Science.gov

Sample records for nitrogen 20

  1. Ab initio study of nitrogen-multisubstituted neutral and positively charged C{sub 20} fullerene

    SciTech Connect

    Rani, Anita; Kumar, Ranjan

    2014-04-24

    Ab initio investigation of structural and electronic properties of Nitrogen doped fullerenes, obtained from C{sub 20} by replacing up to 10 C atoms with N atoms, are studied by means of first principals density functional theory calculations using numerical orbitals as basis sets. We have obtained the ground state structures for C{sub 20−n}N{sub n} for n=1-10. While substituting nitrogen atoms, we cannot substitute more than 9 nitrogen atoms. Nitrogen doping in C20 shows a significant change in density of states. For a better comparison with experimental measurements, we have also considered some positively charged ions and report the differences between properties of these ions and the corresponding neutral molecules.

  2. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  3. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  4. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  5. Vertical patterns of ecoenzyme activities in forest soils after 20 years of simulated nitrogen deposition

    NASA Astrophysics Data System (ADS)

    Forstner, Stefan J.; Kloss, Stefanie; Keiblinger, Katharina M.; Schleppi, Patrick; Hagedorn, Frank; Gundersen, Per; Wanek, Wolfgang; Gerzabek, Martin H.; Zechmeister-Boltenstern, Sophie

    2015-04-01

    The below-ground part of terrestrial carbon (C), nitrogen (N) and phosphorus (P) cycles are controlled by soil microorganisms. In order to meet their energy and nutrient requirements, soil microbes produce enzymes which catalyze the release of smaller molecules from decomposing organic matter. Recent work has shown that the potential activities of commonly measured enzymes for C-, N-, and P-acquisition can be related to microbial demand of these elements and link stoichiometry of soil microbes and their resources. Regulation of enzyme production might therefore be an important mechanism for microbes to adapt to different resource regimes. To investigate links between ecoenzyme activities, soil depth and N availability we make use of two long-term experiments where N has been added to two temperate forest stands for over 20 years. At both sites Norway spruce is the dominating tree whereas other site characteristics like soil type, climate, parent material and morphology differ. Increased N deposition was simulated by regularly applying NH4NO3 in the range of 35 kg N ha-1 y-1 (Klosterhede, Denmark; since 1992) and 25 kg N ha-1 y-1 (Alptal, Switzerland; since 1995), respectively. We hypothesize that ecoenzyme activities will decline exponentially with depth reflecting well-established similar trends in organic matter and microbial biomass. However, when normalized to microbial biomass we further hypothesize that activities will not change or even increase down the soil profile. Concerning microbial nutrient limitation, we expect to see a shift from N- to C-limitation with depth which should be reflected in increasing ratios of C- to N-acquiring enzymes. Preliminary results suggest that activity of hydrolytic enzymes generally decreases with depth, although this drop in activity is not so pronounced when normalized to microbial biomass. Oxidative enzymes, on the other hand, do not follow this pattern, often showing increased activities with depth. We further see site

  6. ENHANCED NITROGEN IN MORPHOLOGICALLY DISTURBED BLUE COMPACT GALAXIES AT 0.20 < z < 0.35: PROBING GALAXY MERGING FEATURES

    SciTech Connect

    Chung, Jiwon; Rey, Soo-Chang; Yeom, Bum-Suk; Yi, Wonhyeong; Sung, Eon-Chang; Kyeong, Jaemann; Humphrey, Andrew E-mail: screy@cnu.ac.kr

    2013-04-10

    We present a study of correlations between the elemental abundances and galaxy morphologies of 91 blue compact galaxies (BCGs) at z = 0.20-0.35 with Sloan Digital Sky Survey (SDSS) DR7 data. We classify the morphologies of the galaxies as either ''disturbed'' or ''undisturbed'' by visual inspection of the SDSS images, and using the Gini coefficient and M{sub 20}. We derive oxygen and nitrogen abundances using the T{sub e} method. We find that a substantial fraction of BCGs with disturbed morphologies, indicative of merger remnants, show relatively high N/O and low O/H abundance ratios. The majority of the disturbed BCGs exhibit higher N/O values at a given O/H value compared to the morphologically undisturbed galaxies, implying more efficient nitrogen enrichment in disturbed BCGs. We detect Wolf-Rayet (WR) features in only a handful of the disturbed BCGs, which appears to contradict the idea that WR stars are responsible for high nitrogen abundance. Combining these results with Galaxy Evolution Explorer GR6 ultraviolet (UV) data, we find that the majority of the disturbed BCGs show systematically lower values of the H{alpha} to near-UV star formation rate ratio. The equivalent width of the H{beta} emission line is also systematically lower in the disturbed BCGs. Based on these results, we infer that disturbed BCGs have undergone star formation over relatively longer timescales, resulting in a more continuous enrichment of nitrogen. We suggest that this correlation between morphology and chemical abundances in BCGs is due to a difference in their recent star formation histories.

  7. Correlation Between Experimental and Calculated Phase Fractions in Aged 20Cr32Ni1Nb Austenitic Stainless Steels Containing Nitrogen

    NASA Astrophysics Data System (ADS)

    Dewar, Matthew P.; Gerlich, Adrian P.

    2013-02-01

    A centrifugally cast 20Cr32Ni1Nb stainless steel manifold in service for 16 years at temperatures ranging from 1073 K to 1123 K (800 °C to 850 °C) has been characterized using scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), auger electron spectroscopy (AES), and X-ray diffraction (XRD). Nb(C,N), M23C6, and the silicide G-phases (Ni16Nb6Si7) were all identified in a conventional SEM, while the nitride Z-phase (CrNbN) was observed only in AES. M23C6, Z-phase and G-phase were characterized in XRD. Thermodynamic equilibrium calculations using ThermoCalc Version S, with the TCS Steel and Fe-alloys Database (TCFE6), and Thermotech Ni-based Superalloys Database (TTNI8) were validated by comparing experimental phase fraction results obtained from both EPMA and AES. A computational study looking at variations in the chemical composition of the alloy, and how they affect phase equilibria, was investigated. Increasing the nitrogen concentration is shown to decrease G-phase formation, where it is replaced by other intermetallic phases such as Z-phase and π-phase that do not experience liquation during pre-weld annealing treatments. Suppressing G-phase formation was ultimately determined to be a function of minimizing silicon content, and understabilizing the Nb/(C + 6/7N) ratio.

  8. Effect of quenching conditions on the formation of the grain structure and the mechanical properties of high-nitrogen austenitic 02Kh20AG14N8MF and 02Kh20AG12N4 steels

    NASA Astrophysics Data System (ADS)

    Bannykh, I. O.

    2015-11-01

    The formation of the grain structure of high-nitrogen 02Kh20AG14N8MF and 02Kh20AG12N4 steels in forging and quenching and their mechanical properties in this state have been studied. It is found that both steels have close mechanical properties under the same quenching conditions. In 02Kh20AG14N8MF steel, a homogeneous structure of primarily recrystallized austenite grains forms under the quenching conditions under study. In 02Kh20AG12N4 steel, the processes of secondary recrystallization and normal grain growth take place.

  9. Nitrogen segregation in nanocarbons.

    PubMed

    Ewels, C P; Erbahar, D; Wagner, Ph; Rocquefelte, X; Arenal, R; Pochet, P; Rayson, M; Scardamaglia, M; Bittencourt, C; Briddon, P

    2014-01-01

    We explore the behaviour of nitrogen doping in carbon nanomaterials, notably graphene, nanotubes, and carbon thin films. This is initially via a brief review of the literature, followed by a series of atomistic density functional calculations. We show that at low concentrations, substitutional nitrogen doping in the sp(2)-C graphenic basal plane is favoured, however once the nitrogen concentration reaches a critical threshold there is a transition towards the formation of the more thermodynamically-favoured nitrogen terminated 'zigzag' type edges. These can occur either via formation of finite patches (polycyclic aromatic azacarbons), strips of sp(2) carbon with zigzag nitrogen edges, or internal nitrogen-terminated hole edges within graphenic planes. This transition to edge formation is especially favoured when the nitrogen can be partially functionalised with, e.g. hydrogen. By comparison with available literature results, notably from electron energy loss spectroscopy and X-ray spectroscopy, the current results suggest that much of the nitrogen believed to be incorporated into carbon nanoobjects is instead likely to be present terminating the edges of carbonaceous impurities attached to nanoobject's surface. By comparison to nitrogen-doped tetrahedrally amorphous carbon, we suggest that this transition at around 10-20% nitrogen concentration and above towards sp(2) coordination via internal nitrogen-terminated edge formation may be a general property of nitrogen-doped carbon materials. PMID:25468305

  10. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    NASA Astrophysics Data System (ADS)

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-05-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2.

  11. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation.

    PubMed

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 10(7) erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25-30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 10(17)/cm(2). PMID:27145983

  12. Synthesis of Fe16N2 compound Free-Standing Foils with 20 MGOe Magnetic Energy Product by Nitrogen Ion-Implantation

    PubMed Central

    Jiang, Yanfeng; Mehedi, Md Al; Fu, Engang; Wang, Yongqiang; Allard, Lawrence F.; Wang, Jian-Ping

    2016-01-01

    Rare-earth-free magnets are highly demanded by clean and renewable energy industries because of the supply constraints and environmental issues. A promising permanent magnet should possess high remanent magnetic flux density (Br), large coercivity (Hc) and hence large maximum magnetic energy product ((BH)max). Fe16N2 has been emerging as one of promising candidates because of the redundancy of Fe and N on the earth, its large magnetocrystalline anisotropy (Ku > 1.0 × 107 erg/cc), and large saturation magnetization (4πMs > 2.4 T). However, there is no report on the formation of Fe16N2 magnet with high Br and large Hc in bulk format before. In this paper, we successfully synthesize free-standing Fe16N2 foils with a coercivity of up to 1910 Oe and a magnetic energy product of up to 20 MGOe at room temperature. Nitrogen ion implantation is used as an alternative nitriding approach with the benefit of tunable implantation energy and fluence. An integrated synthesis technique is developed, including a direct foil-substrate bonding step, an ion implantation step and a two-step post-annealing process. With the tunable capability of the ion implantation fluence and energy, a microstructure with grain size 25–30 nm is constructed on the FeN foil sample with the implantation fluence of 5 × 1017/cm2. PMID:27145983

  13. Evidence from firn air for recent decreases in non-methane hydrocarbons and a 20th century increase in nitrogen oxides in the northern hemisphere

    NASA Astrophysics Data System (ADS)

    Worton, David R.; Sturges, William T.; Reeves, Claire E.; Newland, Mike J.; Penkett, Stuart A.; Atlas, Elliot; Stroud, Verity; Johnson, Kristen; Schmidbauer, Norbert; Solberg, Sverre; Schwander, Jakob; Barnola, Jean-Marc

    2012-07-01

    The atmospheric evolution of eight non-methane hydrocarbons (ethane, acetylene, propane, n-butane, isobutane, n-pentane, isopentane and benzene) and five alkyl nitrates (2-propyl, 2-butyl, 3-methyl-2-butyl and the sum of 2+3-pentyl nitrates) are reconstructed for the latter half of the 20th century based on Arctic firn air measurements. The reconstructed trends of the non-methane hydrocarbons (NMHCs) show increasing concentrations from 1950 to a maximum in 1980 before declining towards the end of last century. These observations provide direct evidence that NMHCs in the northern hemisphere have declined substantially during the period 1980-2001. Benzene concentrations show a smaller increase between 1950 and 1980 than the other NMHCs indicating that additional sources of benzene, other than fossil fuel combustion, were likely important contributors to the benzene budget prior to and during this period. The declining benzene concentrations from 1980 to 2001 would suggest that biomass burning is unlikely to be important in the benzene budget as biomass burning emissions were reportedly increasing over the same period. Methyl and ethyl nitrate show growth patterns in the firn that suggested perturbation by in-situ production from an unidentified mechanism. However, the higher alkyl nitrates show evidence for increasing concentrations from 1950 to maxima in the mid 1990s before decreasing slightly toward the end of the last century. The differing atmospheric evolution of the alkyl nitrates relative to their parent hydrocarbons indicate an increase in their production efficiency per hydrocarbon molecule. Using a steady state analysis of hydrocarbon oxidation and alkyl nitrate production and loss we show that reactive nitrogen oxide (NOx) concentrations in the northern hemisphere have likely increased considerably between 1950 and 2001.

  14. Eighth international congress on nitrogen fixation

    SciTech Connect

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  15. Ammonium stability and nitrogen isotope fractionations for NH4+-NH3(aq)-NH3(gas) systems at 20-70 °C and pH of 2-13: Applications to habitability and nitrogen cycling in low-temperature hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Li, Long; Lollar, Barbara Sherwood; Li, Hong; Wortmann, Ulrich G.; Lacrampe-Couloume, Georges

    2012-05-01

    Ammonium/ammonia is an essential nutrient and energy source to support life in oceanic and terrestrial hydrothermal systems. Thus the stability of ammonium is crucial to determine the habitability or ecological structure in hydrothermal environments, but still not well understood. To date, the lack of constraints on nitrogen isotope fractionations between ammonium and ammonia has limited the application of nitrogen isotopes to trace (bio)geochemical processes in such environments. In this study, we carried out laboratory experiments to (1) examine the stability of ammonium in an ammonium sulfate solution under temperature conditions from 20 to 70 °C and pH from 2.1 to 12.6 and (2) determine nitrogen isotope fractionation between ammonium and ammonia. Our experimental results show that ammonium is stable under the experimental temperatures when pH is less than 6. In experiments with starting pH greater than 8, significant ammonium was lost as a result of dissociation of ammonium and degassing of ammonia product. Nitrogen concentrations in the fluids decreased by more than 50% in the first two hours, indicating extremely fast effusion rates of ammonia. This implies that ammonium at high pH fluids (e.g., Lost City Hydrothermal Vents, Oman ophiolite hyperalkaline springs) may not be stable. Habitable environments may be more favorable at the leading edge of a pH gradient toward more acidic conditions, where the fluid can efficiently trap any ammonia transferred from a high pH vent. Although modeling shows that high temperature, low pH hydrothermal vents (e.g., Rainbow hydrothermal vent) may have the capability to retain ammonium, their high temperatures may limit habitability. The habitable zone associated with such a hydrothermal vent is likely at the lower front of a temperature gradient. In contrast, modeling of ammonium in deep terrestrial systems, suggests that saline fracture waters in crystalline rocks such as described in the Canadian Shield and in the

  16. Greenhouse gas emissions and stocks of soil carbon and nitrogen from a 20-year fertilised wheat-maize intercropping system: A model approach.

