Science.gov

Sample records for nitrogen affects cluster

  1. Nitrogen starvation affects bacterial adhesion to soil

    PubMed Central

    Borges, Maria Tereza; Nascimento, Antônio Galvão; Rocha, Ulisses Nunes; Tótola, Marcos Rogério

    2008-01-01

    One of the main factors limiting the bioremediation of subsoil environments based on bioaugmentation is the transport of selected microorganisms to the contaminated zones. The characterization of the physiological responses of the inoculated microorganisms to starvation, especially the evaluation of characteristics that affect the adhesion of the cells to soil particles, is fundamental to anticipate the success or failure of bioaugmentation. The objective of this study was to investigate the effect of nitrogen starvation on cell surface hydrophobicity and cell adhesion to soil particles by bacterial strains previously characterized as able to use benzene, toluene or xilenes as carbon and energy sources. The strains LBBMA 18-T (non-identified), Arthrobacter aurescens LBBMA 98, Arthrobacter oxydans LBBMA 201, and Klebsiella sp. LBBMA 204–1 were used in the experiments. Cultivation of the cells in nitrogen-deficient medium caused a significant reduction of the adhesion to soil particles by all the four strains. Nitrogen starvation also reduced significantly the strength of cell adhesion to the soil particles, except for Klebsiella sp. LBBMA 204–1. Two of the four strains showed significant reduction in cell surface hydrophobicity. It is inferred that the efficiency of bacterial transport through soils might be potentially increased by nitrogen starvation. PMID:24031246

  2. Do cluster properties affect the quenching rate?

    NASA Astrophysics Data System (ADS)

    Raichoor, A.; Andreon, S.

    2014-10-01

    The quenching rate is known to depend on galaxy stellar mass and environment, however, possible dependences on the hosting halo properties, such as mass, richness, and dynamical status, are still debated. The determination of these dependences is hampered by systematics, induced by noisy estimates of cluster mass or by the lack of control on galaxy stellar mass, which may mask existing trends or introduce fake trends. We studied a sample of local clusters (20 with 0.02 < z < 0.1 and log (M200/M⊙) ≳ 14), selected independent of the galaxy properties under study, having homogeneous optical photometry and X-ray estimated properties. Using those top quality measurements of cluster mass, hence of cluster scale, richness, iron abundance, and cooling time/presence of a cool-core, we study the simultaneous dependence of quenching on these cluster properties on galaxy stellar mass M and normalised cluster-centric distance r/r200. We found that the quenching rate can be completely described by two variables only, galaxy stellar mass and normalised cluster-centric distance, and is independent of halo properties (mass, richness, iron abundance, and central cooling time/presence of a cool-core). These halo properties change, in most cases, by less than 3% the probability that a galaxy is quenched, once the mass-size (M200 - r200) scaling relation is accounted for through cluster-centric distance normalisation. Appendix A is available in electronic form at http://www.aanda.org

  3. Carbon and nitrogen abundance variations in globular cluster red giants

    NASA Astrophysics Data System (ADS)

    Martell, Sarah L.

    2008-06-01

    This dissertation describes investigations into two of the persistent questions of elemental abundances in Galactic globular clusters: the phenomenon of deep mixing, observed through the progressive depletion of surface carbon abundance as stars evolve along the red giant branch, and abundance bimodality, a phenomenon observed only in globular clusters, in which a subset of stars in a given globular cluster have a distinctive pattern of elemental enhancements and depletions relative to the Solar pattern. The first chapter gives an introduction to the history of globular cluster abundance studies, with particular focus on low-resolution spectroscopy. For both deep mixing and abundance bimodality, the leading theoretical models and the data which support and challenge them are laid out. Each section ends with a description of presently-unanswered questions; these are the motivation for the various projects contained in this dissertation. The second chapter describes the use of molecular handstrengths for determining elemental abundances from low-resolution spectra, and introduces a new CH bandstrength index that is designed to be sensitive to carbon abundance and insensitive to nitrogen abundance in Pop. II red giants over a wide range of metallicity. Various CH indices defined elsewhere in the literature are also discussed, and are shown to have comparable accuracy to the new index only over a limited range of stellar properties. Carbon abundances determined using the new CH index are compared to literature abundances for a few stars, and general concordance with published abundances is found. The third chapter contains a large-scale application of the new CH index: a survey of present-day carbon abundances and calculated carbon depletion rates in bright red giants belonging to eleven Galactic globular clusters spanning the full metallicity range of halo globular clusters. Targets were selected with similar evolutionary states, were observed with one instrument on

  4. How clustering dark energy affects matter perturbations

    NASA Astrophysics Data System (ADS)

    Mehrabi, A.; Basilakos, S.; Pace, F.

