian hosts may have increased contact with competent avian hosts and perhaps humans. The marked increase in home foreclosures and associated neglected swimming pools increased urban mosquito production sites, most likely contributing to the urban mosquito population and the WNV outbreak within Bakersfield. Coalescing five surveillance indicators into a risk assessment score measured each half month provided 2- to 6-wk early warning for emergency planning and was followed consistently by the onset of human cases after reaching epidemic conditions. St. Louis encephalitis virus (SLEV) antibody was detected rarely in wild birds but not mosquitoes or sentinel chickens, indicating that previously infected birds were detected in Kern County, but SLEV reintroduction was not successful. In contrast, western equine encephalitis virus (WEEV) was detected during 3 of 5 yr in Culex tarsalis Coquillett, sentinel chickens, and wild birds, but failed to amplify to levels where tangential transmission was detected in Aedes mosquitoes or humans. A comparison of transmission patterns in Kern County to Coachella Valley in the southeastern desert of California showed the importance of mosquito phenology and spatial distribution, corvids, or other avian “super spreaders” and anthropogenic

  14. Land use patterns and the risk of West Nile virus transmission in central Illinois.

    PubMed

    Gardner, Allison M; Lampman, Richard L; Muturi, Ephantus J

    2014-05-01

    Understanding how human land use patterns influence mosquito ecology and the risk of mosquito-borne pathogens is critical for the development of disease management strategies. We examined how different environments influenced mosquito species composition, abundance, and West Nile virus (WNV) infection rates in central Illinois. Using a combination of gravid traps and CDC light traps, adult mosquitoes were collected every other week from June 24 to September 16, 2012, in four major land use categories-row crops, prairies, forest fragments, and residential neighborhoods. The mosquitoes were identified to species morphologically, and pools of pure and mixed Culex mosquitoes (primarily Culex pipiens and Culex restuans) were tested for WNV-RNA by qRT-PCR. Mosquito species diversity was significantly higher in forest habitats compared to residential, agricultural, and prairie land use categories. All the four landscape types were equally important habitats for WNV vectors Cx. pipiens and Cx. restuans, contrary to previous findings that these species principally inhabit the residential areas. WNV-infected mosquito pools were observed in all land use types, and the infection rates overlapped among land use categories. Although our findings support the importance of residential habitats for WNV transmission to humans, they also establish that prairie, row crops, and wood lots are potentially important refuges for enzootic transmission. This is particularly important in urban ecosystems where these land use categories are small, interspersed fragments serving as potential refuge sites during periods of low rainfall. PMID:24746038

  15. Cascade of ecological consequences for West Nile virus transmission when aquatic macrophytes invade stormwater habitats.

    PubMed

    Mackay, Andrew J; Muturi, Ephantus J; Ward, Michael P; Allan, Brian F

    2016-01-01

    Artificial aquatic habitats are ubiquitous in anthropogenic landscapes and highly susceptible to colonization by invasive plant species. Recent research into the ecology of infectious diseases indicates that the establishment of invasive plant species can trigger ecological cascades which alter the transmission dynamics of vector-borne pathogens that imperil human health. Here, we examined whether the presence or management of two invasive, emergent plants, cattails (Typha spp.) and phragmites (Phragmites australis), in stormwater dry detention basins (DDBs) alter the local distribution of vectors, avian hosts, or West Nile virus (WNV) transmission risk in an urban residential setting. Mosquitoes and birds were surveyed at 14 DDBs and paired adjacent residential sites. During the study period, emergent vegetation was mowed by site managers in three DDBs. In the absence of vegetation management, the overall abundance and species composition of both adult vectors and avian hosts differed between residential and DDB habitats; however, WNV entomological risk indices were equivalent. Communal bird roosts composed primarily of three species, European Starlings (Sturnus vulgaris), Red-winged Blackbirds (Agelaius phoeniceus), and Common Grackles (Quiscalus quiscula), representing a broad range of WNV reservoir competence, were observed at half (three out of six) of the DDBs containing unmanaged stands of phragmites; however, their presence was associated with a lower seasonal increase in vector infection rate. Conversely, mowing of emergent vegetation resulted in a significant and sustained increase in the abundance of WNV-infected vectors in DDBs and the increase in risk extended to adjacent residential sites. These findings indicate that management of invasive plants in DDBs during the growing season can increase, while presence of communal bird roosts can decrease, WNV transmission risk. PMID:27039521

  16. West nile virus in American white pelican chicks: transmission, immunity, and survival

    USGS Publications Warehouse

    Sovada, Marsha A.; Pietz, Pamela J.; Hofmeister, Erik K.; Bartos, Alisa J.

    2013-01-01

    West Nile virus (WNV) causes significant mortality of American White Pelican chicks at northern plains colonies. We tested oropharyngeal/cloacal swabs from moribund chicks for shed WNV. Such shedding could enable chick-to-chick transmission and help explain why WNV spreads rapidly in colonies. WNV was detected on swabs from 11% of chicks in 2006 and 52% of chicks in 2007; however, viral titers were low. Before onset of WNV mortality, we tested blood from < 3-week-old chicks for antibodies to WNV; 5% of chicks were seropositive, suggesting passive transfer of maternal antibodies. Among near-fledged chicks, 41% tested positive for anti-WNV antibodies, indicating that they survived infection. Among years and colonies, cumulative incidence of WNV in chicks varied from 28% to 81%, whereas the proportion of chicks surviving WNV (i.e., seropositive) was 64–75%. Our data revealed that WNV kills chicks that likely would fledge in the absence of WNV, that infection of chicks is pervasive, and that significant numbers of chicks survive infection.

  17. FAQ: General Questions about West Nile Virus

    MedlinePlus

    ... or meningitis (inflammation of the lining of the brain and spinal cord). West Nile virus transmission has been documented in Europe and the Middle East, Africa, India, parts of Asia, and Australia. It was first detected ...

  18. Persistent West Nile Virus Transmission and the Apparent Displacement St. Louis Encephalitis Virus in Southeastern California, 2003−2006

    PubMed Central

    REISEN, WILLIAM K.; LOTHROP, HUGH D.; WHEELER, SARAH S.; KENNSINGTON, MARC; GUTIERREZ, ARTURO; FANG, YING; GARCIA, SANDRA; LOTHROP, BRANKA

    2008-01-01

    West Nile virus (family Flaviviridae, genus Flavivirus, WNV) invaded the Colorado Desert biome of southern California during summer 2003 and seemed to displace previously endemic St. Louis encephalitis virus (family Flaviviridae, genus Flavivirus, SLEV, an antigenically similar Flavivirus in the Japanese encephalitis virus serocomplex). Western equine encephalomyelitis virus (family Togaviridae, genus Alphavirus, WEEV), an antigenically distinct Alphavirus, was detected during 2005 and 2006, indicating that conditions were suitable for encephalitis virus introduction and detection. Cross-protective “avian herd immunity” due to WNV infection possibly may have prevented SLEV reintroduction and/or amplification to detectable levels. During 2003−2006, WNV was consistently active at wetlands and agricultural habitats surrounding the Salton Sea where Culex tarsalis Coquillett served as the primary enzootic maintenance and amplification vector. Based on published laboratory infection studies and the current seroprevalence estimates, house sparrows, house finches, and several Ardeidae may have been important avian amplifying hosts in this region. Transmission efficiency may have been dampened by high infection rates in incompetent avian hosts, including Gamble's quail, mourning doves, common ground doves, and domestic pigeons. Early season WNV amplification and dispersal from North Shore in the southeastern portion of the Coachella Valley resulted in sporadic WNV incursions into the urbanized Upper Valley near Palm Springs, where Culex pipiens quinquefasciatus Say was the primary enzootic and bridge vector. Although relatively few human cases were detected during the 2003−2006 period, all were concentrated in the Upper Valley and were associated with high human population density and WNV infection in peridomestic populations of Cx. p. quinquefasciatus. Intensive early mosquito control during 2006 seemed to interrupt and delay transmission, perhaps setting the stage

  19. Statistical Tools for the Interpretation of Enzootic West Nile virus Transmission Dynamics.

    PubMed

    Caillouët, Kevin A; Robertson, Suzanne

    2016-01-01

    Interpretation of enzootic West Nile virus (WNV) surveillance indicators requires little advanced mathematical skill, but greatly enhances the ability of public health officials to prescribe effective WNV management tactics. Stepwise procedures for the calculation of mosquito infection rates (IR) and vector index (VI) are presented alongside statistical tools that require additional computation. A brief review of advantages and important considerations for each statistic's use is provided. PMID:27188561

  20. West Nile virus: North American experience

    USGS Publications Warehouse

    Hofmeister, Erik K.

    2011-01-01

    West Nile virus, a mosquito-vectored flavivirus of the Japanese encephalitis serogroup, was first detected in North America following an epizootic in the New York City area in 1999. In the intervening 11 years since the arrival of the virus in North America, it has crossed the contiguous USA, entered the Canadian provinces bordering the USA, and has been reported in the Caribbean islands, Mexico, Central America and, more recently, South America. West Nile virus has been reported in over 300 species of birds in the USA and has caused the deaths of thousands of birds, local population declines of some avian species, the clinical illness and deaths of thousands of domestic horses, and the clinical disease in over 30 000 Americans and the deaths of over 1000. Prior to the emergence of West Nile virus in North America, St. Louis encephalitis virus and Dengue virus were the only other known mosquito-transmitted flaviviruses in North America capable of causing human disease. This review will discuss the North American experience with mosquito-borne flavivirus prior to the arrival of West Nile virus, the entry and spread of West Nile virus in North America, effects on wild bird populations, genetic changes in the virus, and the current state of West Nile virus transmission.

  1. The Role of Australian Mosquito Species in the Transmission of Endemic and Exotic West Nile Virus Strains

    PubMed Central

    Jansen, Cassie C.; Ritchie, Scott A.; van den Hurk, Andrew F.

    2013-01-01

    Recent epidemic activity and its introduction into the Western Hemisphere have drawn attention to West Nile virus (WNV) as an international public health problem. Of particular concern has been the ability for the virus to cause outbreaks of disease in highly populated urban centers. Incrimination of Australian mosquito species is an essential component in determining the receptivity of Australia to the introduction and/or establishment of an exotic strain of WNV and can guide potential management strategies. Based on vector competence experiments and ecological studies, we suggest candidate Australian mosquito species that would most likely be involved in urban transmission of WNV, along with consideration of the endemic WNV subtype, Kunjin. We then examine the interaction of entomological factors with virological and vertebrate host factors, as well as likely mode of introduction, which may influence the potential for exotic WNV to become established and be maintained in urban transmission cycles in Australia. PMID:23965926

  2. West Nile virus (WNV) transmission routes in the murine model: intrauterine, by breastfeeding and after cannibal ingestion.

    PubMed

    Blázquez, Ana-Belén; Sáiz, Juan-Carlos

    2010-08-01

    Since its first detection in New York in 1999, West Nile virus (WNV) has already caused over 1000 human deaths in the U.S. Although the virus is usually transmitted by mosquito bites; other routes, such as intrauterine and breastfeeding, have been occasionally reported in humans. To investigate alternative routes of WNV transmission, mice were inoculated during gestation and after delivery, and offspring from infected and non-infected mothers were interchanged and nursed as foster babies. Intrauterine and breastfeeding transmission was confirmed after WNV detection, by quantitative RT-PCR and viral culture infectivity, in babies born to infected mothers and in newborns that were nursed by mothers infected after delivery. All infected mothers, either experimentally or after cannibal ingestion of infected fostered babies, succumbed to the disease, as did most of their nursed babies. These results indicate that WNV is efficiently transmitted by vertical routes (intrauterine and lactation) and after cannibal ingestion of infected animals. PMID:20438776

  3. FAQ: West Nile Virus and Dead Birds

    MedlinePlus

    ... Education Public Service Videos West Nile Virus & Dead Birds Recommend on Facebook Tweet Share Compartir On this ... dead bird sightings to local authorities. How do birds get infected with West Nile virus? West Nile ...

  4. Vector Contact Rates on Eastern Bluebird Nestlings Do Not Indicate West Nile Virus Transmission in Henrico County, Virginia, USA

    PubMed Central

    Caillouët, Kevin A.; Robertson, Charles W.; Wheeler, David C.; Komar, Nicholas; Bulluck, Lesley P.

    2013-01-01

    Sensitive indicators of spatial and temporal variation in vector-host contact rates are critical to understanding the transmission and eventual prevention of arboviruses such as West Nile virus (WNV). Monitoring vector contact rates on particularly susceptible and perhaps more exposed avian nestlings may provide an advanced indication of local WNV amplification. To test this hypothesis we monitored WNV infection and vector contact rates among nestlings occupying nest boxes (primarily Eastern bluebirds; Sialia sialis, Turdidae) across Henrico County, Virginia, USA, from May to August 2012. Observed host-seeking rates were temporally variable and associated with absolute vector and host abundances. Despite substantial effort to monitor WNV among nestlings and mosquitoes, we did not detect the presence of WNV in these populations. Generally low vector-nestling host contact rates combined with the negative WNV infection data suggest that monitoring transmission parameters among nestling Eastern bluebirds in Henrico County, Virginia, USA may not be a sensitive indicator of WNV activity. PMID:24287858

  5. West Nile Virus: High Transmission Rate in North-Western European Mosquitoes Indicates Its Epidemic Potential and Warrants Increased Surveillance

    PubMed Central

    Fros, Jelke J.; Geertsema, Corinne; Vogels, Chantal B.; Roosjen, Peter P.; Failloux, Anna-Bella; Vlak, Just M.; Koenraadt, Constantianus J.; Takken, Willem; Pijlman, Gorben P.

    2015-01-01

    Background West Nile virus (WNV) is a highly pathogenic flavivirus transmitted by Culex spp. mosquitoes. In North America (NA), lineage 1 WNV caused the largest outbreak of neuroinvasive disease to date, while a novel pathogenic lineage 2 strain circulates in southern Europe. To estimate WNV lineage 2 epidemic potential it is paramount to know if mosquitoes from currently WNV-free areas can support further spread of this epidemic. Methodology/Principal Findings We assessed WNV vector competence of Culex pipiens mosquitoes originating from north-western Europe (NWE) in direct comparison with those from NA. We exposed mosquitoes to infectious blood meals of lineage 1 or 2 WNV and determined the infection and transmission rates. We explored reasons for vector competence differences by comparing intrathoracic injection versus blood meal infection, and we investigated the influence of temperature. We found that NWE mosquitoes are highly competent for both WNV lineages, with transmission rates up to 25%. Compared to NA mosquitoes, transmission rates for lineage 2 WNV were significantly elevated in NWE mosquitoes due to better virus dissemination from the midgut and a shorter extrinsic incubation time. WNV infection rates further increased with temperature increase. Conclusions/Significance Our study provides experimental evidence to indicate markedly different risk levels between both continents for lineage 2 WNV transmission and suggests a degree of genotype-genotype specificity in the interaction between virus and vector. Our experiments with varying temperatures explain the current localized WNV activity in southern Europe, yet imply further epidemic spread throughout NWE during periods with favourable climatic conditions. This emphasizes the need for intensified surveillance of virus activity in current WNV disease-free regions and warrants increased awareness in clinics throughout Europe. PMID:26225555

  6. Ecological factors associated with West Nile virus transmission, northeastern United States.

    PubMed

    Brown, Heidi E; Childs, James E; Diuk-Wasser, Maria A; Fish, Durland

    2008-10-01

    Since 1999, West Nile virus (WNV) disease has affected the northeastern United States. To describe the spatial epidemiology and identify risk factors for disease incidence, we analyzed 8 years (1999-2006) of county-based human WNV disease surveillance data. Among the 56.6 million residents in 8 northeastern states sharing primary enzootic vectors, we found 977 cases. We controlled for population density and potential bias from surveillance and spatial proximity. Analyses demonstrated significant spatial spreading from 1999 through 2004 (p<0.01, r2 = 0.16). A significant trend was apparent among increasingly urban counties; county quartiles with the least (<38%) forest cover had 4.4-fold greater odds (95% confidence interval [CI] 1.4-13.2, p = 0.01) of having above-median disease incidence (>0.75 cases/100,000 residents) than counties with the most (>70%) forest cover. These results quantify urbanization as a risk factor for WNV disease incidence and are consistent with knowledge of vector species in this area. PMID:18826816

  7. Ecology of Potential West Nile Virus Vectors in Southeastern Louisiana: Enzootic Transmission in the Relative Absence of Culex quinquefasciatus

    PubMed Central

    Godsey, Marvin S.; King, Raymond J.; Burkhalter, Kristen; Delorey, Mark; Colton, Leah; Charnetzky, Dawn; Sutherland, Genevieve; Ezenwa, Vanessa O.; Wilson, Lawrence A.; Coffey, Michelle; Milheim, Lesley E.; Taylor, Viki G.; Palmisano, Charles; Wesson, Dawn M.; Guptill, Stephen C.

    2013-01-01

    A study of West Nile virus (WNV) ecology was conducted in St. Tammany Parish, Louisiana, from 2002 to 2004. Mosquitoes were collected weekly throughout the year using Centers for Disease Control and Prevention (CDC) light traps placed at 1.5 and 6 m above the ground and gravid traps. A total of 379,466 mosquitoes was collected. WNV was identified in 32 pools of mosquitoes comprising four species; 23 positive pools were from Culex nigripalpus collected during 2003. Significantly more positive pools were obtained from Cx. nigripalpus collected in traps placed at 6 m than 1.5 m that year, but abundance did not differ by trap height. In contrast, Cx. nigripalpus abundance was significantly greater in traps placed at 6 m in 2002 and 2004. Annual temporal variation in Cx. nigripalpus peak seasonal abundance has important implications for WNV transmission in Louisiana. One WNV-positive pool, from Cx. erraticus, was collected during the winter of 2004, showing year-round transmission. The potential roles of additional mosquito species in WNV transmission in southeastern Louisiana are discussed. PMID:23478575

  8. Potential transmission of West Nile virus in the British Isles: an ecological review of candidate mosquito bridge vectors.

    PubMed

    Medlock, J M; Snow, K R; Leach, S

    2005-03-01

    West Nile virus (WNV) transmitted by mosquitoes (Diptera: Culicidae) infects various vertebrates, being pathogenic for birds, horses and humans. After its discovery in tropical Africa, sporadic outbreaks of WNV occurred during recent decades in Eurasia, but not the British Isles. WNV reached New York in 1999 and spread to California by 2003, causing widespread outbreaks of West Nile encephalitis across North America, transmitted by many species of mosquitoes, mainly Culex spp. The periodic reappearance of WNV in parts of continental Europe (from southern France to Romania) gives rise to concern over the possibility of WNV invading the British Isles. The British Isles have about 30 endemic mosquito species, several with seasonal abundance and other eco-behavioural characteristics predisposing them to serve as potential WNV bridge vectors from birds to humans. These include: the predominantly ornithophilic Culex pipiens L. and its anthropophilic biotype molestus Forskal; tree-hole adapted Anopheles plumbeus Stephens; saltmarsh-adapted Ochlerotatus caspius Pallas, Oc. detritus Haliday and Oc. dorsalis (Meigen); Coquillettidia richiardii Ficalbi, Culiseta annulata Schrank and Cs. morsitans (Theobald) from vegetated freshwater pools; Aedes cinereus Meigen, Oc. cantans Meigen and Oc. punctor Kirby from seasonal woodland pools. Those underlined have been found carrying WNV in other countries (12 species), including the rarer British species Aedes vexans (Meigen), Culex europaeus Ramos et al., Cx. modestus Ficalbi and Oc. sticticus (Meigen) as well as the Anopheles maculipennis Meigen complex (mainly An. atroparvus van Thiel and An. messeae Falleroni in Britain). Those implicated as key vectors of WNV in Europe are printed bold (four species). So far there is no proof of any arbovirus transmission by mosquitoes in the British Isles, although antibodies to Sindbis, Tahyna, Usutu and West Nile viruses have been detected in British birds. Neighbouring European countries have

  9. West Nile Virus Infection.

    PubMed

    Sejvar, James J

    2016-06-01

    Although long recognized as a human pathogen, West Nile virus (WNV) emerged as a significant public health problem following its introduction and spread across North America. Subsequent years have seen a greater understanding of all aspects of this viral infection. The North American epidemic resulted in a further understanding of the virology, pathogenesis, clinical features, and epidemiology of WNV infection. Approximately 80% of human WNV infections are asymptomatic. Most symptomatic people experience an acute systemic febrile illness; less than 1% of infected people develop neuroinvasive disease, which typically manifests as meningitis, encephalitis, or anterior myelitis resulting in acute flaccid paralysis. Older age is associated with more severe illness and higher mortality; other risk factors for poor outcome have been challenging to identify. In addition to natural infection through mosquito bites, transfusion- and organ transplant-associated infections have occurred. Since there is no definitive treatment for WNV infection, protection from mosquito bites and other preventative measures are critical. WNV has reached an endemic pattern in North America, but the future epidemiologic pattern is uncertain. PMID:27337465

  10. Ecology of potential West Nile virus vectors in southeastern Louisiana: enzootic transmission in the relative absence of Culex quinquefasciatus

    USGS Publications Warehouse

    Godsey, Marvin S., Jr.; King, Raymond J.; Burkhalter, Kristen; Delorey, Mark; Colton, Leah; Charnetzky, Dawn; Sutherland, Genevieve; Ezenwa, Vanessa O.; Wilson, Lawrence A.; Coffey, Michelle; Milheim, Lesley E.; Taylor, Viki G.; Palmisano, Charles; Wesson, Dawn M.; Guptill, Stephen C.

    2013-01-01

    A study of West Nile virus (WNV) ecology was conducted in St. Tammany Parish, Louisiana, from 2002 to 2004. Mosquitoes were collected weekly throughout the year using Centers for Disease Control and Prevention (CDC) light traps placed at 1.5 and 6 m above the ground and gravid traps. A total of 379,466 mosquitoes was collected. WNV was identified in 32 pools of mosquitoes comprising four species; 23 positive pools were from Culex nigripalpus collected during 2003. Significantly more positive pools were obtained from Cx. nigripalpus collected in traps placed at 6 m than 1.5 m that year, but abundance did not differ by trap height. In contrast, Cx. nigripalpus abundance was significantly greater in traps placed at 6 m in 2002 and 2004. Annual temporal variation in Cx. nigripalpus peak seasonal abundance has important implications for WNV transmission in Louisiana. One WNV-positive pool, from Cx. erraticus, was collected during the winter of 2004, showing year-round transmission. The potential roles of additional mosquito species in WNV transmission in southeastern Louisiana are discussed. Disclaimer: The opinions expressed in this article are the opinions of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention. This article has been peer reviewed and approved for publication consistent with U.S. Geological Survey Fundamental Science Practices (http//pubs.usgs.gov/circ/1367/). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

  11. Mental Status after West Nile Virus Infection

    PubMed Central

    Sadek, Joseph; Pergam, Steven; Echevarria, Leonor A.; Davis, Larry E.; Goade, Diane; Harnar, Joanne; Nofchissey, Robert A.; Sewel, C. Mack; Ettestad, Paul

    2006-01-01

    Mental status after acute West Nile virus infection has not been examined objectively. We compared Telephone Interview for Cognitive Status scores of 116 patients with West Nile fever or West Nile neuroinvasive disease. Mental status was poorer and cognitive complaints more frequent with West Nile neuroinvasive disease (p = 0.005). PMID:16965710

  12. West Nile Virus transmission in winter: the 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality event

    USGS Publications Warehouse

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlan, Leslie; Shearn-Bochsler, Valerie I.; Dickson, Sammie L.; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee Romaine; Bodenstein, Barbara L.

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites.

  13. West Nile Virus Transmission in Winter: The 2013 Great Salt Lake Bald Eagle and Eared Grebes Mortality Event

    PubMed Central

    Ip, Hon S.; Van Wettere, Arnaud J.; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, JoDee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites. PMID:24761310

  14. West nile virus transmission in winter: the 2013 great salt lake bald eagle and eared grebes mortality event.

    PubMed

    Ip, Hon S; Van Wettere, Arnaud J; McFarlane, Leslie; Shearn-Bochsler, Valerie; Dickson, Sammie Lee; Baker, Jodee; Hatch, Gary; Cavender, Kimberly; Long, Renee; Bodenstein, Barbara

    2014-01-01

    West Nile Virus (WNV) infection has been reported in over 300 species of birds and mammals. Raptors such as eagles, hawks and falcons are remarkably susceptible, but reports of WNV infection in Bald Eagles (Haliaeetus leucocephalus) are rare and reports of WNV infection in grebes (Podicipediformes) even rarer. We report an unusually large wild bird mortality event involving between 15,000-20,000 Eared Grebes (Podiceps nigricollis) and over 40 Bald Eagles around the Great Salt Lake, Utah, in November-December 2013. Mortality in grebes was first reported in early November during a period when the area was unseasonably warm and the grebes were beginning to gather and stage prior to migration. Ten out of ten Eared Grebes collected during this period were WNV RT-PCR and/or isolation positive. This is the first report of WNV infection in Eared Grebes and the associated mortality event is matched in scale only by the combined outbreaks in American White Pelican (Pelecanus erythrorhynchos) colonies in the north central states in 2002-2003. We cannot be sure that all of the grebes were infected by mosquito transmission; some may have become infected through contact with WNV shed orally or cloacally from other infected grebes. Beginning in early December, Bald Eagles in the Great Salt Lake area were observed to display neurological signs such as body tremors, limb paralysis and lethargy. At least 43 Bald Eagles had died by the end of the month. Nine of nine Bald Eagles examined were infected with WNV. To the best of our knowledge, this is the largest single raptor mortality event since WNV became endemic in the USA. Because the majority of the eagles affected were found after onset of below-freezing temperatures, we suggest at least some of the Bald Eagles were infected with WNV via consumption of infected Eared Grebes or horizontal transmission at roost sites. PMID:24761310

  15. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes.

    PubMed

    Goenaga, Silvina; Kenney, Joan L; Duggal, Nisha K; Delorey, Mark; Ebel, Gregory D; Zhang, Bo; Levis, Silvana C; Enria, Delia A; Brault, Aaron C

    2015-11-01

    Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUV and WNV, or solely with WNV as a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease. PMID:26569286

  16. Potential for Co-Infection of a Mosquito-Specific Flavivirus, Nhumirim Virus, to Block West Nile Virus Transmission in Mosquitoes

    PubMed Central

    Goenaga, Silvina; Kenney, Joan L.; Duggal, Nisha K.; Delorey, Mark; Ebel, Gregory D.; Zhang, Bo; Levis, Silvana C.; Enria, Delia A.; Brault, Aaron C.

    2015-01-01

    Nhumirim virus (NHUV) is an insect-specific virus that phylogenetically affiliates with dual-host mosquito-borne flaviviruses. Previous in vitro co-infection experiments demonstrated prior or concurrent infection of Aedes albopictus C6/36 mosquito cells with NHUV resulted in a 10,000-fold reduction in viral production of West Nile virus (WNV). This interference between WNV and NHUV was observed herein in an additional Ae. albopictus mosquito cell line, C7-10. A WNV 2K peptide (V9M) mutant capable of superinfection with a pre-established WNV infection demonstrated a comparable level of interference from NHUV as the parental WNV strain in C6/36 and C7-10 cells. Culex quinquefasciatus and Culex pipiens mosquitoes intrathoracically inoculated with NHUV and WNV, or solely with WNV as a control, were allowed to extrinsically incubate the viruses up to nine and 14 days, respectively, and transmissibility and replication of WNV was determined. The proportion of Cx. quinquefasciatus mosquitoes capable of transmitting WNV was significantly lower for the WNV/NHUV group than the WNV control at seven and nine days post inoculation (dpi), while no differences were observed in the Cx. pipiens inoculation group. By dpi nine, a 40% reduction in transmissibility in mosquitoes from the dual inoculation group was observed compared to the WNV-only control. These data indicate the potential that infection of some Culex spp. vectors with NHUV could serve as a barrier for efficient transmissibility of flaviviruses associated with human disease. PMID:26569286

  17. West Nile Virus Activity in a Winter Roost of American Crows (Corvus brachyrhynchos): Is Bird-To-Bird Transmission Important in Persistence and Amplification?

    PubMed Central

    Hinton, M. G.; Reisen, W. K.; Wheeler, S. S.; Townsend, A. K.

    2015-01-01

    Since its emergence in North America, West Nile virus (WNV) has had a large impact on equines, humans, and wild bird communities, yet gaps remain in our understanding of how the virus persists at temperate latitudes when winter temperatures preclude virus replication and host-seeking activity by mosquito vectors. Bird-to-bird transmission at large communal American Crow roosts could provide one mechanism for WNV persistence. Herein, we describe seasonal patterns of crow and Culex mosquito abundance, WNV infection rates, and the prevalence of WNV-positive fecal samples at a winter crow roost to test the hypothesis that bird-to-bird transmission allows WNV to persist at winter crow roosts. Samples were collected from large winter crow roosts in the Sacramento Valley of California from January 2013 until August 2014, encompassing two overwintering roost periods. West Nile virus RNA was detected in local crow carcasses in both summer [13/18 (72% WNV positive)] and winter [18/44 (41% WNV positive)] 2013–2014. Winter infections were unlikely to have arisen by recent bites from infected mosquitoes because Culex host-seeking activity was very low in winter and all Culex mosquitoes collected during winter months tested negative for WNV. Opportunities existed for fecal-oral transfer at the overwintering roost: most carcasses that tested positive for WNV had detectable viral RNA in both kidney and cloacal swabs, suggesting that infected crows were shedding virus in their feces, and >50% of crows at the roost were stained with feces by mid-winter. Moreover, 2.3% of fecal samples collected in late summer, when mosquitoes were active, tested positive for WNV RNA. Nevertheless, none of the 1,119 feces collected from three roosts over two winters contained detectable WNV RNA. This study provided evidence of WNV infection in overwintering American crows without mosquito vector activity, but did not elucidate a mechanism of WNV transmission during winter. PMID:26335475

  18. West Nile Virus

    MedlinePlus

    ... to human beings through their bites. Credit: CDC Biology, Genetics, & Clinical Research NIAID conducts and funds basic and clinical research on WNV biology and viral structure, ways the virus causes human ...

  19. What's West Nile Virus?

    MedlinePlus

    ... is caused by a bite from an infected mosquito that's already carrying the virus, but it's important ... the risk of being bitten by an infected mosquito is greatest from July to early September. But ...

  20. West Nile Virus

    MedlinePlus

    ... appeared in the United States in 1999. Infected mosquitoes spread the virus that causes it. People who ... barrels Stay indoors between dusk and dawn, when mosquitoes are most active Use screens on windows to ...

  1. West Nile Virus Ecology in a Tropical Ecosystem in Guatemala

    PubMed Central

    Morales-Betoulle, Maria E.; Komar, Nicholas; Panella, Nicholas A.; Alvarez, Danilo; López, María R.; Betoulle, Jean-Luc; Sosa, Silvia M.; Müller, María L.; Kilpatrick, A. Marm; Lanciotti, Robert S.; Johnson, Barbara W.; Powers, Ann M.; Cordón-Rosales, Celia

    2013-01-01

    West Nile virus ecology has yet to be rigorously investigated in the Caribbean Basin. We identified a transmission focus in Puerto Barrios, Guatemala, and established systematic monitoring of avian abundance and infection, seroconversions in domestic poultry, and viral infections in mosquitoes. West Nile virus transmission was detected annually between May and October from 2005 to 2008. High temperature and low rainfall enhanced the probability of chicken seroconversions, which occurred in both urban and rural sites. West Nile virus was isolated from Culex quinquefasciatus and to a lesser extent, from Culex mollis/Culex inflictus, but not from the most abundant Culex mosquito, Culex nigripalpus. A calculation that combined avian abundance, seroprevalence, and vertebrate reservoir competence suggested that great-tailed grackle (Quiscalus mexicanus) is the major amplifying host in this ecosystem. West Nile virus transmission reached moderate levels in sentinel chickens during 2007, but less than that observed during outbreaks of human disease attributed to West Nile virus in the United States. PMID:23149586

  2. West Nile Virus and wildlife

    USGS Publications Warehouse

    Marra, P.P.; Griffing, S.; Caffrey, C.; Kilpatrick, A.M.; McLean, R.; Brand, C.; Saito, E.; Dupuis, A.P.; Kramer, L.; Novak, R.