    PubMed

    Zhang, Xubo; Xu, Minggang; Liu, Jian; Sun, Nan; Wang, Boren; Wu, Lianhai

    2016-02-01

    Accurate modelling of agricultural management impacts on greenhouse gas emissions and the cycling of carbon and nitrogen is complicated due to interactions between various processes and the disturbance caused by field management. In this study, a process-based model, the Soil-Plant-Atmosphere Continuum System (SPACSYS), was used to simulate the effects of different fertilisation regimes on crop yields, the dynamics of soil organic carbon (SOC) and total nitrogen (SN) stocks from 1990 to 2010, and soil CO2 (2007-2010) and N2O (2007-2008) emissions based on a long-term fertilisation experiment with a winter-wheat (Triticum Aestivum L.) and summer-maize (Zea mays L.) intercropping system in Eutric Cambisol (FAO) soil in southern China. Three fertilisation treatments were 1) unfertilised (Control), 2) chemical nitrogen, phosphorus and potassium (NPK), and 3) NPK plus pig manure (NPKM). Statistical analyses indicated that the SPACSYS model can reasonably simulate the yields of wheat and maize, the evolution of SOC and SN stocks and soil CO2 and N2O emissions. The simulations showed that the NPKM treatment had the highest values of crop yields, SOC and SN stocks, and soil CO2 and N2O emissions were the lowest from the Control treatment. Furthermore, the simulated results showed that manure amendment along with chemical fertiliser applications led to both C (1017 ± 470 kg C ha(-1) yr(-1)) and N gains (91.7 ± 15.1 kg N ha(-1) yr(-1)) in the plant-soil system, while the Control treatment caused a slight loss in C and N. In conclusion, the SPACSYS model can accurately simulate the processes of C and N as affected by various fertilisation treatments in the red soil. Furthermore, application of chemical fertilisers plus manure could be a suitable management for ensuring crop yield and sustaining soil fertility in the red soil region, but the ratio of chemical fertilisers to manure should be optimized to reduce C and N losses to the environment. PMID:26615226

  17. Nitrogen Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to improve the management of nitrogen inputs to agricultural systems because they increase the potential for losses of reactive nitrogen to the environment, resulting in negative impacts to water and air resources. There is a need to reduce nitrate leaching, emissions of N2O from agr...

  18. Eighth international congress on nitrogen fixation. Final program

    SciTech Connect

    Not Available

    1990-12-31

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  19. Development of cooling system for 66/6.9kV-20MVA REBCO superconducting transformers with Ne turbo-Brayton refrigerator and subcooled liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Iwakuma, M.; Adachi, K.; Yun, K.; Yoshida, K.; Sato, S.; Suzuki, Y.; Umeno, T.; Konno, M.; Hayashi, H.; Eguchi, T.; Izumi, T.; Shiohara, Y.

    2015-12-01

    We developed a turbo-Brayton refrigerator with Ne gas as a working fluid for a 3 ϕ- 66/6.9kV-2MVA superconducting transformer with coated conductors which was bath-cooled with subcooled LN2. The two-stage compressor and expansion turbine had non-contact magnetic bearings for a long maintenance interval. In the future, we intend to directly install a heat exchanger into the Glass-Fiber-Reinforced-Plastics cryostat of a transformer and make a heat exchange between the working fluid gas and subcooled LN2. In this paper we investigate the behaviour of subcooled LN2 in a test cryostat, in which heater coils were arranged side by side with a flat plate finned-tube heat exchanger. Here a He turbo-Brayton refrigerator was used as a substitute for a Ne turbo-Brayton one. The pressure at the surface of LN2 in the cryostat was one atmosphere. Just under the LN2 surface, a stationary layer of LN2 was created over the depth of 20 cm and temperature dropped from 77 K to 65 K with depth while, in the lower level than that, a natural convection flow of LN2 was formed and temperature was almost uniform over 1 m depth. The boundary plane between the stationary layer and the natural convection region was visible.

  20. Nitrogen species

    NASA Astrophysics Data System (ADS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; McCormick, M. P.; Noxon, J.; Owens, A. J.

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  1. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  2. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  3. Preprototype nitrogen supply subsystem development

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Fort, J. H.; Schubert, F. H.

    1982-01-01

    The design and development of a test stand for the Nitrogen Generation Module (NGM) and a series of tests which verified its operation and performance capability are described. Over 900 hours of parametric testing were achieved. The results from this testing were then used to design an advanced NGM and a self contained, preprototype Nitrogen Supply Subsystem. The NGM consists of three major components: nitrogen generation module, pressure controller and hydrazine storage tank and ancillary components. The most important improvement is the elimination of all sealing surfaces, achieved with a total welded or brazed construction. Additionally, performance was improved by increasing hydrogen separating capability by 20% with no increase in overall packaging size.

  4. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  5. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  6. Potato Nitrogen and Water Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato tuber yields and quality are extremely sensitive to adequate availability of water and nitrogen, particularly at some growth stages. Irrigation to replenish 70% of evapotranspiration (ET) as compared to that of full ET, resulted in about 18% reduction in tuber yield. However, 20% deficit irri...

  7. Nitrogen Supply Uses Hydrazine

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.

    1984-01-01

    Liquid hydrazine dissociated and residual gas removed to produce almost pure nitrogen. Nitrogen-generation module catalytically dissociates liquid hydrazine then dissociates and separates product gases to yield almost pure nitrogen.

  8. Virtual Nitrogen Losses from Organic Food Production

    NASA Astrophysics Data System (ADS)

    Cattell Noll, L.; Galloway, J. N.; Leach, A. M.; Seufert, V.; Atwell, B.; Shade, J.

    2015-12-01

    Reactive nitrogen (Nr) is necessary for crop and animal production, but when it is lost to the environment, it creates a cascade of detrimental environmental impacts. The nitrogen challenge is to maximize the food production benefits of Nr, while minimizing losses to the environment. The first nitrogen footprint tool was created in 2012 to help consumers learn about the Nr losses to the environment that result from an individual's lifestyle choices. The nitrogen lost during food production was estimated with virtual nitrogen factors (VNFs) that quantify the amount of nitrogen lost to the environment per unit nitrogen consumed. Alternative agricultural systems, such as USDA certified organic farms, utilize practices that diverge from conventional production. In order to evaluate the potential sustainability of these alternative agricultural systems, our team calculated VNFs that reflect organic production. Initial data indicate that VNFs for organic grains and organic starchy roots are comparable to, but slightly higher than conventional (+10% and +20% respectively). In contrast, the VNF for organic vegetables is significantly higher (+90%) and the VNF for organic legumes is significantly lower (-90%). Initial data on organic meat production shows that organic poultry and organic pigmeat are comparable to conventional production (both <5% difference), but that the organic beef VNF is significantly higher (+30%). These data show that in some cases organic and conventional production are comparable in terms of nitrogen efficiency. However, since conventional production relies heavily on the creation of new reactive nitrogen (Haber-Bosch, biological nitrogen fixation) and organic production primarily utilizes already existing reactive nitrogen (manure, crop residue, compost), the data also show that organic production contributes less new reactive nitrogen to the environment than conventional production (approximately 70% less). Therefore, we conclude that on a local

  9. Nitrogen removal from natural gas

    SciTech Connect

    1997-04-01

    According to a 1991 Energy Information Administration estimate, U.S. reserves of natural gas are about 165 trillion cubic feet (TCF). To meet the long-term demand for natural gas, new gas fields from these reserves will have to be developed. Gas Research Institute studies reveal that 14% (or about 19 TCF) of known reserves in the United States are subquality due to high nitrogen content. Nitrogen-contaminated natural gas has a low Btu value and must be upgraded by removing the nitrogen. In response to the problem, the Department of Energy is seeking innovative, efficient nitrogen-removal methods. Membrane processes have been considered for natural gas denitrogenation. The challenge, not yet overcome, is to develop membranes with the required nitrogen/methane separation characteristics. Our calculations show that a methane-permeable membrane with a methane/nitrogen selectivity of 4 to 6 would make denitrogenation by a membrane process viable. The objective of Phase I of this project was to show that membranes with this target selectivity can be developed, and that the economics of the process based on these membranes would be competitive. Gas permeation measurements with membranes prepared from two rubbery polymers and a superglassy polymer showed that two of these materials had the target selectivity of 4 to 6 when operated at temperatures below - 20{degrees}C. An economic analysis showed that a process based on these membranes is competitive with other technologies for small streams containing less than 10% nitrogen. Hybrid designs combining membranes with other technologies are suitable for high-flow, higher-nitrogen-content streams.

  10. Understanding Nitrogen Fixation

    SciTech Connect

    Paul J. Chirik

    2012-05-25

    synthesis of ammonia, NH{sub 3}, from its elements, H{sub 2} and N{sub 2}, via the venerable Haber-Bosch process is one of the most significant technological achievements of the past century. Our research program seeks to discover new transition metal reagents and catalysts to disrupt the strong N {triple_bond} N bond in N{sub 2} and create new, fundamental chemical linkages for the construction of molecules with application as fuels, fertilizers and fine chemicals. With DOE support, our group has discovered a mild method for ammonia synthesis in solution as well as new methods for the construction of nitrogen-carbon bonds directly from N{sub 2}. Ideally these achievements will evolve into more efficient nitrogen fixation schemes that circumvent the high energy demands of industrial ammonia synthesis. Industrially, atmospheric nitrogen enters the synthetic cycle by the well-established Haber-Bosch process whereby N{sub 2} is hydrogenated to ammonia at high temperature and pressure. The commercialization of this reaction represents one of the greatest technological achievements of the 20th century as Haber-Bosch ammonia is responsible for supporting approximately 50% of the world's population and serves as the source of half of the nitrogen in the human body. The extreme reaction conditions required for an economical process have significant energy consequences, consuming 1% of the world's energy supply mostly in the form of pollution-intensive coal. Moreover, industrial H{sub 2} synthesis via the water gas shift reaction and the steam reforming of methane is fossil fuel intensive and produces CO{sub 2} as a byproduct. New synthetic methods that promote this thermodynamically favored transformation ({Delta}G{sup o} = -4.1 kcal/mol) under milder conditions or completely obviate it are therefore desirable. Most nitrogen-containing organic molecules are derived from ammonia (and hence rely on the Haber-Bosch and H{sub 2} synthesis processes) and direct synthesis from

  11. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  12. Electro-catalytic reduction of nitrogen oxides

    SciTech Connect

    McLarnon, C.R.

    1989-12-01

    Nitrogen oxides have been linked to a broad range of air pollution problems including acid rain and the atmospheric production of photochemical ozone. Over twenty million tons of nitrogen oxides are emitted into the atmosphere each year as a result of the high temperature combustion of fossil fuels. Efforts to control nitrogen oxides emissions have lagged because of the generally low discharge concentrations of nitrogen oxides in combustion exhaust and because nitrogen oxides are more difficult to remove due to their lower reactivity. No catalyst has yet been found that will achieve significant reduction of nitrogen oxides in an oxidizing environment. Oxygen in the exhaust stream competes with nitrogen oxides for the active catalyst sites. Also, the dissociated oxygen atoms produced by decomposition of nitrogen oxides deactivate the surface of the catalyst. Externally applied electric fields have been used to control oxygen adsorption on metal and semi-conductor surfaces. In this investigation, a stream containing nitric oxide has been subjected to intense electric fields in the presence of catalyst materials including steel, stainless steel, and gold plated stainless steel wools and glass wool. The electric fields have been generated using DC, AC and rectified AC potentials in the range of 0--20 KV. The effect of parameters such as inlet nitric oxide concentration, oxygen and water content, gas residence time and temperature have also been studied.

  13. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  14. Flameless nitrogen skid unit

    SciTech Connect

    Loesch, S.B.; John, J.C.; Mints, D.K.

    1984-03-27

    A flameless nitrogen vaporizing unit includes a first internal combustion engine driving a nitrogen pump through a transmission. A second internal combustion engine drives three hydraulic oil pumps against a variable back pressure so that a variable load may be imposed upon the second engine. Liquid nitrogen is pumped from the nitrogen pump driven by the first engine into a first heat exchanger where heat is transferred from exhaust gases from the first and second internal combustion engines to the liquid nitrogen to cause the nitrogen to be transformed into a gaseous state. The gaseous nitrogen then flows into a second heat exchanger where it is superheated by an engine coolant fluid to heat the gaseous nitrogen to essentially an ambient temperature. The superheated nitrogen is then injected into the well. The engine coolant fluid flows in a coolant circulation system. Heat is transferred to the coolant fluid directly from the internal combustion engine. Heat is also provided to the coolant fluid from lubrication oil pumped by the three pumps attached to the second internal combustion engine. The coolant fluid circulating system includes a comingling chamber for comingling warmer coolant fluid flowing from the internal combustion engines to the second heat exchanger with cooler coolant fluids flowing from the second heat exchanger to the internal combustion engines. Methods of vaporizing nitrogen are also disclosed.

  15. Tribological characteristics of nitrogen (N+) implanted iron

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Ferrante, J.

    1982-01-01

    The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure ion sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (25 C), a dry air atmosphere, a load of 1/2 kg (4.9 N), sliding velocities of 0.043 to 0.078 m/sec (15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a U.S.P. mineral oil and nitrogen ion implantation doses of 5x10 to the 15th power and 5x10 to the 17th power ions/sq cm. No differences in wear rates were observed in the low dose experiments. In the high dose experiments, small reductions in initial (40 percent) and steady state (20 percent) wear rates were observed for nitrogen implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose. Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 0.8 microns. Similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed.

  16. Tribological characteristics of nitrogen (N+) implanted iron

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Ferrante, J.

    1983-01-01

    The effect of implantation of nitrogen ions (1.5 MeV) on the friction and wear characteristics of pure ion sliding against M-50 steel (unimplanted) was studied in a pin-on-disk sliding friction apparatus. Test conditions included room temperature (25 C), a dry air atmosphere, a load of 1/2 kg (4.9 N), sliding velocities of 0.043 to 0.078 m/sec (15 to 25 rpm), a pure hydrocarbon lubricant (n-hexadecane), or a U.S.P. mineral oil and nitrogen ion implantation doses of 5x10 to the 15th power and 5x10 to the 17th power ions/sq cm. No differences in wear rates were observed in the low dose experiments. In the high dose experiments, small reductions in initial (40 percent) and steady state (20 percent) wear rates were observed for nitrogen implanted iron riders as compared with unimplanted controls. No differences in average friction coefficients were noted for either dose. Auger electron spectroscopy combined with argon ion bombardment revealed a subsurface Gaussian nitrogen distribution with a maximum concentration of 6 atomic percent at a depth of 0.8 microns. Similar analysis within the wear scar of an implanted rider after 20 microns of wear yielded only background nitrogen concentration. No inward migration of nitrogen ions was observed. Previously announced in STAR as N82-24322

  17. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  18. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... check, and calibration test procedures specified in 40 CFR part 1065, subparts C and D, may be used in... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Provisions § 91.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the chemiluminescent oxides...

  19. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Test Equipment Provisions § 89.321 Oxides of nitrogen analyzer calibration. (a) The...

  20. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... check, and calibration test procedures specified in 40 CFR part 1065, subparts C and D, may be used in... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Provisions § 91.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the chemiluminescent oxides...

  1. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., and calibration test procedures specified in 40 CFR part 1065, subpart D, may be used in lieu of the... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Emission Test Equipment Provisions § 90.318 Oxides of nitrogen analyzer calibration. (a) Calibrate...

  2. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., and calibration test procedures specified in 40 CFR part 1065, subpart D, may be used in lieu of the... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Emission Test Equipment Provisions § 90.318 Oxides of nitrogen analyzer calibration. (a) Calibrate...

  3. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Test Equipment Provisions § 89.321 Oxides of nitrogen analyzer calibration. (a) The...