    2015-09-01

    The rate of structure formation in the Universe is different in homogeneous and clustered dark energy models. The degree of dark energy clustering depends on the magnitude of its effective sound speed c2_eff and for c2_eff=0 dark energy clusters in a similar fashion to dark matter while for c2_eff=1 it stays (approximately) homogeneous. In this paper we consider two distinct equations of state for the dark energy component, wd = const and w_d=w_0+w_1(z/1+z) with c2_eff as a free parameter and we try to constrain the dark energy effective sound speed using current available data including Type Ia supernovae, baryon acoustic oscillation, cosmic microwave background shift parameter (Planck and WMAP), Hubble parameter, big bang nucleosynthesis and the growth rate of structures fσ8(z). At first we derive the most general form of the equations governing dark matter and dark energy clustering under the assumption that c2_eff=const. Finally, performing an overall likelihood analysis we find that the likelihood function peaks at c2_eff=0; however, the dark energy sound speed is degenerate with respect to the cosmological parameters, namely Ωm and wd.

  5. Co-regulation of the nitrogen-assimilatory gene cluster in Clostridium saccharobutylicum.

    PubMed

    Stutz, Helen E; Quixley, Keith W M; McMaster, Lynn D; Reid, Sharon J

    2007-09-01

    Nitrogen assimilation is important during solvent production by Clostridium saccharobutylicum NCP262, as acetone and butanol yields are significantly affected by the nitrogen source supplied. Growth of this bacterium was dependent on the concentration of organic nitrogen supplied and the expression of the assimilatory enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT), was shown to be induced in nitrogen-limiting conditions. The regions flanking the gene encoding GS, glnA, were isolated from C. saccharobutylicum genomic DNA, and DNA sequencing revealed that the structural genes encoding the GS (glnA) and GOGAT (gltA and gltB) enzymes were clustered together with the nitR gene in the order glnA-nitR-gltAB. RNA analysis showed that the glnA-nitR and the gltAB genes were co-transcribed on 2.3 and 6.2 kb RNA transcripts respectively, and that all four genes were induced under the same nitrogen-limiting conditions. Complementation of an Escherichia coli gltD mutant, lacking a GOGAT small subunit, was achieved only when both the C. saccharobutylicum gltA and gltB genes were expressed together under anaerobic conditions. This is believed to be the first functional analysis of a gene cluster encoding the key enzymes of nitrogen assimilation, GS and GOGAT. A similar gene arrangement is seen in Clostridium beijerinckii NCIMB 8052, and based on the common regulatory features of the promoter regions upstream of the glnA operons in both species, we suggest a model for their co-ordinated regulation by an antitermination mechanism as well as antisense RNA. PMID:17768251

  6. A cluster analysis of affective states before and during competition.

    PubMed

    Martinent, Guillaume; Nicolas, Michel; Gaudreau, Patrick; Campo, Mickaël

    2013-12-01

    The purposes of the current study were to identify affective profiles of athletes both before and during the competition and to examine differences between these profiles on coping and attainment of sport goals among a sample of 306 athletes. The results of hierarchical (Ward's method) and nonhierarchical (k means) cluster analyses revealed four different clusters both before and during the competition. The four clusters were very similar at the two measurement occasions: high positive affect facilitators (n = 88 and 81), facilitators (n = 75 and 25), low affect debilitators (n = 83 and 127), and high negative affect debilitators (n = 60 and 73). Results of MANOVAs revealed that coping and attainment of sport achievement goal significantly differed across the affective profiles. Results are discussed in terms of current research on positive and negative affective states. PMID:24334321

  7. Processes Affecting Nitrogen Speciation in a Karst Aquifer

    NASA Astrophysics Data System (ADS)

    Mahler, B. J.; Musgrove, M.; Wong, C. I.