    2004-01-01

    West Nile virus (WNV) has spread rapidly across North America, resulting in human deaths and in the deaths of untold numbers of birds, mammals, and reptiles. The virus has reached Central America and the Caribbean and may spread to Hawaii and South America. Although tens of thousands of birds have died, and studies of some bird species show local declines, few regionwide declines can be attributed to WNV. Predicting future impacts of WNV on wildlife, and pinpointing what drives epidemics, will require substantial additional research into host susceptibility, reservoir competency, and linkages between climate, mosquitoes, and disease. Such work will entail a collaborative effort between scientists in governmental research groups, in surveillance and control programs, and in nongovernmental organizations. West Nile virus was not the first, and it will not be the last, exotic disease to be introduced to the New World. Its spread in North America highlights the need to strengthen animal monitoring programs and to integrate them with research on disease ecology.

  3. Serological monitoring of backyard chickens in Central Macedonia-Greece can detect low transmission of West Nile virus in the absence of human neuroinvasive disease cases.

    PubMed

    Chaintoutis, Serafeim C; Gewehr, Sandra; Mourelatos, Spiros; Dovas, Chrysostomos I

    2016-11-01

    During 2010-13, West Nile virus (WNV) epidemics occurred in Greece with high numbers of human cases. In parallel, WNV serological surveillance utilizing domestic birds was applied mainly in Central Macedonia, as well as in other areas of the country, and allowed efficient detection of WNV activity during this period. The objective of the study was to evaluate the sensitivity of chicken-based WNV surveillance in periods of low-level virus transmission (2014-15) in a well-studied area, i.e. the epicenter of the 2010 WNV epidemic (Central Macedonia), which is considered endemic since then. WNV activity was monitored via determination of antiviral immune responses in juvenile backyard chickens. The birds were sampled twice per transmission period. WNV-specific antibodies were detected by ELISA in 2.8% out of 255 chickens sampled early in the 2014 transmission period (95% CI: 1-6%). Continued virus transmission was detected at the end of the period, as 4.2% out of 240 sampled chickens seroconverted to WNV (95% CI: 2-8%). Although 14 human neuroinvasive cases occurred in Greece during 2014, no such cases were reported in the study area. During the 2015 early warning period, antibodies against WNV were not detected in sampled chickens (n=250, 95% CI: 0-2%). However, humoral immune responses were detected in 6 out of 240 chicken sampled at the end of the transmission period (2.5%; 95% CI: 1-6%), indicating continued WNV activity. No human cases were reported in Greece during 2015. All samples were negative with real-time RT-PCR. Serological surveillance of chickens resulted in identification of areas with low WNV activity levels during 2014-15, and provided indications of its overwintering in Central Macedonia. The findings suggest that surveillance based on serological testing of domestic birds is sensitive and able to detect low-level of WNV enzootic transmission, in the absence of human cases. PMID:27469618

  4. Impacts of West Nile Virus on wildlife

    USGS Publications Warehouse

    Saito, E.K.; Wild, M.A.

    2004-01-01

    The recent epidemic of West Nile virus in the United States proved to be unexpectedly active and was the largest epidemic of the virus ever recorded. Much remains to be discovered about the ecology and epidemiology of West Nile virus in the United States, including which species are important in maintaining the virus in nature, why some species are more susceptible to lethal infection, and what environmental factors are important in predicting future epidemics. These factors will likely vary regionally, depending on local ecological characteristics. Until scientists better understand the virus and factors influencing its activity, predicting its effects for future seasons is impossible. However, experts are certain about one thing: West Nile virus is here to stay.

  5. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false West Nile virus serological reagents. 866.3940... virus serological reagents. (a) Identification. West Nile virus serological reagents are devices that consist of antigens and antisera for the detection of anti-West Nile virus IgM antibodies, in human...

  6. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false West Nile virus serological reagents. 866.3940... virus serological reagents. (a) Identification. West Nile virus serological reagents are devices that consist of antigens and antisera for the detection of anti-West Nile virus IgM antibodies, in human...

  7. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false West Nile virus serological reagents. 866.3940... virus serological reagents. (a) Identification. West Nile virus serological reagents are devices that consist of antigens and antisera for the detection of anti-West Nile virus IgM antibodies, in human...

  8. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false West Nile virus serological reagents. 866.3940... virus serological reagents. (a) Identification. West Nile virus serological reagents are devices that consist of antigens and antisera for the detection of anti-West Nile virus IgM antibodies, in human...

  9. 21 CFR 866.3940 - West Nile virus serological reagents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false West Nile virus serological reagents. 866.3940... virus serological reagents. (a) Identification. West Nile virus serological reagents are devices that consist of antigens and antisera for the detection of anti-West Nile virus IgM antibodies, in human...

  10. A host stage-structured model of enzootic West Nile virus transmission to explore the effect of avian stage-dependent exposure to vectors.

    PubMed

    Robertson, Suzanne L; Caillouët, Kevin A

    2016-06-21

    Though seasonal West Nile virus (WNV) outbreaks have been widely observed to be associated with the end of the avian nesting season, specific ecological mechanisms accounting for this synchronicity remain poorly understood. In this paper we develop and evaluate a novel mathematical model of enzootic WNV transmission to gain insight into the mechanisms responsible for structuring WNV dynamics. We incorporate avian (host) stage-structure (nestling, fledgling, and adult) and within-species heterogeneity in the form of stage-specific mosquito (vector) biting rates. We determine the extent to which temporal fluctuations in host stage and vector abundance throughout the season, along with the differential exposure of these stages to mosquito bites, affect the timing and magnitude of WNV outbreaks in the vector population. We find heterogeneity in avian stage exposure, particularly an increase in juvenile exposure, to result in earlier, more intense transmission. The effects of differential exposure are dependent upon vector abundance, both at carrying capacity as well as during initial stages of nestling production. PMID:27036097

  11. Host group formation decreases exposure to vector-borne disease: a field experiment in a ‘hotspot’ of West Nile virus transmission

    PubMed Central

    Krebs, Bethany L.; Anderson, Tavis K.; Goldberg, Tony L.; Hamer, Gabriel L.; Kitron, Uriel D.; Newman, Christina M.; Ruiz, Marilyn O.; Walker, Edward D.; Brawn, Jeffrey D.

    2014-01-01

    Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission. PMID:25339722

  12. Host group formation decreases exposure to vector-borne disease: a field experiment in a 'hotspot' of West Nile virus transmission.

    PubMed

    Krebs, Bethany L; Anderson, Tavis K; Goldberg, Tony L; Hamer, Gabriel L; Kitron, Uriel D; Newman, Christina M; Ruiz, Marilyn O; Walker, Edward D; Brawn, Jeffrey D

    2014-12-01

    Animals can decrease their individual risk of predation by forming groups. The encounter-dilution hypothesis extends the potential benefits of gregariousness to biting insects and vector-borne disease by predicting that the per capita number of insect bites should decrease within larger host groups. Although vector-borne diseases are common and can exert strong selective pressures on hosts, there have been few tests of the encounter-dilution effect in natural systems. We conducted an experimental test of the encounter-dilution hypothesis using the American robin (Turdus migratorius), a common host species for the West Nile virus (WNV), a mosquito-borne pathogen. By using sentinel hosts (house sparrows, Passer domesticus) caged in naturally occurring communal roosts in the suburbs of Chicago, we assessed sentinel host risk of WNV exposure inside and outside of roosts. We also estimated per capita host exposure to infected vectors inside roosts and outside of roosts. Sentinel birds caged inside roosts seroconverted to WNV more slowly than those outside of roosts, suggesting that social groups decrease per capita exposure to infected mosquitoes. These results therefore support the encounter-dilution hypothesis in a vector-borne disease system. Our results suggest that disease-related selective pressures on sociality may depend on the mode of disease transmission. PMID:25339722

  13. Host feeding pattern of Culex quinquefasciatus (Diptera: Culicidae) and its role in transmission of West Nile virus in Harris County, Texas.

    PubMed

    Molaei, Goudarz; Andreadis, Theodore G; Armstrong, Philip M; Bueno, Rudy; Dennett, James A; Real, Susan V; Sargent, Chris; Bala, Adilelkhidir; Randle, Yvonne; Guzman, Hilda; Travassos da Rosa, Amelia; Wuithiranyagool, Taweesak; Tesh, Robert B

    2007-07-01

    The vertebrate hosts of 672 blood-engorged Culex quinquefasciatus Say, collected in Harris County, Texas, during 2005, were identified by nucleotide sequencing PCR products of the cytochrome b gene. Analysis revealed that 39.1% had acquired blood from birds, 52.5% from mammals, and 8.3% were mixed avian and mammalian blood meals. Most frequent vertebrate hosts were dog (41.0%), mourning dove (18.3%), domestic cat (8.8%), white-winged dove (4.3%), house sparrow (3.2%), house finch (3.0%), gray catbird (3.0%), and American robin (2.5%). Results are interpreted in conjunction with concurrent avian and mosquito West Nile virus (WNV) surveillance activities in Harris County. We conclude that Cx. quinquefasciatus is an opportunistic feeder and principal mosquito vector of WNV in this metropolitan area; however, transmission by other mosquito species or by other modes of infection, such as ingestion, must account for the high WNV infection rates among local blue jays and American crows. PMID:17620633

  14. Migratory birds and spread of West Nile virus in the Western Hemisphere.

    PubMed Central

    Rappole, J. H.; Derrickson, S. R.; Hubálek, Z.

    2000-01-01

    West Nile virus, an Old World flavivirus related to St. Louis encephalitis virus, was first recorded in the New World during August 1999 in the borough of Queens, New York City. Through October 1999, 62 patients, 7 of whom died, had confirmed infections with the virus. Ornithophilic mosquitoes are the principal vectors of West Nile virus in the Old World, and birds of several species, chiefly migrants, appear to be the major introductory or amplifying hosts. If transovarial transmission or survival in overwintering mosquitoes were the principal means for its persistence, West Nile virus might not become established in the New World because of aggressive mosquito suppression campaigns conducted in the New York area. However, the pattern of outbreaks in southern Europe suggests that viremic migratory birds may also contribute to movement of the virus. If so, West Nile virus has the potential to cause outbreaks throughout both temperate and tropical regions of the Western Hemisphere. PMID:10905964

  15. Ixodid and Argasid Tick Species and West Nile Virus

    PubMed Central

    Uzcátegui, Nathalie Yumari; Gould, Ernest Andrew; Nuttall, Patricia Anne

    2004-01-01

    Control of West Nile virus (WNV) can only be effective if the vectors and reservoirs of the virus are identified and controlled. Although mosquitoes are the primary vectors, WNV has repeatedly been isolated from ticks. Therefore tick-borne transmission studies were performed with an ixodid (Ixodes ricinus) and an argasid tick species (Ornithodoros moubata). Both species became infected after feeding upon viremic hosts, but I. ricinus ticks were unable to maintain the virus. In contrast, O. moubata ticks were infected for at least 132 days, and the infection was maintained through molting and a second bloodmeal. Infected O. moubata ticks transmitted the virus to rodent hosts, albeit at a low level. Moreover, the virus was nonsystemically transmitted between infected and uninfected O. moubata ticks co-fed upon uninfected hosts. Although ticks are unlikely to play a major role in WNV transmission, our findings suggest that some species have the potential to act as reservoirs for the virus. PMID:15200855

  16. West Nile Virus: Review of the Literature

    PubMed Central

    Petersen, Lyle R.; Brault, Aaron C.; Nasci, Roger S.

    2015-01-01

    IMPORTANCE Since its introduction in North America in 1999,West Nile virus has produced the 3 largest arboviral neuroinvasive disease outbreaks ever recorded in the United States. OBJECTIVE To review the ecology, virology, epidemiology, clinical characteristics, diagnosis, prevention, and control of West Nile virus, with an emphasis on North America. EVIDENCE REVIEW PubMed electronic database was searched through February 5, 2013. United States national surveillance data were gathered from the Centers for Disease Control and Prevention. FINDINGS West Nile virus is now endemic throughout the contiguous United States, with 16 196 human neuroinvasive disease cases and 1549 deaths reported since 1999. More than 780 000 illnesses have likely occurred. To date, incidence is highest in the Midwest from mid-July to early September. West Nile fever develops in approximately 25% of those infected, varies greatly in clinical severity, and symptoms may be prolonged. Neuroinvasive disease (meningitis, encephalitis, acute flaccid paralysis) develops in less than 1% but carries a fatality rate of approximately 10%. Encephalitis has a highly variable clinical course but often is associated with considerable long-term morbidity. Approximately two-thirds of those with paralysis remain with significant weakness in affected limbs. Diagnosis usually rests on detection of IgM antibody in serum or cerebrospinal fluid. Treatment is supportive; no licensed human vaccine exists. Prevention uses an integrated pest management approach, which focuses on surveillance, elimination of mosquito breeding sites, and larval and adult mosquito management using pesticides to keep mosquito populations low. During outbreaks or impending outbreaks, emphasis shifts to aggressive adult mosquito control to reduce the abundance of infected, biting mosquitoes. Pesticide exposure and adverse human health events following adult mosquito control operations for West Nile virus appear negligible. CONCLUSIONS AND

  17. Chronic West Nile virus infection in kea (Nestor notabilis).

    PubMed

    Bakonyi, Tamás; Gajdon, Gyula K; Schwing, Raoul; Vogl, Wolfgang; Häbich, Annett-Carolin; Thaller, Denise; Weissenböck, Herbert; Rudolf, Ivo; Hubálek, Zdenek; Nowotny, Norbert

    2016-02-01

    Six kea (Nestor notabilis) in human care, naturally infected with West Nile virus (WNV) lineage 2 in Vienna, Austria, in 2008, developed mild to fatal neurological signs. WNV RNA persisted and the virus evolved in the birds' brains, as demonstrated by (phylo)genetic analyses of the complete viral genomes detected in kea euthanized between 2009 and 2014. WNV antibodies persisted in the birds, too. Chronic WNV infection in the brain might contribute to the circulation of the virus through oral transmission to predatory birds. PMID:26790946

  18. Phenotypic Variation among Culex pipiens Complex (Diptera: Culicidae) Populations from the Sacramento Valley, California: Horizontal and Vertical Transmission of West Nile Virus, Diapause Potential, Autogeny, and Host Selection

    PubMed Central

    Nelms, Brittany M.; Kothera, Linda; Thiemann, Tara; Macedo, Paula A.; Savage, Harry M.; Reisen, William K.

    2013-01-01

    The vector competence and bionomics of Culex pipiens form pipiens L. and Cx. pipiens f. molestus Forskäl were evaluated for populations from the Sacramento Valley. Both f. pipiens and f. molestus females became infected, produced disseminated infections, and were able to transmit West Nile virus. Form molestus females also transmitted West Nile virus vertically to egg rafts and F1 progeny, whereas f. pipiens females only transmitted to egg rafts. Culex pipiens complex from urban Sacramento blood-fed on seven different avian species and two mammalian species. Structure analysis of blood-fed mosquitoes identified K = 4 genetic clusters: f. molestus, f. pipiens, a group of genetically similar hybrids (Cluster X), and admixed individuals. When females were exposed as larvae to midwinter conditions in bioenvironmental chambers, 85% (N = 79) of aboveground Cx. pipiens complex females and 100% (N = 34) of underground f. molestus females did not enter reproductive diapause. PMID:24043690

  19. Vaccines in development against West Nile virus.

    PubMed

    Brandler, Samantha; Tangy, Frederic

    2013-10-01

    West Nile encephalitis emerged in 1999 in the United States, then rapidly spread through the North American continent causing severe disease in human and horses. Since then, outbreaks appeared in Europe, and in 2012, the United States experienced a new severe outbreak reporting a total of 5,387 cases of West Nile virus (WNV) disease in humans, including 243 deaths. So far, no human vaccine is available to control new WNV outbreaks and to avoid worldwide spreading. In this review, we discuss the state-of-the-art of West Nile vaccine development and the potential of a novel safe and effective approach based on recombinant live attenuated measles virus (MV) vaccine. MV vaccine is a live attenuated negative-stranded RNA virus proven as one of the safest, most stable and effective human vaccines. We previously described a vector derived from the Schwarz MV vaccine strain that stably expresses antigens from emerging arboviruses, such as dengue, West Nile or chikungunya viruses, and is strongly immunogenic in animal models, even in the presence of MV pre-existing immunity. A single administration of a recombinant MV vaccine expressing the secreted form of WNV envelope glycoprotein elicited protective immunity in mice and non-human primates as early as two weeks after immunization, indicating its potential as a human vaccine. PMID:24084235

  20. West Nile Virus: Symptoms and Treatment

    MedlinePlus

    ... Nile virus infection are available. Over-the-counter pain relievers can be used to reduce fever and relieve some symptoms In severe cases, patients often need to be hospitalized to receive supportive treatment, such as intravenous fluids, pain medication, and nursing ...

  1. Transmission dynamics of an insect-specific flavivirus in a naturally infected Culex pipiens laboratory colony and effects of co-infection on vector competence for West Nile virus

    PubMed Central

    Bolling, Bethany G.; Olea-Popelka, Francisco J.; Eisen, Lars; Moore, Chester G.; Blair, Carol D.

    2012-01-01

    We established a laboratory colony of Culex pipiens mosquitoes from eggs collected in Colorado and discovered that mosquitoes in the colony are naturally infected with Culex flavivirus (CxFV), an insect-specific flavivirus. In this study we examined transmission dynamics of CxFV and effects of persistent CxFV infection on vector competence for West Nile virus (WNV). We found that vertical transmission is the primary mechanism for persistence of CxFV in Cx. pipiens, with venereal transmission potentially playing a minor role. Vector competence experiments indicated possible early suppression of WNV replication by persistent CxFV infection in Cx. pipiens. This is the first description of insect-specific flavivirus transmission dynamics in a naturally infected mosquito colony and the observation of delayed dissemination of superinfecting WNV suggests that the presence of CxFV may impact the intensity of enzootic transmission of WNV and the risk of human exposure to this important pathogen. PMID:22425062

  2. Systems analysis of West Nile virus infection.

    PubMed

    Suthar, Mehul S; Pulendran, Bali

    2014-06-01

    Emerging and re-emerging mosquito-borne viruses continue to pose a significant threat to human health throughout the world. Over the past decade, West Nile virus (WNV), Dengue virus (DENV), and Chikungunya virus (CHIKV), have caused annual epidemics of virus-induced encephalitis, hemorrhagic fever\\shock syndromes, and arthritis, respectively. Currently, no specific antiviral therapies or vaccines exist for use in humans to combat or prevent these viral infections. Thus, there is a pressing need to define the virus-host interactions that govern immunity and infection outcome. Recent technological breakthroughs in 'omics' resources and high-throughput based assays are beginning to accelerate antiviral drug discovery and improve on current strategies for vaccine design. In this review, we highlight studies with WNV and discuss how traditional and systems biological approaches are being used to rapidly identify novel host targets for therapeutic intervention and develop a deeper conceptual understanding of the host response to virus infection. PMID:24851811

  3. Phylogenetic Analysis of West Nile Virus, Nuevo Leon State, Mexico

    PubMed Central

    Blitvich, Bradley J.; Fernández-Salas, Ildefonso; Contreras-Cordero, Juan F.; Loroño-Pino, María A.; Marlenee, Nicole L.; Díaz, Francisco J.; González-Rojas, José I.; Obregón-Martínez, Nelson; Chiu-García, Jorge A.; Black, William C.

    2004-01-01

    West Nile virus RNA was detected in brain tissue from a horse that died in June 2003 in Nuevo Leon State, Mexico. Nucleotide sequencing and phylogenetic analysis of the premembrane and envelope genes showed that the virus was most closely related to West Nile virus isolates collected in Texas in 2002. PMID:15324558

  4. Cytochrome B Analysis of Mosquito Blood Meals: Identifying Wildlife Hosts of West Nile Virus Mosquito Vectors in Wyoming, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Female mosquitoes commonly exhibit patterns of blood feeding from vertebrate hosts, a behavior that strongly influences mosquito pathogen infection and transmission. The vertebrate host dynamics of the mosquito transmitted arbovirus, West Nile virus (family Flaviviridae, genus Flavivirus, WNV) in sa...

  5. West Nile Virus in Europe and Safety of Blood Transfusion

    PubMed Central

    Pisani, Giulio; Cristiano, Karen; Pupella, Simonetta; Liumbruno, Giancarlo Maria

    2016-01-01

    Summary West Nile virus (WNV) has become an increasing issue in the transfusion setting since 2002, when it was firstly shown in the USA that it can be transmitted through blood transfusion. Since then, several precautionary measures have been introduced in Europe in order to reduce the possible risk of transmission via transfusion/solid organ transplantation. In addition, the epidemiological surveillance has been tightened and the network for communication of human WNV cases strengthened. This review will focus on WNV circulation and the safety of blood in Europe. PMID:27403087

  6. The Global Ecology and Epidemiology of West Nile Virus

    PubMed Central

    Rios, Maria

    2015-01-01

    Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission. PMID:25866777

  7. West Nile Virus Encephalitis 16 Years Later.

    PubMed

    Kleinschmidt-DeMasters, Bette K; Beckham, J David

    2015-09-01

    Arboviruses (Arthropod-borne viruses) include several families of viruses (Flaviviridae, Togaviradae, Bunyaviradae, Reoviradae) that are spread by arthropod vectors, most commonly mosquitoes, ticks and sandflies. The RNA genome allows these viruses to rapidly adapt to ever-changing host and environmental conditions. Thus, these virus families are largely responsible for the recent expansion in geographic range of emerging viruses including West Nile virus (WNV), dengue virus and Chikungunya virus. This review will focus on WNV, especially as it has progressively spread westward in North America since its introduction in New York in 1999. By 2003, WNV infections in humans had reached almost all lower 48 contiguous United States (US) and since that time, fluctuations in outbreaks have occurred. Cases decreased between 2008 and 2011, followed by a dramatic flair in 2012, with the epicenter in the Dallas-Fort Worth region of Texas. The 2012 outbreak was associated with an increase in reported neuroinvasive cases. Neuroinvasive disease continues to be a problem particularly in the elderly and immunocompromised populations, although WNV infections also represented the second most frequent cause of pediatric encephalitis in these same years. Neuropathological features in cases from the 2012 epidemic highlight the extent of viral damage that can occur in the CNS. PMID:26276026

  8. Comparison of Immunohistochemistry and Virus Isolation for Diagnosis of West Nile Virus

    PubMed Central

    Ellis, Angela E.; Mead, Daniel G.; Allison, Andrew B.; Gibbs, Samantha E. J.; Gottdenker, Nicole L.; Stallknecht, David E.; Howerth, Elizabeth W.

    2005-01-01

    Immunohistochemistry and virus isolation were performed on 1,057 birds. Immunohistochemistry, virus isolation, or both found 325 birds to be West Nile virus positive. Of these, 271 were positive by both methods. These results indicate that virus isolation and immunohistochemistry are approximately equal in their ability to detect West Nile virus. PMID:15956415

  9. Seroprevalence of West Nile virus in Iran.

    PubMed

    Chinikar, Sadegh; Shah-Hosseini, Nariman; Mostafavi, Ehsan; Moradi, Maryam; Khakifirouz, Sahar; Jalali, Tahmineh; Goya, Mohammad Mehdi; Shirzadi, Mohammad Reza; Zainali, Mohammad; Fooks, Anthony R

    2013-08-01

    This study was undertaken to determine the seroprevalence of West Nile virus (WNV) in human and equine sera in Iran. Blood samples were tested from 300 human samples and 315 equine samples in five geographic zones of north and central parts of Iran between 2010 and 2012. All samples were tested for the immunoglobulin G (IgG) antibody to WNV by using an enzyme-linked immunosorbent assay (ELISA). Of all samples, 4 (1.3%) human and 9 (2.8%) equines were considered to be seropositive for WNV. These results suggest circulation and exposure of the human and equine populations to WNV in Iran. PMID:23697768

  10. Skin manifestations of West Nile virus infection.

    PubMed

    Del Giudice, P; Schuffenecker, I; Zeller, H; Grelier, M; Vandenbos, F; Dellamonica, P; Counillon, E

    2005-01-01

    West Nile virus (WNV) infection is a potentially lethal arbovirus infection. Many notable outbreaks have occurred during the last few years throughout the world, including Europe and the USA. The severity of the disease is mainly related to the neurological complications. A maculopapular exanthema is reported as a clinical sign of the disease. Recently an outbreak of WNV infection occurred in southern France. Three patients out of 6 had a similar skin roseola-like eruption. The cluster of 3 cases of similar febrile roseola of unexplained cause during the same week led to the diagnosis of the first WNV human outbreak in France for 40 years. PMID:16286745

  11. Experimental Infection of Raccoons (Procyon lotor) with West Nile Virus

    PubMed Central

    Root, J. Jeffrey; Bentler, Kevin T.; Nemeth, Nicole M.; Gidlewski, Thomas; Spraker, Terry R.; Franklin, Alan B.

    2010-01-01

    To characterize the responses of raccoons to West Nile virus (WNV) infection, we subcutaneously exposed them to WNV. Moderately high viremia titers (≤ 104.6 plaque forming units [PFU]/mL of serum) were noted in select individuals; however, peak viremia titers were variable and viremia was detectable in some individuals as late as 10 days post-inoculation (DPI). In addition, fecal shedding was prolonged in some animals (e.g., between 6 and 13 DPI in one individual), with up to105.0 PFU/fecal swab detected. West Nile virus was not detected in tissues collected on 10 or 16 DPI, and no histologic lesions attributable to WNV infection were observed. Overall, viremia profiles suggest that raccoons are unlikely to be important WNV amplifying hosts. However, this species may occasionally shed significant quantities of virus in feces. Considering their behavioral ecology, including repeated use of same-site latrines, high levels of fecal shedding could potentially lead to interspecies fecal-oral WNV transmission. PMID:20889868

  12. West Nile virus epizootiology in the southeastern United States, 2001.

    PubMed

    Godsey, Marvin S; Blackmore, Mark S; Panella, Nicholas A; Burkhalter, Kristen; Gottfried, Kristy; Halsey, Lawrence A; Rutledge, Roxanne; Langevin, Stanley A; Gates, Robert; Lamonte, Karen M; Lambert, Amy; Lanciotti, Robert S; Blackmore, Carina G M; Loyless, Tom; Stark, Lillian; Oliveri, Robin; Conti, Lisa; Komar, Nicholas

    2005-01-01

    We investigated mosquito and bird involvement in West Nile virus (WNV) transmission in July 2001 in Jefferson County, FL, and Lowndes County, GA. We detected 16 WNV-infected pools from Culex quinquefasciatus, Cx. salinarius, Cx. nigripalpus, and Culiseta melanura. In Florida, 11% of 353 bird sera neutralized WNV. Antibody prevalence was greatest in northern cardinal (Cardinalis cardinalis, 75%), northern mockingbird (Mimus polyglottus, 50%), common ground-dove (Columbina passerina, 25%), common grackle (Quiscalus quiscula, 15%), domestic chicken (Gallus gallus, 16%), and house sparrow (Passer domesticus, 11%). Antibody-positive birds were detected in nine of 11 locations, among which prevalence in chickens ranged from 0% to 100%. Seropositive chickens were detected in Georgia as well. The primary transmission cycle of WNV in the southeastern United States apparently involves Culex mosquitoes and passerine birds. Chickens are frequently infected and may serve as effective sentinels in this region. PMID:15815153

  13. Experimental Infections of Wild Birds with West Nile Virus

    PubMed Central

    Pérez-Ramírez, Elisa; Llorente, Francisco; Jiménez-Clavero, Miguel Ángel

    2014-01-01

    Avian models of West Nile virus (WNV) disease have become pivotal in the study of infection pathogenesis and transmission, despite the intrinsic constraints that represents this type of experimental research that needs to be conducted in biosecurity level 3 (BSL3) facilities. This review summarizes the main achievements of WNV experimental research carried out in wild birds, highlighting advantages and limitations of this model. Viral and host factors that determine the infection outcome are analyzed in detail, as well as recent discoveries about avian immunity, viral transmission, and persistence achieved through experimental research. Studies of laboratory infections in the natural host will help to understand variations in susceptibility and reservoir competence among bird species, as well as in the epidemiological patterns found in different affected areas. PMID:24531334

  14. Spatially explicit West Nile virus risk modeling in Santa Clara County, California

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A previously created Geographic Information Systems model designed to identify regions of West Nile virus (WNV) transmission risk is tested and calibrated in Santa Clara County, California. American Crows that died from WNV infection in 2005 provide the spatial and temporal ground truth. Model param...

  15. Spatially Explicit West Nile Virus Risk Modeling in Santa Clara County, CA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A geographic information systems model designed to identify regions of West Nile virus (WNV) transmission risk was tested and calibrated with data collected in Santa Clara County, California. American Crows that died from WNV infection in 2005, provided spatial and temporal ground truth. When the mo...

  16. Early-season avian deaths from West Nile virus as warnings of human infection

    USGS Publications Warehouse

    Guptill, S.C.; Julian, K.G.; Campbell, G.L.; Price, S.D.; Marfin, A.A.

    2003-01-01

    An analysis of 2001 and 2002 West Nile virus (WNV) surveillance data shows that counties that report WNV-infected dead birds early in the transmission season are more likely to report subsequent WNV disease cases in humans than are counties that do not report early WNV-infected dead birds.

  17. Abundance and Diversity of Mosquito Species Collected From a Rural Area of Central Mississippi: Implications for West Nile Virus Transmission in Mississippi.

