Science.gov

Sample records for nitrite reductase activities

  1. Nitrite Reductase Activity in Engineered Azurin Variants.

    PubMed

    Berry, Steven M; Strange, Jacob N; Bladholm, Erika L; Khatiwada, Balabhadra; Hedstrom, Christine G; Sauer, Alexandra M

    2016-05-01

    Nitrite reductase (NiR) activity was examined in a series of dicopper P.a. azurin variants in which a surface binding copper site was added through site-directed mutagenesis. Four variants were synthesized with copper binding motifs inspired by the catalytic type 2 copper binding sites found in the native noncoupled dinuclear copper enzymes nitrite reductase and peptidylglycine α-hydroxylating monooxygenase. The four azurin variants, denoted Az-NiR, Az-NiR3His, Az-PHM, and Az-PHM3His, maintained the azurin electron transfer copper center, with the second designed copper site located over 13 Å away and consisting of mutations Asn10His,Gln14Asp,Asn16His-azurin, Asn10His,Gln14His,Asn16His-azurin, Gln8Met,Gln14His,Asn16His-azurin, and Gln8His,Gln14His,Asn16His-azurin, respectively. UV-visible absorption spectroscopy, EPR spectroscopy, and electrochemistry of the sites demonstrate copper binding as well as interaction with small exogenous ligands. The nitrite reduction activity of the variants was determined, including the catalytic Michaelis-Menten parameters. The variants showed activity (0.34-0.59 min(-1)) that was slower than that of native NiRs but comparable to that of other model systems. There were small variations in activity of the four variants that correlated with the number of histidines in the added copper site. Catalysis was found to be reversible, with nitrite produced from NO. Reactions starting with reduced azurin variants demonstrated that electrons from both copper centers were used to reduce nitrite, although steady-state catalysis required the T2 copper center and did not require the T1 center. Finally, experiments separating rates of enzyme reduction from rates of reoxidation by nitrite demonstrated that the reaction with nitrite was rate limiting during catalysis. PMID:27055058

  2. The functional nitrite reductase activity of the heme-globins

    PubMed Central

    2008-01-01

    Hemoglobin and myoglobin are among the most extensively studied proteins, and nitrite is one of the most studied small molecules. Recently, multiple physiologic studies have surprisingly revealed that nitrite represents a biologic reservoir of NO that can regulate hypoxic vasodilation, cellular respiration, and signaling. These studies suggest a vital role for deoxyhemoglobin- and deoxymyoglobin-dependent nitrite reduction. Biophysical and chemical analysis of the nitrite-deoxyhemoglobin reaction has revealed unexpected chemistries between nitrite and deoxyhemoglobin that may contribute to and facilitate hypoxic NO generation and signaling. The first is that hemoglobin is an allosterically regulated nitrite reductase, such that oxygen binding increases the rate of nitrite conversion to NO, a process termed R-state catalysis. The second chemical property is oxidative denitrosylation, a process by which the NO formed in the deoxyhemoglobin-nitrite reaction that binds to other deoxyhemes can be released due to heme oxidation, releasing free NO. Third, the reaction undergoes a nitrite reductase/anhydrase redox cycle that catalyzes the anaerobic conversion of 2 molecules of nitrite into dinitrogen trioxide (N2O3), an uncharged molecule that may be exported from the erythrocyte. We will review these reactions in the biologic framework of hypoxic signaling in blood and the heart. PMID:18596228

  3. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    SciTech Connect

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also be used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.

  4. A dissimilatory nitrite reductase in Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Grant, M. A.; Hochstein, L. I.

    1984-01-01

    Paracoccus halodenitrificans produced a membrane-associated nitrite reductase. Spectrophotometric analysis showed it to be associated with a cd-cytochrome and located on the inner side of the cytoplasmic membrane. When supplied with nitrite, membrane preparations produced nitrous oxide and nitric oxide in different ratios depending on the electron donor employed. The nitrite reductase was maximally active at relatively low concentrations of sodium chloride and remained attached to the membranes at 100 mM sodium chloride.

  5. A genetic screen reveals a periplasmic copper chaperone required for nitrite reductase activity in pathogenic Neisseria.

    PubMed

    Jen, Freda E-C; Djoko, Karrera Y; Bent, Stephen J; Day, Christopher J; McEwan, Alastair G; Jennings, Michael P

    2015-09-01

    Under conditions of low oxygen availability, Neisseria meningitidis and Neisseria gonorrhoeae are able to respire via a partial denitrification pathway in which nitrite is converted to nitrous oxide. In this process, nitrite reductase (AniA), a copper (Cu)-containing protein converts nitrite to NO, and this product is converted to nitrous oxide by nitric oxide reductase (NorB). NorB also confers protection against toxic NO, and so we devised a conditional lethal screen, using a norB mutant, to identify mutants that were resistant to nitrite-dependent killing. After random-deletion mutagenesis of N. meningitidis, this genetic screen identified a gene encoding a Cu chaperone that is essential for AniA function, AccA. Purified AccA binds one Cu (I) ion and also possesses a second binding site for Cu (II). This novel periplasmic Cu chaperone (AccA) appears to be essential for provision of Cu ions to AniA of pathogenic Neisseria to generate an active nitrite reductase. Apart from the Neisseria genus, AccA is distributed across a wide range of environmental Proteobacteria species. PMID:26031293

  6. Regulating the nitrite reductase activity of myoglobin by redesigning the heme active center.

    PubMed

    Wu, Lei-Bin; Yuan, Hong; Gao, Shu-Qin; You, Yong; Nie, Chang-Ming; Wen, Ge-Bo; Lin, Ying-Wu; Tan, Xiangshi

    2016-07-01

    Heme proteins perform diverse functions in living systems, of which nitrite reductase (NIR) activity receives much attention recently. In this study, to better understand the structural elements responsible for the NIR activity, we used myoglobin (Mb) as a model heme protein and redesigned the heme active center, by introducing one or two distal histidines, and by creating a channel to the heme center with removal of the native distal His64 gate (His to Ala mutation). UV-Vis kinetic studies, combined with EPR studies, showed that a single distal histidine with a suitable position to the heme iron, i.e., His43, is crucial for nitrite (NO2(-)) to nitric oxide (NO) reduction. Moreover, creation of a water channel to the heme center significantly enhanced the NIR activity compared to the corresponding mutant without the channel. In addition, X-ray crystallographic studies of F43H/H64A Mb and its complexes with NO2(-) or NO revealed a unique hydrogen-bonding network in the heme active center, as well as unique substrate and product binding models, providing valuable structural information for the enhanced NIR activity. These findings enriched our understanding of the structure and NIR activity relationship of heme proteins. The approach of creating a channel in this study is also useful for rational design of other functional heme proteins. PMID:27108710

  7. Enhanced nitrite reductase activity associated with the haptoglobin complexed hemoglobin dimer: Functional and antioxidative implications

    PubMed Central

    Roche, Camille J.; Dantsker, David; Alayash, Abdu I.; Friedman, Joel M.

    2012-01-01

    The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb–Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb–Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb–Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb–Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation. PMID:22521791

  8. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity.

    PubMed

    Kumar, Nitin; Astegno, Alessandra; Chen, Jian; Giorgetti, Alejandro; Dominici, Paola

    2016-01-01

    It is well-established that plant hemoglobins (Hbs) are involved in nitric oxide (NO) metabolism via NO dioxygenase and/or nitrite reductase activity. The ferrous-deoxy Arabidopsis Hb1 and Hb2 (AHb1 and AHb2) have been shown to reduce nitrite to NO under hypoxia. Here, to test the hypothesis that a six- to five-coordinate heme iron transition might mediate the control of the nitrite reduction rate, we examined distal pocket mutants of AHb1 and AHb2 for nitrite reductase activity, NO production and spectroscopic features. Absorption spectra of AHbs distal histidine mutants showed that AHb1 mutant (H69L) is a stable pentacoordinate high-spin species in both ferrous and ferric states, whereas heme iron in AHb2 mutant (H66L) is hexacoordinated low-spin with Lys69 as the sixth ligand. The bimolecular rate constants for nitrite reduction to NO were 13.3 ± 0.40, 7.3 ± 0.5, 10.6 ± 0.8 and 171.90 ± 9.00 M(-1)·s(-1) for AHb1, AHb2, AHb1 H69L and AHb2 H66L, respectively, at pH 7.4 and 25 °C. Consistent with the reductase activity, the amount of NO detected by chemiluminescence was significantly higher in the AHb2 H66L mutant. Our data indicate that nitrite reductase activity is determined not only by heme coordination, but also by a unique distal heme pocket in each AHb. PMID:27136534

  9. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity

    PubMed Central

    Kumar, Nitin; Astegno, Alessandra; Chen, Jian; Giorgetti, Alejandro; Dominici, Paola

    2016-01-01

    It is well-established that plant hemoglobins (Hbs) are involved in nitric oxide (NO) metabolism via NO dioxygenase and/or nitrite reductase activity. The ferrous-deoxy Arabidopsis Hb1 and Hb2 (AHb1 and AHb2) have been shown to reduce nitrite to NO under hypoxia. Here, to test the hypothesis that a six- to five-coordinate heme iron transition might mediate the control of the nitrite reduction rate, we examined distal pocket mutants of AHb1 and AHb2 for nitrite reductase activity, NO production and spectroscopic features. Absorption spectra of AHbs distal histidine mutants showed that AHb1 mutant (H69L) is a stable pentacoordinate high-spin species in both ferrous and ferric states, whereas heme iron in AHb2 mutant (H66L) is hexacoordinated low-spin with Lys69 as the sixth ligand. The bimolecular rate constants for nitrite reduction to NO were 13.3 ± 0.40, 7.3 ± 0.5, 10.6 ± 0.8 and 171.90 ± 9.00 M−1·s−1 for AHb1, AHb2, AHb1 H69L and AHb2 H66L, respectively, at pH 7.4 and 25 °C. Consistent with the reductase activity, the amount of NO detected by chemiluminescence was significantly higher in the AHb2 H66L mutant. Our data indicate that nitrite reductase activity is determined not only by heme coordination, but also by a unique distal heme pocket in each AHb. PMID:27136534

  10. Nitrite-Reductase and Peroxynitrite Isomerization Activities of Methanosarcina acetivorans Protoglobin

    PubMed Central

    Ascenzi, Paolo; Leboffe, Loris; Pesce, Alessandra; Ciaccio, Chiara; Sbardella, Diego; Bolognesi, Martino; Coletta, Massimo

    2014-01-01

    Within the globin superfamily, protoglobins (Pgb) belong phylogenetically to the same cluster of two-domain globin-coupled sensors and single-domain sensor globins. Multiple functional roles have been postulated for Methanosarcina acetivorans Pgb (Ma-Pgb), since the detoxification of reactive nitrogen and oxygen species might co-exist with enzymatic activity(ies) to facilitate the conversion of CO to methane. Here, the nitrite-reductase and peroxynitrite isomerization activities of the CysE20Ser mutant of Ma-Pgb (Ma-Pgb*) are reported and analyzed in parallel with those of related heme-proteins. Kinetics of nitrite-reductase activity of ferrous Ma-Pgb* (Ma-Pgb*-Fe(II)) is biphasic and values of the second-order rate constant for the reduction of NO2– to NO and the concomitant formation of nitrosylated Ma-Pgb*-Fe(II) (Ma-Pgb*-Fe(II)-NO) are kapp1 = 9.6±0.2 M–1 s–1 and kapp2 = 1.2±0.1 M–1 s–1 (at pH 7.4 and 20°C). The kapp1 and kapp2 values increase by about one order of magnitude for each pH unit decrease, between pH 8.3 and 6.2, indicating that the reaction requires one proton. On the other hand, kinetics of peroxynitrite isomerization catalyzed by ferric Ma-Pgb* (Ma-Pgb*-Fe(III)) is monophasic and values of the second order rate constant for peroxynitrite isomerization by Ma-Pgb*-Fe(III) and of the first order rate constant for the spontaneous conversion of peroxynitrite to nitrate are happ = 3.8×104 M–1 s–1 and h0 = 2.8×10–1 s–1 (at pH 7.4 and 20°C). The pH-dependence of hon and h0 values reflects the acid-base equilibrium of peroxynitrite (pKa = 6.7 and 6.9, respectively; at 20°C), indicating that HOONO is the species that reacts preferentially with the heme-Fe(III) atom. These results highlight the potential role of Pgbs in the biosynthesis and scavenging of reactive nitrogen and oxygen species. PMID:24827820

  11. The nitrite reductase activity of horse heart carboxymethylated-cytochrome c is modulated by cardiolipin.

    PubMed

    Ascenzi, Paolo; Sbardella, Diego; Sinibaldi, Federica; Santucci, Roberto; Coletta, Massimo

    2016-06-01

    Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 (-)-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10(-2) M(-1) s(-1); at pH 7.4], whereas the value of k on for NO2 (-) reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M(-1) s(-1) (at pH 7.4). CL facilitates the NO2 (-)-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 (-)-mediated conversion of CL-CM-cytc-Fe(II) to CL-CM-cytc-Fe(II)-NO (5.6 ± 0.6 M(-1) s(-1); at pH 7.4) being slightly higher than that for the NO2 (-)-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO (2.6 ± 0.3 M(-1) s(-1); at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10(-6) M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are -1.05 ± 0.07 and -1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH(-). These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL-CM-cytc. PMID:27010463

  12. Solubilization and Resolution of the Membrane-Bound Nitrite Reductase from Paracoccus Halodenitrificans into Nitrite and Nitric Oxide Reductases

    NASA Technical Reports Server (NTRS)

    Grant, Michael A.; Cronin, Sonja E.; Hochstein, Lawrence I.

    1984-01-01

    Membranes prepared from Paracoccus halodenitrificans reduced nitrite or nitric oxide to nitrous oxide. Extraction of these membranes with the detergent CHAPSO [3-(3-Chlolamidoporopyldimethylammonio)-1-(2- hydroxy-1-propanesulfonate)], followed by ammonium sulfate fractionation of the solubilized proteins, resulted in the separation of nitrite and nitric oxide reductase activities. The fraction containing nitrite reductase activity spectrally resembled a cd-type cytochrome. Several cytochromes were detected in the nitric oxide reductase fraction. Which, if any, of these cytochromes is associated with the reduction of nitric oxide is not clear at this time.

  13. Purification and characterization of assimilatory nitrite reductase from Candida utilis.

    PubMed Central

    Sengupta, S; Shaila, M S; Rao, G R

    1996-01-01

    Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems. PMID:8694757

  14. Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils

    PubMed Central

    Tegoni, Matteo; Yu, Fangting; Bersellini, Manuela; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2012-01-01

    One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/II)(TRIL23H)3+/2+, where Cu(I/II) is embeded in α-helical coiled coils, as a model for the CuT2 center of copper nitrite reductase. In Cu(I/II)(TRIL23H)3+/2+, Cu(I) is coordinated to three histidines, as indicated by X-ray absorption data, and Cu(II) to three histidines and one or two water molecules. Both ions are bound in the interior of the three-stranded coiled coils with affinities that range from nano- to micromolar [Cu(II)], and picomolar [Cu(I)]. The Cu(His)3 active site is characterized in both oxidation states, revealing similarities to the CuT2 site in the natural enzyme. The species Cu(II)(TRIL23H)32+ in aqueous solution can be reduced to Cu(I)(TRIL23H)3+ using ascorbate, and reoxidized by nitrite with production of nitric oxide. At pH 5.8, with an excess of both the reductant (ascorbate) and the substrate (nitrite), the copper peptide Cu(II)(TRIL23H)32+ acts as a catalyst for the reduction of nitrite with at least five turnovers and no loss of catalytic efficiency after 3.7 h. The catalytic activity, which is first order in the concentration of the peptide, also shows a pH dependence that is described and discussed. PMID:23236170

  15. Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils.

    PubMed

    Tegoni, Matteo; Yu, Fangting; Bersellini, Manuela; Penner-Hahn, James E; Pecoraro, Vincent L

    2012-12-26

    One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/II)(TRIL23H)(3)(+/2+), where Cu(I/II) is embeded in α-helical coiled coils, as a model for the Cu(T2) center of copper nitrite reductase. In Cu(I/II)(TRIL23H)(3)(+/2+), Cu(I) is coordinated to three histidines, as indicated by X-ray absorption data, and Cu(II) to three histidines and one or two water molecules. Both ions are bound in the interior of the three-stranded coiled coils with affinities that range from nano- to micromolar [Cu(II)], and picomolar [Cu(I)]. The Cu(His)(3) active site is characterized in both oxidation states, revealing similarities to the Cu(T2) site in the natural enzyme. The species Cu(II)(TRIL23H)(3)(2+) in aqueous solution can be reduced to Cu(I)(TRIL23H)(3)(+) using ascorbate, and reoxidized by nitrite with production of nitric oxide. At pH 5.8, with an excess of both the reductant (ascorbate) and the substrate (nitrite), the copper peptide Cu(II)(TRIL23H)(3)(2+) acts as a catalyst for the reduction of nitrite with at least five turnovers and no loss of catalytic efficiency after 3.7 h. The catalytic activity, which is first order in the concentration of the peptide, also shows a pH dependence that is described and discussed. PMID:23236170

  16. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice

    PubMed Central

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications. PMID:26446494

  17. Boletus edulis Nitrite Reductase Reduces Nitrite Content of Pickles and Mitigates Intoxication in Nitrite-intoxicated Mice.

    PubMed

    Zhang, Weiwei; Tian, Guoting; Feng, Shanshan; Wong, Jack Ho; Zhao, Yongchang; Chen, Xiao; Wang, Hexiang; Ng, Tzi Bun

    2015-01-01

    Pickles are popular in China and exhibits health-promoting effects. However, nitrite produced during fermentation adversely affects health due to formation of methemoglobin and conversion to carcinogenic nitrosamine. Fruiting bodies of the mushroom Boletus edulis were capable of inhibiting nitrite production during pickle fermentation. A 90-kDa nitrite reductase (NiR), demonstrating peptide sequence homology to fungal nitrite reductase, was isolated from B. edulis fruiting bodies. The optimum temperature and pH of the enzyme was 45 °C and 6.8, respectively. B. edulis NiR was capable of prolonging the lifespan of nitrite-intoxicated mice, indicating that it had the action of an antidote. The enzyme could also eliminate nitrite from blood after intragastric administration of sodium nitrite, and after packaging into capsule, this nitrite-eliminating activity could persist for at least 120 minutes thus avoiding immediate gastric degradation. B. edulis NiR represents the first nitrite reductase purified from mushrooms and may facilitate subsequent applications. PMID:26446494

  18. De novo designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities

    PubMed Central

    Yu, Fangting; Penner-Hahn, James E.; Pecoraro, Vincent L.

    2014-01-01

    Enzymatic reactions involving redox processes are highly sensitive to the local electrostatic environment. Despite considerable effort, the complex interactions between different influential factors in native proteins impede progress towards complete understanding of the structure-function relationship. Of particular interest is the type 2 copper center Cu(His)3, which may act as an electron transfer center in peptidylglycine α-hydroxylating monooxygenase (PHM) or a catalytic center in copper nitrite reductase (CuNiR). A de novo design strategy is used to probe the effect of modifying charged amino acid residues around, but not directly bound to, a Cu(His)3 center embedded in three-stranded coiled coils (TRI-H)3 [TRI-H = Ac-G WKALEEK LKALEEK LKALEEK HKALEEK G-NH2]. Specifically, the peptide TRI-EH [TRI-EH = TRI-HK22E] alters an important lysine to glutamate just above the copper binding center. With a series of TRI-EH peptides mutated below the metal center, we use a variety of spectroscopies (EPR, UV-Vis, XAS) to show a direct impact on the protonation equilibria, copper binding affinities, reduction potentials and nitrite reductase activities of these copper-peptide complexes. The potentials at a specific pH vary by 100 mV and nitrite reductase activity ranges over a factor of four in rates. We also observe that affinities, potentials and catalytic activities are strongly influenced by pH conditions (pH 5.8 ~ 7.4). In general, Cu(II) affinities for the peptides are diminished at low pH values. The interplay between these factors can lead to a 200 mV shift in reduction potentials across these peptides, which is determined by the pH-dependent affinities of copper in both oxidation states. This study illustrates the strength of de novo protein design in elucidating the influence of ionizable residues on a particular redox system, an important step towards understanding the factors that govern the properties of this metalloenzyme with a goal of eventually improving

  19. Nitrate reductase, nitrite reductase, glutamine synthetase, and glutamate synthase expression and activity in response to different nitrogen sources in nitrogen-starved wheat seedlings.

    PubMed

    Balotf, Sadegh; Kavoosi, Gholamreza; Kholdebarin, Bahman

    2016-03-01

    The objective of this study was to examine the expression and activity of nitrate reductase (NR, EC 1.7.1.1), nitrite reductase (NiR, EC 1.7.2.2), glutamine synthetase (GS, EC 6.3.1.2), and glutamate synthase (GOGAT, EC 1.4.7.1) in response to potassium nitrate, ammonium chloride, and ammonium nitrate in nitrogen-starved wheat seedlings. Plants were grown in standard nutrient solution for 17 days and then subjected to nitrogen starvation for 7 days. The starved plants were supplied with potassium nitrate ammonium nitrate and ammonium chloride (50 mM) for 4 days and the leaves were harvested. The relative expression of NR, NiR, GS, and GOGAT as well as the enzyme activities were investigated. Nitrogen starvation caused a significant decrease both in transcript levels and in NR, NiR, GS, and GOGAT activities. Potassium nitrate and ammonium nitrate treatments restored NR, NiR, GS, and GOGAT expressions and activities. Ammonium chloride increased only the expressions and activities of GS and GOGAT in a dose-dependent manner. The results of our study highlight the differential effects between the type and the amount of nitrogen salts on NR, NiR, GS, and GOGAT activities in wheat seedlings while potassium nitrate being more effective. PMID:25676153

  20. Role of nitrite in the induction of nitrate reductase activity in barley leaves

    SciTech Connect

    Aslam, M.; Huffaker, R.C.

    1986-04-01

    High levels of nitrate reductase activity (NRA) were induced in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings when supplied with NO/sub 2//sup -/ in the induction solutions. At similar N flux, the level of the enzyme activity induced by NO/sub 2//sup -/ was about one-half of that induced by NO/sub 3//sup -/. Significant levels of NO/sub 3//sup -/ accumulated in NO/sub 2//sup -/-fed leaves. Traces of NO/sub 3//sup -/ (0.6%) were detected in solutions of reagent grade KNO/sub 2/. However, the amount of NO/sub 3//sup -/ absorbed from the NO/sub 2//sup -/ solutions was only one-tenth of that accumulated in the leaves during the induction period, showing the actual conversion of NO/sub 2//sup -/ to NO/sub 3//sup -/ within the leaf. When the NO/sub 3//sup -/ concentrations in the NO/sub 2//sup -/-fed leaves were plotted against NRA, a highly positive correlation was obtained. The results suggest that NO/sub 2//sup -/ induces NRA indirectly after being oxidized to NO/sub 3//sup -/ within the leaf.

  1. Effects of Nitrite, Chlorate, and Chlorite on Nitrate Uptake and Nitrate Reductase Activity 1

    PubMed Central

    Siddiqi, M. Yaeesh; King, Bryan J.; Glass, Anthony D. M.

    1992-01-01

    Effects of NO2−, ClO3−, and ClO2− on the induction of nitrate transport and nitrate reductase activity (NRA) as well as their effects on NO3− influx into roots of intact barley (Hordeum vulgare cv Klondike) seedlings were investigated. A 24-h pretreatment with 0.1 mol m−3 NO2− fully induced NO3− transport but failed to induce NRA. Similar pretreatments with ClO3− and ClO2− induced neither NO3− transport nor NRA. Net ClO3− uptake was induced by NO3− but not by ClO3− itself, indicating that NO3− and ClO3− transport occur via the NO3− carrier. At the uptake step, NO2− and ClO2− strongly inhibited NO3− influx; the former exhibited classical competitive kinetics, whereas the latter exhibited complex mixed-type kinetics. ClO3− proved to be a weak inhibitor of NO3− influx (Ki = 16 mol m−3) in a noncompetitive manner. The implications of these findings are discussed in the context of the suitability of these NO3− analogs as screening agents for the isolation of mutants defective in NO3− transport. PMID:16653041

  2. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease.

    PubMed

    Castiglione, Nicoletta; Rinaldo, Serena; Giardina, Giorgio; Stelitano, Valentina; Cutruzzolà, Francesca

    2012-08-15

    Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis. PMID:22304560

  3. Community structures and activity of denitrifying microbes in a forested catchment in central Japan: survey using nitrite reductase genes

    NASA Astrophysics Data System (ADS)

    Ohte, N.; Aoki, M.; Katsuyama, C.; Suwa, Y.; Tange, T.

    2012-12-01

    To elucidate the mechanisms of denitrification processes in the forested catchment, microbial ecological approaches have been applied in an experimental watershed that has previously investigated its hydrological processes. The study catchment is located in the Chiba prefecture in central Japan under the temperate Asian monsoon climate. Potential activities of denitrification of soil samples were measured by incubation experiments under anoxic condition associated with Na15NO3 addition. Existence and variety of microbes having nitrite reductase genes were investigated by PCR amplification, cloning and sequencings of nirK and nirS fragments after DNA extraction. Contrary to our early expectation that the potential denitrification activity was higher at deeper soil horizon with consistent groundwater residence than that in the surface soil, denitrification potential was higher in shallower soil horizons than deeper soils. This suggested that the deficiency of NO3- as a respiratory substrate for denitrifier occurred in deeper soils especially in the summer. However, high denitrification activity and presence of microbes having nirK and nirS in surface soils usually under aerobic condition was explainable by the fact that the majority of denitrifying bacteria have been recognized as a facultative anaerobic bacterium. This also suggests the possibility of that denitrification occurs even in the surface soils if the wet condition is provided by rainwater during and after a storm event. Community structures of microbes having nirK were different between near surface and deeper soil horizons, and ones having nirS was different between saturated zone (under groundwater table) and unsaturated soil horizons. These imply that microbial communities with nisK are sensitive to the concentration of soil organic matters and ones with nirS is sensitive to soil moisture contents.

  4. Nitrate metabolism in tobacco leaves overexpressing Arabidopsis nitrite reductase.

    PubMed

    Davenport, Susie; Le Lay, Pascaline; Sanchez-Tamburrrino, Juan Pablo

    2015-12-01

    Primary nitrogen assimilation in plants includes the reduction of nitrite to ammonium in the chloroplasts by the enzyme nitrite reductase (NiR EC:1.7.7.1) or in the plastids of non-photosynthetic organs. Here we report on a study overexpressing the Arabidopsis thaliana NiR (AtNiR) gene in tobacco plants under the control of a constitutive promoter (CERV - Carnation Etched Ring Virus). The aim was to overexpress AtNiR in an attempt to alter the level of residual nitrite in the leaf which can act as precursor to the formation of nitrosamines. The impact of increasing the activity of AtNiR produced an increase in leaf protein and a stay-green phenotype in the primary transformed AtNiR population. Investigation of the T1 homozygous population demonstrated elevated nitrate reductase (NR) activity, reductions in leaf nitrite and nitrate and the amino acids proline, glutamine and glutamate. Chlorophyl content of the transgenic lines was increased, as evidenced by the stay-green phenotype. This reveals the importance of NiR in primary nitrogen assimilation and how modification of this key enzyme affects both the nitrogen and carbon metabolism of tobacco plants. PMID:26447683

  5. Nitrite Reductase and Nitric-oxide Synthase Activity of the Mitochondrial Molybdopterin Enzymes mARC1 and mARC2*

    PubMed Central

    Sparacino-Watkins, Courtney E.; Tejero, Jesús; Sun, Bin; Gauthier, Marc C.; Thomas, John; Ragireddy, Venkata; Merchant, Bonnie A.; Wang, Jun; Azarov, Ivan; Basu, Partha; Gladwin, Mark T.

    2014-01-01

    Mitochondrial amidoxime reducing component (mARC) proteins are molybdopterin-containing enzymes of unclear physiological function. Both human isoforms mARC-1 and mARC-2 are able to catalyze the reduction of nitrite when they are in the reduced form. Moreover, our results indicate that mARC can generate nitric oxide (NO) from nitrite when forming an electron transfer chain with NADH, cytochrome b5, and NADH-dependent cytochrome b5 reductase. The rate of NO formation increases almost 3-fold when pH was lowered from 7.5 to 6.5. To determine if nitrite reduction is catalyzed by molybdenum in the active site of mARC-1, we mutated the putative active site cysteine residue (Cys-273), known to coordinate molybdenum binding. NO formation was abolished by the C273A mutation in mARC-1. Supplementation of transformed Escherichia coli with tungsten facilitated the replacement of molybdenum in recombinant mARC-1 and abolished NO formation. Therefore, we conclude that human mARC-1 and mARC-2 are capable of catalyzing reduction of nitrite to NO through reaction with its molybdenum cofactor. Finally, expression of mARC-1 in HEK cells using a lentivirus vector was used to confirm cellular nitrite reduction to NO. A comparison of NO formation profiles between mARC and xanthine oxidase reveals similar Kcat and Vmax values but more sustained NO formation from mARC, possibly because it is not vulnerable to autoinhibition via molybdenum desulfuration. The reduction of nitrite by mARC in the mitochondria may represent a new signaling pathway for NADH-dependent hypoxic NO production. PMID:24500710

  6. Cardiac contractility in Antarctic teleost is modulated by nitrite through xanthine oxidase and cytochrome p-450 nitrite reductase.

    PubMed

    Garofalo, Filippo; Amelio, Daniela; Gattuso, Alfonsina; Cerra, Maria Carmela; Pellegrino, Daniela

    2015-09-15

    In mammalian and non-mammalian vertebrates, nitrite anion, the largest pool of intravascular and tissue nitric oxide storage, represents a key player of many biological processes, including cardiac modulation. As shown by our studies on Antarctic teleosts, nitrite-dependent cardiac regulation is of great relevance also in cold-blooded vertebrates. This study analysed the influence elicited by nitrite on the performance of the perfused beating heart of two Antarctic stenotherm teleosts, the haemoglobinless Chionodraco hamatus (icefish) and the red-blooded Trematomus bernacchii. Since haemoglobin is crucial in nitric oxide homeostasis, the icefish, a naturally occurring genetic knockout for this protein, provides exclusive opportunities to investigate nitric oxide/nitrite signaling. In vivo, nitrite conversion to nitric oxide requires the nitrite reductase activity of xanthine oxidase and cytochrome P-450, thus the involvement of these enzymes was also evaluated. We showed that, in C. hamatus and T. bernacchii, nitrite influenced cardiac performance by inducing a concentration-dependent positive inotropic effect which was unaffected by nitric oxide scavenging by PTIO in C. hamatus, while it was abolished in T. bernacchii. Specific inhibition of xanthine oxidase and cytochrome P-450 revealed, in the two teleosts, that the nitrite-dependent inotropism required the nitrite reductase activity of both enzymes. We also found that xanthine oxidase is more expressed in C. hamatus than in T. bernacchii, while the opposite was observed concerning cytochrome P-450. Results suggested that in the heart of C. hamatus and T. bernacchii, nitrite is an integral physiological source of nitric oxide with important signaling properties, which require the nitrite reductase activity of xanthine oxidase and cytochrome P-450. PMID:26045289

  7. Biochemical predetermination of the NO synthase and nitrite reductase components of the nitric oxide cycle.

    PubMed

    Reutov, V P

    1999-05-01

    This review presents some aspects of a concept of cellular evolution bearing a relationship to nitrate--nitrite respiration, the endosymbiosis theory, and the origin of NO synthase and nitrite reductase activity in heme-containing proteins. Analysis of structural and functional unity of the NO synthase and nitrite reductase systems suggests that these systems did not arise without any relation to evolutionarily ancient energetic systems of cells. The use of symmetry principles reveals commonalities among many electron transport chains which in the language of physics is called "invariance". This work also comparatively analyzes the nitric oxide cycle and the known nitrogen cycle. The ideas about evolution of the NO synthase and nitrite reductase systems developed here are clearly compatible with the endosymbiotic theory and the hypothesis that nitrate--nitrite respiration was a precursor of oxygen-dependent respiration. PMID:10381613

  8. The isolation of a hexaheme cytochrome from Desulfovibrio desulfuricans and its identification as a new type of nitrite reductase

    SciTech Connect

    Liu, M.-C.; Peck, H.D., Jr.

    1981-12-01

    Desulfovibrio desulfuricans (ATCC 27774), a strictly anaerobic sulfate-reducing bacteria, is able to perform anaerobic nitrate respiration in which nitrate is first reduced to nitrite by the action of nitrate reductase, and nitrite reductase then catalyzes the six-electron reduction of nitrite to ammonia. The nitrite reductase was found to be a membrane-bound enzyme and has been purified to electrophoretic homogeneity. The purified enzyme has a minimal M/sub r/=66,000 as judged by sodium dodecyl sulfate gel electrophoresis and contains 6 c-type heme groups/molecule. Pure nitrite reductase exhibits a typical c-type cytochrome absorption spectrum with reduced..cap alpha..-band at 552.5 nm. NADH and NADPH do not function as direct electron donors for the nitrite reductase. Desulfovibrio vulgaris hydrogenase,however, is able to transfer electrons from H/sub 2/ to the nitrite reductase using FAD as the electron transfer mediator. The dithionite-reduced nitrite reductase was demonstrated to be auto-oxidizable even in the presence of potassium cyanide. On addition of nitrite, the dithionite-reduced enzyme is re-oxidized immediately. Hydroxylamine, however, can only partially reoxidize the reduced enzyme. Ascorbate reduces the enzyme to a limited extent and the partially reduced enzyme is neither auto-oxidizable by nitrite or hydroxylamine. Purified nitrite reductase has a pH optimum in the range of 8.0-9.5 and optimal activity at 57/sup o/C. Purified nitrite reductase also has hydroxylamine reductase activity, and the K/sub m/ for nitrite was determined to be 1.14 mM.

  9. Nitrite controls the release of nitric oxide in Pseudomonas aeruginosa cd{sub 1} nitrite reductase

    SciTech Connect

    Rinaldo, Serena; Brunori, Maurizio; Cutruzzola, Francesca

    2007-11-23

    Nitrite reductase (cd{sub 1}NIR) from Pseudomonas aeruginosa, which catalyses the reduction of nitrite to nitric oxide (NO), contains a c-heme as the electron acceptor and a d{sub 1}-heme where catalysis occurs. Reduction involves binding of nitrite to the reduced d{sub 1}-heme, followed by dehydration to yield NO; release of NO and re-reduction of the enzyme close the cycle. Since NO is a powerful inhibitor of ferrous hemeproteins, enzymatic turnover demands the release of NO. We recently discovered that NO dissociation from the ferrous d{sub 1}-heme is fast, showing that cd{sub 1}NIR behaves differently from other hemeproteins. Here we demonstrate for the first time that the physiological substrate nitrite displaces NO from the ferrous enzyme, which enters a new catalytic cycle; this reaction depends on the conserved His369 whose role in substrate stabilization is crucial for catalysis. Thus we suggest that also in vivo the activity of cd{sub 1}NIR is controlled by nitrite.

  10. Direct electrochemistry of Shewanella oneidensis cytochrome c nitrite reductase: evidence for interactions across the dimeric interface

    PubMed Central

    Judd, Evan T.; Youngblut, Matthew; Pacheco, A. Andrew; Elliott, Sean J.

    2013-01-01

    Shewanella oneidensis cytochrome c nitrite reductase (soNrfA), a dimeric enzyme that houses five c-type hemes per protomer, carries out the six-electron reduction of nitrite and the two-electron reduction of hydroxylamine. Protein film voltammetry (PFV) has been used to study the cytochrome c nitrite reductase from Escherichia coli (ecNrfA) previously, revealing catalytic reduction of both nitrite and hydroxylamine substrates by ecNrfA adsorbed to a graphite electrode that is characterized by ‘boosts’ and attenuations in activity depending on the applied potential. Here, we use PFV to investigate the catalytic properties of soNrfA during both nitrite and hydroxylamine turnover and compare those properties to ecNrfA. Distinct differences in both the electrochemical and kinetic characteristics of soNrfA are observed, e.g., all detected electron transfer steps are one-electron in nature, contrary to what has been observed in ecNrfA (Angove, H. C., Cole, J. A., Richardson, D. J., and Butt, J. N. (2002) Protein film voltammetry reveals distinctive fingerprints of nitrite and hydroxylamine reduction by a cytochrome C nitrite reductase, J Biol Chem 277, 23374-23381). Additionally, we find evidence of substrate inhibition during nitrite turnover and negative cooperativity during hydroxylamine turnover, neither of which have previously been observed in any cytochrome c nitrite reductase. Collectively these data provide evidence that during catalysis, potential pathways of communication exist between the individual soNrfA monomers comprising the native homodimer. PMID:23210513

  11. Expression and purification of spinach nitrite reductase in E. coli

    SciTech Connect

    Bellissimo, D.; Privalle, L. )

    1991-03-11

    The study of structure-function relationships in nitrite reductase (NiR) by site-directed mutagenesis requires an expression system from which suitable quantities of active enzyme can be purified. Spinach NiR cDNA was cloned into pUC18 and expressed in E.coli JM109 as a beta-galactosidase fusion protein. The IPTG-induced fusion protein contains five additional amino acids at the N-terminus. The expressed NiR in aerobic cultures was mostly insoluble and inactive indicating the presence of inclusion bodies. By altering growth conditions, active NiR could represent 0.5-1.0% of the total E.coli protein, Effects of the addition of delta-aminolevulinic acid, a heme precursor, and anaerobic growth were also examined. Spinach NiR was purified approximately 200 fold to homogeneity. When subjected to electrophoresis on SDS polyacrylamide gels, the NiR migrated as a single band with similar mobility to pure spinach enzyme. The expressed enzyme also reacted with rabbit anti-spinach NiR antibody as visualized by Western blot analysis. The absorption spectrum of the E.coli-expressed enzyme was identical to spinach enzyme with a Soret and alpha band a 386 and 573 nm, respectively, and an A{sub 278}/A{sub 386} = 1.9. The addition of nitrite produced the characteristic shifts in the spectrum. The E. coli-expressed NiR catalyzed the methylviologen-dependent reduction of nitrite. The specific activity was 100 U/mg. The K{sub m} determined for nitrite was 0.3 mM which is in agreement with values reported for the enzyme. These results indicate that the E.coli-expressed NiR is fully comparable to spinach NiR in purity, catalytic activity and physical state. Site-directed mutants have been made using PCR to examine structure-function relationships in this enzyme.

  12. Quantum mechanical interpretation of nitrite reduction by cytochrome cd1 nitrite reductase from Paracoccus pantotrophus.

    PubMed

    Ranghino, G; Scorza, E; Sjögren, T; Williams, P A; Ricci, M; Hajdu, J

    2000-09-12

    The reduction of nitrite to nitric oxide in respiratory denitrification is catalyzed by a cytochrome cd(1) nitrite reductase in Paracoccus pantotrophus (formerly known as Thiosphaera pantotropha LMD 92.63). High-resolution structures are available for the fully oxidized [Fülöp, V., Moir, J. W., Ferguson, S. J., and Hajdu, J. (1995) Cell 81, 369-377; Baker, S. C., Saunders, N. F., Willis, A. C., Ferguson, S. J., Hajdu, J., and Fülöp, V. (1997) J. Mol. Biol. 269, 440-455] and fully reduced forms of this enzyme, as well as for various intermediates in its catalytic cycle [Williams, P. A., Fülöp, V., Garman, E. F., Saunders, N. F., Ferguson, S. J., and Hajdu, J. (1997) Nature 389, 406-412]. On the basis of these structures, quantum mechanical techniques (QM), including density functional methods (DFT), were combined with simulated annealing (SA) and molecular mechanics techniques (MM) to calculate the electronic distribution of molecular orbitals in the active site during catalysis. The results show likely trajectories for electrons, protons, substrates, and products in the process of nitrite reduction, and offer an interpretation of the reaction mechanism. The calculations indicate that the redox state of the d(1) heme and charges on two histidines in the active site orchestrate catalysis locally. Binding of nitrite to the reduced iron is followed by proton transfer from His345 and His388 to one of the oxygens of nitrite, creating a water molecule and an [Fe(II)-NO(+)] complex. Valence isomerization within this complex gives [Fe(III)-NO]. The release of NO from the ferric iron is influenced by the protonation state of His345 and His388, and by the orientation of NO on the d(1) heme. Return of Tyr25 to a hydrogen-bonding position between His345 and His388 facilitates product release, but a rebinding of Tyr25 to the oxidized iron may be bypassed in steady-state catalysis. PMID:10998232

  13. The purification and properties of a cd-cytochrome nitrite reductase from Paracoccus halodenitrificans

    NASA Technical Reports Server (NTRS)

    Mancinelli, R. L.; Cronin, S.; Hochstein, L. I.