    2011-12-01

    Like many karst aquifers, the Barton Springs segment of the Edwards aquifer, in central Texas, is in an area undergoing rapid growth in population, and there is concern as to how increased amounts of wastewater might affect groundwater quality. We measured concentrations and estimated loads of nitrogen (N) species in recharge to and discharge from the Barton Springs segment of the Edwards aquifer, central Texas, to evaluate processes affecting the transport and fate of N species in groundwater. Water samples were collected during 17 months (November 2008-March 2010) from five streams that contribute about 85% of recharge to the aquifer segment and from Barton Springs, the principal point of discharge from the segment. The sampling period spanned a range of climatic conditions from exceptional drought to above-normal rainfall. Samples were analyzed for N species (organic N + ammonia, ammonia, nitrate + nitrite, nitrite); loads of organic N and nitrate were estimated with LOADEST, a regression-based model that uses a time series of streamflow and measured constituent concentrations to estimate constituent loads. Concentrations of organic nitrogen and dissolved oxygen were higher and concentrations of nitrate were lower in surface water than in spring discharge, consistent with conversion of organic nitrogen to nitrate and associated consumption of dissolved oxygen in the aquifer. During the period of the study, the estimated load of organic N in recharge from streams (average daily load [adl] of 39 kg/d) was about 10 times that in Barton Springs discharge (adl of 9.4 kg/d), whereas the estimated load of nitrate in recharge from streams (adl of 123 kg/d) was slightly less than that in Barton Springs discharge (adl of 148 kg/d). The total average N load in recharge from streams and discharge from Barton Springs was not significantly different (adl of 162 and 157 kg/d, respectively), indicating that surface-water recharge can account for all of the N in Barton Springs

  8. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule.

    PubMed

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J

    2016-03-28

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of terms is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N2 problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree-Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT

  9. Assessing the distinguishable cluster approximation based on the triple bond-breaking in the nitrogen molecule

    NASA Astrophysics Data System (ADS)

    Rishi, Varun; Perera, Ajith; Bartlett, Rodney J.

    2016-03-01

    Obtaining the correct potential energy curves for the dissociation of multiple bonds is a challenging problem for ab initio methods which are affected by the choice of a spin-restricted reference function. Coupled cluster (CC) methods such as CCSD (coupled cluster singles and doubles model) and CCSD(T) (CCSD + perturbative triples) correctly predict the geometry and properties at equilibrium but the process of bond dissociation, particularly when more than one bond is simultaneously broken, is much more complicated. New modifications of CC theory suggest that the deleterious role of the reference function can be diminished, provided a particular subset of terms is retained in the CC equations. The Distinguishable Cluster (DC) approach of Kats and Manby [J. Chem. Phys. 139, 021102 (2013)], seemingly overcomes the deficiencies for some bond-dissociation problems and might be of use in quasi-degenerate situations in general. DC along with other approximate coupled cluster methods such as ACCD (approximate coupled cluster doubles), ACP-D45, ACP-D14, 2CC, and pCCSD(α, β) (all defined in text) falls under a category of methods that are basically obtained by the deletion of some quadratic terms in the double excitation amplitude equation for CCD/CCSD (coupled cluster doubles model/coupled cluster singles and doubles model). Here these approximate methods, particularly those based on the DC approach, are studied in detail for the nitrogen molecule bond-breaking. The N2 problem is further addressed with conventional single reference methods but based on spatial symmetry-broken restricted Hartree-Fock (HF) solutions to assess the use of these references for correlated calculations in the situation where CC methods using fully symmetry adapted SCF solutions fail. The distinguishable cluster method is generalized: 1) to different orbitals for different spins (unrestricted HF based DCD and DCSD), 2) by adding triples correction perturbatively (DCSD(T)) and iteratively (DCSDT

  10. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  11. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  12. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  13. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  14. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit...

  15. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.

    PubMed

    Qiao, Chunlian; Liu, Lingli; Hu, Shuijin; Compton, Jana E; Greaver, Tara L; Li, Quanlin