    PubMed

    Varnado, Wendy; Goddard, Jerome

    2015-06-01

    To determine abundance and seasonality of potential West Nile virus (WNV) mosquito vectors in a forested area of central Mississippi, mosquitoes were collected weekly from a wildlife management area located approximately 10 mi from a local urban area known to have numerous human WNV cases. We were particularly interested in the presence or absence of Culex quinquefasciatus, the primary vector of WNV in Mississippi, although other Culex species were assayed. Two Centers for Disease Control and Prevention light traps baited with CO2 were set once a week from 2005 through 2006 in the Pearl River Wildlife Management Area (PRWMA), which consists of 6,925 acres primarily composed of bottomland hardwood forest with wetland areas. Traps were placed midafternoon and picked up the following morning. A total of 199,222 mosquitoes were collected during the 2-year study. No Cx. quinquefasciatus were collected throughout the entire study, although other health department surveys have indicated they are abundant just a few miles away. As for other potential WNV vectors, 1,325 (0.6%) Cx. nigripalpus, 1,804 (0.9%) Cx. restuans, and 6,076 (3.1%) Cx. salinarius were collected in the PRWMA over the 2-year period. These data suggest that Cx. quinquefasciatus is not usually found in remote forested environments, but is more associated with human habitation. PMID:26181696

  18. Diversification of West Nile virus in a subtropical region

    PubMed Central

    Chisenhall, Daniel M; Mores, Christopher N

    2009-01-01

    Background West Nile virus (WNV) has spread across North, Central, and South America since its introduction in 1999. At the start of this spread, Florida was considered a potentially important area with regards to transmission due to its geographic, climatological, and demographic conditions. Curiously, the anticipated high levels of transmission or disease outbreaks have not been observed. As other studies have predicted that the lack of intense WNV transmission is not due to vector incompetence, we sought to evaluate the role of viral strain diversity in WNV transmission in Florida. Therefore, a phylogentic analysis was carried out on several isolates collected from three distinct locations in Florida. Results Contrasting with a positive control collected in Indian River County, Florida during 2003 that contains the original NY99 genotype with valanine at amino acid 159 of the envelope region, all of the isolates collected in 2005 contain the WN02 genotype composed of a substation with alanine at that position indicating the window of introduction of the WN02 genotype occurred between 2003 and 2005. From the eight isolates collected in Duval, Indian River, and Manatee Counties; there is also a silent nucleotide substitution that differentiates the isolates collected on the Atlantic side of the state compared to the isolate collected on the Gulf side, which groups closer to isolates from other locations near the Gulf. Conclusion As a whole, the Florida isolates contained numerous variable nucleotide and amino acid sites from the reference sequences, as well as each other; indicating greater nucleotide diversity within the Florida 2005 isolates than within other regions. Finally, a series of three amino acid substitutions surrounding a set of histidines located in the envelope coding region that hypothesized to play a role in conformational changes was found in the isolate collected in Indian River County, perhaps changing the antigenicity of the homodimer. Taken

  19. West Nile Virus Infection of Birds, Mexico

    PubMed Central

    Guerrero-Sánchez, Sergio; Cuevas-Romero, Sandra; Nemeth, Nicole M.; Trujillo-Olivera, María Teresa Jesús; Worwa, Gabriella; Dupuis, Alan; Brault, Aaron C.; Kramer, Laura D.; Komar, Nicholas

    2011-01-01

    West Nile virus (WNV) has caused disease in humans, equids, and birds at lower frequency in Mexico than in the United States. We hypothesized that the seemingly reduced virulence in Mexico was caused by attenuation of the Tabasco strain from southeastern Mexico, resulting in lower viremia than that caused by the Tecate strain from the more northern location of Baja California. During 2006–2008, we tested this hypothesis in candidate avian amplifying hosts: domestic chickens, rock pigeons, house sparrows, great-tailed grackles, and clay-colored thrushes. Only great-tailed grackles and house sparrows were competent amplifying hosts for both strains, and deaths occurred in each species. Tecate strain viremia levels were higher for thrushes. Both strains produced low-level viremia in pigeons and chickens. Our results suggest that certain avian hosts within Mexico are competent for efficient amplification of both northern and southern WNV strains and that both strains likely contribute to bird deaths. PMID:22172633

  20. Recent progress in West Nile virus diagnosis and vaccination

    PubMed Central

    2012-01-01

    West Nile virus (WNV) is a positive-stranded RNA virus belonging to the Flaviviridae family, a large family with 3 main genera (flavivirus, hepacivirus and pestivirus). Among these viruses, there are several globally relevant human pathogens including the mosquito-borne dengue virus (DENV), yellow fever virus (YFV), Japanese encephalitis virus (JEV) and West Nile virus (WNV), as well as tick-borne viruses such as tick-borne encephalitis virus (TBEV). Since the mid-1990s, outbreaks of WN fever and encephalitis have occurred throughout the world and WNV is now endemic in Africa, Asia, Australia, the Middle East, Europe and the Unites States. This review describes the molecular virology, epidemiology, pathogenesis, and highlights recent progress regarding diagnosis and vaccination against WNV infections. PMID:22380523

  1. West Nile virus: A re-emerging pathogen revisited

    PubMed Central

    Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2012-01-01

    West Nile virus (WNV), a flavivirus of the Flaviviridae family, is maintained in nature in an enzootic transmission cycle between avian hosts and ornithophilic mosquito vectors, although the virus occasionally infects other vertebrates. WNV causes sporadic disease outbreaks in horses and humans, which may result in febrile illness, meningitis, encephalitis and flaccid paralysis. Until recently, its medical and veterinary health concern was relatively low; however, the number, frequency and severity of outbreaks with neurological consequences in humans and horses have lately increased in Europe and the Mediterranean basin. Since its introduction in the Americas, the virus spread across the continent with worrisome consequences in bird mortality and a considerable number of outbreaks among humans and horses, which have resulted in the largest epidemics of neuroinvasive WNV disease ever documented. Surprisingly, its incidence in human and animal health is very different in Central and South America, and the reasons for it are not yet understood. Even though great advances have been obtained lately regarding WNV infection, and although efficient equine vaccines are available, no specific treatments or vaccines for human use are on the market. This review updates the most recent investigations in different aspects of WNV life cycle: molecular virology, transmission dynamics, host range, clinical presentations, epidemiology, ecology, diagnosis, control, and prevention, and highlights some aspects that certainly require further research. PMID:24175211

  2. [West Nile virus: a new challenge?].

    PubMed

    Valero, Nereida

    2003-09-01

    West Nile Virus (WNV), a member of the family Flaviviridae, was first isolated in 1937. Since the original isolation of the WNV outbreaks have occurred with increase in frequency of cases in humans and horses, apparent increase in severe human disease and high avian death rates. In 1999, 2000 and 2002 outbreaks of the WNV encephalitis were reported in horses, birds and humans from New York and Canada. Ornithophilic mosquitoes are the principal vectors of the WNV and birds of several species chiefly migrants appear to be the major introductory or amplifying host. The pattern of outbreaks in the old and new world suggests that viremic migratory birds may also contribute to movement of the virus. If so, Central America, Caribbean Islands and countries of South America including Venezuela, are in potential risk for suffering a severe outbreak for WNV, since several species of birds have populations that pass trough New York and cross the western north Atlantic or Caribbean Sea. It is important the knowledge of the ecology of WNV as well of the efficacy of control efforts in order to minimize the public health impact in these countries, where all population is susceptible to this infection. PMID:14552056

  3. West Nile Virus outbreak in Sardinia, Italy, in 2011.

    PubMed

    Spissu, Nicoletta; Panichi, Giovanni; Montisci, Antonio; Fiore, Filippo

    2013-01-01

    West Nile Virus (WNV) is an enveloped, positive-sense RNA virus belonging to the genus Flavivirus, antigenically related to the Japanese encephalitis complex in the family Flaviviridae. The principal vectors are mosquitoes, in particular Culex spp, and virus amplification seems to occur in susceptible birds that are the principal vertebrate reservoir hosts, whereas humans, horses and other vertebrates are considered incidental or dead-end hosts. The first Italian equine outbreak was reported in late summer of 1998 in Tuscany, in the area surrounding the Fucecchio marshes, where 14 clinical cases of WND in housed equines were recorded. In 2011 WNV appeared for the first time in Sardinia, representing the first clinical cases in equines in Italy in 2011. The outbreak occurred both in humans and in equines. The serological survey performed on 253 equines living in the province of Oristano detected a total of 87 IgG-positive subjects. Among them, 46 horses showed neurological signs such as ataxia, paresis, paralysis, hyperesthesia, muscle fasciculations, seizures, or fever. Nine of them died or were euthanized. In forthcoming years, surveillance of wild birds and insects will be used to forecast the extension and spread of WNV. The information gathered will be used to direct or optimise strategies intended to prevent virus transmission. PMID:23324814

  4. Safety of West Nile Virus vaccines in sandhill crane chicks

    USGS Publications Warehouse

    Olsen, G.H.; Miller, K.J.; Docherty, D.E.; Bochsler, V.S.

    2008-01-01

    West Nile virus arrived in North America in 1999 and has spread across the continent in the ensuing years. The virus has proven deadly to a variety of native avian species including sandhill cranes (Grus canadensis). In order to provide safe and efficacious protection for captive and released populations of whooping cranes (G. americana), we have conducted a series of four research projects. The last of these was a study of the effects of two different West Nile virus vaccines on young Florida sandhill crane (G. c. pratensis) chicks and subsequent challenge with the virus. We found that vaccinating crane chicks as early as day 7 post-hatch caused no adverse reactions or noticeable morbidity. We tested both a commercial equine vaccine West Nile - Innovator (Fort Dodge Laboratories, Fort Dodge, Iowa) and a new recombinant DNA vaccine (Centers for Disease Control). We had a 33% mortality in control chicks (n =6) from West Nile virus infection, versus 0% mortality in two groups of vaccinated chicks (n = 12), indicating the two vaccines tested were not only safe but effective in preventing West Nile virus.

  5. Propagation and Titration of West Nile Virus on Vero Cells.

    PubMed

    McAuley, Alexander J; Beasley, David W C

    2016-01-01

    The propagation and titration of viruses are key virological techniques. Unlike other flaviviruses, such as the dengue viruses, West Nile virus (WNV) grows and plaques very efficiently on Vero cells, usually inducing strong cytopathic effect (CPE) and forming clear plaques. Here, we outline the steps for propagating WNV from culture supernatant stocks and homogenized organ/mosquito samples, as well as for determining virus titers in samples by serial-dilution plaque assay using neutral red or crystal violet stains. PMID:27188547

  6. West Nile Virus Encephalitis in a Barbary Macaque (Macaca sylvanus)

    PubMed Central

    Barker, Ian K.; Crawshaw, Graham J.; Bertelsen, Mads F.; Drebot, Michael A.; Andonova, Maya

    2004-01-01

    An aged Barbary ape (Macaca sylvanus) at the Toronto Zoo became infected with naturally acquired West Nile virus (WNV) encephalitis that caused neurologic signs, which, associated with other medical problems, led to euthanasia. The diagnosis was based on immunohistochemical assay of brain lesions, reverse transcriptase–polymerase chain reaction, and virus isolation. PMID:15200866

  7. West Nile virus: should pediatricians care?

    PubMed

    Smith, Jennifer C; Mailman, Tim; MacDonald, Noni E

    2014-11-01

    Given the recurrent serious outbreaks of West Nile Virus (WNV) in the United States over the past decade, the spread to Canada and South America, the recurrent outbreaks in Europe, and the potential for serious neurological disease even in children under 18 years, paediatricians in affected areas must consider WNV in the differential diagnosis of all children presenting with aseptic meningitis, encephalitis and acute flaccid paralysis. Additionally, given that WNV encephalitis can occur after WNV infection, suspicion for neurological WNV disease must remain high even after otherwise benign febrile illnesses if the child lives in or has traveled to an affected region. Under-diagnosis in the pediatric population is likely a serious problem, necessitating further educational efforts. More follow-up studies of WNV neurological disease in children and youth are needed to better understand the potential long-term sequelae during vulnerable times of neurodevelopment and neural remodeling. Similarly, more research is need on short and long-term fetal outcomes of maternal WNV infection. PMID:25138381

  8. West Nile Virus in Resident Birds from Yucatan, Mexico.

    PubMed

    Chaves, Andrea; Sotomayor-Bonilla, Jesus; Monge, Otto; Ramírez, Abigaíl; Galindo, Francisco; Sarmiento-Silva, Rosa Elena; Gutiérrez-Espeleta, Gustavo A; Suzán, Gerardo

    2016-01-01

    West Nile virus (WNV) in the Americas is thought to be transported at large spatial scales by migratory birds and locally spread and amplified by resident birds. Local processes, including interspecific interactions and dominance of passerine species recognized as competent reservoirs, may boost infection and maintain endemic cycles. Change in species composition has been recognized as an important driver for infection dynamics. Due to migration and changes in species diversity and composition in wintering grounds, changes in infection prevalence are expected. To these changes, we used PCR to estimate the prevalence of WNV in wild resident birds during the dry and rainy seasons of 2012 in Yucatan, Mexico. Serum samples were obtained from 104 wild birds, belonging to six orders and 35 species. We detected WNV in 14 resident birds, representing 11 species and three orders. Prevalences by order was Passeriformes (27%), Columbiformes (6%), and Piciformes (33%). Resident birds positive to WNV from Yucatan may be indicative of local virus circulation and evidence of past virus transmission activity. PMID:26540336

  9. A Review of Vaccine Approaches for West Nile Virus

    PubMed Central

    Iyer, Arun V.; Kousoulas, Konstantin G.

    2013-01-01

    The West Nile virus (WNC) first appeared in North America in 1999. The North American lineages of WNV were characterized by the presence of neuroinvasive and neurovirulent strains causing disease and death in humans, birds and horses. The 2012 WNV season in the United States saw a massive spike in the number of neuroinvasive cases and deaths similar to what was seen in the 2002–2003 season, according to the West Nile virus disease cases and deaths reported to the CDC by year and clinical presentation, 1999–2012, by ArboNET (Arboviral Diseases Branch, Centers for Disease Control and Prevention). In addition, the establishment and recent spread of lineage II WNV virus strains into Western Europe and the presence of neurovirulent and neuroinvasive strains among them is a cause of major concern. This review discusses the advances in the development of vaccines and biologicals to combat human and veterinary West Nile disease. PMID:24025396

  10. The relationships between West Nile and Kunjin viruses.

    PubMed Central

    Scherret, J. H.; Poidinger, M.; Mackenzie, J. S.; Broom, A. K.; Deubel, V.; Lipkin, W. I.; Briese, T.; Gould, E. A.; Hall, R. A.

    2001-01-01

    Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses. PMID:11585535

  11. Yellow fever vector live-virus vaccines: West Nile virus vaccine development.

    PubMed

    Arroyo, J; Miller, C A; Catalan, J; Monath, T P

    2001-08-01

    By combining molecular-biological techniques with our increased understanding of the effect of gene sequence modification on viral function, yellow fever 17D, a positive-strand RNA virus vaccine, has been manipulated to induce a protective immune response against viruses of the same family (e.g. Japanese encephalitis and dengue viruses). Triggered by the emergence of West Nile virus infections in the New World afflicting humans, horses and birds, the success of this recombinant technology has prompted the rapid development of a live-virus attenuated candidate vaccine against West Nile virus. PMID:11516995

  12. West Nile virus antibody prevalence in wild mammals, southern Wisconsin

    USGS Publications Warehouse

    Docherty, D.E.; Samuel, M.D.; Nolden, C.A.; Egstad, Kristina F.; Griffin, K.M.

    2006-01-01

    Twenty percent prevalence of West Nile virus antibody was found in free-ranging medium-sized Wisconsin mammals. No significant differences were noted in antibody prevalence with regard to sex, age, month of collection, or species. Our results suggest a similar route of infection in these mammals.

  13. West Nile Virus Fitness Costs in Different Mosquito Species.

    PubMed

    Coffey, Lark L; Reisen, William K

    2016-06-01

    West Nile virus (WNV) remains an important public health problem causing annual epidemics in the United States. Grubaugh et al. observed that WNV genetic divergence is dependent on the vector mosquito species. This suggests that specific WNV vector-bird species pairings may generate novel genotypes that could promote outbreaks. PMID:27108207

  14. West Nile Virus Isolation in Human and Mosquitoes, Mexico

    PubMed Central

    Elizondo-Quiroga, Darwin; Davis, C. Todd; Fernandez-Salas, Ildefonso; Escobar-Lopez, Roman; Olmos, Dolores Velasco; Gastalum, Lourdes Cecilia Soto; Acosta, Magaly Aviles; Elizondo-Quiroga, Armando; Gonzalez-Rojas, Jose I.; Cordero, Juan F. Contreras; Guzman, Hilda; Travassos da Rosa, Amelia; Blitvich, Bradley J.; Barrett, Alan D.T.; Beaty, Barry J.

    2005-01-01

    West Nile virus has been isolated for the first time in Mexico, from a sick person and from mosquitoes (Culex quinquefasciatus). Partial sequencing and analysis of the 2 isolates indicate that they are genetically similar to other recent isolates from northern Mexico and the western United States. PMID:16229779

  15. Assays to Detect West Nile Virus in Dead Birds

    PubMed Central

    Therrien, Joseph E.; Benson, Robert; Kramer, Laura; Kauffman, Elizabeth B.; Eidson, Millicent; Campbell, Scott

    2005-01-01

    Using oral swab samples to detect West Nile virus in dead birds, we compared the Rapid Analyte Measurement Platform (RAMP) assay with VecTest and real-time reverse-transcriptase–polymerase chain reaction. The sensitivities of RAMP and VecTest for testing corvid species were 91.0% and 82.1%, respectively. PMID:16318736

  16. Antibody Prevalence of West Nile Virus in Birds, Illinois, 2002

    PubMed Central

    Blitvich, Bradley J.; Koo, Hyun-Young; Van de Wyngaerde, Marshall; Brawn, Jeff D.; Novak, Robert J.

    2004-01-01

    Antibodies to West Nile virus were detected in 94 of 1,784 Illinois birds during 2002. Captive and urban birds had higher seropositivity than did birds from natural areas, and northern and central Illinois birds’ seropositivity was greater than that from birds from the southern sites. Adult and hatch-year exposure rates did not differ significantly. PMID:15207067

  17. West Nile Virus Isolation from Equines in Argentina, 2006

    PubMed Central

    Barrandeguy, María; Fabbri, Cintia; Garcia, Jorge B.; Vissani, Aldana; Trono, Karina; Gutierrez, Gerónimo; Pigretti, Santiago; Menchaca, Hernán; Garrido, Nelson; Taylor, Nora; Fernandez, Fernando; Levis, Silvana; Enría, Delia

    2006-01-01

    West Nile virus (WNV) was isolated from the brains of 3 horses that died from encephalitis in February 2006. The horses were from different farms in central Argentina and had not traveled outside the country. This is the first isolation of WNV in South America. PMID:17176571

  18. Fatal West Nile Virus Encephalitis in a Heart Transplant Recipient

    PubMed Central

    Gomez, Adam J.; Waggoner, Jesse J.; Itoh, Megumi; Hollander, Seth A.; Gutierrez, Kathleen M.; Budvytiene, Indre; Banaei, Niaz

    2015-01-01

    The diagnosis of encephalitis is particularly challenging in immunocompromised patients. We report here a case of fatal West Nile virus encephalitis confounded by the presence of budding yeast in the cerebrospinal fluid (CSF) from a patient who had undergone heart transplantation for dilated cardiomyopathy 11 months prior to presentation of neurologic symptoms. PMID:25994169

  19. Domestic goose model for West Nile virus vaccine efficiency testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    West Nile virus (WNV) is an emergent pathogen in the Americas, first reported in New York during 1999, and has since spread across the United States (USA), Central and South America causing neurological disease in humans, horses and some bird species, including domestic geese. No WNV vaccines are li...

  20. Corvidae feather pulp and West Nile virus detection

    USGS Publications Warehouse

    Docherty, D.E.; Romaine Long, R.; Griffin, Katie M.; Saito, E.K.

    2004-01-01

    We evaluated cloacal swab, vascular pulp of flight feather, and kidney and spleen pool samples from carcasses of members of the family Corvidae as sources of West Nile virus (WNV). The cloacal swab, kidney and spleen pool, and feather pulp were the source of WNV in 38%, 43%, and 77%, respectively, of the carcasses.

  1. West Nile virus infection in killer whale, Texas, USA, 2007.

    PubMed

    St Leger, Judy; Wu, Guang; Anderson, Mark; Dalton, Les; Nilson, Erika; Wang, David

    2011-08-01

    In 2007, nonsuppurative encephalitis was identified in a killer whale at a Texas, USA, marine park. Panviral DNA microarray of brain tissue suggested West Nile virus (WNV); WNV was confirmed by reverse transcription PCR and sequencing. Immunohistochemistry demonstrated WNV antigen within neurons. WNV should be considered in cases of encephalitis in cetaceans. PMID:21801643

  2. West Nile Virus Infection among the Homeless, Houston, Texas1

    PubMed Central

    Meyer, Tamra E.; Bull, Lara M.; Holmes, Kelly Cain; Pascua, Rhia F.; Travassos da Rosa, Amelia; Gutierrez, Christian R.; Corbin, Tracie; Woodward, Jennifer L.; Taylor, Jeffrey P.; Tesh, Robert B.

    2007-01-01

    Among 397 homeless participants studied, the overall West Nile virus (WNV) seroprevalence was 6.8%. Risk factors for WNV infection included being homeless >1 year, spending >6 hours outside daily, regularly taking mosquito precautions, and current marijuana use. Public health interventions need to be directed toward this high-risk population. PMID:18257995

  3. Peptide inhibitors of dengue virus and West Nile virus infectivity

    PubMed Central

    Hrobowski, Yancey M; Garry, Robert F; Michael, Scott F

    2005-01-01

    Viral fusion proteins mediate cell entry by undergoing a series of conformational changes that result in virion-target cell membrane fusion. Class I viral fusion proteins, such as those encoded by influenza virus and human immunodeficiency virus (HIV), contain two prominent alpha helices. Peptides that mimic portions of these alpha helices inhibit structural rearrangements of the fusion proteins and prevent viral infection. The envelope glycoprotein (E) of flaviviruses, such as West Nile virus (WNV) and dengue virus (DENV), are class II viral fusion proteins comprised predominantly of beta sheets. We used a physio-chemical algorithm, the Wimley-White interfacial hydrophobicity scale (WWIHS) [1] in combination with known structural data to identify potential peptide inhibitors of WNV and DENV infectivity that target the viral E protein. Viral inhibition assays confirm that several of these peptides specifically interfere with target virus entry with 50% inhibitory concentration (IC50) in the 10 μM range. Inhibitory peptides similar in sequence to domains with a significant WWIHS scores, including domain II (IIb), and the stem domain, were detected. DN59, a peptide corresponding to the stem domain of DENV, inhibited infection by DENV (>99% inhibition of plaque formation at a concentrations of <25 μM) and cross-inhibition of WNV fusion/infectivity (>99% inhibition at <25 μM) was also demonstrated with DN59. However, a potent WNV inhibitory peptide, WN83, which corresponds to WNV E domain IIb, did not inhibit infectivity by DENV. Additional results suggest that these inhibitory peptides are noncytotoxic and act in a sequence specific manner. The inhibitory peptides identified here can serve as lead compounds for the development of peptide drugs for flavivirus infection. PMID:15927084

  4. Ecology of West Nile Virus in North America

    PubMed Central

    Reisen, William K.

    2013-01-01

    The introduction, dispersal and establishment of West Nile virus in North America were reviewed, focusing on factors that may have enhanced receptivity and enabled the invasion process. The overwintering persistence of this tropical virus within temperate latitudes was unexpected, but was key in the transition from invasion to endemic establishment. The cascade of temporal events allowing sporadic amplification to outbreak levels was discussed within a future perspective. PMID:24008376

  5. West Nile Virus in Mosquitoes of Iranian Wetlands.

    PubMed

    Bagheri, Masoomeh; Terenius, Olle; Oshaghi, Mohammad Ali; Motazakker, Morteza; Asgari, Sassan; Dabiri, Farrokh; Vatandoost, Hassan; Mohammadi Bavani, Mulood; Chavshin, Ali Reza

    2015-12-01

    The West Nile virus (WNV) transmission cycle includes a wide range of migratory wetland birds as reservoirs, mosquitoes as biological vectors, and equines and humans as dead-end hosts. Despite the presence of potential vector species, there is no information about the existence of WNV in mosquito vectors in Iran. The Iranian West Azerbaijan Province is located in the northwestern part of Iran and has borders with Turkey, Iraq, Armenia, and the Republic of Azerbaijan. The current study was conducted to identify the wetland mosquitoes of the West Azerbaijan Province and their infection with WNV. In this study, 2143 specimens were collected, comprising 1541 adults and 602 larvae. Six species belonging to four genera were collected and identified: Anopheles maculipennis sensu lato (s.l.), Culex (Cx.) hortensis, Cx. pipiens s.l., Cx. theileri, Culiseta longiareolata, and Aedes (Ae.) (Ochlerotatus) caspius. In total, 45 pools of mosquitoes were examined. Two of the adult pools collected from the same location showed the presence of WNV in Ae. (Och.) caspius, from Sangar, Makoo County, as confirmed by PCR and sequencing. Due to the discovery of WNV in the mosquito population of the region, and the presence of wetlands and significant populations of migratory birds, the health sector should carefully monitor the factors involved in the cycle of this disease. PMID:26565610

  6. Detection of West Nile virus RNA from the louse fly Icosta americana (Diptera: Hippoboscidae).

    PubMed

    Farajollahi, Ary; Crans, Wayne J; Nickerson, Diane; Bryant, Patricia; Wolf, Bruce; Glaser, Amy; Andreadis, Theodore G

    2005-12-01

    West Nile virus (WNV) was detected by Taqman reverse transcription-polymerase chain reaction in 4 of 85 (4.7%) blood-engorged (n = 2) and unengorged (n = 2) Icosta americana (Leach) hippoboscid flies that were collected from wild raptors submitted to a wildlife rehabilitation center in Mercer County, NJ, in 2003. This report represents an additional detection of WNV in a nonculicine arthropod in North America and the first documented detection of the virus in unengorged hippoboscid flies, further suggesting a possible role that this species may play in the transmission of WNV in North America. PMID:16506578

  7. Occurrence of west nile virus infection in raptors at the Salton Sea, California.

    PubMed

    Dusek, Robert J; Iko, William M; Hofmeister, Erik K

    2010-07-01

    We investigated the prevalence of West Nile virus (WNV)-neutralizing antibodies and infectious virus, and the occurrence of overwinter transmission in two raptor species during January and March 2006 at the Salton Sea, Imperial County, California. We captured 208 American Kestrels (Falco sparverius) (January, n=100; March, n=108) and 116 Burrowing Owls (Athene cunicularia) (January, n=52; March, n=64). Laboratory analysis revealed that 83% of American Kestrels and 31% of Burrowing Owls were positive for WNV-neutralizing antibodies. Additionally, two seroconversions were detected in Burrowing Owls between January and March. Infectious WNV, consistent with acute infection, was not detected in any bird. PMID:20688694

  8. Monitoring the Spread of West Nile Virus with Satellite Data

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A NASA-funded study uses temperature and vegetation data from satellites to help track and predict where West Nile virus is spreading in North America. Scientists and public health officials hope one day to use near real-time maps to focus resources and stave off the disease more efficiently. This image is a composite of land surface temperatures (LST) recorded between 1997 and 2000 and was used to help monitor and predict the spread of West Nile virus in the United States. In the color figure above, the mean land surface temperatures are in red; annual amplitude-or the difference between low and high annual temperatures-is in blue; and annual phase-or the timing of annual temperature peaks-appears in green. Brighter colors mean higher values. The major north-south temperature difference (dull red in the upper part of the image to bright red in the lower part) is considerably affected by the Rockies in the west and to a much lesser extent by the Appalachians in the east. The brighter blue in the upper part of the image indicates the big difference between highest and lowest temperatures during the course of a year at higher latitudes. There is less variation in the timing of the annual peak of land surface temperatures, which occurs earlier in the south than in the north. Black dots superimposed on this image are the locations (county geo-centers) where birds infected with West Nile virus were reported between January and October 2001. Scientists working with the International Research Partnership for Infectious Diseases (INTREPID) program based at NASA are using such imagery to define and predict the conditions where mosquitoes transmit West Nile virus in the U.S. The conclusion reached about the importance of any single variable depends both upon its value and context. A temperature of 30o Celsius (86o Fahrenheit) might be fatal for a mosquito at low humidity but survivable at higher humidities. The work done here on West Nile virus and other diseases shows very

  9. Experimental Infection of North American Birds with the New York 1999 Strain of West Nile Virus

    PubMed Central

    Langevin, Stanley; Hinten, Steven; Nemeth, Nicole; Edwards, Eric; Hettler, Danielle; Davis, Brent; Bowen, Richard; Bunning, Michel

    2003-01-01

    To evaluate transmission dynamics, we exposed 25 bird species to West Nile virus (WNV) by infectious mosquito bite. We monitored viremia titers, clinical outcome, WNV shedding (cloacal and oral), seroconversion, virus persistence in organs, and susceptibility to oral and contact transmission. Passeriform and charadriiform birds were more reservoir competent (a derivation of viremia data) than other species tested. The five most competent species were passerines: Blue Jay (Cyanocitta cristata), Common Grackle (Quiscalus quiscula), House Finch (Carpodacus mexicanus), American Crow (Corvus brachyrhynchos), and House Sparrow (Passer domesticus). Death occurred in eight species. Cloacal shedding of WNV was observed in 17 of 24 species, and oral shedding in 12 of 14 species. We observed contact transmission among four species and oral in five species. Persistent WNV infections were found in tissues of 16 surviving birds. Our observations shed light on transmission ecology of WNV and will benefit surveillance and control programs. PMID:12643825

  10. Experimental infection of North American birds with the New York 1999 strain of West Nile virus.

    PubMed

    Komar, Nicholas; Langevin, Stanley; Hinten, Steven; Nemeth, Nicole; Edwards, Eric; Hettler, Danielle; Davis, Brent; Bowen, Richard; Bunning, Michel

    2003-03-01

    To evaluate transmission dynamics, we exposed 25 bird species to West Nile virus (WNV) by infectious mosquito bite. We monitored viremia titers, clinical outcome, WNV shedding (cloacal and oral), seroconversion, virus persistence in organs, and susceptibility to oral and contact transmission. Passeriform and charadriiform birds were more reservoir competent (a derivation of viremia data) than other species tested. The five most competent species were passerines: Blue Jay (Cyanocitta cristata), Common Grackle (Quiscalus quiscula), House Finch (Carpodacus mexicanus), American Crow (Corvus brachyrhynchos), and House Sparrow (Passer domesticus). Death occurred in eight species. Cloacal shedding of WNV was observed in 17 of 24 species, and oral shedding in 12 of 14 species. We observed contact transmission among four species and oral in five species. Persistent WNV infections were found in tissues of 16 surviving birds. Our observations shed light on transmission ecology of WNV and will benefit surveillance and control programs. PMID:12643825

  11. Association of West Nile virus illness and urban landscapes in Chicago and Detroit

    PubMed Central

    Ruiz, Marilyn O; Walker, Edward D; Foster, Erik S; Haramis, Linn D; Kitron, Uriel D

    2007-01-01

    Background West Nile virus infection in humans in urban areas of the Midwestern United States has exhibited strong spatial clustering during epidemic years. We derived urban landscape classes from the physical and socio-economic factors hypothesized to be associated with West Nile Virus (WNV) transmission and compared those to human cases of illness in 2002 in Chicago and Detroit. The objectives were to improve understanding of human exposure to virus-infected mosquitoes in the urban context, and to assess the degree to which environmental factors found to be important in Chicago were also found in Detroit. Results Five urban classes that partitioned the urban space were developed for each city region. The classes had many similarities in the two settings. In both regions, the WNV case rate was considerably higher in the urban class associated with the Inner Suburbs, where 1940–1960 era housing dominates, vegetation cover is moderate, and population density is moderate. The land cover mapping approach played an important role in the successful and consistent classification of the urban areas. Conclusion The analysis demonstrates how urban form and past land use decisions can influence transmission of a vector-borne virus. In addition, the results are helpful to develop hypotheses regarding urban landscape features and WNV transmission, they provide a structured method to stratify the urban areas to locate representative field study sites specifically for WNV, and this analysis contributes to the question of how the urban environment affects human health. PMID:17352825

  12. 78 FR 16505 - Prospective Grant of Exclusive License: Chimeric West Nile/Dengue Viruses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ...: Chimeric West Nile/Dengue Viruses AGENCY: Centers for Disease Control and Prevention (CDC), Department of... license, in the field of use of in vitro diagnostics for dengue virus infection, to practice the... Application 61/049,342, filed 4/30/2008, entitled ``Engineered, Chimeric West Nile/Dengue Viruses;''...

  13. Identifying the Environmental Conditions Favouring West Nile Virus Outbreaks in Europe

    PubMed Central

    Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. PMID:25803814

  14. Identifying the environmental conditions favouring West Nile Virus outbreaks in Europe.

    PubMed

    Marcantonio, Matteo; Rizzoli, Annapaola; Metz, Markus; Rosà, Roberto; Marini, Giovanni; Chadwick, Elizabeth; Neteler, Markus

    2015-01-01

    West Nile Virus (WNV) is a globally important mosquito borne virus, with significant implications for human and animal health. The emergence and spread of new lineages, and increased pathogenicity, is the cause of escalating public health concern. Pinpointing the environmental conditions that favour WNV circulation and transmission to humans is challenging, due both to the complexity of its biological cycle, and the under-diagnosis and reporting of epidemiological data. Here, we used remote sensing and GIS to enable collation of multiple types of environmental data over a continental spatial scale, in order to model annual West Nile Fever (WNF) incidence across Europe and neighbouring countries. Multi-model selection and inference were used to gain a consensus from multiple linear mixed models. Climate and landscape were key predictors of WNF outbreaks (specifically, high precipitation in late winter/early spring, high summer temperatures, summer drought, occurrence of irrigated croplands and highly fragmented forests). Identification of the environmental conditions associated with WNF outbreaks is key to enabling public health bodies to properly focus surveillance and mitigation of West Nile virus impact, but more work needs to be done to enable accurate predictions of WNF risk. PMID:25803814

  15. A Security Guard With West Nile Virus Encephalitis.

    PubMed

    Smith, Letha

    2016-01-01

    A 57-year-old male working as a security supervisor in an office building was seen for return to work by the on-site occupational health nurse. He was observed to have slow gait as he entered the clinic waiting area, was pale, diaphoretic, and slow in responding to questions. His return to work note stated he was recovering from West Nile Virus (WNV). Implications for return to work are presented. PMID:26245464

  16. DIFFERENTIAL IMPACT OF WEST NILE VIRUS ON CALIFORNIA BIRDS

    PubMed Central

    Wheeler, Sarah S.; Barker, Christopher M.; Fang, Ying; Armijos, M. Veronica; Carroll, Brian D.; Husted, Stan; Johnson, Wesley O.; Reisen, William K.