    1986-01-01

    Paracoccus halodenitrificans, grown anaerobically in the presence of nitrite, contained membrane and cytoplasmic nitrite reductases. When assayed in the presence of phenazine methosulfate and ascorbate, the membrane-bound enzyme produced nitrous oxide whereas the cytoplasmic enzyme produced nitric oxide. When both enzymes were assayed in the presence of methyl viologen and dithionite, the cytoplasmic enzyme produced ammonia. Following solubilization, the membrane-bound enzyme behaved like the cytoplasmic enzyme, producing nitric oxide in the presence of phenazine methosulfate and ascorbate, and ammonia when assayed in the presence of methyl viologen and dithionite. The cytoplasmic and membrane-bound enzymes were purified to essentially the same specific activity. Only a single nitrite-reductase activity was detected on electrophoretic gels and the electrophoretic behavior of both enzymes suggested they were identical. The spectral properties of both enzymes suggested they were cd-type cytochromes. These data suggest that the products of nitrite reduction by the cd-cytochrome nitrite reductase are determined by the location of the enzyme and the redox potential of the electron donor.

  14. Characterization of the gene encoding nitrite reductase and the physiological consequences of its expression in the nondenitrifying Rhizobium {open_quotes}hedysari{close_quotes} strain HCNT1

    SciTech Connect

    Toffanin, A.; Shapleigh, J.P.; Maskus, M.

    1996-11-01

    Rhizobium {open_quotes}hedysari{close_quotes} HCNT1 is an unclassified rhizobium which contains a nitric oxide-producing nitrite reductase but is apparently incapable of coupling the reduction of nitrite to energy conservation. The gene encoding the nitrite reductase, nirK, has been cloned and sequenced and was found to encode a protein closely related to the copper-containing family of nitrite reductases. Unlike other members of this family, nirK expression in HCNT1 is not dependent on the presence of nitrogen oxides, being dependent only on oxygen concentration. Oxygen respiration of microaerobically grown Nir-deficient cells is not affected by concentrations of nitrite that completely inhibit oxygen respiration in wild-type cells. This loss of sensitivity suggests that the product of nitrite reductase, nitric oxide, is responsible for inhibition of oxygen respiration. By using a newly developed chemically modified electrode to detect nitric oxide, it was found that nitrite reduction by HCNT1 produces significantly higher nitric oxide concentrations than are observed in true denitrifiers. This indicates that nitrite reductase is the only nitrogen oxide reductase active in HCNT1. The capacity to generate such large concentrations of freely diffusible nitric oxide as a consequence of nitrite respiration makes HCNT1 unique among bacteria. 33 refs., 6 figs., 1 tab.

  15. Molecular Cloning of Complementary DNA Encoding Maize Nitrite Reductase

    PubMed Central

    Lahners, Kristine; Kramer, Vance; Back, Eduard; Privalle, Laura; Rothstein, Steven

    1988-01-01

    Complementary DNA has been isolated that codes for maize nitrite reductase (NiR) by using the corresponding spinach gene (E Back et al. 1988 Mol Gen Genet 212:20-26) as a heterologous probe. The sequences of the complementary DNAs from the two species are 66% homologous while the deduced amino acid sequences are 86% similar when analogous amino acids are included. A high percentage of the differences in the DNA sequences is due to the extremely strong bias in the corn gene to have a G/C base in the third codon position with 559/569 codons ending in a G or C. Using a hydroponic system, maize seedlings grown in the absence of an exogenous nitrogen source were induced with nitrate or nitrite. Nitrate stimulated a rapid induction of the NiR mRNA in both roots and leaves. There is also a considerable induction of this gene in roots upon the addition of nitrite, although under the conditions used the final mRNA level was not as high as when nitrate was the inducer. There is a small but detectable level of NiR mRNA in leaves prior to induction, but no constitutive NiR mRNA can be seen in the roots. Analysis of genomic DNA supports the notion that there are at least two NiR genes in maize. Images Fig. 3 Fig. 4 Fig. 5 PMID:16666376

  16. A novel nitrite biosensor based on conductometric electrode modified with cytochrome c nitrite reductase composite membrane.

    PubMed

    Zhang, Zhiqiang; Xia, Siqing; Leonard, Didier; Jaffrezic-Renault, Nicole; Zhang, Jiao; Bessueille, François; Goepfert, Yves; Wang, Xuejiang; Chen, Ling; Zhu, Zhiliang; Zhao, Jianfu; Almeida, M Gabriela; Silveira, Célia M

    2009-02-15

    A conductometric biosensor for nitrite detection was developed using cytochrome c nitrite reductase (ccNiR) extracted from Desulfovibrio desulfuricans ATCC 27774 cells immobilized on a planar interdigitated electrode by cross-linking with saturated glutaraldehyde (GA) vapour in the presence of bovine serum albumin, methyl viologen (MV), Nafion, and glycerol. The configuration parameters for this biosensor, including the enzyme concentration, ccNiR/BSA ratio, MV concentration, and Nafion concentration, were optimized. Various experimental parameters, such as sodium dithionite added, working buffer solution, and temperature, were investigated with regard to their effect on the conductance response of the biosensor to nitrite. Under the optimum conditions at room temperature (about 25 degrees C), the conductometric biosensor showed a fast response to nitrite (about 10s) with a linear range of 0.2-120 microM, a sensitivity of 0.194 microS/microM [NO(2)(-)], and a detection limit of 0.05 microM. The biosensor also showed satisfactory reproducibility (relative standard deviation of 6%, n=5). The apparent Michaelis-Menten constant (K(M,app)) was 338 microM. When stored in potassium phosphate buffer (100mM, pH 7.6) at 4 degrees C, the biosensor showed good stability over 1 month. No obvious interference from other ionic species familiar in natural waters was detected. The application experiments show that the biosensor is suitable for use in real water samples. PMID:18804367

  17. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Huffaker, R. C.

    1989-01-01

    The role of NO3- and NO2- in the induction of nitrite reductase (NiR) activity in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was investigated. Barley leaves contained 6 to 8 micromoles NO2-/gram fresh weight x hour of endogenous NiR activity when grown in N-free solutions. Supply of both NO2- and NO3- induced the enzyme activity above the endogenous levels (5 and 10 times, respectively at 10 millimolar NO2- and NO3- over a 24 hour period). In NO3(-)-supplied leaves, NiR induction occurred at an ambient NO3- concentration of as low as 0.05 millimolar; however, no NiR induction was found in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 millimolar. Nitrate accumulated in NO2(-)-fed leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NiR as did equivalent amounts of NO3- accumulating in NO3(-)-fed leaves. Induction of NiR in NO2(-)-fed leaves was not seen until NO3- was detectable (30 nanomoles/gram fresh weight) in the leaves. The internal concentrations of NO3-, irrespective of N source, were highly correlated with the levels of NiR induced. When the reduction of NO3- to NO2- was inhibited by WO4(2-), the induction of NiR was inhibited only partially. The results indicate that in barley leaves in NiR is induced by NO3- directly, i.e. without being reduced to NO2-, and that absorbed NO2- induces the enzyme activity indirectly after being oxidized to NO3- within the leaf.

  18. Evaluation of nitrate reductase activity in Rhizobium japonicum

    SciTech Connect

    Streeter, J.G.; DeVine, P.J.

    1983-08-01

    Nitrate reductase activity was evaluated by four approaches, using four strains of Rhizobium japonicum and 11 chlorate-resistant mutants of the four strains. It was concluded that in vitro assays with bacteria or bacteroids provide the most simple and reliable assessment of the presence or absence of nitrate reductase. Nitrite reductase activity with methyl viologen and dithionite was found, but the enzyme activity does not confound the assay of nitrate reductase. 18 references

  19. Nitrogen and oxygen regulation of Bacillus subtilis nasDEF encoding NADH-dependent nitrite reductase by TnrA and ResDE.

    PubMed

    Nakano, M M; Hoffmann, T; Zhu, Y; Jahn, D

    1998-10-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  20. Nitrogen and Oxygen Regulation of Bacillus subtilis nasDEF Encoding NADH-Dependent Nitrite Reductase by TnrA and ResDE

    PubMed Central

    Nakano, Michiko M.; Hoffmann, Tamara; Zhu, Yi; Jahn, Dieter

    1998-01-01

    The nitrate and nitrite reductases of Bacillus subtilis have two different physiological functions. Under conditions of nitrogen limitation, these enzymes catalyze the reduction of nitrate via nitrite to ammonia for the anabolic incorporation of nitrogen into biomolecules. They also function catabolically in anaerobic respiration, which involves the use of nitrate and nitrite as terminal electron acceptors. Two distinct nitrate reductases, encoded by narGHI and nasBC, function in anabolic and catabolic nitrogen metabolism, respectively. However, as reported herein, a single NADH-dependent, soluble nitrite reductase encoded by the nasDE genes is required for both catabolic and anabolic processes. The nasDE genes, together with nasBC (encoding assimilatory nitrate reductase) and nasF (required for nitrite reductase siroheme cofactor formation), constitute the nas operon. Data presented show that transcription of nasDEF is driven not only by the previously characterized nas operon promoter but also from an internal promoter residing between the nasC and nasD genes. Transcription from both promoters is activated by nitrogen limitation during aerobic growth by the nitrogen regulator, TnrA. However, under conditions of oxygen limitation, nasDEF expression and nitrite reductase activity were significantly induced. Anaerobic induction of nasDEF required the ResDE two-component regulatory system and the presence of nitrite, indicating partial coregulation of NasDEF with the respiratory nitrate reductase NarGHI during nitrate respiration. PMID:9765565

  1. Structures of complexes of octahaem cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens with sulfite and cyanide.

    PubMed

    Trofimov, Anton A; Polyakov, Konstantin M; Boyko, Konstantin M; Tikhonova, Tamara V; Safonova, Tatyana N; Tikhonov, Alexey V; Popov, Alexandre N; Popov, Vladimir O

    2010-10-01

    The structures of complexes of octahaem cytochrome c nitrite reductase from the bacterium Thioalkalivibrio nitratireducens (TvNiR) with the substrate sulfite (1.4 Å resolution; R(cryst) = 0.126) and the inhibitor cyanide (1.55 Å resolution; R(cryst) = 0.148) have been established. The complex with sulfite was prepared by the reduction of the protein crystal with sodium dithionite. The sulfite ion is bound to the iron ion of the catalytic haem through the S atom. The Fe-S distance is 2.24 Å. The structure of the cyanide complex with full occupancy of the ligand site was established for the first time for cytochrome c nitrite reductases. The cyanide ion is bound to the catalytic haem iron through the C atom. The Fe-C distance is 1.91 Å and the Fe-C-N angle is 171°. The sulfite reductase activity of TvNiR was measured at different pH values. The activity is 0.02 µmol of HS(-) per minute per milligram at pH 7.0; it decreases with increasing pH and is absent at pH 9.0. PMID:20944237

  2. Theoretical study on reaction mechanisms of nitrite reduction by copper nitrite complexes: toward understanding and controlling possible mechanisms of copper nitrite reductase.

    PubMed

    Maekawa, Shintaro; Matsui, Toru; Hirao, Kimihiko; Shigeta, Yasuteru

    2015-04-30

    Using density functional theory, we studied denitrification reaction mechanisms of copper adducts of tris(pyrazolyl)methane and hydrotris(pyrazolyl)borate models of a copper nitrite reductase (Cu-NiR), and herein propose several possible reaction pathways, including some parts that have never been examined previously. Because electron and proton transfer reactions participate in the enzymatic cycles of Cu-NiR, the Gibbs energy of a proton in solution, G(H(+)), and the redox potential, Eredox, of the model Cu-NiR are also evaluated. Although the pathway where a nitrite is provided as HNO2 is energetically preferable, a well-known reaction pathway passing through the resting state with an active site occupied by a water molecule where nitrite is provided as NO2(-) is the main recognized pathway under normal conditions. These features do not change whether the electron transfer occurs before production of NO or not. However, our results suggest that the pathway involving HNO2 might become dominant under low pH conditions in conjunction with experimental results. PMID:25845517

  3. Measuring the Cytochrome c Nitrite Reductase Activity—Practical Considerations on the Enzyme Assays

    PubMed Central

    Silveira, Célia M.; Besson, Stéphane; Moura, Isabel; Moura, José J. G.; Almeida, M. Gabriela

    2010-01-01

    The cytochrome c nitrite reductase (ccNiR) from Desulfovibrio desulfuricans ATCC 27774 is able to reduce nitrite to ammonia in a six-electron transfer reaction. Although extensively characterized from the spectroscopic and structural points-of-view, some of its kinetic aspects are still under explored. In this work the kinetic behaviour of ccNiR has been evaluated in a systematic manner using two different spectrophotometric assays carried out in the presence of different redox mediators and a direct electrochemical approach. Solution assays have proved that the specific activity of ccNiR decreases with the reduction potential of the electronic carriers and ammonium is always the main product of nitrite reduction. The catalytic parameters were discussed on the basis of the mediator reducing power and also taking into account the location of their putative docking sites with ccNiR. Due to the fast kinetics of ccNiR, electron delivering from reduced electron donors is rate-limiting in all spectrophotometric assays, so the estimated kinetic constants are apparent only. Nevertheless, this limitation could be overcome by using a direct electrochemical approach which shows that the binding affinity for nitrite decreases whilst turnover increases with the reductive driving force. PMID:20689707

  4. Six-electron reduction of nitrite to ammonia by cytochrome c nitrite reductase: insights from density functional theory studies.

    PubMed

    Bykov, Dmytro; Neese, Frank

    2015-10-01

    In this Forum Article, an extensive discussion of the mechanism of six-electron, seven-proton nitrite reduction by the cytochrome c nitrite reductase enzyme is presented. On the basis of previous studies, the entire mechanism is summarized and a unified picture of the most plausible sequence of elementary steps is presented. According to this scheme, the mechanism can be divided into five functional stages. The first phase of the reaction consists of substrate binding and N-O bond cleavage. Here His277 plays a crucial role as a proton donor. In this step, the N-O bond is cleaved heterolytically through double protonation of the substrate. The second phase of the mechanism consists of two proton-coupled electron-transfer events, leading to an HNO intermediate. The third phase involves the formation of hydroxylamine, where Arg114 provides the necessary proton for the reaction. The second N-O bond is cleaved in the fourth phase of the mechanism, again triggered by proton transfer from His277. The Tyr218 side chain governs the fifth and last phase of the mechanism. It consists of radical transfer and ammonia formation. Thus, this mechanism implies that all conserved active-site side chains work in a concerted way in order to achieve this complex chemical transformation from nitrite to ammonia. The Forum Article also provides a detailed discussion of the density functional theory based cluster model approach to bioinorganic reactivity. A variety of questions are considered: the resting state of enzyme and substrate binding modes, interaction with the metal site and with active-site side chains, electron- and proton-transfer events, substrate dissociation, etc. PMID:26237518

  5. Stable Copper-Nitrosyl Formation By Nitrite Reductase in Either Oxidation State

    SciTech Connect

    Tocheva, E.I.; Rosell, F.I.; Mauk, A.G.; Murphy, M.E.P.

    2009-06-04

    Nitrite reductase (NiR) is an enzyme that uses type 1 and type 2 copper sites to reduce nitrite to nitric oxide during bacterial denitrification. A copper-nitrosyl intermediate is a proposed, yet poorly characterized feature of the NiR catalytic cycle. This intermediate is formally described as Cu(I)-NO{sup +} and is proposed to be formed at the type 2 copper site after nitrite binding and electron transfer from the type 1 copper site. In this study, copper-nitrosyl complexes were formed by prolonged exposure of exogenous NO to crystals of wild-type and two variant forms of NiR from Alcaligenes faecalis (AfNiR), and the structures were determined to 1.8 {angstrom} or better resolution. Exposing oxidized wild-type crystals to NO results in the reverse reaction and formation of nitrite that remains bound at the active site. In a type 1 copper site mutant (H145A) that is incapable of electron transfer to the type 2 site, the reverse reaction is not observed. Instead, in both oxidized and reduced H145A crystals, NO is observed bound in a side-on manner to the type 2 copper. In AfNiR, Asp98 forms hydrogen bonds to both substrate and product bound to the type 2 Cu. In the D98N variant, NO is bound side-on but is more disordered when observed for the wild-type enzyme. The solution EPR spectra of the crystallographically characterized NiR-NO complexes indicate the presence of an oxidized type 2 copper site and thus are interpreted as resulting from stable copper-nitrosyls and formally assigned as Cu(II)-NO{sup -}. A reaction scheme in which a second NO molecule is oxidized to nitrite can account for the formation of a CuD-NO{sup -} species after exposure of the oxidized H145A variant to NO gas.

  6. Structure of octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens in a complex with phosphate

    SciTech Connect

    Trofimov, A. A.; Polyakov, K. M.; Boiko, K. M.; Filimonenkov, A. A.; Dorovatovskii, P. V.; Tikhonova, T. V.; Popov, V. O.; Koval'chuk, M. V.

    2010-01-15

    Octaheme cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR) catalyzes the reduction of nitrite and hydroxylamine to ammonia. The structures of the free enzyme and of the enzyme in complexes with the substrate (nitrite ion) and the inhibitor (azide ion) have been solved previously. In this study we report the structures of the oxidized complex of TvNiR with phosphate and of this complex reduced by europium(II) chloride (1.8- and 2.0-A resolution, the R factors are 15.9 and 16.7%, respectively) and the structure of the enzyme in the complex with cyanide (1.76-A resolution, the R factor is 16.5%), which was prepared by soaking a crystal of the oxidized phosphate complex of TvNiR. In the active site of the enzyme, the phosphate ion binds to the iron ion of the catalytic heme and to the side chains of the catalytic residues Arg131, Tyr303, and His361. The cyanide ion is coordinated to the heme-iron ion and is hydrogen bonded to the residue His361. In the structure of reduced TvNiR, the phosphate ion is bound in the same manner as in the structure of oxidized TvNiR, and the nine{sub c}oordinated europium ion is located on the surface of one of the crystallographically independent monomers of the enzyme.

  7. Metabolic Interactions between Spinach Leaf Nitrite Reductase and Ferredoxin-NADP Reductase

    PubMed Central

    Baysdorfer, Chris; Robinson, J. Michael

    1985-01-01

    Steady state rates of NADP reduction decline upon commencement of nitrite reduction in reconstituted chloroplast preparations. Similarly, steady state rates of nitrite reduction are lower, but not zero, during concurrent NADP reduction. These results imply that competition for substrate occurs and suggest that nitrite reduction can successfully compete for reduced ferredoxin, even at high rates of NADP reduction. PMID:16664050

  8. Nitrite and Nitrous Oxide Reductase Regulation by Nitrogen Oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106

    PubMed Central

    Sabaty, Monique; Schwintner, Carole; Cahors, Sandrine; Richaud, Pierre; Verméglio, Andre

    1999-01-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N2O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N2O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  9. Nitrite and nitrous oxide reductase regulation by nitrogen oxides in Rhodobacter sphaeroides f. sp. denitrificans IL106.

    PubMed

    Sabaty, M; Schwintner, C; Cahors, S; Richaud, P; Verméglio, A

    1999-10-01

    We have cloned the nap locus encoding the periplasmic nitrate reductase in Rhodobacter sphaeroides f. sp. denitrificans IL106. A mutant with this enzyme deleted is unable to grow under denitrifying conditions. Biochemical analysis of this mutant shows that in contrast to the wild-type strain, the level of synthesis of the nitrite and N(2)O reductases is not increased by the addition of nitrate. Growth under denitrifying conditions and induction of N oxide reductase synthesis are both restored by the presence of a plasmid containing the genes encoding the nitrate reductase. This demonstrates that R. sphaeroides f. sp. denitrificans IL106 does not possess an efficient membrane-bound nitrate reductase and that nitrate is not the direct inducer for the nitrite and N(2)O reductases in this species. In contrast, we show that nitrite induces the synthesis of the nitrate reductase. PMID:10498715

  10. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function.

    PubMed

    Rassaf, Tienush; Flögel, Ulrich; Drexhage, Christine; Hendgen-Cotta, Ulrike; Kelm, Malte; Schrader, Jürgen

    2007-06-22

    Although the primary function of myoglobin (Mb) has been considered to be cellular oxygen storage and supply, recent studies have suggested to classify Mb as a multifunctional allosteric enzyme. In the heart, Mb acts as a potent scavenger of nitric oxide (NO) and contributes to the attenuation of oxidative damage. Here we report that a dynamic cycle exists in which a decrease in tissue oxygen tension drives the conversion of Mb from being an NO scavenger in normoxia to an NO producer in hypoxia. The NO generated by reaction of deoxygenated Mb with nitrite is functionally relevant and leads to a downregulation of cardiac energy status, which was not observed in mice lacking Mb. As a consequence, myocardial oxygen consumption is reduced and cardiac contractility is dampened in wild-type mice. We propose that this pathway represents a novel homeostatic mechanism by which a mismatch between oxygen supply and demand in muscle is translated into the fractional increase of deoxygenated Mb exhibiting enhanced nitrite reductase activity. Thus, Mb may act as an oxygen sensor which through NO can adjust muscle energetics to limited oxygen supply. PMID:17495223

  11. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal.

    PubMed

    Horrell, Sam; Antonyuk, Svetlana V; Eady, Robert R; Hasnain, S Samar; Hough, Michael A; Strange, Richard W

    2016-07-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07-1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a 'catalytic reaction movie' highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  12. Serial crystallography captures enzyme catalysis in copper nitrite reductase at atomic resolution from one crystal

    PubMed Central

    Horrell, Sam; Antonyuk, Svetlana V.; Eady, Robert R.; Hasnain, S. Samar; Hough, Michael A.; Strange, Richard W.

    2016-01-01

    Relating individual protein crystal structures to an enzyme mechanism remains a major and challenging goal for structural biology. Serial crystallography using multiple crystals has recently been reported in both synchrotron-radiation and X-ray free-electron laser experiments. In this work, serial crystallography was used to obtain multiple structures serially from one crystal (MSOX) to study in crystallo enzyme catalysis. Rapid, shutterless X-ray detector technology on a synchrotron MX beamline was exploited to perform low-dose serial crystallography on a single copper nitrite reductase crystal, which survived long enough for 45 consecutive 100 K X-ray structures to be collected at 1.07–1.62 Å resolution, all sampled from the same crystal volume. This serial crystallography approach revealed the gradual conversion of the substrate bound at the catalytic type 2 Cu centre from nitrite to nitric oxide, following reduction of the type 1 Cu electron-transfer centre by X-ray-generated solvated electrons. Significant, well defined structural rearrangements in the active site are evident in the series as the enzyme moves through its catalytic cycle, namely nitrite reduction, which is a vital step in the global denitrification process. It is proposed that such a serial crystallography approach is widely applicable for studying any redox or electron-driven enzyme reactions from a single protein crystal. It can provide a ‘catalytic reaction movie’ highlighting the structural changes that occur during enzyme catalysis. The anticipated developments in the automation of data analysis and modelling are likely to allow seamless and near-real-time analysis of such data on-site at some of the powerful synchrotron crystallographic beamlines. PMID:27437114

  13. A nitrite biosensor based on co-immobilization of nitrite reductase and viologen-modified chitosan on a glassy carbon electrode.

    PubMed

    Quan, De; Shin, Woonsup

    2010-01-01

    An electrochemical nitrite biosensor based on co-immobilization of copper-containing nitrite reductase (Cu-NiR, from Rhodopseudomonas sphaeroides forma sp. denitrificans) and viologen-modified chitosan (CHIT-V) on a glassy carbon electrode (GCE) is presented. Electron transfer (ET) between a conventional GCE and immobilized Cu-NiR was mediated by the co-immobilized CHIT-V. Redox-active viologen was covalently linked to a chitosan backbone, and the thus produced CHIT-V was co-immobilized with Cu-NiR on the GCE surface by drop-coating of hydrophilic polyurethane (HPU). The electrode responded to nitrite with a limit of detection (LOD) of 40 nM (S/N = 3). The sensitivity, linear response range, and response time (t(90%)) were 14.9 nA/μM, 0.04-11 μM (r(2) = 0.999) and 15 s, respectively. The corresponding Lineweaver-Burk plot showed that the apparent Michaelis-Menten constant (K(M) (app)) was 65 μM. Storage stability of the biosensor (retaining 80% of initial activity) was 65 days under ambient air and room temperature storage conditions. Reproducibility of the sensor showed a relative standard deviation (RSD) of 2.8% (n = 5) for detection of 1 μM of nitrite. An interference study showed that anions commonly found in water samples such as chlorate, chloride, sulfate and sulfite did not interfere with the nitrite detection. However, nitrate interfered with a relative sensitivity of 64% and this interference effect was due to the intrinsic character of the NiR employed in this study. PMID:22219710

  14. Spectroelectrochemical investigation of intramolecular and interfacial electron-transfer rates reveals differences between nitrite reductase at rest and during turnover.

    PubMed

    Krzemiński, Łukasz; Ndamba, Lionel; Canters, Gerard W; Aartsma, Thijs J; Evans, Stephen D; Jeuken, Lars J C

    2011-09-28

    A combined fluorescence and electrochemical method is described that is used to simultaneously monitor the type-1 copper oxidation state and the nitrite turnover rate of a nitrite reductase (NiR) from Alcaligenes faecalis S-6. The catalytic activity of NiR is measured electrochemically by exploiting a direct electron transfer to fluorescently labeled enzyme molecules immobilized on modified gold electrodes, whereas the redox state of the type-1 copper site is determined from fluorescence intensity changes caused by Förster resonance energy transfer (FRET) between a fluorophore attached to NiR and its type-1 copper site. The homotrimeric structure of the enzyme is reflected in heterogeneous interfacial electron-transfer kinetics with two monomers having a 25-fold slower kinetics than the third monomer. The intramolecular electron-transfer rate between the type-1 and type-2 copper site changes at high nitrite concentration (≥520 μM), resulting in an inhibition effect at low pH and a catalytic gain in enzyme activity at high pH. We propose that the intramolecular rate is significantly reduced in turnover conditions compared to the enzyme at rest, with an exception at low pH/nitrite conditions. This effect is attributed to slower reduction rate of type-2 copper center due to a rate-limiting protonation step of residues in the enzyme's active site, gating the intramolecular electron transfer. PMID:21863850

  15. A cytochrome cd1-type nitrite reductase isolated from the marine denitrifier Pseudomonas nautica 617: purification and characterization.

    PubMed

    Besson, S; Carneiro, C; Moura, J J; Moura, I; Fauque, G

    1995-08-01

    Nitrite reductase (cytochrome cd1) was purified to electrophoretic homogeneity from the soluble extract of the marine denitrifying bacterium Pseudomonas nautica strain 617. Cells were anaerobically grown with 10 mM nitrate as final electron acceptor. The soluble fraction was purified by four successive chromatographic steps and the purest cytochrome cd1 exhibited an A280 nm(oxidized)/A410nm(oxidized) coefficient of 0.90. In the course of purification, cytochrome cd1 specific activity presented a maximum value of 0.048 units/mg of protein. This periplasmic enzyme is a homodimer and each 60 kDa subunit contains one heme c and one heme d1 as prosthetic moieties, both in a low spin state. Redox potentials of hemes c and d1 were determined at three different pH values (6.6, 7.6 and 8.6) and did not show any pH dependence. The first 20 amino acids of the NH2-terminal region of the protein were identified and the sequence showed 45% identity with the corresponding region of Pseudomonas aeruginosa nitrite reductase but no homology to Pseudomonas stutzeri and Paracoccus denitrificans enzymes. Spectroscopic properties of Pseudomonas nautica 617 cytochrome cd1 in the ultraviolet-visible range and in electron paramagnetic resonance are described. The formation of a heme d1 -nitric-oxide complex as an intermediate of nitrite reduction was demonstrated by electron paramagnetic resonance experiments. PMID:16887530

  16. DFT Study on Enzyme Turnover Including Proton and Electron Transfers of Copper-Containing Nitrite Reductase.

    PubMed

    Lintuluoto, Masami; Lintuluoto, Juha M

    2016-08-23

    The reaction mechanism of copper-containing nitrite reductase (CuNiR) has been proposed to include two important events, an intramolecular electron transfer and a proton transfer. The two events have been suggested to be coupled, but the order of these events is currently under debate. We investigated the entire enzyme reaction mechanism of nitrite reduction at the T2 Cu site in thermophilic Geobacillus CuNiR from Geobacillus thermodenitrificans NG80-2 (GtNiR) using density functional theory calculations. We found significant conformational changes of His ligands coordinated to the T2 Cu site upon nitrite binding during the catalytic reaction. The reduction potentials and pKa values calculated for the relevant protonation and reduction states show two possible routes, A and B. Reduction of the T2 Cu site in the resting state is followed by endothermic nitrite binding in route A, while exothermic nitrite binding occurs prior to reduction of the T2 Cu site in route B. We concluded that our results support the random-sequential mechanism rather than the ordered mechanism. PMID:27455866

  17. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120

    PubMed Central

    Frías, José E.

    2015-01-01

    ABSTRACT Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. IMPORTANCE Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many

  18. Nitrite reductase is critical for Pseudomonas aeruginosa survival during co-infection with the oral commensal Streptococcus parasanguinis.

    PubMed

    Scoffield, Jessica A; Wu, Hui

    2016-02-01

    Pseudomonas aeruginosa is the major aetiological agent of chronic pulmonary infections in cystic fibrosis (CF) patients. However, recent evidence suggests that the polymicrobial community of the CF lung may also harbour oral streptococci, and colonization by these micro-organisms may have a negative impact on P. aeruginosa within the CF lung. Our previous studies demonstrated that nitrite abundance plays an important role in P. aeruginosa survival during co-infection with oral streptococci. Nitrite reductase is a key enzyme involved in nitrite metabolism. Therefore, the objective of this study was to examine the role nitrite reductase (gene nirS) plays in P. aeruginosa survival during co-infection with an oral streptococcus, Streptococcus parasanguinis. Inactivation of nirS in both the chronic CF isolate FRD1 and acute wound isolate PAO1 reduced the survival rate of P. aeruginosa when co-cultured with S. parasanguinis. Growth of both mutants was restored when co-cultured with S. parasanguinis that was defective for H2O2 production. Furthermore, the nitrite reductase mutant was unable to kill Drosophila melanogaster during co-infection with S. parasanguinis. Taken together, these results suggest that nitrite reductase plays an important role for survival of P. aeruginosa during co-infection with S. parasanguinis. PMID:26673783

  19. Inhibition of xanthine oxidase by the aldehyde oxidase inhibitor raloxifene: implications for identifying molybdopterin nitrite reductases.

    PubMed

    Weidert, E R; Schoenborn, S O; Cantu-Medellin, N; Choughule, K V; Jones, J P; Kelley, E E

    2014-02-15

    when choosing inhibition strategies as well as inhibitor concentrations when assigning relative NO2- reductase activity of AO and XOR. PMID:24406683

  20. Nitrite reductase gene upregulated during conidiation is involved in macroconidium formation in Fusarium oxysporum.

    PubMed

    Iida, Y; Kurata, T; Harimoto, Y; Tsuge, T

    2008-10-01

    Fusarium oxysporum produces three kinds of asexual spores, microconidia, macroconidia, and chlamydospores. We previously found that the transcript level of the nitrite reductase gene of F. oxysporum, named FoNIIA, was markedly upregulated during conidiation compared with during vegetative growth. FoNIIA was also found to be positively regulated by Ren1 that is a transcription regulator controlling development of microconidia and macroconidia. In this study, we analyzed the function of FoNIIA in conidiation of F. oxysporum. Conidiation cultures showed markedly higher level of accumulation of FoNiiA protein as well as FoNIIA mRNA than vegetative growth cultures. FoNIIA protein was significantly decreased in cultures of the REN1 disruption mutant compared with that of the wild type. These results confirmed that FoNIIA expression is upregulated during conidiation and is positively regulated by REN1. The FoNIIA disruption mutants produced microconidia, macroconidia, and chlamydospores, which were morphologically indistinguishable from those of the wild type. The mutants, however, produced significantly fewer macroconidia than the wild type, although the wild type and mutant strains produced similar numbers of microconidia and chlamydospores. These results demonstrate that nitrite reductase is involved in quantitative control of macroconidium formation as well as nitrate utilization in F. oxysporum. PMID:18943456

  1. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography.

    PubMed

    Fukuda, Yohta; Tse, Ka Man; Suzuki, Mamoru; Diederichs, Kay; Hirata, Kunio; Nakane, Takanori; Sugahara, Michihiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi

    2016-05-01

    Serial femtosecond crystallography (SFX) has enabled the damage-free structural determination of metalloenzymes and filled the gaps of our knowledge between crystallographic and spectroscopic data. Crystallographers, however, scarcely know whether the rising technique provides truly new structural insights into mechanisms of metalloenzymes partly because of limited resolutions. Copper nitrite reductase (CuNiR), which converts nitrite to nitric oxide in denitrification, has been extensively studied by synchrotron radiation crystallography (SRX). Although catalytic Cu (Type 2 copper (T2Cu)) of CuNiR had been suspected to tolerate X-ray photoreduction, we here showed that T2Cu in the form free of nitrite is reduced and changes its coordination structure in SRX. Moreover, we determined the completely oxidized CuNiR structure at 1.43 Å resolution with SFX. Comparison between the high-resolution SFX and SRX data revealed the subtle structural change of a catalytic His residue by X-ray photoreduction. This finding, which SRX has failed to uncover, provides new insight into the reaction mechanism of CuNiR. PMID:26769972

  2. Redox-coupled structural changes in nitrite reductase revealed by serial femtosecond and microfocus crystallography

    PubMed Central

    Fukuda, Yohta; Suzuki, Mamoru; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi

    2016-01-01

    Serial femtosecond crystallography (SFX) has enabled the damage-free structural determination of metalloenzymes and filled the gaps of our knowledge between crystallographic and spectroscopic data. Crystallographers, however, scarcely know whether the rising technique provides truly new structural insights into mechanisms of metalloenzymes partly because of limited resolutions. Copper nitrite reductase (CuNiR), which converts nitrite to nitric oxide in denitrification, has been extensively studied by synchrotron radiation crystallography (SRX). Although catalytic Cu (Type 2 copper (T2Cu)) of CuNiR had been suspected to tolerate X-ray photoreduction, we here showed that T2Cu in the form free of nitrite is reduced and changes its coordination structure in SRX. Moreover, we determined the completely oxidized CuNiR structure at 1.43 Å resolution with SFX. Comparison between the high-resolution SFX and SRX data revealed the subtle structural change of a catalytic His residue by X-ray photoreduction. This finding, which SRX has failed to uncover, provides new insight into the reaction mechanism of CuNiR. PMID:26769972

  3. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography

    PubMed Central

    Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Nureki, Osamu; Murphy, Michael E. P.; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi

    2016-01-01

    Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme–substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes. PMID:26929369

  4. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography.

    PubMed

    Fukuda, Yohta; Tse, Ka Man; Nakane, Takanori; Nakatsu, Toru; Suzuki, Mamoru; Sugahara, Michihiro; Inoue, Shigeyuki; Masuda, Tetsuya; Yumoto, Fumiaki; Matsugaki, Naohiro; Nango, Eriko; Tono, Kensuke; Joti, Yasumasa; Kameshima, Takashi; Song, Changyong; Hatsui, Takaki; Yabashi, Makina; Nureki, Osamu; Murphy, Michael E P; Inoue, Tsuyoshi; Iwata, So; Mizohata, Eiichi

    2016-03-15

    Proton-coupled electron transfer (PCET), a ubiquitous phenomenon in biological systems, plays an essential role in copper nitrite reductase (CuNiR), the key metalloenzyme in microbial denitrification of the global nitrogen cycle. Analyses of the nitrite reduction mechanism in CuNiR with conventional synchrotron radiation crystallography (SRX) have been faced with difficulties, because X-ray photoreduction changes the native structures of metal centers and the enzyme-substrate complex. Using serial femtosecond crystallography (SFX), we determined the intact structures of CuNiR in the resting state and the nitrite complex (NC) state at 2.03- and 1.60-Å resolution, respectively. Furthermore, the SRX NC structure representing a transient state in the catalytic cycle was determined at 1.30-Å resolution. Comparison between SRX and SFX structures revealed that photoreduction changes the coordination manner of the substrate and that catalytically important His255 can switch hydrogen bond partners between the backbone carbonyl oxygen of nearby Glu279 and the side-chain hydroxyl group of Thr280. These findings, which SRX has failed to uncover, propose a redox-coupled proton switch for PCET. This concept can explain how proton transfer to the substrate is involved in intramolecular electron transfer and why substrate binding accelerates PCET. Our study demonstrates the potential of SFX as a powerful tool to study redox processes in metalloenzymes. PMID:26929369

  5. The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans. Distinction from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate during denitrification.

    PubMed

    Carr, G J; Page, M D; Ferguson, S J

    1989-02-15

    1. A Clark-type electrode that responds to nitric oxide has been used to show that cytoplasmic membrane vesicles of Paracoccus denitrificans have a nitric-oxide reductase activity. Nitrous oxide is the reaction product. NADH, succinate or isoascorbate plus 2,3,5,6-tetramethyl-1,4-phenylene diamine can act as reductants. The NADH-dependent activity is resistant to freezing of the vesicles and thus the NADH:nitric-oxide oxidoreductase activity of stored frozen vesicles provides a method for calibrating the electrode by titration of dissolved nitric oxide with NADH. The periplasmic nitrite reductase and nitrous-oxide reductase enzymes are absent from the vesicles which indicates that nitric-oxide reductase is a discrete enzyme associated with the denitrification process. This conclusion was supported by the finding that nitric-oxide reductase activity was absent from both membranes prepared from aerobically grown P. denitrificans and bovine heart submitochondrial particles. 2. The NADH: nitric-oxide oxidoreductase activity was inhibited by concentrations of antimycin or myxothiazol that were just sufficient to inhibit the cytochrome bc1 complex of the ubiquinol--cytochrome-c oxidoreductase. The activity was deduced to be proton translocating by the observations of: (a) up to 3.5-fold stimulation upon addition of an uncoupler; and (b) ATP synthesis with a P:2e ratio of 0.75. 3. Nitrite reductase of cytochrome cd1 type was highly purified from P. denitrificans in a new, high-yield, rapid two- or three-step procedure. This enzyme catalysed stoichiometric synthesis of nitric oxide. This observation, taken together with the finding that the maximum rate of NADH:nitric-oxide oxidoreductase activity catalysed by the vesicles was comparable with that of NADH:nitrate-oxidoreductase, is consistent with a role for nitric-oxide reductase in the physiological conversion of nitrate or nitrite to dinitrogen gas. 4. Intact cells of P. denitrificans also reduced nitric oxide in an

  6. Laue Crystal Structure of Shewanella oneidensis Cytochrome c Nitrite Reductase from a High-yield Expression System

    PubMed Central

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-01-01

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR), and its characterization by a variety of methods, notably Laue crystallography, is reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein “Small Tetra-heme c” replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated ~20 mg crude ccNiR/L culture, compared with 0.5–1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for E. coli ccNiR, and is stable for over two weeks in pH 7 solution at 4° C. UV/Vis spectropotentiometric titrations and protein film voltammetry identified 5 independent 1-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the 5 reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed amongst the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good quality crystals, with which the 2.59 Å resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein). PMID:22382353

  7. Laue crystal structure of Shewanella oneidensis cytochrome c nitrite reductase from a high-yield expression system

    SciTech Connect

    Youngblut, Matthew; Judd, Evan T.; Srajer, Vukica; Sayyed, Bilal; Goelzer, Tyler; Elliott, Sean J.; Schmidt, Marius; Pacheco, A. Andrew

    2012-09-11

    The high-yield expression and purification of Shewanella oneidensis cytochrome c nitrite reductase (ccNiR) and its characterization by a variety of methods, notably Laue crystallography, are reported. A key component of the expression system is an artificial ccNiR gene in which the N-terminal signal peptide from the highly expressed S. oneidensis protein 'small tetraheme c' replaces the wild-type signal peptide. This gene, inserted into the plasmid pHSG298 and expressed in S. oneidensis TSP-1 strain, generated approximately 20 mg crude ccNiR per liter of culture, compared with 0.5-1 mg/L for untransformed cells. Purified ccNiR has nitrite and hydroxylamine reductase activities comparable to those previously reported for Escherichia coli ccNiR, and is stable for over 2 weeks in pH 7 solution at 4 C. UV/vis spectropotentiometric titrations and protein film voltammetry identified five independent one-electron reduction processes. Global analysis of the spectropotentiometric data also allowed determination of the extinction coefficient spectra for the five reduced ccNiR species. The characteristics of the individual extinction coefficient spectra suggest that, within each reduced species, the electrons are distributed among the various hemes, rather than being localized on specific heme centers. The purified ccNiR yielded good-quality crystals, with which the 2.59-{angstrom}-resolution structure was solved at room temperature using the Laue diffraction method. The structure is similar to that of E. coli ccNiR, except in the region where the enzyme interacts with its physiological electron donor (CymA in the case of S. oneidensis ccNiR, NrfB in the case of the E. coli protein).

  8. Electron transfer and docking between cytochrome cd1 nitrite reductase and different redox partners - A comparative study.