    2015-03-01

    Anthropogenic activities, and in particular the use of synthetic nitrogen (N) fertilizer, have doubled global annual reactive N inputs in the past 50-100 years, causing deleterious effects on the environment through increased N leaching and nitrous oxide (N2 O) and ammonia (NH3 ) emissions. Leaching and gaseous losses of N are greatly controlled by the net rate of microbial nitrification. Extensive experiments have been conducted to develop ways to inhibit this process through use of nitrification inhibitors (NI) in combination with fertilizers. Yet, no study has comprehensively assessed how inhibiting nitrification affects both hydrologic and gaseous losses of N and plant nitrogen use efficiency. We synthesized the results of 62 NI field studies and evaluated how NI application altered N cycle and ecosystem services in N-enriched systems. Our results showed that inhibiting nitrification by NI application increased NH3 emission (mean: 20%, 95% confidential interval: 33-67%), but reduced dissolved inorganic N leaching (-48%, -56% to -38%), N2 O emission (-44%, -48% to -39%) and NO emission (-24%, -38% to -8%). This amounted to a net reduction of 16.5% in the total N release to the environment. Inhibiting nitrification also increased plant N recovery (58%, 34-93%) and productivity of grain (9%, 6-13%), straw (15%, 12-18%), vegetable (5%, 0-10%) and pasture hay (14%, 8-20%). The cost and benefit analysis showed that the economic benefit of reducing N's environmental impacts offsets the cost of NI application. Applying NI along with N fertilizer could bring additional revenues of $163 ha(-1)  yr(-1) for a maize farm, equivalent to 8.95% increase in revenues. Our findings showed that NIs could create a win-win scenario that reduces the negative impact of N leaching and greenhouse gas production, while increases the agricultural output. However, NI's potential negative impacts, such as increase in NH3 emission and the risk of NI contamination, should be fully

  16. Climate variability and nitrogen rate interactions affecting corn nitrogen use efficiency in Alabama

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) fertilization is an important practice to increase yield; however, plant–soil interactions to in-season changes in climatic conditions result on site-specific responses of corn to nitrogen rates. The objective of this study was to evaluate the effect of different climatic conditions and...

  17. Nitrogen dioxide assimilation as affected by light level

    SciTech Connect

    Srivastava, H. ); Ormond, D.; Marie, B. )

    1989-04-01

    The air pollutant NO{sub 2} is absorbed and assimilated by plants to serve as a source of nitrogen but only to a limited extent. The objective of this research was to identify the constraints on NO{sub 2} assimilation. Differential light levels were used to manipulate carbohydrate metabolites available for nitrogen assimilation. Bean plants were grown at four light levels with or without nutrient nitrate and exposed to 0.25 ppm NO{sub 2} for 6h each day. Growth of roots and shoots was inhibited by NO{sub 2} in both the presence and absence of nutrient nitrate. The inhibition was most pronounced at the lowest light level. Light level similarly influenced the effect of nitrate and of NO{sub 2} on soluble protein, nitrate nitrogen and Kjeldahl nitrogen in the root and shoot tissues. Two experiments demonstrated that the injurious effects of NO{sub 2} are more pronounced at low light than at high light and that more NO{sub 2} is assimilated into soluble shoot protein at higher light levels.

  18. Identification of Nitrogen-Fixing Genes and Gene Clusters from Metagenomic Library of Acid Mine Drainage

    PubMed Central

    Yin, Huaqun; Liang, Yili; Cong, Jing; Liu, Xueduan

    2014-01-01

    Biological nitrogen fixation is an essential function of acid mine drainage (AMD) microbial communities. However, most acidophiles in AMD environments are uncultured microorganisms and little is known about the diversity of nitrogen-fixing genes and structure of nif gene cluster in AMD microbial communities. In this study, we used metagenomic sequencing to isolate nif genes in the AMD microbial community from Dexing Copper Mine, China. Meanwhile, a metagenome microarray containing 7,776 large-insertion fosmids was constructed to screen novel nif gene clusters. Metagenomic analyses revealed that 742 sequences were identified as nif genes including structural subunit genes nifH, nifD, nifK and various additional genes. The AMD community is massively dominated by the genus Acidithiobacillus. However, the phylogenetic diversity of nitrogen-fixing microorganisms is much higher than previously thought in the AMD community. Furthermore, a 32.5-kb genomic sequence harboring nif, fix and associated genes was screened by metagenome microarray. Comparative genome analysis indicated that most nif genes in this cluster are most similar to those of Herbaspirillum seropedicae, but the organization of the nif gene cluster had significant differences from H. seropedicae. Sequence analysis and reverse transcription PCR also suggested that distinct transcription units of nif genes exist in this gene cluster. nifQ gene falls into the same transcription unit with fixABCX genes, which have not been reported in other diazotrophs before. All of these results indicated that more novel diazotrophs survive in the AMD community. PMID:24498417

  19. Identifying At-Risk Students in General Chemistry via Cluster Analysis of Affective Characteristics

    ERIC Educational Resources Information Center

    Chan, Julia Y. K.; Bauer, Christopher F.