    2010-01-01

    The strain of West Nile virus (WNV) currently epidemic in North America contains a genetic mutation elevating its virulence in birds, especially species in the family Corvidae. Although dead American Crows (Corvus brachyrhynchos) have been the hallmark of the epidemic, the overall impact of WNV on North America’s avifauna remains poorly understood and has not been addressed thoroughly in California. Here, we evaluate variation by species in the effect of WNV on California birds from 2004 to 2007 by using (1) seroprevalence in free-ranging birds, (2) percentage of carcasses of each species reported by the public that tested positive for WNV, (3) mortality determined from experimental infections, and (4) population declines detected by trend analysis of Breeding Bird Survey (BBS) data. Using Bayesian linear models, we extrapolate trends in BBS data from 1980–2003 (pre-WNV) to 2004–2007 (post-WNV). We attribute significant declines from expected abundance trends in areas supporting epiornitics to WNV transmission. We combine risk assessed from each of the four data sets to generate an overall score describing WNV risk by species. The susceptibility of California avifauna to WNV varies widely, with overall risk scores ranging from low for the refractory Rock Pigeon (Columba livia) through high for the susceptible American Crow. Other species at high risk include, in descending order, the House Finch (Carpodacus mexicanus), Black-crowned Night-Heron (Nycticorax nycticorax), Western Scrub-Jay (Aphelocoma californica), and Yellow-billed Magpie (Pica nuttalli). Our analyses emphasize the importance of multiple data sources in assessing the effect of an invading pathogen. PMID:20589226

  17. West Nile virus in livestock and wildlife

    USGS Publications Warehouse

    McLean, R.G.; Ubico, S.R.; Bourne, D.; Komar, N.

    2002-01-01

    WN virus is one of the most ubiquitous arboviruses occurring over a broad geographical range and in a wide diversity of vertebrate host and vector species. The virus appears to be maintained in endemic foci on the African continent and is transported annually to temperate climates to the north in Europe and to the south in South Africa. Reports of clinical disease due to natural WN virus infection in wild or domestic animals were much less common than reports of infection (virus isolation or antibody detection). Until recently, records of morbidity and mortality in wild birds were confined to a small number of cases and infections causing encephalitis, sometimes fatal, in horses were reported infrequently. In the period 1996-2001, there was an increase in outbreaks of illness due to WN virus in animals as well as humans. Within the traditional range of WN virus, encephalitis was reported in horses in Italy in 1998 and in France in 2000. The first report of disease and deaths caused by WN virus infection in domestic birds was reported in Israel in 1997-1999, involving hundreds of young geese. In 1999 WN virus reached North America and caused an outbreak of encephalitis in humans in the New York area at the same time as a number of cases of equine encephalitis and deaths in American crows and a variety of other bird species, both North American natives and exotics. Multi-state surveillance for WN virus has been in place since April 2000 and has resulted in the detection of WN virus in thousands of dead birds from an increasing number of species in North America, and also in several species of mammals. The surveillance system that has developed in North America because of the utility of testing dead birds for the rapid detection of WN virus presence has been a unique integration of public health and wildlife health agencies. It has been suggested that the recent upsurge in clinical WN virus infection in wild and domestic animals as well as in humans may be related to

  18. West Nile virus in livestock and wildlife.

    PubMed

    McLean, R G; Ubico, S R; Bourne, D; Komar, N

    2002-01-01

    WN virus is one of the most ubiquitous arboviruses occurring over a broad geographical range and in a wide diversity of vertebrate host and vector species. The virus appears to be maintained in endemic foci on the African continent and is transported annually to temperate climates to the north in Europe and to the south in South Africa. Reports of clinical disease due to natural WN virus infection in wild or domestic animals were much less common than reports of infection (virus isolation or antibody detection). Until recently, records of morbidity and mortality in wild birds were confined to a small number of cases and infections causing encephalitis, sometimes fatal, in horses were reported infrequently. In the period 1996-2001, there was an increase in outbreaks of illness due to WN virus in animals as well as humans. Within the traditional range of WN virus, encephalitis was reported in horses in Italy in 1998 and in France in 2000. The first report of disease and deaths caused by WN virus infection in domestic birds was reported in Israel in 1997-1999, involving hundreds of young geese. In 1999 WN virus reached North America and caused an outbreak of encephalitis in humans in the New York area at the same time as a number of cases of equine encephalitis and deaths in American crows and a variety of other bird species, both North American natives and exotics. Multi-state surveillance for WN virus has been in place since April 2000 and has resulted in the detection of WN virus in thousands of dead birds from an increasing number of species in North America, and also in several species of mammals. The surveillance system that has developed in North America because of the utility of testing dead birds for the rapid detection of WN virus presence has been a unique integration of public health and wildlife health agencies. It has been suggested that the recent upsurge in clinical WN virus infection in wild and domestic animals as well as in humans may be related to

  19. A GIS Tool To Estimate West Nile Virus Risk based On A Degree-Day Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    West Nile virus(Flaviviridae: Flavivirus) is a serious infectious disease that recently spread across the North America continent. A spatial analysis tool was developed on the ARCMap 9.x platform to estimate potential West Nile virus activitiy using a spatially explicit degree-day model. The mdoel...

  20. Alexander the Great and West Nile Virus Encephalitis

    PubMed Central

    Marr, John S.

    2003-01-01

    Alexander the Great died in Babylon in 323 BC. His death at age 32 followed a 2-week febrile illness. Speculated causes of death have included poisoning, assassination, and a number of infectious diseases. One incident, mentioned by Plutarch but not considered by previous investigators, may shed light on the cause of Alexander’s death. The incident, which occurred as he entered Babylon, involved a flock of ravens exhibiting unusual behavior and subsequently dying at his feet. The inexplicable behavior of ravens is reminiscent of avian illness and death weeks before the first human cases of West Nile virus infection were identified in the United States. We posit that Alexander may have died of West Nile encephalitis. PMID:14725285

  1. Clinical Manifestations and Outcomes of West Nile Virus Infection

    PubMed Central

    Sejvar, James J.

    2014-01-01

    Since the emergence of West Nile virus (WNV) in North America in 1999, understanding of the clinical features, spectrum of illness and eventual functional outcomes of human illness has increased tremendously. Most human infections with WNV remain clinically silent. Among those persons developing symptomatic illness, most develop a self-limited febrile illness. More severe illness with WNV (West Nile neuroinvasive disease, WNND) is manifested as meningitis, encephalitis or an acute anterior (polio) myelitis. These manifestations are generally more prevalent in older persons or those with immunosuppression. In the future, a more thorough understanding of the long-term physical, cognitive and functional outcomes of persons recovering from WNV illness will be important in understanding the overall illness burden. PMID:24509812

  2. Lack of detection of West Nile virus in an islander population of chelonians during a West Nile virus outbreak.

    PubMed

    Di Girolamo, Nicola; Selleri, Paolo; Di Gennaro, Annapia; Maldera, Marco; Nardini, Giordano; Morandi, Benedetto; Muzzeddu, Marco; Origgi, Francesco; Savini, Giovanni

    2016-06-30

    In 2011, several outbreaks of West Nile disease occurred in Sardinia (Italy). The region hosts several chelonian species. Because of the increasing concern on the potential role that ectotherms may play in the ecology of West Nile virus (WNV), in October 2011 blood samples were collected from 41 endemic Sardinian chelonians and tested for the presence of active WNV infection or neutralizing antibodies by real time polymerase chain reaction (RT-PCR) and serumneutralisation, respectively. Neither WNV neutralising antibodies (0%; 95% CI: 0‑8.4%) nor WNV RNA (0%; 95% CI: 0‑6.8%) were found in the tested samples. According to the results of this screening survey, it is unlikely that chelonians are involved in the epidemiology of the 2011 WNV outbreaks in Sardinia. PMID:27393879

  3. Efficacy of Aerial Spraying of Mosquito Adulticide in Reducing Incidence of West Nile Virus, California, 2005

    PubMed Central

    Husted, Stan; Jean, Cynthia; Glaser, Carol; Kramer, Vicki

    2008-01-01

    Epidemic transmission of West Nile virus (WNV) in Sacramento County, California, in 2005 prompted aerial application of pyrethrin, a mosquito adulticide, over a large urban area. Statistical analyses of geographic information system datasets indicated that adulticiding reduced the number of human WNV cases within 2 treated areas compared with the untreated area of the county. When we adjusted for maximum incubation period of the virus from infection to onset of symptoms, no new cases were reported in either of the treated areas after adulticiding; 18 new cases were reported in the untreated area of Sacramento County during this time. Results indicated that the odds of infection after spraying were ≈6× higher in the untreated area than in treated areas, and that the treatments successfully disrupted the WNV transmission cycle. Our results provide direct evidence that aerial mosquito adulticiding is effective in reducing human illness and potential death from WNV infection. PMID:18439356

  4. NATIONAL WEST NILE VIRUS SURVEILLANCE SYSTEM

    EPA Science Inventory

    In order to understand the implications of WN viruses introduction into the United States the Centers of Disease Control and the U.S. Department of Agriculture created a system of active bird surveillance, active mosquito surveillance, enhanced passive veterinary surveillance, an...

  5. West Nile Virus Infection in the Central Nervous System

    PubMed Central

    Winkelmann, Evandro R.; Luo, Huanle; Wang, Tian

    2016-01-01

    West Nile virus (WNV), a neurotropic single-stranded flavivirus has been the leading cause of arboviral encephalitis worldwide.  Up to 50% of WNV convalescent patients in the United States were reported to have long-term neurological sequelae.  Neither antiviral drugs nor vaccines are available for humans.  Animal models have been used to investigate WNV pathogenesis and host immune response in humans.  In this review, we will discuss recent findings from studies in animal models of WNV infection, and provide new insights on WNV pathogenesis and WNV-induced host immunity in the central nervous system. PMID:26918172

  6. Usutu Virus Persistence and West Nile Virus Inactivity in the Emilia-Romagna Region (Italy) in 2011

    PubMed Central

    Calzolari, Mattia; Bonilauri, Paolo; Bellini, Romeo; Albieri, Alessandro; Defilippo, Francesco; Tamba, Marco; Tassinari, Massimo; Gelati, Antonio; Cordioli, Paolo; Angelini, Paola; Dottori, Michele

    2013-01-01

    Background The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. Methods In February–March 2009–2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008–2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. Conclusions The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation. PMID:23667694

  7. West Nile Virus Emergence and Persistence in Los Angeles, California, 2003–2008

    PubMed Central

    Kwan, Jennifer L.; Kluh, Susanne; Madon, Minoo B.; Reisen, William K.

    2010-01-01

    West Nile virus (WNV) invaded Los Angeles in September 2003, and during the subsequent five-year period followed a pattern of amplification, subsidence, and resurgence. Enzootic transmission was tracked by abundance and infection incidence in Culex pipiens quinquefasciatus and Cx. tarsalis and by seroprevalence in peridomestic passerine birds, infection in dead birds, and seroconversions in sentinel chickens. Culex p. quinquefasciatus served as the primary vector of WNV, with gravid traps serving as the best sampling method and the most consistent indicator of viral activity. Spatial scan statistics applied to mosquito infection and positive dead bird data delimited three major clusters of WNV transmission, with introduction occurring in the Los Angeles Basin, and amplification and dispersal events carrying transmission to the San Fernando and Santa Clarita valleys. Los Angeles experienced major epidemics in 2004 and 2008, providing a unique opportunity to investigate specific patterns of enzootic amplification preceding epidemics. PMID:20682890

  8. Host Selection of Potential West Nile Virus Vectors in Puerto Barrios, Guatemala, 2007

    PubMed Central

    Kading, Rebekah C.; Reiche, Ana Silvia Gonzalez; Morales-Betoulle, Maria Eugenia; Komar, Nicholas

    2013-01-01

    The selection of vertebrate hosts by Culex mosquitoes relative to West Nile virus (WNV) transmission in neotropical countries such as Guatemala is not described. This study determined the feeding patterns of Cx. quinquefasciatus and Cx. nigripalpus and estimated the relative contribution of two common and frequently infected wild bird species, Turdus grayi and Quiscalus mexicanus, to WNV transmission. Engorged mosquitoes were collected from rural and urban habitats after the dry and wet seasons in the Department of Izabal in 2007. Host selection by Cx. nigripalpus varied significantly between urban and rural habitats. Both Cx. quinquefasciatus and Cx. nigripalpus fed predominantly on chickens and other domestic animals. Blood meals from wild birds were rare, accounting for 1.1% of blood meals identified from Cx. quinquefasciatus and 6.5% of blood meals from Cx. nigripalpus. Transmission of WNV by these two mosquito species may be dampened by extensive feeding on reservoir-incompetent hosts. PMID:23208881

  9. Transmission of Influenza A Viruses

    PubMed Central

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-01-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to ‘novel’ viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  10. Transmission of influenza A viruses.

    PubMed

    Neumann, Gabriele; Kawaoka, Yoshihiro

    2015-05-01

    Influenza A viruses cause respiratory infections that range from asymptomatic to deadly in humans. Widespread outbreaks (pandemics) are attributable to 'novel' viruses that possess a viral hemagglutinin (HA) gene to which humans lack immunity. After a pandemic, these novel viruses form stable virus lineages in humans and circulate until they are replaced by other novel viruses. The factors and mechanisms that facilitate virus transmission among hosts and the establishment of novel lineages are not completely understood, but the HA and basic polymerase 2 (PB2) proteins are thought to play essential roles in these processes by enabling avian influenza viruses to infect mammals and replicate efficiently in their new host. Here, we summarize our current knowledge of the contributions of HA, PB2, and other viral components to virus transmission and the formation of new virus lineages. PMID:25812763

  11. Detection of West Nile virus in mosquitoes by RT-PCR.

    PubMed

    Hadfield, T L; Turell, M; Dempsey, M P; David, J; Park, E J

    2001-06-01

    A reverse transcriptase-polymerase chain reaction (RT-PCR) assay employing detection technology was developed to identify West Nile virus in experimentally infected mosquitoes. The specificity of the assay was evaluated with the following viruses: eastern equine encephalitis, Ilheus, West Nile and yellow fever viruses. The limits of detection were determined using West Nile viral RNA extracted from serial dilutions of virus culture in infected mosquitoes. Limit of detection was 5 PFU from extracted mosquitoes. We were able to detect the presence of one infected mosquito in a pool of 50 repeatedly. When the RT-PCR was used with coded samples of intrathoracically-infected and uninfected mosquitoes, the assay detected the virus in all infected mosquitoes. Analytic sensitivity and specificity were 100%. This assay offers an efficient and rapid method of identifying West Nile virus in infected mosquitoes or cell culture. PMID:11352595

  12. European Surveillance for West Nile Virus in Mosquito Populations

    PubMed Central

    Engler, Olivier; Savini, Giovanni; Papa, Anna; Figuerola, Jordi; Groschup, Martin H.; Kampen, Helge; Medlock, Jolyon; Vaux, Alexander; Wilson, Anthony J.; Werner, Doreen; Jöst, Hanna; Goffredo, Maria; Capelli, Gioia; Federici, Valentina; Tonolla, Mauro; Patocchi, Nicola; Flacio, Eleonora; Portmann, Jasmine; Rossi-Pedruzzi, Anya; Mourelatos, Spiros; Ruiz, Santiago; Vázquez, Ana; Calzolari, Mattia; Bonilauri, Paolo; Dottori, Michele; Schaffner, Francis; Mathis, Alexander; Johnson, Nicholas

    2013-01-01

    A wide range of arthropod-borne viruses threaten both human and animal health either through their presence in Europe or through risk of introduction. Prominent among these is West Nile virus (WNV), primarily an avian virus, which has caused multiple outbreaks associated with human and equine mortality. Endemic outbreaks of West Nile fever have been reported in Italy, Greece, France, Romania, Hungary, Russia and Spain, with further spread expected. Most outbreaks in Western Europe have been due to infection with WNV Lineage 1. In Eastern Europe WNV Lineage 2 has been responsible for human and bird mortality, particularly in Greece, which has experienced extensive outbreaks over three consecutive years. Italy has experienced co-circulation with both virus lineages. The ability to manage this threat in a cost-effective way is dependent on early detection. Targeted surveillance for pathogens within mosquito populations offers the ability to detect viruses prior to their emergence in livestock, equine species or human populations. In addition, it can establish a baseline of mosquito-borne virus activity and allow monitoring of change to this over time. Early detection offers the opportunity to raise disease awareness, initiate vector control and preventative vaccination, now available for horses, and encourage personal protection against mosquito bites. This would have major benefits through financial savings and reduction in equid morbidity/mortality. However, effective surveillance that predicts virus outbreaks is challenged by a range of factors including limited resources, variation in mosquito capture rates (too few or too many), difficulties in mosquito identification, often reliant on specialist entomologists, and the sensitive, rapid detection of viruses in mosquito pools. Surveillance for WNV and other arboviruses within mosquito populations varies between European countries in the extent and focus of the surveillance. This study reviews the current status of

  13. Epidemiological history and phylogeography of West Nile virus lineage 2.

    PubMed

    Ciccozzi, Massimo; Peletto, Simone; Cella, Eleonora; Giovanetti, Marta; Lai, Alessia; Gabanelli, Elena; Acutis, Pier Luigi; Modesto, Paola; Rezza, Giovanni; Platonov, Alexander E; Lo Presti, Alessandra; Zehender, Gianguglielmo

    2013-07-01

    West Nile virus (WNV) was first isolated in Uganda. In Europe WNV was sporadically detected until 1996, since then the virus has been regularly isolated from birds and mosquitoes and caused several outbreaks in horses and humans. Phylogenetic analysis showed two main different WNV lineages. The lineage 1 is widespread and segregates into different subclades (1a-c). WNV-1a includes numerous strains from Africa, America, and Eurasia. The spatio-temporal history of WNV-1a in Europe was recently described, identifying two main routes of dispersion, one in Eastern and the second in Western Europe. The West Nile lineage 2 (WNV-2) is mainly present in sub-Saharan Africa but has been recently emerged in Eastern and Western European countries. In this study we reconstruct the phylogeny of WNV-2 on a spatio-temporal scale in order to estimate the time of origin and patterns of geographical dispersal of the different isolates, particularly in Europe. Phylogeography findings obtained from E and NS5 gene analyses suggest that there were at least two separate introductions of WNV-2 from the African continent dated back approximately to the year 1999 (Central Europe) and 2000 (Russia), respectively. The epidemiological implications and clinical consequences of lineage 1 and 2 cocirculation deserve further investigations. PMID:23542457

  14. Reconciling West Nile virus with the autophagic pathway

    PubMed Central

    Martín-Acebes, Miguel A; Blázquez, Ana-Belén; Saiz, Juan-Carlos

    2015-01-01

    West Nile virus (WNV) is a neurotropic mosquito-borne flavivirus responsible for recurrent outbreaks of meningitis and encephalitis. Several studies analyzing the interactions of this pathogen with the autophagic pathway have reported opposite results with evidence for and against the upregulation of autophagy in infected cells. In this regard, we have recently reported that minimal genetic changes (single amino acid substitutions) in nonstructural proteins of WNV can modify the ability of the virus to induce autophagic features such as LC3 modification and aggregation in infected cells. We think that these results could help explain some of the previously reported discrepancies. These findings could also aid in deciphering the interactions of this pathogen with the autophagic pathway at the molecular level aimed to develop feasible antiviral strategies to combat this pathogen, and other related flaviviruses. PMID:25946067

  15. Characterization of Virulent West Nile Virus Kunjin Strain, Australia, 2011

    PubMed Central

    Frost, Melinda J.; Zhang, Jing; Edmonds, Judith H.; Prow, Natalie A.; Gu, Xingnian; Davis, Rodney; Hornitzky, Christine; Arzey, Kathleen E.; Finlaison, Deborah; Hick, Paul; Read, Andrew; Hobson-Peters, Jody; May, Fiona J.; Doggett, Stephen L.; Haniotis, John; Russell, Richard C.; Hall, Roy A.; Khromykh, Alexander A.

    2012-01-01

    To determine the cause of an unprecedented outbreak of encephalitis among horses in New South Wales, Australia, in 2011, we performed genomic sequencing of viruses isolated from affected horses and mosquitoes. Results showed that most of the cases were caused by a variant West Nile virus (WNV) strain, WNVNSW2011, that is most closely related to WNV Kunjin (WNVKUN), the indigenous WNV strain in Australia. Studies in mouse models for WNV pathogenesis showed that WNVNSW2011 is substantially more neuroinvasive than the prototype WNVKUN strain. In WNVNSW2011, this apparent increase in virulence over that of the prototype strain correlated with at least 2 known markers of WNV virulence that are not found in WNVKUN. Additional studies are needed to determine the relationship of the WNVNSW2011 strain to currently and previously circulating WNVKUN strains and to confirm the cause of the increased virulence of this emerging WNV strain. PMID:22516173

  16. Neuropsychological Impact of West Nile Virus Infection: An Extensive Neuropsychiatric Assessment of 49 Cases in Canada

    PubMed Central

    Samaan, Zainab; McDermid Vaz, Stephanie; Bawor, Monica; Potter, Tammy Hlywka; Eskandarian, Sasha; Loeb, Mark

    2016-01-01

    Background West Nile virus emerged as an important human pathogen in North America and continues to pose a risk to public health. It can cause a highly variable range of clinical manifestations ranging from asymptomatic to severe illness. Neuroinvasive disease due to West Nile virus can lead to long-term neurological deficits and psychological impairment. However, these deficits have not been well described. The objective of this study was to characterize the neuropsychological manifestations of West Nile virus infection with a focus on neuroinvasive status and time since infection. Methods Patients from Ontario Canada with a diagnosis of neuroinvasive disease (meningitis, encephalitis, or acute flaccid paralysis) and non-neuroinvasive disease who had participated in a cohort study were enrolled. Clinical and laboratory were collected, as well as demographics and medical history. Cognitive functioning was assessed using a comprehensive battery of neuropsychological tests. Results Data from 49 individuals (32 with West Nile fever and 17 with West Nile neuroinvasive disease) were included in the present cross-sectional analysis. Patterns of neuropsychological impairment were comparable across participants with both neuroinvasive and non-neuroinvasive West Nile virus infection on all cognitive measures. Neuropsychiatric impairment was also observed more frequently at two to four years post-infection compared to earlier stages of illness. Conclusions Our data provide objective evidence for cognitive difficulties among patients who were infected with West Nile virus; these deficits appear to manifest regardless of severity of West Nile virus infection (West Nile fever vs. West Nile neuroinvasive disease), and are more prevalent with increasing illness duration (2–4 years vs. 1 month). Data from this study will help inform patients and healthcare providers about the expected course of recovery, as well as the need to implement effective treatment strategies that

  17. Household Transmission of Influenza Virus.

    PubMed

    Tsang, Tim K; Lau, Lincoln L H; Cauchemez, Simon; Cowling, Benjamin J

    2016-02-01

    Human influenza viruses cause regular epidemics and occasional pandemics with a substantial public health burden. Household transmission studies have provided valuable information on the dynamics of influenza transmission. We reviewed published studies and found that once one household member is infected with influenza, the risk of infection in a household contact can be up to 38%, and the delay between onset in index and secondary cases is around 3 days. Younger age was associated with higher susceptibility. In the future, household transmission studies will provide information on transmission dynamics, including the correlation of virus shedding and symptoms with transmission, and the correlation of new measures of immunity with protection against infection. PMID:26612500

  18. West Nile virus in Tunisia, 2014: First isolation from mosquitoes.

    PubMed

    Wasfi, F; Dachraoui, K; Cherni, S; Bosworth, A; Barhoumi, W; Dowall, S; Chelbi, I; Derbali, M; Zoghlami, Z; Beier, J C; Zhioua, E

    2016-07-01

    Several outbreaks of human West Nile virus (WNV) infections were reported in Tunisia during the last two decades. Serological studies on humans as well as on equine showed intensive circulation of WNV in Tunisia. However, no virus screening of mosquitoes for WNV has been performed in Tunisia. In the present study, we collected mosquito samples from Central Tunisia to be examined for the presence of flaviviruses. A total of 102 Culex pipiens mosquitoes were collected in September 2014 from Central Tunisia. Mosquitoes were pooled according to the collection site, date and sex with a maximum of 5 specimens per pool and tested for the presence of flaviviruses by conventional reverse transcription heminested PCR and by a specific West Nile virus real time reverse transcription PCR. Of a total of 21 pools tested, 7 were positive for WNV and no other flavivirus could be evidenced in mosquito pools. In addition, WNV was isolated on Vero cells. Phylogenetic analysis showed that recent Tunisian WNV strains belong to lineage 1 WNV and are closely related to the Tunisian strain 1997 (PAH 001). This is the first detection and isolation of WNV from mosquitoes in Tunisia. Some areas of Tunisia are at high risk for human WNV infections. WNV is likely to cause future sporadic and foreseeable outbreaks. Therefore, it is of major epidemiological importance to set up an entomological surveillance as an early alert system. Timely detection of WNV should prompt vector control to prevent future outbreaks. In addition, education of people to protect themselves from mosquito bites is of major epidemiological importance as preventive measure against WNV infection. PMID:27038557

  19. Avian hosts for West Nile virus in St. Tammany Parish, Louisiana, 2002.

    PubMed

    Komar, Nicholas; Panella, Nicholas A; Langevin, Stanley A; Brault, Aaron C; Amador, Manuel; Edwards, Eric; Owen, Jennifer C

    2005-12-01

    West Nile virus (WNV) infections in free-ranging birds were studied in Slidell, St. Tammany Parish, Louisiana, after a human encephalitis outbreak peaked there in July 2002. Seroprevalence in resident, free-ranging wild birds in one suburban site was 25% and 24% in August and October, respectively, indicating that most transmission had ceased by early August. Mortality rates, seroprevalence rates, host competence, and crude population estimates were used in mathematical models to predict actual infection rates, population impacts, and importance as amplifying hosts for several common passerine birds. Northern cardinal (Cardinalis cardinalis) and house sparrow (Passer domesticus) were the principal amplifying hosts, but blue jay (Cyanocitta cristata) and northern mockingbird (Mimus polyglottos) also contributed. The blue jay population was reduced by an estimated 47%. A variety of passerine bird species combined to play an important role as amplifying hosts in the WNV transmission cycle. PMID:16354808

  20. Examination of the geographical variation in human West Nile virus: a spatial filtering approach.

    PubMed

    Tevie, J; Bohara, A; Valdez, R B

    2014-12-01

    This paper examines the importance of environmental factors (mosquito pools and home foreclosures) in human West Nile virus (WNV) transmission in California and Colorado. The role of environmental factors is investigated by applying an instrumental variable technique to a spatial filtering random-effects negative binomial model to correct for both spatial autocorrelation and endogeneity. The results suggest that mosquito pools and home foreclosures are significant in explaining the prevalence of human WNV. An innovative aspect of this research is that it emphasizes the role of home foreclosures in WNV transmission and in the allocation of resources. Knowledge of the factors associated with WNV prevalence is crucial for abatement of future outbreaks. The results suggest that more resources should be allocated to areas that have a high number of home foreclosures and mosquito pools for surveillance and mitigation of the disease. PMID:24512765

  1. West Nile virus circulation detected in northern Italy in sentinel chickens.

    PubMed

    Rizzoli, Annapaola; Rosà, Roberto; Rosso, Fausta; Buckley, Alan; Gould, Ernest

    2007-01-01

    Ninety percent (56/62) of sentinel chickens introduced to two regions within the Italian Alps seroconverted to West Nile virus (WNV) during the summer of 2005, showing a range of antibody titres from 1/20 to 1/320 in a virus neutralization test. Neutralization specificity for WNV antibodies was confirmed on an additional 34 sera that were tested in parallel against WNV (16/34 seropositivity), Usutu virus (3/34 seropositivity) and Koutango virus. The geometric mean neutralizing titre (GMT) calculated for WN-specific antibodies was 33.68 and did not differ significantly amongst sample sites, although the overall results indicate more active circulation of WNV at the higher elevations. Such high levels of seroconversion raise the possibility that many chickens may have been exposed to virus via routes other than mosquito transmission. No chickens or any other local animals were associated with illness due to WNV implying that WNV, and to a much lower extent Usutu virus, circulate harmlessly amongst wildlife species in northern Italy from late May onwards until early autumn. PMID:17767411

  2. West Nile virus infection in birds and mosquitoes, New York State, 2000.

    PubMed Central

    Bernard, K. A.; Maffei, J. G.; Jones, S. A.; Kauffman, E. B.; Ebel, G.; Dupuis, A. P.; Ngo, K. A.; Nicholas, D. C.; Young, D. M.; Shi, P. Y.; Kulasekera, V. L.; Eidson, M.; White, D. J.; Stone, W. B.; Kramer, L. D.

    2001-01-01

    West Nile (WN) virus was found throughout New York State in 2000, with the epicenter in New York City and surrounding counties. We tested 3,403 dead birds and 9,954 mosquito pools for WN virus during the transmission season. Sixty-three avian species, representing 30 families and 14 orders, tested positive for WN virus. The highest proportion of dead birds that tested positive for WN virus was in American Crows in the epicenter (67% positive, n=907). Eight mosquito species, representing four genera, were positive for WN virus. The minimum infection rate per 1,000 mosquitoes (MIR) was highest for Culex pipiens in the epicenter: 3.53 for the entire season and 7.49 for the peak week of August 13. Staten Island had the highest MIR (11.42 for Cx. pipiens), which was associated with the highest proportion of dead American Crows that tested positive for WN virus (92%, n=48) and the highest number of human cases (n=10). PMID:11585532

  3. Clinical and pathologic features of West Nile virus infection in native North American owls (Family strigidae).

    PubMed

    Fitzgerald, S D; Patterson, J S; Kiupel, M; Simmons, H A; Grimes, S D; Sarver, C F; Fulton, R M; Steficek, B A; Cooley, T M; Massey, J P; Sikarskie, J G

    2003-01-01

    Since the initial report of West Nile virus in the northeastern United States in 1999, the virus has spread rapidly westward and southward across the country. In the summer of 2002, several midwestern states reported increased cases of neurologic disease and mortality associated with West Nile virus infection in various native North American owl species. This report summarizes the clinical and pathologic findings for 13 captive and free-ranging owls. Affected species were all in the family Strigidae and included seven snowy owls (Nyctea scandiaca), four great-horned owls (Bubo virginianus), a barred owl (Strix varia), and a short-eared owl (Asio flammeus). Neurologic signs identified included head tilt, uncoordinated flight, paralysis, tremors, and seizures. Owls that died were screened for flaviviral proteins by immunohistochemical staining of formalin-fixed tissues, followed by specific polymerase chain reaction assay to confirm West Nile virus with fresh tissues when available. Microscopic lesions were widespread, involving brain, heart, liver, kidney, and spleen, and were typically nonsuppurative with infiltration by predominantly lymphocytes and plasma cells. Lesions in owls were much more severe than those previously reported in corvids such as crows, which are considered highly susceptible to infection and are routinely used as sentinel species for monitoring for the presence and spread of West Nile virus. This report is the first detailed description of the pathology of West Nile virus infection in Strigiformes and indicates that this bird family is susceptible to natural infection with West Nile virus. PMID:14562887

  4. The role of temperature on the spatiotemporal distribution of West Nile virus in the United States

    NASA Astrophysics Data System (ADS)

    Horton, D. E.; Kilpatrick, A. M.; Ruybal, J.; Diffenbaugh, N. S.