    PubMed

    Pedroso, Humberto A; Silveira, Célia M; Almeida, Rui M; Almeida, Ana; Besson, Stéphane; Moura, Isabel; Moura, José J G; Almeida, M Gabriela

    2016-09-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the reduction of nitrite to nitric oxide in denitrifying bacteria, such as Marinobacter hydrocarbonoclasticus. Previous work demonstrated that the enzymatic activity depends on a structural pre-activation triggered by the entry of electrons through the electron transfer (ET) domain, which houses a heme c center. The catalytic activity of M. hydrocarbonoclasticus cd1NiR (Mhcd1NiR) was tested by mediated electrochemistry, using small ET proteins and chemical redox mediators. The rate of enzymatic reaction depends on the nature of the redox partner, with cytochrome (cyt) c552 providing the highest value. In situations where cyt c552 is replaced by either a biological (cyt c from horse heart) or a chemical mediator the catalytic response was only observed at very low scan rates, suggesting that the intermolecular ET rate is much slower. Molecular docking simulations with the 3D model structure of Mhcd1NiR and cyt c552 or cyt c showed that hydrophobic interactions favor the formation of complexes where the heme c domain of the enzyme is the principal docking site. However, only in the case of cyt c552 the preferential areas of contact and Fe-Fe distances between heme c groups of the redox partners allow establishing competent ET pathways. The coupling of the enzyme with chemical redox mediators was also found not to be energetically favorable. These results indicate that although low activity functional complexes can be formed between Mhcd1NiR and different types of redox mediators, efficient ET is only observed with the putative physiological electron donor cyt c552. PMID:27133504

  9. nasST, two genes involved in the induction of the assimilatory nitrite-nitrate reductase operon (nasAB) of Azotobacter vinelandii.

    PubMed

    Gutierrez, J C; Ramos, F; Ortner, L; Tortolero, M

    1995-11-01

    An operon including two new genes (nasS and nasT) has been defined, cloned and sequenced. The deduced NASS protein is homologous to NRTA from Synechococcus sp. and to NASF from Klebsiella pneumoniae, two proteins involved in nitrate uptake. The predicted NAST polypeptide is homologous to the regulator proteins of the two-component regulatory systems. NASS plays a negative regulatory role in the synthesis of the nitrate and nitrite reductase. NAST is required for the expression of the nitrite-nitrate reductase operon (nasAB). Expression of the nasST operon is not under the control of the NTR system and is not regulated by the nitrogen source. A Phi(nasA-lacZ) fusion has been used to analyse expression of the nasAB operon in three different genetic backgrounds with altered nitrate reductase activity. Beta-galactosidase activity in two of them was independent of nitrate but in a mutant unable to reduce nitrate, nas-4, it was normally induced by nitrate. PMID:8748040

  10. Electron transfer in zinc-reconstituted nitrite reductase from Pseudomonas aeruginosa.

    PubMed Central

    Bellelli, A; Brzezinski, P; Arese, M; Cutruzzola, F; Silvestrini, M C; Brunori, M

    1996-01-01

    1. The catalytic cycle of the haem-containing nitrite reductase (NIR) from Pseudomonas aeruginosa involves electron transfer between the two prosthetic groups of the enzyme, the c-haem and the d1-haem; this reaction was shown to be slow by stopped-flow analysis. The recombinant enzyme, expressed in Pseudomonas putida, contains the c-haem but no d1-haem; we have reconstituted this protein with Zn-protoporphyrin IX in the place of the d1-haem. 2. Photoexcitation of Zn-NIR is followed by electron transfer from the triplet excited state of the Zn-porphyrin to the oxidized c-haem, with a rate constant of 7 x 10(5) s-1; since the intermediate with reduced c-haem is not significantly populated, we conclude that the back reaction is probably as fast. 3. Even taking into account that in the native NIR the driving force is close to zero, the rate constant for the c-->d1 electron transfer, estimated from our experiments, is still much higher than that observed by stopped flow (k = 0.3 s-1) using reduced azurin as the electron donor. This finding may be a direct kinetic indication that reduction of the d1-haem is associated with a substantial reorganization of the co-ordination of the metal, as shown by spectroscopy of the oxidized and reduced NIR. PMID:8912674

  11. Nitrite

    Integrated Risk Information System (IRIS)

    Nitrite ; CASRN 14797 - 65 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects

  12. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens.

    PubMed

    Vázquez-Torres, Andrés; Bäumler, Andreas J

    2016-02-01

    The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts. PMID:26426528

  13. SERR Spectroelectrochemical Study of Cytochrome cd1 Nitrite Reductase Co-Immobilized with Physiological Redox Partner Cytochrome c552 on Biocompatible Metal Electrodes

    PubMed Central

    Silveira, Célia M.; Quintas, Pedro O.; Moura, Isabel; Moura, José J. G.; Hildebrandt, Peter; Almeida, M. Gabriela; Todorovic, Smilja

    2015-01-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the one-electron reduction of nitrite to nitric oxide. Due to their catalytic reaction, cd1NiRs are regarded as promising components for biosensing, bioremediation and biotechnological applications. Motivated by earlier findings that catalytic activity of cd1NiR from Marinobacter hydrocarbonoclasticus (Mhcd1) depends on the presence of its physiological redox partner, cytochrome c552 (cyt c552), we show here a detailed surface enhanced resonance Raman characterization of Mhcd1 and cyt c552 attached to biocompatible electrodes in conditions which allow direct electron transfer between the conducting support and immobilized proteins. Mhcd1 and cyt c552 are co-immobilized on silver electrodes coated with self-assembled monolayers (SAMs) and the electrocatalytic activity of Ag // SAM // Mhcd1 // cyt c552 and Ag // SAM // cyt c552 // Mhcd1 constructs is tested in the presence of nitrite. Simultaneous evaluation of structural and thermodynamic properties of the immobilized proteins reveals that cyt c552 retains its native properties, while the redox potential of apparently intact Mhcd1 undergoes a ~150 mV negative shift upon adsorption. Neither of the immobilization strategies results in an active Mhcd1, reinforcing the idea that subtle and very specific interactions between Mhcd1 and cyt c552 govern efficient intermolecular electron transfer and catalytic activity of Mhcd1. PMID:26091174

  14. SERR Spectroelectrochemical Study of Cytochrome cd1 Nitrite Reductase Co-Immobilized with Physiological Redox Partner Cytochrome c552 on Biocompatible Metal Electrodes.

    PubMed

    Silveira, Célia M; Quintas, Pedro O; Moura, Isabel; Moura, José J G; Hildebrandt, Peter; Almeida, M Gabriela; Todorovic, Smilja

    2015-01-01

    Cytochrome cd1 nitrite reductases (cd1NiRs) catalyze the one-electron reduction of nitrite to nitric oxide. Due to their catalytic reaction, cd1NiRs are regarded as promising components for biosensing, bioremediation and biotechnological applications. Motivated by earlier findings that catalytic activity of cd1NiR from Marinobacter hydrocarbonoclasticus (Mhcd1) depends on the presence of its physiological redox partner, cytochrome c552 (cyt c552), we show here a detailed surface enhanced resonance Raman characterization of Mhcd1 and cyt c552 attached to biocompatible electrodes in conditions which allow direct electron transfer between the conducting support and immobilized proteins. Mhcd1 and cyt c552 are co-immobilized on silver electrodes coated with self-assembled monolayers (SAMs) and the electrocatalytic activity of Ag // SAM // Mhcd1 // cyt c552 and Ag // SAM // cyt c552 // Mhcd1 constructs is tested in the presence of nitrite. Simultaneous evaluation of structural and thermodynamic properties of the immobilized proteins reveals that cyt c552 retains its native properties, while the redox potential of apparently intact Mhcd1 undergoes a ~150 mV negative shift upon adsorption. Neither of the immobilization strategies results in an active Mhcd1, reinforcing the idea that subtle and very specific interactions between Mhcd1 and cyt c552 govern efficient intermolecular electron transfer and catalytic activity of Mhcd1. PMID:26091174

  15. Probing the nitrite and nitric oxide reductase activity of cbb3 oxidase: resonance Raman detection of a six-coordinate ferrous heme-nitrosyl species in the binuclear b3/CuB center.

    PubMed

    Loullis, Andreas; Pinakoulaki, Eftychia

    2015-12-21

    In this work we report the first spectroscopic evidence demonstrating that cbb3 oxidase catalyzes the reduction of nitrite to nitrous oxide under reducing anaerobic conditions. The reaction proceeds through the formation of a ferrous six-coordinate heme b3-nitrosyl species that has been characterized by resonance Raman spectroscopy. PMID:26465875

  16. Inhibition of denitrification activity but not of mRNA induction in Paracoccus denitrificans by nitrite at a suboptimal pH.

    PubMed

    Baumann, B; van der Meer, J R; Snozzi, M; Zehnder, A J

    1997-10-01

    The influence of pH on the denitrification activity of a continuous culture of Paracoccus denitrificans was studied in relation to the presence of nitrite. After a transition from aerobic to anaerobic conditions at the suboptimal pH of 6.8, P. denitrificans was not able to build up a functional denitrification pathway. Nitrite accumulated in the medium as the predominant denitrification product. Although the nitrite reductase gene was induced properly, the enzyme could not be detected at sufficient amounts in the culture. These observations was somehow inhibited, or once synthesized nitrite reductase was inactivated, possibly by the high concentrations of nitrous acid (HNO2). Interestingly, when a P. denitrificans culture which was grown to steady-state under anaerobic conditions was then exposed to suboptimal pHs, cells exhibited a reduced overall denitrification activity, but neither nitrite nor any other denitrification intermediate accumulated. PMID:9403103

  17. Gene cluster for dissimilatory nitrite reductase (nir) from Pseudomonas aeruginosa: sequencing and identification of a locus for heme d1 biosynthesis.

    PubMed Central

    Kawasaki, S; Arai, H; Kodama, T; Igarashi, Y

    1997-01-01

    The primary structure of an nir gene cluster necessary for production of active dissimilatory nitrite reductase was determined from Pseudomonas aeruginosa. Seven open reading frames, designated nirDLGHJEN, were identified downstream of the previously reported nirSMCF genes. From nirS through nirN, the stop codon of one gene and the start codon of the next gene were closely linked, suggesting that nirSMCFDLGHJEN are expressed from a promoter which regulates the transcription of nirSM. The amino acid sequences deduced from the nirDLGH genes were homologous to each other. A gene, designated nirJ, which encodes a protein of 387 amino acids, showed partial identity with each of the nirDLGH genes. The nirE gene encodes a protein of 279 amino acids homologous to S-adenosyl-L-methionine:uroporphyrinogen III methyltransferase from other bacterial strains. In addition, NirE shows 21.0% identity with NirF in the N-terminal 100-amino-acid residues. A gene, designated nirN, encodes a protein of 493 amino acids with a conserved binding motif for heme c (CXXCH) and a typical N-terminal signal sequence for membrane translocation. The derived NirN protein shows 23.9% identity with nitrite reductase (NirS). Insertional mutation and complementation analyses showed that all of the nirFDLGHJE genes were necessary for the biosynthesis of heme d1. PMID:8982003

  18. Crystallization and preliminary structure determination of the membrane-bound complex cytochrome c nitrite reductase from Desulfovibrio vulgaris Hildenborough

    SciTech Connect

    Rodrigues, M. L.; Oliveira, T.; Matias, P. M.; Martins, I. C.; Valente, F. M. A.; Pereira, I. A. C.; Archer, M.

    2006-06-01

    The cytochrome c nitrite reductase complex from D. vulgaris Hildenborough has been crystallized. The preliminary crystallographic structure reveals a 2:1 NrfA:NrfH complex stoichiometry. The cytochrome c nitrite reductase (cNiR) isolated from Desulfovibrio vulgaris Hildenborough is a membrane-bound complex formed of NrfA and NrfH subunits. The catalytic subunit NrfA is a soluble pentahaem cytochrome c that forms a physiological dimer of about 120 kDa. The electron-donor subunit NrfH is a membrane-anchored tetrahaem cytochrome c of about 18 kDa molecular weight and belongs to the NapC/NirT family of quinol dehydrogenases, for which no structures are known. Crystals of the native cNiR membrane complex, solubilized with dodecylmaltoside detergent (DDM), were obtained using PEG 4K as precipitant. Anomalous diffraction data were measured at the Swiss Light Source to 2.3 Å resolution. Crystals belong to the orthorhombic space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 79.5, b = 256.7, c = 578.2 Å. Molecular-replacement and MAD methods were combined to solve the structure. The data presented reveal that D. vulgaris cNiR contains one NrfH subunit per NrfA dimer.

  19. Orientational control over nitrite reductase on modified gold electrode and its effects on the interfacial electron transfer.

    PubMed

    Krzemiński, Lukasz; Cronin, Samuel; Ndamba, Lionel; Canters, Gerard W; Aartsma, Thijs J; Evans, Stephen D; Jeuken, Lars J C

    2011-11-01

    Recently, studies have been reported in which fluorescently labeled redox proteins have been studied with a combination of spectroscopy and electrochemistry. In order to understand the effect of the dye on the protein-electrode interaction, voltammetry and surface analysis have been performed on protein films of dye-labeled and unlabeled forms of a cysteine-surface variant (L93C) and the wild type (wt) of the copper containing nitrite reductase (NiR) from Alcaligenes faecalis S6. The protein has been adsorbed onto gold electrodes modified with self-assembled monolayers (SAMs) made up of 6-mercaptohexanol (6-OH) and mixtures of various octanethiols. Electrochemical and surface-analytical techniques were utilized to explore the influence of the SAM composition on wt and L93C NiR enzyme activity and the orientation of the enzyme molecules with respect to the electrode/SAM. The unlabeled L93C NiR enzyme is only electroactive on mixed SAMs composed of positive 8-aminooctanethiol (8-NH(2)) and 8-mercaptooctanol (8-OH). No enzymatic activity is observed on SAMs consisting of pure 6-OH, 8-OH, or pure 8-NH(2). Modification of L93C NiR with the ATTO 565 dye resulted in enzymatic activity on SAMs of 6-OH, but not on SAMs of 8-OH. Quartz crystal microbalance with dissipation measurements show that well-ordered and rigid protein films (single orientation of the protein) are formed when NiR is electroactive. By contrast, electrode-NiR combinations for which no electrochemical activity is observed still have NiR adsorbed on the surfaces, but a less-structured and water-rich film is formed. For the unlabeled L93C NiR, bilayer formation is observed, suggesting that the Cys93 residue is orientated away from the surface and able to form disulfide bridges to a second layer of L93C NiR. The results indicate that interfacial electron transfer is only possible if the negatively charged surface patch surrounding the electron-entry site of NiR is directed toward the electrode. This can be

  20. The possible involvement of copper-containing nitrite reductase (NirK) and flavohemoglobin in denitrification by the fungus Cylindrocarpon tonkinense.

    PubMed

    Kim, Sang-Wan; Fushinobu, Shinya; Zhou, Shengmin; Wakagi, Takayoshi; Shoun, Hirofumi

    2010-01-01

    The occurrence of denitrification and nitrate respiration among eukaryotes has been established during the last few decades. However, denitrification-related eukaryotic genes have been isolated from only a few fungi, and eukaryotic denitrification (or nitrate respiration) is still inadequately understood. In this study, we identified genes that were up-regulated under denitrifying conditions in the fungus Cylindrocarpon tonkinense using the suppression subtraction hybridization technique, and the expression patterns of these genes were characterized by Northern analysis. We identified copper-containing nitrite reductase, cytochrome P450 nitric oxide reductase, flavohemoglobin (Fhb), and formate/nitrite transporter homolog genes as possibly involved in fungal denitrification. Our results concerning the involvement of Fhb and formate/nitrite transporter perhaps provide new insight into the fungal denitrification system. PMID:20622453

  1. The napF and narG Nitrate Reductase Operons in Escherichia coli Are Differentially Expressed in Response to Submicromolar Concentrations of Nitrate but Not Nitrite

    PubMed Central

    Wang, Henian; Tseng, Ching-Ping; Gunsalus, Robert P.

    1999-01-01

    Escherichia coli synthesizes two biochemically distinct nitrate reductase enzymes, a membrane-bound enzyme encoded by the narGHJI operon and a periplasmic cytochrome c-linked nitrate reductase encoded by the napFDAGHBC operon. To address why the cell makes these two enzymes, continuous cell culture techniques were used to examine napF and narG gene expression in response to different concentrations of nitrate and/or nitrite. Expression of the napF-lacZ and narG-lacZ reporter fusions in strains grown at different steady-state levels of nitrate revealed that the two nitrate reductase operons are differentially expressed in a complementary pattern. The napF operon apparently encodes a “low-substrate-induced” reductase that is maximally expressed only at low levels of nitrate. Expression is suppressed under high-nitrate conditions. In contrast, the narGHJI operon is only weakly expressed at low nitrate levels but is maximally expressed when nitrate is elevated. The narGHJI operon is therefore a “high-substrate-induced” operon that somehow provides a second and distinct role in nitrate metabolism by the cell. Interestingly, nitrite, the end product of each enzyme, had only a minor effect on the expression of either operon. Finally, nitrate, but not nitrite, was essential for repression of napF gene expression. These studies reveal that nitrate rather than nitrite is the primary signal that controls the expression of these two nitrate reductase operons in a differential and complementary fashion. In light of these findings, prior models for the roles of nitrate and nitrite in control of narG and napF expression must be reconsidered. PMID:10464201

  2. Nitrite Reductase from Pseudomonas aeruginosa Released by Antimicrobial Agents and Complement Induces Interleukin-8 Production in Bronchial Epithelial Cells

    PubMed Central

    Sar, Borann; Oishi, Kazunori; Wada, Akihiro; Hirayama, Toshiya; Matsushima, Kouji; Nagatake, Tsuyoshi

    1999-01-01

    We have recently reported that nitrite reductase, a bifunctional enzyme located in the periplasmic space of Pseudomonas aeruginosa, could induce interleukin-8 (IL-8) generation in a variety of respiratory cells, including bronchial epithelial cells (K. Oishi et al. Infect. Immun. 65:2648–2655, 1997). In this report, we examined the mode of nitrite reductase (PNR) release from a serum-sensitive strain of live P. aeruginosa cells during in vitro treatment with four different antimicrobial agents or human complement. Bacterial killing of P. aeruginosa by antimicrobial agents induced PNR release and mediated IL-8 production in human bronchial epithelial (BET-1A) cells. Among these agents, imipenem demonstrated rapid killing of P. aeruginosa as well as rapid release of PNR and resulted in the highest IL-8 production. Complement-mediated killing of P. aeruginosa was also associated with PNR release and enhanced IL-8 production. The immunoprecipitates of the aliquots of bacterial culture containing imipenem or complement with anti-PNR immunoglobulin G (IgG) induced a twofold-higher IL-8 production than did the immunoprecipitates of the aliquots of bacterial culture with a control IgG. These pieces of evidence confirmed that PNR released in the aliquots of bacterial culture was responsible for IL-8 production in the BET-1A cells. Furthermore, the culture supernatants of the BET-1A cells stimulated with aliquots of bacterial culture containing antimicrobial agents or complement similarly mediated neutrophil migration in vitro. These data support the possibility that a potent inducer of IL-8, PNR, could be released from P. aeruginosa after exposure to antimicrobial agents or complement and contributes to neutrophil migration in the airways during bronchopulmonary infections with P. aeruginosa. PMID:10103183

  3. Mechanisms of human erythrocytic bioactivation of nitrite.

    PubMed

    Liu, Chen; Wajih, Nadeem; Liu, Xiaohua; Basu, Swati; Janes, John; Marvel, Madison; Keggi, Christian; Helms, Christine C; Lee, Amber N; Belanger, Andrea M; Diz, Debra I; Laurienti, Paul J; Caudell, David L; Wang, Jun; Gladwin, Mark T; Kim-Shapiro, Daniel B

    2015-01-01

    Nitrite signaling likely occurs through its reduction to nitric oxide (NO). Several reports support a role of erythrocytes and hemoglobin in nitrite reduction, but this remains controversial, and alternative reductive pathways have been proposed. In this work we determined whether the primary human erythrocytic nitrite reductase is hemoglobin as opposed to other erythrocytic proteins that have been suggested to be the major source of nitrite reduction. We employed several different assays to determine NO production from nitrite in erythrocytes including electron paramagnetic resonance detection of nitrosyl hemoglobin, chemiluminescent detection of NO, and inhibition of platelet activation and aggregation. Our studies show that NO is formed by red blood cells and inhibits platelet activation. Nitric oxide formation and signaling can be recapitulated with isolated deoxyhemoglobin. Importantly, there is limited NO production from erythrocytic xanthine oxidoreductase and nitric-oxide synthase. Under certain conditions we find dorzolamide (an inhibitor of carbonic anhydrase) results in diminished nitrite bioactivation, but the role of carbonic anhydrase is abrogated when physiological concentrations of CO2 are present. Importantly, carbon monoxide, which inhibits hemoglobin function as a nitrite reductase, abolishes nitrite bioactivation. Overall our data suggest that deoxyhemoglobin is the primary erythrocytic nitrite reductase operating under physiological conditions and accounts for nitrite-mediated NO signaling in blood. PMID:25471374

  4. Ferrisiderophore reductase activity in Agrobacterium tumefaciens.

    PubMed Central

    Lodge, J S; Gaines, C G; Arceneaux, J E; Byers, B R

    1982-01-01

    Reduction of the iron in ferriagrobactin by the cytoplasmic fraction of Agrobacterium tumefaciens strictly required NaDH as the reductant. Addition of flavin mononucleotide and anaerobic conditions were necessary for the reaction; when added with flavin mononucleotide, magnesium was stimulatory. This ferrisiderophore reductase activity may be a part of the iron assimilation process in A. tumefaciens. PMID:7056702

  5. Comparative induction of nitrate reductase by nitrate and nitrite in barley leaves

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Rosichan, J. L.; Huffaker, R. C.

    1987-01-01

    The comparative induction of nitrate reductase (NR) by ambient NO3- and NO2- as a function of influx, reduction (as NR was induced) and accumulation in detached leaves of 8-day-old barley (Hordeum vulgare L.) seedlings was determined. The dynamic interaction of NO3- influx, reduction and accumulation on NR induction was shown. The activity of NR, as it was induced, influenced its further induction by affecting the internal concentration of NO3-. As the ambient concentration of NO3- increased, the relative influences imposed by influx and reduction on NO3- accumulation changed with influx becoming a more predominant regulant. Significant levels of NO3- accumulated in NO2(-)-fed leaves. When the leaves were supplied cycloheximide or tungstate along with NO2-, about 60% more NO3- accumulated in the leaves than in the absence of the inhibitors. In NO3(-)-supplied leaves NR induction was observed at an ambient concentration of as low as 0.02 mM. No NR induction occurred in leaves supplied with NO2- until the ambient NO2- concentration was 0.5 mM. In fact, NR induction from NO2- solutions was not seen until NO3- was detected in the leaves. The amount of NO3- accumulating in NO2(-)-fed leaves induced similar levels of NR as did equivalent amounts of NO3- accumulating from NO3(-)-fed leaves. In all cases the internal concentration of NO3-, but not NO2-, was highly correlated with the amount of NR induced. The evidence indicated that NO3- was a more likely inducer of NR than was NO2-.

  6. Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system: Performance, microflora and enzymatic activities.

    PubMed

    Li, Wei; Shan, Xiao-Yu; Wang, Zhi-Yao; Lin, Xiao-Yu; Li, Chen-Xu; Cai, Chao-Yang; Abbas, Ghulam; Zhang, Meng; Shen, Li-Dong; Hu, Zhi-Qiang; Zhao, He-Ping; Zheng, Ping

    2016-01-01

    The self-alkalization of denitrifying automatic circulation (DAC) reactor resulted in a large increase of pH up to 9.20 and caused a tremendous accumulation of nitrite up to 451.1 ± 49.0 mgN L(-1) at nitrate loading rate (NLR) from 35 kgN m(-3) d(-1) to 55 kgN m(-3) d(-1). The nitrite accumulation was greatly relieved even at the same NLR once the pH was maintained at 7.6 ± 0.2 in the system. Enzymatic assays indicated that the long-term bacterial exposure to high pH significantly inhibited the activity of copper type nitrite reductase (NirK) rather than the cytochrome cd1 type nitrite reductase (NirS). The terminal restriction fragment length polymorphism (T-RFLP) analysis revealed that the dominant denitrifying bacteria shifted from the NirS-containing Thauear sp. 27 to the NirK-containing Hyphomicrobium nitrativorans strain NL23 during the self-alkalization. The significant nitrite accumulation in the high-rate denitrification system could be therefore, due to the inhibition of Cu-containing NirK by high pH from the self-alkalization. The results suggest that the NirK-containing H. nitrativorans strain NL23 could be an ideal functional bacterium for the conversion of nitrate to nitrite, i.e. denitritation, which could be combined with anaerobic ammonium oxidation (Anammox) to develop a new process for nitrogen removal from wastewater. PMID:26595097

  7. Detection and diversity of copper containing nitrite reductase genes (nirK) in prokaryotic and fungal communities of agricultural soils.

    PubMed

    Long, Andrew; Song, Bongkeun; Fridey, Kelly; Silva, Amy

    2015-02-01

    Microorganisms are capable of producing N2 and N2O gases as the end products of denitrification. Copper-containing nitrite reductase (NirK), a key enzyme in the microbial N-cycle, has been found in bacteria, archaea and fungi. This study seeks to assess the diversity of nirK genes in the prokaryotic and fungal communities of agricultural soils in the United States. New primers targeting the nirK genes in fungi were developed, while nirK genes in archaea and bacteria were detected using previously published methods. The new primers were able to detect fungal nirK genes as well as bacterial nirK genes from a group that could not be observed with previously published primers. Based on the sequence analyses from three different primer sets, five clades of nirK genes were identified, which were associated with soil archaea, ammonium-oxidizing bacteria, denitrifying bacteria and fungi. The diversity of nirK genes in the two denitrifying bacteria clades was higher than the diversity found in other clades. Using a newly designed primer set, this study showed the detection of fungal nirK genes from environmental samples. The newly designed PCR primers in this study enhance the ability to detect the diversity of nirK-encoding microorganisms in soils. PMID:25764542

  8. NADPH-cytochrome P450 reductase-mediated denitration reaction of 2,4,6-trinitrotoluene to yield nitrite in mammals.

    PubMed

    Shinkai, Yasuhiro; Nishihara, Yuya; Amamiya, Masahiro; Wakayama, Toshihiko; Li, Song; Kikuchi, Tomohiro; Nakai, Yumi; Shimojo, Nobuhiro; Kumagai, Yoshito

    2016-02-01

    While the biodegradation of 2,4,6-trinitrotoluene (TNT) via the release of nitrite is well established, mechanistic details of the reaction in mammals are unknown. To address this issue, we attempted to identify the enzyme from rat liver responsible for the production of nitrite from TNT. A NADPH-cytochrome P450 reductase (P450R) was isolated and identified from rat liver microsomes as the enzyme responsible for not only the release of nitrite from TNT but also formation of superoxide and 4-hydroxyamino-2,6-dinitrotoluene (4-HADNT) under aerobic conditions. In this context, reactive oxygen species generated during P450R-catalyzed TNT reduction were found to be, at least in part, a mediator for the production of 4-HADNT from TNT via formation of 4-nitroso-2,6-dinitrotoluene. P450R did not catalyze the formation of the hydride-Meisenheimer complex (H(-)-TNT) that is thought to be an intermediate for nitrite release from TNT. Furthermore, in a time-course experiment, 4-HADNT formation reached a plateau level and then declined during the reaction between TNT and P450R with NADPH, while the release of nitrite was subjected to a lag period. Notably, the produced 4-HADNT can react with the parent compound TNT to produce nitrite and dimerized products via formation of a Janovsky complex. Our results demonstrate for the first time that P450R-mediated release of nitrite from TNT results from the process of chemical interaction of TNT and its 4-electron reduction metabolite 4-HADNT. PMID:26454083

  9. HY5 regulates nitrite reductase 1 (NIR1) and ammonium transporter1;2 (AMT1;2) in Arabidopsis seedlings.

    PubMed

    Huang, Lifen; Zhang, Hongcheng; Zhang, Huiyong; Deng, Xing Wang; Wei, Ning

    2015-09-01

    HY5 (Long Hypocotyles 5) is a key transcription factor in Arabidopsis thaliana that has a pivotal role in seedling development. Soil nitrogen is an essential macronutrient, and its uptake, assimilation and metabolism are influenced by nutrient availability and by lights. To understand the role of HY5 in nitrogen assimilation pathways, we examined the phenotype as well as the expression of selected nitrogen assimilation-related genes in hy5 mutant grown under various nitrogen limiting and nitrogen sufficient conditions, or different light conditions. We report that HY5 positively regulates nitrite reductase gene NIR1 and negatively regulates the ammonium transporter gene AMT1;2 under all nitrogen and light conditions tested, while it affects several other genes in a nitrogen supply-dependent manner. HY5 is not required for light induction of NIR1, AMT1;2 and NIA genes, but it is necessary for high level expression of NIR1 and NIA under optimal nutrient and light conditions. In addition, nitrogen deficiency exacerbates the abnormal root system of hy5. Together, our results suggest that HY5 exhibits the growth-promoting activity only when sufficient nutrients, including lights, are provided, and that HY5 has a complex involvement in nitrogen acquisition and metabolism in Arabidopsis seedlings. PMID:26259199

  10. Relationship between Nitrite Reduction and Active Phosphate Uptake in the Phosphate-Accumulating Denitrifier Pseudomonas sp. Strain JR 12

    PubMed Central

    Barak, Yoram; van Rijn, Jaap

    2000-01-01

    Phosphate uptake by the phosphate-accumulating denitrifier Pseudomonas sp. JR12 was examined with different combinations of electron and carbon donors and electron acceptors. Phosphate uptake in acetate-supplemented cells took place with either oxygen or nitrate but did not take place when nitrite served as the final electron acceptor. Furthermore, nitrite reduction rates by this denitrifier were shown to be significantly reduced in the presence of phosphate. Phosphate uptake assays in the presence of the H+-ATPase inhibitor N,N′-dicyclohexylcarbodiimide (DCCD), in the presence of the uncoupler carbonyl cyanide 3-chlorophenylhydrazone (CCCP), or with osmotic shock-treated cells indicated that phosphate transport over the cytoplasmic membrane of this bacterium was mediated by primary and secondary transport systems. By examining the redox transitions of whole cells at 553 nm we found that phosphate addition caused a significant oxidation of a c-type cytochrome. Based on these findings, we propose that this c-type cytochrome serves as an intermediate in the electron transfer to both nitrite reductase and the site responsible for active phosphate transport. In previous studies with this bacterium we found that the oxidation state of this c-type cytochrome was significantly higher in acetate-supplemented, nitrite-respiring cells (incapable of phosphate uptake) than in phosphate-accumulating cells incubated with different combinations of electron donors and acceptors. Based on the latter finding and results obtained in the present study it is suggested that phosphate uptake in this bacterium is subjected to a redox control of the active phosphate transport site. By means of this mechanism an explanation is provided for the observed absence of phosphate uptake in the presence of nitrite and inhibition of nitrite reduction by phosphate in this organism. The implications of these findings regarding denitrifying, phosphate removal wastewater plants is discussed. PMID

  11. Conserved Active Site Residues Limit Inhibition of a Copper-Containing Nitrite By Small Molecules

    SciTech Connect

    Tocheva, E.I.; Eltis, L.D.; Murphy, M.E.P.

    2009-05-26

    The interaction of copper-containing dissimilatory nitrite reductase from Alcaligenes faecalis S-6 ( AfNiR) with each of five small molecules was studied using crystallography and steady-state kinetics. Structural studies revealed that each small molecule interacted with the oxidized catalytic type 2 copper of AfNiR. Three small molecules (formate, acetate and nitrate) mimic the substrate by having at least two oxygen atoms for bidentate coordination to the type 2 copper atom. These three anions bound to the copper ion in the same asymmetric, bidentate manner as nitrite. Consistent with their weak inhibition of the enzyme ( K i >50 mM), the Cu-O distances in these AfNiR-inhibitor complexes were approximately 0.15 A longer than that observed in the AfNiR-nitrite complex. The binding mode of each inhibitor is determined in part by steric interactions with the side chain of active site residue Ile257. Moreover, the side chain of Asp98, a conserved residue that hydrogen bonds to type 2 copper-bound nitrite and nitric oxide, was either disordered or pointed away from the inhibitors. Acetate and formate inhibited AfNiR in a mixed fashion, consistent with the occurrence of second acetate binding site in the AfNiR-acetate complex that occludes access to the type 2 copper. A fourth small molecule, nitrous oxide, bound to the oxidized metal in a side-on fashion reminiscent of nitric oxide to the reduced copper. Nevertheless, nitrous oxide bound at a farther distance from the metal. The fifth small molecule, azide, inhibited the reduction of nitrite by AfNiR most strongly ( K ic = 2.0 +/- 0.1 mM). This ligand bound to the type 2 copper center end-on with a Cu-N c distance of approximately 2 A, and was the only inhibitor to form a hydrogen bond with Asp98. Overall, the data substantiate the roles of Asp98 and Ile257 in discriminating substrate from other small anions.

  12. Aldose reductase mediates retinal microglia activation.

    PubMed

    Chang, Kun-Che; Shieh, Biehuoy; Petrash, J Mark

    2016-04-29

    Retinal microglia (RMG) are one of the major immune cells in charge of surveillance of inflammatory responses in the eye. In the absence of an inflammatory stimulus, RMG reside predominately in the ganglion layer and inner or outer plexiform layers. However, under stress RMG become activated and migrate into the inner nuclear layer (INL) or outer nuclear layer (ONL). Activated RMG in cell culture secrete pro-inflammatory cytokines in a manner sensitive to downregulation by aldose reductase inhibitors. In this study, we utilized CX3CR1(GFP) mice carrying AR mutant alleles to evaluate the role of AR on RMG activation and migration in vivo. When tested on an AR(WT) background, IP injection of LPS induced RMG activation and migration into the INL and ONL. However, this phenomenon was largely prevented by AR inhibitors or in AR null mice, or was exacerbated in transgenic mice that over-express AR. LPS-induced increases in ocular levels of TNF-α and CX3CL-1 in WT mice were substantially lower in AR null mice or were reduced by AR inhibitor treatment. These studies demonstrate that AR expression in RMG may contribute to the proinflammatory phenotypes common to various eye diseases such as uveitis and diabetic retinopathy. PMID:27033597

  13. Regulation of nap Gene Expression and Periplasmic Nitrate Reductase Activity in the Phototrophic Bacterium Rhodobacter sphaeroides DSM158

    PubMed Central

    Gavira, Mónica; Roldán, M. Dolores; Castillo, Francisco; Moreno-Vivián, Conrado

    2002-01-01

    Bacterial periplasmic nitrate reductases (Nap) can play different physiological roles and are expressed under different conditions depending on the organism. Rhodobacter sphaeroides DSM158 has a Nap system, encoded by the napKEFDABC gene cluster, but nitrite formed is not further reduced because this strain lacks nitrite reductase. Nap activity increases in the presence of nitrate and oxygen but is unaffected by ammonium. Reverse transcription-PCR and Northern blots demonstrated that the napKEFDABC genes constitute an operon transcribed as a single 5.5-kb product. Northern blots and nap-lacZ fusions revealed that nap expression is threefold higher under aerobic conditions but is regulated by neither nitrate nor ammonium, although it is weakly induced by nitrite. On the other hand, nitrate but not nitrite causes a rapid enzyme activation, explaining the higher Nap activity found in nitrate-grown cells. Translational nap′-′lacZ fusions reveal that the napK and napD genes are not efficiently translated, probably due to mRNA secondary structures occluding the translation initiation sites of these genes. Neither butyrate nor caproate increases nap expression, although cells growing phototrophically on these reduced substrates show a very high Nap activity in vivo (nitrite accumulation is sevenfold higher than in medium with malate). Phototrophic growth on butyrate or caproate medium is severely reduced in the NapA− mutants. Taken together, these results indicate that nitrate reduction in R. sphaeroides is mainly regulated at the level of enzyme activity by both nitrate and electron supply and confirm that the Nap system is involved in redox balancing using nitrate as an ancillary oxidant to dissipate excess reductant. PMID:11872721

  14. Diversity and Abundance of Ammonia-Oxidizing Archaeal Nitrite Reductase (nirK) Genes in Estuarine Sediments of San Francisco Bay

    NASA Astrophysics Data System (ADS)

    Reji, L.; Lee, J. A.; Damashek, J.; Francis, C. A.

    2013-12-01

    Nitrification, the microbially-mediated aerobic oxidation of ammonia to nitrate via nitrite, is an integral component of the global biogeochemical nitrogen cycle. The first and rate-limiting step of nitrification, ammonia oxidation, is carried out by two distinct microbial groups: ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA). Molecular ecological studies targeting the amoA gene have revealed the abundance and ubiquity of AOA in terrestrial as well as aquatic environments. In addition to the ammonia oxidation machinery that includes the amoA gene, AOA also encode a gene for copper-containing nitrite reductase (nirK). The distribution patterns and functional role of nirK in AOA remain mostly unknown; proposed functions include the indirect involvement in ammonia oxidation through the production of nitric oxide during nitrite reduction, and (2) nitrite detoxification. In the present study, the diversity and abundance of archaeal nirK genes in estuarine sediments were investigated using quantitative polymerase chain reaction, cloning and sequencing approaches. In sediment samples collected from the San Francisco Bay estuary, two archaeal nirK variants (AnirKa and AnirKb) were amplified using specific primer sets. Overall, AnirKa was observed to be significantly more abundant than AnirKb in the sediment samples, with variation in relative abundance spanning two to three orders of magnitude between sampling sites. Phylogenetic analysis revealed a number of unique archaeal nirK sequence types, as well as many that clustered with sequences from previous estuarine studies and cultured AOA isolates, such as Nitrosopumilus maritimus. This study yielded new insights into the diversity and abundance of archaeal nirK genes in estuarine sediments, and highlights the importance of further investigating the physiological role of this gene in AOA, as well as its suitability as a marker gene for studying AOA in the environment.

  15. Sodium Nitrite Blocks the Activity of Aminoglycosides against Pseudomonas aeruginosa Biofilms

    PubMed Central

    Zemke, Anna C.; Gladwin, Mark T.