  4. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., and calibration test procedures specified in 40 CFR part 1065, subpart D, may be used in lieu of the... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Emission Test Equipment Provisions § 90.318 Oxides of nitrogen analyzer calibration. (a) Calibrate...

  5. 40 CFR 91.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... check, and calibration test procedures specified in 40 CFR part 1065, subparts C and D, may be used in... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Provisions § 91.318 Oxides of nitrogen analyzer calibration. (a) Calibrate the chemiluminescent oxides...

  6. 40 CFR 89.321 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... periodic interference, system check, and calibration test procedures specified in 40 CFR part 1065 may be... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Test Equipment Provisions § 89.321 Oxides of nitrogen analyzer calibration. (a) The...

  7. Soil Nitrogen Budgets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) recoveries are commonly 45% to 70% for modern field-crop systems. Nitrogen budgets are a valuable tool for improving N efficiency because they assess the size of various N pools, N gains from the atmosphere, N losses to the environment, and the interactions among soil-N-cycle processes...

  8. Nitrogen trading tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  9. Update: Biological Nitrogen Fixation.

    ERIC Educational Resources Information Center

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  10. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  11. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  12. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  13. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  14. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  15. [Effects of elevated atmospheric CO2 and nitrogen application on cotton biomass, nitrogen utilization and soil urease activity].

    PubMed

    Lyu, Ning; Yin, Fei-hu; Chen, Yun; Gao, Zhi-jian; Liu, Yu; Shi, Lei

    2015-11-01

    under the ambient CO2- (360 µmol · mol(-1)) treatment. The order of nitrogen accumulation content in organs was bud > leaf > stem > root. Soil urease activity of both layers increased significantly with the elevation of CO2 concentration in all the nitrogen treatments. Under each CO2 concentration treatment, the soil urease activity in the upper layer (0-20 cm) increased significantly with nitrogen application, while the urease activity under the application of 300 kg · hm(-2) nitrogen was highest in the lower layer (20- 40 cm). The average soil urease activity in the upper layer (0-20 cm) was significantly higher than that in the lower layer (20-40 cm). This study suggested that the cotton dry matter accumulation and nitrogen absorption content were significantly increased in response to the elevated CO2 concentration (540 µmol · mol(-1)) and higher nitrogen addition (300 kg · hm(-2)). PMID:26915188

  16. Heat transport of nitrogen in helium atmospheric pressure microplasma

    NASA Astrophysics Data System (ADS)

    Xu, S. F.; Zhong, X. X.

    2013-07-01

    Stable DC atmospheric pressure normal glow discharges in ambient air were produced between the water surface and the metallic capillary coupled with influx of helium gas. Multiple independent repeated trials indicated that vibrational temperature of nitrogen rises from 3200 to 4622 K, and rotational temperature of nitrogen decreases from 1270 to 570 K as gas flux increasing from 20 to 80 sccm and discharge current decreasing from 11 to 3 mA. Furthermore, it was found that the vibrational degree of the nitrogen molecule has priority to gain energy than the rotational degree of nitrogen molecule in nonequilibrium helium microplasma.

  17. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. PMID:26859274

  18. Nitrogen control in bacteria.

    PubMed Central

    Merrick, M J; Edwards, R A

    1995-01-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  19. Nitrogen Backbone Oligomers

    PubMed Central

    Wang, Hongbo; Eremets, Mikhail I.; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-01-01

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations. PMID:26286836

  20. Nitrogen Backbone Oligomers

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Eremets, Mikhail I.; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-08-01

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations.

  1. Thermal stability study of nitrogen functionalities in a graphene network

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Ganguly, Abhijit; Papakonstantinou, Pagona

    2012-06-01

    Catalyst-free vertically aligned graphene nanoflakes possessing a large amount of high density edge planes were functionalized using nitrogen species in a low energy N+ ion bombardment process to achieve pyridinic, cyanide and nitrogen substitution in hexagonal graphitic coordinated units. The evolution of the electronic structure of the functionalized graphene nanoflakes over the temperature range 20-800 °C was investigated in situ, using high resolution x-ray photoemission spectroscopy. We demonstrate that low energy irradiation is a useful tool for achieving nitrogen doping levels up to 9.6 at.%. Pyridinic configurations are found to be predominant at room temperature, while at 800 °C graphitic nitrogen configurations become the dominant ones. The findings have helped to provide an understanding of the thermal stability of nitrogen functionalities in graphene, and offer prospects for controllable tuning of nitrogen doping in device applications.

  2. Excitation of atomic nitrogen by electron impact.

    NASA Technical Reports Server (NTRS)

    Stone, E. J.; Zipf, E. C.

    1973-01-01

    Measurement of the absolute cross sections for the excitation of a number of N I multiplets by electron impact on atomic nitrogen. Two of these cross sections - 1134 and 1200 A - are found to be large, reaching 2.0 x 10 to the minus 16th and 2.5 x 10 to the minus 16th sq cm at their peaks, respectively. The presence of vibrationally excited molecular nitrogen in the discharged gas is confirmed, and its effect on the measurements is discussed. The ratio of the oscillator strengths of the 1200- and 1134-A resonance transitions is measured to be 2.6 plus or minus 0.3.

  3. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  4. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  5. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  6. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of Part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen...

  7. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  8. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen...

  9. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen...

  10. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen...

  11. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  12. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration....

  13. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of Part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen...

  14. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  15. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus.

    PubMed

    Gu, Huiya; Nagle, Nick; Pienkos, Philip T; Posewitz, Matthew C

    2015-05-01

    In this study, the reuse of nitrogen from fuel-extracted algal residues was investigated. The alga Scenedesmus acutus was found to be able to assimilate nitrogen contained in amino acids, yeast extracts, and proteinaceous alga residuals. Moreover, these alternative nitrogen resources could replace nitrate in culturing media. The ability of S. acutus to utilize the nitrogen remaining in processed algal biomass was unique among the promising biofuel strains tested. This alga was leveraged in a recycling approach where nitrogen is recovered from algal biomass residuals that remain after lipids are extracted and carbohydrates are fermented to ethanol. The protein-rich residuals not only provided an effective nitrogen resource, but also contributed to a carbon "heterotrophic boost" in subsequent culturing, improving overall biomass and lipid yields relative to the control medium with only nitrate. Prior treatment of the algal residues with Diaion HP20 resin was required to remove compounds inhibitory to algal growth. PMID:25539998

  16. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  17. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  18. Fuel nitrogen release during black liquor pyrolysis; Part 2: Comparisons between different liquors

    SciTech Connect

    Aho, K.; Nikkanen, S. ); Hupa, M. . Chemical Engineering Dept.)

    1994-08-01

    This continuation of earlier work reports fuel nitrogen release for black liquors at two temperatures during pyrolysis of single droplets in an oxygen-free environment. Approximately half of the 20--60% fuel nitrogen released was ammonia and half was molecular nitrogen. The total amount of fixed nitrogen released during pyrolysis was almost linearly proportional to the liquor nitrogen content. The yield of fixed nitrogen for birch liquors was significantly higher than for pine liquors, and the yield for bagasse liquor was extremely high.

  19. Brucella, nitrogen and virulence.

    PubMed

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use. PMID:25471320

  20. Nitrogen, phosphorus, organic carbon, and biochemical oxygen demand : in Florida surface waters, 1972

    USGS Publications Warehouse

    Kaufman, Matthew I.; Dysart, J.E.

    1978-01-01

    Water samples were collected during spring and autumn 1972 from about 100 surface-water sites in Florida. The samples were analyzed for the plant nutrients, nitrogen and phosphorus. In most waters, nitrogen concentrations are less than 2.0 milligrams per liter as nitrogen, and organic nitrogen is dominant. Median total nitrogen concentration for Florida surface waters is between 1.2 and 2.0 milligrams per liter as nitrogen. In samples from 85 percent of the sites, total nitrogen exceeded 0.6 milligrams per liter. Median total phosphorus concentration as phosphorus for Florida surface waters is between 0.05 and 0.1 milligrams per liter. The information will form a base useful to agencies concerned with setting concentration limits for nitrogen and phosphorus in industrial and sewage plant outfalls. (Woodard-USGS)

  1. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  2. PRECISION FARMING FOR NITROGEN MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approaches to precision nitrogen management vary from region to region depending on crop, soils, landscape, and climate yet all strategies essentially attempt to estimate crop nitrogen demand or plant available nitrogen. In this chapter, we provide case studies that illustrate precision nitrogen ma...

  3. Nitrogen transformations and balance in constructed wetlands for slightly polluted river water treatment using different macrophytes.

    PubMed

    Wu, Haiming; Zhang, Jian; Wei, Rong; Liang, Shuang; Li, Cong; Xie, Huijun

    2013-01-01

    Nitrogen removal processing in different constructed wetlands treating different kinds of wastewater often varies, and the contribution to nitrogen removal by various pathways remains unclear. In this study, the seasonal nitrogen removal and transformations as well as nitrogen balance in wetland microcosms treating slightly polluted river water was investigated. The results showed that the average total nitrogen removal rates varied in different seasons. According to the mass balance approach, plant uptake removed 8.4-34.3 % of the total nitrogen input, while sediment storage and N(2)O emission contributed 20.5-34.4 % and 0.6-1.9 % of nitrogen removal, respectively. However, the percentage of other nitrogen loss such as N(2) emission due to nitrification and denitrification was estimated to be 2.0-23.5 %. The results indicated that plant uptake and sediment storage were the key factors limiting nitrogen removal besides microbial processes in surface constructed wetland for treating slightly polluted river water. PMID:22707115

  4. [XPS and Raman spectral analysis of nitrogenated tetrahedral amorphous carbon (ta-C : N) films with different nitrogen content].

    PubMed

    Chen, Wang-Shou; Zhu, Jia-Qi; Han, Jie-Cai; Tian, Gui; Tan, Man-Lin

    2009-01-01

    Nitrogenated tetrahedral amorphous carbon (ta-C : N) films were prepared on the polished C--Si substrates by introducing highly pure nitrogen gas into the cathode region and the depositing chamber synchronously using filtered cathodic vacuum arc (FCVA) technology. The nitrogen content in the films was controlled by changing the flow rate of nitrogen gas. The configuration of ta-C : N films was investigated by means of X-ray photoelectron spectroscopy (XPS) and visible Raman spectroscopy. It was shown that the nitrogen content in the films increased from 0.84 at% to 5.37 at% monotonously when the nitrogen flow rate was varied from 2 seem to 20 sccm. The peak position of C (1s) core level moved towards higher binding energy with the increase in nitrogen content. The shift of C (1s) peak position could be ascribed to the chemical bonding between carbon and nitrogen atoms even though more three-fold coordinated sp2 configuration as in graphite was formed when the films were doped with more nitrogen atoms. Additionally, the half width of C(1s) peak gradually was also broadened with increasing nitrogen content. In order to discover clearly the changing regularities of the microstructure of the films, the XPS C(1s) spectra and Raman spectra were deconvoluted using a Gaussian-Lorentzian mixed lineshape. It was shown that the tetrahedral hybridization component was still dominant even though the ratio of sp2/sp3 obtained from C(1s) spectra rose with the increase in nitrogen content. The Raman measurements demonstrated that the G peak position shifted towards higher frequency from 1,561 to 1,578 cm(-1) and the ratio of ID/IG also rose with the increase in nitrogen content. Both results indicated that the graphitizing tendency could occur with the increase in nitrogen content in the films. PMID:19385255

  5. Trichodesmium and nitrogen fixation in the Kuroshio

    NASA Astrophysics Data System (ADS)

    Shiozaki, T.; Takeda, S.; Itoh, S.; Kodama, T.; Liu, X.; Hashihama, F.; Furuya, K.

    2015-07-01

    Nitrogen fixation in the Kuroshio influences nitrogen balance in the North Pacific Ocean. The genus Trichodesmium is recognized as a major diazotroph in the Kuroshio. Although its abundance is higher in the Kuroshio than in adjacent waters, the reason for this difference remains unclear. The present study investigated the abundance of Trichodesmium spp. and nitrogen fixation together with concentrations of dissolved iron and phosphate, whose availabilities potentially control diazotrophy, in the Kuroshio and its marginal seas. We performed the observations near the Miyako Islands, which form part of the Ryukyu Islands, situated along the Kuroshio, since satellite analysis suggested that material transport could occur from the islands to the Kuroshio. Trichodesmium spp. bloomed (> 20 000 filaments L-1) near the Miyako Islands, and the abundance was high in the Kuroshio and the Kuroshio bifurcation region of the East China Sea, but was low in the Philippine Sea. The abundance of Trichodesmium spp. was significantly correlated with the total nitrogen fixation activity. The surface concentrations of dissolved iron (0.19-0.89 nM) and phosphate (< 3-36 nM) were similar for all of the study areas, indicating that the nutrient distribution could not explain the spatial differences in Trichodesmium spp. abundance and nitrogen fixation. We used a numerical model to simulate the transportation of water around the Ryukyu Islands to the Kuroshio. Our results indicate that Trichodesmium growing around the islands situated along the Kuroshio is potentially important for determining diazotrophy in this region.

  6. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  7. Contribution of dairy ration components to nitrogen in milk, manure, crops, and environmental nitrogen loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Of the total nitrogen (N) consumed by dairy cows, a general range of 20 to 35% is secreted in milk, and the remaining N is excreted in manure, which is subject to environmental loss. For many dairy herds, improved feed management, including feeding rations balanced in energy and crude protein, can e...

  8. Climate change impacts of US reactive nitrogen

    PubMed Central

    Pinder, Robert W.; Davidson, Eric A.; Goodale, Christine L.; Greaver, Tara L.; Herrick, Jeffrey D.; Liu, Lingli

    2012-01-01

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at −290 to −510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just −16 to −95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change. PMID:22547815

  9. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  10. Arginine and nitrogen storage.

    PubMed

    Llácer, José L; Fita, Ignacio; Rubio, Vicente

    2008-12-01

    When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation. PMID:19013524

  11. The Global Nitrogen Story

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2001-05-01

    In the absence of human activities, biotic nitrogen fixation is the primary source of reactive N to the environment. Over the last few decades, human activity has surpassed natural terrestrial nitrogen fixation rates by energy production (fossil fuel combustion) and food production (Haber-Bosch based fertilizer production and crop cultivation). An amount equivalent to over half of the anthropogenic N fixed each year is emitted to the atmosphere or discharged to rivers, for dispersion to environmental systems. An unknown amount of this anthropogenic N is accumulating in the environment resulting in a enhanced greenhouse effect, acid deposition, photochemical smog, stratospheric ozone depletion and eutrophication of fresh and marine waters. This paper will assess the state of knowledge on the global N cycle and present a context in which to place the impacts of humans on nitrogen cycling at regional scales.

  12. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high. PMID:25659333

  13. Biodegradation of the Nitramine Explosive CL-20

    PubMed Central

    Trott, Sandra; Nishino, Shirley F.; Hawari, Jalal; Spain, Jim C.