    2014-01-01

    The purpose of this study is to identify academically at-risk students in first-semester general chemistry using affective characteristics via cluster analysis. Through the clustering of six preselected affective variables, three distinct affective groups were identified: low (at-risk), medium, and high. Students in the low affective group…

  20. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  1. Nitrogen, stover and tillage management affect nitrogen use efficiency in continuous corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving nitrogen use efficiency (NUE) in corn (Zea mays L.) is critical for optimizing yield and reducing environmental impact. Stover removal in continuous corn (CC) for biofuel production, coupled with reduced-tillage systems, could alter NUE and residual soil nitrate-N. Experiments were conduct...

  2. Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The composition and function of microbial communities present in the rhizosphere of crops has been linked to edaphic factors and root exudate composition. In this paper, we examined the effect of N fertilizer rate on maize root exudation, the associated rhizosphere community, and nitrogen-use-effici...

  3. Cultivar and nitrogen fertilizer rate affect yield and nitrogen use efficiency in irrigated durum wheat

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimizing nitrogen (N) management and using cultivars with high N use efficiency (NUE) are of great importance for durum wheat (Triticum durum L.) producers in irrigated desert production systems. Field experiments with six durum wheat cultivars (Ocotillo, Orita, Kronos, Havasu, Duraking, and Toppe...

  4. Nitrogen and hydrophosphate affects glycolipids composition in microalgae

    PubMed Central

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L−1 hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L−1 d−1. Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  5. Nitrogen and hydrophosphate affects glycolipids composition in microalgae.

    PubMed

    Wang, Xin; Shen, Zhouyuan; Miao, Xiaoling

    2016-01-01

    Glycolipids had received increasing attention because of their uses in various industries like cosmetics, pharmaceuticals, food and machinery manufacture. Microalgae were competitive organisms to accumulate metabolic substance. However, using microalgae to produce glycolipid was rare at present. In this study, glycolipid content of Chlorella pyrenoidosa and Synechococcus sp. under different nitrate and hydrophosphate levels were investigated. The highest glycolipid contents of 24.61% for C. pyrenoidosa and 15.37% for Synechococcus sp. were obtained at nitrate absence, which were 17.19% for C. pyrenoidosa and 10.99% for Synechococcus sp. at 0.01 and 0 g L(-1) hydrophosphate, respectively. Glycolipid productivities of two microalgae could reach at more than 10.59 mg L(-1) d(-1). Nitrate absence induced at least 8.5% increase in MGDG, DGDG and SQDG, while hydrophosphate absence resulted in over 21.2% increase in DGDG and over 48.4% increase in SQDG and more than 22.2% decrease in MGDG in two microalgae. Simultaneous nitrate and hydrophosphate limitation could make further improvement of glycolipid accumulation, which was more than 25% for C. pyrenoidosa and 21% for Synechococcus sp. These results suggest that nitrogen and phosphorus limitation or starvation should be an efficient way to improve microalgal glycolipid accumulation. PMID:27440670

  6. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Vikhlinin, Alexey; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    We have worked on the analysis of the Chandra observations of the nearby and distant clusters of galaxies, and on the expansion of the sample of distant X-ray clusters based on the archival ROSAT PSPC data. Some of the scientific results are discussed.

  7. How the Clustering of Phonological Neighbors Affects Visual Word Recognition

    ERIC Educational Resources Information Center

    Yates, Mark

    2013-01-01

    In recent years, a new scientific field known as network science has been emerging. Network science is concerned with understanding the structure and properties of networks. One concept that is commonly used in describing a network is how the nodes in the network cluster together. The current research applied the idea of clustering to the study of…

  8. Sensory Clusters of Toddlers with Autism Spectrum Disorders: Differences in Affective Symptoms

    ERIC Educational Resources Information Center

    Ben-Sasson, A.; Cermak, S. A.; Orsmond, G. I.; Tager-Flusberg, H.; Kadlec, M. B.; Carter, A. S.