    2015-01-01

    Sodium nitrite has broad antimicrobial activity at pH 6.5, including the ability to prevent biofilm growth by Pseudomonas aeruginosa on the surfaces of airway epithelial cells. Because of its antimicrobial activity, nitrite is being investigated as an inhaled agent for chronic P. aeruginosa airway infections in cystic fibrosis patients. However, the interaction between nitrite and commonly used aminoglycosides is unknown. This paper investigates the interaction between nitrite and tobramycin in liquid culture, abiotic biofilms, and a biotic biofilm model simulating the conditions in the cystic fibrosis airway. The addition of nitrite prevented killing by aminoglycosides in liquid culture, with dose dependence between 1.5 and 15 mM. The effect was not blocked by the nitric oxide scavenger CPTIO or dependent on efflux pump activity. Nitrite shifted the biofilm minimal bactericidal concentration (MBC-biofilm) from 256 μg/ml to >1,024 μg/ml in an abiotic biofilm model. In a biotic biofilm model, the addition of 50 mM nitrite decreased the antibiofilm activity of tobramycin by up to 1.2 log. Respiratory chain inhibition recapitulated the inhibition of aminoglycoside activity by nitrite, suggesting a potential mechanism of inhibition of energy-dependent aminoglycoside uptake. In summary, sodium nitrite induces resistance to both gentamicin and tobramycin in P. aeruginosa grown in liquid culture, as an abiotic biofilm, or as a biotic biofilm. PMID:25801569

  16. Low apparent aldose reductase activity produced by monosaccharide autoxidation.

    PubMed Central

    Wolff, S P; Crabbe, M J

    1985-01-01

    Low apparent aldose reductase activity, as measured by NADPH oxidation, can be produced by the spontaneous autoxidation of monosaccharides. NADPH is oxidized to metabolically active NADP+ in a solution of autoxidizing DL-glyceraldehyde at rates of up to 15 X 10(-4) A340/min. The close parallelism between the effects of buffer salt type and concentration, monosaccharide structure and temperature activation on autoxidation and NADPH oxidation imply that autoxidation is a prerequisite for the NADPH oxidation, probably via the hydroperoxy radical. Nucleotide-binding proteins enhanced NADPH oxidation induced by DL-glyceraldehyde, up to 10.6-fold with glucose-6-phosphate dehydrogenase. Glutathione reductase-catalysed NADPH oxidation in the presence of autoxidizing monosaccharide showed many characteristics of the aldose reductase reaction. Aldose reductase inhibitors acted as antioxidants in inhibiting this NADPH oxidation. These results indicate that low apparent aldose reductase activities may be due to artifacts of monosaccharide autoxidation, and could provide an explanation for the non-linear steady-state kinetics observed with DL-glyceraldehyde and aldose reductase. PMID:2985042

  17. Sulfite Oxidase Catalyzes Single-Electron Transfer at Molybdenum Domain to Reduce Nitrite to Nitric Oxide

    PubMed Central

    Wang, Jun; Krizowski, Sabina; Fischer-Schrader, Katrin; Niks, Dimitri; Tejero, Jesús; Sparacino-Watkins, Courtney; Wang, Ling; Ragireddy, Venkata; Frizzell, Sheila; Kelley, Eric E.; Zhang, Yingze; Basu, Partha; Hille, Russ

    2015-01-01

    Abstract Aims: Recent studies suggest that the molybdenum enzymes xanthine oxidase, aldehyde oxidase, and mARC exhibit nitrite reductase activity at low oxygen pressures. However, inhibition studies of xanthine oxidase in humans have failed to block nitrite-dependent changes in blood flow, leading to continued exploration for other candidate nitrite reductases. Another physiologically important molybdenum enzyme—sulfite oxidase (SO)—has not been extensively studied. Results: Using gas-phase nitric oxide (NO) detection and physiological concentrations of nitrite, SO functions as nitrite reductase in the presence of a one-electron donor, exhibiting redox coupling of substrate oxidation and nitrite reduction to form NO. With sulfite, the physiological substrate, SO only facilitates one turnover of nitrite reduction. Studies with recombinant heme and molybdenum domains of SO indicate that nitrite reduction occurs at the molybdenum center via coupled oxidation of Mo(IV) to Mo(V). Reaction rates of nitrite to NO decreased in the presence of a functional heme domain, mediated by steric and redox effects of this domain. Using knockdown of all molybdopterin enzymes and SO in fibroblasts isolated from patients with genetic deficiencies of molybdenum cofactor and SO, respectively, SO was found to significantly contribute to hypoxic nitrite signaling as demonstrated by activation of the canonical NO-sGC-cGMP pathway. Innovation: Nitrite binds to and is reduced at the molybdenum site of mammalian SO, which may be allosterically regulated by heme and molybdenum domain interactions, and contributes to the mammalian nitrate-nitrite-NO signaling pathway in human fibroblasts. Conclusion: SO is a putative mammalian nitrite reductase, catalyzing nitrite reduction at the Mo(IV) center. Antioxid. Redox Signal. 23, 283–294. PMID:25314640

  18. Nitrite attenuated peroxynitrite and hypochlorite generation in activated neutrophils.

    PubMed

    Ren, Xiaoming; Ding, Yun; Lu, Naihao

    2016-03-15

    Oxidative stress is usually considered as an important factor to the pathogenesis of various diseases. Peroxynitrite (ONOO(-)) and hypochlorite (OCl(-)) are formed in immune cells as a part of the innate host defense system, but excessive reactive oxygen species generation can cause progressive inflammation and tissue damage. It has been proven that through mediating nitric oxide (NO) homeostasis, inorganic nitrite (NO2(-)) shows organ-protective effects on oxidative stress and inflammation. However, the effects of NO2(-) on the function of immune cells were still not clear. The potential role of NO2(-) in modulating ONOO(-) and OCl(-) generation in neutrophil cells was investigated in this study. As an immune cell activator, lipopolysaccharide (LPS) increased both ONOO(-) and OCl(-) production in neutrophils, which was significantly attenuated by NO2(-). NO2(-) reduced superoxide (O2(·-)) generation via a NO-dependent mechanism and increased NO formation in activated neutrophils, suggesting a crucial role of O2(·-) in NO2(-)-mediated reduction of ONOO(-). Moreover, the reduced effect of NO2(-) on OCl(-) production was attributed to that NO2(-) reduced H2O2 production in activated neutrophils without influencing the release of myeloperoxidase (MPO), thus limiting OCl(-) production by MPO/H2O2 system. Therefore, NO2(-) attenuates ONOO(-) and OCl(-) formation in activated neutrophils, opening a new direction to modulate the inflammatory response. PMID:26854590

  19. Equine 5α-reductase activity and expression in epididymis.

    PubMed

    Corbin, C J; Legacki, E L; Ball, B A; Scoggin, K E; Stanley, S D; Conley, A J

    2016-10-01

    The 5α-reductase enzymes play an important role during male sexual differentiation, and in pregnant females, especially equine species where maintenance relies on 5α-reduced progesterone, 5α-dihydroprogesterone (DHP). Epididymis expresses 5α-reductases but was not studied elaborately in horses. Epididymis from younger and older postpubertal stallions was divided into caput, corpus and cauda and examined for 5α-reductase activity and expression of type 1 and 2 isoforms by quantitative real-time polymerase chain reaction (qPCR). Metabolism of progesterone and testosterone to DHP and dihydrotestosterone (DHT), respectively, by epididymal microsomal protein was examined by thin-layer chromatography and verified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Relative inhibitory potencies of finasteride and dutasteride toward equine 5α-reductase activity were investigated. Pregnenolone was investigated as an additional potential substrate for 5α-reductase, suggested previously from in vivo studies in mares but never directly examined. No regional gradient of 5α-reductase expression was observed by either enzyme activity or transcript analysis. Results of PCR experiments suggested that type 1 isoform predominates in equine epididymis. Primers for the type 2 isoform were unable to amplify product from any samples examined. Progesterone and testosterone were readily reduced to DHP and DHT, and activity was effectively inhibited by both inhibitors. Using epididymis as an enzyme source, no experimental evidence was obtained supporting the notion that pregnenolone could be directly metabolized by equine 5α-reductases as has been suggested by previous investigators speculating on alternative metabolic pathways leading to DHP synthesis in placenta during equine pregnancies. PMID:27466384

  20. Volatile fatty acid impacts on nitrite oxidation and carbon dioxide fixation in activated sludge.

    PubMed

    Oguz, Merve T; Robinson, Kevin G; Layton, Alice C; Sayler, Gary S

    2006-02-01

    Batch test were performed to assess nitrite removal, nitrate formation, CO2 fixation, gaseous nitrogen production and microbial density in activated sludge exposed to volatile fatty acid (VFA) mixtures. Nitrite removal and nitrate formation were both affected by the presence of VFAs, but to different degrees. Nitrate formation rates were reduced to a greater extent (79%) than nitrite removal rates (36%) resulting in an apparent unbalanced nitrite oxidation reaction. Since the total bacterial density and the nitrite oxidizing bacteria (NOB, Nitrospira) concentration remained essentially constant under all test conditions, the reduction in rates was not due to heterotrophic uptake of nitrogen or to a decrease in the NOB population. In contrast to the nitrogen results, VFAs were not found to impact CO2 fixation efficiency. It appeared that nitrite oxidation occurred when VFAs were present since the oxidation of nitrite provides energy for CO2 fixation. However, nitrate produced from the oxidation of nitrite was reduced to gaseous nitrogen products. N2O gas was detected in the presence of VFAs which was a clear indication that VFAs stimulated an alternative pathway, such as aerobic denitrification, during biotransformation of nitrogen in activated sludge. PMID:16436292

  1. Compensatory periplasmic nitrate reductase activity supports anaerobic growth of Pseudomonas aeruginosa PAO1 in the absence of membrane nitrate reductase.

    PubMed

    Van Alst, Nadine E; Sherrill, Lani A; Iglewski, Barbara H; Haidaris, Constantine G

    2009-10-01

    Nitrate serves as a terminal electron acceptor under anaerobic conditions in Pseudomonas aeruginosa. Reduction of nitrate to nitrite generates a transmembrane proton motive force allowing ATP synthesis and anaerobic growth. The inner membrane-bound nitrate reductase NarGHI is encoded within the narK1K2GHJI operon, and the periplasmic nitrate reductase NapAB is encoded within the napEFDABC operon. The roles of the 2 dissimilatory nitrate reductases in anaerobic growth, and the regulation of their expressions, were examined by use of a set of deletion mutants in P. aeruginosa PAO1. NarGHI mutants were unable to grow anaerobically, but plate cultures remained viable up to 120 h. In contrast, the nitrate sensor-response regulator mutant DeltanarXL displayed growth arrest initially, but resumed growth after 72 h and reached the early stationary phase in liquid culture after 120 h. Genetic, transcriptional, and biochemical studies demonstrated that anaerobic growth recovery by the NarXL mutant was the result of NapAB periplasmic nitrate reductase expression. A novel transcriptional start site for napEFDABC expression was identified in the NarXL mutant grown anaerobically. Furthermore, mutagenesis of a consensus NarL-binding site monomer upstream of the novel transcriptional start site restored anaerobic growth recovery in the NarXL mutant. The data suggest that during anaerobic growth of wild-type P. aeruginosa PAO1, the nitrate response regulator NarL directly represses expression of periplasmic nitrate reductase, while inducing maximal expression of membrane nitrate reductase. PMID:19935885

  2. 5. cap alpha. -reductase activity in rat adipose tissue

    SciTech Connect

    Zyirek, M.; Flood, C.; Longcope, C.

    1987-11-01

    We measured the 5 ..cap alpha..-reductase activity in isolated cell preparations of rat adipose tissue using the formation of (/sup 3/H) dihydrotestosterone from (/sup 3/H) testosterone as an endpoint. Stromal cells were prepared from the epididymal fat pad, perinephric fat, and subcutaneous fat of male rats and from perinephric fat of female rats. Adipocytes were prepared from the epididymal fat pad and perinephric fat of male rats. Stromal cells from the epididymal fat pad and perinephric fat contained greater 5..cap alpha..-reductase activity than did the adipocytes from these depots. Stromal cells from the epididymal fat pad contained greater activity than those from perinephric and subcutaneous depots. Perinephric stromal cells from female rats were slightly more active than those from male rats. Estradiol (10/sup -8/ M), when added to the medium, caused a 90% decrease in 5..cap alpha..-reductase activity. Aromatase activity was minimal, several orders of magnitude less than 5..cap alpha..-reductase activity in each tissue studied.

  3. Activated and unactivated forms of human erythrocyte aldose reductase.

    PubMed Central

    Srivastava, S K; Hair, G A; Das, B

    1985-01-01

    Aldose reductase (alditol:NADP+ 1-oxidoreductase, EC 1.1.1.21) has been partially purified from human erythrocytes by DEAE-cellulose (DE-52) column chromatography. This enzyme is activated severalfold upon incubation with 10 microM each glucose 6-phosphate, NADPH, and glucose. The activation of the enzyme was confirmed by following the oxidation of NADPH as well as the formation of sorbitol with glucose as substrate. The activated form of aldose reductase exhibited monophasic kinetics with both glyceraldehyde and glucose (Km of glucose = 0.68 mM and Km of glyceraldehyde = 0.096 mM), whereas the native (unactivated) enzyme exhibited biphasic kinetics (Km of glucose = 9.0 and 0.9 mM and Km of glyceraldehyde = 1.1 and 0.14 mM). The unactivated enzyme was strongly inhibited by aldose reductase inhibitors such as sorbinil, alrestatin, and quercetrin, and by phosphorylated intermediates such as ADP, glycerate 3-phosphate, glycerate 1,3-bisphosphate, and glycerate 2,3-trisphosphate. The activated form of the enzyme was less susceptible to inhibition by aldose reductase inhibitors and phosphorylated intermediates. PMID:3933003

  4. A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans.

    PubMed

    Gates, Andrew J; Luque-Almagro, Victor M; Goddard, Alan D; Ferguson, Stuart J; Roldán, M Dolores; Richardson, David J

    2011-05-01

    The denitrifying bacterium Paracoccus denitrificans can grow aerobically or anaerobically using nitrate or nitrite as the sole nitrogen source. The biochemical pathway responsible is expressed from a gene cluster comprising a nitrate/nitrite transporter (NasA), nitrite transporter (NasH), nitrite reductase (NasB), ferredoxin (NasG) and nitrate reductase (NasC). NasB and NasG are essential for growth with nitrate or nitrite as the nitrogen source. NADH serves as the electron donor for nitrate and nitrite reduction, but only NasB has a NADH-oxidizing domain. Nitrate and nitrite reductase activities show the same Km for NADH and can be separated by anion-exchange chromatography, but only fractions containing NasB retain the ability to oxidize NADH. This implies that NasG mediates electron flux from the NADH-oxidizing site in NasB to the sites of nitrate and nitrite reduction in NasC and NasB respectively. Delivery of extracellular nitrate to NasBGC is mediated by NasA, but both NasA and NasH contribute to nitrite uptake. The roles of NasA and NasC can be substituted during anaerobic growth by the biochemically distinct membrane-bound respiratory nitrate reductase (Nar), demonstrating functional overlap. nasG is highly conserved in nitrate/nitrite assimilation gene clusters, which is consistent with a key role for the NasG ferredoxin, as part of a phylogenetically widespread composite nitrate and nitrite reductase system. PMID:21348864

  5. Measurement of nitrous oxide reductase activity in aquatic sediments

    SciTech Connect

    Miller, L.G.; Oremland, R.S.; Paulsen, S.

    1986-01-01

    Denitrification in aquatic sediments was measured by an N/sub 2/O reductase assay. Sediments consumed small added quantities of N/sub 2/O over short periods (a few hours). In experiments with sediment slurries, N/sub 2/O reductase activity was inhibited by 0/sub 2/, C/sub 2/H/sub 2/, heat treatment, and by high levels of nitrate (1 mM) or sulfide (10 mM). However, ambient levels of nitrate (<100 ..mu..M) did not influence activity, and moderate levels (about 150 ..mu..M) induced only a short lag before reductase activity began. Moderate levels of sulfide (<1 mM) had no effect on N/sub 2/O reductase activity. Nitrous oxide reductase displayed Michaelis-Menten kinetics in sediments from freshwater, estuarine, and alkaline-saline environments. An in situ assay was devised in which a solution of N/sub 2/O was injected into sealed glass cores containing intact sediment. Two estimates of net rates of denitrification in San Francisco Bay under approximated in situ conditions were 0.009 and 0.041 mmol of N/sub 2/O per m/sup 2/ per h. Addition of chlorate to inhibit denitrification in these intact-core experiments (to estimate gross rates of N/sub 2/O consumption) resulted in approximately a 14% upward revision of estimates of net rates. These results were comparable to an in situ estimate of 0.022 mmol of N/sub 2/O per m/sup 2/ per h made with the acetylene block assay.

  6. Changes in the mutagenic and estrogenic activities of bisphenol A upon treatment with nitrite.

    PubMed

    Masuda, Shuichi; Terashima, Yumeko; Sano, Ayako; Kuruto, Ryoko; Sugiyama, Yasumasa; Shimoi, Kayoko; Tanji, Kenichi; Yoshioka, Hisashi; Terao, Yoshiyasu; Kinae, Naohide

    2005-08-01

    Bisphenol A (4,4'isopropylidenediphenol: BPA), an endocrine-disrupting chemical, is contained in food-packaging and can-coating agents as well as in dental sealants. Nitrite is present in vegetables, fish and tap water as an ingredient or contaminant, and also in human saliva. Here, we explored the possible generation of genotoxicity from the reactions of BPA and nitrite under acidic conditions, a situation simulating the stomach. We determined the changes in the mutagenic and estrogenic activities of BPA before and after nitrite treatment. Untreated BPA did not exhibit any mutagenicity. However, the mixture of BPA and sodium nitrite after incubation at pH 3.0 showed strong mutagenic activity toward Salmonella typhimurium strains TA 100 and TA 98 either with or without a metabolic activation system (S9 mix). The clastogenic properties of nitrite-treated and untreated BPA were analyzed by a micronucleus test with male ICR mice. A single gastric intubation of nitrite-treated BPA induced a significantly higher frequency of micronucleated reticulocytes (MNRETs) in mice. The results of analysis of electron spin resonance (ESR) suggest that the expression of the mutagenic activity of nitrite-treated BPA is related to the generation of radicals in the reaction mixture. By applying 1H and 13C NMR, AB-MS and APCI/LC/MS, we identified two compounds 3-nitrobisphenol A and 3,3'-dinitro-bisphenol A. These compounds were synthesized by the reaction of BPA with nitric acid. 3,3'-Dinitro-bisphenol induced a significantly greater frequency of MNRETs in male ICR mice. By applying a green fluorescent protein (GFP)-reporter expression system and an estrogen R(alpha) competitor screening kit, we found that nitrite-treated BPA and 3,3'-dinitro-bisphenol A showed weak estrogenic activity compared to that of untreated BPA. PMID:15936980

  7. Regulation of Nitrite Stress Response in Desulfovibrio vulgaris Hildenborough, a Model Sulfate-Reducing Bacterium

    PubMed Central

    Rajeev, Lara; Chen, Amy; Kazakov, Alexey E.; Luning, Eric G.; Zane, Grant M.; Novichkov, Pavel S.; Wall, Judy D.

    2015-01-01

    ABSTRACT Sulfate-reducing bacteria (SRB) are sensitive to low concentrations of nitrite, and nitrite has been used to control SRB-related biofouling in oil fields. Desulfovibrio vulgaris Hildenborough, a model SRB, carries a cytochrome c-type nitrite reductase (nrfHA) that confers resistance to low concentrations of nitrite. The regulation of this nitrite reductase has not been directly examined to date. In this study, we show that DVU0621 (NrfR), a sigma54-dependent two-component system response regulator, is the positive regulator for this operon. NrfR activates the expression of the nrfHA operon in response to nitrite stress. We also show that nrfR is needed for fitness at low cell densities in the presence of nitrite because inactivation of nrfR affects the rate of nitrite reduction. We also predict and validate the binding sites for NrfR upstream of the nrfHA operon using purified NrfR in gel shift assays. We discuss possible roles for NrfR in regulating nitrate reductase genes in nitrate-utilizing Desulfovibrio spp. IMPORTANCE The NrfA nitrite reductase is prevalent across several bacterial phyla and required for dissimilatory nitrite reduction. However, regulation of the nrfA gene has been studied in only a few nitrate-utilizing bacteria. Here, we show that in D. vulgaris, a bacterium that does not respire nitrate, the expression of nrfHA is induced by NrfR upon nitrite stress. This is the first report of regulation of nrfA by a sigma54-dependent two-component system. Our study increases our knowledge of nitrite stress responses and possibly of the regulation of nitrate reduction in SRB. PMID:26283774

  8. Structural and functional characterization of the Geobacillus copper nitrite reductase: involvement of the unique N-terminal region in the interprotein electron transfer with its redox partner.

    PubMed

    Fukuda, Yohta; Koteishi, Hiroyasu; Yoneda, Ryohei; Tamada, Taro; Takami, Hideto; Inoue, Tsuyoshi; Nojiri, Masaki

    2014-03-01

    The crystal structures of copper-containing nitrite reductase (CuNiR) from the thermophilic Gram-positive bacterium Geobacillus kaustophilus HTA426 and the amino (N)-terminal 68 residue-deleted mutant were determined at resolutions of 1.3Å and 1.8Å, respectively. Both structures show a striking resemblance with the overall structure of the well-known CuNiRs composed of two Greek key β-barrel domains; however, a remarkable structural difference was found in the N-terminal region. The unique region has one β-strand and one α-helix extended to the northern surface of the type-1 copper site. The superposition of the Geobacillus CuNiR model on the electron-transfer complex structure of CuNiR with the redox partner cytochrome c551 in other denitrifier system led us to infer that this region contributes to the transient binding with the partner protein during the interprotein electron transfer reaction in the Geobacillus system. Furthermore, electron-transfer kinetics experiments using N-terminal residue-deleted mutant and the redox partner, Geobacillus cytochrome c551, were carried out. These structural and kinetics studies demonstrate that the region is directly involved in the specific partner recognition. PMID:24440558

  9. Molecular Components of Nitrate and Nitrite Efflux in Yeast

    PubMed Central

    Cabrera, Elisa; González-Montelongo, Rafaela; Giraldez, Teresa; de la Rosa, Diego Alvarez

    2014-01-01

    Some eukaryotes, such as plant and fungi, are capable of utilizing nitrate as the sole nitrogen source. Once transported into the cell, nitrate is reduced to ammonium by the consecutive action of nitrate and nitrite reductase. How nitrate assimilation is balanced with nitrate and nitrite efflux is unknown, as are the proteins involved. The nitrate assimilatory yeast Hansenula polymorpha was used as a model to dissect these efflux systems. We identified the sulfite transporters Ssu1 and Ssu2 as effective nitrate exporters, Ssu2 being quantitatively more important, and we characterize the Nar1 protein as a nitrate/nitrite exporter. The use of strains lacking either SSU2 or NAR1 along with the nitrate reductase gene YNR1 showed that nitrate reductase activity is not required for net nitrate uptake. Growth test experiments indicated that Ssu2 and Nar1 exporters allow yeast to cope with nitrite toxicity. We also have shown that the well-known Saccharomyces cerevisiae sulfite efflux permease Ssu1 is also able to excrete nitrite and nitrate. These results characterize for the first time essential components of the nitrate/nitrite efflux system and their impact on net nitrate uptake and its regulation. PMID:24363367

  10. Perchlorate Reductase Is Distinguished by Active Site Aromatic Gate Residues.

    PubMed

    Youngblut, Matthew D; Tsai, Chi-Lin; Clark, Iain C; Carlson, Hans K; Maglaqui, Adrian P; Gau-Pan, Phonchien S; Redford, Steven A; Wong, Alan; Tainer, John A; Coates, John D

    2016-04-22

    Perchlorate is an important ion on both Earth and Mars. Perchlorate reductase (PcrAB), a specialized member of the dimethylsulfoxide reductase superfamily, catalyzes the first step of microbial perchlorate respiration, but little is known about the biochemistry, specificity, structure, and mechanism of PcrAB. Here we characterize the biophysics and phylogeny of this enzyme and report the 1.86-Å resolution PcrAB complex crystal structure. Biochemical analysis revealed a relatively high perchlorate affinity (Km = 6 μm) and a characteristic substrate inhibition compared with the highly similar respiratory nitrate reductase NarGHI, which has a relatively much lower affinity for perchlorate (Km = 1.1 mm) and no substrate inhibition. Structural analysis of oxidized and reduced PcrAB with and without the substrate analog SeO3 (2-) bound to the active site identified key residues in the positively charged and funnel-shaped substrate access tunnel that gated substrate entrance and product release while trapping transiently produced chlorate. The structures suggest gating was associated with shifts of a Phe residue between open and closed conformations plus an Asp residue carboxylate shift between monodentate and bidentate coordination to the active site molybdenum atom. Taken together, structural and mutational analyses of gate residues suggest key roles of these gate residues for substrate entrance and product release. Our combined results provide the first detailed structural insight into the mechanism of biological perchlorate reduction, a critical component of the chlorine redox cycle on Earth. PMID:26940877

  11. Sequence homology requirements for transcriptional silencing of 35S transgenes and post-transcriptional silencing of nitrite reductase (trans)genes by the tobacco 271 locus.

    PubMed

    Thierry, D; Vaucheret, H

    1996-12-01

    The transgene locus of the tobacco plant 271 (271 locus) is located on a telomere and consists of multiple copies of a plasmid carrying an NptII marker gene driven by the cauliflower mosaic virus (CaMV) 19S promoter and the leaf-specific nitrite reductase Nii1 cDNA cloned in the antisense orientation under the control of the CaMV 35S promoter. Previous analysis of gene expression in leaves has shown that this locus triggers both post-transcriptional silencing of the host leaf-specific Nii genes and transcriptional silencing of transgenes driven by the 19S or 35S promoter irrespective of their coding sequence and of their location in the genome. In this paper we show that silencing of transgenes carrying Nii1 sequences occurs irrespective of the promoter driving their expression and of their location within the genome. This phenomenon occurs in roots as well as in leaves although root Nii genes share only 84% identity with leaf-specific Nii1 sequences carried by the 271 locus. Conversely, transgenes carrying the bean Nii gene (which shares 76% identity with the tobacco Nii1 gene) escape silencing by the 271 locus. We also show that transgenes driven by the figwort mosaic virus 34S promoter (which shares 63% identity with the 35S promoter) also escape silencing by the 271 locus. Taken together, these results indicate that a high degree of sequence similarity is required between the sequences of the silencing locus and of the target (trans)genes for both transcriptional and post-transcriptional silencing. PMID:9002606

  12. Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil.

    PubMed

    Chen, Zhe; Luo, Xiqian; Hu, Ronggui; Wu, Minna; Wu, Jinshui; Wei, Wenxue

    2010-11-01

    The effect of long-term fertilization on soil-denitrifying communities was determined by measuring the abundance and diversity of the nitrite reductase genes nirK and nirS. Soil samples were collected from plots of a long-term fertilization experiment started in 1990, located in Taoyuan (110°72″ E, 28°52″ N), China. The treatments were no fertilizer (NF), urea (UR), balanced mineral fertilizers (BM), and BM combined with rice straw (BMR). The abundance, diversity, and composition of the soil-denitrifying bacteria were determined by using real-time quantitative PCR, terminal restriction fragment length polymorphism (T-RFLP), and cloning and sequencing of nirK and nirS genes. There was a pronounced difference in the community composition and diversity of nirK-containing denitrifiers responding to the long-term fertilization regimes; however, less variation was observed in communities of nirS-containing denitrifiers, indicating that denitrifiers possessing nirK were more sensitive to the fertilization practices than those with nirS. In contrast, fertilization regimes had similar effects on the copy numbers of nirK and nirS genes. The BMR treatment had the highest copy numbers of nirK and nirS, followed by the two mineral fertilization regimes (UR and BM), and the lowest was in the NF treatment. Of the measured soil parameters, the differences in the community composition of nirK and the abundance of nir denitrifiers were highly correlated with the soil carbon content. Therefore, long-term fertilization resulted in a strong impact on the community structure of nirK populations only, and total organic carbon was the dominant factor in relation to the variations of nir community sizes. PMID:20563573

  13. Aldose reductase inhibitory activity of compounds from Zea mays L.

    PubMed

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1-7) and 5 anthocyanins (compound 8-12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC(50), 4.78 μ M). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  14. Oral Nitrate Reductase Activity Is Not Associated with Development of Non-Alcoholic Fatty Liver Disease (NAFLD) and Non-Alcoholic Steatohepatitis (NASH): A Pilot Study

    PubMed Central

    Barzin, Gilda; Merat, Shahin; Nokhbeh-Zaeem, Habibeh; Saniee, Parastoo; Pedramnia, Shahrzad; Mostashfi Habibabadi, Ali; Nasseri-Moghaddam, Siavosh

    2014-01-01

    BACKGROUND NAFLD/NASH is a manifestation of metabolic syndrome and is associated with obesity/overweight. Not all obese/overweight individuals develop NASH. Gastro-esophageal reflux disease (GERD) is considered a gastrointestinal manifestation of the metabolic syndrome and is associated with obesity/overweight. Again not all obese/overweight individuals develop GERD. Recent data show association of dietary nitrate content and oral nitrate reductase activity (NRA) with GERD. Nitrates need to be converted to nitrite (done in human beings by nitrate reductase of oral bacteria exclusively) to be active in metabolic pathways. OBJECTIVE To assess the relation between NASH/NAFLD and oral NRA. METHODS Oral NRA was measured in individuals with NASH (compatible abdominal ultrasound and two elevated ALT/AST levels over six months) and was compared with that of those without NASH. Oral NRA was measured according to a previously reported protocol. RESULTS Eleven NASH patients and twelve controls were enrolled. Mean oral NRA activity were 2.82 vs. 3.51 μg nitrite-N formed per person per minute for cases and controls respectively (p=0.46). CONCLUSION According to our data, oral nitrite production is not different between individual swith and without NASH. PMID:24829701

  15. Ultrasonic Treatment Enhanced Ammonia-Oxidizing Bacterial (AOB) Activity for Nitritation Process.

    PubMed

    Zheng, Min; Liu, Yan-Chen; Xin, Jia; Zuo, Hao; Wang, Cheng-Wen; Wu, Wei-Min

    2016-01-19

    Oxidation of ammonia to nitrite rather than nitrate is critical for nitritation process for wastewater treatment. We proposed a promising approach by using controlled ultrasonic treatment to enhance the activity of ammonia-oxidizing bacteria (AOB) and suppress that of nitrite-oxidizing bacteria (NOB). Batch activity assays indicated that when ultrasound was applied, AOB activity reached a peak level and then declined but NOB activity deteriorated continuously as the power intensity of ultrasound increased. Kinetic analysis of relative microbial activity versus ultrasonic energy density was performed to investigate the effect of operational factors (power, sludge concentration, and aeration) on AOB and NOB activities and the test parameters were selected for reactor tests. Laboratory sequential batch reactor (SBR) was further used to test the ultrasonic stimulus with 8 h per day operational cycle and synthetic waste urine as influent. With specific ultrasonic energy density of 0.09 kJ/mg VSS and continuously fed influent containing above 200 mg NH3-N/L, high AOB reproductive activity was achieved and nearly complete conversion of ammonia-N to nitrite was maintained. Microbial structure analysis confirmed that the treatment changed community of AOB, NOB, and heterotrophs. Known AOB Nitrosomonas genus remained at similar level in the biomass while typical NOB Nitrospira genus disappeared in the SBR under ultrasonic treatment and after the treatment was off for 30 days. PMID:26678011

  16. Hypoxia induces NO-dependent release of heparan sulfate in fibroblasts from the Alzheimer mouse Tg2576 by activation of nitrite reduction.

    PubMed

    Cheng, Fang; Bourseau-Guilmain, Erika; Belting, Mattias; Fransson, Lars-Åke; Mani, Katrin

    2016-06-01

    There is a functional relationship between the heparan sulfate proteoglycan glypican-1 and the amyloid precursor protein (APP) of Alzheimer disease. In wild-type mouse embryonic fibroblasts, expression and processing of the APP is required for endosome-to-nucleus translocation of anhydromannose-containing heparan sulfate released from S-nitrosylated glypican-1 by ascorbate-induced, nitrosothiol-catalyzed deaminative cleavage. In fibroblasts from the transgenic Alzheimer mouse Tg2576, there is increased processing of the APP to amyloid-β peptides. Simultaneously, there is spontaneous formation of anhydromannose-containing heparan sulfate by an unknown mechanism. We have explored the effect of hypoxia on anhydromannose-containing heparan sulfate formation in wild-type and Tg2576 fibroblasts by deconvolution immunofluorescence microscopy and flow cytometry using an anhydromannose-specific monoclonal antibody and by (35)SO4-labeling experiments. Hypoxia prevented ascorbate-induced heparan sulfate release in wild-type fibroblasts, but induced an increased formation of anhydromannose-positive and (35)S-labeled heparan sulfate in Tg2576 fibroblasts. This appeared to be independent of glypican-1 S-nitrosylation as demonstrated by using a monoclonal antibody specific for S-nitrosylated glypican-1. In hypoxic wild-type fibroblasts, addition of nitrite to the medium restored anhydromannose-containing heparan sulfate formation. The increased release of anhydromannose-containing heparan sulfate in hypoxic Tg2576 fibroblasts did not require addition of nitrite. However, it was suppressed by inhibition of the nitrite reductase activity of xanthine oxidoreductase/aldehyde oxidase or by inhibition of p38 mitogen-activated protein kinase or by chelation of iron. We propose that normoxic Tg2576 fibroblasts maintain a high level of anhydromannose-containing heparan sulfate production by a stress-activated generation of nitric oxide from endogenous nitrite. This activation is enhanced

  17. Nitrate and periplasmic nitrate reductases

    PubMed Central

    Sparacino-Watkins, Courtney; Stolz, John F.; Basu, Partha

    2014-01-01

    The nitrate anion is a simple, abundant and relatively stable species, yet plays a significant role in global cycling of nitrogen, global climate change, and human health. Although it has been known for quite some time that nitrate is an important species environmentally, recent studies have identified potential medical applications. In this respect the nitrate anion remains an enigmatic species that promises to offer exciting science in years to come. Many bacteria readily reduce nitrate to nitrite via nitrate reductases. Classified into three distinct types – periplasmic nitrate reductase (Nap), respiratory nitrate reductase (Nar) and assimilatory nitrate reductase (Nas), they are defined by their cellular location, operon organization and active site structure. Of these, Nap proteins are the focus of this review. Despite similarities in the catalytic and spectroscopic properties Nap from different Proteobacteria are phylogenetically distinct. This review has two major sections: in the first section, nitrate in the nitrogen cycle and human health, taxonomy of nitrate reductases, assimilatory and dissimilatory nitrate reduction, cellular locations of nitrate reductases, structural and redox chemistry are discussed. The second section focuses on the features of periplasmic nitrate reductase where the catalytic subunit of the Nap and its kinetic properties, auxiliary Nap proteins, operon structure and phylogenetic relationships are discussed. PMID:24141308

  18. Terpenoids from Diplophyllum taxifolium with quinone reductase-inducing activity.

    PubMed

    Wang, Xiao; Zhang, Jiao-Zhen; Zhou, Jin-Chuan; Shen, Tao; Lou, Hong-Xiang

    2016-03-01

    Two new ent-prenylaromadendrane-type diterpenoids, diplotaxifols A (1) and B (2), a new ent-eudesmol, ent-eudesma-4(15),11(13)-dien-6α,12-diol (3), eight new eudesmanolides enantiomers (4-11) of the corresponding compounds from higher plants along with four known ent-eudesmanolides (12-15) were isolated from the 95% EtOH extract of Chinese liverwort Diplophyllum taxifolium. Their structures were elucidated on the basis of MS, NMR and IR spectral data, and confirmed by single-crystal X-ray diffraction analysis. The quinone reductase-inducing activity of the compounds was evaluated. PMID:26656409

  19. Aggregate size and architecture determine microbial activity balance for one-stage partial nitritation and anammox.

    PubMed

    Vlaeminck, Siegfried E; Terada, Akihiko; Smets, Barth F; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy

    2010-02-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857

  20. Kinetics of inter- and intramolecular electron transfer of Pseudomonas nautica cytochrome cd1 nitrite reductase: regulation of the NO-bound end product.

    PubMed

    Lopes, H; Besson, S; Moura, I; Moura, J J

    2001-01-01

    The intermolecular electron transfer kinetics between nitrite reductase (NiR, cytochrome cd1) isolated from Pseudomonas nautica and three cytochromes c isolated from the same strain, as well as the intramolecular electron transfer between NiR heme c and NiR heme d1, were investigated by cyclic voltammetry. All cytochromes (cytochrome c552, cytochrome c553 and cytochrome C553(548)) exhibited well-behaved electrochemistry. The individual diffusion coefficients and mid-point redox potentials were determined. Under the experimental conditions, only cytochrome c552 established a rapid electron transfer with NiR. At acidic pH, the intermolecular electron transfer (cytochrome c(552red)-->NiR heme cox) is a second-order reaction with a rate constant (k2) of 4.1+/-0.1x10(5) M(-1) s(-1) (pH=6.3 and 100 mM NaCl). Under these conditions, the intermolecular reaction represents the rate-limiting step. A minimum estimate of 33 s(-1) could be determined for the first-order rate constant (k1) of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox. The pH dependence of k2 values was investigated at pH values ranging from 5.8 to 8.0. When the pH is progressively shifted towards basic values, the rate constant of the intramolecular electron transfer reaction NiR heme c(red)-->NiR heme d1ox decreases gradually to a point where it becomes rate limiting. At pH 8.0 we determined a value of 1.4+/-0.7 s(-1), corresponding to a k2 value of 2.2+/-1.1x10(4) M(-1) s(-1) for the intermolecular step. The physiological relevance of these results is discussed with a particular emphasis on the proposed mechanism of "dead-end product" formation. PMID:11191223

  1. Nitrite reductase genes (nirK and nirS) as functional markers to investigate diversity of denitrifying bacteria in Pacific northwest marine sediment communities

    SciTech Connect

    Braker, G.; Zhou, J.; Wu, L.; Devol, A.H.; Tiedje, J.M.

    2000-05-01

    Genetic heterogeneity of denitrifying bacteria in sediment samples from Puget Sound and two sites on the Washington continental margin was studied by PCR approaches amplifying nirK and nirS genes. These structurally different but functionally equivalent single-copy genes coding for nitrite reductases, a key enzyme of the denitrification process, were used as a molecular marker for denitrifying bacteria. nirS sequences could be amplified from samples of both sampling sites, whereas nirK sequences were detected only in samples from the Washington margin. To assess the underlying nir gene structure, PCR products of both genes were cloned and screened by restriction fragment length polymorphism (RFLP). Rarefraction analysis revealed a high level of diversity especially for nirS clones from Puget Sound and a slightly lower level of diversity for nirK and nirS clones from the Washington margin. One group dominated within nirK clones, but no dominance and only a few redundant clones were seen between sediment samples for nirS clones in both habitats. Hybridization and sequencing confirmed that all but one of the 228 putative nirS clones were nirS with levels of nucleotide identities as low as 45.3%. Phylogenetic analysis grouped nirS clones into three distinct subclusters within the nirS gene tree which corresponded to the two habitats from which they were obtained. These sequences had little relationship to any strain with known nirS sequences or to isolates (mostly close relatives of Pseudomonas stutzeri) from the Washington margin sediment samples. nirK clones were more closely related to each other than were the nirS clones, with 78.6% and higher nucleotide identities; clones showing only weak hybridization signals were not related to known nirK sequences. All nirK clones were also grouped into a distinct cluster which could not be placed with any strain with known nirK sequences. These findings show a very high diversity of nir sequences within small samples and that

  2. Changes in Benthic Denitrification, Nitrate Ammonification, and Anammox Process Rates and Nitrate and Nitrite Reductase Gene Abundances along an Estuarine Nutrient Gradient (the Colne Estuary, United Kingdom)▿ †

    PubMed Central

    Dong, Liang F.; Smith, Cindy J.; Papaspyrou, Sokratis; Stott, Andrew; Osborn, A. Mark; Nedwell, David B.

    2009-01-01

    Estuarine sediments are the location for significant bacterial removal of anthropogenically derived inorganic nitrogen, in particular nitrate, from the aquatic environment. In this study, rates of benthic denitrification (DN), dissimilatory nitrate reduction to ammonium (DNRA), and anammox (AN) at three sites along a nitrate concentration gradient in the Colne estuary, United Kingdom, were determined, and the numbers of functional genes (narG, napA, nirS, and nrfA) and corresponding transcripts encoding enzymes mediating nitrate reduction were determined by reverse transcription-quantitative PCR. In situ rates of DN and DNRA decreased toward the estuary mouth, with the findings from slurry experiments suggesting that the potential for DNRA increased while the DN potential decreased as nitrate concentrations declined. AN was detected only at the estuary head, accounting for ∼30% of N2 formation, with 16S rRNA genes from anammox-related bacteria also detected only at this site. Numbers of narG genes declined along the estuary, while napA gene numbers were stable, suggesting that NAP-mediated nitrate reduction remained important at low nitrate concentrations. nirS gene numbers (as indicators of DN) also decreased along the estuary, whereas nrfA (an indicator for DNRA) was detected only at the two uppermost sites. Similarly, nitrate and nitrite reductase gene transcripts were detected only at the top two sites. A regression analysis of log(n + 1) process rate data and log(n + 1) mean gene abundances showed significant relationships between DN and nirS and between DNRA and nrfA. Although these log-log relationships indicate an underlying relationship between the genetic potential for nitrate reduction and the corresponding process activity, fine-scale environmentally induced changes in rates of nitrate reduction are likely to be controlled at cellular and protein levels. PMID:19304834

  3. Optimisation of nitrate reductase enzyme activity to synthesise silver nanoparticles.

    PubMed

    Khodashenas, Bahareh; Ghorbani, Hamid Reza

    2016-06-01

    Today, the synthesis of silver nanoparticles (Ag NPs) is very common since it has many applications in different areas. The synthesis of these nanoparticles is done by means of physical, chemical, or biological methods. However, due to its inexpensive and environmentally friendly features, the biological method is more preferable. In the present study, using nitrate reductase enzyme available in the Escherichia coli (E. coli) bacterium, the biosynthesis of Ag NPs was investigated. In addition, the activity of the nitrate reductase enzyme was optimised by changing its cultural conditions, and the effects of silver nitrate (AgNO(3)) concentration and enzyme amount on nanoparticles synthesis were studied. Finally, the produced nanoparticles were studied using ultraviolet -visible (UV-Vis) spectrophotometer, dynamic light scattering technique, and transmission electron microscopy. UV-Visible spectrophotometric study showed the characteristic peak for Ag NPs at wavelength 405-420 nm for 1 mM metal precursor solution (AgNO(3)) with 1, 5, 10, and 20 cc supernatant and 435 nm for 0.01M AgNO(3) with 20 cc supernatant. In this study, it was found that there is a direct relationship between the AgNO(3) concentration and the size of produced Ag NPs. PMID:27256897

  4. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.