    2012-12-01

    Determining the relationship between climatological factors and vector-borne pathogens remains a critical challenge. The recent arrival of the West Nile virus (WNV) to the Americas, coupled with an extensive climatological and disease observation network, offers the potential to improve our mechanistic understanding of climate's influence on vector-borne disease transmission. Since its introduction to the Americas in the summer of 1999, the West Nile Virus (WNV) has rapidly spread from coastal New York State, across the North American continent, and into Central and South America. To date, 13,385 cases of WNV-induced human neuroinvasive disease have been reported to the U.S. Centers for Disease Control, with approximately 1,267 fatalities attributed to viral infection (as of 31 July 2012). Of those infected, severe symptoms develop in only ~1 in 150 people, suggesting that the total U.S. population infected with WNV is on the order of 2 million. The transmission of WNV is predominantly vector-borne, with three mosquitoes of the Culex genus, pipiens, tarsalis, and quinquefasciatus, largely responsible for the spread of the pathogen between avian and human hosts and across the contiguous United States. In this contribution, we synthesize laboratory and local-scale field studies of the Culex vectors with observed and modeled climatological data in an attempt to determine the mechanistic influence of temperature on the spatiotemporal distribution of WNV incidence across the United States. Our preliminary results suggest that many of the physiological factors that determine the transmission intensity of WNV, including mosquito biting rate, vector competence, infection transition rate, and mosquito mortality rate, demonstrate direct temperature dependencies. Based on these results, we utilize bias-corrected outputs from late-20th and mid-21st century CMIP5 simulations to examine the influence of temperature on the distribution of WNV relative to other factors and to

  5. Experimental susceptibility of Wood Ducks (Aix sponsa) for West Nile virus

    USGS Publications Warehouse

    Hofmeister, Erik K.; Porter, Robert E.; Franson, J. Christian

    2015-01-01

    Detection of West Nile virus (WNV) has been reported in a variety of wild ducks in the US, but little is known about the pathogenesis and outcome of exposure of the disease in these species. Previous experimental studies of WNV in ducks either have challenged a small number of ducks with WNV or have tested domesticated ducks. To determine susceptibility and immune response, we challenged 7-wk-old Wood Ducks (Aix sponsa) with a 1999 American Crow (Corvus brachyrhynchos) isolate of WNV. Wood Ducks were susceptible to infection with the virus, and, although clinical signs or mortality were not observed, microscopic lesions were noted, particularly in the heart and brain. West Nile virus viremia peaked on day 2 postinfection (pi) at 104.54 plaque-forming units (PFU) of virus/mL serum and WNV was shed orally (between 102and 102.9 PFU per swab) and cloacally. Specific anti-WNV antibody response was rapid, with anti-WNV IgM detected on day 3 pi followed on day 5 pi by anti-WNV IgG. Neutralizing antibodies were detected by plaque-reduction neutralization assay in one duck on day 4 pi, and in all sampled ducks on day 5. These results indicate that Wood Ducks are susceptible to WNV, but it is unlikely that significant WNV mortality events occur in Wood Ducks or that ducks play a significant role in transmission. However, WNV viremia was sufficient, in theory, to infect mosquitoes, and oral and cloacal shedding of the virus may increase the risk of infection to other waterbirds.

  6. Experimental West Nile virus infection in Gyr-Saker hybrid falcons.

    PubMed

    Busquets, Núria; Bertran, Kateri; Costa, Taiana P; Rivas, Raquel; de la Fuente, Jorge García; Villalba, Rubén; Solanes, David; Bensaid, Albert; Majó, Natàlia; Pagès, Nonito

    2012-06-01

    West Nile disease (WND) has become a major public and veterinary health concern since the appearance of West Nile virus (WNV) in New York in 1999. The following panzootic spread in the U.S. and the recent WNV outbreaks in Europe and the Mediterranean Basin have increased interest in WND. Despite considerable investigation of WNV infection in birds, the effects of WNV on avian populations are still largely unknown. In Europe, raptors have been found to be particularly susceptible to WNV infection, but studies in birds of prey are lacking. To our knowledge, the present study is the first to report an experimental infection with WNV in Gyr-Saker hybrid falcons. We show that 10-week-old captive-reared Gyr-Saker (Falco rusticolus × Falco cherrug) hybrid falcons are susceptible to WNV infection. Neither morbidity nor mortality was observed after subcutaneous WNV inoculation with mixed extracts of non-infected mosquito salivary glands. Both the macroscopic and microscopic lesions observed were similar to those previously reported in naturally and experimentally infected North American raptors. The results obtained in the present study demonstrate that although Gyr-Saker hybrid falcons do not seem to be a good reservoir for WNV transmission via mosquito, they can become infected with WNV, develop viremia and antibodies, and are able to shed the virus. PMID:22448746

  7. Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs

    PubMed Central

    Blázquez, Ana B.; Martín-Acebes, Miguel A.; Saiz, Juan-Carlos

    2016-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus maintained in a transmission cycle between mosquitoes and birds, but it can also infect other vertebrates, including humans, in which it can cause neuroinvasive diseases. To date, no licensed vaccine or therapy for human use against this pathogen is yet available. A recent approach to search for new antiviral agent candidates is the assessment of long-used drugs commonly administered by clinicians to treat human disorders in drug antiviral development. In this regard, as patients with West Nile encephalitis frequently develop symptoms and features of parkinsonism, and cellular factors altered in parkinsonism, such as alpha-synuclein, have been shown to play a role on WNV infection, we have assessed the effect of four drugs (L-dopa, Selegiline, Isatin, and Amantadine), that are used as therapy for Parkinson’s disease in the inhibition of WNV multiplication. L-dopa, Isatin, and Amantadine treatments significantly reduced the production of infectious virus in all cell types tested, but only Amantadine reduced viral RNA levels. These results point to antiparkinsonian drugs as possible therapeutic candidates for the development of antiviral strategies against WNV infection. PMID:27014219

  8. Impact of Climate and Environmental Factors on West Nile Virus Circulation in Iran

    PubMed Central

    Ahmadnejad, Farzaneh; Otarod, Vahid; Fathnia, Amanollah; Ahmadabadi, Ali; Fallah, Mohammad H.; Zavareh, Alireza; Miandehi, Nargess; Durand, Benoit; Sabatier, Philippe

    2016-01-01

    Background: Geographic distribution of West Nile virus (WNV) is heterogeneous in Iran by a high circulation in the southern-western areas. The objective of our study was to determine environmental and climatic factors associated with the risk of WNV equine seropositivity in Iran. Methods: Serological data were obtained from a serosurvey conducted in equine population in 260 districts in Iran. The climate and environmental parameters included in the models were distance to the nearest wetland area, type of stable, Normalized Difference Vegetation Index (NDVI), annual mean temperature, humidity and precipitation. Results: The important risk factors included annual mean temperature, distance to wetlands, local and seasonal NDVI differences. The effect of local NDVI differences in spring was particularly notable. This was a normalized difference of average NDVI between two areas: a 5 km radius area centered on the stable and the 5–10 km surrounding area. Conclusion: The model indicated that local NDVI’s contrast during spring is a major risk factor of the transmission of West-Nile virus in Iran. This so-called oasis effect consistent with the seasonal production of vegetation in spring, and is associated to the attractiveness of the local NDVI environment for WNV vectors and hosts. PMID:27308290

  9. Inhibition of West Nile Virus Multiplication in Cell Culture by Anti-Parkinsonian Drugs.

    PubMed

    Blázquez, Ana B; Martín-Acebes, Miguel A; Saiz, Juan-Carlos

    2016-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus maintained in a transmission cycle between mosquitoes and birds, but it can also infect other vertebrates, including humans, in which it can cause neuroinvasive diseases. To date, no licensed vaccine or therapy for human use against this pathogen is yet available. A recent approach to search for new antiviral agent candidates is the assessment of long-used drugs commonly administered by clinicians to treat human disorders in drug antiviral development. In this regard, as patients with West Nile encephalitis frequently develop symptoms and features of parkinsonism, and cellular factors altered in parkinsonism, such as alpha-synuclein, have been shown to play a role on WNV infection, we have assessed the effect of four drugs (L-dopa, Selegiline, Isatin, and Amantadine), that are used as therapy for Parkinson's disease in the inhibition of WNV multiplication. L-dopa, Isatin, and Amantadine treatments significantly reduced the production of infectious virus in all cell types tested, but only Amantadine reduced viral RNA levels. These results point to antiparkinsonian drugs as possible therapeutic candidates for the development of antiviral strategies against WNV infection. PMID:27014219

  10. Abundance of West Nile virus mosquito vectors in relation to climate and landscape variables.

    PubMed

    Deichmeister, Jayne M; Telang, Aparna

    2011-06-01

    It is currently unclear if the potential for West Nile virus transmission by mosquito vectors in the eastern United States is related to landscape or climate factors or both. We compared abundance of vector species between urban and suburban neighborhoods of Henrico County, VA, in relation to the following factors: temperature, precipitation, canopy cover, building footprint, and proximity to drainage infrastructure. Mosquitoes were collected throughout the 2005, 2006, and 2007 seasons and tested for West Nile virus (WNV) in pools of 10-50. Test results of mosquito pools were compared to average site abundance from 37 sites in Henrico County, VA; abundance was then examined in relation to ecological variables. Urban infrastructure was positively correlated with the abundance of Culex pipiens L./Cx. restuans, and our findings implicate combined sewer overflow systems as large contributors to Culex vector populations. No measure of urbanization examined in our study was correlated with Aedes albopictus abundance. Our study showed that certain landscape variables identified using Geographic Information Systems are valuable for predicting primary WNV vector abundance in Virginia, and that temperature along with low precipitation are strong predictors of population growth. Our results support other regional studies that found WNV proliferates under drought conditions. PMID:21635644

  11. Avian Hosts of West Nile Virus in Arizona

    PubMed Central

    Komar, Nicholas; Panella, Nicholas A.; Young, Ginger R.; Brault, Aaron C.; Levy, Craig E.

    2013-01-01

    West Nile virus (WNV) causes sporadic outbreaks of human encephalitis in Phoenix, Arizona. To identify amplifying hosts of WNV in the Phoenix area, we blood-sampled resident birds and measured antibody prevalence following an outbreak in the East Valley of metropolitan Phoenix during summer, 2010. House sparrow (Passer domesticus), house finch (Haemorhous mexicanus), great-tailed grackle (Quiscalus mexicanus), and mourning dove (Zenaida macroura) accounted for most WNV infections among locally resident birds. These species roost communally after early summer breeding. In September 2010, Culex vector-avian host contact was 3-fold greater at communal bird roosts compared with control sites, as determined by densities of resting mosquitoes with previous vertebrate contact (i.e., blood-engorged or gravid mosquitoes). Because of the low competence of mourning doves, these were considered weak amplifiers but potentially effective free-ranging sentinels. Highly competent sparrows, finches, and grackles were predicted to be key amplifying hosts for WNV in suburban Phoenix. PMID:23857022

  12. Frequency of West Nile Virus Infection in Iranian Blood Donors.

    PubMed

    Aghaie, Afsaneh; Aaskov, John; Chinikar, Sadegh; Niedrig, Matthias; Banazadeh, Soudabeh; Mohammadpour, Hashem Khorsand

    2016-09-01

    West Nile virus (WNV) can be transmitted by blood transfusions and organ transplants. This study was a retrospective study which was performed in Blood Transfusion Center to evaluate the WNV infection in blood donors in Iran. A total of 540 blood samples were taken from volunteer healthy donors who referred for blood donation to Chabahar Blood Center. The presence of WNV was studied by detecting immunoglobulin G (IgG) WNV by enzyme linked immune sorbent assay (ELISA). Demonstration of elevated WNV IgG confirmed by immunoflouorescence assay (IFA) Euroimmun kit. Out of the 540 samples 17.96 % (97 cases) were seropositive by ELISA and 1.48 % (8 cases) was seropositive by IFA. This means that 8.24 % of ELISA seropositive samples were confirmed by IFA. Special attention should be paid to criteria of donor selection, albeit positive results may be due to a previous infection in these donors. PMID:27429528

  13. Progress on the Development of Therapeutics against West Nile Virus

    PubMed Central

    Diamond, Michael S

    2009-01-01

    A decade has passed since the appearance of West Nile virus (WNV) in humans in the Western Hemisphere in New York City. During this interval, WNV spread inexorably throughout North and South America and caused millions of infections ranging from a sub-clinical illness, to a self-limiting febrile syndrome or lethal neuroinvasive disease. Its entry into the United States triggered intensive research into the basic biology of WNV and the elements that comprise a protective host immune response. Although no therapy is currently approved for use in humans, several strategies are being pursued to develop effective prophylaxis and treatments. This review describes the current state of knowledge on epidemiology, clinical presentation, pathogenesis, and immunobiology of WNV infection, and highlights progress toward an effective therapy. PMID:19501622

  14. Use of Testing for West Nile Virus and Other Arboviruses.

    PubMed

    Vanichanan, Jakapat; Salazar, Lucrecia; Wootton, Susan H; Aguilera, Elizabeth; Garcia, Melissa N; Murray, Kristy O; Hasbun, Rodrigo

    2016-09-01

    In the United States, the most commonly diagnosed arboviral disease is West Nile virus (WNV) infection. Diagnosis is made by detecting WNV IgG or viral genomic sequences in serum or cerebrospinal fluid. To determine frequency of this testing in WNV-endemic areas, we examined the proportion of tests ordered for patients with meningitis and encephalitis at 9 hospitals in Houston, Texas, USA. We identified 751 patients (567 adults, 184 children), among whom 390 (52%) experienced illness onset during WNV season (June-October). WNV testing was ordered for 281 (37%) of the 751; results indicated acute infection for 32 (11%). Characteristics associated with WNV testing were acute focal neurologic deficits; older age; magnetic resonance imaging; empirically prescribed antiviral therapy; worse clinical outcomes: and concomitant testing for mycobacterial, fungal, or other viral infections. Testing for WNV is underutilized, and testing of patients with more severe disease raises the possibility of diagnostic bias in epidemiologic studies. PMID:27537988

  15. Use of Testing for West Nile Virus and Other Arboviruses

    PubMed Central

    Vanichanan, Jakapat; Salazar, Lucrecia; Wootton, Susan H.; Aguilera, Elizabeth; Garcia, Melissa N.; Murray, Kristy O.

    2016-01-01

    In the United States, the most commonly diagnosed arboviral disease is West Nile virus (WNV) infection. Diagnosis is made by detecting WNV IgG or viral genomic sequences in serum or cerebrospinal fluid. To determine frequency of this testing in WNV-endemic areas, we examined the proportion of tests ordered for patients with meningitis and encephalitis at 9 hospitals in Houston, Texas, USA. We identified 751 patients (567 adults, 184 children), among whom 390 (52%) experienced illness onset during WNV season (June–October). WNV testing was ordered for 281 (37%) of the 751; results indicated acute infection for 32 (11%). Characteristics associated with WNV testing were acute focal neurologic deficits; older age; magnetic resonance imaging; empirically prescribed antiviral therapy; worse clinical outcomes: and concomitant testing for mycobacterial, fungal, or other viral infections. Testing for WNV is underutilized, and testing of patients with more severe disease raises the possibility of diagnostic bias in epidemiologic studies. PMID:27537988

  16. Current Trends in West Nile Virus Vaccine Development

    PubMed Central

    Amanna, Ian J.; Slifka, Mark K.

    2014-01-01

    West Nile virus (WNV) is a mosquito-borne flavivirus that has become endemic in the United States. From 1999-2012, there have been 37,088 reported cases of WNV and 1,549 deaths, resulting in a 4.2% case-fatality rate. Despite development of effective WNV vaccines for horses, there is no vaccine to prevent human WNV infection. Several vaccines have been tested in preclinical studies and to date there have been 8 clinical trials, with promising results in terms of safety and induction of antiviral immunity. Although mass vaccination is unlikely to be cost-effective, implementation of a targeted vaccine program may be feasible if a safe and effective vaccine can be brought to market. Further evaluation of new and advanced vaccine candidates is strongly encouraged. PMID:24689659

  17. Host selection by Culex pipiens mosquitoes and West Nile virus amplification.

    PubMed

    Hamer, Gabriel L; Kitron, Uriel D; Goldberg, Tony L; Brawn, Jeffrey D; Loss, Scott R; Ruiz, Marilyn O; Hayes, Daniel B; Walker, Edward D

    2009-02-01

    Recent field studies have suggested that the dynamics of West Nile virus (WNV) transmission are influenced strongly by a few key super spreader bird species that function both as primary blood hosts of the vector mosquitoes (in particular Culex pipiens) and as reservoir-competent virus hosts. It has been hypothesized that human cases result from a shift in mosquito feeding from these key bird species to humans after abundance of the key birds species decreases. To test this paradigm, we performed a mosquito blood meal analysis integrating host-feeding patterns of Cx. pipiens, the principal vector of WNV in the eastern United States north of the latitude 36 degrees N and other mosquito species with robust measures of host availability, to determine host selection in a WNV-endemic area of suburban Chicago, Illinois, during 2005-2007. Results showed that Cx. pipiens fed predominantly (83%) on birds with a high diversity of species used as hosts (25 species). American robins (Turdus migratorius) were marginally overused and several species were underused on the basis of relative abundance measures, including the common grackle (Quiscalus quiscula), house sparrow (Passer domesticus), and European starling (Sturnus vulgaris). Culex pipiens also fed substantially on mammals (19%; 7 species with humans representing 16%). West Nile virus transmission intensified in July of both years at times when American robins were heavily fed upon, and then decreased when robin abundance decreased, after which other birds species were selected as hosts. There was no shift in feeding from birds to mammals coincident with emergence of human cases. Rather, bird feeding predominated when the onset of the human cases occurred. Measures of host abundance and competence and Cx. pipiens feeding preference were combined to estimate the amplification fractions of the different bird species. Predictions were that approximately 66% of WNV-infectious Cx. pipiens became infected from feeding on just

  18. Functional Analysis of West Nile Virus Proteins in Human Cells.

    PubMed

    Kaufusi, Pakieli H; Tseng, Alanna; Nerurkar, Vivek R

    2016-01-01

    West Nile Virus (WNV) lineage 2 strains have been responsible for large outbreaks of neuroinvasive disease in the United States and Europe between 1999 and 2012. Different strains in this lineage have previously been shown to produce either severe or mild neuroinvasive disease in mice. Phylogenetic and amino acid comparisons between highly or less virulent lineage 2 strains have demonstrated that the nonstructural (NS) gene(s) were most variable. However, the roles of some of the NS proteins in virus life cycle are unknown. The aim of this chapter is to describe simple computational and experimental approaches that can be used to: (1) explore the possible roles of the NS proteins in virus life cycle and (2) test whether the subtle amino acid changes in WNV NS gene products contributed to the evolution of more virulent strains. The computational approaches include methods based on: (1) sequence similarity, (2) sequence motifs, and (3) protein membrane topology predictions. Highlighted experimental procedures include: (1) isolation of viral RNA from WNV-infected cells, (2) cDNA synthesis and PCR amplification of WNV genes, (3) cloning into GFP expression vector, (4) bacterial transformation, (5) plasmid isolation and purification, (6) transfection using activated dendrimers (Polyfect), and (7) immunofluorescence staining of transfected mammalian cells. PMID:27188549

  19. Host sphingomyelin increases West Nile virus infection in vivo.

    PubMed

    Martín-Acebes, Miguel A; Gabandé-Rodríguez, Enrique; García-Cabrero, Ana M; Sánchez, Marina P; Ledesma, María Dolores; Sobrino, Francisco; Saiz, Juan-Carlos

    2016-03-01

    Flaviviruses, such as the dengue virus and the West Nile virus (WNV), are arthropod-borne viruses that represent a global health problem. The flavivirus lifecycle is intimately connected to cellular lipids. Among the lipids co-opted by flaviviruses, we have focused on SM, an important component of cellular membranes particularly enriched in the nervous system. After infection with the neurotropic WNV, mice deficient in acid sphingomyelinase (ASM), which accumulate high levels of SM in their tissues, displayed exacerbated infection. In addition, WNV multiplication was enhanced in cells from human patients with Niemann-Pick type A, a disease caused by a deficiency of ASM activity resulting in SM accumulation. Furthermore, the addition of SM to cultured cells also increased WNV infection, whereas treatment with pharmacological inhibitors of SM synthesis reduced WNV infection. Confocal microscopy analyses confirmed the association of SM with viral replication sites within infected cells. Our results unveil that SM metabolism regulates flavivirus infection in vivo and propose SM as a suitable target for antiviral design against WNV. PMID:26764042

  20. Evaluating the Use of Commercial West Nile Virus Antigens as Positive Controls in the Rapid Analyte Measurement Platform West Nile Virus Assay.

    PubMed

    Burkhalter, Kristen L; Savage, Harry M

    2015-12-01

    We evaluated the utility of 2 types of commercially available antigens as positive controls in the Rapid Analyte Measurement Platform (RAMP®) West Nile virus (WNV) assay. Purified recombinant WNV envelope antigens and whole killed virus antigens produced positive RAMP results and either type would be useful as a positive control. Killed virus antigens provide operational and economic advantages and we recommend their use over purified recombinant antigens. We also offer practical applications for RAMP positive controls and recommendations for preparing them. PMID:26675461

  1. CHIMERIC WEST NILE/DENGUE VIRUS VACCINE CANDIDATE: PRECLINICAL EVALUATION IN MICE, GEESE, AND MONKEYS FOR SAFETY AND IMMUNOGENICITY

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A live attenuated virus vaccine is being developed to protect against West Nile virus (WN) disease in humans. Previously, it was found that chimeric West Nile/dengue viruses (WN/DEN4 and WN/DEN4-delta-30) bearing the membrane precursor and envelope protein genes of WN on a backbone of dengue type 4 ...

  2. Crystal Structure of West Nile Virus Envelope Glycoprotein Reveals Viral Surface Epitopes

    SciTech Connect

    Kanai,R.; Kar, K.; Anthony, K.; Gould, L.; Ledizet, M.; Fikrig, E.; Marasco, W.; Koski, R.; Modis, Y.

    2006-01-01

    West Nile virus, a member of the Flavivirus genus, causes fever that can progress to life-threatening encephalitis. The major envelope glycoprotein, E, of these viruses mediates viral attachment and entry by membrane fusion. We have determined the crystal structure of a soluble fragment of West Nile virus E. The structure adopts the same overall fold as that of the E proteins from dengue and tick-borne encephalitis viruses. The conformation of domain II is different from that in other prefusion E structures, however, and resembles the conformation of domain II in postfusion E structures. The epitopes of neutralizing West Nile virus-specific antibodies map to a region of domain III that is exposed on the viral surface and has been implicated in receptor binding. In contrast, we show that certain recombinant therapeutic antibodies, which cross-neutralize West Nile and dengue viruses, bind a peptide from domain I that is exposed only during the membrane fusion transition. By revealing the details of the molecular landscape of the West Nile virus surface, our structure will assist the design of antiviral vaccines and therapeutics.

  3. A phylogenetic approach to following West Nile virus in Connecticut

    PubMed Central

    Anderson, John F.; Vossbrinck, Charles R.; Andreadis, Theodore G.; Iton, Anthony; Beckwith, William H.; Mayo, Donald R.

    2001-01-01

    The 1999 outbreak of West Nile (WN) virus in the northeastern United States was the first known natural occurrence of this flavivirus in the Western Hemisphere. In 1999 and 2000, 82 independent Connecticut WN virus isolates were cultured from nine species of birds, five species of mosquitoes, and one striped skunk. Nucleotide sequences obtained from these isolates identified 30 genetic changes, compared with WN-NY99, in a 921-nt region of the viral genome beginning at nucleotide position 205 and ending at 1125. This region encodes portions of the nucleocapsid and envelope proteins and includes the entire coding regions for the premembrane and membrane proteins. Amino acid changes occurred at seven loci in six isolates relative to the WN-NY99 strain. Although 34 of the isolates showed sequences identical to the WN-NY99 isolate, we were able to show geographical-based clusters of mutations. In particular, 26 isolates were characterized by mutation of C to T at position 858. This group apparently originated in Stamford, CT and disseminated to sites located as far as 54 miles from Stamford. Sequences of WN virus isolated from both brain and heart tissues from the same avian host were identical in all 14 tested individual birds, suggesting that the mutations we have documented are real and not caused by culture, RNA extraction, or PCR procedures. We conclude that this portion of the viral genome will enable us to follow the geographical and temporal movement of variant WN virus strains as they adapt to North America. PMID:11606791

  4. West Nile virus methyltransferase domain interacts with protein kinase G

    PubMed Central

    2013-01-01

    Background The flaviviral nonstructural protein 5 (NS5) is a phosphoprotein, though the precise identities and roles of many specific phosphorylations remain unknown. Protein kinase G (PKG), a cGMP-dependent protein kinase, has previously been shown to phosphorylate dengue virus NS5. Methods We used mass spectrometry to specifically identify NS5 phosphosites. Co-immunoprecipitation assays were used to study protein-protein interactions. Effects on viral replication were measured via replicon system and plaque assay titering. Results We identified multiple sites in West Nile virus (WNV) NS5 that are phosphorylated during a WNV infection, and showed that the N-terminal methyltransferase domain of WNV NS5 can be specifically phosphorylated by PKG in vitro. Expressing PKG in cell culture led to an enhancement of WNV viral production. We hypothesized this effect on replication could be caused by factors beyond the specific phosphorylations of NS5. Here we show for the first time that PKG is also able to stably interact with a viral substrate, WNV NS5, in cell culture and in vitro. While the mosquito-borne WNV NS5 interacted with PKG, tick-borne Langat virus NS5 did not. The methyltransferase domain of NS5 is able to mediate the interaction between NS5 and PKG, and mutating positive residues in the αE region of the methyltransferase interrupts the interaction. These same mutations completely inhibited WNV replication. Conclusions PKG is not required for WNV replication, but does make a stable interaction with NS5. While the consequence of the NS5:PKG interaction when it occurs is unclear, mutational data demonstrates that this interaction occurs in a region of NS5 that is otherwise necessary for replication. Overall, the results identify an interaction between virus and a cellular kinase and suggest a role for a host kinase in enhancing flaviviral replication. PMID:23876037

  5. Detection of West Nile virus in large pools of mosquitoes.

    PubMed

    Sutherland, Genevieve L; Nasci, Roger S

    2007-12-01

    We conducted a laboratory evaluation of the ability of commercial antigen-capture assays, the Rapid Analyte Measurement Platform (RAMP) and the VecTest wicking assay, as well as Real Time reverse transcriptase polymerase chain reaction (RT-PCR, Taqman) and Vero cell plaque assay to detect West Nile virus (WNV) in large mosquito pools. Real-Time PCR (Taqman) was the most sensitive, detecting WNV ribonucleic acid (RNA) in 100% of samples containing a single infected mosquito in pool sizes of up to 500 mosquitoes. Mosquito body tissues minimally impacted the ability of Real Time RT-PCR to detect WNV in a pool size of 500, reducing sensitivity by 0.6 log10 plaque-forming units (PFU)/ml. Vero cell plaque assay detected live virus from a single infected mosquito in 100% of pools containing up to 200 mosquitoes, but was unreliable at larger pool sizes. VecTest detected 100% of positive pools containing 50 mosquitoes with 5.8 log10 PFU/ml virus, 100 mosquitoes with 5.9 log10 PFU/ml, and 200 mosquitoes with 5.2 log10 PFU/ ml. The RAMP assay detected 100% of positive pools containing 50 mosquitoes with 3.3 log10 PFU/ml virus, 100 mosquitoes with 3.7 log10 PFU/ml, and 200 mosquitoes with 4.0 log10 PFU/ml. Results indicate that WNV can be reliably detected by all 4 assays in pools of mosquitoes exceeding 50 specimens, though there is some loss of sensitivity with very large pool sizes. PMID:18240515

  6. Autonomic Nervous Dysfunction in Hamsters Infected with West Nile Virus

    PubMed Central

    Wang, Hong; Siddharthan, Venkatraman; Hall, Jeffery O.; Morrey, John D.

    2011-01-01

    Clinical studies and case reports clearly document that West Nile virus (WNV) can cause respiratory and gastrointestinal (GI) complications. Other functions controlled by the autonomic nervous system may also be directly affected by WNV, such as bladder and cardiac functions. To investigate how WNV can cause autonomic dysfunctions, we focused on the cardiac and GI dysfunctions of rodents infected with WNV. Infected hamsters had distension of the stomach and intestines at day 9 after viral challenge. GI motility was detected by a dye retention assay; phenol red dye was retained more in the stomachs of infected hamsters as compared to sham-infected hamsters. The amplitudes of electromygraphs (EMGs) of intestinal muscles were significantly reduced. Myenteric neurons that innervate the intestines, in addition to neurons in the brain stem, were identified to be infected with WNV. These data suggest that infected neurons controlling autonomic function were the cause of GI dysfunction in WNV-infected hamsters. Using radiotelemetry to record electrocardiograms and to measure heart rate variability (HRV), a well-accepted readout for autonomic function, we determined that HRV and autonomic function were suppressed in WNV-infected hamsters. Cardiac histopathology was observed at day 9 only in the right atrium, which was coincident with WNV staining. A subset of WNV infected cells was identified among cells with hyperplarization-activated cyclic nucleotide-gated potassium channel 4 (HCN4) as a marker for cells in the sinoatrial (SA) and atrioventricular (AV) nodes. The unique contribution of this study is the discovery that WNV infection of hamsters can lead to autonomic dysfunction as determined by reduced HRV and reduced EMG amplitudes of the GI tract. These data may model autonomic dysfunction of the human West Nile neurological disease. PMID:21573009

  7. Hendra virus ecology and transmission.

    PubMed

    Field, Hume E

    2016-02-01

    Hendra virus causes acute and highly fatal infection in horses and humans. Pteropid bats (flying-foxes) are the natural host of the virus, with age and species being risk factors for infection. Urine is the primary route of excretion in flying-foxes, with viral RNA more frequently detected in Pteropus alecto and P. conspicillatus than other species. Infection prevalence in flying-foxes can vary between and within years, with a winter peak of excretion occurring in some regions. Vertical transmission and recrudescing infection has been reported in flying-foxes, but horizontal transmission is evidently the primary mode of transmission. The most parsimonious mode of flying-fox to horse transmission is equine contact (oro-nasal, conjunctival) with infected flying-fox urine, either directly, or via urine-contaminated pasture or surfaces. Horse to horse transmission is inefficient, requiring direct contact with infected body fluids. Flying-fox to human transmission has not been recorded; all human cases have been associated with close and direct contact with infected horses. Canine cases (subclinical) have also been limited to equine case properties. Notwithstanding the recent availability of an effective vaccine for horses, a comprehensive understanding of Hendra virus ecology and transmission is essential to limit inter-species transmission. PMID:26978066

  8. Experimental Infection of Horses with West Nile virus

    PubMed Central

    Bowen, Richard A.; Cropp, Bruce C.; Sullivan, Kevin G.; Davis, Brent S.; Komar, Nieholas; Godsey, Marvin; Baker, Dale; Hettler, Danielle L.; Holmes, Derek A.; Biggerstaff, Brad J.; Mitchell, Carl J.

    2002-01-01

    A total of 12 horses of different breeds and ages were infected with West Nile virus (WNV) via the bites of infected Aedes albopictus mosquitoes. Half the horses were infected with a viral isolate from the brain of a horse (BC787), and half were infected with an isolate from crow brain (NY99-6625); both were NY99 isolates. Postinfection, uninfected female Ae. albopictus fed on eight of the infected horses. In the first trial, Nt antibody titers reached >1:320, 1:20, 1:160, and 1:80 for horses 1 to 4, respectively. In the second trial, the seven horses with subclinical infections developed Nt antibody titers >1:10 between days 7 and 11 post infection. The highest viremia level in horses fed upon by the recipient mosquitoes was approximately 460 Vero cell PFU/mL. All mosquitoes that fed upon viremic horses were negative for the virus. Horses infected with the NY99 strain of WNV develop low viremia levels of short duration; therefore, infected horses are unlikely to serve as important amplifying hosts for WNV in nature. PMID:11971771

  9. Detection of Persistent West Nile Virus RNA in Experimentally and Naturally Infected Avian Hosts

    PubMed Central

    Wheeler, Sarah S.; Langevin, Stanley A.; Brault, Aaron C.; Woods, Leslie; Carroll, Brian D.; Reisen, William K.