    2008-01-01

    Background: Individuals with autism spectrum disorders (ASDs) show variability in their sensory behaviors. In this study we identified clusters of toddlers with ASDs who shared sensory profiles and examined differences in affective symptoms across these clusters. Method: Using cluster analysis 170 toddlers with ASDs were grouped based on parent…

  9. Spatial variability of soil nitrogen in a hilly valley: Multiscale patterns and affecting factors.

    PubMed

    Zhang, Shirong; Xia, Chunlan; Li, Ting; Wu, Chungui; Deng, Ouping; Zhong, Qinmei; Xu, Xiaoxun; Li, Yun; Jia, Yongxia

    2016-09-01

    Estimating the spatial distribution of soil nitrogen at different scales is crucial for improving soil nitrogen use efficiency and controlling nitrogen pollution. We evaluated the spatial variability of soil total nitrogen (TN) and available nitrogen (AN) in the Fujiang River Valley, a typical hilly region composed of low, medium and high hills in the central Sichuan Basin, China. We considered the two N forms at single hill, landscape and valley scales using a combined method of classical statistics, geostatistics and a geographic information system. The spatial patterns and grading areas of soil TN and AN were different among hill types and different scales. The percentages of higher grades of the two nitrogen forms decreased from low, medium to high hills. Hill type was a major factor determining the spatial variability of the two nitrogen forms across multiple scales in the valley. The main effects of general linear models indicated that the key affecting factors of soil TN and AN were hill type and fertilization at the single hill scale, hill type and soil type at the landscape scale, and hill type, slope position, parent material, soil type, land use and fertilization at the valley scale. Thus, the effects of these key factors on the two soil nitrogen forms became more significant with upscaling. PMID:27135562

  10. Physics of Galaxy Clusters and How it Affects Cosmological Tests

    NASA Technical Reports Server (NTRS)

    Oliversen, Ronald J. (Technical Monitor); Vikhlinin, Alexey

    2004-01-01

    The main activities in 2004 were focused on completion of the new 400 square degrees ROSAT PSPC survey for distant galaxy clusters. We observed and reduced optical spectra for all X-ray candidates and now we have complete identification for a statistically complete sample of distant 283 clusters. The papers describing the cluster catalog and first science results are in preparation and will be submitted in early 2005. We also completed a project to measure temperature and density profiles at large radii using Chandra observations of a 11 well exposed low-redshift clusters. We were able to demonstrate that the density, temperature, and total mass profiles are self-similar at large radii. This analysis has led to significant improvements in determination of the cluster baryon fraction as well as cosmologically important scaling relations, such as Mtot-T. The paper describing these results is submitted to ApJ in November, 2004. We continued to study evolution of the cluster scaling relations at high redshifts using Chandra and XMM data. We developed code for image and spectral deconvolution of the XMM observations. This code was used to reconstruct the distribution of baryons and total mass from observations of distant clusters which suffer from the finite size of the XMM PSF. This study allowed us to derive a high-redshift relation between cluster temperature and mass and compare it with the local relation obtained. The paper describing the first results is submitted to the ApJ. However, the project is still on-going as more distant cluster observations enter XMh4 and Chandra public data archives. We continued our work on improving techniques for accurate measurements of the cluster mass function and obtaining cosmological constraints from such observations. We published (ApJ, 601, 610) a study in which we derived the baryon mass function for a complete sample of low-redshift clusters. These papers argued that it was an excellent proxy for the total mass function