    PubMed

    Cerqueira, Nuno M F S A; Gonzalez, Pablo J; Fernandes, Pedro A; Moura, José J G; Ramos, Maria João

    2015-11-17

    It is remarkable how nature has been able to construct enzymes that, despite sharing many similarities, have simple but key differences that tune them for completely different functions in living cells. Periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) from the DMSOr family are representative examples of this. Both enzymes share almost identical three-dimensional protein foldings and active sites, in terms of coordination number, geometry and nature of the ligands. The substrates of both enzymes (nitrate and formate) are polyatomic anions that also share similar charge and stereochemistry. In terms of the catalytic mechanism, both enzymes have a common activation mechanism (the sulfur-shift mechanism) that ensures a constant coordination number around the metal ion during the catalytic cycle. In spite of these similarities, they catalyze very different reactions: Nap abstracts an oxygen atom from nitrate releasing nitrite, whereas FdH catalyzes a hydrogen atom transfer from formate and releases carbon dioxide. In this Account, a critical analysis of structure, function, and catalytic mechanism of the molybdenum enzymes periplasmic nitrate reductase (Nap) and formate dehydrogenase (Fdh) is presented. We conclude that the main structural driving force that dictates the type of reaction, catalyzed by each enzyme, is a key difference on one active site residue that is located in the top region of the active sites of both enzymes. In both enzymes, the active site is centered on the metal ion of the cofactor (Mo in Nap and Mo or W in Fdh) that is coordinated by four sulfur atoms from two pyranopterin guanosine dinucleotide (PGD) molecules and by a sulfido. However, while in Nap there is a Cys directly coordinated to the Mo ion, in FdH there is a SeCys instead. In Fdh there is also an important His that interacts very closely with the SeCys, whereas in Nap the same position is occupied by a Met. The role of Cys in Nap and SeCys in FdH is similar in both

  5. Response of denitrifying genes coding for nitrite (nirK or nirS) and nitrous oxide (nosZ) reductases to different physico-chemical parameters during agricultural waste composting.

    PubMed

    Zhang, Lihua; Zeng, Guangming; Zhang, Jiachao; Chen, Yaoning; Yu, Man; Lu, Lunhui; Li, Hui; Zhu, Yuan; Yuan, Yujie; Huang, Aizhi; He, Ling

    2015-05-01

    The present research was performed to clarify the changes of denitrifying genes (nirK, nirS, and nosZ) abundances under different physico-chemical parameters through evaluating the relationships between the genes abundances and parameters during agricultural waste composting. The genes abundances were determined by real-time quantitative PCR (qPCR). The correlations between physico-chemical parameters and denitrifying genes abundances were analysed by regression analysis. qPCR results showed that the nosZ gene abundance was higher than that of nirK and nirS genes. The nirK gene abundance was higher than nirS gene indicating that nitrite reducers with Cu-containing enzyme encoded by nirK gene were more of importance than those with cytochrome cd1 nitrite reductase encoded by nirS gene in the nitrite reduction step. Regression analysis suggested that (1) nirK gene abundance was correlated with pile temperature following quadratic model; (2) nirS gene abundance was linearly correlated with pile temperature and concentration of NH4 (+), while correlated with concentration of NO3 (-) and pH following inverse and quadratic model respectively; (3) nosZ gene abundance was quadratically correlated with pH and linearly correlated with water soluble carbon (WSC). PMID:25877886

  6. Inorganic nitrite attenuates NADPH oxidase-derived superoxide generation in activated macrophages via a nitric oxide-dependent mechanism.

    PubMed

    Yang, Ting; Peleli, Maria; Zollbrecht, Christa; Giulietti, Alessia; Terrando, Niccolo; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-06-01

    Oxidative stress contributes to the pathogenesis of many disorders, including diabetes and cardiovascular disease. Immune cells are major sources of superoxide (O2(∙-)) as part of the innate host defense system, but exaggerated and sustained O2(∙-) generation may lead to progressive inflammation and organ injuries. Previous studies have proven organ-protective effects of inorganic nitrite, a precursor of nitric oxide (NO), in conditions manifested by oxidative stress and inflammation. However, the mechanisms are still not clear. This study aimed at investigating the potential role of nitrite in modulating NADPH oxidase (NOX) activity in immune cells. Mice peritoneal macrophages or human monocytes were activated by lipopolysaccharide (LPS), with or without coincubation with nitrite. O2(∙-) and peroxynitrite (ONOO(-)) formation were detected by lucigenin-based chemiluminescence and fluorescence techniques, respectively. The intracellular NO production was measured by DAF-FM DA fluorescence. NOX isoforms and inducible NO synthase (iNOS) expression were detected by qPCR. LPS increased both O2(∙-) and ONOO(-) production in macrophages, which was significantly reduced by nitrite (10µmol/L). Mechanistically, the effects of nitrite are (1) linked to increased NO generation, (2) similar to that observed with the NO donor DETA-NONOate, and (3) can be abolished by the NO scavenger carboxy-PTIO or by the xanthine oxidase (XO) inhibitor febuxostat. Nox2 expression was increased in activated macrophages, but was not influenced by nitrite. However, nitrite attenuated LPS-induced upregulation of iNOS expression. Similar to that observed in mice macrophages, nitrite also reduced O2(∙-) generation in LPS-activated human monocytes. In conclusion, XO-mediated reduction of nitrite attenuates NOX activity in activated macrophages, which may modulate the inflammatory response. PMID:25724690

  7. Evaluation of 5α-reductase inhibitory activity of certain herbs useful as antiandrogens.

    PubMed

    Nahata, A; Dixit, V K

    2014-08-01

    This study demonstrates 5α-reductase inhibitory activity of certain herbs useful in the management of androgenic disorders. Ganoderma lucidum (Curtis) P. Karst (GL), Urtica dioica Linn. (UD), Caesalpinia bonducella Fleming. (CB), Tribulus terrestris Linn. (TT), Pedalium murex Linn. (PM), Sphaeranthus indicus Linn. (SI), Cuscuta reflexa Roxb. (CR), Citrullus colocynthis Schrad. (CC), Benincasa hispida Cogn. (BH), Phyllanthus niruri Linn. (PN) and Echinops echinatus Linn. (EE) were included in the study. Petroleum ether, ethanol and aqueous extracts of these herbs were tested for their 5α-reductase inhibitory activity against the standard 5α-reductase inhibitor, finasteride. A biochemical method to determine the activity of 5α-reductase was used to evaluate the inhibition of different extracts to the enzyme. The optical density (OD) value of each sample was measured continuously with ultraviolet spectrophotometer for the reason that the substrate NADPH has a specific absorbance at 340 nm. As the enzyme 5α-reductase uses NADPH as a substrate, so in the presence of 5α-reductase inhibitor, the NADPH concentration will increase with the function of time. This method thus implicates the activity of 5α-reductase. The method proved to be extremely useful to screen the herbs for their 5α-reductase inhibitory potential. GL, UD, BH, SI and CR came out to be promising candidates for further exploring their antiandrogenic properties. PMID:23710567

  8. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4’-sulfonyl derivative of L-methionine (dabsyl Met), the ...

  9. Reductive activation of E. coli respiratory nitrate reductase.

    PubMed

    Ceccaldi, Pierre; Rendon, Julia; Léger, Christophe; Toci, René; Guigliarelli, Bruno; Magalon, Axel; Grimaldi, Stéphane; Fourmond, Vincent

    2015-10-01

    Over the past decades, a number of authors have reported the presence of inactive species in as-prepared samples of members of the Mo/W-bisPGD enzyme family. This greatly complicated the spectroscopic studies of these enzymes, since it is impossible to discriminate between active and inactive species on the basis of the spectroscopic signatures alone. Escherichia coli nitrate reductase A (NarGHI) is a member of the Mo/W-bisPGD family that allows anaerobic respiration using nitrate as terminal electron acceptor. Here, using protein film voltammetry on NarGH films, we show that the enzyme is purified in a functionally heterogeneous form that contains between 20 and 40% of inactive species that activate the first time they are reduced. This activation proceeds in two steps: a non-redox reversible reaction followed by an irreversible reduction. By carefully correlating electrochemical and EPR spectroscopic data, we show that neither the two major Mo(V) signals nor those of the two FeS clusters that are the closest to the Mo center are associated with the two inactive species. We also conclusively exclude the possibility that the major "low-pH" and "high-pH" Mo(V) EPR signatures correspond to species in acid-base equilibrium. PMID:26073890

  10. Nitrite activates protein kinase A in normoxia to mediate mitochondrial fusion and tolerance to ischaemia/reperfusion

    PubMed Central

    Pride, Christelle Kamga; Mo, Li; Quesnelle, Kelly; Dagda, Ruben K.; Murillo, Daniel; Geary, Lisa; Corey, Catherine; Portella, Rafael; Zharikov, Sergey; St Croix, Claudette; Maniar, Salony; Chu, Charleen T.; K. H. Khoo, Nicholas; Shiva, Sruti

    2014-01-01

    Aims Nitrite (NO2–), a dietary constituent and nitric oxide (NO) oxidation product, mediates cardioprotection after ischaemia/reperfusion (I/R) in a number of animal models when administered during ischaemia or as a pre-conditioning agent hours to days prior to the ischaemic episode. When present during ischaemia, the reduction of nitrite to bioactive NO by deoxygenated haem proteins accounts for its protective effects. However, the mechanism of nitrite-induced pre-conditioning, a normoxic response which does not appear to require reduction of nitrite to NO, remains unexplored. Methods and results Using a model of hypoxia/reoxygenation (H/R) in cultured rat H9c2 cardiomyocytes, we demonstrate that a transient (30 min) normoxic nitrite treatment significantly attenuates cell death after a hypoxic episode initiated 1 h later. Mechanistically, this protection depends on the activation of protein kinase A, which phosphorylates and inhibits dynamin-related protein 1, the predominant regulator of mitochondrial fission. This results morphologically, in the promotion of mitochondrial fusion and functionally in the augmentation of mitochondrial membrane potential and superoxide production. We identify AMP kinase (AMPK) as a downstream target of the mitochondrial reactive oxygen species (ROS) generated and show that its oxidation and subsequent phosphorylation are essential for cytoprotection, as scavenging of ROS prevents AMPK activation and inhibits nitrite-mediated protection after H/R. The protein kinase A-dependent protection mediated by nitrite is reproduced in an intact isolated rat heart model of I/R. Conclusions These data are the first to demonstrate nitrite-dependent normoxic modulation of both mitochondrial morphology and function and reveal a novel signalling pathway responsible for nitrite-mediated cardioprotection. PMID:24081164

  11. Antitumor effect of synergistic contribution of nitrite and hydrogen peroxide in the plasma activated medium

    NASA Astrophysics Data System (ADS)

    Kurake, Naoyuki; Tanaka, Hiromasa; Ishikawa, Kenji; Nakamura, Kae; Kajiyama, Hiroaki; Kikkawa, Fumiaki; Kondo, Takashi; Mizuno, Masaaki; Takeda, Keigo; Kondo, Hiroki; Sekine, Makoto; Hori, Masaru

    2015-09-01

    Non-equilibrium atmospheric pressure plasmas (NEAPP) have been attracted attention in the noble application of cancer therapy. Although good effects of the Plasma-Activated-Medium (PAM) such as the selective antitumor effect and killing effect for the anticancer agent resistant cells were reported, a mechanism of this effect has not been still clarified yet. In this study, we have investigated a contribution of the reactive nitrogen and oxygen species (RNOS) generated in PAM such as hydrogen peroxide and nitrite. Those species generated in the PAM quantitatively measured by light absorbance of commercial regent. Moreover, viable cell count after cell culture with those RNOS intentionally added medium or PAM were also measured by MTS assay. Our NEAPP source generated hydrogen peroxide and nitrite with the generation ratio of 0.35 μM/s and 9.8 μM/s. In those RNOS, hydrogen peroxide has respective antitumor effect. On the other hands, nitrite has no antitumor effect singly. But, synergistically enhance the antitumor effect of hydrogen peroxide. Moreover, this effect of those RNOS also contribute for the selectively cancer killing effect of PAM.

  12. Effect of changing the nanoscale environment on activity and stability of nitrate reductase.

    PubMed

    Sachdeva, Veena; Hooda, Vinita

    2016-07-01

    Nitrate reductase (NR) is employed for fabrication of nitrate sensing devices in which the enzyme in immobilized form is used to catalyze the conversion of nitrate to nitrite in the presence of a suitable cofactor. So far, instability of immobilized NR due to the use of inappropriate immobilization matrices has limited the practical applications of these devices. Present study is an attempt to improve the kinetic properties and stability of NR using nanoscale iron oxide (nFe3O4) and zinc oxide (nZnO) particles. The desired nanoparticles were synthesized, surface functionalized, characterized and affixed onto the epoxy resin to yield two nanocomposite supports (epoxy/nFe3O4 and epoxy/nZnO) for immobilizing NR. Epoxy/nFe3O4 and epoxy/nZnO support could load as much as 35.8±0.01 and 33.20±0.01μg/cm(2) of NR with retention of about 93.72±0.50 and 84.81±0.80% of its initial activity respectively. Changes in surface morphology and chemical bonding structure of both the nanocomposite supports after addition of NR were confirmed by scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). Optimum working conditions of pH, temperature and substrate concentration were ascertained for free as well as immobilized NR preparations. Further, storage stability at 4°C and thermal stability between 25-50°C were determined for all the NR preparations. Analytical applications of immobilized NR for determination of soil and water nitrates along with reusability data has been included to make sure the usefulness of the procedure. PMID:27233127

  13. Diversity in Overall Activity Regulation of Ribonucleotide Reductase*

    PubMed Central

    Jonna, Venkateswara Rao; Crona, Mikael; Rofougaran, Reza; Lundin, Daniel; Johansson, Samuel; Brännström, Kristoffer; Sjöberg, Britt-Marie; Hofer, Anders

    2015-01-01

    Ribonucleotide reductase (RNR) catalyzes the reduction of ribonucleotides to the corresponding deoxyribonucleotides, which are used as building blocks for DNA replication and repair. This process is tightly regulated via two allosteric sites, the specificity site (s-site) and the overall activity site (a-site). The a-site resides in an N-terminal ATP cone domain that binds dATP or ATP and functions as an on/off switch, whereas the composite s-site binds ATP, dATP, dTTP, or dGTP and determines which substrate to reduce. There are three classes of RNRs, and class I RNRs consist of different combinations of α and β subunits. In eukaryotic and Escherichia coli class I RNRs, dATP inhibits enzyme activity through the formation of inactive α6 and α4β4 complexes, respectively. Here we show that the Pseudomonas aeruginosa class I RNR has a duplicated ATP cone domain and represents a third mechanism of overall activity regulation. Each α polypeptide binds three dATP molecules, and the N-terminal ATP cone is critical for binding two of the dATPs because a truncated protein lacking this cone could only bind dATP to its s-site. ATP activates the enzyme solely by preventing dATP from binding. The dATP-induced inactive form is an α4 complex, which can interact with β2 to form a non-productive α4β2 complex. Other allosteric effectors induce a mixture of α2 and α4 forms, with the former being able to interact with β2 to form active α2β2 complexes. The unique features of the P. aeruginosa RNR are interesting both from evolutionary and drug discovery perspectives. PMID:25971975

  14. The nasB operon and nasA gene are required for nitrate/nitrite assimilation in Bacillus subtilis.

    PubMed Central

    Ogawa, K; Akagawa, E; Yamane, K; Sun, Z W; LaCelle, M; Zuber, P; Nakano, M M

    1995-01-01

    Bacillus subtilis can use either nitrate or nitrite as a sole source of nitrogen. The isolation of the nasABCDEF genes of B. subtilis, which are required for nitrate/nitrite assimilation, is reported. The probable gene products include subunits of nitrate/nitrite reductases and an enzyme involved in the synthesis of siroheme, a cofactor for nitrite reductase. PMID:7868621

  15. Chromate reductase activity in Streptomyces sp. MC1.

    PubMed

    Polti, Marta A; Amoroso, María J; Abate, Carlos M

    2010-02-01

    Biological transformation of Cr(VI) to Cr(III) by enzymatic reduction may provide a less costly and more environmentally friendly approach to remediation. In a previous report a Cr(VI) resistant actinomycete strain, Streptomyces sp. MC1, was able to reduce Cr(VI) present in a synthetic medium, soil extract and soil samples. This is the first time optimal conditions such as pH, temperature, growth phase and electron donor have been elucidated in vitro for Cr(VI) reduction by a streptomycete. Chromate reductase of Streptomyces sp. MC1 is a constitutive enzyme which was mainly associated with biomass and required NAD(P)H as an electron donor. It was active over a broad temperature (19-39 degrees C) and pH (5-8) range, and optimum conditions were 30 degrees C and pH 7. The enzyme was present in supernatant, pellet and cell free extract. Bioremediation with the enzyme was observed in non-compatible cell reproduction systems, conditions frequently found in contaminated environments. PMID:20339215

  16. A Periplasmic Complex of the Nitrite Reductase NirS, the Chaperone DnaK, and the Flagellum Protein FliC Is Essential for Flagellum Assembly and Motility in Pseudomonas aeruginosa

    PubMed Central

    Borrero-de Acuña, José Manuel; Molinari, Gabriella; Rohde, Manfred; Dammeyer, Thorben; Wissing, Josef; Jänsch, Lothar; Arias, Sagrario; Jahn, Martina; Schobert, Max; Timmis, Kenneth N.

    2015-01-01

    ABSTRACT Pseudomonas aeruginosa is a ubiquitously occurring environmental bacterium and opportunistic pathogen responsible for various acute and chronic infections. Obviously, anaerobic energy generation via denitrification contributes to its ecological success. To investigate the structural basis for the interconnection of the denitrification machinery to other essential cellular processes, we have sought to identify the protein interaction partners of the denitrification enzyme nitrite reductase NirS in the periplasm. We employed NirS as an affinity-purifiable bait to identify interacting proteins in vivo. Results obtained revealed that both the flagellar structural protein FliC and the protein chaperone DnaK form a complex with NirS in the periplasm. The interacting domains of NirS and FliC were tentatively identified. The NirS-interacting stretch of amino acids lies within its cytochrome c domain. Motility assays and ultrastructure analyses revealed that a nirS mutant was defective in the formation of flagella and correspondingly in swimming motility. In contrast, the fliC mutant revealed an intact denitrification pathway. However, deletion of the nirF gene, coding for a heme d1 biosynthetic enzyme, which leads to catalytically inactive NirS, did not abolish swimming ability. This pointed to a structural function for the NirS protein. FliC and NirS were found colocalized with DnaK at the cell surface of P. aeruginosa. A function of the detected periplasmic NirS-DnaK-FliC complex in flagellum formation and motility was concluded and discussed. IMPORTANCE Physiological functions in Gram-negative bacteria are connected with the cellular compartment of the periplasm and its membranes. Central enzymatic steps of anaerobic energy generation and the motility mediated by flagellar activity use these cellular structures in addition to multiple other processes. Almost nothing is known about the protein network functionally connecting these processes in the periplasm

  17. 5α-reductase inhibitors, antiviral and anti-tumor activities of some steroidal cyanopyridinone derivatives.

    PubMed

    Al-Mohizea, Abdullah M; Al-Omar, Mohamed A; Abdalla, Mohamed M; Amr, Abdel-Galil E

    2012-01-01

    We herein report the 5α-reductase inhibitors, antiviral and anti-tumor activities of some synthesized heterocyclic cyanopyridone and cyanothiopyridone derivatives fused with steroidal structure. Initially the acute toxicity of the compounds was assayed via the determination of their LD(50). All the compounds, except 3b, were interestingly less toxic than the reference drug (Prednisolone(®)). Seventeen heterocyclic derivatives containing a cyanopyridone or cyanothiopyridone rings fused to a steroidal moiety were synthesized and screened for their 5α-reductase inhibitors, antiviral and anti-tumor activities comparable to that of Anastrozole, Bicalutamide, Efavirenz, Capravirine, Ribavirin, Oseltamivir and Amantadine as the reference drugs. Some of the compounds exhibited better 5α-reductase inhibitors, antiviral and anti-tumor activities than the reference drugs. The detailed 5α-reductase inhibitors, antiviral and anti-tumor activities of the synthesized compounds were reported. PMID:22057085

  18. Peach MYB7 activates transcription of the proanthocyanidin pathway gene encoding leucoanthocyanidin reductase, but not anthocyanidin reductase

    PubMed Central

    Zhou, Hui; Lin-Wang, Kui; Liao, Liao; Gu, Chao; Lu, Ziqi; Allan, Andrew C.; Han, Yuepeng

    2015-01-01

    Proanthocyanidins (PAs) are a group of natural phenolic compounds that have a great effect on both flavor and nutritious value of fruit. It has been shown that PA synthesis is regulated by R2R3-MYB transcription factors (TFs) via activation of PA-specific pathway genes encoding leucoanthocyanidin reductase and anthocyanidin reductase. Here, we report the isolation and characterization of a MYB gene designated PpMYB7 in peach. The peach PpMYB7 represents a new group of R2R3-MYB genes regulating PA synthesis in plants. It is able to activate transcription of PpLAR1 but not PpANR, and has a broader selection of potential bHLH partners compared with PpMYBPA1. Transcription of PpMYB7 can be activated by the peach basic leucine-zipper 5 TF (PpbZIP5) via response to ABA. Our study suggests a transcriptional network regulating PA synthesis in peach, with the results aiding the understanding of the functional divergence between R2R3-MYB TFs in plants. PMID:26579158

  19. Identification of promiscuous ene-reductase activity by mining structural databases using active site constellations

    PubMed Central

    Steinkellner, Georg; Gruber, Christian C.; Pavkov-Keller, Tea; Binter, Alexandra; Steiner, Kerstin; Winkler, Christoph; Łyskowski, Andrzej; Schwamberger, Orsolya; Oberer, Monika; Schwab, Helmut; Faber, Kurt; Macheroux, Peter; Gruber, Karl

    2014-01-01

    The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites (‘catalophores’). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C–C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts. PMID:24954722

  20. Increased 5. cap alpha. -reductase activity in idiopathic hirsutism

    SciTech Connect

    Serafini, P.; Lobo, R.A.

    1985-01-01

    In vitro, genital skin 5..cap alpha..-reductase activity (5..cap alpha..-RA) was measured in ten hirsute women with normal androgen levels (idiopathic hirsutism (IH)) and in ten hirsute women with elevated androgen levels (polycystic ovary syndrome (PCO)) in order to determine the influence of secreted androgens on 5..cap alpha..-RA. In vitro 5..cap alpha..-RA was assessed by incubations of skin with /sup 14/C-testosterone (T) for 2 hours, after which steroids were separated and the radioactivity of dihydrotestosterone (DHT) and 5..cap alpha..-androstane 3..cap alpha..-17..beta..-estradiol (3..cap alpha..-diol) in specific eluates were determined. All androgens were normal in IH with the exception of higher levels of 3..cap alpha..-diol glucuronide which were similar to the levels of PCO. The conversion ratio (CR) of T to DHT in IH and PCO were similar, yet significantly greater than the CR of control subjects. The CR of T to 3..cap alpha..-diol in IH and PCO were similar, yet higher than in control subjects. Serum androgens showed no correlation with 5..cap alpha..-RA, while the CR of T to DHT showed a significant positive correlation with the Ferriman and Gallwey score. The increased 5..cap alpha..-RA in IH appears to be independent of serum androgen levels and is, therefore, an inherent abnormality. The term idiopathic is a misnomer, because hirsutism in these patients may be explained on the basis of increased skin 5..cap alpha..-RA.

  1. Role of the denitrifying Haloarchaea in the treatment of nitrite-brines.

    PubMed

    Nájera-Fernández, Cindy; Zafrilla, Basilio; Bonete, María José; Martínez-Espinosa, Rosa María

    2012-09-01

    Haloferax mediterranei is a denitrifying halophilic archaeon able to reduce nitrate and nitrite under oxic and anoxic conditions. In the presence of oxygen, nitrate and nitrite are used as nitrogen sources for growth. Under oxygen scarcity, this haloarchaeon uses both ions as electron acceptors via a denitrification pathway. In the present work, the maximal nitrite concentration tolerated by this organism was determined by studying the growth of H. mediterranei in minimal medium containing 30, 40 and 50 mM nitrite as sole nitrogen source and under initial oxic conditions at 42 degrees C. The results showed the ability of H. mediterranei to withstand nitrite concentrations up to 50 mM. At the beginning of the incubation, nitrate was detected in the medium, probably due to the spontaneous oxidation of nitrite under the initial oxic conditions. The complete removal of nitrite and nitrate was accomplished in most of the tested conditions, except in culture medium containing 50 mM nitrite, suggesting that this concentration compromised the denitrification capacity of the cells. Nitrite and nitrate reductases activities were analyzed at different growth stages of H. mediterranei. In all cases, the activities of the respiratory enzymes were higher than their assimilative counterparts; this was especially the case for NirK. The denitrifying and possibly detoxifying role of this enzyme might explain the high nitrite tolerance of H. mediterranei. This archaeon was also able to remove 60% of the nitrate and 75% of the nitrite initially present in brine samples collected from a wastewater treatment facility. These results suggest that H. mediterranei, and probably other halophilic denitrifying Archaea, are suitable candidates for the bioremediation of brines with high nitrite and nitrate concentrations. PMID:23847815

  2. Endothelial human dihydrofolate reductase low activity limits vascular tetrahydrobiopterin recycling

    PubMed Central

    Whitsett, Jennifer; Filho, Artur Rangel; Sethumadhavan, Savitha; Celinska, Joanna; Widlansky, Michael; Vásquez-Vivar, Jeannette

    2013-01-01

    Tetrahydrobiopterin (BH4) is required for NO synthesis and inhibition of superoxide release from eNOS. Clinical trials using BH4 to treat endothelial dysfunction have produced mixed results. Poor outcomes may be explained by the rapid systemic and cellular oxidation of BH4. One of the oxidation products of BH4, 7,8-dihydrobiopterin (7,8-BH2), is recycled back to BH4 by dihydrofolate reductase (DHFR). This enzyme is ubiquitously distributed and shows a wide range of activity depending on species-specific factors and cell type. Information about the kinetics and efficiency of BH4 recycling in human endothelial cells receiving BH4 treatment is lacking. To characterize this reaction, we applied a novel multi-electrode coulometric HPLC method that enabled the direct quantification of 7,8-BH2 and BH4 which is not possible with fluorescent-based methodologies. We found that basal untreated BH4 and 7,8-BH2 concentrations in human ECs is lower than bovine and murine endothelioma cells. Treatment of human ECs with BH4 transiently increased intracellular BH4 while accumulating the more stable 7,8-BH2. This was different from bovine or murine ECs that resulted in preferential BH4 increase. Using BH4 diastereomers, 6S-BH4 and 6R-BH4, the narrow contribution of enzymatic DHFR recycling to total intracellular BH4 was demonstrated. Reduction of 7,8-BH2 to BH4 occurs at very slow rates in cells and needs supra-physiological levels of 7,8-BH2, indicating this reaction is kinetically limited. Activity assays verified that hDHFR has very low affinity for 7,8-BH2 (DHF7,8-BH2) and folic acid inhibits 7,8-BH2 recycling. We conclude that low activity of endothelial DHFR is an important factor limiting the benefits of BH4 therapies which may be further aggravated by folate supplements. PMID:23707606

  3. Modulation of nitrate-nitrite conversion in the oral cavity.

    PubMed

    van Maanen, J M; van Geel, A A; Kleinjans, J C

    1996-01-01

    The formation of nitrite from ingested nitrate can give rise to the induction of methemoglobinemia and endogenous nitrosation resulting in the formation of carcinogenic N-nitroso compounds. We investigated the possibility of modulation of the conversion of nitrate into nitrite in the oral cavity in order to seek ways of reducing the formation of the deleterious nitrite. We investigated the effectiveness of several mouthwash solutions with antibacterial constituents on the reduction of nitrate into nitrite in the oral cavity. In 15 studied subjects, the mean percentage of salivary nitrate reduced to nitrite after ingestion of 235 mg (3.8 mmol) nitrate was found to be 16.1 +/- 6.2%. The use of an antiseptic mouthwash with active antibacterial constituent chlorhexidine resulted in an almost complete decrease of the mean percentage of reduced nitrate, to 0.9 +/- 0.8%. Mouthwash solutions with antibacterial component triclosan or antimicrobial enzymes amyloglucosidase and glucose oxidase did not affect the reduction of nitrate into nitrite. A toothpaste with active components triclosan and zinc citrate with synergistic antiplaque activity was also without effect. Use of a pH-regulating chewing gum resulted in a rise in the pH in the oral cavity from 6.8 to 7.3. At 30 min after nitrate ingestion, this rise was accompanied by a significant increase in the salivary nitrite concentration, which might be explained by the pH being close to the optimal pH for nitrate reductase of 8. In conclusion, a limited number of possibilities of modulation of the conversion of nitrate into nitrite in the oral cavity are available. PMID:8939344

  4. Exploring the Mechanisms of the Reductase Activity of Neuroglobin by Site-Directed Mutagenesis of the Heme Distal Pocket

    PubMed Central

    2016-01-01

    Neuroglobin (Ngb) is a six-coordinate globin that can catalyze the reduction of nitrite to nitric oxide. Although this reaction is common to heme proteins, the molecular interactions in the heme pocket that regulate this reaction are largely unknown. We have shown that the H64L Ngb mutation increases the rate of nitrite reduction by 2000-fold compared to that of wild-type Ngb [Tiso, M., et al. (2011) J. Biol. Chem. 286, 18277–18289]. Here we explore the effect of distal heme pocket mutations on nitrite reduction. For this purpose, we have generated mutations of Ngb residues Phe28(B10), His64(E7), and Val68(E11). Our results indicate a dichotomy in the reactivity of deoxy five- and six-coordinate globins toward nitrite. In hemoglobin and myoglobin, there is a correlation between faster rates and more negative potentials. However, in Ngb, reaction rates are apparently related to the distal pocket volume, and redox potential shows a poor relationship with the rate constants. This suggests a relationship between the nitrite reduction rate and heme accessibility in Ngb, particularly marked for His64(E7) mutants. In five-coordinate globins, His(E7) facilitates nitrite reduction, likely through proton donation. Conversely, in Ngb, the reduction mechanism does not rely on the delivery of a proton from the histidine side chain, as His64 mutants show the fastest reduction rates. In fact, the rate observed for H64A Ngb (1120 M–1 s–1) is to the best of our knowledge the fastest reported for a heme nitrite reductase. These differences may be related to a differential stabilization of the iron–nitrite complexes in five- and six-coordinate globins. PMID:25554946

  5. Regulation of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Activity in Human Fibroblasts by Lipoproteins

    PubMed Central

    Brown, Michael S.; Dana, Suzanna E.; Goldstein, Joseph L.

    1973-01-01

    The activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (EC 1.1.1.34), the rate-limiting enzyme of hepatic cholesterol biosynthesis, is suppressed in human fibroblasts cultured in the presence of serum. This enzyme activity increases by more than 10-fold after the removal of serum from the medium. The rise in enzyme activity requires de novo protein synthesis and is not accompanied by changes in the activities of several other cellular enzymes. The factor responsible for the suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in cultured fibroblasts is present in the sera of at least four mammalian species, and in human serum it is found in the low-density lipoproteins. Human high-density lipoproteins, very low-density lipoproteins from chicken egg yolk, and the fraction of human serum containing no lipoproteins do not suppress the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase. PMID:4352976

  6. Phylogenomics of Mycobacterium Nitrate Reductase Operon.

    PubMed

    Huang, Qinqin; Abdalla, Abualgasim Elgaili; Xie, Jianping

    2015-07-01

    NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker. PMID:25980349

  7. Color formation in nitrite-free dried hams as related to Zn-protoporphyrin IX and Zn-chelatase activity.

    PubMed

    Parolari, Giovanni; Benedini, Riccardo; Toscani, Tania

    2009-08-01

    The development of red pigment Zn-protoporphyrin IX (ZPP) in nitrite-free Parma hams was investigated in 5 leg muscles at several stages of processing and the activity of muscle Zn-chelatase was concurrently assayed for its potential role in ZPP formation. A steady increase of the pigment was observed throughout the manufacturing stages at mild temperatures while no development was observed during the prior cold resting phase. The enzyme was partly inactivated according to a muscle-dependent pattern, resulting in similar ZPP contents, hence color, in finished hams. It is concluded that enzyme-dependent synthesis of ZPP in nitrite-free dried hams contributes to color development, enabling muscles in dried hams to become more similar in redness than in green thighs. Therefore, checking raw meat for the enzyme content may be a means to control color formation in nitrite-free dry-cured meat derivatives. PMID:19723176

  8. Testosterone selectively affects aromatase and 5α-reductase activities in the green anole lizard brain

    PubMed Central

    Cohen, Rachel E.; Wade, Juli

    2011-01-01

    Testosterone (T) and its metabolites are important in the regulation of reproductive behavior in males of a variety of vertebrate species. Aromatase converts T to estradiol and 5α-reductase converts T to 5α-dihydrotestosterone (DHT). Male green anole reproduction depends on androgens, yet 5α-reductase in the brain is not sexually dimorphic and does not vary with season. In contrast, aromatase activity in the male brain is increased during the breeding compared to non-breeding season, and males have higher levels than females during the breeding season. Aromatase is important for female, but not male, sexual behaviors. The present experiment was conducted to determine whether 5α-reductase and aromatase are regulated by T. Enzyme activity was quantified in whole brain homogenates in both the breeding and non-breeding seasons in males and females that had been treated with either a T or blank implant. In males only, T increased 5α-reductase activity regardless of season and up-regulated aromatase during the breeding season specifically. Thus, regulation of both enzymes occurs in males, whereas females do not show parallel sensitivity to T. When considered with previous results, the data suggest that aromatase might influence a male function associated with the breeding season other than sexual behavior. 5α-Reductase can be mediated by T availability, but this regulation may not serve a sex- or season-specific purpose. PMID:19917285

  9. Gastric S-nitrosothiol formation drives the antihypertensive effects of oral sodium nitrite and nitrate in a rat model of renovascular hypertension.

    PubMed

    Pinheiro, Lucas C; Amaral, Jefferson H; Ferreira, Graziele C; Portella, Rafael L; Ceron, Carla S; Montenegro, Marcelo F; Toledo, Jose Carlos; Tanus-Santos, Jose E

    2015-10-01

    Many effects of nitrite and nitrate are attributed to increased circulating concentrations of nitrite, ultimately converted into nitric oxide (NO(•)) in the circulation or in tissues by mechanisms associated with nitrite reductase activity. However, nitrite generates NO(•) , nitrous anhydride, and other nitrosating species at low pH, and these reactions promote S-nitrosothiol formation when nitrites are in the stomach. We hypothesized that the antihypertensive effects of orally administered nitrite or nitrate involve the formation of S-nitrosothiols, and that those effects depend on gastric pH. The chronic effects of oral nitrite or nitrate were studied in two-kidney, one-clip (2K1C) hypertensive rats treated with omeprazole (or vehicle). Oral nitrite lowered blood pressure and increased plasma S-nitrosothiol concentrations independently of circulating nitrite levels. Increasing gastric pH with omeprazole did not affect the increases in plasma nitrite and nitrate levels found after treatment with nitrite. However, treatment with omeprazole severely attenuated the increases in plasma S-nitrosothiol concentrations and completely blunted the antihypertensive effects of nitrite. Confirming these findings, very similar results were found with oral nitrate. To further confirm the role of gastric S-nitrosothiol formation, we studied the effects of oral nitrite in hypertensive rats treated with the glutathione synthase inhibitor buthionine sulfoximine (BSO) to induce partial thiol depletion. BSO treatment attenuated the increases in S-nitrosothiol concentrations and antihypertensive effects of oral nitrite. These data show that gastric S-nitrosothiol formation drives the antihypertensive effects of oral nitrite or nitrate and has major implications, particularly to patients taking proton pump inhibitors. PMID:26159506

  10. Hydrogenase activity in Azospirillum brasilense is inhibited by nitrite, nitric oxide, carbon monoxide, and acetylene

    SciTech Connect

    Tibelius, K.H.; Knowles, R.

    1984-10-01

    Nitrite, NO, CO, and C/sub 2/H/sub 2/ inhibited O/sub 2/-dependent H/sub 2/ uptake (H/sup 3/H oxidation) in denitrifying Azospirillum brasilense Sp7 grown anaerobically on N/sub 2/O or NO/sub 3//sup -/. The apparent K/sub i/ values for inhibition of O/sub 2/-dependent H/sub 2/ uptake were 20 ..mu..M for NO/sub 2//sup -/, 0.4 ..mu..M for NO, 28 ..mu..M for CO, and 88 ..mu..M for C/sub 2/H/sub 2/. These inhibitors also affected methylene blue-dependent H/sub 2/ uptake, presumably by acting directly on the hydrogenase. Nitrite and NO inhibited H/sub 2/ uptake irreversibly, whereas inhibition due to CO was easily reversed by repeatedly evacuating and backfilling with N/sub 2/. The C/sub 2/H/sub 2/ inhibition was not readily reversed, partly due to difficulty in removing the last traces of this gas from solution. The NO/sub 2//sup -/ inhibition of malate-dependent respiration was readily reversed by repeatedly washing the cells, in contrast to the effect of NO/sub 2//sup -/ on H/sub 2/-dependent respiration. These results suggest that the low hydrogenase activities observed in NO/sub 3//sup -/-grown cultures of A. brasilense may be due to the irreversible inhibition of hydrogenase by NO/sub 2//sup -/ and NO produced by NO/sub 3//sup -/ reduction.

  11. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox ▿

    PubMed Central

    Vlaeminck, Siegfried E.; Terada, Akihiko; Smets, Barth F.; De Clippeleir, Haydée; Schaubroeck, Thomas; Bolca, Selin; Demeestere, Lien; Mast, Jan; Boon, Nico; Carballa, Marta; Verstraete, Willy

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far. In this study, three suspended-growth oxygen-limited autotrophic nitrification-denitrification (OLAND) reactors with different inoculation and operation (mixing and aeration) conditions, designated reactors A, B, and C, were used. The test objectives were (i) to quantify the AerAOB and AnAOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, >1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the autotrophic space in these granules consisted of AerAOB- and AnAOB-specific extracellular polymeric substances. Large reactor B aggregates were thin film-like nitrite sinks (NARR, <0.5) in which AnAOB were not shielded by an AerAOB layer. Voids and channels occupied 13 to 17% of the anoxic zone of AnAOB-rich aggregates (reactors B and C). The hypothesized granulation pathways include granule replication by division and budding and are driven by growth and/or decay based on species-specific physiology and by hydrodynamic shear and mixing. PMID:19948857

  12. Mechanisms of Nitrite Bioactivation

    PubMed Central

    Kim-Shapiro, Daniel B.; Gladwin, Mark T.

    2014-01-01

    It is now accepted that the anion nitrite, once considered an inert oxidation product of nitric oxide (NO), contributes to hypoxic vasodilation, physiological blood pressure control, and redox signaling. As such, its application in therapeutics is being actively testing in pre-clinical models and in human phase I–II clinical trials. Major pathways for nitrite bioactivation involve its reduction to NO by members of the hemoglobin or molybdopterin family of proteins, or catalyzed dysproportionation. These conversions occur preferentially under hypoxic and acidic conditions. A number of enzymatic systems reduce nitrite to NO and their activity and importance are defined by oxygen tension, specific organ system and allosteric and redox effectors. In this work, we review different proposed mechanisms of nitrite bioactivation, focusing on analysis of kinetics and experimental evidence for the relevance of each mechanism under different conditions. PMID:24315961

  13. Molecular Characterization of the Nitrite-Reducing System of Staphylococcus carnosus

    PubMed Central

    Neubauer, H.; Pantel, I.; Götz, F.

    1999-01-01

    Characterization of a nitrite reductase-negative Staphylococcus carnosus Tn917 mutant led to the identification of the nir operon, which encodes NirBD, the dissimilatory NADH-dependent nitrite reductase; SirA, the putative oxidase and chelatase, and SirB, the uroporphyrinogen III methylase, both of which are necessary for biosynthesis of the siroheme prosthetic group; and NirR, which revealed no convincing similarity to proteins with known functions. We suggest that NirR is essential for nir promoter activity. In the absence of NirR, a weak promoter upstream of sirA seems to drive transcription of sirA, nirB, nirD, and sirB in the stationary-growth phase. In primer extension experiments one predominant and several weaker transcription start sites were identified in the nir promoter region. Northern blot analyses indicated that anaerobiosis and nitrite are induction factors of the nir operon: cells grown aerobically with nitrite revealed small amounts of full-length transcript whereas cells grown anaerobically with or without nitrite showed large amounts of full-length transcript. Although a transcript is detectable, no nitrite reduction occurs in cells grown aerobically with nitrite, indicating an additional oxygen-controlled step at the level of translation, enzyme folding, assembly, or insertion of prosthetic groups. The nitrite-reducing activity expressed during anaerobiosis is switched off reversibly when the oxygen tension increases, most likely due to competition for electrons with the aerobic respiratory chain. Another gene, nirC, is located upstream of the nir operon. nirC encodes a putative integral membrane-spanning protein of unknown function. A nirC mutant showed no distinct phenotype. PMID:10049379

  14. MEK2 regulates ribonucleotide reductase activity through functional interaction with ribonucleotide reductase small subunit p53R2.