    2012-01-01

    To determine whether West Nile virus (WNV) persistent infection in avian hosts may potentially serve as an overwintering mechanism, House Sparrows and House Finches, experimentally and naturally infected with several strains of WNV, and two naturally infected Western Scrub-Jays were held in mosquito-proof outdoor aviaries from 2007–March 2008. Overall, 94% (n = 36) of House Sparrows, 100% (n = 14) of House Finches and 2 Western Scrub-Jays remained WNV antibody positive. When combined by species, 37% of the House Sparrows, 50% of the House Finches, and 2 Western Scrub-Jays were WNV RNA positive at necropsy, up to 36 weeks post-infection. Infectious WNV was not detected. Our study supports the hypothesis that some avian hosts support the long-term persistence of WNV RNA, but it remains unresolved whether these infections relapse to restart an avian-arthropod transmission cycle and thereby serve as an overwintering mechanism for WNV. PMID:22826479

  10. Regional variation of climatic influences on West Nile virus outbreaks in the United States.

    PubMed

    Wimberly, Michael C; Lamsal, Aashis; Giacomo, Paolla; Chuang, Ting-Wu

    2014-10-01

    The national resurgence of human West Nile virus (WNV) disease in 2012 raised questions about the factors responsible for WNV outbreaks. Interannual climatic variations may influence WNV amplification and transmission to humans through multiple pathways, including mosquito breeding habitats, gonotrophic cycles, extrinsic incubation, avian communities, and human behavior. We examined the influences of temperature and precipitation anomalies on interannual variation in human WNV cases in three regions of the United States. There were consistent positive influences of winter temperatures, weaker and more variable positive effects of spring and summer temperatures, and highly variable precipitation effects that ranged from positive to negative. The overwintering period may be a particularly important climatic constraint on the dynamics of WNV in cold-temperate regions of North America. Geographic differences in the seasonal timing and relative importance of climatic drivers of WNV risk likely reflect underlying variability in key ecological and social characteristics. PMID:25092814

  11. Low Seroprevalence of West Nile Virus in Blood Donors from Catalonia, Spain.

    PubMed

    Piron, Maria; Plasencia, Antoni; Fleta-Soriano, Eric; Martinez, Ana; Martinez, Javier P; Torner, Nuria; Sauleda, Silvia; Meyerhans, Andreas; Escalé, Josefina; Trilla, Antoni; Pumarola, Tomás; Martinez, Miguel Julian

    2015-12-01

    West Nile virus (WNV) is an emerging arbovirus first recognized in Europe in the 1950s. Since then, outbreaks have been reported in several European countries. In 2010, the first WNV outbreak was recorded in Spain, affecting the southern part of the country. We conducted a seroprevalence study in the Catalonia region (northeastern Spain), an area considered at high risk of arbovirus transmission. A total of 800 serum samples from blood donors were collected and screened for antibodies against WNV by enzyme-linked immunosorbent assay (ELISA) and confirmed by a microneutralization assay. More than 50 samples tested positive by ELISA, but only one sample contained neutralizing antibodies against WNV and was obtained from a donor native of Pakistan. The low seroprevalence detected may serve as reference baseline data for monitoring WNV activity in our region in future years. PMID:26581013

  12. A Multiagency Approach to Reducing West Nile Virus Risk in Richmond County, Georgia, in 2015.

    PubMed

    Kelly, Rosmarie; Koehle, Fred; Flite, Oscar P; Rustin, R Chris

    2016-01-01

    The Richmond County Mosquito Control program's mission statement is to incorporate strategies of integrated mosquito control management that are effective, practical, and environmentally safe and protect the health of Richmond County residents, as well as promote public education, in order to prevent large mosquito populations and the diseases that they transmit. To this end, the program coordinates efforts with other county agencies in order to provide better service. This is a small program with limited resources, so in an effort to provide better integrated mosquito management, the mosquito control program and the Phinizy Center for Water Sciences joined efforts to trap mosquitoes at sites across the county, identify the species, and send the mosquitoes off for viral testing. These data help determine locations of disease-carrying mosquitoes so the county can more efficiently control the mosquito populations and reduce the risk of West Nile virus transmission. PMID:27613204

  13. Diverse Host Feeding on Nesting Birds May Limit Early-Season West Nile Virus Amplification

    PubMed Central

    Egizi, Andrea M.; Farajollahi, Ary

    2014-01-01

    Abstract Arboviral activity tracks vector availability, which in temperate regions means that transmission ceases during the winter and must be restarted each spring. In the northeastern United States, Culex restuans Theobald resumes its activity earlier than Culex pipiens L. and is thought to be important in restarting West Nile virus (WNV) transmission. Its role in WNV amplification, however, is unclear, because viral levels commonly remain low until the rise of Cx. pipiens later in the season. Because a vector's feeding habits can reveal key information about disease transmission, we identified early-season (April–June) blood meals from Cx. restuans collected throughout New Jersey, and compared them to published datasets from later in the season and also from other parts of the country. We found significantly higher avian diversity, including poor WNV hosts, and fewer blood meals derived from American Robins (17% versus over 40% found in later season). Critically, we identified blood meals from significantly more female than male birds in species where females are the incubating sex, suggesting that Cx. restuans is able to feed on such a wide variety of hosts in early spring because incubating birds are easy targets. Because WNV amplification depends on virus consistently reaching competent hosts, our results indicate that Cx. restuans is unlikely to be an amplifying vector of WNV in the early season. As the season progresses, however, changes in the availability of nesting birds may make it just as capable as Cx. pipiens, although at somewhat lower abundance as the summer progresses. PMID:24745370

  14. Evaluation of vector competence for West Nile virus in Italian Stegomyia albopicta (=Aedes albopictus) mosquitoes.

    PubMed

    Fortuna, C; Remoli, M E; Severini, F; Di Luca, M; Toma, L; Fois, F; Bucci, P; Boccolini, D; Romi, R; Ciufolini, M G

    2015-12-01

    West Nile virus (WNV) is a zoonotic arboviral pathogen transmitted by mosquitoes in a cycle that involves wild birds as reservoir hosts. The virus is responsible for outbreaks of viral encephalitis in humans and horses. In Europe, Culex pipiens (Diptera: Culicidae) is considered to be the main vector of WNV, but other species such as Stegomyia albopicta (=Aedes albopictus) (Diptera: Culicidae) may also act as competent vectors of this virus. Since 2008 human cases of WNV disease have been reported in northeast Italy. In 2011, new areas of southern Italy became involved and a first outbreak of WNV lineage 1 occurred on the island of Sardinia. On the assumption that a potential involvement of St. albopicta in WNV transmission cannot be excluded, and in order to evaluate the competence of this species for the virus, an experimental infection of an St. albopicta laboratory colony, established from mosquitoes collected in Sardinia, was carried out. The results were compared with those obtained in a colony of the main vector Cx. pipiens. The study showed St. albopicta collected on Sardinia to be susceptible to WNV infection, which suggests this Italian mosquito species is able to act as a possible secondary vector, particularly in urban areas where the species reaches high levels of seasonal abundance. PMID:26382099

  15. The continuing spread of West Nile virus in the western hemisphere.

    PubMed

    Gubler, Duane J

    2007-10-15

    West Nile virus (WNV) has historically been considered to be among the least virulent of the Japanese serogroup viruses of the family Flaviviridae, genus Flavivirus. However, recent epidemics associated with severe and fatal neuroinvasive disease have changed that perception. The emergence of a virus subtype with greater epidemic potential and virulence in the early 1990s facilitated the geographic expansion and westward spread of WNV; in 1999, it first appeared in the western hemisphere. Because of the broad host and vector range, the virus has become established in much of the region, and there is little chance that it will be eliminated. Transmission is difficult to predict and even more difficult to prevent and control. The cost-effectiveness of human WNV vaccines is uncertain. The building of laboratory diagnostic, epidemiologic, and vector-control capacity in WNV-enzootic countries is critical to the development of effective prevention and control strategies for WNV infection, as well as for other potential emerging vectorborne viral diseases. PMID:17879923

  16. Purification and crystallization of dengue and West Nile virus NS2B–NS3 complexes

    SciTech Connect

    D’Arcy, Allan Chaillet, Maxime; Schiering, Nikolaus; Villard, Frederic; Lim, Siew Pheng; Lefeuvre, Peggy; Erbel, Paul

    2006-02-01

    Crystals of dengue serotype 2 and West Nile virus NS2B–NS3 protease complexes have been obtained and the crystals of both diffract to useful resolution. Sample homogeneity was essential for obtaining X-ray-quality crystals of the dengue protease. Controlled proteolysis produced a crystallizable fragment of the apo West Nile virus NS2B–NS3 and crystals were also obtained in the presence of a peptidic inhibitor. Both dengue and West Nile virus infections are an increasing risk to humans, not only in tropical and subtropical areas, but also in North America and parts of Europe. These viral infections are generally transmitted by mosquitoes, but may also be tick-borne. Infection usually results in mild flu-like symptoms, but can also cause encephalitis and fatalities. Approximately 2799 severe West Nile virus cases were reported this year in the United States, resulting in 102 fatalities. With this alarming increase in the number of West Nile virus infections in western countries and the fact that dengue virus already affects millions of people per year in tropical and subtropical climates, there is a real need for effective medicines. A possible therapeutic target to combat these viruses is the protease, which is essential for virus replication. In order to provide structural information to help to guide a lead identification and optimization program, crystallizations of the NS2B–NS3 protease complexes from both dengue and West Nile viruses have been initiated. Crystals that diffract to high resolution, suitable for three-dimensional structure determinations, have been obtained.

  17. Origin of the West Nile virus responsible for an outbreak of encephalitis in the northeastern United States.

    PubMed

    Lanciotti, R S; Roehrig, J T; Deubel, V; Smith, J; Parker, M; Steele, K; Crise, B; Volpe, K E; Crabtree, M B; Scherret, J H; Hall, R A; MacKenzie, J S; Cropp, C B; Panigrahy, B; Ostlund, E; Schmitt, B; Malkinson, M; Banet, C; Weissman, J; Komar, N; Savage, H M; Stone, W; McNamara, T; Gubler, D J

    1999-12-17

    In late summer 1999, an outbreak of human encephalitis occurred in the northeastern United States that was concurrent with extensive mortality in crows (Corvus species) as well as the deaths of several exotic birds at a zoological park in the same area. Complete genome sequencing of a flavivirus isolated from the brain of a dead Chilean flamingo (Phoenicopterus chilensis), together with partial sequence analysis of envelope glycoprotein (E-glycoprotein) genes amplified from several other species including mosquitoes and two fatal human cases, revealed that West Nile (WN) virus circulated in natural transmission cycles and was responsible for the human disease. Antigenic mapping with E-glycoprotein-specific monoclonal antibodies and E-glycoprotein phylogenetic analysis confirmed these viruses as WN. This North American WN virus was most closely related to a WN virus isolated from a dead goose in Israel in 1998. PMID:10600742

  18. Antibody response of five bird species after vaccination with a killed West Nile virus vaccine.

    PubMed

    Okeson, Danelle M; Llizo, Shirley Yeo; Miller, Christine L; Glaser, Amy L

    2007-06-01

    West Nile virus has been associated with numerous bird mortalities in the United States since 1999. Five avian species at three zoological parks were selected to assess the antibody response to vaccination for West Nile virus: black-footed penguins (Spheniscus demersus), little blue penguins (Eudyptula minor), American flamingos (Phoenicopterus ruber), Chilean flamingos (Phoenicopterus chilensis), and Attwater's prairie chickens (Tympanuchus cupido attwateri). All birds were vaccinated intramuscularly at least twice with a commercially available inactivated whole virus vaccine (Innovator). Significant differences in antibody titer over time were detected for black-footed penguins and both flamingo species. PMID:17679507

  19. Culex Flavivirus and West Nile Virus Mosquito Coinfection and Positive Ecological Association in Chicago, United States

    PubMed Central

    Newman, Christina M.; Cerutti, Francesco; Anderson, Tavis K.; Hamer, Gabriel L.; Walker, Edward D.; Kitron, Uriel D.; Ruiz, Marilyn O.; Brawn, Jeffery D.

    2011-01-01

    Abstract Culex flavivirus (CxFV) is an insect-specific flavivirus globally distributed in mosquitoes of the genus Culex. CxFV was positively associated with West Nile virus (WNV) infection in a case–control study of 268 mosquito pools from an endemic focus of WNV transmission in Chicago, United States. Specifically, WNV-positive Culex mosquito pools were four times more likely also to be infected with CxFV than were spatiotemporally matched WNV-negative pools. In addition, mosquito pools from residential sites characterized by dense housing and impermeable surfaces were more likely to be infected with CxFV than were pools from nearby urban green spaces. Further, 6/15 (40%) WNV-positive individual mosquitoes were also CxFV positive, demonstrating that both viruses can coinfect mosquitoes in nature. Phylogenetic analysis of CxFV from Chicago demonstrated a pattern similar to WNV, consisting of low global viral diversity and lack of geographic clustering. These results illustrate a positive ecological association between CxFV and WNV, and that coinfection of individual mosquitoes can occur naturally in areas of high flaviviral transmission. These conclusions represent a challenge to the hypothesis of super-infection exclusion in the CxFV/WNV system, whereby an established infection with one virus may interfere with secondary viral infection with a similar virus. This study suggests that infection with insect-specific flaviviruses such as CxFV may not exclude secondary infection with genetically distinct flaviviruses such as WNV, and that both viruses can naturally coinfect mosquitoes that are epidemic bridge vectors of WNV to humans. PMID:21254845

  20. West Nile Virus Isolated from a Virginia Opossum (Didelphis virginiana) in Northwestern Missouri, USA, 2012

    PubMed Central

    Bosco-Lauth, Angela; Harmon, Jessica R.; Lash, R. Ryan; Weiss, Sonja; Langevin, Stanley; Savage, Harry M.; Godsey, Marvin S.; Burkhalter, Kristen; Root, J. Jeffrey; Gidlewski, Thomas; Nicholson, William L.; Brault, Aaron C.; Komar, Nicholas

    2016-01-01

    We describe the isolation of West Nile virus (WNV; Flaviviridae, Flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Sequencing determined that the virus was related to lineage 1a WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology. PMID:25098303

  1. Vector competence of the stable fly (Diptera: Muscidae)for West Nile virus.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stable flies, which are notorious pests of cattle and other livestock, were suspected of transmitting West Nile virus (WNV) among American white pelicans at the Medicine Lake Wildlife Refuge in northeastern Montana in 2006-2007. However the ability of stable flies to transmit the virus was unknown. ...

  2. West Nile virus isolated from a Virginia opossum (Didelphis virginiana) in northwestern Missouri, USA, 2012.

    PubMed

    Bosco-Lauth, Angela; Harmon, Jessica R; Lash, R Ryan; Weiss, Sonja; Langevin, Stanley; Savage, Harry M; Godsey, Marvin S; Burkhalter, Kristen; Root, J Jeffrey; Gidlewski, Thomas; Nicholson, William L; Brault, Aaron C; Komar, Nicholas

    2014-10-01

    We describe the isolation of West Nile virus (WNV; Flaviviridae, Flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Sequencing determined that the virus was related to lineage 1a WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology. PMID:25098303

  3. West Nile virus isolated from Virginia opossum (Didelphis virginiana) in Northwest Missouri 2012

    DOE PAGESBeta

    Bosco-Lauth, Angela; Harmon, Jessica; Lash, R. Ryan; Weiss, Sonja; Langevin, Stanley; Savage, Harry; Marvin S. Godsey, Jr.; Burkhalter, Kristen; Root, J. Jeffrey; Gidlewski, Thomas; et al

    2014-12-01

    We describe the isolation of West Nile virus (WNV; Flaviviridae, flavivirus) from blood of a Virginia opossum (Didelphis virginiana) collected in northwestern Missouri, USA in August 2012. Furthermore, sequencing determined that the virus was related to lineage 1a WNV02 strains. We discuss the role of wildlife in WNV disease epidemiology.

  4. West Nile Virus Vector Competency of Culex quinquefasciatus Mosquitoes in the Galápagos Islands

    PubMed Central

    Eastwood, Gillian; Kramer, Laura D.; Goodman, Simon J.; Cunningham, Andrew A.

    2011-01-01

    The mosquito-transmitted pathogen West Nile virus (WNV) is not yet present in the Galápagos Archipelago of Ecuador. However, concern exists for fragile endemic island fauna after population decreases in several North American bird species and pathology in certain reptiles. We examined WNV vector competency of a Galápagos strain of mosquito (Culex quinquefasciatus Say). Field specimens were tested for their capacity to transmit the WN02-1956 strain of WNV after incubation at 27°C or 30°C. Rates of infection, dissemination, and transmission all increased with days post-exposure to WNV, and the highest rates were observed at 28 days. Infection rates peaked at 59% and transmission rates peaked at 44% (of mosquitoes tested). Vector efficiency increased after day 14. Rates of infection but not of transmission were significantly influence by temperature. No vertical transmission was detectable. We demonstrate that Galápagos Cx. quinquefasciatus are competent WNV vectors, and therefore should be considered an animal and public health risk for the islands and controlled wherever possible. PMID:21896799

  5. West Nile Virus Outbreak in North American Owls, Ontario, 2002

    PubMed Central

    Barker, Ian K.; Lindsay, Robbin; Dibernardo, Antonia; McKeever, Katherine; Hunter, Bruce

    2004-01-01

    From July to September 2002, an outbreak of West Nile virus (WNV) caused a high number of deaths in captive owls at the Owl Foundation, Vineland, Ontario, Canada. Peak death rates occurred in mid-August, and the epidemiologic curve resembled that of corvids in the surrounding Niagara region. The outbreak occurred in the midst of a louse fly (Icosta americana, family Hippoboscidae) infestation. Of the flies tested, 16 (88.9 %) of 18 contained WNV RNA. Species with northern native breeding range and birds >1 year of age were at significantly higher risk for WNV-related deaths. Species with northern native breeding range and of medium-to-large body size were at significantly higher risk for exposure to WNV. Taxonomic relations (at the subfamily level) did not significantly affect exposure to WNV or WNV-related deaths. Northern native breeding range and medium-to-large body size were associated with earlier death within the outbreak period. Of the survivors, 69 (75.8 %) of 91 were seropositive for WNV. PMID:15663850

  6. West Nile virus associations in wild mammals: a synthesis.

    PubMed

    Jeffrey Root, J

    2013-04-01

    Exposures to West Nile virus (WNV) have been documented in a variety of wild mammals in both the New and Old Worlds. This review tabulates at least 100 mammal species with evidence of WNV exposure. Many of these exposures were detected in free-ranging mammals, while several were noted in captive individuals. In addition to exposures, this review discusses experimental infections in terms of the potential for reservoir competence of select wild mammal species. Overall, few experimental infections have been conducted on wild mammals. As such, the role of most wild mammals as potential amplifying hosts for WNV is, to date, uncertain. In most instances, experimental infections of wild mammals with WNV have resulted in no or low-level viremia. Some recent studies have indicated that certain species of tree squirrels (Sciurus spp.), eastern chipmunks (Tamias striatus), and eastern cottontail rabbits (Sylvilagus floridanus) develop viremia sufficient for infecting some mosquito species. Certain mammalian species, such as tree squirrels, mesopredators, and deer have been suggested as useful species for WNV surveillance. In this review article, the information pertaining to wild mammal associations with WNV is synthesized. PMID:23212739

  7. Hydroclimatic Assessment of West Nile Virus Occurrence Across Continental US

    NASA Astrophysics Data System (ADS)

    Billian, H. E.; Jutla, A.; Colwell, R. R.

    2014-12-01

    West Nile virus (WNV) is the most widely infections from arbovirus in mid-latitudes, having reached the Western Hemisphere in 1999. As a vector-borne disease, WNV is primarily spread by mosquitoes; the disease is predominantly found in tropical and temperate regions of the world, and is now considered an endemic pathogen in the United States, Africa, Asia, Australia, the Middle East, and Europe. Environmental processes play a vital role in the trigger of WNV. Here, using logistical regression models, we quantified relationships between hydroclimatic processes and mosquito abundance for WNV across the continental USA using precipitation and temperature at different spatial and temporal scales. It will be shown that reported cases of this disease are more prevalent during spring and summer months in the entire country, when there is more precipitation and higher surface air temperatures for 2003 to 2013. The key impacts of this research are those related to the improvement of human health, and a means to predict mosquito breeding patterns long term as they relate to the prevalence of vector-borne illnesses.

  8. Economic Conditions Predict Prevalence of West Nile Virus

    PubMed Central

    Buermann, Wolfgang; Cummings, Robert F.; Kahn, Matthew E.; Smith, Thomas B.

    2010-01-01

    Understanding the conditions underlying the proliferation of infectious diseases is crucial for mitigating future outbreaks. Since its arrival in North America in 1999, West Nile virus (WNV) has led to population-wide declines of bird species, morbidity and mortality of humans, and expenditures of millions of dollars on treatment and control. To understand the environmental conditions that best explain and predict WNV prevalence, we employed recently developed spatial modeling techniques in a recognized WNV hotspot, Orange County, California. Our models explained 85–95% of the variation of WNV prevalence in mosquito vectors, and WNV presence in secondary human hosts. Prevalence in both vectors and humans was best explained by economic variables, specifically per capita income, and by anthropogenic characteristics of the environment, particularly human population and neglected swimming pool density. While previous studies have shown associations between anthropogenic change and pathogen presence, results show that poorer economic conditions may act as a direct surrogate for environmental characteristics related to WNV prevalence. Low-income areas may be associated with higher prevalence for a number of reasons, including variations in property upkeep, microhabitat conditions conducive to viral amplification in both vectors and hosts, host community composition, and human behavioral responses related to differences in education or political participation. Results emphasize the importance and utility of including economic variables in mapping spatial risk assessments of disease. PMID:21103053

  9. Economic conditions predict prevalence of West Nile virus.

    PubMed

    Harrigan, Ryan J; Thomassen, Henri A; Buermann, Wolfgang; Cummings, Robert F; Kahn, Matthew E; Smith, Thomas B

    2010-01-01

    Understanding the conditions underlying the proliferation of infectious diseases is crucial for mitigating future outbreaks. Since its arrival in North America in 1999, West Nile virus (WNV) has led to population-wide declines of bird species, morbidity and mortality of humans, and expenditures of millions of dollars on treatment and control. To understand the environmental conditions that best explain and predict WNV prevalence, we employed recently developed spatial modeling techniques in a recognized WNV hotspot, Orange County, California. Our models explained 85-95% of the variation of WNV prevalence in mosquito vectors, and WNV presence in secondary human hosts. Prevalence in both vectors and humans was best explained by economic variables, specifically per capita income, and by anthropogenic characteristics of the environment, particularly human population and neglected swimming pool density. While previous studies have shown associations between anthropogenic change and pathogen presence, results show that poorer economic conditions may act as a direct surrogate for environmental characteristics related to WNV prevalence. Low-income areas may be associated with higher prevalence for a number of reasons, including variations in property upkeep, microhabitat conditions conducive to viral amplification in both vectors and hosts, host community composition, and human behavioral responses related to differences in education or political participation. Results emphasize the importance and utility of including economic variables in mapping spatial risk assessments of disease. PMID:21103053

  10. West Nile virus surveillance in East Baton Rouge Parish, Louisiana.

    PubMed

    Gleiser, Raquel M; Mackay, Andrew J; Roy, Alma; Yates, Mathew M; Vaeth, Randy H; Faget, Guy M; Folsom, Alex E; Augustine, William F; Wells, Roderick A; Perich, Michael J

    2007-03-01

    West Nile virus (WNV) was detected for the first time in Louisiana in the fall of 2001. Surveillance data collected from East Baton Rouge Parish in 2002 were examined to establish baseline data on WNV activity, to support the current design of disease surveillance programs, and to target vector control efforts in the parish. The first indications of WNV activity were from a dead Northern Cardinal collected in February and from a live male cardinal sampled on 14 March. In mosquito pools, WNV was first detected on June 11. The onset of the first human case and the first detection of WNV in sentinel chickens occurred concurrently on June 24. The number of reported human cases and minimum infection rates in mosquitoes peaked in July. WNV prevalence in wild birds increased in late August and was highest in December. WNV-positive wild birds and mosquito pools were detected an average of 31 and 59 days in advance of the onset date of reported human cases, respectively, within 5 km of the residence of a human case. Antibodies to WNV were detected in sera from 7 (Northern Cardinal, House Sparrow, Northern Mockingbird, Blue Jay, Hermit Thrush, Yellow-rumped Warbler, and White-throated Sparrow) of the 42 wild bird species tested. Wild bird serology indicated WNV activity during the winter. Out of 18 mosquito species tested, the only species found positive for WNV was Culex quinquefasciatus, a result suggesting that this species was the primary epizootic/epidemic vector. PMID:17536365

  11. Predicting human West Nile virus infections with mosquito surveillance data.

    PubMed

    Kilpatrick, A Marm; Pape, W John

    2013-09-01

    West Nile virus (WNV) has become established across the Americas with recent heightened activity causing significant human illness. Surveillance methods to predict the risk of human infection are urgently needed to initiate timely preventative measures and justify the expense of implementing costly or unpopular control measures, such as aerial spraying or curfews. We quantified the links between mosquito surveillance data and the spatiotemporal patterns of 3,827 human WNV cases reported over 5 years in Colorado from 2003 to 2007. Mosquito data were strongly predictive of variation in the number of human WNV infections several weeks in advance in both a spatiotemporal statewide analysis and temporal variation within counties with substantial numbers of human cases. We outline several ways to further improve the predictive power of these data and we quantify the loss of information if no funds are available for testing mosquitoes for WNV. These results demonstrate that mosquito surveillance provides a valuable public health tool for assessing the risk of human arboviral infections, allocating limited public health resources, and justifying emergency control actions. PMID:23825164

  12. West Nile virus detection in nonvascular feathers from avian carcasses.

    PubMed

    Nemeth, Nicole M; Young, Ginger R; Burkhalter, Kristen L; Brault, Aaron C; Reisen, William K; Komar, Nicholas

    2009-09-01

    West Nile virus (WNV) is a public health threat and has caused the death of thousands of North American birds. As such, surveillance for WNV has been ongoing, utilizing numerous biological specimens and testing methods. Nonvascular (i.e., fully grown) feathers would provide a simple method of collection from either dead or live birds of all ages and molt cycles, with presumably less biosafety risk compared with other specimen types, including feather pulp. The current study evaluates WNV detection in nonvascular feathers removed from naturally infected avian carcasses of several species groups. Feathers of corvid passeriforms had the highest sensitivity of detection (64%), followed by noncorvid passeriforms (43%), columbiforms (33%), and falconiforms (31%). Storing feathers for 1 year at -20 degrees C or at ambient room temperature resulted in detection rates of infectious WNV of 16% and zero, respectively, but had no effect on detection rates of WNV RNA in a subset of matched feather pairs (47% for both storage temperatures). The efficacy of WNV detection in nonvascular feathers is greatly enhanced by testing multiple feathers. The advantages of using nonvascular feathers over other tissues may outweigh the relatively low detectability of WNV RNA in certain situations such as remote areas lacking resources for acquiring other types of samples or maintaining the cold chain. PMID:19737756

  13. West Nile Virus Encephalitis in a Patient with Neuroendocrine Carcinoma

    PubMed Central

    2016-01-01

    Importance. Oftentimes, when patients with metastatic cancer present with acute encephalopathy, it is suspected to be secondary to their underlying malignancy. However, there are multiple causes of delirium such as central nervous system (CNS) infections, electrolyte abnormalities, and drug adverse reactions. Because West Nile Virus (WNV) neuroinvasive disease has a high mortality rate in immunosuppressed patients, a high index of suspicion is required in patients who present with fever, altered mental status, and other neurological symptoms. Observations. Our case report details a single patient with brain metastases who presented with unexplained fever, encephalopathy, and new-onset tremors. Initially, it was assumed that his symptoms were due to his underlying malignancy or seizures. However, because his unexplained fevers persisted, lumbar puncture was pursued. Cerebrospinal fluid analysis included WNV polymerase chain reaction and serologies were ordered which eventually led to diagnosis of WNV encephalitis. Conclusions and Relevance. Patients with metastatic cancer who present with encephalopathy are often evaluated with assumption that malignancy is the underlying etiology. This can lead to delays in diagnosis and possible mistreatment. Our case highlights the importance of maintaining a broad differential diagnosis and an important diagnostic consideration of WNV encephalitis in patients with cancer. PMID:27516915

  14. Pathogenesis of West Nile virus lineage 1 and 2 in experimentally infected large falcons.

    PubMed

    Ziegler, Ute; Angenvoort, Joke; Fischer, Dominik; Fast, Christine; Eiden, Martin; Rodriguez, Ariel V; Revilla-Fernández, Sandra; Nowotny, Norbert; de la Fuente, Jorge García; Lierz, Michael; Groschup, Martin H

    2013-01-25

    West Nile virus (WNV) is a zoonotic flavivirus that is transmitted by blood-suckling mosquitoes with birds serving as the primary vertebrate reservoir hosts (enzootic cycle). Some bird species like ravens, raptors and jays are highly susceptible and develop deadly encephalitis while others are infected subclinically only. Birds of prey are highly susceptible and show substantial mortality rates following infection. To investigate the WNV pathogenesis in falcons we inoculated twelve large falcons, 6 birds per group, subcutaneously with viruses belonging to two different lineages (lineage 1 strain NY 99 and lineage 2 strain Austria). Three different infection doses were utilized: low (approx. 500 TCID50), intermediate (approx. 4 log10 TCID50) and high (approx. 6 log10 TCID50). Clinical signs were monitored during the course of the experiments lasting 14 and 21 days. All falcons developed viremia for two weeks and shed virus for almost the same period of time. Using quantitative real-time RT-PCR WNV was detected in blood, in cloacal and oropharyngeal swabs and following euthanasia and necropsy of the animals in a variety of neuronal and extraneuronal organs. Antibodies to WNV were first time detected by ELISA and neutralization assay after 6 days post infection (dpi). Pathological findings consistently included splenomegaly, non-suppurative myocarditis, meningoencephalitis and vasculitis. By immunohistochemistry WNV-antigens were demonstrated intralesionally. These results impressively illustrate the devastating and possibly deadly effects of WNV infection in falcons, independent of the genetic lineage and dose of the challenge virus used. Due to the relatively high virus load and long duration of viremia falcons may also be considered competent WNV amplifying hosts, and thus may play a role in the transmission cycle of this zoonotic virus. PMID:22909991

  15. Comparing Competitive Fitness of West Nile Virus Strains in Avian and Mosquito Hosts

    PubMed Central

    Worwa, Gabriella; Wheeler, Sarah S.; Brault, Aaron C.; Reisen, William K.