    2003-01-01

    The cyclic nitramine explosive CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane) was examined in soil microcosms to determine whether it is biodegradable. CL-20 was incubated with a variety of soils. The explosive disappeared in all microcosms except the controls in which microbial activity had been inhibited. CL-20 was degraded most rapidly in garden soil. After 2 days of incubation, about 80% of the initial CL-20 had disappeared. A CL-20-degrading bacterial strain, Agrobacterium sp. strain JS71, was isolated from enrichment cultures containing garden soil as an inoculum, succinate as a carbon source, and CL-20 as a nitrogen source. Growth experiments revealed that strain JS71 used 3 mol of nitrogen per mol of CL-20. PMID:12620886

  14. The 20-20-20 Airship Challenge

    NASA Astrophysics Data System (ADS)

    Kiessling, Alina; Diaz, Ernesto; Miller, Sarah; Rhodes, Jason

    2014-06-01

    A NASA Centennial Challenge; (http://www.nasa.gov/directorates/spacetech/centennial_challenges/index.html) is in development to spur innovation in stratospheric airships as a science platform. We anticipate a million dollar class prize for the first organization to fly a powered airship that remains stationary at 20km (65,000 ft) altitude for over 20 hours with a 20kg payload. The design must be scalable to longer flights with more massive payloads.In NASA’s constrained budget environment, there are few opportunities for space missions in astronomy and Earth science, and these have very long lead times. We believe that airships (powered, maneuverable, lighter-than-air vehicles) could offer significant gains in observing time, sky and ground coverage, data downlink capability, and continuity of observations over existing suborbital options at competitive prices. We seek to spur private industry (or non-profit institutions, including FFRDCs and Universities) to demonstrate the capability for sustained airship flights as astronomy and Earth science platforms. This poster will introduce the challenge in development and provide details of who to contact for more information.

  15. Nitrogen in chondritic metal

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Marti, K.; Kim, Y.

    2005-02-01

    We report new nitrogen isotopic data in metals of H-, L- and one LL -chondrites, with N abundances in the range of ˜0.3 to 3.3 ppm and half of these <1 ppm. Nitrogen isotopic signatures in metals with low indigenous N concentrations are modified by cosmic ray spallation components; corrections are required to determine the indigenous N signatures. The metals of type 4 and 5 show uniform indigenous nitrogen (δ 15N = -6.8 ± 0.5 ‰) and confirm a reported possible genetic association of chondritic metal with metal in IIE and IVA iron meteorites. Distinct isotopic signatures are observed in two metal samples of the Portales Valley (H6) meteorite which both are inconsistent with signatures in H4 and H5 chondrites, but possibly reveal a record of impact-induced melting and metamorphism on the parent asteroid. Anomalous nitrogen signatures in metals of type 3 chondrites, on the other hand, may reflect residues of surviving presolar isotopic signatures.

  16. Ruminant nitrogen usage

    SciTech Connect

    Not Available

    1985-01-01

    This book brings together the latest research on protein absorption by ruminants and takes a look at the calculation of optimum nutrient requirements, including bacterial digestion, in the calculations. It also describes the parameters of nitrogen conversion in the ruminant and examines the different kinds of protein found in animal feedstuffs.

  17. ODD NITROGEN PROCESSES

    SciTech Connect

    Johnston, Harold S.

    1980-01-01

    This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

  18. Nitrogen Trading Tool (NTT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Natural Resources Conservation Service (NRCS) recently developed a prototype web-based nitrogen trading tool to facilitate water quality credit trading. The development team has worked closely with the Agriculture Research Service Soil Plant Nutrient Research Unit (ARS-SPNR) and the Environmenta...

  19. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  20. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  1. Soil and fertilizer nitrogen

    SciTech Connect

    Winteringham, F.P.W.

    1985-01-01

    This book describes a study of plant nutrition and environmental protection, and also discusses soil nitrogen in relation to agriculture, forestry, the environment and conservation. It also includes the Summary Report on the Final Meeting of the FAO/IAEA/GSF.

  2. California Nitrogen Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California N Index User Manual is designed to help you become accustomed to the software environment in which the N Index runs. This manual will use an example scenario to demonstrate how to use the N Index to assess nitrogen losses. The objective of this theoretical example is to guide you towa...

  3. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  4. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  5. Nitrogen-incorporation induced changes in the microstructure of nanocrystalline WO3 thin films

    SciTech Connect

    Vemuri, Venkata Rama Sesha R.; Noor-A-Alam, M.; Gullapalli, Satya K.; Engelhard, Mark H.; Ramana, C.V.

    2011-12-30

    Nitrogen doped tungsten oxide (WO3) films were grown by reactive magnetron sputter-deposition by varying the nitrogen content in the reactive gas mixture keeping the deposition temperature fixed at 400 C. The crystal structure, surface morphology, chemical composition, and electrical resistivity of nitrogen doped WO3 films were evaluated using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and electrical conductivity measurements. The results indicate that the nitrogen-doping induced changes in the microstructure and electrical properties of WO3 films are significant. XRD measurements coupled with SEM analysis indicates that the increasing nitrogen content decreases the grain size and crystal quality. The nitrogen concentration increases from 0 at.% to 1.35 at.% with increasing nitrogen flow rate from 0 to 20 sccm. The corresponding dc electrical conductivity of the films had shown a decreasing trend with increasing nitrogen content.

  6. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  7. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  8. The nitrogen and sulphur cycles

    SciTech Connect

    Cole, J.A.; Ferguson, S.J.

    1988-01-01

    This book contains 17 selections. Some of the titles are: Genetic regulation of nitrogen fixation; On the analysis of symbiotic genes of Rhizobium; Regulation of nitrogen assimilation by bacteria; Alternative and conventional nitrogenases; and The role of oxygen and hydrogen in nitrogen fixation.

  9. PERSONAL MONITOR FOR NITROGEN DIOXIDE

    EPA Science Inventory

    An attempt was made to develop a personal monitor to measure nitrogen dioxide. Sampling of nitrogen dioxide is accomplished by permeation through a silicone membrane into a alkaline thymol blue solution. The nitrogen dioxide is converted to nitrite and is then quantitated by colo...

  10. Solar nitrogen: evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14.

    PubMed

    Kerridge, J F

    1975-04-11

    Solar wind nitrogen, implanted in lunar soil samples, exhibits isotopic variations that are related to the time, although not to the duration, of implantation, with earlier samples characterized by lower ratios of nitrogen-15 to nitrogen-14. An increase in the solar nitrogen-15 content during the lifetime of the lunar regolith is probably caused by spallation of oxygen-16 in the surface regions of the sun. PMID:17813736

  11. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  12. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  13. Sealing Nitrogen Tetroxide Leaks

    NASA Technical Reports Server (NTRS)

    Garrard, George G.; Houston, Donald W.; Scott, Frank D.

    1990-01-01

    Use of Furmanite FSC-N-6B sealant in clam-shell sealing device makes it possible to stop leaks of nitrogen tetroxide through defective or improperly-seated plumbing fittings. Devised to stop leaks in vent line of small rocket motor on Space Shuttle. Also used on plumbing containing hydrazine and other hazardous fluids, and repair withstands severe temperature, vibration, and shock. Leaks stopped in place, without draining or replacement of leaking parts.

  14. Nitrogen in germanium

    NASA Astrophysics Data System (ADS)

    Chambouleyron, I.; Zanatta, A. R.

    1998-07-01

    The known properties of nitrogen as an impurity in, and as an alloy element of, the germanium network are reviewed in this article. Amorphous and crystalline germanium-nitrogen alloys are interesting materials with potential applications for protective coatings and window layers for solar conversion devices. They may also act as effective diffusion masks for III-V electronic devices. The existing data are compared with similar properties of other group IV nitrides, in particular with silicon nitride. To a certain extent, the general picture mirrors the one found in Si-N systems, as expected from the similar valence structure of both elemental semiconductors. However, important differences appear in the deposition methods and alloy composition, the optical properties of as grown films, and the electrical behavior of nitrogen-doped amorphous layers. Structural studies are reviewed, including band structure calculations and the energies of nitrogen-related defects, which are compared with experimental data. Many important aspects of the electronic structure of Ge-N alloys are not yet completely understood and deserve a more careful investigation, in particular the structure of defects associated with N inclusion. The N doping of the a-Ge:H network appears to be very effective, the activation energy of the most effectively doped samples becoming around 120 meV. This is not the case with N-doped a-Si:H, the reasons for the difference remaining an open question. The lack of data on stoichiometric β-Ge3N4 prevents any reasonable assessment on the possible uses of the alloy in electronic and ceramic applications.

  15. Nitrogen farming for pollution control.

    PubMed

    Kadlec, Robert H

    2005-01-01

    The use of free water surface treatment wetlands for nitrate reduction has an extensive basis in data from dozens of operating systems. Marshes are effective for denitrification, with first order areal annual rate constants centered on thirty-four meters/year. Performance improves at higher water temperatures, with a modified Arrhenius temperature factor of 1.090. Performance also increases with increasing hydraulic efficiency, created by prevention of short-circuiting, and reflected in values of the tanks-in-series parameter N > 5. Higher efficiencies are associated with submergent and emergent soft tissue vegetation, and lower efficiencies with unvegetated open water and forested wetlands. Hydraulic loadings of 2-7 cm/day can produce 30% nitrate load reductions, over the temperature range 6-20 degrees C. Carbon availability limits denitrification at high nitrate loadings, however, wetlands produce carbon in sufficient quantities to support the loads anticipated in the upper midwest. The conversion of agricultural lands to treatment wetlands focused on nitrate reduction is termed nitrogen (N) farming. (D.H. Hey, Nitrogen farming: harvesting a different crop. Restoration Ecology, 2002, 10 (1), 1-11). A demonstration project is indicated to address local issues and scale-up considerations. Such a project would require thorough monitoring for the purpose of optimizing and refining design models. Significant ancillary benefits of ecological diversity and wildlife habitat are certain to accompany the project, but are of secondary importance until the water quality functions are demonstrated. Regulatory issues include permitting and wetland classification. Economic issues include proper pricing of services and methods of revenue generation. Resolution of these potential difficulties may require modification of existing policies and institutions. PMID:15921284

  16. Nitrogen chemistry and lung physiology.

    PubMed

    Marozkina, Nadzeya V; Gaston, Benjamin

    2015-01-01

    The versatile chemistry of nitrogen is important to pulmonary physiology. Indeed, almost all redox forms of nitrogen are relevant to pulmonary physiology and to pathophysiology. Here we review the relevance to pulmonary biology of (a) elemental nitrogen; (b) reduced forms of nitrogen such as amines, ammonia, and hydroxylamine; and (c) oxidized forms of nitrogen such as the nitroxyl anion, the nitric oxide free radical, and S-nitrosothiols. Our focus is on oxidized nitrogen in the form of S-nitrosothiol bond-containing species, which are now appreciated to be important to every type of cell-signaling process in the lung. We also review potential clinical applications of nitrogen oxide biochemistry. These principles are being translated into clinical practice as diagnostic techniques and therapies for a range of pulmonary diseases including asthma, cystic fibrosis, adult respiratory distress syndrome, primary ciliary dyskinesia, and pulmonary hypertension. PMID:25668023

  17. The evolution of nitrogen cycling

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    The energetics of nitrogen transformation reactions and the evolution of nitrogen cycling are examined. It is suggested that meteor impact-produced fixed nitrogen could have caused the entire reservoir of the earth's N2 to convert into fixed nitrogen at the end of accretion. The abiotic fixation rate on the early earth by lightning is estimated at about 1-3 X 10 to the 16th molecules of NO/J. It is found that biological nitrogen fixation may have evolved after the development of an aerobic atmosphere. It is shown that HNO could eventually become NO2(-) and NO3(-) after reaching the earth's surface. It is concluded that the evolutionary sequence for the biological transformation of nitrogen compounds is ammonification - denitrification - nitrification - nitrogen fixation.

  18. Apollo 20

    ERIC Educational Resources Information Center

    Houston Independent School District, 2013

    2013-01-01

    The Apollo 20 project was launched during the 2010-2011 school year to accelerate Houston Independent School District's (HISD's) efforts to improve student performance in every school and close the achievement gap districtwide. This partnership with EdLabs at Harvard University incorporates best practices from successful public and charter schools…

  19. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission. PMID:25388561

  20. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  1. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  2. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status. PMID:26747521

  3. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system....

  4. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system....

  5. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system....

  6. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen (amino-nitrogen) test system....

  7. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2008-04-01

    ... 21 Food and Drugs 8 2008-04-01 2008-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  8. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2016-04-01

    ... 21 Food and Drugs 8 2016-04-01 2016-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2004-04-01

    ... 21 Food and Drugs 8 2004-04-01 2004-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  10. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2007-04-01

    ... 21 Food and Drugs 8 2007-04-01 2007-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  11. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2009-04-01

    ... 21 Food and Drugs 8 2009-04-01 2009-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  12. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2003-04-01

    ... 21 Food and Drugs 8 2003-04-01 2003-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  13. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2006-04-01

    ... 21 Food and Drugs 8 2006-04-01 2006-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  14. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2002-04-01

    ... 21 Food and Drugs 8 2002-04-01 2002-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  15. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    1998-04-01

    ... 21 Food and Drugs 8 1998-04-01 1998-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Test Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma,...

  16. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2000-04-01

    ... 21 Food and Drugs 8 2000-04-01 2000-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Clinical Chemistry Test Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in...

  17. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2001-04-01

    ... 21 Food and Drugs 8 2001-04-01 2001-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  18. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2015-04-01

    ... 21 Food and Drugs 8 2015-04-01 2015-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  19. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2005-04-01

    ... 21 Food and Drugs 8 2005-04-01 2005-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  20. Nitrogen fixation and nitrogen transformations in marine symbioses.

    PubMed

    Fiore, Cara L; Jarett, Jessica K; Olson, Nathan D; Lesser, Michael P

    2010-10-01

    Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies. PMID:20674366

  1. High strength nitrogen removal from nightsoil and piggery wastes.

    PubMed

    Choi, E; Eum, Y; Gil, K I; Oa, S W

    2004-01-01

    Nightsoil and piggery wastes generally present high strength organics and nitrogen. This study evaluated the nitrogen removal characteristics with the existing and modified nightsoil and piggery waste treatment plants. The existing conventional plants showed 20 to 40% nitrogen removal, but the modification with SBR or MLE process could remove effectively both nitrogen and organics with the minimum COD/TN and alkalinity/TN ratios of 6 and 3.6, respectively. Nitrite nitrification and denitrification rates obtainable at higher nitrogen loads were faster than the rates of nitrate nitrification and denitrification resulting in less reactor volume requirement. However, the higher nitrogen loads increased the organic loads resulting in the reactor temperature inhibiting nitrification. Thus, a combined treatment with anaerobic digestion with the adjustment of influent bypass rates was proposed to reduce the reactor temperature and the external carbon requirement. The biological treatment could discharge about 1,100 mg/L soluble COD and 50 mg/L soluble nitrogen, respectively. PMID:15137412

  2. Nitrogen fixation apparatus

    DOEpatents

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  3. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to the models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and the CAPS Cassini instrument team programs.

  4. A test of the nitrogen-limitation hypothesis for retarded eukaryote radiation: Nitrogen isotopes across a Mesoproterozoic basinal profile

    NASA Astrophysics Data System (ADS)

    Stüeken, Eva E.