    PubMed

    Piao, Chunmei; Youn, Cha-Kyung; Jin, Min; Yoon, Sang Pil; Chang, In-Youb; Lee, Jung Hee; You, Ho Jin

    2012-09-01

    The p53R2 protein, a newly identified member of the ribonucleotide reductase family that provides nucleotides for DNA damage repair, is directly regulated by p53. We show that p53R2 is also regulated by a MEK2 (ERK kinase 2/MAP kinase kinase 2)-dependent pathway. Increased MEK1/2 phosphorylation by serum stimulation coincided with an increase in the RNR activity in U2OS and H1299 cells. The inhibition of MEK2 activity, either by treatment with a MEK inhibitor or by transfection with MEK2 siRNA, dramatically decreased the serum-stimulated RNR activity. Moreover, p53R2 siRNA, but not R2 siRNA, significantly inhibits serum-stimulated RNR activity, indicating that p53R2 is specifically regulated by a MEK2-dependent pathway. Co-immunoprecipitation analyses revealed that the MEK2 segment comprising amino acids 65-171 is critical for p53R2-MEK2 interaction, and the binding domain of MEK2 is required for MEK2-mediated increased RNR activity. Phosphorylation of MEK1/2 was greatly augmented by ionizing radiation, and RNR activity was concurrently increased. Ionizing radiation-induced RNR activity was markedly attenuated by transfection of MEK2 or p53R2 siRNA, but not R2 siRNA. These data show that MEK2 is an endogenous regulator of p53R2 and suggest that MEK2 may associate with p53R2 and upregulate its activity. PMID:22895183

  15. The dihydrolipoamide dehydrogenase of Aeromonas caviae ST exhibits NADH-dependent tellurite reductase activity.

    PubMed

    Castro, Miguel E; Molina, Roberto; Díaz, Waldo; Pichuantes, Sergio E; Vásquez, Claudio C

    2008-10-10

    Potassium tellurite (K(2)TeO(3)) is extremely toxic for most forms of life and only a limited number of organisms are naturally resistant to the toxic effects of this compound. Crude extracts prepared from the environmental isolate Aeromonas caviae ST catalize the in vitro reduction of TeO32- in a NADH-dependent reaction. Upon fractionation by ionic exchange column chromatography three major polypeptides identified as the E1, E2, and E3 components of the pyruvate dehydrogenase (PDH) complex were identified in fractions exhibiting tellurite-reducing activity. Tellurite reductase and pyruvate dehydrogenase activities co-eluted from a Sephadex gel filtration column. To determine which component(s) of the PDH complex has tellurite reductase activity, the A. caviae ST structural genes encoding for E1 (aceE), E2 (aceF), and E3 (lpdA) were independently cloned and expressed in Escherichia coli and their gene products purified. Results indicated that tellurite reductase activity lies almost exclusively in the E3 component, dihydrolipoamide dehydrogenase. The E3 component of the PDH complex from E. coli, Zymomonas mobilis, Streptococcus pneumoniae, and Geobacillus stearothermophilus also showed NADH-dependent tellurite reductase in vitro suggesting that this enzymatic activity is widely distributed among microorganisms. PMID:18675788

  16. Importance of P450 reductase activity in determining sensitivity of breast tumour cells to the bioreductive drug, tirapazamine (SR 4233).

    PubMed Central

    Patterson, A. V.; Barham, H. M.; Chinje, E. C.; Adams, G. E.; Harris, A. L.; Stratford, I. J.

    1995-01-01

    P450 reductase (NADPH:cytochrome P450 reductase, EC 1.6.2.4) is known to be important in the reductive activation of the benzotriazene-di-N-oxide tirapazamine (SR 4233). Using a panel of six human breast adenocarcinoma cell lines we have examined the relationship between P450 reductase activity and sensitivity to tirapazamine. The toxicity of tirapazamine was found to correlate strongly with P450 reductase activity following an acute (3 h) exposure under hypoxic conditions, the drug being most toxic in the cell lines with the highest P450 reductase activity. A similar correlation was also observed following a chronic (96 h) exposure to the drug in air but not following acute (3 h) exposure in air. We have also determined the ability of lysates prepared from the cell lines to metabolise tirapazamine to its two-electron reduced product, SR 4317, under hypoxic conditions using NADPH as an electron donor. The rate of SR 4317 formation was found to correlate both with P450 reductase activity and with sensitivity to tirapazamine, the highest rates of SR 4317 formation being associated with the highest levels of P450 reductase activity and the greatest sensitivity to the drug. These findings indicate a major role for P450 reductase in determining the hypoxic toxicity of tirapazamine in breast tumour cell lines. Images Figure 4 PMID:7577460

  17. Ferric reductase activity and PsFRO1 sequence variation in pisum sps

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Physiological studies in pea (Pisum sativum) suggest that the reduction of iron (Fe) is the rate-limiting physiological process in Fe acquisition by dicotyledonous plants. Previous molecular work suggests that ferric reductase activity is regulated at both the transcriptional and post-translational ...

  18. Glyphosate Effect on Shikimate, Nitrate Reductase Activity, Yield, and Seed Composition in Corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 2-yr field study investigated the effects of glyphosate drift rate on plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition in non-glyphosate-resistant (non-GR) corn (Zea mays L.) and the effects of glyphosate at label rates on nitrate reducta...

  19. Differential antioxidant and quinone reductase inducing activity of American, Asian, and Siberian ginseng

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The antioxidant and quinone reductase (QR) inducing activities of American, Asian, and Siberian ginseng have been reported using various plant materials, solvents, and assays. To directly establish their comparative bioactivity, the effects of extracts obtained from acidified methanol (MeOH), a gas...

  20. EFFECT OF LINDANE ON INTESTINAL NITROREDUCTASE, AZO REDUCTASE, B-GLUCURONIDASE, DECHLORINASE AND DEHYDROCHLORINASE ACTIVITY

    EPA Science Inventory

    The effect of daily p.o. injections of 20 mg/kg lindane on nitroreductase, azo reductase, B-glucuronidase, dechlorinase and dehydrochlorinase enzyme activity in the rat intestinal tract vas investigated after 2 weeks and 5 weeks of treatment. Antibiotics were administered to half...

  1. Resolution of two native monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina and the sequence of two napA genes

    SciTech Connect

    Simpson, Philippa J.L.; McKinzie, Audra A.; Codd, Rachel; School of Medical Sciences and Bosch Institute, University of Sydney, NSW 2006

    2010-07-16

    Research highlights: {yields} Two monomeric 90 kDa nitrate reductase active proteins from Shewanella gelidimarina. {yields} Sequence of napA from napEDABC-type operon and napA from NapDAGHB-type operon. {yields} Isolation of NAP as NapA or NapAB correlated with NapA P47E amino acid substitution. -- Abstract: The reduction of nitrate to nitrite in the bacterial periplasm occurs in the 90 kDa NapA subunit of the periplasmic nitrate reductase (NAP) system. Most Shewanella genomes contain two nap operons: napEDABC and napDAGHB, which is an unusual feature of this genus. Two native, monomeric, 90 kDa nitrate reductase active proteins were resolved by hydrophobic interaction chromatography from aerobic cultures of Shewanella gelidimarina replete with reduced nitrogen compounds. The 90 kDa protein obtained in higher yield was characterized as NapA by electronic absorption and electron paramagnetic resonance spectroscopies and was identified by LC/MS/MS and MALDI-TOF/TOF MS as NapA from the napEDABC-type operon. The other 90 kDa protein, which was unstable and produced in low yields, was posited as NapA from the napDAGHB-type operon. Two napA genes have been sequenced from the napEDABC-type and napDAGHB-type operons of S. gelidimarina. Native NAP from S. putrefaciens was resolved as one NapA monomer and one NapAB heterodimer. Two amino acid substitutions in NapA correlated with the isolation of NAP as a NapA monomer or a NapAB heterodimer. The resolution of native, redox-active NapA isoforms in Shewanella provides new insight into the respiratory versatility of this genus, which has implications in bioremediation and the assembly of microbial fuel cells.

  2. Elevated CO2 levels affect the activity of nitrate reductase and carbonic anhydrase in the calcifying rhodophyte Corallina officinalis

    PubMed Central

    Hofmann, Laurie C.

    2013-01-01

    The concentration of CO2 in global surface ocean waters is increasing due to rising atmospheric CO2 emissions, resulting in lower pH and a lower saturation state of carbonate ions. Such changes in seawater chemistry are expected to impact calcification in calcifying marine organisms. However, other physiological processes related to calcification might also be affected, including enzyme activity. In a mesocosm experiment, macroalgal communities were exposed to three CO2 concentrations (380, 665, and 1486 µatm) to determine how the activity of two enzymes related to inorganic carbon uptake and nutrient assimilation in Corallina officinalis, an abundant calcifying rhodophyte, will be affected by elevated CO2 concentrations. The activity of external carbonic anhydrase, an important enzyme functioning in macroalgal carbon-concentrating mechanisms, was inversely related to CO2 concentration after long-term exposure (12 weeks). Nitrate reductase, the enzyme responsible for reduction of nitrate to nitrite, was stimulated by CO2 and was highest in algae grown at 665 µatm CO2. Nitrate and phosphate uptake rates were inversely related to CO2, while ammonium uptake was unaffected, and the percentage of inorganic carbon in the algal skeleton decreased with increasing CO2. The results indicate that the processes of inorganic carbon and nutrient uptake and assimilation are affected by elevated CO2 due to changes in enzyme activity, which change the energy balance and physiological status of C. officinalis, therefore affecting its competitive interactions with other macroalgae. The ecological implications of the physiological changes in C. officinalis in response to elevated CO2 are discussed. PMID:23314813

  3. Overexpression of Nitrate Reductase in Tobacco Delays Drought-Induced Decreases in Nitrate Reductase Activity and mRNA1

    PubMed Central

    Ferrario-Méry, Sylvie; Valadier, Marie-Hélène; Foyer, Christine H.

    1998-01-01

    Transformed (cauliflower mosaic virus 35S promoter [35S]) tobacco (Nicotiana plumbaginifolia L.) plants constitutively expressing nitrate reductase (NR) and untransformed controls were subjected to drought for 5 d. Drought-induced changes in biomass accumulation and photosynthesis were comparable in both lines of plants. After 4 d of water deprivation, a large increase in the ratio of shoot dry weight to fresh weight was observed, together with a decrease in the rate of photosynthetic CO2 assimilation. Foliar sucrose increased in both lines during water stress, but hexoses increased only in leaves from untransformed controls. Foliar NO3− decreased rapidly in both lines and was halved within 2 d of the onset of water deprivation. Total foliar amino acids decreased in leaves of both lines following water deprivation. After 4 d of water deprivation no NR activity could be detected in leaves of untransformed plants, whereas about 50% of the original activity remained in the leaves of the 35S-NR transformants. NR mRNA was much more stable than NR activity. NR mRNA abundance increased in the leaves of the 35S-NR plants and remained constant in controls for the first 3 d of drought. On the 4th d, however, NR mRNA suddenly decreased in both lines. Rehydration at d 3 caused rapid recovery (within 24 h) of 35S-NR transcripts, but no recovery was observed in the controls. The phosphorylation state of the protein was unchanged by long-term drought. There was a strong correlation between maximal extractable NR activity and ambient photosynthesis in both lines. We conclude that drought first causes increased NR protein turnover and then accelerates NR mRNA turnover. Constitutive NR expression temporarily delayed drought-induced losses in NR activity. 35S-NR expression may therefore allow more rapid recovery of N assimilation following short-term water deficit. PMID:9576799

  4. Isolation, modification, and aldose reductase inhibitory activity of rosmarinic acid derivatives from the roots of Salvia grandifolia.

    PubMed

    Kang, Jie; Tang, Yanbo; Liu, Quan; Guo, Nan; Zhang, Jian; Xiao, Zhiyan; Chen, Ruoyun; Shen, Zhufang

    2016-07-01

    To find aldose reductase inhibitors, two previously unreported compounds, grandifolias H and I, and five known compounds, including rosmarinic acid and rosmarinic acid derivatives, were isolated from the roots of Salvia grandifolia. A series of rosmarinic acid derivatives was obtained from rosmarinic acid using simple synthetic methods. The aldose reductase inhibitory activity of the isolated and synthesized compounds was assessed. Seven of the tested compounds showed moderate aldose reductase inhibition (IC50=0.06-0.30μM). The structure-activity relationship of aldose reductase inhibitory activity of rosmarinic acid derivatives was discussed for the first time. This study provided useful information that will facilitate the development of aldose reductase inhibitors. PMID:27233987

  5. Biochemical and antitumor activity of trimidox, a new inhibitor of ribonucleotide reductase.

    PubMed

    Szekeres, T; Gharehbaghi, K; Fritzer, M; Woody, M; Srivastava, A; van't Riet, B; Jayaram, H N; Elford, H L

    1994-01-01

    Trimidox (3,4,5-trihydroxybenzamidoxime), a newly synthesized analog of didox (N,3,4-trihydroxybenzamide) reduced the activity of ribonucleotide reductase (EC 1.17.4.1) in extracts of L1210 cells by 50% (50% growth-inhibitory concentration, IC50) at 5 microM, whereas hydroxyurea, the only ribonucleotide reductase inhibitor in clinical use, exhibited an IC50 of 500 microM. Ribonucleotide reductase activity was also measured in situ by incubating L1210 cells for 24 h with trimidox at 7.5 microM, a concentration that inhibits cell proliferation by 50% (IC50) or at 100 microM for 2 h; these concentrations resulted in a decrease in enzyme activity to 22% and 50% of the control value, respectively. Trimidox and hydroxyurea were cytotoxic to L1210 cells with IC50 values of 7.5 and 50 microM, respectively. Versus ribonucleotide reductase, trimidox and hydroxyurea yielded IC50 values of 12 and 87 microM, respectively. A dose-dependent increase in life span was observed in mice bearing intraperitoneally transplanted L1210 tumors. Trimidox treatment (200 mg/kg; q1dx9) significantly increased the life span of mice bearing L1210 leukemia (by 82% in male mice and 112% in female mice). The anti-tumor activity appeared more pronounced in female mice than in male mice. Viewed in concert, these findings suggest that trimidox is a new and potent inhibitor of ribonucleotide reductase and that it is a promising candidate for the chemotherapy of cancer in humans. PMID:8174204

  6. Regulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity in mouse peritoneal macrophages.

    PubMed Central

    Angelin, B

    1988-01-01

    The lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl-(HMG-) CoA reductase in cultured mouse peritoneal macrophages has been investigated. In contrast to what has been reported for other cells, HMG-CoA reductase activity is not suppressed by normal serum or by normal low density lipoproteins (LDL) from humans or dogs. Suppression of reductase activity occurred when cells were cultured in the presence of beta-migrating very low density lipoproteins (beta-VLDL) or LDL from hypercholesterolaemic dogs, or LDL modified by acetoacetylation. Human beta-VLDL from an atypical type III hyperlipoproteinaemic patient was also effective, as was apolipoprotein (apo) E-containing high density lipoproteins (HDL) from cholesterol-fed dogs (apo-E HDLc). The results indicate that cholesterol biosynthesis in mouse peritoneal macrophages is regulated by lipoprotein cholesterol entering via receptor-mediated endocytosis. Normal LDL were not effective because of the poor binding and uptake of these lipoproteins by the apo-B, E (LDL) receptor. Only beta-VLDL, apo-E HDLc, and hypercholesterolaemic LDL were avidly taken up by this receptor and were able to suppress HMG-CoA reductase. Acetoacetylated LDL were internalized via the acetyl-LDL (scavenger) receptor. Thus, mouse macrophages differ from human fibroblasts and smooth muscle cells in their physiological regulation of cholesterogenesis. PMID:3202831

  7. Anion selective optodes: development of a fluorescent fiber optic sensor for the determination of nitrite activity

    NASA Astrophysics Data System (ADS)

    Barker, Susan L. R.; Shortreed, Michael R.; Kopelman, Raoul

    1996-12-01

    The response of state of the art anion optodes often cannot be described in a thermodynamically exact manner because the ionic strength within the membrane phase of such optodes changes during the course of a titration. Incorporating lipophilic charge sites in the anion optode membranes provides a constant ionic strength in the membrane phase, the ability to measure anion activities, and a more thermodynamically describable system. This configuration has been used to create a micrometer-sized nitrite-selective optode. Recent elucidation of the many biological roles of nitric oxide (NO) has spurred interest in sensitive and selective detection of this molecule. In biological systems NO is converted to NO2- within 30 sec and the biological concentration of NO2- is normally on the micromolar level. The optode we have prepared contains a selective vitamin B12 derivative ionophore, a fluorescent chromoionophore (ETH 2439 or ETH 5350), and lipophilic charge sites. These components are entrapped in a highly plasticized PVC matrix which is placed on the distal end of the fiber. Sensor characteristics such as limit of detection and reversibility are presented.

  8. Posttranslational regulation of nitrogenase in Rhodospirillum rubrum strains overexpressing the regulatory enzymes dinitrogenase reductase ADP-ribosyltransferase and dinitrogenase reductase activating glycohydrolase.

    PubMed Central

    Grunwald, S K; Lies, D P; Roberts, G P; Ludden, P W

    1995-01-01

    Rhodospirillum rubrum strains that overexpress the enzymes involved in posttranslational nitrogenase regulation, dinitrogenase reductase ADP-ribosyltransferase (DRAT) and dinitrogenase reductase activating glycohydrolase (DRAG), were constructed, and the effect of this overexpression on in vivo DRAT and DRAG regulation was investigated. Broad-host-range plasmid constructs containing a fusion of the R. rubrum nifH promoter and translation initiation sequences to the second codon of draT, the first gene of the dra operon, were constructed. Overexpression plasmid constructs which overexpressed (i) only functional DRAT, (ii) only functional DRAG and presumably the putative downstream open reading frame (ORF)-encoded protein, or (iii) all three proteins were generated and introduced into wild-type R. rubrum. Overexpression of DRAT still allowed proper regulation of nitrogenase activity, with ADP-ribosylation of dinitrogenase reductase by DRAT occurring only upon dark or ammonium stimuli, suggesting that DRAT is still regulated upon overexpression. However, overexpression of DRAG and the downstream ORF altered nitrogenase regulation such that dinitrogenase reductase did not accumulate in the ADP-ribosylated form under inactivation conditions, suggesting that DRAG was constitutively active and that therefore DRAG regulation is altered upon overexpression. Proper DRAG regulation was observed in a strain overexpressing DRAT, DRAG, and the downstream ORF, suggesting that a proper balance of DRAT and DRAG levels is required for proper DRAG regulation. PMID:7836296

  9. Maturation of the cytochrome cd1 nitrite reductase NirS from Pseudomonas aeruginosa requires transient interactions between the three proteins NirS, NirN and NirF

    PubMed Central

    Nicke, Tristan; Schnitzer, Tobias; Münch, Karin; Adamczack, Julia; Haufschildt, Kristin; Buchmeier, Sabine; Kucklick, Martin; Felgenträger, Undine; Jänsch, Lothar; Riedel, Katharina; Layer, Gunhild

    2013-01-01

    The periplasmic cytochrome cd1 nitrite reductase NirS occurring in denitrifying bacteria such as the human pathogen Pseudomonas aeruginosa contains the essential tetrapyrrole cofactors haem c and haem d1. Whereas the haem c is incorporated into NirS by the cytochrome c maturation system I, nothing is known about the insertion of the haem d1 into NirS. Here, we show by co-immunoprecipitation that NirS interacts with the potential haem d1 insertion protein NirN in vivo. This NirS–NirN interaction is dependent on the presence of the putative haem d1 biosynthesis enzyme NirF. Further, we show by affinity co-purification that NirS also directly interacts with NirF. Additionally, NirF is shown to be a membrane anchored lipoprotein in P. aeruginosa. Finally, the analysis by UV–visible absorption spectroscopy of the periplasmic protein fractions prepared from the P. aeruginosa WT (wild-type) and a P. aeruginosa ΔnirN mutant shows that the cofactor content of NirS is altered in the absence of NirN. Based on our results, we propose a potential model for the maturation of NirS in which the three proteins NirS, NirN and NirF form a transient, membrane-associated complex in order to achieve the last step of haem d1 biosynthesis and insertion of the cofactor into NirS. PMID:23683062

  10. Analytical properties of some commercially available nitrate reductase enzymes evaluated as replacements for cadmium in automated, semiautomated, and manual colorimetric methods for determination of nitrate plus nitrite in water

    USGS Publications Warehouse

    Patton, Charles J.; Kryskalla, Jennifer R.

    2013-01-01

    A multiyear research effort at the U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) evaluated several commercially available nitrate reductase (NaR) enzymes as replacements for toxic cadmium in longstanding automated colorimetric air-segmented continuous-flow analyzer (CFA) methods for determining nitrate plus nitrite (NOx) in water. This research culminated in USGS approved standard- and low-level enzymatic reduction, colorimetric automated discrete analyzer NOx methods that have been in routine operation at the NWQL since October 2011. The enzyme used in these methods (AtNaR2) is a product of recombinant expression of NaR from Arabidopsis thaliana (L.) Heynh. (mouseear cress) in the yeast Pichia pastoris. Because the scope of the validation report for these new automated discrete analyzer methods, published as U.S. Geological Survey Techniques and Methods 5–B8, was limited to performance benchmarks and operational details, extensive foundational research with different enzymes—primarily YNaR1, a product of recombinant expression of NaR from Pichia angusta in the yeast Pichia pastoris—remained unpublished until now. This report documents research and development at the NWQL that was foundational to development and validation of the discrete analyzer methods. It includes: (1) details of instrumentation used to acquire kinetics data for several NaR enzymes in the presence and absence of known or suspected inhibitors in relation to reaction temperature and reaction pH; and (2) validation results—method detection limits, precision and bias estimates, spike recoveries, and interference studies—for standard- and low-level automated colorimetric CFA-YNaR1 reduction NOx methods in relation to corresponding USGS approved CFA cadmium-reduction (CdR) NOx methods. The cornerstone of this validation is paired sample statistical and graphical analysis of NOx concentrations from more than 3,800 geographically and seasonally diverse surface

  11. MYC Phosphorylation, Activation, and Tumorigenic Potential in Hepatocellular Carcinoma are Regulated by HMG-CoA Reductase

    PubMed Central

    Cao, Zhongwei; Fan-Minogue, Hua; Bellovin, David I.; Yevtodiyenko, Aleksey; Arzeno, Julia; Yang, Qiwei; Gambhir, Sanjiv Sam; Felsher, Dean W.

    2011-01-01

    MYC is a potential target for many cancers but is not amenable to existing pharmacological approaches. Inhibition of HMG-CoA reductase by statins has shown potential efficacy against a number of cancers. Here, we demonstrate that inhibition of HMG-CoA reductase by atorvastatin blocks both MYC phosphorylation and activation, suppressing tumor initiation and growth in vivo in a transgenic model of MYC-induced HCC as well as in human HCC-derived cell lines. To confirm specificity, we show that the anti-tumor effects of atorvastatin are blocked by co-treatment with the HMG-CoA reductase product, Mevalonate. Moreover, by using a novel molecular imaging sensor, we confirm that inhibition of HMG-CoA reductase blocks MYC phosphorylation in vivo. Importantly, the introduction of phosphorylation mutants of MYC at Ser62 or Thr58 into tumors blocks their sensitivity to inhibition of HMG-CoA reductase. Finally, we demonstrate that inhibition of HMG-CoA reductase suppresses MYC phosphorylation through Rac GTPase. Therefore, HMG-CoA reductase is a critical regulator of MYC phosphorylation, activation, and tumorigenic properties. The inhibition of HMG-CoA reductase may be a useful target for the treatment of MYC-associated HCC as well as other tumors. PMID:21262914

  12. Post-translational Regulation of Nitrate Reductase

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate reductase (NR) catalyzes the reduction of nitrate to nitrite, which is the first step in the nitrate assimilation pathway, but can also reduce nitrite to nitric oxide (NO), an important signaling molecule that is thought to mediate a wide array of of developmental and physiological processes...

  13. Immobilization of mercuric reductase from a pseudomonas putida strain on different activated carriers

    SciTech Connect

    Anspach, F.B.; Hueckel, M.; Brunke, M.

    1994-02-01

    Mercuric reductase was isolated from Pseudomonas putida KT2442::mer-73 and immobilized on chromatographic carriers activated by various methods. The immobilization methods for covalent coupling were compared with regard to preservation of enzymatic activity and coupling yields. Highest yields were obtained with carriers bearing the most reactive functional groups. Best results were achieved with tresyl chloride-activated carriers. The optimum binding conditions were found at pH 8. Application of the immobilized mercuric reductase for continuous treatment of Hg(II)-containing water was examined in a fixed bed reactor. Space-time yields up to 510 nmol/min{center_dot}mL were attained. The kinetics of immobilized enzyme systems were not diffusion-controlled. 22 refs., 7 figs., 2 tabs.

  14. Ferric reductase activity in Azotobacter vinelandii and its inhibition by Zn2+.

    PubMed

    Huyer, M; Page, W J

    1989-07-01

    Ferric reductase activity was examined in Azotobacter vinelandii and was found to be located in the cytoplasm. The specific activities of soluble cell extracts were not affected by the iron concentration of the growth medium; however, activity was inhibited by the presence of Zn2+ during cell growth and also by the addition of Zn2+ to the enzyme assays. Intracellular Fe2+ levels were lower and siderophore production was increased in Zn2+-grown cells. The ferric reductase was active under aerobic conditions, had an optimal pH of approximately 7.5, and required flavin mononucleotide and Mg2+ for maximum activity. The enzyme utilized NADH to reduce iron supplied as a variety of iron chelates, including the ferrisiderophores of A. vinelandii. The enzyme was purified by conventional protein purification techniques, and the final preparation consisted of two major proteins with molecular weights of 44,600 and 69,000. The apparent Km values of the ferric reductase for Fe3+ (supplied as ferric citrate) and NADH were 10 and 15.8 microM, respectively, and the data for the enzyme reaction were consistent with Ping Pong Bi Bi kinetics. The approximate Ki values resulting from inhibition of the enzyme by Zn2+, which was a hyperbolic (partial) mixed-type inhibitor, were 25 microM with respect to iron and 1.7 microM with respect to NADH. These results suggested that ferric reductase activity may have a regulatory role in the processes of iron assimilation in A. vinelandii. PMID:2525550

  15. Isolated and combined exposure to ammonia and nitrite in giant freshwater pawn (Macrobrachium rosenbergii): effects on the oxidative stress, antioxidant enzymatic activities and apoptosis in haemocytes.

    PubMed

    Zhang, Yufan; Ye, Chaoxia; Wang, Anli; Zhu, Xuan; Chen, Changhong; Xian, Jianan; Sun, Zhenzhu

    2015-10-01

    The residual contaminators such as ammonia and nitrite are widely considered as relevant sources of aquatic environmental pollutants, posing a great threat to shrimp survival. To study the toxicological effects of ammonia and nitrite exposure on the innate immune response in invertebrates, we investigated the oxidative stress and apoptosis in haemocytes of freshwater prawn (Macrobrachium rosenbergii) under isolated and combined exposure to ammonia and nitrite in order to provide useful information about adult prawn immune responses. M. rosenbergii (13.44 ± 2.75 g) were exposed to 0, 5, and 25 mg/L total ammonia-N (TAN) and 0, 5, and 20 mg/L nitrite-N for 24 h. All ammonia concentrations were combined with all nitrite concentrations, making a total of nine treatments studied. Following the exposure treatment, antioxidant enzyme activity, reactive oxygen species (ROS) generation, nitric oxide (NO) generation, and apoptotic cell ratio of haemocytes were measured using flow cytometry. Results indicated that ROS generation was sensitive to the combined effect of ammonia and nitrite, which subsequently affected the Cu-Zn SOD activity. In addition, CAT showed the highest activity at 5 mg/L TAN while GPx decreased at 5 mg/L TAN and returned towards baseline at 25 mg/L. NO generation synchronized with the apoptotic cell ratio in haemocytes, indicating that NO production was closely associated with programmed cell death. Both NO production and apoptotic ratios significantly decreased following 25 mg/L TAN, which may be due to the antagonistic regulation of NO and GPx. We hypothesized that the toxicological effect of nitrite exhibited less change in physiological changes compared to that of ammonia, because of the high tolerance to nitrite exposure in mature M. rosenbergii and/or the competitive effects of chloride ions. Taken together, these results showed that ammonia and nitrite caused a series of combined oxidative stress and apoptosis in M. rosenbergi, but further

  16. Sodium nitrite exerts an antihypertensive effect and improves endothelial function through activation of eNOS in the SHR.

    PubMed

    Ling, Wei Chih; Murugan, Dharmani Devi; Lau, Yeh Siang; Vanhoutte, Paul M; Mustafa, Mohd Rais

    2016-01-01

    Sodium nitrite (NaNO2) induces relaxation in isolated arteries partly through an endothelium-dependent mechanism involving NO-eNOS-sGC-cGMP pathway. The present study was designed to investigate the effect of chronic NaNO2 administration on arterial systolic blood pressure (SBP) and vascular function in hypertensive rats. NaNO2 (150 mg L-1) was given in drinking water for four weeks to spontaneously (SHR) and Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) treated hypertensive SD rats. Arterial SBP and vascular function in isolated aortae were studied. Total plasma nitrate/nitrite and vascular cyclic guanosine monophosphate (cGMP) levels were measured using commercially available assay kits. Vascular nitric oxide (NO) levels were evaluated by DAF-FM fluorescence while the proteins involved in endothelial nitric oxide synthase (eNOS) activation was determined by Western blotting. NaNO2 treatment reduced SBP, improved the impaired endothelium-dependent relaxation, increased plasma total nitrate/nitrite level and vascular tissue NO and cGMP levels in SHR. Furthermore, increased presence of phosphorylated eNOS and Hsp-90 was observed in NaNO2-treated SHR. The beneficial effect of nitrite treatment was not observed in L-NAME treated hypertensive SD rats. The present study provides evidence that chronic treatment of genetically hypertensive rats with NaNO2 improves endothelium-dependent relaxation in addition to its antihypertensive effect, partly through mechanisms involving activation of eNOS. PMID:27616322

  17. The Desulfuromonas acetoxidans Triheme Cytochrome c7 Produced in Desulfovibrio desulfuricans Retains Its Metal Reductase Activity

    PubMed Central

    Aubert, Corinne; Lojou, Elisabeth; Bianco, Pierre; Rousset, Marc; Durand, Marie-Claire; Bruschi, Mireille; Dolla, Alain

    1998-01-01

    Multiheme cytochrome c proteins that belong to class III have been recently shown to exhibit a metal reductase activity, which could be of great environmental interest, especially in metal bioremediation. To get a better understanding of these activities, the gene encoding cytochrome c7 from the sulfur-reducing bacterium Desulfuromonas acetoxidans was cloned from genomic DNA by PCR and expressed in Desulfovibrio desulfuricans G201. The expression system was based on the cyc transcription unit from Desulfovibrio vulgaris Hildenborough and led to the synthesis of holocytochrome c7 when transferred by electrotransformation into the sulfate reducer Desulfovibrio desulfuricans G201. The produced cytochrome was indistinguishable from the protein purified from Desulfuromonas acetoxidans cells with respect to several biochemical and biophysical criteria and exhibited the same metal reductase activities as determined from electrochemical experiments. This suggests that the molecule was correctly folded in the host organism. Desulfovibrio desulfuricans produces functional multiheme c-type cytochromes from bacteria belonging to a different genus and may be considered a suitable host for the heterologous biogenesis of multiheme c-type cytochromes for either structural or engineering studies. This report, which presents the first example of the transformation of a Desulfovibrio desulfuricans strain by electrotransformation, describes work that is the first necessary step of a protein engineering program that aims to specify the structural features that are responsible for the metal reductase activities of multiheme cytochrome c7. PMID:9546165

  18. Mineral supplementation increases erythrose reductase activity in erythritol biosynthesis from glycerol by Yarrowia lipolytica.

    PubMed

    Tomaszewska, Ludwika; Rymowicz, Waldemar; Rywińska, Anita

    2014-03-01

    The aim of this study was to examine the impact of divalent copper, iron, manganese, and zinc ions on the production of erythritol from glycerol by Yarrowia lipolytica and their effect on the activity of erythrose reductase. No inhibitory effect of the examined minerals on yeast growth was observed in the study. Supplementation with MnSO4 · 7H2O (25 mg l(-1)) increased erythritol production by Y. lipolytica by 14.5%. In the bioreactor culture with manganese ion addition, 47.1 g l(-1) of erythritol was produced from 100.0 g l(-1) of glycerol, which corresponded to volumetric productivity of 0.87 g l(-1) h(-1). The addition of Mn(2+) enhanced the intracellular activity of erythrose reductase up to 24.9 U g(-1) of dry weight of biomass (DW), hence, about 1.3 times more than in the control. PMID:24488778

  19. 5-alpha reductase inhibitors in patients on active surveillance: do the benefits outweigh the risk?

    PubMed

    Al Edwan, Ghazi; Fleshner, Neil

    2013-06-01

    Prostate cancer (PCa) is a slow, progressive disease. Prostate specific antigen testing, screening, and aggressive case identification has made PCa the most frequently diagnosed cancer. Concerns regarding overdiagnosis and overtreatment flourish on a large scale. In order to avoid overtreatment for those in whom therapeutic intervention is not required, active surveillance for eligible patients with the use of 5-alpha reductase can be considered a safe and a promising approach to delay the progression of the disease with minimal side effects. PMID:23579402

  20. Molecular cloning, expression and catalytic activity of a human AKR7 member of the aldo-keto reductase superfamily: evidence that the major 2-carboxybenzaldehyde reductase from human liver is a homologue of rat aflatoxin B1-aldehyde reductase.

    PubMed Central

    Ireland, L S; Harrison, D J; Neal, G E; Hayes, J D

    1998-01-01

    The masking of charged amino or carboxy groups by N-phthalidylation and O-phthalidylation has been used to improve the absorption of many drugs, including ampicillin and 5-fluorouracil. Following absorption of such prodrugs, the phthalidyl group is hydrolysed to release 2-carboxybenzaldehyde (2-CBA) and the pharmaceutically active compound; in humans, 2-CBA is further metabolized to 2-hydroxymethylbenzoic acid by reduction of the aldehyde group. In the present work, the enzyme responsible for the reduction of 2-CBA in humans is identified as a homologue of rat aflatoxin B1-aldehyde reductase (rAFAR). This novel human aldo-keto reductase (AKR) has been cloned from a liver cDNA library, and together with the rat protein, establishes the AKR7 family of the AKR superfamily. Unlike its rat homologue, human AFAR (hAFAR) appears to be constitutively expressed in human liver, and is widely expressed in extrahepatic tissues. The deduced human and rat protein sequences share 78% identity and 87% similarity. Although the two AKR7 proteins are predicted to possess distinct secondary structural features which distinguish them from the prototypic AKR1 family of AKRs, the catalytic- and NADPH-binding residues appear to be conserved in both families. Certain of the predicted structural features of the AKR7 family members are shared with the AKR6 beta-subunits of voltage-gated K+-channels. In addition to reducing the dialdehydic form of aflatoxin B1-8,9-dihydrodiol, hAFAR shows high affinity for the gamma-aminobutyric acid metabolite succinic semialdehyde (SSA) which is structurally related to 2-CBA, suggesting that hAFAR could function as both a SSA reductase and a 2-CBA reductase in vivo. This hypothesis is supported in part by the finding that the major peak of 2-CBA reductase activity in human liver co-purifies with hAFAR protein. PMID:9576847

  1. Studies on the nitrate reductase activities of the fruit and the source leaf in pepper

    SciTech Connect

    Achhireddy, N.R.; Beevers, L.; Fletcher, J.S.

    1983-12-01

    Nitrate reductase (NR) activity (NO/sub 2//sup -/ produced in the dark and under anaerobic conditions) of 30-day-old fruit of Capsicum annuum L. was 2.2% that in tissues of a single leaf adjacent to each fruit (33 vs. 1500 nmoles/hr-g fresh weight). The optimal NR activity in one source leaf could only account for about 17% of the fruit's total nitrogen accumulation, while the fruit's own NR activity was almost negligible. Covered and uncovered fruits did not differ significantly in NR activities. 19 references, 1 figure, 1 table.

  2. Distinguishing two groups of flavin reductases by analyzing the protonation state of an active site carboxylic acid.

    PubMed

    Dumit, Verónica I; Cortez, Néstor; Matthias Ullmann, G

    2011-07-01

    Flavin-containing reductases are involved in a wide variety of physiological reactions such as photosynthesis, nitric oxide synthesis, and detoxification of foreign compounds, including therapeutic drugs. Ferredoxin-NADP(H)-reductase (FNR) is the prototypical enzyme of this family. The fold of this protein is highly conserved and occurs as one domain of several multidomain enzymes such as the members of the diflavin reductase family. The enzymes of this family have emerged as fusion of a FNR and a flavodoxin. Although the active sites of these enzymes are very similar, different enzymes function in opposite directions, that is, some reduce oxidized nicotinamide adenine dinucleotide phosphate (NADP(+)) and some oxidize reduced nicotinamide adenine dinucleotide phosphate (NADPH). In this work, we analyze the protonation behavior of titratable residues of these enzymes through electrostatic calculations. We find that a highly conserved carboxylic acid in the active site shows a different titration behavior in different flavin reductases. This residue is deprotonated in flavin reductases present in plastids, but protonated in bacterial counterparts and in diflavin reductases. The protonation state of the carboxylic acid may also influence substrate binding. The physiological substrate for plastidic enzymes is NADP(+), but it is NADPH for the other mentioned reductases. In this article, we discuss the relevance of the environment of this residue for its protonation and its importance in catalysis. Our results allow to reinterpret and explain experimental data. PMID:21538544

  3. Process-driven bacterial community dynamics are key to cured meat colour formation by coagulase-negative staphylococci via nitrate reductase or nitric oxide synthase activities.