    2015-01-01

    Enzootic transmission of West Nile virus (WNV; Flaviviridae, Flavivirus) involves various species of birds and ornithophilic mosquitoes. Single nucleotide substitutions in the WNV genome may impact viral fitness necessary for WNV adaptation and evolution as previously shown for the WN02 genotype. In an effort to study phenotypic change, we developed an in vivo fitness competition model in two biologically relevant hosts for WNV. The House Finch (HOFI; Haemorhous mexicanus) and Culex tarsalis mosquitoes represent moderately susceptible hosts for WNV, are highly abundant in Western North America and frequently are infected with WNV in nature. Herein, we inoculated HOFIs and Cx. tarsalis competitively (dually) and singly with infectious-clone derived viruses of the founding California isolate COAV997-2003 (COAV997-IC), the founding North American isolate NY99 (NY99-IC), and a 2004 field isolate from California (CA-04), and compared the replicative capacities (fitness) of these viruses to a genetically marked virus of COAV997 (COAV997-5nt) by measuring RNA copy numbers. COAV997 and COAV997-5nt exhibited neutral fitness in HOFIs and Cx. tarsalis, and the temperature-sensitive phenotype of COAV997 did not affect replication in HOFIs as none of the infected birds became febrile. The NY99 and CA-04 isolates demonstrated elevated fitness in HOFIs compared to COAV997-5nt, whereas all viruses replicated to similar titers and RNA copies in Cx. tarsalis, and the only fitness differences were related to infection rates. Our data demonstrated that competitive replication allows for the sensitive comparison of fitness differences among two genetically closely related viruses using relevant hosts of WNV while eliminating host-to-host differences. In conclusion, our approach may be helpful in understanding the extent of phenotypic change in fitness associated with genetic changes in WNV. PMID:25965850

  16. First isolation of West Nile virus from a dromedary camel.

    PubMed

    Joseph, Sunitha; Wernery, Ulrich; Teng, Jade Ll; Wernery, Renate; Huang, Yi; Patteril, Nissy Ag; Chan, Kwok-Hung; Elizabeth, Shyna K; Fan, Rachel Yy; Lau, Susanna Kp; Kinne, Jörg; Woo, Patrick Cy

    2016-01-01

    Although antibodies against West Nile virus (WNV) have been detected in the sera of dromedaries in the Middle East, North Africa and Spain, no WNV has been isolated or amplified from dromedary or Bactrian camels. In this study, WNV was isolated from Vero cells inoculated with both nasal swab and pooled trachea/lung samples from a dromedary calf in Dubai. Complete-genome sequencing and phylogenetic analysis using the near-whole-genome polyprotein revealed that the virus belonged to lineage 1a. There was no clustering of the present WNV with other WNVs isolated in other parts of the Middle East. Within lineage 1a, the dromedary WNV occupied a unique position, although it was most closely related to other WNVs of cluster 2. Comparative analysis revealed that the putative E protein encoded by the genome possessed the original WNV E protein glycosylation motif NYS at E154-156, which contained the N-linked glycosylation site at N-154 associated with increased WNV pathogenicity and neuroinvasiveness. In the putative NS1 protein, the A70S substitution observed in other cluster 2 WNVs and P250, which has been implicated in neuroinvasiveness, were present. In addition, the foo motif in the putative NS2A protein, which has been implicated in neuroinvasiveness, was detected. Notably, the amino-acid residues at 14 positions in the present dromedary WNV genome differed from those in most of the closely related WNV strains in cluster 2 of lineage 1a, with the majority of these differences observed in the putative E and NS5 proteins. The present study is the first to demonstrate the isolation of WNV from dromedaries. This finding expands the possible reservoirs of WNV and sources of WNV infection. PMID:27273223

  17. First isolation of West Nile virus from a dromedary camel

    PubMed Central

    Joseph, Sunitha; Wernery, Ulrich; Teng, Jade LL; Wernery, Renate; Huang, Yi; Patteril, Nissy AG; Chan, Kwok-Hung; Elizabeth, Shyna K; Fan, Rachel YY; Lau, Susanna KP; Kinne, Jörg; Woo, Patrick CY

    2016-01-01

    Although antibodies against West Nile virus (WNV) have been detected in the sera of dromedaries in the Middle East, North Africa and Spain, no WNV has been isolated or amplified from dromedary or Bactrian camels. In this study, WNV was isolated from Vero cells inoculated with both nasal swab and pooled trachea/lung samples from a dromedary calf in Dubai. Complete-genome sequencing and phylogenetic analysis using the near-whole-genome polyprotein revealed that the virus belonged to lineage 1a. There was no clustering of the present WNV with other WNVs isolated in other parts of the Middle East. Within lineage 1a, the dromedary WNV occupied a unique position, although it was most closely related to other WNVs of cluster 2. Comparative analysis revealed that the putative E protein encoded by the genome possessed the original WNV E protein glycosylation motif NYS at E154–156, which contained the N-linked glycosylation site at N-154 associated with increased WNV pathogenicity and neuroinvasiveness. In the putative NS1 protein, the A70S substitution observed in other cluster 2 WNVs and P250, which has been implicated in neuroinvasiveness, were present. In addition, the foo motif in the putative NS2A protein, which has been implicated in neuroinvasiveness, was detected. Notably, the amino-acid residues at 14 positions in the present dromedary WNV genome differed from those in most of the closely related WNV strains in cluster 2 of lineage 1a, with the majority of these differences observed in the putative E and NS5 proteins. The present study is the first to demonstrate the isolation of WNV from dromedaries. This finding expands the possible reservoirs of WNV and sources of WNV infection. PMID:27273223

  18. Conservation and Variability of West Nile Virus Proteins

    PubMed Central

    Jung, Keun-Ok; Ramdas, Shweta; Miotto, Olivo; Tan, Tin Wee; Brusic, Vladimir; Salmon, Jerome; August, J. Thomas

    2009-01-01

    West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of ≤1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (≤10% of the WNV sequences analyzed). Eighty-eight fragments of length 9–29 amino acids, representing ∼34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for

  19. Monitoring of West Nile virus infections in Germany.

    PubMed

    Ziegler, U; Seidowski, D; Angenvoort, J; Eiden, M; Müller, K; Nowotny, N; Groschup, M H

    2012-09-01

    West Nile virus (WNV) is a flavivirus that is maintained in an enzootic cycle between ornithophilic mosquitoes, mainly of the Culex genus, and certain wild bird species. Other bird species like ravens, jays and raptors are highly susceptible to the infection and may develop deadly encephalitis, while further species of birds are only going through subclinical infection. The objective of this study was to continue in years 2009-2011 the serological and molecular surveillance in wild birds in Germany (see Vector Borne Zoonotic Dis. 10, 639) and to expand these investigations for the first time also to sera from domestic poultry and horses collected between 2005 and 2009. All three cohorts function as indicators for the endemic circulation of WNV. The presence of WNV-specific antibodies was detected in all samples by virus neutralization test (VNT), indirect immunofluorescence test (IFT) and/or enzyme-linked immunosorbent assay (ELISA). The presence of WNV genomes was monitored in relevant sera using two qRT-PCRs that amplify lineage 1 and 2 strains. A total of 364 migratory and resident wild bird serum samples (with emphasis on Passeriformes and Falconiformes) as well as 1119 serum samples from domestic poultry and 1282 sera from horses were analysed. With the exception of one hooded crow, antibody carriers were exclusively found in migratory birds, but not in resident birds/domestic poultry or in local horses. Crows are facultative, short-distance winter migrants in Germany. WNV-specific nucleic acids could not be demonstrated in any of the samples. According to these data, there is no convincing evidence for indigenous WNV infections in equines and in wild/domestic birds in Germany. However, since a few years, WNV infections are endemic in other European countries such as Austria, Hungary, Greece and Italy, a state-of-the-art surveillance system for the detection of incursions of WNV into Germany deems mandatory. PMID:22958253

  20. West Nile virus-neutralizing antibodies in wild birds from southern Spain.

    PubMed

    Ferraguti, M; LA Puente, J Martínez-DE; Soriguer, R; Llorente, F; Jiménez-Clavero, M Á; Figuerola, J

    2016-07-01

    West Nile virus (WNV) is an emerging vector-borne arbovirus with a zoonotic life-cycle whose main reservoir hosts are birds. In humans and horses, WNV infections rarely result in clinical disease but on occasions - depending on factors such as climatic conditions, insect communities and background immunity levels in local populations - they can lead to outbreaks that threaten public and animal health. We tested for the presence of WNV antibodies in 149 birds belonging to 32 different species. Samples were first tested using a bird-specific ELISA kit and then both positive and doubtful results were confirmed by neutralization tests using WNV and Usutu virus. WNV antibodies were confirmed in a resident Sylvia melanocephala juvenile, supporting the idea of local transmission of WNV in southern Spain in 2013. In addition, the serum from an adult blackbird (Turdus merula) showed neutralization of both WNV and Usutu virus. We discuss our results in light of the occurrence of WNV on horse farms in southern Spain in 2013. PMID:26846720

  1. Surveillance potential of non-native Hawaiian birds for detection of West Nile Virus

    USGS Publications Warehouse

    Hofmeister, Erik K.; Dusek, Robert J.; Brand, Christopher J.

    2015-01-01

    West Nile virus (WNV) was first detected in North America in 1999. Alaska and Hawaii (HI) remain the only U.S. states in which transmission of WNV has not been detected. Dead bird surveillance has played an important role in the detection of the virus geographically, as well as temporally. In North America, corvids have played a major role in WNV surveillance; however, the only corvid in HI is the endangered Hawaiian crow that exists only in captivity, thus precluding the use of this species for WNV surveillance in HI. To evaluate the suitability of alternate avian species for WNV surveillance, we experimentally challenged seven abundant non-native bird species present in HI with WNV and compared mortality, viremia, oral shedding of virus, and seroconversion. For detection of WNV in oral swabs, we compared viral culture, reverse-transcriptase polymerase chain reaction, and the RAMP® test. For detection of antibodies to WNV, we compared an indirect and a competitive enzyme-linked immunoassay. We found four species (house sparrow, house finch, Japanese white-eye, and Java sparrow) that may be useful in dead bird surveillance for WNV; while common myna, zebra dove, and spotted dove survived infection and may be useful in serosurveillance.

  2. Surveillance Potential of Non-Native Hawaiian Birds for Detection of West Nile Virus.

    PubMed

    Hofmeister, Erik K; Dusek, Robert J; Brand, Christopher J

    2015-10-01

    West Nile virus (WNV) was first detected in North America in 1999. Alaska and Hawaii (HI) remain the only U.S. states in which transmission of WNV has not been detected. Dead bird surveillance has played an important role in the detection of the virus geographically, as well as temporally. In North America, corvids have played a major role in WNV surveillance; however, the only corvid in HI is the endangered Hawaiian crow that exists only in captivity, thus precluding the use of this species for WNV surveillance in HI. To evaluate the suitability of alternate avian species for WNV surveillance, we experimentally challenged seven abundant non-native bird species present in HI with WNV and compared mortality, viremia, oral shedding of virus, and seroconversion. For detection of WNV in oral swabs, we compared viral culture, reverse-transcriptase polymerase chain reaction, and the RAMP(®) test. For detection of antibodies to WNV, we compared an indirect and a competitive enzyme-linked immunoassay. We found four species (house sparrow, house finch, Japanese white-eye, and Java sparrow) that may be useful in dead bird surveillance for WNV; while common myna, zebra dove, and spotted dove survived infection and may be useful in serosurveillance. PMID:26304918

  3. Transmission of Zika Virus Through Sexual Contact with Travelers to Areas of Ongoing Transmission - Continental United States, 2016.

    PubMed

    Hills, Susan L; Russell, Kate; Hennessey, Morgan; Williams, Charnetta; Oster, Alexandra M; Fischer, Marc; Mead, Paul

    2016-03-01

    Zika virus is a flavivirus closely related to dengue, West Nile, and yellow fever viruses. Although spread is primarily by Aedes species mosquitoes, two instances of sexual transmission of Zika virus have been reported, and replicative virus has been isolated from semen of one man with hematospermia. On February 5, 2016, CDC published recommendations for preventing sexual transmission of Zika virus. Updated prevention guidelines were published on February 23. During February 6-22, 2016, CDC received reports of 14 instances of suspected sexual transmission of Zika virus. Among these, two laboratory-confirmed cases and four probable cases of Zika virus disease have been identified among women whose only known risk factor was sexual contact with a symptomatic male partner with recent travel to an area with ongoing Zika virus transmission. Two instances have been excluded based on additional information, and six others are still under investigation. State, territorial, and local public health departments, clinicians, and the public should be aware of current recommendations for preventing sexual transmission of Zika virus, particularly to pregnant women. Men who reside in or have traveled to an area of ongoing Zika virus transmission and have a pregnant partner should abstain from sexual activity or consistently and correctly use condoms during sex with their pregnant partner for the duration of the pregnancy. PMID:26937739

  4. Quantification of intrahost bottlenecks of West Nile virus in Culex pipiens mosquitoes using an artificial mutant swarm

    PubMed Central

    Ciota, Alexander T.; Ehrbar, Dylan J.; Van Slyke, Greta A.; Payne, Anne F.; Willsey, Graham G.; Viscio, Rachael E.; Kramer, Laura D.

    2012-01-01

    Mosquito-borne viruses are predominantly RNA viruses which exist within hosts as diverse mutant swarms. Defining the way in which stochastic forces within mosquito vectors shape these swarms is critical to advancing our understanding of the evolutionary and adaptive potential of these pathogens. There are multiple barriers within a mosquito which a viral swarm must traverse in order to ultimately be transmitted. Here, using artificial mutant swarms composed of neutral variants of West Nile virus (WNV), we tracked changes to swarm breadth over time and space in Culex pipiens mosquitoes. Our results demonstrate that all variants have the potential to survive intrahost bottlenecks, yet mean swarm breadth decreases during both midgut infection and transmission when starting populations contain higher levels of minority variants. In addition, WNV swarms are subject to temporal sweeps which act to significantly decrease intrahost diversity over time. Taken together, these data demonstrate the profound effects that stochastic forces can have in shaping arboviral mutant swarms. PMID:22326536

  5. Meningitis-Retention Syndrome as a Presentation of West Nile Virus Meningitis

    PubMed Central

    Laengvejkal, Pavis; Argueta, Erwin; Limsuwat, Chok; Nugent, Kenneth

    2013-01-01

    A 26-year-old previously healthy man presented with fever, urinary retention, nuchal rigidity, and hyperreflexia but with a clear sensorium. His initial spinal fluid results were consistent with aseptic meningitis from West Nile virus infection, and this was confirmed by serological studies on blood and cerebrospinal fluid. Computed tomography and magnetic resonance imaging studies were unremarkable. He received supportive care and urinary catheterization to prevent bladder injury from overdistension. He was discharged home without recurrence of urinary retention after five days of hospitalization. Therefore, this case report describes the first case of West Nile virus meningitis in a patient with the meningitis-retention syndrome. PMID:23983716

  6. Limited spillover to humans from West Nile Virus viremic birds in Atlanta, Georgia.

    PubMed

    Levine, Rebecca S; Mead, Daniel G; Kitron, Uriel D

    2013-11-01

    West Nile Virus (WNV) is a mosquito-borne pathogen that impacts the health of its passerine bird hosts as well as incidentally infected humans in the United States. Intensive enzootic activity among the hosts and vectors does not always lead to human outbreaks, as is the situation throughout much of the southeastern United States. In Georgia, substantial yearly evidence of WNV in the mosquito vectors and avian hosts since 2001 has only led to 324 human cases. Although virus has been consistently isolated from mosquitoes trapped in Atlanta, GA, little is known about viral activity among the passerine hosts. A possible reason for the suppression of WNV spillover to humans is that viremic birds are absent from high human-use areas of the city. To test this hypothesis, multiseason, multihabitat, longitudinal WNV surveillance for active WNV viremia was conducted within the avian host community of urban Atlanta by collection of blood samples from wild passerine birds in five urban microhabitats. WNV was isolated from the serum of six blood samples collected from 630 (0.95%) wild passerine birds in Atlanta during 2010-2012, a proportion similar to that found in the Chicago, IL, area in 2005, when over 200 human cases were reported. Most of the viremic birds were Northern Cardinals, suggesting they may be of particular importance to the WNV transmission cycle in Georgia. Results indicated active WNV transmission in all microhabitats of urban Atlanta, except in the old-growth forest patches. The number of viremic birds was highest in Zoo Atlanta, where 3.5% of samples were viremic. Although not significant, these observations may suggest a possible transmission reduction effect of urban old-growth forests and a potential role in WNV amplification for Zoo Atlanta. Overall, spillover to humans remains a rare occurrence in urban Atlanta settings despite active WNV transmission in the avian population. PMID:24107200

  7. Limited Spillover to Humans from West Nile Virus Viremic Birds in Atlanta, Georgia

    PubMed Central

    Mead, Daniel G.; Kitron, Uriel D.

    2013-01-01

    Abstract West Nile Virus (WNV) is a mosquito-borne pathogen that impacts the health of its passerine bird hosts as well as incidentally infected humans in the United States. Intensive enzootic activity among the hosts and vectors does not always lead to human outbreaks, as is the situation throughout much of the southeastern United States. In Georgia, substantial yearly evidence of WNV in the mosquito vectors and avian hosts since 2001 has only led to 324 human cases. Although virus has been consistently isolated from mosquitoes trapped in Atlanta, GA, little is known about viral activity among the passerine hosts. A possible reason for the suppression of WNV spillover to humans is that viremic birds are absent from high human-use areas of the city. To test this hypothesis, multiseason, multihabitat, longitudinal WNV surveillance for active WNV viremia was conducted within the avian host community of urban Atlanta by collection of blood samples from wild passerine birds in five urban microhabitats. WNV was isolated from the serum of six blood samples collected from 630 (0.95%) wild passerine birds in Atlanta during 2010–2012, a proportion similar to that found in the Chicago, IL, area in 2005, when over 200 human cases were reported. Most of the viremic birds were Northern Cardinals, suggesting they may be of particular importance to the WNV transmission cycle in Georgia. Results indicated active WNV transmission in all microhabitats of urban Atlanta, except in the old-growth forest patches. The number of viremic birds was highest in Zoo Atlanta, where 3.5% of samples were viremic. Although not significant, these observations may suggest a possible transmission reduction effect of urban old-growth forests and a potential role in WNV amplification for Zoo Atlanta. Overall, spillover to humans remains a rare occurrence in urban Atlanta settings despite active WNV transmission in the avian population. PMID:24107200

  8. Community diversity of mosquitoes and their microbes across different habitats endemic for West Nile Virus and other arthropod-borne diseases

    NASA Astrophysics Data System (ADS)

    Liu, R.; Bennett, S. N.; Thongsripong, P.; Chandler, J. S.

    2013-12-01

    Mosquitoes have long been vectors for disease, and humans, birds, and other vertebrates have served their role as hosts in the transmission cycle of arthropod-borne viruses. In California, there are several mosquito species that act as vectors, transmitting such disease agents as Western equine and St. Louis encephalitis viruses, filarial nematodes, Plasmodium (which causes malaria), and West Nile virus (WNV). Last year (2012-2013), California had over 450 reported cases of West Nile Virus in humans (http://westnile.ca.gov/). To begin to understand mosquitoes and their role in the bay area as vectors of diseases, including West Nile Virus, we trapped mosquitoes from various sites and examined their microbiomes, including bacteria, fungi, viruses, and eukaryotes. Study sites were in Marin, San Mateo, and San Francisco counties, in areas that represented, respectively, rural, suburban, and urban habitats. The mosquitoes were identified through morphological characteristics, and verified molecularly by sequencing of the cytochrome oxidase I (COI) gene extracted from a leg. Most mosquitoes were collected from San Mateo and Mill Valley and were identified as Culiseta incidens. Data from traditional culture-based and next-generation 454 sequencing methods applied to mosquito whole bodies, representing their microbiomes, will be discussed, to determine how mosquito and microbial diversity varies across sites sampled in the San Francisco Bay area.

  9. Vector Competence of Argentine Mosquitoes (Diptera: Culicidae) for West Nile virus (Flaviviridae: Flavivirus)

    PubMed Central

    MICIELI, MARÍA V.; MATACCHIERO, AMY C.; MUTTIS, EVANGELINA; FONSECA, DINA M.; ALIOTA, MATTHEW T.; KRAMER, LAURA D.

    2014-01-01

    We examined the ability of Culex pipiens L. complex mosquitoes from Argentina to vector West Nile virus (WNV) to assess their role in the transmission of WNV in South America. Several egg rafts of Culex spp. were collected from different breeding sites in the suburbs of the city of La Plata, Argentina, and a subset of each progeny was scored with morphological and genetic species indicators. Surprisingly, we did not find Cx. pipiens form pipiens, but found evidence of genetic hybrids of Culex quinquefasciatus and Cx. pipiens f. molestus. We then used morphological traits to create two colonies predominantly composed of one of these two taxa, although some hybrids are likely to have been included in both. These colonies were used in vector competence studies using NY99 and WN02 genotype strains of WNV obtained in New York State. As controls, we also tested colonies of U.S. Cx. quinquefasciatus and Cx. pipiens f. molestus. Additional Culex larvae from three drainage ditches near the cities of La Plata and Berisso, Argentina, were identified by morphological and high-resolution molecular markers (microsatellites) as Cx. quinquefasciatus Say, Cx. pipiens form molestus, and hybrids. Results indicate that Argentinian Culex are competent but only moderately efficient vectors of WNV and are less susceptible to this virus than comparable U.S. mosquito strains. Studies of vertical transmission of NY99 virus by Cx. pipiens f. molestus hybrids from Argentina yielded a minimal filial infection rate of 1.19 from females feeding during their second and later bloodmeals. PMID:23926785

  10. Regional and seasonal response of a West Nile virus vector to climate change.

    PubMed

    Morin, Cory W; Comrie, Andrew C

    2013-09-24

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions. PMID:24019459

  11. Serologic evidence of West Nile virus infection in three wild raptor populations.

    PubMed

    Stout, William E; Cassini, Andrew G; Meece, Jennifer K; Papp, Joseph M; Rosenfield, Robert N; Reed, Kurt D

    2005-09-01

    We assayed for West Nile virus (WNV) antibodies to determine the presence and prevalence of WNV infection in three raptor populations in southeast Wisconsin during 2003-04. This study was conducted in the framework of ongoing population studies that started before WNV was introduced to the study area. For 354 samples, 88% of 42 adult Cooper's hawks (Accipiter cooperii), 2.1% of 96 nestling Cooper's hawks, 9.2% of 141 nestling red-tailed hawks (Buteo jamaicensis), and 12% of 73 nestling great horned owls (Bubo virginianus) tested positive for WNV antibodies by the constant virus-serum dilution neutralization test. Samples that tested positive for WNV antibodies were collected across a wide variety of habitat types, including urban habitats (both high and low density), roads, parking areas, recreational areas, croplands, pastures, grasslands, woodlands, and wetlands. Based on the increased prevalence and significantly higher WNV antibody titers in adults compared with nestlings, we suggest that nestlings with detectable antibody levels acquired these antibodies through passive transmission from the mother during egg production. Low levels of WNV antibodies in nestlings could serve as a surrogate marker of exposure in adult raptor populations. Based on breeding population densities and reproductive success over the past 15 yr, we found no apparent adverse effects of WNV infections on these wild raptor populations. PMID:16252490

  12. Spatio-Temporal Epidemiology of Human West Nile Virus Disease in South Dakota

    PubMed Central

    Wimberly, Michael C.; Giacomo, Paolla; Kightlinger, Lon; Hildreth, Michael B.

    2013-01-01

    Despite a cold temperate climate and low human population density, the Northern Great Plains has become a persistent hot spot for human West Nile virus (WNV) disease in North America. Understanding the spatial and temporal patterns of WNV can provide insights into the epidemiological and ecological factors that influence disease emergence and persistence. We analyzed the 1,962 cases of human WNV disease that occurred in South Dakota from 2002–2012 to identify the geographic distribution, seasonal cycles, and interannual variability of disease risk. The geographic and seasonal patterns of WNV have changed since the invasion and initial epidemic in 2002–2003, with cases shifting toward the eastern portion of South Dakota and occurring earlier in the transmission season in more recent years. WNV cases were temporally autocorrelated at lags of up to six weeks and early season cumulative case numbers were correlated with seasonal totals, indicating the possibility of using these data for short-term early detection of outbreaks. Epidemiological data are likely to be most effective for early warning of WNV virus outbreaks if they are integrated with entomological surveillance and environmental monitoring to leverage the strengths and minimize the weaknesses of each information source. PMID:24173141

  13. Regional and seasonal response of a West Nile virus vector to climate change

    PubMed Central

    Morin, Cory W.; Comrie, Andrew C.

    2013-01-01

    Climate change will affect the abundance and seasonality of West Nile virus (WNV) vectors, altering the risk of virus transmission to humans. Using downscaled general circulation model output, we calculate a WNV vector's response to climate change across the southern United States using process-based modeling. In the eastern United States, Culex quinquefasciatus response to projected climate change displays a latitudinal and elevational gradient. Projected summer population depressions as a result of increased immature mortality and habitat drying are most severe in the south and almost absent further north; extended spring and fall survival is ubiquitous. Much of California also exhibits a bimodal pattern. Projected onset of mosquito season is delayed in the southwestern United States because of extremely dry and hot spring and summers; however, increased temperature and late summer and fall rains extend the mosquito season. These results are unique in being a broad-scale calculation of the projected impacts of climate change on a WNV vector. The results show that, despite projected widespread future warming, the future seasonal response of C. quinquefasciatus populations across the southern United States will not be homogeneous, and will depend on specific combinations of local and regional conditions. PMID:24019459

  14. Outbreaks of West Nile virus in captive waterfowl in Ontario, Canada.

    PubMed

    Cox, Sherri L; Campbell, G Douglas; Nemeth, Nicole M

    2015-01-01

    The detrimental effects of West Nile virus (WNV) have been well characterized in several taxonomic groups of North American birds, such as corvids and raptors. Relatively less is known about the virus' effects in waterfowl species, many of which are abundant in North America and occupy habitats, for example wetlands and marshes, likely to harbour dense mosquito populations. In two successive years, outbreaks of WNV-associated disease were observed in waterfowl at a rehabilitation centre. In the present report, clinical and pathological findings are provided for seven mallards (Anas platyrhynchos) and one Canada goose (Branta canadensis) that developed acute disease and either died or were killed humanely. The most severe and consistent microscopic lesion in mallards was myocardial degeneration and coagulative necrosis consistent with acute heart failure. The Canada goose had necrotizing myocarditis. Other lesions included pulmonary perivascular oedema, lymphoplasmacytic hepatitis, and splenic and bursal lymphoid depletion. WNV infection was confirmed using reverse transcriptase-polymerase chain reaction and immunohistochemical staining. Myofibres within all cardiac muscle layers had positive immunohistochemical staining, as did blood vessel walls in the heart and spleen. These results suggest that juvenile mallards are highly susceptible to fatal WNV-associated cardiac failure, and confirm that adult Canada geese are susceptible to fatal WNV-associated disease. The synchronous timing of clinical disease and death in these waterfowl are consistent with WNV mosquito-borne infections within a WNV transmission focus during the summer (July and August) of 2012 and 2013. PMID:25636141

  15. West Nile Virus Outbreak in Horses, Southern France, 2000: Results of a Serosurvey

    PubMed Central

    Chevalier, Véronique; Pouillot, Régis; Labie, Jacques; Marendat, Ingrid; Murgue, Bernadette; Zeller, Hervé; Zientara, Stéphan

    2002-01-01

    During late summer and autumn 2000, a West Nile fever outbreak in southern France resulted in 76 equine clinical cases; 21 horses died. We report the results of a large serosurvey of all equines within a 10-km radius of laboratory-confirmed cases. Blood samples were obtained from 5,107 equines, distributed in groups of 1 to 91 animals. West Nile virus immunoglobulin (Ig) G antibodies were found in 8.5% of animals (n=432). Forty-two percent of the IgG-positive animals were also IgM positive. Horses living in small groups were more affected than those in large groups. The results suggest that West Nile virus is not endemic in the affected area, the Camargue; rather, sporadic outbreaks are separated by long silent periods. PMID:12141961

  16. High Prevalence of West Nile Virus in Domestic Birds and Detection in 2 New Mosquito Species in Madagascar.

    PubMed

    Maquart, Marianne; Boyer, Sébastien; Rakotoharinome, Vincent Michel; Ravaomanana, Julie; Tantely, Michael Luciano; Heraud, Jean-Michel; Cardinale, Eric

    2016-01-01

    West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting. PMID:26807720

  17. High Prevalence of West Nile Virus in Domestic Birds and Detection in 2 New Mosquito Species in Madagascar

    PubMed Central

    Rakotoharinome, Vincent Michel; Ravaomanana, Julie; Tantely, Michael Luciano; Heraud, Jean-Michel; Cardinale, Eric

    2016-01-01

    West Nile virus is an arthropod-borne zoonosis transmitted by a large number of mosquito species, and birds play a key role as reservoir of the virus. Its distribution is largely widespread over Africa, Asia, the Americas and Europe. Since 1978, it has frequently been reported in Madagascar. Studies described a high seroprevalence level of the virus in humans in different areas of the island and a human fatal case of WNV infection was reported in 2011. Despite these reports, the epidemiology of WNV in Madagascar, in particular, viral circulation remains unclear. To explore the transmission of WNV in two rural human populations of Madagascar, we investigated local mosquitoes and poultry for evidence of current infections, and determined seroprevalence of candidate sentinel species among the local poultry. These 2 areas are close to lakes where domestic birds, migratory wild birds and humans coexist. Serological analysis revealed WNV antibodies in domestic birds (duck, chicken, goose, turkey and guinea fowl) sampled in both districts (Antsalova 29.4% and Mitsinjo 16.7%). West Nile virus nucleic acid was detected in one chicken and in 8 pools of mosquitoes including 2 mosquito species (Aedeomyia madagascarica and Anopheles pauliani) that have not been previously described as candidate vectors for WNV. Molecular analysis of WNV isolates showed that all viruses detected were part of the lineage 2 that is mainly distributed in Africa, and were most closely matched by the previous Malagasy strains isolated in 1988. Our study showed that WNV circulates in Madagascar amongst domestic birds and mosquitoes, and highlights the utility of poultry as a surveillance tool to detect WNV transmission in a peri-domestic setting. PMID:26807720

  18. West Nile Virus State of the Art Report of MALWEST Project

    PubMed Central

    Marka, Andriani; Diamantidis, Alexandros; Papa, Anna; Valiakos, George; Chaintoutis, Serafeim C.; Doukas, Dimitrios; Tserkezou, Persefoni; Giannakopoulos, Alexios; Papaspyropoulos, Konstantinos; Patsoula, Eleni; Badieritakis, Evangelos; Baka, Agoritsa; Tseroni, Maria; Pervanidou, Danai; Papadopoulos, Nikos T.; Koliopoulos, George; Tontis, Dimitrios; Dovas, Chrysostomos I.; Billinis, Charalambos; Tsakris, Athanassios; Kremastinou, Jenny; Hadjichristodoulou, Christos

    2013-01-01

    During the last three years Greece is experiencing the emergence of West Nile virus (WNV) epidemics. Within this framework, an integrated surveillance and control programme (MALWEST project) with thirteen associate partners was launched aiming to investigate the disease and suggest appropriate interventions. One out of seven work packages of the project is dedicated to the State of the Art report for WNV. Three expert working groups on humans, animals and mosquitoes were established. Medical databases (PubMed, Scopus) were searched together with websites: e.g., WHO, CDC, ECDC. In total, 1,092 relevant articles were initially identified and 258 of them were finally included as references regarding the current knowledge about WNV, along with 36 additional sources (conference papers, reports, book chapters). The review is divided in three sections according to the fields of interest: (1) WNV in humans (epidemiology, molecular characteristics, transmission, diagnosis, treatment, prevention, surveillance); (2) WNV in animals (epidemiological and transmission characteristics concerning birds, horses, reptiles and other animal species) and (3) WNV in mosquitoes (control, surveillance). Finally, some examples of integrated surveillance programmes are presented. The introduction and establishment of the disease in Greece and other European countries further emphasizes the need for thorough research and broadening of our knowledge on this viral pathogen. PMID:24317379

  19. Nestling Passerines Are Not Important Hosts for Amplification of West Nile Virus in Chicago, Illinois

    PubMed Central

    Hamer, Gabriel L.; Goldberg, Tony L.; Ruiz, Marilyn O.; Kitron, Uriel D.; Walker, Edward D.; Brawn, Jeffrey D.

    2009-01-01

    Abstract Nestling birds have been hypothesized to be important hosts for mosquito-borne arboviruses, but the role of nestlings for West Nile virus (WNV) amplification remains unclear. We sampled open-cup and cavity-nesting passerines in Chicago, Illinois, an area of intense WNV transmission, to determine infection rates in nestlings and mosquitoes, and to test whether mosquitoes are attracted to nesting birds. Analysis of Culex pipiens mosquito populations demonstrated WNV amplification to high mosquito infection rates during both years of the study near the locations where nestlings were sampled. Nevertheless, of 194 nestlings representing 12 species, only one 8-day-old house wren was positive for WNV RNA, and only one 10-day-old mourning dove was seropositive for antibodies to WNV, but at a low titer (1:20). The number of mosquitoes captured in nest box traps and control traps was not significantly different. These combined results suggest that nestling passerines play no evident role in WNV amplification and transmission in the Chicago area. PMID:18759639

  20. Mosquito and West Nile virus surveillance in northeast Montana, U.S.A., 2005-2006

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Mosquito and West Nile virus surveillance was conducted on a National Wildlife Refuge in northeast Montana, 2005-2006, during which outbreaks of WNV in a colony of American white pelicans (Pelecanus erythrorhynchos Gmelin) resulted in juvenile mortality rates of 30 and 31%. During both years, flood...