    2013-11-01

    Nitrogen limitation caused by trace metal scarcity under euxinic ocean conditions has been proposed as an explanation for the delayed radiation of eukaryotes until at least the late Mesoproterozoic. However, evidence for how the nitrogen cycle was operating during the middle Precambrian is, so far, rare. More specifically, it is unknown which steps in the biogeochemical nitrogen cycle, e.g. nitrogen fixation, nitrification or ammonification, were rate-limiting and thus controlling microbial community structures. The Mesoproterozoic Belt Supergroup in western Montana hosts a variety of facies ranging from shallow to deep water and thus offers the opportunity to address this issue. Bulk δ15N values show a clear trend from -1‰ in the deepest part of the basin to +5‰ along basin margins, which suggests that coastal areas were sufficiently oxygenated for aerobic nitrogen cycling. The total fractionation of carbon isotopes between carbonate and organic carbon (Δ13C) increases from 20‰ to 32‰ in the same direction, possibly indicating an ecological response to redox stratification and nitrogen speciation. Evidence from the Belt Supergroup is thus consistent with the idea that nutrient availability may have restricted early eukaryotic organisms to a narrow range of habitats, which thus prevented a global rise to ecological dominance until concentrations of fixed nitrogen increased in the global open ocean.

  5. Nitrogen quantification with SNMS

    NASA Astrophysics Data System (ADS)

    Goschnick, J.; Natzeck, C.; Sommer, M.

    1999-04-01

    Plasma-based secondary neutral mass spectrometry (plasma SNMS) is a powerful analytical method for determining the elemental concentrations of almost any kind of material at low cost by using a cheap quadrupole mass filter. However, a quadrupole-based mass spectrometer is limited to nominal mass resolution. Atomic signals are sometimes superimposed by molecular signals (2 or 3 atomic clusters such as CH +, CH 2+ or metal oxide clusters) and/or intensities of double-charged species. Especially in the case of nitrogen several interferences can impede the quantification. This article reports on methods to recognize and deconvolute superpositions of N + with CH 2+, Li 2+, and Si 2+ at mass 14 D (Debye) occurring during analysis of organic and inorganic substances. The recognition is based on the signal pattern of N +, Li +, CH +, and Si +. The latter serve as indicators for a probable interference of molecular or double-charged species with N on mass 14 D. The subsequent deconvolution use different shapes of atomic and cluster kinetic energy distributions (kEDs) to determine the quantities of the intensity components by a linear fit of N + and non-atomic kEDs obtained from several organic and inorganic standards into the measured kED. The atomic intensity fraction yields a much better nitrogen concentration than the total intensity of mass 14 D after correction.

  6. Total reactive nitrogen, N[sub 2]O, and ozone in the winter Arctic stratosphere

    SciTech Connect

    Kondo, Y.; Sugita, T.; Ziereis, H.; Iwasaka, Y. ); Schmidt, U. ); Aimedieu, P. )

    1994-06-22

    This paper presents results of measurements of reactive nitrogen, N[sub 2]O, and ozone as a function of altitude above Kiruna, Sweden, on January 31, 1992. The measurements below 20 km were outside the polar vertex, and above 23 km were inside the polar vertex. There was a strong positive correlation between ozone and reactive nitrogen, and a negative correlation between nitrous oxide and reactive nitrogen below 22 km.

  7. Hydraulic studies of drilling microbores with supercritical steam, nitrogen and carbon dioxide

    DOE Data Explorer

    Ken Oglesby

    2010-01-01

    Hydraulic studies of drilling microbores at various depths and with various hole sizes, tubing, fluids and rates showed theoretical feasibility. WELLFLO SIMULATIONS REPORT STEP 4: DRILLING 10,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 5: DRILLING 20,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE STEP 6: DRILLING 30,000 FT WELLS WITH SUPERCRITICAL STEAM, NITROGEN AND CARBON DIOXIDE Mehmet Karaaslan, MSI

  8. Orchard nitrogen management: Which nitrogen source is best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...

  9. Nitrogen and phosphorus intake by phytoplankton in the Xiamen Bay

    NASA Astrophysics Data System (ADS)

    Lin, Cai; Li, Hui; He, Qing; Xu, Kuncan; Wu, Shengsan; Zhang, Yuanbiao; Chen, Jinmin; Chen, Baohong; Lin, Libin; Lu, Meiluan; Chen, Weifen; Tang, Rongkun; Ji, Weidong

    2010-01-01

    This paper describes a time series experiment examining the nitrogen and phosphorus intake of natural phytoplankton communities by a microcosms approach. Seawater samples containing natural phytoplankton communities were collected from waters around Baozhu Islet in inner Xiamen Bay and around Qingyu Islet in the outer bay. The goal was to elucidate the relationship between phytoplankton population enhancement, the biological removal of nitrogen and phosphorus from the seawater, and the phytoplankton nitrogen and phosphorus intake ratio based on nitrogen and phosphorus removal from seawater by phytoplankton, to provide a basis for detecting prewarning conditions for red tide and the assessment of red tide events. Two key results were obtained: 1. During the experiment, the nitrogen and phosphorus seawater concentrations in samples from these two sites were negatively and closely correlated to the logarithm of the phytoplankton cell concentration and to the value of the apparent oxygen increment. The ratio of the intake coefficients was 3.5:1 for phosphorus and 1.1:1 for nitrogen for the phytoplankton between these samples from around Baozhu Islet and Qingyu Islet, respectively. This indicates that the intake capabilities of phytoplankton for nitrogen in the two waters are essentially identical. However, for phosphorus, the capability was much higher in the Baozhu Islet waters than the Qingyu Islet waters. In other words, the phytoplankton in Qingyu Islet waters produced more biomass while consuming the same amount of phosphorus as the other waters; 2. The phytoplankton nitrogen and phosphorus intake ratio from the Baozhu Islet and Qingyu Islet waters was 20:1 and 36:1, respectively. The latter waters had a significantly higher ratio than the former and both were higher than the Redfield Ratio. These results indicate that nitrogen and phosphorus intake ratios by phytoplankton can vary significantly from region to region.

  10. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  11. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…

  12. Nitrogen mass balance across pilot-scale algae and duckweed-based wastewater stabilisation ponds.

    PubMed

    Zimmo, O R; van der Steen, N P; Gijzen, H J

    2004-02-01

    Nitrogen removal processes and nitrogen mass balances in algae-based ponds (ABPs) and duckweed (Lemna gibba)-based ponds (DBPs) were assessed during periods of 4 months, each under different operational conditions. During periods 1 and 2, the effect of cold and warm temperature was studied. During periods 2 and 3, the effect of low- and high-system organic loading (OL) was studied in warm seasons operation. The pilot-scale systems consisted of four similar ponds in series fed with domestic sewage with hydraulic retention time of 7 days in each pond. Overall nitrogen removal was higher during warm temperature in both ABPs and DBPs, but similar during periods 2 and 3. Nitrogen removal in DBPs was lower than in ABPs by 20%, 12% and 8% during cold temperature, warm temperature and high-OL periods, respectively. Depending on temperature and OL rate, ABPs showed higher nitrogen removal via sedimentation (46-245% higher) compared to DBPs. Also, ABPs also showed higher nitrogen removal via denitrification (7-37% higher) compared to DBPs. Ammonia volatilisation in both systems did not exceed 1.1% of influent total nitrogen during the entire experimental period. N uptake by duckweed corresponds to 30% of the influent nitrogen during warm/low OL period and decreased to 10% and 19% during the cold and warm/high OL period, respectively. Predictive models for nitrogen removal presented a good reflection of nitrogen fluxes on overall nitrogen balance under the prevailing experimental conditions. PMID:14769411

  13. Bounding salt marsh nitrogen fluxes: development of an ecohydrological salt marsh model

    EPA Science Inventory

    A mass-balance approach to characterize nitrogen flux in a 2-hectare, meso-haline saltmarsh yielded extensive flow and water chemistry data. However, a significant, unevenly distributed population of the nitrogen fixer Alnus rubra (red alder) in the 20-hectare upland catchment l...

  14. 40 CFR 60.44Da - Standards for nitrogen oxides (NOX).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standards for nitrogen oxides (NOX). 60... Steam Generating Units § 60.44Da Standards for nitrogen oxides (NOX). (a) Except as provided in....20 Liquid fuels: Coal-derived fuels 210 0.50 Shale oil 210 0.50 All other fuels 130 0.30 Solid...

  15. 40 CFR 60.44Da - Standards for nitrogen oxides (NOX).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for nitrogen oxides (NOX). 60... Steam Generating Units § 60.44Da Standards for nitrogen oxides (NOX). (a) Except as provided in....20 Liquid fuels: Coal-derived fuels 210 0.50 Shale oil 210 0.50 All other fuels 130 0.30 Solid...

  16. 40 CFR 60.44Da - Standards for nitrogen oxides (NOX).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for nitrogen oxides (NOX). 60... Steam Generating Units § 60.44Da Standards for nitrogen oxides (NOX). (a) Except as provided in....20 Liquid fuels: Coal-derived fuels 210 0.50 Shale oil 210 0.50 All other fuels 130 0.30 Solid...

  17. 40 CFR 60.44Da - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides (NOX). 60... for nitrogen oxides (NOX). (a) On and after the date on which the initial performance test is... for heat input ng/J lb/MMBtu Gaseous fuels: Coal-derived fuels 210 0.50 All other fuels 86 0.20...

  18. 40 CFR 60.44Da - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for nitrogen oxides (NOX). 60... for nitrogen oxides (NOX). (a) On and after the date on which the initial performance test is... for heat input ng/J lb/MMBtu Gaseous fuels: Coal-derived fuels 210 0.50 All other fuels 86 0.20...

  19. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer calibration and check. 92.121 Section 92.121 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.121 Oxides of nitrogen...

  20. Nitrogen chiller acceptance test procedure

    SciTech Connect

    Kostelnik, A.J.

    1995-03-07

    This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

  1. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  2. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  3. Alternative nitrogen sources for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several alternative nitrogen (N) sources, rates of N, and amendments were evaluated at Prattville, Alabama, on cotton in 2008. Nitrogen rates reported are for sidedress application only. Dry urea produced the highest yield, averaging 1100 pounds lint per acre. Ammonia volatilization was measured fr...

  4. 29 CFR 20.20 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 1 2010-07-01 2010-07-01 true Definitions. 20.20 Section 20.20 Labor Office of the Secretary of Labor FEDERAL CLAIMS COLLECTION Administrative Offset § 20.20 Definitions. For purposes of this... (§ 20.22), unless satisfactory payment arrangements have been made by that date, or if, at any...

  5. 29 CFR 20.20 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 1 2011-07-01 2011-07-01 false Definitions. 20.20 Section 20.20 Labor Office of the Secretary of Labor FEDERAL CLAIMS COLLECTION Administrative Offset § 20.20 Definitions. For purposes of this... (§ 20.22), unless satisfactory payment arrangements have been made by that date, or if, at any...

  6. 29 CFR 20.20 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 1 2014-07-01 2013-07-01 true Definitions. 20.20 Section 20.20 Labor Office of the Secretary of Labor FEDERAL CLAIMS COLLECTION Administrative Offset § 20.20 Definitions. For purposes of this... (§ 20.22), unless satisfactory payment arrangements have been made by that date, or if, at any...

  7. 29 CFR 20.20 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 1 2013-07-01 2013-07-01 false Definitions. 20.20 Section 20.20 Labor Office of the Secretary of Labor FEDERAL CLAIMS COLLECTION Administrative Offset § 20.20 Definitions. For purposes of this... (§ 20.22), unless satisfactory payment arrangements have been made by that date, or if, at any...

  8. 29 CFR 20.20 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 1 2012-07-01 2012-07-01 false Definitions. 20.20 Section 20.20 Labor Office of the Secretary of Labor FEDERAL CLAIMS COLLECTION Administrative Offset § 20.20 Definitions. For purposes of this... (§ 20.22), unless satisfactory payment arrangements have been made by that date, or if, at any...

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    1999-04-01

    ... 21 FOOD AND DRUGS 8 1999-04-01 1999-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems Sec. 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure...

  10. Do foliar endophytic bacteria fix nitrogen?

    NASA Astrophysics Data System (ADS)

    Kueppers, L. M.; Moyes, A. B.; Frank, C.; Pett-Ridge, J.; Carper, D.; Vandehey, N.; O'Neil, J.; Dekas, A.

    2015-12-01

    Endophytic microorganisms - bacteria and fungi that live inside healthy plant tissue - are a relatively unexplored source of functional diversity in natural ecosystems. Prior to modern sequencing technology, detecting uncultured endophytic bacteria and assessing their putative functions was challenging. However, recent work has revealed a remarkable diversity of as yet non-culturable endophytic taxa and is beginning to identify functional roles within plant microbiomes. We recently examined bacterial communities in the foliage of a long-lived, high-elevation conifer species, limber pine (Pinus flexilis), and discovered a community strongly dominated by acetic acid bacteria (Acetobacteraceae), with several taxa closely related to known nitrogen fixers. Given limber pine's status as a pioneer species that is able to grow in low fertility soils, we hypothesized that this bacterial community has a potential functional role in fixing atmospheric nitrogen, providing a source of this limiting nutrient to the host tree. We used the radioisotope 13N2 to confirm that N2 rapidly diffuses into pine needles, where it could potentially be fixed. With an acetylene reduction assay we confirmed nitrogenase enzyme activity inside excised twigs 4 times over a growing season, and estimate potential rates of N2 fixation at 0.1 nmol N2 g needle-1 hr-1. Scaled to the stand level, this N input could be on the order of ~20 mg N m-2 d-1 over a growing season. While these rates are low, the long lifespan of individual trees (~1000 years) makes them biologically meaningful. Still, measured rates of acetylene reduction and bulk 15N2 incorporation are quite variable in space and time. Much work remains to better characterize the plant-microbial interactions in this system, including the rates of nitrogen fixation and their variability over the growing season, across edaphic conditions, among host species, and through plant development; and to determine which community members are responsible

  11. Wort free amino nitrogen analysis adapted to a microplate format

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The standard method for determining wort free amino nitrogen content calls for the use of test tubes and glass marbles, as well as boiling and 20°C water baths. In this paper we describe how the standard method can be updated and streamlined by replacing water baths, test tubes and marbles with a th...

  12. Continuous Monitoring of Nitrogen Retention in an Urban Stormwater Detention Pond

    NASA Astrophysics Data System (ADS)

    Rosenzweig, B.; Jaffe, P. R.