    PubMed

    Sánchez Mainar, María; Leroy, Frédéric

    2015-11-01

    The cured colour of European raw fermented meats is usually achieved by nitrate-into-nitrite reduction by coagulase-negative staphylococci (CNS), subsequently generating nitric oxide to form the relatively stable nitrosomyoglobin pigment. The present study aimed at comparing this classical curing procedure, based on nitrate reductase activity, with a potential alternative colour formation mechanism, based on nitric oxide synthase (NOS) activity, under different acidification profiles. To this end, meat models with and without added nitrate were fermented with cultures of an acidifying strain (Lactobacillus sakei CTC 494) and either a nitrate-reducing Staphylococcus carnosus strain or a rare NOS-positive CNS strain (Staphylococcus haemolyticus G110), or by relying on the background microbiota. Satisfactory colour was obtained in the models prepared with added nitrate and S. carnosus. In the presence of nitrate but absence of added CNS, however, cured colour was only obtained when L. sakei CTC 494 was also omitted. This was ascribed to the pH dependency of the emerging CNS background microbiota, selecting for nitrate-reducing Staphylococcus equorum strains at mild acidification conditions but for Staphylococcus saprophyticus strains with poor colour formation capability when the pH decrease was more rapid. This reliance of colour formation on the composition of the background microbiota was further explored by a side experiment, demonstrating the heterogeneity in nitrate reduction of a set of 88 CNS strains from different species. Finally, in all batches prepared with S. haemolyticus G110, colour generation failed as the strain was systematically outcompeted by the background microbiota, even when imposing milder acidification profiles. Thus, when aiming at colour formation through CNS metabolism, technological processing can severely interfere with the composition and functionality of the meat-associated CNS communities, for both nitrate reductase and NOS activities

  4. Major peptides from amaranth (Amaranthus cruentus) protein inhibit HMG-CoA reductase activity.

    PubMed

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  5. Major Peptides from Amaranth (Amaranthus cruentus) Protein Inhibit HMG-CoA Reductase Activity

    PubMed Central

    Soares, Rosana Aparecida Manólio; Mendonça, Simone; de Castro, Luíla Ívini Andrade; Menezes, Amanda Caroline Cardoso Corrêa Carlos; Arêas, José Alfredo Gomes

    2015-01-01

    The objective of this study was to identify the major peptides generated by the in vitro hydrolysis of Amaranthus cruentus protein and to verify the effect of these peptides on the activity of 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase), a key enzyme in cholesterol biosynthesis. A protein isolate was prepared, and an enzymatic hydrolysis that simulated the in vivo digestion of the protein was performed. After hydrolysis, the peptide mixture was filtered through a 3 kDa membrane. The peptide profile of this mixture was determined by reversed phase high performance chromatography (RP-HPLC), and the peptide identification was performed by LC-ESI MS/MS. Three major peptides under 3 kDa were detected, corresponding to more than 90% of the peptides of similar size produced by enzymatic hydrolysis. The sequences identified were GGV, IVG or LVG and VGVI or VGVL. These peptides had not yet been described for amaranth protein nor are they present in known sequences of amaranth grain protein, except LVG, which can be found in amaranth α‑amylase. Their ability to inhibit the activity of HMG-CoA reductase was determined, and we found that the sequences GGV, IVG, and VGVL, significantly inhibited this enzyme, suggesting a possible hypocholesterolemic effect. PMID:25690031

  6. Novel prenylated bichalcone and chalcone from Humulus lupulus and their quinone reductase induction activities.

    PubMed

    Yu, Liyan; Zhang, Fuxian; Hu, Zhijuan; Ding, Hui; Tang, Huifang; Ma, Zhongjun; Zhao, Xiaofeng

    2014-03-01

    A new prenylated chalcone xanthohumol M (1), a novel prenylated bichalcone humulusol (2) and six known chalcones (3-8) were found from Humulus lupulus. Their structures were determined by spectroscopic methods. All the chalcones' electrophilic abilities were assessed by GSH (glutathione) rapid screening, and their QR (quinone reductase) induction activities were evaluated using hepa 1c1c7 cells. The results of electrophilic assay and QR induction activity assay were quite well. New compounds 1 and 2, along with some known prenylated chalcones, displayed certain QR induction activity. PMID:24397993

  7. Molecular Underpinnings of Nitrite Effect on CymA-Dependent Respiration in Shewanella oneidensis

    PubMed Central

    Jin, Miao; Fu, Huihui; Yin, Jianhua; Yuan, Jie; Gao, Haichun

    2016-01-01

    Shewanella exhibit a remarkable versatility of respiration, with a diverse array of electron acceptors (EAs). In environments where these bacteria thrive, multiple EAs are usually present. However, we know little about strategies by which these EAs and their interaction affect ecophysiology of Shewanella. In this study, we demonstrate in the model strain, Shewanella oneidensis MR-1, that nitrite, not through nitric oxide to which it may convert, inhibits respiration of fumarate, and probably many other EAs whose reduction depends on quinol dehydrogenase CymA. This is achieved via the repression of cyclic adenosine monophosphate (cAMP) production, a second messenger required for activation of cAMP-receptor protein (Crp) which plays a primary role in regulation of respiration. If nitrite is not promptly removed, intracellular cAMP levels drop, and this impairs Crp activity. As a result, the production of nitrite reductase NrfA, CymA, and fumarate reductase FccA is substantially reduced. In contrast, nitrite can be simultaneously respired with trimethylamine N-oxide, resulting in enhanced biomass. PMID:27493647

  8. Aldose Reductase Inhibitory Activity of Compounds from  Zea mays L.

    PubMed Central

    Kim, Tae Hyeon; Kim, Jin Kyu; Kang, Young-Hee; Lee, Jae-Yong; Kang, Il Jun; Lim, Soon Sung

    2013-01-01

    Aldose reductase (AR) inhibitors have a considerable therapeutic potential against diabetes complications and do not increase the risk of hypoglycemia. Through bioassay-guided fractionation of an EtOH extract of the kernel from purple corn (Zea mays L.), 7 nonanthocyanin phenolic compounds (compound 1–7) and 5 anthocyanins (compound 8–12) were isolated. These compounds were investigated by rat lens aldose reductase (RLAR) inhibitory assays. Kinetic analyses of recombinant human aldose reductase (rhAR) were performed, and intracellular galactitol levels were measured. Hirsutrin, one of 12 isolated compounds, showed the most potent RLAR inhibitory activity (IC50, 4.78 μM). In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate concentration, hirsutrin showed competitive inhibition against rhAR. Furthermore, hirsutrin inhibited galactitol formation in rat lens and erythrocytes sample incubated with a high concentration of galactose; this finding indicates that hirsutrin may effectively prevent osmotic stress in hyperglycemia. Therefore, hirsutrin derived from Zea mays L. may be a potential therapeutic agent against diabetes complications. PMID:23586057

  9. Azo-reductase activated budesodine prodrugs for colon targeting.

    PubMed

    Marquez Ruiz, Juan F; Kedziora, Kinga; O'Reilly, Mary; Maguire, Jacqueline; Keogh, Brian; Windle, Henry; Kelleher, Dermot P; Gilmer, John F

    2012-12-15

    Budesodine is a synthetic glurocorticoid that undergoes substantial first pass metabolism, limiting systemic exposure. Its use in treatment of inflammatory bowel disease would benefit from a targeting strategy that could lead to a local topical effect, improving safety and increasing anti-inflammatory efficacy. A two-step prodrug strategy involving azoreduction/cyclization that we developed previously for prednisolone is here applied with some variations to budesonide. The budesodine prodrugs were tested using an in vitro azoreductase assay simulating human colonic microflora. The kinetics of amino steroid ester cyclization and its pH dependence was also evaluated. The stability of the prodrugs systems in simulated human duodenal and gastric fluid was evaluated to determine the likelihood of intact intestinal transit. The propionic acid derived prodrug 3 undergoes rapid activation by Clostridium perfingens and its putative reduction product cyclizes with acceptable rapidity when synthesized independently. These properties of 3 suggest that it has potential in management of ulcerative colitis. PMID:23122819

  10. Differential cytochrome content and reductase activity in Geospirillum barnesii strain SeS3

    USGS Publications Warehouse

    Stolz, J.F.; Gugliuzza, T.; Switzer, Blum J.; Oremland, R.; Martinez, Murillo F.

    1997-01-01

    The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth.

  11. Key Residues Regulating the Reductase Activity of the Human Mitochondrial Apoptosis Inducing Factor.

    PubMed

    Villanueva, Raquel; Ferreira, Patricia; Marcuello, Carlos; Usón, Alejandro; Miramar, M Dolores; Peleato, M Luisa; Lostao, Anabel; Susin, Santos A; Medina, Milagros

    2015-08-25

    The human Apoptosis Inducing Factor (hAIF) is a bifunctional NAD(P)H-dependent flavoreductase involved in both mitochondrial energy metabolism and caspase-independent cell death. Even though several studies indicate that both functions are redox controlled by NADH binding, the exact role of hAIF as a reductase in healthy mitochondria remains unknown. Upon reduction by NADH, hAIF dimerizes and produces very stable flavin/nicotinamide charge transfer complexes (CTC), by stacking of the oxidized nicotinamide moiety of the NAD(+) coenzyme against the re-face of the reduced flavin ring of its FAD cofactor. Such complexes are critical to restrict the hAIF efficiency as a reductase. The molecular basis of the hAIF reductase activity is here investigated by analyzing the role played by residues contributing to the interaction of the FAD isoalloxazine ring and of the nicotinamide moiety of NADH at the active site. Mutations at K177 and E314 produced drastic effects on the hAIF ability to retain the FAD cofactor, indicating that these residues are important to set up the holo-enzyme active site conformation. Characterization of P173G hAIF indicates that the stacking of P173 against the isoalloxazine ring is relevant to determine the flavin environment and to modulate the enzyme affinity for NADH. Finally, the properties of the F310G and H454S hAIF mutants indicate that these two positions contribute to form a compact active site essential for NADH binding, CTC stabilization, and NAD(+) affinity for the reduced state of hAIF. These features are key determinants of the particular behavior of hAIF as a NADH-dependent oxidoreductase. PMID:26237213

  12. Osmolarity and glucose differentially regulate aldose reductase activity in cultured mouse podocytes.

    PubMed

    Lewko, Barbara; Latawiec, Elżbieta; Maryn, Anna; Barczyńska, Anna; Pikuła, Michał; Zieliński, Maciej; Rybczyńska, Apolonia

    2011-01-01

    Podocyte injury is associated with progression of many renal diseases, including diabetic nephropathy. In this study we examined whether aldose reductase (AR), the enzyme implicated in diabetic complications in different tissues, is modulated by high glucose and osmolarity in podocyte cells. AR mRNA, protein expression, and activity were measured in mouse podocytes cultured in both normal and high glucose and osmolarity for 6 hours to 5 days. Hyperosmolarity acutely stimulated AR expression and activity, with subsequent increase of AR expression but decrease of activity. High glucose also elevated AR protein level; however, this was not accompanied by respective enzyme activation. Furthermore, high glucose appeared to counteract the osmolarity-dependent activation of AR. In conclusion, in podocytes AR is modulated by high glucose and increased osmolarity in a different manner. Posttranslational events may affect AR activity independent of enzyme protein amount. Activation of AR in podocytes may be implicated in diabetic podocytopathy. PMID:22253613

  13. Quinone Reductase 2 Is a Catechol Quinone Reductase

    SciTech Connect

    Fu, Yue; Buryanovskyy, Leonid; Zhang, Zhongtao

    2008-09-05

    The functions of quinone reductase 2 have eluded researchers for decades even though a genetic polymorphism is associated with various neurological disorders. Employing enzymatic studies using adrenochrome as a substrate, we show that quinone reductase 2 is specific for the reduction of adrenochrome, whereas quinone reductase 1 shows no activity. We also solved the crystal structure of quinone reductase 2 in complexes with dopamine and adrenochrome, two compounds that are structurally related to catecholamine quinones. Detailed structural analyses delineate the mechanism of quinone reductase 2 specificity toward catechol quinones in comparison with quinone reductase 1; a side-chain rotational difference between quinone reductase 1 and quinone reductase 2 of a single residue, phenylalanine 106, determines the specificity of enzymatic activities. These results infer functional differences between two homologous enzymes and indicate that quinone reductase 2 could play important roles in the regulation of catecholamine oxidation processes that may be involved in the etiology of Parkinson disease.

  14. Conversion of NfsA, the Major Escherichia coli Nitroreductase, to a Flavin Reductase with an Activity Similar to That of Frp, a Flavin Reductase in Vibrio harveyi, by a Single Amino Acid Substitution

    PubMed Central

    Zenno, Shuhei; Kobori, Toshiro; Tanokura, Masaru; Saigo, Kaoru

    1998-01-01

    NfsA is the major oxygen-insensitive nitroreductase of Escherichia coli, similar in amino acid sequence to Frp, a flavin reductase of Vibrio harveyi. Here, we show that a single amino acid substitution at position 99, which may destroy three hydrogen bonds in the putative active center, transforms NfsA from a nitroreductase into a flavin reductase that is as active as the authentic Frp and a tartrazine reductase that is 30-fold more active than wild-type NfsA. PMID:9440535

  15. Adventitious Arsenate Reductase Activity of the Catalytic Domain of the Human Cdc25B and Cdc25C Phosphatases†

    PubMed Central

    Bhattacharjee, Hiranmoy; Sheng, Ju; Ajees, A. Abdul; Mukhopadhyay, Rita; Rosen, Barry P.

    2013-01-01

    A number of eukaryotic enzymes that function as arsenate reductases are homologues of the catalytic domain of the human Cdc25 phosphatase. For example, the Leishmania major enzyme LmACR2 is both a phosphatase and an arsenate reductase, and its structure bears similarity to the structure of the catalytic domain of human Cdc25 phosphatase. These reductases contain an active site C-X5-R signature motif, where C is the catalytic cysteine, the five X residues form a phosphate binding loop, and R is a highly conserved arginine, which is also present in human Cdc25 phosphatases. We therefore investigated the possibility that the three human Cdc25 isoforms might have adventitious arsenate reductase activity. The sequences for the catalytic domains of Cdc25A, -B, and -C were cloned individually into a prokaryotic expression vector, and their gene products were purified from a bacterial host using nickel affinity chromatography. While each of the three Cdc25 catalytic domains exhibited phosphatase activity, arsenate reductase activity was observed only with Cdc25B and -C. These two enzymes reduced inorganic arsenate but not methylated pentavalent arsenicals. Alteration of either the cysteine and arginine residues of the Cys-X5-Arg motif led to the loss of both reductase and phosphatase activities. Our observations suggest that Cdc25B and -C may adventitiously reduce arsenate to the more toxic arsenite and may also provide a framework for identifying other human protein tyrosine phosphatases containing the active site Cys-X5-Arg loop that might moonlight as arsenate reductases. PMID:20025242

  16. Plasma nitrite rather than nitrate reflects regional endothelial nitric oxide synthase activity but lacks intrinsic vasodilator action.

    PubMed

    Lauer, T; Preik, M; Rassaf, T; Strauer, B E; Deussen, A; Feelisch, M; Kelm, M

    2001-10-23

    The plasma level of NO(x), i.e., the sum of NO(2)- and NO(3)-, is frequently used to assess NO bioavailability in vivo. However, little is known about the kinetics of NO conversion to these metabolites under physiological conditions. Moreover, plasma nitrite recently has been proposed to represent a delivery source for intravascular NO. We therefore sought to investigate in humans whether changes in NO(x) concentration are a reliable marker for endothelial NO production and whether physiological concentrations of nitrite are vasoactive. NO(2)- and NO(3)- concentrations were measured in blood sampled from the antecubital vein and brachial artery of 24 healthy volunteers. No significant arterial-venous gradient was observed for either NO(2)- or NO(3)-. Endothelial NO synthase (eNOS) stimulation with acetylcholine (1-10 microg/min) dose-dependently augmented venous NO(2)- levels by maximally 71%. This effect was paralleled by an almost 4-fold increase in forearm blood flow (FBF), whereas an equieffective dose of papaverine produced no change in venous NO(2)-. Intraarterial infusion of NO(2)- had no effect on FBF. NOS inhibition (N(G)-monomethyl-l-arginine; 4-12 micromol/min) dose-dependently reduced basal NO(2)- and FBF and blunted acetylcholine-induced vasodilation and NO release by more than 80% and 90%, respectively. In contrast, venous NO(3)- and total NO(x) remained unchanged as did systemic arterial NO(2)- and NO(3)- levels during all these interventions. FBF and NO release showed a positive association (r = 0.85; P < 0.001). These results contradict the current paradigm that plasma NO(3)- and/or total NO(x) are generally useful markers of endogenous NO production and demonstrate that only NO(2)- reflects acute changes in regional eNOS activity. Our results further demonstrate that physiological levels of nitrite are vasodilator-inactive. PMID:11606734

  17. Differentiation in the microbial ecology and activity of suspended and attached bacteria in a nitritation-anammox process.

    PubMed

    Park, Hongkeun; Sundar, Suneethi; Ma, Yiwei; Chandran, Kartik

    2015-02-01

    A directed differentiation between the biofilm and suspension was observed in the molecular microbial ecology and gene expression of different bacteria in a biofilm nitritation-anammox process operated at varying hydraulic residence times (HRT) and nitrogen loading rates (NLR). The highest degree of enrichment observed in the biofilm was of anaerobic ammonia-oxidizing bacteria (AMX) followed by that of Nitrospira spp. related nitrite-oxidizing bacteria (NOB). For AMX, a major shift from Candidatus "Brocadia fulgida" to Candidatus "Kuenenia stuttgartiensis" in both suspension and biofilm was observed with progressively shorter HRT, using discriminatory biomarkers targeting the hydrazine synthase (hzsA) gene. In parallel, expression of the hydrazine oxidoreductase gene (hzo), a functional biomarker for AMX energy metabolism, became progressively prominent in the biofilm. A marginal but statistically significant enrichment in the biofilm was observed for Nitrosomonas europaea related ammonia-oxidizing bacteria (AOB). In direct contrast to AMX, the gene expression of ammonia monooxygenase subunit A (amoA), a functional biomarker for AOB energy metabolism, progressively increased in suspension. Using gene expression and biomass concentration measures in conjunction, it was determined that signatures of AOB metabolism were primarily present in the biofilm throughout the study. On the other hand, AMX metabolism gradually shifted from being uniformly distributed in both the biofilm and suspension to primarily the biofilm at shorter HRTs and higher NLRs. These results therefore highlight the complexity and key differences in the microbial ecology, gene expression and activity between the biofilm and suspension of a nitritation-anammox process and the biokinetic and metabolic drivers for such niche segregation. PMID:25115980

  18. Glyphosate effect on shikimate, nitrate reductase activity, yield, and seed composition in corn.

    PubMed

    Reddy, Krishna N; Bellaloui, Nacer; Zablotowicz, Robert M

    2010-03-24

    When glyphosate is applied to glyphosate-resistant (GR) crops, drift to nonglyphosate-resistant (non-GR) crops may cause significant injury and reduce yields. Tools are needed to quantify injury and predict crop losses. In this study, glyphosate drift was simulated by direct application at 12.5% of the recommended label rate to non-GR corn (Zea mays L.) at 3 or 6 weeks after planting (WAP) during two field seasons in the Mississippi delta region of the southeastern USA. Visual plant injury, shikimate accumulation, nitrate reductase activity, leaf nitrogen, yield, and seed composition were evaluated. Effects were also evaluated in GR corn and GR corn with stacked glufosinate-resistant gene at the recommended label rate at 3 and 6 WAP. Glyphosate at 105 g ae/ha was applied once at 3 or 6 weeks after planting to non-GR corn. Glyphosate at 840 (lower label limit) or 1260 (upper label limit) g ae/ha was applied twice at 3 and 6 WAP to transgenic corn. Glyphosate caused injury (45-55%) and increased shikimate levels (24-86%) in non-GR compared to nontreated corn. In non-GR corn, glyphosate drift did not affect starch content but increased seed protein 8-21% while reducing leaf nitrogen reductase activity 46-64%, leaf nitrogen 7-16%, grain yield 49-54%, and seed oil 18-23%. In GR and GR stacked with glufosinate-resistant corn, glyphosate applied at label rates did not affect corn yield, leaf and seed nitrogen, or seed composition (protein, oil, and starch content). Yet, nitrate reductase activity was reduced 5-19% with glyphosate at 840 + 840 g/ha rate and 8-42% with glyphosate at 1260 + 1260 g/ha rate in both GR and GR stacked corn. These results demonstrate the potential for severe yield loss in non-GR corn exposed to glyphosate drift. PMID:20180575

  19. Human castration resistant prostate cancer rather prefer to decreased 5α-reductase activity

    PubMed Central

    Kosaka, Takeo; Miyajima, Akira; Nagata, Hirohiko; Maeda, Takahiro; Kikuchi, Eiji; Oya, Mototsugu

    2013-01-01

    Physiologically relevant steroid 5α-reductase (SRD5A) activity that is essential for dihydrotestosterone (DHT) biosynthesis in human castration-resistant prostate cancer (CRPC) has not been fully characterized yet. In this study to ascertain the potential SRD5A activity, we cultured two human CRPC cell lines, C4-2 and C4-2AT6, with the steroid precursor: 13C-[2,3,4]-androstenedione (13C-Adione), and analyzed the sequential biosynthesis of 13C-[2,3,4]-testosterone (13C-T) and 13C-[2,3,4]-DHT (13C-DHT) by liquid chromatography/mass spectrometry (LC/MS/MS). The 13C-DHT/13C-T concentration ratio detected by LC/MS/MS in C4-2AT6 cells appeared to reflect the SRD5A activity. The ratio in C4-2AT6 was significantly lower than that in C4-2. An increased concentration of DHT did not have a positive effect on cell proliferation, rather it exhibited inhibitory effects. 5α-reductase inhibitors did not have any inhibitory effect at clinically achievable concentrations. These results indicate that CRPC cells may have an unknown regulation system to protect themselves from an androgenic suppressive effect mediated by SRD5A activity. PMID:23429215

  20. The inhibitory activity of aldose reductase in vitro by constituents of Garcinia mangostana Linn.

    PubMed

    Fatmawati, Sri; Ersam, Taslim; Shimizu, Kuniyoshi

    2015-01-15

    We investigated aldose reductase inhibition of Garcinia mangostana Linn. from Indonesia. Dichloromethane extract of the root bark of this tree was found to demonstrate an IC50 value of 11.98 µg/ml for human aldose reductase in vitro. From the dichloromethane fraction, prenylated xanthones were isolated as potent human aldose reductase inhibitors. We discovered 3-isomangostin to be most potent against aldose reductase, with an IC50 of 3.48 µM. PMID:25636870

  1. Mutational analysis of the nor gene cluster which encodes nitric-oxide reductase from Paracoccus denitrificans.

    PubMed

    de Boer, A P; van der Oost, J; Reijnders, W N; Westerhoff, H V; Stouthamer, A H; van Spanning, R J

    1996-12-15

    The genes that encode the hc-type nitric-oxide reductase from Paracoccus denitrificans have been identified. They are part of a cluster of six genes (norCBQDEF) and are found near the gene cluster that encodes the cd1-type nitrite reductase, which was identified earlier [de Boer, A. P. N., Reijnders, W. N. M., Kuenen, J. G., Stouthamer, A. H. & van Spanning, R. J. M. (1994) Isolation, sequencing and mutational analysis of a gene cluster involved in nitrite reduction in Paracoccus denitrificans, Antonie Leeu wenhoek 66, 111-127]. norC and norB encode the cytochrome-c-containing subunit II and cytochrome b-containing subunit I of nitric-oxide reductase (NO reductase), respectively. norQ encodes a protein with an ATP-binding motif and has high similarity to NirQ from Pseudomonas stutzeri and Pseudomonas aeruginosa and CbbQ from Pseudomonas hydrogenothermophila. norE encodes a protein with five putative transmembrane alpha-helices and has similarity to CoxIII, the third subunit of the aa3-type cytochrome-c oxidases. norF encodes a small protein with two putative transmembrane alpha-helices. Mutagenesis of norC, norB, norQ and norD resulted in cells unable to grow anaerobically. Nitrite reductase and NO reductase (with succinate or ascorbate as substrates) and nitrous oxide reductase (with succinate as substrate) activities were not detected in these mutant strains. Nitrite extrusion was detected in the medium, indicating that nitrate reductase was active. The norQ and norD mutant strains retained about 16% and 23% of the wild-type level of NorC, respectively. The norE and norF mutant strains had specific growth rates and NorC contents similar to those of the wild-type strain, but had reduced NOR and NIR activities, indicating that their gene products are involved in regulation of enzyme activity. Mutant strains containing the norCBQDEF region on the broad-host-range vector pEG400 were able to grow anaerobically, although at a lower specific growth rate and with lower

  2. Activation of accumulated nitrite reduction by immobilized Pseudomonas stutzeri T13 during aerobic denitrification.

    PubMed

    Ma, Fang; Sun, Yilu; Li, Ang; Zhang, Xuening; Yang, Jixian

    2015-01-01

    The excellent removal efficiency of nitrate by the aerobic denitrifier, Pseudomonas stutzeri T13, was achieved in free cells system. However, poor nitrite reduction prevents efficient aerobic denitrification because of the nitrite accumulation. This problem could be conquered by immobilizing the cells on supports. In this study, strain T13 was immobilized by mycelial pellets (MPs), polyurethane foam cubes (PFCs) and sodium alginate beads (SABs). Higher removal percentages of TN in MP (43.78%), PFC (42.31%) and SAB (57.25%) systems were achieved compared with the free cell system (29.7%). Furthermore, the optimal condition for immobilized cell systems was as follows: 30°C, 100rpm shaking speed and pH 7. The shock-resistance of SAB system was relatively poor, which could collapse under either alkaline (pH=9) or high rotating (200rpm) conditions. The recycling experiments demonstrated that the high steady TN removal rate could be maintained for seven cycles in both MP and PFC systems. PMID:25827250

  3. Physicochemical nature of interfaces controlling ferredoxin NADP(+) reductase activity through its interprotein interactions with ferredoxin.

    PubMed

    Kinoshita, Misaki; Kim, Ju Yaen; Kume, Satoshi; Sakakibara, Yukiko; Sugiki, Toshihiko; Kojima, Chojiro; Kurisu, Genji; Ikegami, Takahisa; Hase, Toshiharu; Kimata-Ariga, Yoko; Lee, Young-Ho

    2015-10-01

    Although acidic residues of ferredoxin (Fd) are known to be essential for activities of various Fd-dependent enzymes, including ferredoxin NADP(+) reductase (FNR) and sulfite reductase (SiR), through electrostatic interactions with basic residues of partner enzymes, non-electrostatic contributions such as hydrophobic forces remain largely unknown. We herein demonstrated that intermolecular hydrophobic and charge-charge interactions between Fd and enzymes were both critical for enzymatic activity. Systematic site-directed mutagenesis, which altered physicochemical properties of residues on the interfaces of Fd for FNR /SiR, revealed various changes in activities of both enzymes. The replacement of serine 43 of Fd to a hydrophobic residue (S43W) and charged residue (S43D) increased and decreased FNR activity, respectively, while S43W showed significantly lower SiR activity without affecting SiR activity by S43D, suggesting that hydrophobic and electrostatic interprotein forces affected FNR activity. Enzyme kinetics revealed that changes in FNR activity by mutating Fd correlated with Km, but not with kcat or activation energy, indicating that interprotein interactions determined FNR activity. Calorimetry-based binding thermodynamics between Fd and FNR showed different binding modes of FNR to wild-type, S43W, or S43D, which were controlled by enthalpy and entropy, as shown by the driving force plot. Residue-based NMR spectroscopy of (15)N FNR with Fds also revealed distinct binding modes of each complex based on different directions of NMR peak shifts with similar overall chemical shift differences. We proposed that subtle adjustments in both hydrophobic and electrostatic forces were critical for enzymatic activity, and these results may be applicable to protein-based electron transfer systems. PMID:26087388

  4. Ultrafast ligand binding dynamics in the active site of native bacterial nitric oxide reductase.

    PubMed

    Kapetanaki, Sofia M; Field, Sarah J; Hughes, Ross J L; Watmough, Nicholas J; Liebl, Ursula; Vos, Marten H

    2008-01-01

    The active site of nitric oxide reductase from Paracoccus denitrificans contains heme and non-heme iron and is evolutionarily related to heme-copper oxidases. The CO and NO dynamics in the active site were investigated using ultrafast transient absorption spectroscopy. We find that, upon photodissociation from the active site heme, 20% of the CO rebinds in 170 ps, suggesting that not all the CO transiently binds to the non-heme iron. The remaining 80% does not rebind within 4 ns and likely migrates out of the active site without transient binding to the non-heme iron. Rebinding of NO to ferrous heme takes place in approximately 13 ps. Our results reveal that heme-ligand recombination in this enzyme is considerably faster than in heme-copper oxidases and are consistent with a more confined configuration of the active site. PMID:18420024

  5. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1

    PubMed Central

    Park, Bong Soo; Song, Jong Tae; Seo, Hak Soo

    2011-01-01

    Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis. PMID:21772271

  6. Arabidopsis nitrate reductase activity is stimulated by the E3 SUMO ligase AtSIZ1.

    PubMed

    Park, Bong Soo; Song, Jong Tae; Seo, Hak Soo

    2011-01-01

    Small ubiquitin-related modifier (SUMO) is a small polypeptide that modulates protein activity and regulates hormone signalling, abiotic and biotic responses in plants. Here we show that AtSIZ regulates nitrogen assimilation in Arabidopsis through its E3 SUMO ligase function. Dwarf plants of siz1-2 flower early, show abnormal seed development and have high salicylic acid content and enhanced resistance to bacterial pathogens. These mutant phenotypes are reverted to wild-type phenotypes by exogenous ammonium but not by nitrate, phosphate or potassium. Decreased nitrate reductase activity in siz1-2 plants resulted in low nitrogen concentrations, low nitric oxide production and high nitrate content in comparison with wild-type plants. The nitrate reductases, NIA1 and NIA2, are sumoylated by AtSIZ1, which dramatically increases their activity. Both sumoylated and non-sumoylated NIA1 and NIA2 can form dimers. Our results indicate that AtSIZ1 positively controls nitrogen assimilation by promoting sumoylation of NRs in Arabidopsis. PMID:21772271

  7. Inducible chromate reductase exhibiting extracellular activity in Bacillus methylotrophicus for chromium bioremediation.

    PubMed

    Sandana Mala, John Geraldine; Sujatha, Dhanasingh; Rose, Chellan

    2015-01-01

    Chromium toxicity is one of the major causes of environmental pollution due to its heavy discharge in industrial wastewaters. Chromate reduction is a viable method to detoxify hexavalent chromium to nontoxic trivalent species mediated by enzymes and metabolites. A new Bacillus methylotrophicus strain was isolated from tannery sludge and was an efficient candidate for chromate reduction. An initial chromate reductase activity of 212.84 U/mg protein was obtained at 48 h in a low-cost defined medium formulation with 0.25 mM chromate. The extracellular enzyme was inducible at 12h substrate addition with 312.99 U/mg at 48 h. Reduced glutathione was required for enhanced specific activity of 356.48 U/mg. Enzyme activity was optimum at pH 7.0 and at 30 °C, and was stable in the presence of EDTA, DTT and metal ions. The enzyme exhibited a Vmax of 59.89 μM/min/mg protein and a Km of 86.5 μM, suggesting feasibility of the reaction with K₂Cr₂O₇ as substrate. Application of the crude reductase in tannery effluent resulted in 91.3% chromate reduction at 48 h. An enzyme-mediated chromate reduction process has therefore been developed for bioremediation of toxic chromium sp. in industrial effluents. PMID:24985094

  8. Nitrite reduction in paracoccus halodenitrificans: Evidence for the role of a cd-type cytochrome in ammonia formation

    NASA Technical Reports Server (NTRS)

    Hochstein, L. I.; Cronin, S. E.

    1984-01-01

    Cell-free extracts prepared from Paracoccus halodenitrificans catalyzed the reduction of nitrate to ammonia in the presence of dithionite and methyl viologen. Enzyme activity was located in the soluble fraction and was associated with a cytochrome whose spectral properties resembled those of a cd-type cytochrome. Unlike the sissimilatory cd-cytochrome nitrate reductase associated with the membrane fraction of P. halodenitrificans, this soluble cd-cytochrome did not reduce nitrite to nitrous oxide.

  9. Response to Arsenate Treatment in Schizosaccharomyces pombe and the Role of Its Arsenate Reductase Activity

    PubMed Central

    Matia-González, Ana M.; Sotelo, Jael; Zarco-Fernández, Sonia; Muñoz-Olivas, Riansares; Cámara, Carmen; Rodríguez-Gabriel, Miguel A.

    2012-01-01

    Arsenic toxicity has been studied for a long time due to its effects in humans. Although epidemiological studies have demonstrated multiple effects in human physiology, there are many open questions about the cellular targets and the mechanisms of response to arsenic. Using the fission yeast Schizosaccharomyces pombe as model system, we have been able to demonstrate a strong activation of the MAPK Spc1/Sty1 in response to arsenate. This activation is dependent on Wis1 activation and Pyp2 phosphatase inactivation. Using arsenic speciation analysis we have also demonstrated the previously unknown capacity of S. pombe cells to reduce As (V) to As (III). Genetic analysis of several fission yeast mutants point towards the cell cycle phosphatase Cdc25 as a possible candidate to carry out this arsenate reductase activity. We propose that arsenate reduction and intracellular accumulation of arsenite are the key mechanisms of arsenate tolerance in fission yeast. PMID:22912829

  10. Modulation of HMG-CoA reductase activity by pantetheine/pantethine.

    PubMed

    Cighetti, G; Del Puppo, M; Paroni, R; Galli Kienle, M

    1988-11-25

    The ability of pantetheine/pantethine to modulate the activity of HMG-CoA reductase (EC 1.1.1.34) was determined in vitro with rat liver microsomes. The decay of the activity was obtained with pantethine in the 10(-5)-10(-4) M range, whereas stimulation by pantetheine occurred at 10(-3)-10(-2) M, as previously reported for GSSG and GSH, respectively. Inhibition of HMG-CoA by pantethine in isolated liver cells was also investigated by measuring the enzyme activity in microsomes isolated from hepatocytes incubated without or with 1 mM pantethine under conditions previously shown by us to induce inhibition of cholesterol synthesis from acetate. The enzyme amount was not modified by pantethine, but in cells treated with the disulphide, the relative amounts of the thiolic active forms of the enzyme, both phosphorylated and dephosphorylated, were decreased to about half compared to controls. PMID:3196742

  11. Enhanced Xylitol Production by Mutant Kluyveromyces marxianus 36907-FMEL1 Due to Improved Xylose Reductase Activity.

    PubMed

    Kim, Jin-Seong; Park, Jae-Bum; Jang, Seung-Won; Ha, Suk-Jin

    2015-08-01

    A directed evolution and random mutagenesis were carried out with thermotolerant yeast Kluyveromyces marxianus ATCC 36907 for efficient xylitol production. The final selected strain, K. marxianus 36907-FMEL1, exhibited 120 and 39 % improvements of xylitol concentration and xylitol yield, respectively, as compared to the parental strain, K. marxianus ATCC 36907. According to enzymatic assays for xylose reductase (XR) activities, XR activity from K. marxianus 36907-FMEL1 was around twofold higher than that from the parental strain. Interestingly, the ratios of NADH-linked and NADPH-linked XR activities were highly changed from 1.92 to 1.30 when K. marxianus ATCC 36907 and K. marxianus 36907-FMEL1 were compared. As results of KmXYL1 genes sequencing, it was found that cysteine was substituted to tyrosine at position 36 after strain development which might cause enhanced XR activity from K. marxianus 36907-FMEL1. PMID:26043853

  12. Synthesis of benzothiadiazine derivatives exhibiting dual activity as aldose reductase inhibitors and antioxidant agents.

    PubMed

    Zhu, Shaojuan; Hao, Xin; Zhang, Shuzhen; Qin, Xiangyu; Chen, Xin; Zhu, Changjin

    2016-06-15

    Several multifunctional benzothiadiazine derivatives were synthesized and examined for their inhibition to the enzyme aldose reductase and in vitro antioxidant activity to identify novel drugs for diabetes and its complications. Most of them exhibited good inhibitory activity. Importantly, a number of compounds demonstrated strong antioxidant activity and one compound in particular was extremely active in the DPPH radical scavenging and MDA inhibition analysis. The DPPH radical scavenging rate with this compound was 98.0%, 92.3% and 42.1% at concentrations of 100μM, 10μM, and 1μM, respectively, and the initial reaction rate was faster than Trolox at a concentration of 10μM. PMID:27156769

  13. Identification of a Noroxomaritidine Reductase with Amaryllidaceae Alkaloid Biosynthesis Related Activities.

    PubMed

    Kilgore, Matthew B; Holland, Cynthia K; Jez, Joseph M; Kutchan, Toni M

    2016-08-01

    Amaryllidaceae alkaloids are a large group of plant natural products with over 300 documented structures and diverse biological activities. Several groups of Amaryllidaceae alkaloids including the hemanthamine- and crinine-type alkaloids show promise as anticancer agents. Two reduction reactions are required for the production of these compounds: the reduction of norcraugsodine to norbelladine and the reduction of noroxomaritidine to normaritidine, with the enantiomer of noroxomaritidine dictating whether the derivatives will be the crinine-type or hemanthamine-type. It is also possible for the carbon-carbon double bond of noroxomaritidine to be reduced, forming the precursor for maritinamine or elwesine depending on the enantiomer reduced to an oxomaritinamine product. In this study, a short chain alcohol dehydrogenase/reductase that co-expresses with the previously discovered norbelladine 4'-O-methyltransferase from Narcissus sp. and Galanthus spp. was cloned and expressed in Escherichia coli Biochemical analyses and x-ray crystallography indicates that this protein functions as a noroxomaritidine reductase that forms oxomaritinamine from noroxomaritidine through a carbon-carbon double bond reduction. The enzyme also reduces norcraugsodine to norbelladine with a 400-fold lower specific activity. These studies identify a missing step in the biosynthesis of this pharmacologically important class of plant natural products. PMID:27252378

  14. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity.

    PubMed

    Boschi-Muller, Sandrine; Branlant, Guy

    2014-12-01

    Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form. PMID:25108804

  15. Determination of the specific activities of methionine sulfoxide reductase A and B by capillary electrophoresis.

    PubMed

    Uthus, Eric O

    2010-06-01

    A capillary electrophoresis (CE) method for the determination of methionine sulfoxide reductase A and methionine sulfoxide reductase B activities in mouse liver is described. The method is based on detection of the 4-(dimethylamino)azobenzene-4'-sulfonyl derivative of l-methionine (dabsyl Met), the product of the enzymatic reactions when either dabsyl l-methionine S-sulfoxide or dabsyl l-methionine R-sulfoxide is used as a substrate. The method provides baseline resolution of the substrates and, therefore, can be used to easily determine the purity of the substrates. The method is rapid ( approximately 20min sample to sample), requires no column regeneration, and uses very small amounts of buffers. Separation was performed by using a 75-mum internal diameter polyimide-coated fused silica capillary (no inside coating) with 60cm total length (50cm to the detector window). Samples were separated at 22.5kV, and the separation buffer was 25mM KH(2)PO(4) (pH 8.0) containing 0.9ml of N-lauroylsarcosine (sodium salt, 30% [w/v] solution) per 100ml of buffer. Prior to use, the capillary was conditioned with the same buffer that also contained 25mM sodium dodecyl sulfate. The CE method is compared with high-performance liquid chromatography (HPLC) as determined by comparing results from measurements of hepatic enzyme activities in mice fed either deficient or adequate selenium. PMID:20167203

  16. Consequence of absence of nitrate reductase activity on photosynthesis in Nicotiana plumbaginifolia plants

    SciTech Connect

    Saux, C.; Lemoine, Y.; Marion-Poll, A.; Valadier, M.H.; Deng, M.; Morot-Gaudry, J.F.

    1987-05-01

    Chlorate-resistant Nicotiana plumbaginifolia (cv Viviani) mutants were found to be deficient in the nitrate reductase apoprotein (NR/sup -/ nia). Because they could not grow with nitrate as sole nitrogen source, they were cultivated as graftings on wild-type Nicotiana tabacum plants. The grafts of mutant plants were chlorotic compared to the grafts of wild type. Mutant leaves did not accumulate nitrogen but contained less malate and more glutamine than wild leaves. They exhibited a slight increase of the proportion of the light-harvesting chlorophyll a/b protein complexes and a lowering of the efficiency of energy transfer between these complexes and the active centers. After a 3 second /sup 14/CO/sub 2/ pulse, the total /sup 14/C incorporation of the mutant leaves was approximately 20/sup 5/ of that of the control. The /sup 14/C was essentially recovered in ribulose bisphosphate in these plants. It was consistent with a decline of ribulose bisphosphate carboxylase activity observed in the mutant. After a 3 second /sup 14/CO/sub 2/ pulse followed by a 60 second chase with normal CO/sub 2/, /sup 14/C was mainly accumulated in starch which was labeled more in the mutant than in the wild type. These results confirm the observation that in the nitrate reductase deficient leaves, chloroplasts were loaded with large starch inclusions preceding disorganization of the photosynthetic apparatus.

  17. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter.

    PubMed Central

    Snape, J R; Walkley, N A; Morby, A P; Nicklin, S; White, G F

    1997-01-01

    Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively. PMID:9401040

  18. Crystal Structures of Manganese- and Cobalt-substituted Myoglobin in Complex with NO and Nitrite Reveal Unusual Ligand Conformations

    PubMed Central

    Zahran, Zaki N.; Chooback, Lilian; Copeland, Daniel M.; West, Ann H.; Richter-Addo, George B.

    2009-01-01

    Nitrite is now recognized as a storage pool of bioactive nitric oxide (NO). Hemoglobin (Hb) and myoglobin (Mb) convert, under certain conditions, nitrite to NO. This newly discovered nitrite reductase activity of Hb and Mb provides an attractive alternative to mammalian NO synthesis from the NO synthase pathway that requires dioxygen. We recently reported the X-ray crystal structure of the nitrite adduct of ferric horse heart Mb, and showed that the nitrite ligand binds in an unprecedented O-binding (nitrito) mode to the d5 ferric center in MbIII(ONO) (D. M. Copeland, A. Soares, A. H. West, G. B. Richter-Addo, J. Inorg. Biochem. 100 (2006) 1413-1425). We also showed that the distal pocket in Mb allows for different conformations of the NO ligand (120° and 144°) in MbIINO depending on the mode of preparation of the compound. In this article, we report the crystal structures of the nitrite and NO adducts of manganese-substituted hh Mb (a d4 system) and of the nitrite adduct of cobalt-substituted hh Mb (a d6 system). We show that the distal His64 residue directs the nitrite ligand towards the rare nitrito O-binding mode in MnIIIMb and CoIIIMb. We also report that the distal pocket residues allow a stabilization of an unprecendented bent MnNO moiety in MnIIMbNO. These crystal structural data, when combined with the data for the aquo, methanol, and azide MnMb derivatives, provide information on the role of distal pocket residues in the observed binding modes of nitrite and NO ligands to wild-type and metal-substituted Mb. PMID:17905436

  19. Membrane composition influences the activity of in vitro refolded human vitamin K epoxide reductase.

    PubMed

    Jaenecke, Frank; Friedrich-Epler, Beatrice; Parthier, Christoph; Stubbs, Milton T

    2015-10-27

    Human vitamin K epoxide reductase (hVKOR) is an integral membrane protein responsible for the maintenance of reduced vitamin K pools, a prerequisite for the action of γ-glutamyl carboxylase and hence for hemostasis. Here we describe the recombinant expression of hVKOR as an insoluble fusion protein in Escherichia coli, followed by purification and chemical cleavage under denaturing conditions. In vitro renaturation and reconstitution of purified solubilized hVKOR in phospholipids could be established to yield active protein. Crucially, the renatured enzyme is inhibited by the powerful coumarin anticoagulant warfarin, and we demonstrate that enzyme activity depends on lipid composition. The completely synthetic system for protein production allows a rational investigation of the multiple variables in membrane protein folding and paves the way for the provision of pure, active membrane protein for structural studies. PMID:26435421

  20. Oxidase, superoxide dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and II methanotrophs.

    PubMed

    Choi, Dong W; Semrau, Jeremy D; Antholine, William E; Hartsel, Scott C; Anderson, Ryan C; Carey, Jeffrey N; Dreis, Ashley M; Kenseth, Erik M; Renstrom, Joel M; Scardino, Lori L; Van Gorden, Garrett S; Volkert, Anna A; Wingad, Aaron D; Yanzer, Paul J; McEllistrem, Marcus T; de la Mora, Arlene M; DiSpirito, Alan A

    2008-08-01

    Methanobactin (mb) is a copper-binding chromopeptide that appears to be involved in oxidation of methane by the membrane-associated or particulate methane monooxygenase (pMMO). To examine this potential physiological role, the redox and catalytic properties of mb from three different methanotrophs were examined in the absence and presence of O(2). Metal free mb from the type II methanotroph Methylosinus trichosporium OB3b, but not from the type I methanotrophs Methylococcus capsulatus Bath or Methylomicrobium album BG8, were reduced by a variety of reductants, including NADH and duroquinol, and catalyzed the reduction of O(2) to O(2)(-). Copper-containing mb (Cu-mb) from all three methanotrophs showed several interesting properties, including reductase dependent oxidase activity, dismutation of O(2)(-) to H(2)O(2), and the reductant dependent reduction of H(2)O(2) to H(2)O. The superoxide dismutase-like and hydrogen peroxide reductase activities of Cu-mb were 4 and 1 order(s) of magnitude higher, respectively, than the observed oxidase activity. The results demonstrate that Cu-mb from all three methanotrophs are redox-active molecules and oxygen radical scavengers, with the capacity to detoxify both superoxide and hydrogen peroxide without the formation of the hydroxyl radicals associated with Fenton reactions. As previously observed with Cu-mb from Ms. trichosporium OB3b, Cu-mb from both type I methanotrophs stimulated pMMO activity. However, in contrast to previous studies using mb from Ms. trichosporium OB3b, pMMO activity was not inhibited by mb from the two type I methanotrophs at low copper to mb ratios. PMID:18372044

  1. Metal complexes with 2-acetylpyridine-N(4)-orthochlorophenylthiosemicarbazone: cytotoxicity and effect on the enzymatic activity of thioredoxin reductase and glutathione reductase.