  1. Mutation in West Nile Virus Structural Protein prM during Human Infection.

    PubMed

    Lustig, Yaniv; Lanciotti, Robert S; Hindiyeh, Musa; Keller, Nathan; Milo, Ron; Mayan, Shlomo; Mendelson, Ella

    2016-09-01

    A mutation leading to substitution of a key amino acid in the prM protein of West Nile virus (WNV) occurred during persistent infection of an immunocompetent patient. WNV RNA persisted in the patient's urine and serum in the presence of low-level neutralizing antibodies. This case demonstrates active replication of WNV during persistent infection. PMID:27322782

  2. Surveillance for West Nile Virus in Clinic-admitted Raptors, Colorado

    PubMed Central

    Kratz, Gail; Edwards, Eric; Scherpelz, Judy; Bowen, Richard; Komar, Nicholas

    2007-01-01

    In 2005, 13.5% of clinic-admitted raptors in northern Colorado tested positive for West Nile virus (WNV). Clinic-admitted–raptor surveillance detected WNV activity nearly 14 weeks earlier than other surveillance systems. WNV surveillance using live raptor admissions to rehabilitation clinics may offer a novel surveillance method and should be considered along with other techniques already in use. PMID:17479898

  3. Domestic goose as a model for West Nile virus vaccine efficacy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    West Nile virus (WNV) is an emergent pathogen in the Americas, first reported in New York during 1999, and has since spread across the United States (USA), Central and South America causing neurological disease in humans, horses and some bird species, including domestic geese. No WNV vaccines are li...

  4. West Nile Virus Activity--United States, October 13-19, 2004.

    PubMed

    2004-10-22

    During October 13-19, a total of 200 cases of human West Nile virus (WNV) illness were reported from 20 states (Arizona, Arkansas, California, Colorado, Illinois, Indiana, Iowa, Kansas, Maryland, Michigan, Mississippi, Missouri, Nevada, New Mexico, North Carolina, Oklahoma, Pennsylvania, South Dakota, Wisconsin, and Wyoming). PMID:15499683

  5. West Nile Virus from Blood Donors, Vertebrates, and Mosquitoes, Puerto Rico, 2007

    PubMed Central

    McElroy, Kate L.; Bessoff, Kovi; Colón, Candimar; Barrera, Roberto; Muñoz-Jordán, Jorge L.

    2009-01-01

    West Nile virus (WNV) was isolated from a human blood donor, a dead falcon, and mosquitoes in Puerto Rico in 2007. Phylogenetic analysis of the 4 isolates suggests a recent introduction of lineage I WNV that is closely related to WNV currently circulating in North America. PMID:19751597

  6. Detection by Enzyme-Linked Immunosorbent Assay of Antibodies to West Nile virus in Birds

    PubMed Central

    Dupuis, Alan P.; Nicholas, David; Young, Donna; Maffei, Joseph; Kramer, Laura D.

    2002-01-01

    We adapted an indirect immunoglobulin G enzyme-linked immunosorbent assay to facilitate studies of West Nile virus (WNV) and evaluated its application to taxonomically diverse avian species. Anti-WNV antibodies were detected in 23 bird species, including many exotic species, demonstrating its value in studies of WNV epizootiology. PMID:12194778

  7. West Nile Virus Documented in Indonesia from Acute Febrile Illness Specimens

    PubMed Central

    Myint, Khin Saw Aye; Kosasih, Herman; Artika, I. Made; Perkasa, Aditya; Puspita, Mita; Ma'roef, Chairin Nisa; Antonjaya, Ungke; Ledermann, Jeremy P.; Powers, Ann M.; Alisjahbana, Bachti

    2014-01-01

    We report the presence of West Nile virus in a cryopreserved, dengue-negative serum specimen collected from an acute fever case on Java in 2004–2005. The strain belongs to genotype lineage 2, which has recently been implicated in human outbreaks in Europe. PMID:24420775

  8. West Nile virus from blood donors, vertebrates, and mosquitoes, Puerto Rico, 2007.

    PubMed

    Hunsperger, Elizabeth A; McElroy, Kate L; Bessoff, Kovi; Colón, Candimar; Barrera, Roberto; Muñoz-Jordán, Jorge L

    2009-08-01

    West Nile virus (WNV) was isolated from a human blood donor, a dead falcon, and mosquitoes in Puerto Rico in 2007. Phylogenetic analysis of the 4 isolates suggests a recent introduction of lineage I WNV that is closely related to WNV currently circulating in North America. PMID:19751597

  9. Mutation in West Nile Virus Structural Protein prM during Human Infection

    PubMed Central

    Lanciotti, Robert S.; Hindiyeh, Musa; Keller, Nathan; Milo, Ron; Mayan, Shlomo; Mendelson, Ella

    2016-01-01

    A mutation leading to substitution of a key amino acid in the prM protein of West Nile virus (WNV) occurred during persistent infection of an immunocompetent patient. WNV RNA persisted in the patient’s urine and serum in the presence of low-level neutralizing antibodies. This case demonstrates active replication of WNV during persistent infection. PMID:27322782

  10. West Nile Virus: A Threat to North American Avian Species

    USGS Publications Warehouse

    McLean, R.G.

    2002-01-01

    The introduction and extensive expansion of WNV in the US in the last three years is having a dramatic impact on native wildlife. The disease continues to cause significant mortality in a variety of bird species throughout the eastern US, particularly in American crow and blue jay populations. As the virus expands to new habitats in the southern, midwestern and western states, new bird species will be at risk and different patterns of transmission will develop. In the western states, many additional species of Corvidae (crows, jays, ravens, magpies and nutcrackers) may be affected. Once it becomes well established in states with warm climates, like Florida where mosquitoes are active year round to sustain almost continuous transmission; these states could serve as annual sources of WNV for migratory birds to re-introduce the virus to northern states in the spring. The rapid increase in geographical distribution of WNV activity that has occurred throughout the eastern US and the rapid increase in the infection and mortality rates in birds during the last three years indicate the emergence of an epizootic disease of major importance to North American birds.

  11. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios.

    PubMed

    Hongoh, Valerie; Campagna, Céline; Panic, Mirna; Samuel, Onil; Gosselin, Pierre; Waaub, Jean-Philippe; Ravel, André; Samoura, Karim; Michel, Pascal

    2016-01-01

    The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual

  12. Assessing Interventions to Manage West Nile Virus Using Multi-Criteria Decision Analysis with Risk Scenarios

    PubMed Central

    Hongoh, Valerie; Campagna, Céline; Panic, Mirna; Samuel, Onil; Gosselin, Pierre; Waaub, Jean-Philippe; Ravel, André; Samoura, Karim; Michel, Pascal

    2016-01-01

    The recent emergence of West Nile virus (WNV) in North America highlights vulnerability to climate sensitive diseases and stresses the importance of preventive efforts to reduce their public health impact. Effective prevention involves reducing environmental risk of exposure and increasing adoption of preventive behaviours, both of which depend on knowledge and acceptance of such measures. When making operational decisions about disease prevention and control, public health must take into account a wide range of operational, environmental, social and economic considerations in addition to intervention effectiveness. The current study aimed to identify, assess and rank possible risk reduction measures taking into account a broad set of criteria and perspectives applicable to the management of WNV in Quebec under increasing transmission risk scenarios, some of which may be related to ongoing warming in higher-latitude regions. A participatory approach was used to collect information on categories of concern to relevant stakeholders with respect to WNV prevention and control. Multi-criteria decision analysis was applied to examine stakeholder perspectives and their effect on strategy rankings under increasing transmission risk scenarios. Twenty-three preventive interventions were retained for evaluation using eighteen criteria identified by stakeholders. Combined evaluations revealed that, at an individual-level, inspecting window screen integrity, wearing light colored, long clothing, eliminating peridomestic larval sites and reducing outdoor activities at peak times were top interventions under six WNV transmission scenarios. At a regional-level, the use of larvicides was a preferred strategy in five out of six scenarios, while use of adulticides and dissemination of sterile male mosquitoes were found to be among the least favoured interventions in almost all scenarios. Our findings suggest that continued public health efforts aimed at reinforcing individual

  13. Vector-Host Interactions Governing Epidemiology of West Nile Virus in Southern California

    PubMed Central

    Molaei, Goudarz; Cummings, Robert F.; Su, Tianyun; Armstrong, Philip M.; Williams, Greg A.; Cheng, Min-Lee; Webb, James P.; Andreadis, Theodore G.

    2010-01-01

    Southern California remains an important focus of West Nile virus (WNV) activity, with persistently elevated incidence after invasion by the virus in 2003 and subsequent amplification to epidemic levels in 2004. Eco-epidemiological studies of vectors-hosts-pathogen interactions are of paramount importance for better understanding of the transmission dynamics of WNV and other emerging mosquito-borne arboviruses. We investigated vector-host interactions and host-feeding patterns of 531 blood-engorged mosquitoes in four competent mosquito vectors by using a polymerase chain reaction (PCR) method targeting mitochondrial DNA to identify vertebrate hosts of blood-fed mosquitoes. Diagnostic testing by cell culture, real-time reverse transcriptase-PCR, and immunoassays were used to examine WNV infection in blood-fed mosquitoes, mosquito pools, dead birds, and mammals. Prevalence of WNV antibodies among wild birds was estimated by using a blocking enzyme-linked immunosorbent assay. Analyses of engorged Culex quinquefasciatus revealed that this mosquito species acquired 88.4% of the blood meals from avian and 11.6% from mammalian hosts, including humans. Similarly, Culex tarsalis fed 82% on birds and 18% on mammals. Culex erythrothorax fed on both birds (59%) and mammals (41%). In contrast, Culex stigmatosoma acquired all blood meals from avian hosts. House finches and a few other mostly passeriform birds served as the main hosts for the blood-seeking mosquitoes. Evidence of WNV infection was detected in mosquito pools, wild birds, dead birds, and mammals, including human fatalities during the study period. Our results emphasize the important role of house finches and several other passeriform birds in the maintenance and amplification of WNV in southern California, with Cx. quinquefasciatus acting as both the principal enzootic and “bridge vector” responsible for the spillover of WNV to humans. Other mosquito species, such as Cx. tarsalis and Cx. stigmatosoma, are

  14. Serologic evidence for West Nile virus infection in birds in Staten Island, New York, after an outbreak in 2000.

    PubMed

    Komar, N; Burns, J; Dean, C; Panella, N A; Dusza, S; Cherry, B

    2001-01-01

    After an outbreak of West Nile virus (WNV) infections in people, horses, and wildlife in Staten Island, NY, during the summer of 2000, we surveyed the bird population of the island for evidence of infection. Neutralizing antibodies were detected in 59 of 257 (23.0%) resident birds and none of 96 transient (migrating) birds sampled in early October. Species with the greatest seroprevalence were northern cardinal (Cardinalis cardinalis) (69.2%) and rock dove (Columba livia) (54.5%). House sparrows (Passer domesticus) and chickens (Gallus gallus) had lower than expected seroprevalences, 8.6% and 5.5%, respectively. The geographic distribution of seropositivity suggested focal transmission at several locations on the island. The concentration of seropositive birds among resident bird populations on Staten Island supports the concept that many birds survive WNV infection and that some of these play an important role in the WNV-bird-mosquito transmission cycle. PMID:12653147

  15. Five-year surveillance of West Nile and eastern equine encephalitis viruses in Southeastern Virginia.

    PubMed

    Loftin, Karin C; Diallo, Alpha A; Herbert, Marcia W; Phaltankar, Priyarshadan G; Yuan, Christine; Grefe, Norman; Flemming, Agnes; Foley, Kirby; Williams, Jason; Fisher, Sandra L; Elberfeld, Michael; Constantine, Juan; Burcham, Mitchell; Stallings, Valerie; Xia, Dongxiang

    2006-05-01

    To investigate the occurrence of West Nile virus (WNV) and Eastern equine encephalitis virus (EEE) in southeastern Virginia, the Bureau of Laboratories at the Norfolk Department of Public Health (NDPH) analyzed mosquito pools and the sera of sentinel chickens from the southeastern Virginia area each year from 2000 to 2004. Mosquito pool supernatants were screened for the presence of viral RNA by conventional reverse transcription polymerase chain reaction (RT-PCR) and Taqman RT-PCR with the i-Cycler. Mosquito pools were also tested for virus activity by Vero cell culture. The primary enzootic vector of WNV was Culex (Cx.) pipiens and that of EEE was Culiseta (Cs.) melanura. During the five-year surveillance period, the peak minimum infection rates (MIRs) of WNV and EEE in these mosquito species were 2.7 (2002) and 0.9 (2001), respectively. In 2003, the MIRs in Cs. melanura for WNV and EEE were 0.24 and 0.56, respectively; and the MIR for WNV in Cx. pipiens was 0.64. In 2004, Cs. melanura was less active in the WNV transmission cycle (MIR = 0.07) than was Cx. pipiens (MIR = 1.8), and Cs. melanura was the only vector for EEE (MIR = 0.37). The trend was for EEE activity to peak in July; WNV activity peaked in August. Sentinel-chicken sera were tested for IgM antibodies, and peak IgM seroconversions to these arboviruses were recorded in August 2003 for WNV and in July 2003 for EEE. In 2004, the highest IgM seroconversions to EEE occurred later in August. The overall trend of arbovirus activity was greater in 2003 than in 2004. PMID:16696451

  16. A mathematical model for the spread of west nile virus in migratory and resident birds.

    PubMed

    Bergsman, Louis D; Hyman, James M; Manore, Carrie A

    2016-04-01

    We develop a mathematical model for transmission of West Nile virus (WNV) that incorporates resident and migratory host avian populations and a mosquito vector population. We provide a detailed analysis of the model's basic reproductive number and demonstrate how the exposed infected, but not infectious, state for the bird population can be approximated by a reduced model. We use the model to investigate the interplay of WNV in both resident and migratory bird hosts. The resident host parameters correspond to the American Crow (Corvus brachyrhynchos), a competent host with a high death rate due to disease, and migratory host parameters to the American Robin (Turdus migratorius), a competent host with low WNV death rates. We find that yearly seasonal outbreaks depend primarily on the number of susceptible migrant birds entering the local population each season. We observe that the early growth rates of seasonal outbreaks is more influenced by the the migratory population than the resident bird population. This implies that although the death of highly competent resident birds, such as American Crows, are good indicators for the presence of the virus, these species have less impact on the basic reproductive number than the competent migratory birds with low death rates, such as the American Robins. The disease forecasts are most sensitive to the assumptions about the feeding preferences of North American mosquito vectors and the effect of the virus on the hosts. Increased research on the these factors would allow for better estimates of these important model parameters, which would improve the quality of future WNV forecasts. PMID:27105987

  17. Detection and sequencing of West Nile virus RNA from human urine and serum samples during the 2014 seasonal period.

    PubMed

    Nagy, Anna; Bán, Enikő; Nagy, Orsolya; Ferenczi, Emőke; Farkas, Ágnes; Bányai, Krisztián; Farkas, Szilvia; Takács, Mária

    2016-07-01

    West Nile virus, a widely distributed mosquito-borne flavivirus, is responsible for numerous animal and human infections in Europe, Africa and the Americas. In Hungary, the average number of human infections falls between 10 and 20 cases each year. The severity of clinically manifesting infections varies widely from the milder form of West Nile fever to West Nile neuroinvasive disease (WNND). In routine laboratory diagnosis of human West Nile virus infections, serological methods are mainly applied due to the limited duration of viremia. However, recent studies suggest that detection of West Nile virus RNA in urine samples may be useful as a molecular diagnostic test for these infections. The Hungarian National Reference Laboratory for Viral Zoonoses serologically confirmed eleven acute human infections during the 2014 seasonal period. In three patients with neurological symptoms, viral RNA was detected from both urine and serum specimens, albeit for a longer period and in higher copy numbers with urine. Phylogenetic analysis of the NS3 genomic region of three strains and the complete genome of one selected strain demonstrated that all three patients had lineage-2 West Nile virus infections. Our findings reaffirm the utility of viral RNA detection in urine as a molecular diagnostic procedure for diagnosis of West Nile virus infections. PMID:27038827

  18. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.

    PubMed

    Lazear, Helen M; Daniels, Brian P; Pinto, Amelia K; Huang, Albert C; Vick, Sarah C; Doyle, Sean E; Gale, Michael; Klein, Robyn S; Diamond, Michael S

    2015-04-22

    Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. PMID:25904743

  19. Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier

    PubMed Central

    Lazear, Helen M.; Daniels, Brian P.; Pinto, Amelia K.; Huang, Albert C.; Vick, Sarah C.; Doyle, Sean E.; Gale, Michael; Klein, Robyn S.; Diamond, Michael S.

    2015-01-01

    Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1−/− mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1−/− mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1−/− mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis– and signal transducer and activator of transcription 1 (STAT1)–independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. PMID:25904743

  20. Mosquito surveillance for West Nile virus in Connecticut, 2000: isolation from Culex pipiens, Cx. restuans, Cx. salinarius, and Culiseta melanura.

    PubMed Central

    Andreadis, T. G.; Anderson, J. F.; Vossbrinck, C. R.

    2001-01-01

    Fourteen isolations of West Nile (WN) virus were obtained from four mosquito species (Culex pipiens [5], Cx. restuans [4], Cx. salinarius [2], and Culiseta melanura [3]) in statewide surveillance conducted from June through October 2000. Most isolates were obtained from mosquitoes collected in densely populated residential locales in Fairfield and New Haven counties, where the highest rates of dead crow sightings were reported and where WN virus was detected in 1999. Minimum field infection rates per 1,000 mosquitoes ranged from 0.5 to 1.8 (county based) and from 1.3 to 76.9 (site specific). Cx. restuans appears to be important in initiating WN virus transmission among birds in early summer; Cx. pipiens appears to play a greater role in amplifying virus later in the season. Cs. melanura could be important in the circulation of WN virus among birds in sylvan environments; Cx. salinarius is a suspected vector of WN virus to humans and horses. PMID:11585530

  1. ZIKA VIRUS INFECTION; VERTICAL TRANSMISSION AND FOETAL CONGENITAL ANOMALIES.

    PubMed

    Abbasi, Aziz-un-Nisa

    2016-01-01

    Zika virus (ZIKV) is an arbovirus belonging to flaviviridae family that includes Dengue, West Nile, and Yellow Fever among others. Zika virus was first discovered in 1947 in Zika forest of Uganda. It is a vector borne disease, which has been sporadically reported mostly from Africa, Pacific islands and Southeast Asia since its discovery. ZIKV infection presents as a mild illness with symptoms lasting for several days to a week after the bite of an infected mosquito. Majority of the patients have low grade fever, rash, headaches, joints pain, myalgia, and flu like symptoms. Pregnant women are more vulnerable to ZIKV infection and serious congenital anomalies can occur in foetus through trans-placental transmission. The gestation at which infection is acquired is important. Zika virus infection acquired in early pregnancy poses greater risk. There is no evidence so far about transmission through breast milk. Foetal microcephaly, Gillian Barre syndrome and other neurological and autoimmune syndromes have been reported in areas where Zika outbreaks have occurred. As infection is usually very mild no specific treatment is required. Pregnant women may be advised to take rest, get plenty of fluids. For fever and pain they can take antipyretics like paracetamol. So far no specific drugs or vaccines are available against Zika Virus Infection so prevention is the mainstay against this diseases. As ZIKV infection is a vector borne disease, prevention can be a multi-pronged strategy. These entail vector control interventions, personal protection, environmental sanitation and health education among others. PMID:27323550

  2. Short report: Changes in West Nile virus seroprevalence and antibody titers among Wisconsin mesopredators 2003-2006

    USGS Publications Warehouse

    Docherty, D.E.; Samuel, M.D.; Egstad, K.F.; Griffin, K.M.; Nolden, C.A.; Karwal, L.; Ip, H.S.

    2009-01-01

    After the 2001 occurrence of West Nile virus (WNV) in Wisconsin (WI), we collected sera, during 2003-2006, from south-central WI mesopredators. We tested these sera to determine WNV antibody prevalence and geometric mean antibody titer (GMAT). Four-fold higher antibody prevalence and 2-fold higher GMAT in 2003-2004 indicated greater exposure of mesopredators to WNV during the apparent epizootic phase. The period 2005-2006 was likely the enzootic phase because WNV antibody prevalence fell to a level similar to other flaviviruses. Our results suggest that, in mesopredators, vector-borne transmission is the primary route of infection and WNV antibodies persist for < 1 year. Mesopredators may be sensitive indicators of West Nile virus spill-over into humans and horses. Mesopredator sero-surveys may complement dead crow surveillance by providing additional data for the timing of public health interventions. Research is needed to clarify the dynamics of WNV infection in these mammals and their role as potential WNV amplifiers. Copyright ?? 2009 by The American Society of Tropical Medicine and Hygiene.

  3. A Recombinant Influenza A Virus Expressing Domain III of West Nile Virus Induces Protective Immune Responses against Influenza and West Nile Virus

    PubMed Central

    Martina, Byron E. E.; van den Doel, Petra; Koraka, Penelope; van Amerongen, Geert; Spohn, Gunther; Haagmans, Bart L.; Provacia, Lisette B. V.; Osterhaus, Albert D. M. E.; Rimmelzwaan, Guus F.

    2011-01-01

    West Nile virus (WNV) continues to circulate in the USA and forms a threat to the rest of the Western hemisphere. Since methods for the treatment of WNV infections are not available, there is a need for the development of safe and effective vaccines. Here, we describe the construction of a recombinant influenza virus expressing domain III of the WNV glycoprotein E (Flu-NA-DIII) and its evaluation as a WNV vaccine candidate in a mouse model. FLU-NA-DIII-vaccinated mice were protected from severe body weight loss and mortality caused by WNV infection, whereas control mice succumbed to the infection. In addition, it was shown that one subcutaneous immunization with 105 TCID50 Flu-NA-DIII provided 100% protection against challenge. Adoptive transfer experiments demonstrated that protection was mediated by antibodies and CD4+T cells. Furthermore, mice vaccinated with FLU-NA-DIII developed protective influenza virus-specific antibody titers. It was concluded that this vector system might be an attractive platform for the development of bivalent WNV-influenza vaccines. PMID:21541326

  4. Reproductive biology and susceptibility of Florida Culex coronator to infection with West Nile virus.

    PubMed

    Alto, Barry W; Connelly, C Roxanne; O'Meara, George F; Hickman, Dustin; Karr, Nicholas

    2014-08-01

    Abstract Ornithophilic Culex species are considered the primary amplification vectors of West Nile virus (WNV) in bird hosts as well as vectors responsible for epidemic transmission. Culex coronator was first collected from Okaloosa, Santa Rosa, Walton, and Washington Counties in Florida in 2005 and has since spread throughout the state. The vector competence of Cx. coronator for WNV, known to be infected in nature, has not been assessed. Without this knowledge, we are unable to assess this species' potential as an enzootic and epidemic vector of WNV in Florida. In the current study, we investigate the reproductive biology and susceptibility to WNV infection, dissemination, and transmission by Cx. coronator. We show that Cx. coronator is capable of delaying oviposition for several weeks after blood feeding and that the number of eggs laid is greater for avian than mammalian hosts. Cx. coronator were highly susceptible to infection (∼80-100%) and dissemination (∼65-85% by 18 days since exposure) with lower rates of transmission (0-17% at 25°C and 28-67% at 28°C), suggesting that it is a competent vector of WNV under some conditions. The proportion of mosquitoes with disseminated infections related to the time since exposure and was higher at 28°C than at 25°C. The rapid and statewide distribution of Cx. coronator throughout Florida poses as a potential public health risk. This baseline knowledge is essential information for mosquito control and public health agencies to assess current and future disease risk to Southeastern United States. PMID:25072992

  5. Long-term neurological outcomes in West Nile virus-infected patients: an observational study.

    PubMed

    Weatherhead, Jill E; Miller, Vicki E; Garcia, Melissa N; Hasbun, Rodrigo; Salazar, Lucrecia; Dimachkie, Mazen M; Murray, Kristy O

    2015-05-01

    The Houston West Nile Cohort (HWNC) was founded in 2002 when West Nile virus (WNV) reached Houston, TX. The long-term outcomes following WNV infection are still mostly unknown, though neurological abnormalities up to 1 year postinfection have been documented. We report an observational study of neurological abnormalities at 1-3 and 8-11 years following WNV infection in the HWNC. We conducted standard neurological examinations at two separate time points to assess changes in neurological status over time. The majority of patients (86%, 30/35) with encephalitis had abnormal neurological exam findings at the time of the first assessment compared with uncomplicated fever (27%, 3/11) and meningitis (36%, 5/14) cases. At the time of the second assessment, 57% (4/7) of West Nile fever (WNF), 33% (2/6) of West Nile meningitis (WNM), and 36% (5/14) of West Nile encephalitis (WNE) had developed new neurological complications. The most common abnormalities noted were tandem gait, hearing loss, abnormal reflexes, and muscle weakness. Long-term neurological abnormalities were most commonly found in patients who experienced primary WNV encephalitis. New abnormalities may develop over time regardless of initial clinical infection. Future studies should aim to differentiate neurological consequences due to WNV neuroinvasive infection versus neurological decline related to comorbid conditions. PMID:25802426

  6. Exposure to West Nile Virus Increases Bacterial Diversity and Immune Gene Expression in Culex pipiens

    PubMed Central

    Zink, Steven D.; Van Slyke, Greta A.; Palumbo, Michael J.; Kramer, Laura D.; Ciota, Alexander T.

    2015-01-01

    Complex interactions between microbial residents of mosquitoes and arboviruses are likely to influence many aspects of vectorial capacity and could potentially have profound effects on patterns of arbovirus transmission. Such interactions have not been well studied for West Nile virus (WNV; Flaviviridae, Flavivirus) and Culex spp. mosquitoes. We utilized next-generation sequencing of 16S ribosomal RNA bacterial genes derived from Culex pipiens Linnaeus following WNV exposure and/or infection and compared bacterial populations and broad immune responses to unexposed mosquitoes. Our results demonstrate that WNV infection increases the diversity of bacterial populations and is associated with up-regulation of classical invertebrate immune pathways including RNA interference (RNAi), Toll, and Jak-STAT (Janus kinase-Signal Transducer and Activator of Transcription). In addition, WNV exposure alone, without the establishment of infection, results in similar alterations to microbial and immune signatures, although to a lesser extent. Multiple bacterial genera were found in greater abundance in WNV-exposed and/or infected mosquitoes, yet the most consistent and notable was the genus Serratia. PMID:26516902

  7. Occurrence of avian Plasmodium and West Nile virus in culex species in Wisconsin

    USGS Publications Warehouse

    Hughes, T.; Irwin, P.; Hofmeister, E.; Paskewitz, S.M.

    2010-01-01

    The occurrence of multiple pathogens in mosquitoes and birds could affect the dynamics of disease transmission. We collected adult Culex pipiens and Cx. restuans (Cx. pipiens/restuans hereafter) from sites in Wisconsin and tested them for West Nile virus (WNV) and for avian malaria (Plasmodium). Gravid Cx. pipiens/restuans were tested for WNV using a commercial immunoassay, the RAMP?? WNV test, and positive results were verified by reverse transcriptasepolymerase chain reaction. There were 2 WNV-positive pools of Cx. pipiens/restuans in 2006 and 1 in 2007. Using a bias-corrected maximum likelihood estimation, the WNV infection rate for Cx. pipiens/restuans was 5.48/1,000 mosquitoes in 2006 and 1.08/1,000 mosquitoes in 2007. Gravid Cx. pipiens or Cx. restuans were tested individually for avian Plasmodium by a restriction enzymebased assay. Twelve mosquitoes were positive for avian Plasmodium (10.0), 2 were positive for Haemoproteus, and 3 were positive for Leucocytozoon. There were 4 mixed infections, with mosquitoes positive for >1 of the hemosporidian parasites. This work documents a high rate of hemosporidian infection in Culex spp. and illustrates the potential for co-infections with other arboviruses in bird-feeding mosquitoes and their avian hosts. In addition, hemosporidian infection rates may be a useful tool for investigating the ecological dynamics of Culex/avian interactions. ?? 2010 by The American Mosquito Control Association, Inc.

  8. Early Warning System for West Nile Virus Risk Areas, California, USA

    PubMed Central

    Ahearn, Sean C.; McConchie, Alan; Glaser, Carol; Jean, Cynthia; Barker, Chris; Park, Bborie; Padgett, Kerry; Parker, Erin; Aquino, Ervic; Kramer, Vicki

    2011-01-01

    The Dynamic Continuous-Area Space-Time (DYCAST) system is a biologically based spatiotemporal model that uses public reports of dead birds to identify areas at high risk for West Nile virus (WNV) transmission to humans. In 2005, during a statewide epidemic of WNV (880 cases), the California Department of Public Health prospectively implemented DYCAST over 32,517 km2 in California. Daily risk maps were made available online and used by local agencies to target public education campaigns, surveillance, and mosquito control. DYCAST had 80.8% sensitivity and 90.6% specificity for predicting human cases, and κ analysis indicated moderate strength of chance-adjusted agreement for >4 weeks. High-risk grid cells (populations) were identified an average of 37.2 days before onset of human illness; relative risk for disease was >39× higher than for low-risk cells. Although prediction rates declined in subsequent years, results indicate DYCAST was a timely and effective early warning system during the severe 2005 epidemic. PMID:21801622

  9. Analysis of Culex and Aedes mosquitoes in southwestern Nigeria revealed no West Nile virus activity

    PubMed Central

    Sule, Waidi Folorunso; Oluwayelu, Daniel Oladimeji

    2016-01-01

    Introduction Amplification and transmission of West Nile virus (WNV) by mosquitoes are driven by presence and number of viraemic/susceptible avian hosts. Methods In order to predict risk of WNV infection to humans, we collected mosquitoes from horse stables in Lagos and Ibadan, southwestern Nigeria. The mosquitoes were sorted and tested in pools with real-time RT-PCR to detect WNV (or flavivirus) RNA using WNV-specific primers and probes, as well as, pan-flavivirus-specific primers in two-step real-time RT-PCR. Minimum infection rate (MIR) was used to estimate mosquito infection rate. Results Only two genera of mosquitoes were caught (Culex, 98.9% and Aedes, 1.0%) totalling 4,112 females. None of the 424 mosquito pools tested was positive for WNV RNA; consequently the MIR was zero. Sequencing and BLAST analysis of amplicons detected in pan-flavivirus primer-mediated RT-PCR gave a consensus sequence of 28S rRNA of Culex quinquefasciatus suggesting integration of flaviviral RNA into mosquito genome. Conclusion While the latter finding requires further investigation, we conclude there was little or no risk of human infection with WNV in the study areas during sampling. There was predominance of Culex mosquito, a competent WNV vector, around horse stables in the study areas. However, mosquito surveillance needs to continue for prompt detection of WNV activity in mosquitoes. PMID:27279943

  10. Experimental infection of cliff swallows (Petrochelidon pyrrhonota) with varying doses of West Nile virus

    USGS Publications Warehouse

    Oesterle, P.T.; Nemeth, N.M.; VanDalen, Kaci K.; Sullivan, H.; Bentler, K.T.; Young, G.R.; McLean, R.G.; Clark, L.; Smeraski, C.; Hall, J.S.

    2009-01-01

    Cliff swallows (Petrochelidon pyrrhonota) were inoculated with differing doses of West Nile virus (WNV) to evaluate their potential role as reservoir hosts in nature. Swallows often nest in large colonies in habitats and months associated with high mosquito abundance and early WNV transmission in North America. Additionally, cliff swallow diet consists of insects, including mosquitoes, leading to an additional potential route of WNV infection. The average peak viremia titer among infected cliff swallows was 106.3 plaque-forming units (PFU)/mL serum and the reservoir competence index was 0.34. There was no correlation between dose and probability of becoming infected or viremia peak and duration. Oral shedding was detected from 2 to 14 days post-inoculation with an average peak titer of 1044 PFU/swab. These results suggest that cliff swallows are competent reservoir hosts of WNV and therefore, they may play a role in early seasonal amplification and maintenance of WNV. Copyright ?? 2009 by The American Society of Tropical Medicine and Hygiene.