    2009-12-01

    Stormwater detention ponds have become ubiquitous in urbanized areas and have been suggested as potential ‘hotspots’ of nitrogen transformation within urban watersheds. As a result, there is a great deal of interest in the use of detention ponds as structural ‘best mangagement practices’ to reduce the excessive nitrogen export from these watersheds. We conducted continuous monitoring of the influent and effluent nitrogen loads of a stormwater detention pond located on the Princeton University campus in Princeton, New Jersey, USA. Our monitoring was conducted during 4, 21-day periods representing the 4 seasons of the northeastern United States. Laboratory incubations of sediments and surface water from the detention pond were also conducted to provide insight on the mechanisms of nitrogen retention and removal. The results of our monitoring show considerable seasonal variation in nitrogen retention within the detention pond. While retention of nitrate, the most dominant form of nitrogen in the influent stormwater, was observed during the spring and summer sampling periods, no significant nitrate retention was observed during the two cold-weather sampling periods. The initial results of our laboratory experiments suggest that the observed nitrate retention arises both from permanent removal by denitrification as well as temporary uptake by nuisance algae present in the detention pond during warmer months. Also, we observed that particulate nitrogen, which is often neglected in urban stormwater monitoring, was found to make up a significant fraction of the stormwater nitrogen load entering this detention pond (20-40% of the cumulative influent nitrogen load). A net retention of particulate nitrogen was observed during all 4 sampling periods, resulting in the retention of up to 20% of the total influent nitrogen load within the 21-day timeframe of our sampling periods. The results of this study provide important initial data on the role of stormwater detention

  13. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  14. Statistical Analysis of Nitrogen in the Soil of Constructed Wetland with Horizontal Sub-Surface Flow

    NASA Astrophysics Data System (ADS)

    Jakubaszek, Anita; Wojciech, Magdalena

    2014-06-01

    The removal of nitrogen compounds in constructed wetlands depends on various physical, chemical and biomechanical factors as well as on conditions of the environment. The paper presents the results of a statistical analysis of the depositing of nitrogen at HSSF (horizontal subsurface flow) construcred wetland. The results of the substrate showed that the highest contents of nitrogen existed in the surface soil layer up to 20 cm of the depth. Nitrogen accumulation decreased in the deposit with depth, and in the direction of the wastewater flow.

  15. 20 CFR 625.20 - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false 625.20 Section 625.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR DISASTER UNEMPLOYMENT ASSISTANCE § 625.20...

  16. 20 CFR 625.20 - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false 625.20 Section 625.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR DISASTER UNEMPLOYMENT ASSISTANCE § 625.20...

  17. 20 CFR 625.20 - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false 625.20 Section 625.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR DISASTER UNEMPLOYMENT ASSISTANCE § 625.20...

  18. 20 CFR 625.20 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false 625.20 Section 625.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR DISASTER UNEMPLOYMENT ASSISTANCE § 625.20...

  19. 20 CFR 625.20 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false 625.20 Section 625.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR DISASTER UNEMPLOYMENT ASSISTANCE § 625.20...

  20. Simulating nitrate-nitrogen concentration from a subsurface drainage system in response to nitrogen application rates using RZWQM2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computer models have been widely used to evaluate the impact of agronomic management on nitrogen dynamics in subsurface drained field. The objective of this note was to evaluate the performance of Root Zone Water Quality Model (RZWQM2 version 2.0) in simulating the response of NO3-N concentration in...

  1. Oxygen and carbon requirements for biological nitrogen removal processes accomplishing nitrification, nitritation, and anammox.

    PubMed

    Daigger, Glen T

    2014-03-01

    The oxygen and carbon savings associated with novel nitrogen removal processes for the treatment of high ammonia, low biodegradable organic matter waste streams such as the recycle streams from the dewatering of anaerobically digested sludges are well documented.This understanding may lead some to think that similar oxygen savings are possible if novel processes such as nitritation/ denitritation and partial nitritation-deammonification are incorporated into main liquid stream processes where influent biodegradable organic matter is used to denitrify residual oxidized nitrogen (nitrite and nitrate). It is demonstrated that the net oxygen required for nitrogen removal is 1.71 mg O2/mg ammonia-nitrogen converted to nitrogen gas as long as influent biodegradable organic matter is used to denitrify residual oxidized nitrogen. Less oxygen is required to produce oxidized nitrogen with these novel processes, but less biodegradable organic matter is also required for oxidized nitrogen reduction to nitrogen gas, resulting in reduced oxygen savings for the oxidation of biodegradable organic matter. The net oxygen requirement is the same since the net electron transfer for the conversion of ammonia-nitrogen to nitrogen gas is the same. The biodegradable organic matter required to reduce the oxidized nitrogen to nitrogen gas is estimated for these processes based on standard biological process calculations. It is estimated to be in the range of 3.5 to 4.0 mg biodegradable COD/mg ammonia-nitrogen reduced to nitrogen gas for nitrification-denitrification, 2.0 to 2.5 for nitritation-denitritation, and 0.5 for partial nitritation-deammonification. The resulting limiting influent wastewater carbon-to-nitrogen ratios are estimated and can be used to guide the appropriate selection of biological nitrogen removal process given knowledge of the biological process influent wastewater carbon-to-nitrogen ratio. Energy savings possible for mainstream processes incorporating these novel

  2. Nitrogen in rock: Occurrences and biogeochemical implications

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  3. High-nitrogen explosives

    SciTech Connect

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is

  4. Aphids alter host-plant nitrogen isotope fractionation

    PubMed Central

    Wilson, Alex C. C.; Sternberg, Leonel da S. L.; Hurley, Katherine B.

    2011-01-01

    Plant sap-feeding insects and blood-feeding parasites are frequently depleted in 15N relative to their diet. Unfortunately, most fluid-feeder/host nitrogen stable-isotope studies simply report stable-isotope signatures, but few attempt to elucidate the mechanism of isotopic trophic depletion. Here we address this deficit by investigating the nitrogen stable-isotope dynamics of a fluid-feeding herbivore-host plant system: the green peach aphid, Myzus persicae, feeding on multiple brassicaceous host plants. M. persicae was consistently more than 6‰ depleted in 15N relative to their hosts, although aphid colonized plants were 1.5‰ to 2.0‰ enriched in 15N relative to uncolonized control plants. Isotopic depletion of aphids relative to hosts was strongly related to host nitrogen content. We tested whether the concomitant aphid 15N depletion and host 15N enrichment was coupled by isotopic mass balance and determined that aphid 15N depletion and host 15N enrichment are uncoupled processes. We hypothesized that colonized plants would have higher nitrate reductase activity than uncolonized plants because previous studies had demonstrated that high nitrate reductase activity under substrate-limiting conditions can result in increased plant δ15N values. Consistent with our hypothesis, nitrate reductase activity in colonized plants was twice that of uncolonized plants. This study offers two important insights that are likely applicable to understanding nitrogen dynamics in fluid-feeder/host systems. First, isotopic separation of aphid and host depends on nitrogen availability. Second, aphid colonization alters host nitrogen metabolism and subsequently host nitrogen stable-isotope signature. Notably, this work establishes a metabolic framework for future hypothesis-driven studies focused on aphid manipulation of host nitrogen metabolism. PMID:21646532

  5. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.

  6. Relationship between site-specific nitrogen concentrations in mosses and measured wet bulk atmospheric nitrogen deposition across Europe.

    PubMed

    Harmens, Harry; Schnyder, Elvira; Thöni, Lotti; Cooper, David M; Mills, Gina; Leblond, Sébastien; Mohr, Karsten; Poikolainen, Jarmo; Santamaria, Jesus; Skudnik, Mitja; Zechmeister, Harald G; Lindroos, Antti-Jussi; Hanus-Illnar, Andrea

    2014-11-01

    To assess the relationship between nitrogen concentrations in mosses and wet bulk nitrogen deposition or concentrations in precipitation, moss tissue and deposition were sampled within a distance of 1 km of each other in seven European countries. Relationships for various forms of nitrogen appeared to be asymptotic, with data for different countries being positioned at different locations along the asymptotic relationship and saturation occurring at a wet bulk nitrogen deposition of ca. 20 kg N ha(-1) yr(-1). The asymptotic behaviour was more pronounced for ammonium-N than nitrate-N, with high ammonium deposition at German sites being most influential in providing evidence of the asymptotic behaviour. Within countries, relationships were only significant for Finland and Switzerland and were more or less linear. The results confirm previous relationships described for modelled total deposition. Nitrogen concentration in mosses can be applied to identify areas at risk of high nitrogen deposition at European scale. PMID:25094057

  7. Cooling balloons with liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Moreno, A. J.; Ferrari, H.; Bekeris, V.

    2010-12-01

    We present an undergraduate level experiment in which the radius of a rubber balloon is measured as it is cooled with liquid nitrogen. For balloons filled with simple gases that condense at liquid nitrogen temperatures, we found that the volume decreases linearly with time. We compared our measurements with a simplified model based on elementary kinetic theory and thermodynamics that explains this behavior. Students are encouraged to test the validity of the model by repeating the experiment using gas mixtures and gases that do not condense at liquid nitrogen temperatures.

  8. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  9. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  10. Secondary nitrogen limitation in a subtropical lake impacted by non-point source agricultural pollution.

    PubMed

    Havens, K E

    1995-01-01

    A 20-year history of nutrient limitation was quantified for Lake Okeechobee, a nutrient-impacted lake in Florida, USA. Limiting status (nitrogen versus phosphorus) was estimated from deviations between trophic state index (TSI) parameters, calculated from routine monitoring data. The lake is presently nitrogen-limited. However, historical trends in the TSI deviations indicate that contemporary nitrogen limitation is a secondary, unnatural condition that has arisen due to excessive phosphorus loading. Prior to 1980, there was evidence of lake-wide limitation by phosphorus, rather than nitrogen. The finding of secondary nitrogen limitation in Lake Okeechobee has important management implications. Phosphorus loads are presently being reduced in order to reduce in-lake concentrations and create phosphorus-limited conditions (nitrogen limitation is undersirable because it has favored bloom-forming cyanobacteria). The present results indicate that this long-term management goal is ecologically sound; it is consistent with the concept of restoration of the lake. PMID:15091513

  11. Energy, industry and nitrogen: strategies for decreasing reactive nitrogen emissions.

    PubMed

    Moomaw, William R

    2002-03-01

    Nitrogen oxides are released during atmospheric combustion of fossil fuels and biomass, and during the production of certain chemicals and products. They can react with natural or man-made volatile organic compounds to produce smog, or else can be further oxidized to produce particulate haze, or acid rain that can eutrophy land and water. The reactive nitrogen that begins in the energy sector thus cascades through the atmosphere, the hydrosphere and soils before being eventually partially denitrifed to the global warming and stratospheric ozone-depleting gas nitrous oxide or molecular nitrogen. This paper will suggest how an economic analysis of the nitrogen cycle can identify the most cost-effective places to intervene. Nitrogen oxides released during fossil-fuel combustion in vehicles, power plants and heating boilers can either be controlled by add-on emission control technology, or can be eliminated by many of the same technical options that lead to carbon dioxide reduction. These integrated strategies also address sustainability, economic development and national security issues. Similarly in industrial production, it is more effective to focus on redesigning industrial processes rather than on nitrogen oxide pollution elimination from the current system. This paper will suggest which strategies might be utilized to address multiple benefits rather than focusing on single pollutants. PMID:12078008

  12. Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel

    USGS Publications Warehouse

    Bradley, P.M.; Morris, J.T.

    1992-01-01

    Nitrogen was withheld from the salt marsh grass Spartina alterniflora Loisel., in order to determine the effect of salinity (sea salts) on critical tissue nitrogen concentrations (defined here as the minimum tissue concentration required to sustain biomass accumulation). The critical nitrogen concentration per kilogram dry weight of above-ground tissue increased non-linearly from a mean of 8.2 g kg-1 at 5 g l-1 and 20 g l-1 salinity to 13.6 g kg-1 and 22.9 g kg-1 at salinities of 40 g l-1 and 50 g l-1, respectively. Below-ground tissue nitrogen concentrations averaged 62% of the above-ground values irrespective of salinity treatment. These results suggest that the critical nitrogen concentration is a function of salinity and indicate that the internal nitrogen supply required in support of growth increases with salinity. Above-ground tissue nitrogen concentrations reported in the literature and the relationship between salinity and critical nitrogen concentration observed in this study were used to evaluate the nitrogen status of S. alterniflora over a wide range of geographical locations. Comparisons suggest that both short and tall forms of S. alterniflora are nitrogen limited in the majority of marshes along the Gulf and Atlantic Coasts of the US. ?? 1992.

  13. Increasing importance of deposition of reduced nitrogen in the United States

    PubMed Central

    Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336

  14. Nitrogen-to-protein conversion factors for some cereal products in Japan.

    PubMed

    Fujihara, S; Sasaki, H; Aoyagi, Y; Sugahara, T

    2008-04-01

    To evaluate a practical method of determining more accurately conversion factors for calculating the protein contents of foods from the total nitrogen content, 19 cereal products found in Japan were analyzed for total nitrogen, amino acid nitrogen, and amide nitrogen, and then the nitrogen-to-protein conversion factors were calculated. The average conversion factors were 5.75 for rice, 5.81 for wheat, and 5.95 for others. These values, corresponding to the proportion of the amino acid residue to amino acid nitrogen recovered from 20 amino acids, were lower than the currently applied factors to these foods, except for wheat flour and amaranth. The use of this factor for estimating the protein content results in a considerable difference from the estimate based on amino acid residue concentrations, due to the wide variations in amino acid composition and to the presence of a significant level of nonprotein nitrogen. The distribution of the protein nitrogen recovered from the amino acids to total nitrogen averaged 93%. Adjusted conversion factors corresponding to the proportion of the amino acid residue to total nitrogen averaged 5.26 for rice, 5.47 for wheat, and 5.54 for other cereal products. Protein contents estimated using these factors are in good agreement with the contents defined as amino acid residues. PMID:18387100

  15. Increasing importance of deposition of reduced nitrogen in the United States.

    PubMed

    Li, Yi; Schichtel, Bret A; Walker, John T; Schwede, Donna B; Chen, Xi; Lehmann, Christopher M B; Puchalski, Melissa A; Gay, David A; Collett, Jeffrey L

    2016-05-24

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336

  16. High-strength nitrogenous wastewater treatment in biofilm and granule anammox processes.

    PubMed

    Kim, I; Lee, H H; Chung, Y C; Jung, J Y

    2009-01-01

    Biofilm and granule reactors were employed to remove nitrogen via an anammox reaction applying synthetic nitrogen wastewater, whose concentration was in the range of 20 to 1,400 mg N/L as total nitrogen. A biofilm reactor was packed with non-woven fabric and a granule reactor was filled with anaerobic granular sludge taken from the brewery wastewater treatment plant. Both reactors were seeded with Planctomycetes KSU-1 and operated for 450 days. The biofilm reactor showed high NH(4) (+)-N and NO(2) (-)-N removal efficiencies of over 88% and 94%, respectively, until total nitrogen concentration was reached at 800 mg N/L. However, the biofilm reactor showed severe inhibition at over 1,000 mg N/L of total nitrogen due to nitrogen overloading. The granule reactor revealed better nitrogen removal performance than the biofilm reactor, showing high NH(4) (+)-N and NO(2) (-)-N removal efficiencies of over 90%, even at a total nitrogen concentration of 1,400 mg N/L. However, aggregation of anammox bacteria grown in the sludge bed after long-term operation resulted in the deterioration of nitrogen. The removal ratio of NH(4) (+)-N and NO(2) (-)-N was close to 1:1, suggesting other reactions related to ammonium oxidation could occur simultaneously. Free ammonia inhibition as well as NO(2) (-)-N could be significant when high-strength nitrogenous wastewater was applied. PMID:19901468

  17. Management to reduce nitrogen losses in animal production.

    PubMed

    Rotz, C A

    2004-01-01

    Reduction of nitrogen loss in animal production requires whole-farm management. Reduced loss from one farm component is easily negated in another if all components are not equally well managed. Animal excretion of manure N can be decreased by improving the balance of protein or amino acids fed to that required by individual animals or animal groups or by improving production efficiency. Management to increase milk, meat, or egg production normally improves efficiency by reducing the maintenance protein required per unit of production. Large losses of manure nitrogen occur through the ammonia and nitrous oxide that are emitted into the atmosphere and the nitrate leached into groundwater. Up to half of the excreted nitrogen is lost from the housing facility, but this loss can be decreased through frequent manure removal and by avoiding deep litter systems and feedlots. Techniques such as acid treatment of manure, scrubbing of ventilation air, and floor designs for separating feces and urine substantially reduce ammonia emissions, but these practices are often impractical or uneconomical for general use. Manure storage units improve nutrient utilization by allowing better timing of nutrient application with crop needs. At least 70% of the nitrogen entering anaerobic lagoons is typically lost, but a less than 10% loss can be maintained using slurry storage with a natural crust or other cover, or by drying poultry manure to at least 50% dry matter. Irrigation and surface spreading of manure without soil incorporation often ensures the loss of all remaining nonorganic nitrogen (typically, 20 to 40% of remaining nitrogen). Rapid incorporation and shallow injection methods decrease this loss by at least 50%, and deep injection into the soil essentially eliminates this loss. For grazing animals, excessive loss can be avoided by not overstocking pastures and avoiding late fall and winter grazing. Reducing emissions between the animal and the soil can lead to greater leaching

  18. Effect of sole nitrogen sources and temperature on activated sludge

    SciTech Connect

    Mines, R.O. Jr.; Sherrard, J.H.