    PubMed

    Parrilha, Gabrieli L; Ferraz, Karina S O; Lessa, Josane A; de Oliveira, Kely Navakoski; Rodrigues, Bernardo L; Ramos, Jonas P; Souza-Fagundes, Elaine M; Ott, Ingo; Beraldo, Heloisa

    2014-09-12

    Metal complexes with 2-acetylpyridine-N(4)-orthochlorophenylthiosemicarbazone (H2Ac4oClPh) were assayed for their cytotoxicity against MCF-7 breast adenocarcinoma and HT-29 colon carcinoma cells. The thiosemicarbazone and most of the complexes were highly cytotoxic. H2Ac4oClPh and its gallium(III) and tin(IV) complexes did not show any inhibitory activity against thioredoxin reductase (TrxR) and glutathione reductase (GR). The palladium(II), platinum(II) and bismuth(III) complexes inhibited TrxR at micromolar concentrations but not GR. The antimony(III) and gold(III) complexes strongly inhibited TrxR at submicromolar doses with GR inhibition at higher concentrations. The selectivity of these complexes for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. TrxR inhibition is likely a contributing factor to the mode of action of the gold and antimony derivatives. PMID:25058344

  2. Determination of oenothein B as the active 5-alpha-reductase-inhibiting principle of the folk medicine Epilobium parviflorum.

    PubMed

    Lesuisse, D; Berjonneau, J; Ciot, C; Devaux, P; Doucet, B; Gourvest, J F; Khemis, B; Lang, C; Legrand, R; Lowinski, M; Maquin, P; Parent, A; Schoot, B; Teutsch, G

    1996-05-01

    Several extracts from Epilobium parviflorum, a plant used in Central Europe for the treatment of prostate disorders, were evaluated in a biochemical assay with 5-alpha-reductase. The aqueous extract displaying inhibition of the enzyme was analyzed, the fraction responsible for this activity was purified, and the active compound identified as a macrocyclic tannin, oenothein B (1). PMID:8778238

  3. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen).

    PubMed

    Chin, Young-Won; Jung, Hyun-Ah; Chai, Heebyung; Keller, William J; Kinghorn, A Douglas

    2008-02-01

    Bioactivity-guided fractionation of a dichloromethane-soluble extract of Garcinia mangostana fruits has led to the isolation and identification of five compounds, including two xanthones, 1,2-dihydro-1,8,10-trihydroxy-2-(2-hydroxypropan-2-yl)-9-(3-methylbut-2-enyl)furo[3,2-a]xanthen-11-one (1) and 6-deoxy-7-demethylmangostanin (2), along with three known compounds, 1,3,7-trihydroxy-2,8-di-(3-methylbut-2-enyl)xanthone (3), mangostanin (4), and alpha-mangostin (5). The structures of compounds 1 and 2 were determined from analysis of their spectroscopic data. All isolated compounds in the present study together with eleven other compounds previously isolated from the pericarp of mangosteen, were tested in an in vitro quinone reductase-induction assay using murine hepatoma cells (Hepa 1c1c7) and an in vitro hydroxyl radical antioxidant assay. Of these, compounds 1-4 induced quinone reductase (concentration to double enzyme induction, 0.68-2.2microg/mL) in Hepa 1c1c7 cells and gamma-mangostin (6) exhibited hydroxyl radical-scavenging activity (IC50, 0.20microg/mL). PMID:17991497

  4. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats.

    PubMed

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-03-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficialeffects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacificationwas observed, and swelling and membrane rupture of the lens fibercells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficialcortical fibersduring cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significanty inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers,via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  5. Esculetin, a Coumarin Derivative, Inhibits Aldose Reductase Activity in vitro and Cataractogenesis in Galactose-Fed Rats

    PubMed Central

    Kim, Chan-Sik; Kim, Junghyun; Lee, Yun Mi; Sohn, Eunjin; Kim, Jin Sook

    2016-01-01

    Naturally occurring coumarin compounds have received substantial attention due to their pharmaceutical effects. Esculetin is a coumarin derivative and a polyphenol compound that is used in a variety of therapeutic and pharmacological strategies. However, its effect on aldose reductase activity remains poorly understood. In this study, the potential beneficial effects of esculetin on lenticular aldose reductase were investigated in galactose-fed (GAL) rats, an animal model of sugar cataracts. Cataracts were induced in Sprague-Dawley (SD) rats via a 50% galactose diet for 2 weeks, and groups of GAL rats were orally treated with esculetin (10 or 50 mg/kg body weight). In vehicle-treated GAL rats, lens opacification was observed, and swelling and membrane rupture of the lens fiber cells were increased. Additionally, aldose reductase was highly expressed in the lens epithelium and superficial cortical fibers during cataract development in the GAL rats. Esculetin reduced rat lens aldose reductase (RLAR) activity in vitro, and esculetin treatment significantly inhibited lens opacity, as well as morphological alterations, such as swelling, vacuolation and liquefaction of lens fibers, via the inhibition of aldose reductase in the GAL rats. These results indicate that esculetin is a useful treatment for galactose-induced cataracts. PMID:26902086

  6. Endothelial TLR4 activation impairs intestinal microcirculatory perfusion in necrotizing enterocolitis via eNOS–NO–nitrite signaling

    PubMed Central

    Yazji, Ibrahim; Sodhi, Chhinder P.; Lee, Elizabeth K.; Good, Misty; Egan, Charlotte E.; Afrazi, Amin; Neal, Matthew D.; Jia, Hongpeng; Lin, Joyce; Branca, Maria F.; Prindle, Thomas; Richardson, Ward M.; Ozolek, John; Billiar, Timothy R.; Binion, David G.; Gladwin, Mark T.; Hackam, David J.

    2013-01-01

    Necrotizing enterocolitis (NEC) is a devastating disease of premature infants characterized by severe intestinal necrosis and for which breast milk represents the most effective protective strategy. Previous studies have revealed a critical role for the lipopolysaccharide receptor toll-like receptor 4 (TLR4) in NEC development through its induction of mucosal injury, yet the reasons for which intestinal ischemia in NEC occurs in the first place remain unknown. We hypothesize that TLR4 signaling within the endothelium plays an essential role in NEC development by regulating perfusion to the small intestine via the vasodilatory molecule endothelial nitric oxide synthase (eNOS). Using a unique mouse system in which we selectively deleted TLR4 from the endothelium, we now show that endothelial TLR4 activation is required for NEC development and that endothelial TLR4 activation impairs intestinal perfusion without effects on other organs and reduces eNOS expression via activation of myeloid differentiation primary response gene 88. NEC severity was significantly increased in eNOS−/− mice and decreased upon administration of the phosphodiesterase inhibitor sildenafil, which augments eNOS function. Strikingly, compared with formula, human and mouse breast milk were enriched in sodium nitrate—a precursor for enteral generation of nitrite and nitric oxide—and repletion of formula with sodium nitrate/nitrite restored intestinal perfusion, reversed the deleterious effects of endothelial TLR4 signaling, and reduced NEC severity. These data identify that endothelial TLR4 critically regulates intestinal perfusion leading to NEC and reveal that the protective properties of breast milk involve enhanced intestinal microcirculatory integrity via augmentation of nitrate–nitrite–NO signaling. PMID:23650378

  7. Selective nitrite reduction at heterobimetallic CoMg complexes.

    PubMed

    Uyeda, Christopher; Peters, Jonas C

    2013-08-14

    Heme-containing nitrite reductases bind and activate nitrite by a mechanism that is proposed to involve interactions with Brønsted acidic residues in the secondary coordination sphere. To model this functionality using synthetic platforms that incorporate a Lewis acidic site, heterobimetallic CoMg complexes supported by diimine-dioxime ligands are described. The neutral (μ-NO2)CoMg species 3 is synthesized from the [(μ-OAc)(Br)CoMg](+) complex 1 by a sequence of one-electron reduction and ligand substitution reactions. Data are presented for a redox series of nitrite adducts, featuring a conserved μ-(η(1)-N:η(1)-O)-NO2 motif, derived from this synthon. Conditions are identified for the proton-induced N-O bond heterolysis of bound NO2(-) in the most reduced member of this series, affording the [(NO)(Cl)CoMg(H2O)](+) complex 6. Reduction of this complex followed by protonation leads to the evolution of free N2O. On the basis of these stoichiometric reactivity studies, the competence of complex 1 as a NO2(-) reduction catalyst is evaluated using electrochemical methods. In bulk electrolysis experiments, conducted at -1.2 V vs SCE using Et3NHCl as a proton source, N2O is produced selectively without the competing formation of NH3, NH2OH, or H2. PMID:23865638

  8. Thioredoxin reductase.

    PubMed

    Mustacich, D; Powis, G

    2000-02-15

    The mammalian thioredoxin reductases (TrxRs) are a family of selenium-containing pyridine nucleotide-disulphide oxidoreductases with mechanistic and sequence identity, including a conserved -Cys-Val-Asn-Val-Gly-Cys- redox catalytic site, to glutathione reductases. TrxRs catalyse the NADPH-dependent reduction of the redox protein thioredoxin (Trx), as well as of other endogenous and exogenous compounds. The broad substrate specificity of mammalian TrxRs is due to a second redox-active site, a C-terminal -Cys-SeCys- (where SeCys is selenocysteine), that is not found in glutathione reductase or Escherichia coli TrxR. There are currently two confirmed forms of mammalian TrxRs, TrxR1 and TrxR2, and it is possible that other forms will be identified. The availability of Se is a key factor determining TrxR activity both in cell culture and in vivo, and the mechanism(s) for the incorporation of Se into TrxRs, as well as the regulation of TrxR activity, have only recently begun to be investigated. The importance of Trx to many aspects of cell function make it likely that TrxRs also play a role in protection against oxidant injury, cell growth and transformation, and the recycling of ascorbate from its oxidized form. Since TrxRs are able to reduce a number of substrates other than Trx, it is likely that additional biological effects will be discovered for TrxR. Furthermore, inhibiting TrxR with drugs may lead to new treatments for human diseases such as cancer, AIDS and autoimmune diseases. PMID:10657232

  9. Hexavalent Chromate Reductase Activity in Cell Free Extracts of Penicillium sp.

    PubMed Central

    Arévalo-Rangel, Damaris L.; Cárdenas-González, Juan F.; Martínez-Juárez, Víctor M.; Acosta-Rodríguez, Ismael

    2013-01-01

    A chromium-resistant fungus isolated from contaminated air with industrial vapors can be used for reducing toxic Cr(VI) to Cr(III). This study analyzes in vitro reduction of hexavalent chromium using cell free extract(s) of the fungus that was characterized based on optimal temperature, pH, use of electron donors, metal ions and initial Cr(VI) concentration in the reaction mixture. This showed the highest activity at 37°C and pH 7.0; there is an increase in Cr(VI) reductase activity with addition of NADH as an electron donor, and it was highly inhibited by Hg2+, Ca2+ and Mg2+, and azide, EDTA, and KCN. PMID:24027493

  10. Structural Mechanism of Allosteric Activity Regulation in a Ribonucleotide Reductase with Double ATP Cones.

    PubMed

    Johansson, Renzo; Jonna, Venkateswara Rao; Kumar, Rohit; Nayeri, Niloofar; Lundin, Daniel; Sjöberg, Britt-Marie; Hofer, Anders; Logan, Derek T

    2016-06-01

    Ribonucleotide reductases (RNRs) reduce ribonucleotides to deoxyribonucleotides. Their overall activity is stimulated by ATP and downregulated by dATP via a genetically mobile ATP cone domain mediating the formation of oligomeric complexes with varying quaternary structures. The crystal structure and solution X-ray scattering data of a novel dATP-induced homotetramer of the Pseudomonas aeruginosa class I RNR reveal the structural bases for its unique properties, namely one ATP cone that binds two dATP molecules and a second one that is non-functional, binding no nucleotides. Mutations in the observed tetramer interface ablate oligomerization and dATP-induced inhibition but not the ability to bind dATP. Sequence analysis shows that the novel type of ATP cone may be widespread in RNRs. The present study supports a scenario in which diverse mechanisms for allosteric activity regulation are gained and lost through acquisition and evolutionary erosion of different types of ATP cone. PMID:27133024

  11. Nitrite in feed: From Animal health to human health

    SciTech Connect

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Peteghem, Carlos van; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3 mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  12. Nitrite in feed: from animal health to human health.

    PubMed

    Cockburn, Andrew; Brambilla, Gianfranco; Fernández, Maria-Luisa; Arcella, Davide; Bordajandi, Luisa R; Cottrill, Bruce; van Peteghem, Carlos; Dorne, Jean-Lou

    2013-08-01

    Nitrite is widely consumed from the diet by animals and humans. However the largest contribution to exposure results from the in vivo conversion of exogenously derived nitrate to nitrite. Because of its potential to cause to methaemoglobin (MetHb) formation at excessive levels of intake, nitrite is regulated in feed and water as an undesirable substance. Forages and contaminated water have been shown to contain high levels of nitrate and represent the largest contributor to nitrite exposure for food-producing animals. Interspecies differences in sensitivity to nitrite intoxication principally result from physiological and anatomical differences in nitrite handling. In the case of livestock both pigs and cattle are relatively susceptible. With pigs this is due to a combination of low levels of bacterial nitrite reductase and hence potential to reduce nitrite to ammonia as well as reduced capacity to detoxify MetHb back to haemoglobin (Hb) due to intrinsically low levels of MetHb reductase. In cattle the sensitivity is due to the potential for high dietary intake and high levels of rumen conversion of nitrate to nitrite, and an adaptable gut flora which at normal loadings shunts nitrite to ammonia for biosynthesis. However when this escape mechanism gets overloaded, nitrite builds up and can enter the blood stream resulting in methemoglobinemia. Looking at livestock case histories reported in the literature no-observed-effect levels of 3.3mg/kg body weight (b.w.) per day for nitrite in pigs and cattle were estimated and related to the total daily nitrite intake that would result from complete feed at the EU maximum permissible level. This resulted in margins of safety of 9-fold and 5-fold for pigs and cattle, respectively. Recognising that the bulkiness of animal feed limits their consumption, these margins in conjunction with good agricultural practise were considered satisfactory for the protection of livestock health. A human health risk assessment was also

  13. Isolation, characterization, and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b.

    PubMed Central

    Chen, Y P; Yoch, D C

    1989-01-01

    A ferredoxin-NAD+ oxidoreductase (EC 1.18.1.3) has been isolated from extracts of the obligate methanotroph Methylosinus trichosporium OB3b. This enzyme was shown to couple electron flow from formate dehydrogenase (NAD+ requiring) to ferredoxin. Ferredoxin-NAD+ reductase was purified to homogeneity by conventional chromatography techniques and was shown to be a flavoprotein with a molecular weight of 36,000 +/- 1,000. This ferredoxin reductase was specific for NADH (Km, 125 microM) and coupled electron flow to the native ferredoxin and to ferredoxins from spinach, Clostridium pasteurianum, and Rhodospirillum rubrum (ferredoxin II). M. trichosporium ferredoxin saturated the ferredoxin-NAD+ reductase at a concentration 2 orders of magnitude lower (3 nM) than did spinach ferredoxin (0.4 microM). Ferredoxin-NAD+ reductase also had transhydrogenase activity which transferred electrons and protons from NADH to thionicotinamide adenine dinucleotide phosphate (Km, 9 microM) and from NADPH to 3-acetylpyridine adenine dinucleotide (Km, 16 microM). Reconstitution of a soluble electron transport pathway that coupled formate oxidation to ferredoxin reduction required formate dehydrogenase, NAD+, and ferredoxin-NAD+ reductase. Images PMID:2768195

  14. Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium.

    PubMed Central

    McCarty, G W; Bremner, J M

    1992-01-01

    It is well established that assimilatory nitrate reductase (ANR) activity in soil is inhibited by ammonium (NH4+). To elucidate the mechanism of this inhibition, we studied the effect of L-methionine sulfoximine (MSX), an inhibitor of NH4+ assimilation by microorganisms, on assimilatory reduction of nitrate (NO3-) in aerated soil slurries treated with NH4+. We found that NH4+ strongly inhibited ANR activity in these slurries and that MSX eliminated this inhibition. We also found that MSX induced dissimilatory reduction of NO3- to NH4+ in soil and that the NH4+ thus formed had no effect on the rate of NO-3 reduction. We concluded from these observations that the inhibition of ANR activity by NH4+ is due not to NH4+ per se but to products formed by microbial assimilation of NH4+. This conclusion was supported by a study of the effects of early products of NH4+ assimilation (L amino acids) on ANR activity in soil, because this study showed that the biologically active, L isomers of glutamine and asparagine strongly inhibited ANR activity, whereas the D isomers of these amino acids had little effect on ANR activity. Evidence that ANR activity is regulated by the glutamine formed by NH4+ assimilation was provided by studies showing that inhibitors of glutamine metabolism (azaserine, albizziin, and aminooxyacetate) inhibited ANR activity in soil treated with NO3- but did not do so in the presence of MSX. PMID:11607250

  15. The Capacity of Red Blood Cells to Reduce Nitrite Determines Nitric Oxide Generation under Hypoxic Conditions

    PubMed Central

    Fens, Marcel H.; Larkin, Sandra K.; Oronsky, Bryan; Scicinski, Jan; Morris, Claudia R.; Kuypers, Frans A.

    2014-01-01

    Nitric oxide (NO) is a key regulator of vascular tone. Endothelial nitric oxide synthase (eNOS) is responsible for NO generation under normoxic conditions. Under hypoxia however, eNOS is inactive and red blood cells (RBC) provide an alternative NO generation pathway from nitrite to regulate hypoxic vasodilation. While nitrite reductase activity of hemoglobin is well acknowledged, little is known about generation of NO by intact RBC with physiological hemoglobin concentrations. We aimed to develop and apply a new approach to provide insights in the ability of RBC to convert nitrite into NO under hypoxic conditions. We established a novel experimental setup to evaluate nitrite uptake and the release of NO from RBC into the gas-phase under different conditions. NO measurements were similar to well-established clinical measurements of exhaled NO. Nitrite uptake was rapid, and after an initial lag phase NO release from RBC was constant in time under hypoxic conditions. The presence of oxygen greatly reduced NO release, whereas inhibition of eNOS and xanthine oxidoreductase (XOR) did not affect NO release. A decreased pH increased NO release under hypoxic conditions. Hypothermia lowered NO release, while hyperthermia increased NO release. Whereas fetal hemoglobin did not alter NO release compared to adult hemoglobin, sickle RBC showed an increased ability to release NO. Under all conditions nitrite uptake by RBC was similar. This study shows that nitrite uptake into RBC is rapid and release of NO into the gas-phase continues for prolonged periods of time under hypoxic conditions. Changes in the RBC environment such as pH, temperature or hemoglobin type, affect NO release. PMID:25007272

  16. Evolutionary origins of retinoid active short-chain dehydrogenases/reductases of SDR16C family.

    PubMed

    Belyaeva, Olga V; Chang, Chenbei; Berlett, Michael C; Kedishvili, Natalia Y

    2015-06-01

    Vertebrate enzymes that belong to the 16C family of short-chain dehydrogenases/reductases (SDR16C) were shown to play an essential role in the control of retinoic acid (RA) levels during development. To trace the evolution of enzymatic function of SDR16C family, and to examine the origins of the pathway for RA biosynthesis from vitamin A, we identified putative SDR16C enzymes through the extensive search of available genome sequencing data in a subset of species representing major metazoan phyla. The phylogenetic analysis revealed that enzymes from protostome, non-chordate deuterostome and invertebrate chordate species are found in three clades of SDR16C family containing retinoid active enzymes, which are retinol dehydrogenase 10 (RDH10), retinol dehydrogenases E2 (RDHE2) and RDHE2-similar, and dehydrogenase reductase (SDR family) member 3 (DHRS3). For the initial functional analysis, we cloned RDH10- and RDHE2-related enzymes from the early developmental stages of a non-chordate deuterostome, green sea urchin Lytechinus variegatus, and an invertebrate chordate, sea squirt Ciona intestinalis. In situ hybridization revealed that these proteins are expressed in a pattern relevant to development, while assays performed on proteins expressed in mammalian cell culture showed that they possess retinol-oxidizing activity as their vertebrate homologs. The existence of invertebrate homologs of DHRS3 was inferred from the analysis of phylogeny and cofactor-binding residues characteristic of preference for NADP(H). The presence of invertebrate homologs in the DHRS3 group of SDR16C is interesting in light of the complex mutually activating interaction, which we have recently described for human RDH10 and DHRS3 enzymes. Further functional analysis of these homologs will establish whether this interaction evolved to control retinoid homeostasis only in vertebrates, or is also conserved in pre-vertebrates. PMID:25451586

  17. Effect of Pharmaceutical Potential Endocrine Disruptor Compounds on Protein Disulfide Isomerase Reductase Activity Using Di-Eosin-Oxidized-Glutathion

    PubMed Central

    Klett, Danièle; Cahoreau, Claire; Villeret, Mélanie; Combarnous, Yves

    2010-01-01

    Background Protein Disulfide Isomerase (PDI) in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC) could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. Methodology/Principal Findings Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathion (DiE-GSSG), we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH). Our data show that estrogens (ethynylestradiol and bisphenol-A) as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. Conclusions The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainely be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity. PMID:20209080

  18. Methionine sulfoxide reductase regulates brain catechol-O-methyl transferase activity.

    PubMed

    Moskovitz, Jackob; Walss-Bass, Consuelo; Cruz, Dianne A; Thompson, Peter M; Bortolato, Marco

    2014-10-01

    Catechol-O-methyl transferase (COMT) plays a key role in the degradation of brain dopamine (DA). Specifically, low COMT activity results in higher DA levels in the prefrontal cortex (PFC), thereby reducing the vulnerability for attentional and cognitive deficits in both psychotic and healthy individuals. COMT activity is markedly reduced by a non-synonymous single-nucleotide polymorphism (SNP) that generates a valine-to-methionine substitution on the residue 108/158, by means of as-yet incompletely understood post-translational mechanisms. One post-translational modification is methionine sulfoxide, which can be reduced by the methionine sulfoxide reductase (Msr) A and B enzymes. We used recombinant COMT proteins (Val/Met108) and mice (wild-type (WT) and MsrA knockout) to determine the effect of methionine oxidation on COMT activity and COMT interaction with Msr, through a combination of enzymatic activity and Western blot assays. Recombinant COMT activity is positively regulated by MsrA, especially under oxidative conditions, whereas brains of MsrA knockout mice exhibited lower COMT activity (as compared with their WT counterparts). These results suggest that COMT activity may be reduced by methionine oxidation, and point to Msr as a key molecular determinant for the modulation of COMT activity in the brain. The role of Msr in modulating cognitive functions in healthy individuals and schizophrenia patients is yet to be determined. PMID:24735585

  19. From Alcohol Dehydrogenase to a “One-way” Carbonyl Reductase by Active-site Redesign

    PubMed Central

    Klimacek, Mario; Nidetzky, Bernd

    2010-01-01

    Directional preference in catalysis is often used to distinguish alcohol dehydrogenases from carbonyl reductases. However, the mechanistic basis underpinning this discrimination is weak. In mannitol 2-dehydrogenase from Pseudomonas fluorescens, stabilization of (partial) negative charge on the substrate oxyanion by the side chains of Asn-191 and Asn-300 is a key feature of catalysis in the direction of alcohol oxidation. We have disrupted this ability through individual and combined substitutions of the two asparagines by aspartic acid. Kinetic data and their thermodynamic analysis show that the internal equilibrium of enzyme-NADH-fructose and enzyme-NAD+-mannitol (Kint) was altered dramatically (104- to 105-fold) from being balanced in the wild-type enzyme (Kint ≈ 3) to favoring enzyme-NAD+-mannitol in the single site mutants, N191D and N300D. The change in Kint reflects a selective slowing down of the mannitol oxidation rate, resulting because Asn → Asp replacement (i) disfavors partial abstraction of alcohol proton by Lys-295 in a step preceding catalytic hydride transfer, and (ii) causes stabilization of a nonproductive enzyme-NAD+-mannitol complex. N191D and N300D appear to lose fructose binding affinity due to deprotonation of the respective Asp above apparent pK values of 5.3 ± 0.1 and 6.3 ± 0.2, respectively. The mutant incorporating both Asn→Asp substitutions behaved as a slow “fructose reductase” at pH 5.2, lacking measurable activity for mannitol oxidation in the pH range 6.8–10. A mechanism is suggested in which polarization of the substrate carbonyl by a doubly protonated diad of Asp and Lys-295 facilitates NADH-dependent reduction of fructose by N191D and N300D under optimum pH conditions. Creation of an effectively “one-way” reductase by active-site redesign of a parent dehydrogenase has not been previously reported and holds promise in the development of carbonyl reductases for application in organic synthesis. PMID:20639204

  20. Characterization of nitrite uptake in Arabidopsis thaliana: evidence for a nitrite-specific transporter.

    PubMed

    Kotur, Zorica; Siddiqi, Yaeesh M; Glass, Anthony D M

    2013-10-01

    Nitrite-specific plasma membrane transporters have been described in bacteria, algae and fungi, but there is no evidence of a nitrite-specific plasma membrane transporter in higher plants. We have used 13NO2(-) to characterize nitrite influx into roots of Arabidopsis thaliana. Hydroponically grown Arabidopsis mutants, defective in high-affinity nitrate transport, were used to distinguish between nitrate and nitrite uptake by means of the short-lived tracers 13NO2(-) and 13NO3(-). This approach allowed us to characterize a nitrite-specific transporter. The Atnar2.1-2 mutant, lacking a functional high-affinity nitrate transport system, is capable of nitrite influx that is constitutive and thermodynamically active. The corresponding fluxes conform to a rectangular hyperbola, exhibiting saturation at concentrations above 200 μM (Km = 185 μM and Vmax = 1.89 μmol g(-1) FW h(-1)). Nitrite influx via the putative nitrite transporter is not subject to competitive inhibition by nitrate but is downregulated after 6 h exposure to ammonium. These results signify the existence of a nitrite-specific transporter in Arabidopsis. This transporter enables Atnar2.1-2 mutants, which are incapable of sustained growth on low nitrate, to maintain significant growth on low nitrite. In wild-type plants, this nitrite flux may increase nitrogen acquisition and also participate in the induction of genes specifically induced by nitrite. PMID:23763619

  1. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. PMID:24361835

  2. Disappearance of chloramines in the presence of bromide and nitrite. [Ammoniacal monochloramine, diethylchloramine, and chloramines produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent

    SciTech Connect

    Valentine, R.L.

    1982-01-01

    Batch experiments were used to study the reduction of chloramines in the presence of bromide and nitrite. Chloramines studies were ammoniacal monochloramine, diethylchloramine (DECA), and those produced by chlorinating a real and synthetic secondary (activated sludge) municipal waste effluent. Oxidant concentrations were measured using the DPD-FAS (N,N-diethyl-p-phenylenediamine, Ferrous Ammonium Sulfate) titrimetric procedure and/or spectrophotometrically. The degradation of NH/sub 2/Cl in the presence of bromide was found to occur via a mechanism consistent with a rate limiting step involving monochlorammonium ion (NH/sub 3/Cl/sup +/) and bromide ion. Experimental evidence suggests that the mixed haloamine, NHBrCl, was produced as an unstable intermediate. The oxidation of bromide by DECA did not occur by a mechanism similar to that describing the oxidation of bromide by NH/sub 2/Cl. The rate was not affected by added ammonia and was slower than that observed for comparable NH/sub 2/Cl-Br/sup -/ reactions. Chloramine loss in organic rich effluents was greatly accelerated by bromide addition. The reaction is not dependent on excess ammonia and is slower than that observed for a pure NH/sub 2/Cl-Br/sup -/ solution. Monochloramine can rapidly disappear in the presence of nitrite. The rates are too fast to be due solely to the hydrolysis of monochloramine. The presence of relatively small concentrations of nitrite can greatly accelerate the loss of NH/sub 2/Cl in the presence of bromide. Nitrite is not significantly consumed. Nitrite appears to increase the rate of bromide oxidation in a parallel acid catalyzed reaction mechanism which involves a rate limiting step described by a first order dependence on nitrite but no dependence on bromide. Empirical rate expressions and rate constants were determined for each reaction. 54 figures, 17 tables.

  3. Utilization of iron-catecholamine complexes involving ferric reductase activity in Listeria monocytogenes.

    PubMed Central

    Coulanges, V; Andre, P; Ziegler, O; Buchheit, L; Vidon, D J

    1997-01-01

    Listeria monocytogenes is a ubiquitous potentially pathogenic organism requiring iron for growth and virulence. Although it does not produce siderophores, L. monocytogenes is able to obtain iron by using either exogenous siderophores produced by various microorganisms or natural catechol compounds widespread in the environment. In the presence of tropolone, an iron-chelating agent, growth of L. monocytogenes is completely inhibited. However, the growth inhibition can be relieved by the addition of dopamine or norepinephrine under their different isomeric forms, while the catecholamine derivatives 4-hydroxy-3-methoxyphenylglycol and normetanephrine did not relieve the inhibitory effect of tropolone. Preincubation of L. monocytogenes with chlorpromazine and yohimbine did not antagonize the growth-promoting effect of catecholamines in iron-complexed medium. In addition, norepinephrine stimulated the growth-promoting effect induced by human transferrin in iron-limited medium. Furthermore, dopamine and norepinephrine allowed 55Fe uptake by iron-deprived bacterial cells. The uptake of iron was energy dependent, as indicated by inhibition of 55Fe uptake at 0 degrees C as well as by preincubating the bacteria with KCN. Inhibition of 55Fe uptake by L. monocytogenes was also observed in the presence of Pt(II). Moreover, when assessed by a whole-cell ferric reductase assay, reductase activity of L. monocytogenes was inhibited by Pt(II). These data demonstrate that dopamine and norepinephrine can function as siderophore-like compounds in L. monocytogenes owing to their ortho-diphenol function and that catecholamine-mediated iron acquisition does not involve specific catecholamine receptors but acts through a cell-bound ferrireductase activity. PMID:9199450

  4. Growth, photosynthesis, nitrogen partitioning and responses to CO2 enrichment in barley mutants lacking NADH-dependent nitrate reductase activity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We examined plant growth, photosynthesis and leaf constituents of both the wild type (WT) and two mutant lines of barley (Hordeum vulgare L. cv. Steptoe) with defects in NADH-dependent nitrate reductase (NADH-NAR) activity. The first mutant, nar1, had a lesion within the NAR structural gene and the...

  5. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution.

    PubMed

    Cha, Joon-Yung; Kim, Mi R; Jung, In J; Kang, Sun B; Park, Hee J; Kim, Min G; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OX(C85S) plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OX(C85S) plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  6. The Thiol Reductase Activity of YUCCA6 Mediates Delayed Leaf Senescence by Regulating Genes Involved in Auxin Redistribution

    PubMed Central

    Cha, Joon-Yung; Kim, Mi R.; Jung, In J.; Kang, Sun B.; Park, Hee J.; Kim, Min G.; Yun, Dae-Jin; Kim, Woe-Yeon

    2016-01-01

    Auxin, a phytohormone that affects almost every aspect of plant growth and development, is biosynthesized from tryptophan via the tryptamine, indole-3-acetamide, indole-3-pyruvic acid, and indole-3-acetaldoxime pathways. YUCCAs (YUCs), flavin monooxygenase enzymes, catalyze the conversion of indole-3-pyruvic acid (IPA) to the auxin (indole acetic acid). Arabidopsis thaliana YUC6 also exhibits thiol-reductase and chaperone activity in vitro; these activities require the highly conserved Cys-85 and are essential for scavenging of toxic reactive oxygen species (ROS) in the drought tolerance response. Here, we examined whether the YUC6 thiol reductase activity also participates in the delay in senescence observed in YUC6-overexpressing (YUC6-OX) plants. YUC6 overexpression delays leaf senescence in natural and dark-induced senescence conditions by reducing the expression of SENESCENCE-ASSOCIATED GENE 12 (SAG12). ROS accumulation normally occurs during senescence, but was not observed in the leaves of YUC6-OX plants; however, ROS accumulation was observed in YUC6-OXC85S plants, which overexpress a mutant YUC6 that lacks thiol reductase activity. We also found that YUC6-OX plants, but not YUC6-OXC85S plants, show upregulation of three genes encoding NADPH-dependent thioredoxin reductases (NTRA, NTRB, and NTRC), and GAMMA-GLUTAMYLCYSTEINE SYNTHETASE 1 (GSH1), encoding an enzyme involved in redox signaling. We further determined that excess ROS accumulation caused by methyl viologen treatment or decreased glutathione levels caused by buthionine sulfoximine treatment can decrease the levels of auxin efflux proteins such as PIN2-4. The expression of PINs is also reduced in YUC6-OX plants. These findings suggest that the thiol reductase activity of YUC6 may play an essential role in delaying senescence via the activation of genes involved in redox signaling and auxin availability. PMID:27242830

  7. Activities of nitrate reductase and glutamine synthetase in rice seedlings during cyanide metabolism.

    PubMed

    Yu, Xiao-Zhang; Zhang, Fu-Zhong

    2012-07-30

    A study was conducted to investigate activities of nitrate reductase (NR) and glutamine synthetase (GS) in plants during cyanide metabolism. Young rice seedlings (Oryza sativa L. cv. XZX 45) were grown in the nutrient solutions containing KNO(3) or NH(4)Cl and treated with free cyanide (KCN). Cyanide in solutions and in plant materials was analyzed to estimate the phyto-assimilation potential. Activities of NR and GS in different parts of rice seedlings were assayed in vivo. Seedlings grown on NH(4)(+) showed significantly higher relative growth rate than those on NO(3)(-) (p<0.05) in the presence of exogenous cyanide. The metabolic rates of cyanide by seedlings were all positively correlated to the concentrations supplied. A negligible difference was observed between the two treatments with nitrate and ammonium (p>0.05). Enzymatic assays showed that cyanide (≥0.97mg CN L(-1)) impaired NR activity significantly in both roots and shoots (p<0.05). The effect of cyanide on GS activity in roots was more evident at 1.93mg CN L(-1), suggesting that NR activity was more susceptible to change from cyanide application than GS activity. The results observed here suggest that the exogenous cyanide, which to a certain level has a beneficial role in plant nutrition. PMID:22633925

  8. Human biliverdin reductase, a previously unknown activator of protein kinase C betaII.

    PubMed

    Maines, Mahin D; Miralem, Tihomir; Lerner-Marmarosh, Nicole; Shen, Jenny; Gibbs, Peter E M

    2007-03-16

    Human biliverdin reductase (hBVR), a dual specificity kinase (Ser/Thr/Tyr) is, as protein kinase C (PKC) betaII, activated by insulin and free radicals (Miralem, T., Hu, Z., Torno, M. D., Lelli, K. M., and Maines, M. D. (2005) J. Biol. Chem. 280, 17084-17092; Lerner-Marmarosh, N., Shen, J., Torno, M. D., Kravets, A., Hu, Z., and Maines, M. D. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 7109-7114). Here, by using 293A cells co-transfected with pcDNA3-hBVR and PKC betaII plasmids, we report the co-immunoprecipitation of the proteins and co-purification in the glutathione S-transferase (GST) pulldown assay. hBVR and PKC betaII, but not the reductase and PKC zeta, transphosphorylated in assay systems supportive of activity of only one of the kinases. PKC betaII K371R mutant protein ("kinase-dead") was also a substrate for hBVR. The reductase increased the Vmax but not the apparent Km values of PKC betaII for myelin basic protein; activation was independent of phospholipids and extended to the phosphorylation of S2, a PKC-specific substrate. The increase in substrate phosphorylation was blocked by specific inhibitors of conventional PKCs and attenuated by sihBVR. The effect of the latter could be rescued by subsequent overexpression of hBVR. To a large extent, the activation was a function of the hBVR N-terminal chain of valines and intact ATP-binding site and the cysteine-rich C-terminal segment. The cobalt protoporphyrin-activated hBVR phosphorylated a threonine in a peptide corresponding to the Thr500 in the human PKC betaII activation loop. Neither serine nor threonine residues in peptides corresponding to other phosphorylation sites of the PKC betaII nor PKC zeta activation loop-derived peptides were substrates. The phosphorylation of Thr500 was confirmed by immunoblotting of hBVR.PKC betaII immunocomplex. The potential biological relevance of the hBVR activation of PKC betaII was suggested by the finding that in cells transfected with the PKC betaII, h

  9. The relationship between hypertension and plasma allantoin, uric acid, xanthine oxidase activity and nitrite, and their predictive capacity in severe preeclampsia.

    PubMed

    Elmas, Oguz; Elmas, Onur; Aliciguzel, Yakup; Simsek, Tayyup

    2016-01-01

    It is controversial that uric acid (UA) levels are related to the severity of hypertension in preeclampsia (PE). Our aim in this study was to determine whether UA, xanthine oxidase activity (XOA), allantoin and nitrite levels are related to arterial blood pressure (BP) in PE. We formed a control group (n = 20) and a PE group (n = 20) for the study. Their BPs and plasma UA, XOA, allantoin and nitrite levels were measured. The values from the control and PE pregnant women were assessed via a Wilcoxon matched-pairs test. A Pearson correlation test was also performed. In addition, the diagnostic value of these tests was evaluated via receiver operating characteristic (ROC) analysis. The BP, UA, XOA and allantoin levels in the PE patients were found to be higher when compared with those of the pregnant controls. The UA, XOA and allantoin levels showed high correlations with BP in cases of PE. However, there was no superiority among the correlations. No differences were observed between the groups in terms of nitrite levels and the relationship between nitrite and BP. UA, XOA and allantoin levels may be high due to placental cell death because of abnormal trophoblastic activity observed in PE. Moreover, the reactive oxygen products that are created during the genetic material degradation may explain how UA, XOA and allantoin levels are related to BP. According to ROC analysis, UA, XOA and allantoin assays are reliable predictors for the determination of PE. PMID:26366935

  10. Mechanisms for nitrite loss from the stomach.

    PubMed

    Licht, W R; Schultz, D S; Fox, J G; Tannenbaum, S R; Deen, W M

    1986-10-01

    Nitrite loss from the stomach was studied using dogs equipped with Thomas cannulas for direct access to the stomach lumen. Solutions containing sodium nitrite and non-absorbable volume marker (polyethylene glycol, PEG) were infused into the stomach, and samples were taken over 60 min to determine the concentration of 'total nitrite' (including NO2-, HNO2 and other species in equilibrium with NO2-) and rate of dilution of the stomach contents as a function of time. Changes in stomach volume were also measured. Nitrite loss was found to be very rapid, with total nitrite concentrations declining to less than half the initial levels in 10 min. The decay in total nitrite concentrations was due predominantly to gastric absorption, with small additional contributions from dilution of the stomach contents (inferred from PEG concentrations) and chemical reactions (from in vitro kinetic data). Results for initial nitrite concentrations varying over a range of 0.15-4.5 mM showed absorption to be first order in total nitrite. The permeability-area product for nitrite absorption (PA) was about 0.6 l/h, and was unaffected by the addition of 1 mM SCN- or Cl-. All of these results are consistent with nitrite absorption in the form of NO2- or HNO2. Buffering the infusate with HCO3- to increase luminal pH from approximately 2 to 7 caused a three-fold reduction in the apparent value of PA. When pentagastrin was used to stimulate acid secretion, nitrite absorption was only half as fast as when acid secretion was inhibited with cimetidine, or when no drug was given. This effect could not be explained by variations in luminal pH, and suggests that acid secretion either decreases PA or is accompanied by active secretion of nitrite. Based on these data, a mathematical model was developed to stimulate the physical and chemical factors governing nitrite concentrations in the stomach. PMID:3757171