    1999-07-01

    The effects of temperature on biokinetic coefficients used to design aerobic biological systems treating nitrogen deficient wastewaters at a COD: TKN ratio of 13.7:1 are presented. The impact of temperature on substrate removal, waste biosolids production, and oxygen requirements with the effects of nitrification is delineated at temperatures of 5 C, 10 C, 20 C, and 30 C for two nitrogen sources; ammonia and nitrate. Temperature correction coefficients ({theta}) are presented and the implications for the design and operation of suspended growth biological systems are discussed.

  19. The behavior of nitrogen and nitrogen isotopes during metamorphism and mineralization: Evidence from the Otago and Alpine Schists, New Zealand

    NASA Astrophysics Data System (ADS)

    Pitcairn, Iain K.; Teagle, Damon A. H.; Kerrich, Robert; Craw, Dave; Brewer, Tim S.

    2005-04-01

    Metamorphism is a major mechanism for the re-distribution of fluids and mass in the Earth's crust, with these processes most prominently highlighted by the occurrence of major gold resources within these terranes. However, although orogenic gold deposits have contributed over 20% of the global gold production, their origins remain controversial. The nitrogen concentration and isotopic composition of rocks and minerals are potentially powerful tracers of crustal metamorphism and mineralization, but there have been few detailed applications of this approach to date. Although nitrogen isotopes have recently been used to elucidate the source of fluids in some Neoarchean orogenic gold deposits and Proterozoic to Paleozoic mountain belts, due to their age and geological complexity of these terranes, major uncertainties as to the behavior of nitrogen remain. The Otago and Alpine Schists in the South Island of New Zealand comprise a large, comparatively young (< 190 Ma), metasedimentary belt with multiple generations of quartz ± carbonate veins, some of which are mineralized with gold. A range of rocks, with little primary compositional variation, is exposed from unmetamorphosed protolith to high-grade amphibolites and as such they present an ideal laboratory to investigate the mobility of nitrogen and potential nitrogen isotopic fractionations during metamorphism and mineralization. Here we present nitrogen concentrations and isotopic analyses of whole rock samples and mica separates from a number of crustal transects through the Otago crust. The range of δ 15N values for mica and whole rock samples from the schists spans 0.2 to 7.0‰, and the nitrogen concentration from 23 to 3483 ppm. Sample provenance and rock type have minimal influence on the nitrogen concentration and isotopic value, which appears to have been inherited from the original sedimentary kerogen. There is no systematic variation between metamorphic temperature and δ 15N or N concentration in micas

  20. Spatial pattern of nitrogen deposition flux over Czech forests: a novel approach accounting for unmeasured nitrogen species

    NASA Astrophysics Data System (ADS)

    Hůnová, Iva; Stoklasová, Petra; Kurfürst, Pavel; Vlček, Ondřej; Schovánková, Jana; Stráník, Vojtěch

    2015-04-01

    atmospheric nitrogen deposition flux over the Czech forests collating all available data and model results. The aim of the presented study is to provide an improved, more reliable and more realistic estimate of spatial pattern of nitrogen deposition flux over one country. This has so far been based standardly on measurements of ambient N/NOx concentrations as dry deposition proxy, and N/NH4+ and N/NO3- as wet deposition proxy. For estimate of unmeasured species contributing to dry deposition, we used an Eulerian photochemical dispersion model CAMx, the Comprehensive Air Quality Model with extensions (ESSS, 2011), coupled with a high resolution regional numeric weather prediction model Aladin (Vlček, Corbet, 2011). Contribution of fog was estimated using a geostatistical data driven model. Final maps accounting for unmeasured species clearly indicate, that so far used approach results in substantial underestimation of nitrogen deposition flux. Substitution of unmeasured nitrogen species by modeled values seems to be a plausible way for approximation of total nitrogen deposition, and getting more realistic spatial pattern as input for further studies of likely nitrogen impacts on ecosystems. Acknowledgements: We would like to acknowledge the grants GA14-12262S - Effects of changing growth conditions on tree increment, stand production and vitality - danger or opportunity for the Central-European forestry?, and NAZV QI112A168 (ForSoil) of the Czech Ministry for Agriculture for support of this contribution. The input data used for the analysis were provided by the Czech Hydrometeorological Institute. References: Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R. et al. (2010): Global Assessment of Nitrogen Deposition Effects on Terrestrial Plant Diversity: a Synthesis. Ecological Applications 20 (1), 30-59. Fowler D., O'Donoghue M., Muller J.B.A, et al. (2005): A chronology of nitrogen deposition in the UK between 1900 and 2000. Watter, Air & Soil Pollution: Focus

  1. Enhanced nitrogen deposition over China.

    PubMed

    Liu, Xuejun; Zhang, Ying; Han, Wenxuan; Tang, Aohan; Shen, Jianlin; Cui, Zhenling; Vitousek, Peter; Erisman, Jan Willem; Goulding, Keith; Christie, Peter; Fangmeier, Andreas; Zhang, Fusuo

    2013-02-28

    China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s, before the introduction of mitigation measures. Nitrogen from ammonium (NH4(+)) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3(-)), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment. PMID:23426264

  2. The nitrogen cycle on Mars

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.

    1989-01-01

    Nirtogen is an essential element for the evolution of life, because it is found in a variety of biologically important molecules. Therefore, N is an important element to study from a exobiological perspective. In particular, fixed nitrogen is the biologically useful form of nitrogen. Fixed nitrogen is generally defines as NH3, NH4(+), NO(x), or N that is chemically bound to either inorganic or organic molecules, and releasable by hydrolysis to NH3 or NH4(+). On Earth, the vast majority of nitrogen exists as N2 in the atmosphere, and not in the fixes form. On early Mars the same situations probably existed. The partial pressure of N2 on early Mars was thought to be 18 mb, significantly less than that of Earth. Dinitrogen can be fixed abiotically by several mechanisms. These mechanisms include thernal shock from meteoritic infall and lightning, as well as the interaction of light and sand containing TiO2 which produces NH3 that would be rapidly destroyed by photolysis and reaction with OH radicals. These mechanisms could have been operative on primitive Mars.The chemical processes effecting these compounds and possible ways of fixing or burying N in the Martian environment are described. Data gathered in this laboratory suggest that the low abundance of nitrogen along (compared to primitive Earth) may not significantly deter the origin and early evolution of a nitrogen utilizing organisms. However, the conditions on current Mars with respect to nitrogen are quite different, and organisms may not be able to utilize all of the available nitrogen.

  3. Anaerobic Nitrogen Fixers on Mars

    NASA Astrophysics Data System (ADS)

    Lewis, B. G.

    2000-07-01

    The conversion of atmospheric nitrogen gas to the protein of living systems is an amazing process of nature. The first step in the process is biological nitrogen fixation, the transformation of N2 to NH3. The phenomenon is crucial for feeding the billions of our species on Earth. On Mars, the same process may allow us to discover how life can adapt to a hostile environment, and render it habitable. Hostile environments also exist on Earth. For example, nothing grows in coal refuse piles due to the oxidation of pyrite and marcasite to sulfuric acid. Yet, when the acidity is neutralized, alfalfa and soybean plants develop root nodules typical of symbiotic nitrogen fixation with Rhizobium species possibly living in the pyritic material. When split open, these nodules exhibited the pinkish color of leghemoglobin, a protein in the nodule protecting the active nitrogen-fixing enzyme nitrogenase against the toxic effects of oxygen. Although we have not yet obtained direct evidence of nitrogenase activity in these nodules (reduction of acetylene to ethylene, for example), these findings suggested the possibility that nitrogen fixation was taking place in this hostile, non-soil material. This immediately raises the possibility that freeliving anaerobic bacteria which fix atmospheric nitrogen on Earth, could do the same on Mars.

  4. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2007-04-01

    ... 21 Food and Drugs 3 2007-04-01 2007-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9... air. (b) The Food and Drug Administration is developing food-grade specifications for nitrogen...

  5. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    2003-04-01

    ... 21 Food and Drugs 3 2003-04-01 2003-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9... air. (b) The Food and Drug Administration is developing food-grade specifications for nitrogen...

  6. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2005-04-01

    ... 21 Food and Drugs 3 2005-04-01 2005-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9... air. (b) The Food and Drug Administration is developing food-grade specifications for nitrogen...

  7. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2002-04-01

    ... 21 Food and Drugs 3 2002-04-01 2002-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  8. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    2000-04-01

    ... 21 Food and Drugs 3 2000-04-01 2000-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  9. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    1999-04-01

    ... 21 Food and Drugs 3 1999-04-01 1999-04-01 false Nitrogen. 184.1540 Section 184.1540 FOOD FOR HUMAN... Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  10. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2013 CFR

    1998-04-01

    ... 21 Food and Drugs 3 1998-04-01 1998-04-01 false Nitrogen. 184.1540 Section 184.1540 FOOD FOR HUMAN... Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  11. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    1996-04-01

    ... 21 FOOD AND DRUGS 3 1996-04-01 1996-04-01 false Nitrogen. 184.1540 Sec. 184.1540 FOOD AND DRUGS... Affirmed as GRAS Sec. 184.1540 Nitrogen. (a) Nitrogen (empirical formula N 2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  12. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2001-04-01

    ... 21 Food and Drugs 3 2001-04-01 2001-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  13. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2012 CFR

    1997-04-01

    ... 21 Food and Drugs 3 1997-04-01 1997-04-01 false Nitrogen. 184.1540 Section 184.1540 FOOD FOR HUMAN... Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9) is a...) The Food and Drug Administration is developing food-grade specifications for nitrogen in...

  14. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2010 CFR

    2004-04-01

    ... 21 Food and Drugs 3 2004-04-01 2004-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9... air. (b) The Food and Drug Administration is developing food-grade specifications for nitrogen...

  15. 21 CFR 184.1540 - Nitrogen.

    Code of Federal Regulations, 2011 CFR

    2006-04-01

    ... 21 Food and Drugs 3 2006-04-01 2006-04-01 false Nitrogen. 184.1540 Section 184.1540 Food and Drugs... Substances Affirmed as GRAS § 184.1540 Nitrogen. (a) Nitrogen (empirical formula N2, CAS Reg. No. 7727-37-9... air. (b) The Food and Drug Administration is developing food-grade specifications for nitrogen...

  16. Evaluation of a spacecraft nitrogen generator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Powell, J. D.

    1976-01-01

    A method is discussed of generating nitrogen for cabin leakage makeup aboard space vehicles having longer duration missions. The nitrogen generation concept is based on using liquid hydrazine as the stored form of nitrogen to reduce the higher tankage and expendables weight associated with high pressure gaseous or cryogenic liquid nitrogen storage. The hydrazine is catalytically dissociated to yield a mixture of nitrogen and hydrogen. The nitrogen/hydrogen mixture is then separated to yield the makeup nitrogen. The excess supply of hydrogen would be available for use in the reduction of metabolic carbon dioxide. A detailed comparison was completed of Palladium/Silver and Polymer Electrochemical-based Nitrogen Generation Systems. The palladium/silver-based system was judged better than the Polymer Electrochemical Nitrogen Generation System because of lower expendable weight and palladium/silver nitrogen/hydrogen separation represents 'off-the-shelf' technology.

  17. Insulating geothermal well casings from thermal stress with nitrogen gas or nitrogen foam

    SciTech Connect

    Dreesen, D.S.; Murphy, H.D.; Zyvoloski, G.; McEligot, D.M.; Dash, Z.; Nicholson, R.N.

    1984-08-26

    Fenton Hill Hot Dry Rock Geothermal Site Well EE-3 was designed and completed to function as a completion of the reservoirs with the injection well, EE-2, progressed it become evident that it would be desirable to fracture in EE-3 as well to obtain a flow connection between the wells. Unfortunately, the 9-5/8'' od production casing in EE-3 had been pretensioned to 885,000 lbs to accommodate its intended service as a hot water production well. Cool-down of the casing was thus limited to only 11/sup 0/C (20/sup 0/F) to keep the stress in the top joints of the casing below the minimum yield stress, or else the pretension had to be released. Before incurring the risk and expense required to release the tension, fracturing experiments were performed to evaluate the use gaseous nitrogen and 75% quality nitrogen-gel foam as insulating media in an annular wellbore configuration, i.e., the nitrogen gas or foam was placed in the annular gap between the tubing string and the casing.

  18. Membrane rejection of nitrogen compounds

    NASA Technical Reports Server (NTRS)

    Lee, S.; Lueptow, R. M.

    2001-01-01

    Rejection characteristics of nitrogen compounds were examined for reverse osmosis, nanofiltration, and low-pressure reverse osmosis membranes. The rejection of nitrogen compounds is explained by integrating experimental results with calculations using the extended Nernst-Planck model coupled with a steric hindrance model. The molecular weight and chemical structure of nitrogen compounds appear to be less important in determining rejection than electrostatic properties. The rejection is greatest when the Donnan potential exceeds 0.05 V or when the ratio of the solute radius to the pore radius is greater than 0.8. The transport of solute in the pore is dominated by diffusion, although convective transport is significant for organic nitrogen compounds. Electromigration contributes negligibly to the overall solute transport in the membrane. Urea, a small organic compound, has lower rejection than ionic compounds such as ammonium, nitrate, and nitrite, indicating the critical role of electrostatic interaction in rejection. This suggests that better treatment efficiency for organic nitrogen compounds can be obtained after ammonification of urea.

  19. Nitrogen cycling driven by organic matter export in the South Pacific oxygen minimum zone

    NASA Astrophysics Data System (ADS)

    Kalvelage, Tim; Lavik, Gaute; Lam, Phyllis; Contreras, Sergio; Arteaga, Lionel; Löscher, Carolin R.; Oschlies, Andreas; Paulmier, Aurélien; Stramma, Lothar; Kuypers, Marcel M. M.

    2013-03-01

    Oxygen minimum zones are expanding globally, and at present account for around 20-40% of oceanic nitrogen loss. Heterotrophic denitrification and anammox--anaerobic ammonium oxidation with nitrite--are responsible for most nitrogen loss in these low-oxygen waters. Anammox is particularly significant in the eastern tropical South Pacific, one of the largest oxygen minimum zones globally. However, the factors that regulate anammox-driven nitrogen loss have remained unclear. Here, we present a comprehensive nitrogen budget for the eastern tropical South Pacific oxygen minimum zone, using measurements of nutrient concentrations, experimentally determined rates of nitrogen transformation and a numerical model of export production. Anammox was the dominant mode of nitrogen loss at the time of sampling. Rates of anammox, and related nitrogen transformations, were greatest in the productive shelf waters, and tailed off with distance from the coast. Within the shelf region, anammox activity peaked in both upper and bottom waters. Overall, rates of nitrogen transformation, including anammox, were strongly correlated with the export of organic matter. We suggest that the sinking of organic matter, and thus the release of ammonium into the water column, together with benthic ammonium release, fuel nitrogen loss from oxygen minimum zones.

  20. Estimating the social costs of nitrogen pollution

    NASA Astrophysics Data System (ADS)

    Gourevitch, J.; Keeler, B.; Polasky, S.

    2014-12-01

    Agricultural expansion can degrade water quality and related ecosystem services through increased export of nutrients. Such damages to water quality can negatively affect recreation, property values, and human health. While the relationship between agricultural production and nitrogen export is well-studied, the economic costs of nitrogen loss are less well understood. We present a comprehensive assessment of the full costs associated with nitrate pollution from agricultural sources in Minnesota. We found that the most significant economic costs are likely from groundwater contamination of nitrate in public and private wells. For example, we estimated that loss of grassland to corn cultivation in Minnesota between 2007 and 2012 is expected to increase the future number of domestic wells exceeding nitrate concentrations of 10 ppm by 31%. This increase in contamination is estimated to cost well owners $1.4 to 19 million (present values over a 20 year horizon) through remediation, avoidance, and replacement. Our findings demonstrate linkages between changes in land use, water quality, and human well-being.

  1. NITROGEN OUTPUTS OF SMALL MAMMALS FROM FECAL AND URINE DEPOSITION: IMPLICATIONS FOR NITROGEN CYCLING

    EPA Science Inventory

    The contribution of small mammals in nitrogen cycling is poorly understood and could have reverberations back to the producer community by maintaining or even magnifying increased nitrogen availability. Our objective was to model nitrogen outputs (deposition of feces and urine) ...

  2. 20 CFR 656.20 - Audit procedures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Audit procedures. 656.20 Section 656.20... FOR PERMANENT EMPLOYMENT OF ALIENS IN THE UNITED STATES Labor Certification Process § 656.20 Audit procedures. (a) Review of the labor certification application may lead to an audit of the...

  3. 20 CFR 602.20 - Organization.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Organization. 602.20 Section 602.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM State Responsibilities § 602.20 Organization. Each State shall establish a...

  4. 20 CFR 602.20 - Organization.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Organization. 602.20 Section 602.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM State Responsibilities § 602.20 Organization. Each State shall establish a...

  5. 20 CFR 602.20 - Organization.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Organization. 602.20 Section 602.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM State Responsibilities § 602.20 Organization. Each State shall establish a...

  6. 20 CFR 225.20 - General.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 1 2011-04-01 2011-04-01 false General. 225.20 Section 225.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT PRIMARY INSURANCE AMOUNT....20 General. The Survivor Tier I PIA and the Employee RIB PIA are used in computing the tier...

  7. 20 CFR 656.20 - Audit procedures.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Audit procedures. 656.20 Section 656.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR LABOR CERTIFICATION PROCESS FOR PERMANENT EMPLOYMENT OF ALIENS IN THE UNITED STATES Labor Certification Process § 656.20...

  8. 20 CFR 225.20 - General.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 1 2010-04-01 2010-04-01 false General. 225.20 Section 225.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT PRIMARY INSURANCE AMOUNT....20 General. The Survivor Tier I PIA and the Employee RIB PIA are used in computing the tier...

  9. 20 CFR 401.20 - Scope.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Scope. 401.20 Section 401.20 Employees' Benefits SOCIAL SECURITY ADMINISTRATION PRIVACY AND DISCLOSURE OF OFFICIAL RECORDS AND INFORMATION General § 401.20 Scope. (a) Access. Sections 401.30 through 401.95, which set out SSA's rules for...

  10. 20 CFR 602.20 - Organization.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 3 2014-04-01 2014-04-01 false Organization. 602.20 Section 602.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM State Responsibilities § 602.20 Organization. Each State shall establish a...

  11. 20 CFR 225.20 - General.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 1 2014-04-01 2012-04-01 true General. 225.20 Section 225.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT PRIMARY INSURANCE AMOUNT....20 General. The Survivor Tier I PIA and the Employee RIB PIA are used in computing the tier...

  12. 20 CFR 401.20 - Scope.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Scope. 401.20 Section 401.20 Employees' Benefits SOCIAL SECURITY ADMINISTRATION PRIVACY AND DISCLOSURE OF OFFICIAL RECORDS AND INFORMATION General § 401.20 Scope. (a) Access. Sections 401.30 through 401.95, which set out SSA's rules for...

  13. 20 CFR 225.20 - General.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 1 2013-04-01 2012-04-01 true General. 225.20 Section 225.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT PRIMARY INSURANCE AMOUNT....20 General. The Survivor Tier I PIA and the Employee RIB PIA are used in computing the tier...

  14. 20 CFR 401.20 - Scope.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Scope. 401.20 Section 401.20 Employees' Benefits SOCIAL SECURITY ADMINISTRATION PRIVACY AND DISCLOSURE OF OFFICIAL RECORDS AND INFORMATION General § 401.20 Scope. (a) Access. Sections 401.30 through 401.95, which set out SSA's rules for...

  15. 20 CFR 401.20 - Scope.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Scope. 401.20 Section 401.20 Employees' Benefits SOCIAL SECURITY ADMINISTRATION PRIVACY AND DISCLOSURE OF OFFICIAL RECORDS AND INFORMATION General § 401.20 Scope. (a) Access. Sections 401.30 through 401.95, which set out SSA's rules for...

  16. 20 CFR 401.20 - Scope.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Scope. 401.20 Section 401.20 Employees' Benefits SOCIAL SECURITY ADMINISTRATION PRIVACY AND DISCLOSURE OF OFFICIAL RECORDS AND INFORMATION General § 401.20 Scope. (a) Access. Sections 401.30 through 401.95, which set out SSA's rules for...

  17. 20 CFR 225.20 - General.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 1 2012-04-01 2012-04-01 false General. 225.20 Section 225.20 Employees' Benefits RAILROAD RETIREMENT BOARD REGULATIONS UNDER THE RAILROAD RETIREMENT ACT PRIMARY INSURANCE AMOUNT....20 General. The Survivor Tier I PIA and the Employee RIB PIA are used in computing the tier...

  18. 20 CFR 656.20 - Audit procedures.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 3 2013-04-01 2013-04-01 false Audit procedures. 656.20 Section 656.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR LABOR CERTIFICATION PROCESS FOR PERMANENT EMPLOYMENT OF ALIENS IN THE UNITED STATES Labor Certification Process § 656.20...

  19. 20 CFR 656.20 - Audit procedures.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 3 2011-04-01 2011-04-01 false Audit procedures. 656.20 Section 656.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR LABOR CERTIFICATION PROCESS FOR PERMANENT EMPLOYMENT OF ALIENS IN THE UNITED STATES Labor Certification Process § 656.20...

  20. 20 CFR 656.20 - Audit procedures.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 3 2012-04-01 2012-04-01 false Audit procedures. 656.20 Section 656.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR LABOR CERTIFICATION PROCESS FOR PERMANENT EMPLOYMENT OF ALIENS IN THE UNITED STATES Labor Certification Process § 656.20...

  1. 20 CFR 602.20 - Organization.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Organization. 602.20 Section 602.20 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR QUALITY CONTROL IN THE FEDERAL-STATE UNEMPLOYMENT INSURANCE SYSTEM State Responsibilities § 602.20 Organization. Each State shall establish a...

  2. Terrestrial nitrogen cycles: Some unanswered questions

    NASA Technical Reports Server (NTRS)

    Vitousek, P.

    1984-01-01

    Nitrogen is generally considered to be the element which most often limits the growth of plants in both natural and agricultural ecosystems. It regulates plant growth because photosynthetic rates are strongly dependent on the concentration of nitrogen in leaves, and because relatively large mounts of protein are required for cell division and growth. Yet nitrogen is abundant in the biosphere - the well-mixed pool in the atmosphere is considered inexhaustible compared to biotic demand, and the amount of already fixed organic nitrogen in soils far exceeds annual plant uptake in terrestrial ecosystems. In regions where natural vegetation is not nitrogen limited, continuous cultivation induces nitrogen deficiency. Nitrogen loss from cultivated lands is more rapid than that of other elements, and nitrogen fertilization is generally required to maintain crop yield under any continuous system. The pervasiveness of nitrogen deficiency in many natural and most managed sites is discussed.

  3. Missing nitrogen fixation in the Benguela region

    NASA Astrophysics Data System (ADS)

    Wasmund, Norbert; Struck, Ulrich; Hansen, Anja; Flohr, Anita; Nausch, Günther; Grüttmüller, Annett; Voss, Maren

    2015-12-01

    Opposing opinions on the importance of nitrogen fixation in the northern Benguela upwelling region provoked us to investigate the magnitude of nitrogen fixation in front of northern Namibia and southern Angola. Measurements of nitrogen fixation rates using the 15N method at 66 stations during seven cruises from 2008 to 2014 showed that, in general, the 15N content in the biomass did not increase after tracer incubation with 15N2, indicating that no nitrogen fixation occurred. Correspondingly, the filamentous nitrogen-fixing cyanobacterium Trichodesmium was almost not present. The abundant picocyanobacteria did obviously not perform nitrogen fixation to a significant degree. The artificial improvement of conditions for nitrogen fixation in mesocosm experiments, including phosphate and iron additions and a warmer temperature, failed to induce nitrogen fixation. A plausible explanation of these findings is a lack of conditioned cells for nitrogen fixation in the Benguela region.

  4. Managing nitrogen for sustainable development.

    PubMed

    Zhang, Xin; Davidson, Eric A; Mauzerall, Denise L; Searchinger, Timothy D; Dumas, Patrice; Shen, Ye

    2015-12-01

    Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them. PMID:26595273

  5. Managing nitrogen for sustainable development

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Davidson, Eric A.; Mauzerall, Denise L.; Searchinger, Timothy D.; Dumas, Patrice; Shen, Ye

    2015-12-01

    Improvements in nitrogen use efficiency in crop production are critical for addressing the triple challenges of food security, environmental degradation and climate change. Such improvements are conditional not only on technological innovation, but also on socio-economic factors that are at present poorly understood. Here we examine historical patterns of agricultural nitrogen-use efficiency and find a broad range of national approaches to agricultural development and related pollution. We analyse examples of nitrogen use and propose targets, by geographic region and crop type, to meet the 2050 global food demand projected by the Food and Agriculture Organization while also meeting the Sustainable Development Goals pertaining to agriculture recently adopted by the United Nations General Assembly. Furthermore, we discuss socio-economic policies and technological innovations that may help achieve them.

  6. Insects as a Nitrogen Source for Plants.

    PubMed

    Behie, Scott W; Bidochka, Michael J

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  7. Insects as a Nitrogen Source for Plants

    PubMed Central

    Behie, Scott W.; Bidochka, Michael J.

    2013-01-01

    Many plants have evolved adaptations in order to survive in low nitrogen environments. One of the best-known adaptations is that of plant symbiosis with nitrogen-fixing bacteria; this is the major route by which nitrogen is incorporated into plant biomass. A portion of this plant-associated nitrogen is then lost to insects through herbivory, and insects represent a nitrogen reservoir that is generally overlooked in nitrogen cycles. In this review we show three specialized plant adaptations that allow for the recovery of insect nitrogen; that is, plants gaining nitrogen from insects. First, we show specialized adaptations by carnivorous plants in low nitrogen habitats. Insect carnivorous plants such as pitcher plants and sundews (Nepenthaceae/Sarraceniaceae and Drosera respectively) are able to obtain substantial amounts of nitrogen from the insects that they capture. Secondly, numerous plants form associations with mycorrhizal fungi that can provide soluble nitrogen from the soil, some of which may be insect-derived nitrogen, obtained from decaying insects or insect frass. Finally, a specialized group of endophytic, insect-pathogenic fungi (EIPF) provide host plants with insect-derived nitrogen. These soil-inhabiting fungi form a remarkable symbiosis with certain plant species. They can infect a wide range of insect hosts and also form endophytic associations in which they transfer insect-derived nitrogen to the plant. Root colonizing fungi are found in disparate fungal phylogenetic lineages, indicating possible convergent evolutionary strategies between taxa, evolution potentially driven by access to carbon-containing root exudates. PMID:26462427

  8. Membrane Separation Of Nitrogen Tetroxide

    NASA Technical Reports Server (NTRS)

    Castro, R. C.; Kaschemekat, J.; Helm, V. D.; Shrock, P. H.; Wijmans, J. G.

    1993-01-01

    Pilot plant reduces N2O4 content to one-hundredth of inlet value. Permeable-membrane process removes nitrogen tetroxide from stream of nitrogen or helium gas. Operates in conjunction with scrubbing process removing N2O4 from He or N2 after He or N2 used as gas blanket in N2O4-storage tank. First stage of separator divided into two steps for efficiency. Permeate from second step of first stage and residue from second stage returned to inlet of first stage. Each module contains spiral-wound interleaved permeable membranes and spacer sheets.

  9. Sodium Pentazolate: a Nitrogen Rich Energetic Material

    NASA Astrophysics Data System (ADS)

    Oleynik, Ivan; Steele, Brad

    Sodium pentazolates NaN5 and Na2N5, new energetic materials, are discovered using first principles crystal structure search for the compounds of varying amounts of elemental sodium and nitrogen. The pentazole anion (N5-s)i stabilized in the condensed phase by sodium Na+ cations at pressures exceeding 20 GPa, and becomes metastable upon release of pressure, i.e. at ambient conditions. The sodium azide (NaN3) precursor for the new compounds is predicted to undergo a chemical transformation above 50 GPa into sodium pentazolates NaN5 and Na2N5. The calculated Raman spectrum of NaN5 is in agreement with the experimental Raman spectrum of a previously unidentified substance appearing upon compression and heating of NaN3 precursor, thus confirming the appearance of the new compound.

  10. METHOD OF FIXING NITROGEN FOR PRODUCING OXIDES OF NITROGEN

    DOEpatents

    Harteck, P.; Dondes, S.

    1959-08-01

    A method is described for fixing nitrogen from air by compressing the air, irradiating the compressed air in a nuclear reactor, cooling to remove NO/ sub 2/, compressing the cooled gas, further cooling to remove N/sub 2/O and recirculating the cooled compressed air to the reactor.