  11. Glycemic index of starch affects nitrogen retention in grower pigs.

    PubMed

    Drew, M D; Schafer, T C; Zijlstra, R T

    2012-04-01

    Three studies were performed to examine the effect of starch and protein digestion rates on N retention in grower pigs. In Exp. 1, the glycemic index (GI) of corn, a malting barley, and a slow-rumen-degradable barley (SRD-barley) were measured using 6 barrows (BW = 18.0 ± 0.5 kg). The GI of malting barley was greater (P < 0.05) than that of SRD-barley (71.1 vs. 49.4), and the GI of both barley cultivars was less (P < 0.05) than that of corn (104.8). In Exp. 2, the standardized ileal digestibility of AA and DE content of the 3 ingredients were determined using 5 ileal-cannulated barrows (BW = 20.7 ± 2.3). The apparent total-tract energy digestibility values of corn (86.1%) and malting barley (85.7%) were greater (P < 0.05) than that of SRD-barley (82.3%). The standardized ileal digestibility of Lys was 94.0, 92.6, and 92.4% for corn, malting barley, and SRD-barley, respectively, and did not differ among grains. In Exp. 3, 6 diets were formulated to equal DE (3.40 Mcal/kg), standardized ileal digestibility of Lys (8.6 g/kg), starch (424.9 g/kg), and digestible CP (180.0 g/kg) using the values obtained in Exp. 2. Three GI [high (corn), medium (malting barley), and low (SRD-barley)] and 2 rates of protein digestion [rapid (soy protein hydrolysate) and slow (soy protein isolate)] were tested in a 3 × 2 factorial arrangement with 36 barrows (BW = 32.2 ± 2.5 kg). Pigs were fed 3.0 times the maintenance energy requirement daily in 2 meals for 2 wk and were housed in metabolic crates to collect feces and urine separately. At the end of the study, intestinal contents were collected from 4 equal-length segments of the small intestine. The percentage of unabsorbed CP in segment 1 relative to dietary CP was greater (P < 0.05) for the soy protein isolate diet than for the soy protein hydrolysate diet (170.3 vs. 116.5%). The percentages of unabsorbed starch in segments 1 and 2 were greater (P < 0.05) for the SRD-barley diet than for the malting barley or corn diet. Nitrogen

  12. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input

    EPA Science Inventory

    We conducted a meta-analysis of 103 nitrification inhibitor (NI) studies, and evaluated how NI application affects crop productivity and other ecosystem services in agricultural systems. Our results showed that, compared to conventional fertilizer practice, applications of NI alo...

  13. Bonding of nitrogen atoms on Cu/001/ surfaces - A cluster approach

    NASA Technical Reports Server (NTRS)

    Yu, H. L.; Whiting, E. E.

    1979-01-01

    A study of the chemisorption of nitrogen atoms on a copper surface has been performed, based on an analysis of the electronic structure of the Cu5N cluster obtained from self-consistent-field X-alpha scattered-wave calculations. Calculations show that the chemisorption of nitrogen on Cu(001) surfaces induces peaks below and above the Cu d-band region in the total density of states curve. The bonding orbitals formed between the N 2p and the Cu valence orbitals are generally found near the bottom of the Cu d-band region, while the antibonding orbitals formed between the N 2p and Cu orbitals are found to lie above the Cu d-band region. These hybridized orbitals involving the N 2p orbital gave a satisfactory interpretation of the adsorbate-induced structure reported in N/Cu(001) ultraviolet photoemission studies.

  14. Nitrogen and water affect direct and indirect plant systemic induced defense in cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We tested the affects of nitrogen levels and water availability on the ability of cotton plants to deter feeding by Spodoptera exigua larvae through induction of anti-feedant chemicals by the cotton plant, and to attract the biological control agent, Micropitis crociepes through induction of chemica...

  15. Photoelectron spectroscopy of the nitrogen dimer (N2)2 and clusters (N2)n: N2 dimer revealed as the chromophore in photoionization of condensed nitrogen

    NASA Astrophysics Data System (ADS)

    Carnovale, Frank; Peel, J. Barrie; Rothwell, Richard G.

    1988-01-01

    The He i photoelectron spectra of gas-phase nitrogen dimer and nitrogen clusters have been measured in a pulsed cluster beam. The dimer (N2)2 is characterized by broad bands with vertical ionization energies which are 0.3±0.1 eV lower than for N2 monomer. The bands observed for a mixture of small clusters, estimated to be of average size N¯=10, are identical to the dimer bands except for further shifts of 0.3 eV to lower ionization energies. The clusters bandwidths and band shapes are virtually the same as measured for thin films of condensed N2, indicating that the nitrogen dimer (N2)2 is the ionization chromophore in each case. This offers support for Haberland's hypothesis that ionization of any Mn cluster produces the ion M+2Mn-2 provided M is a closed-shell atom or molecule. The theory of electronic relaxation polarization of the dielectric medium, which explains the gas-to-solid ionization energy shifts, is modified for the case of finite clusters and to account for dimer ion formation.

  16. Greenhouse tomato limited cluster production systems: crop management practices affect yield

    NASA Technical Reports Server (NTRS)

    Logendra, L. S.; Gianfagna, T. J.; Specca, D. R.; Janes, H. W.

    2001-01-01

    Limited-cluster production systems may be a useful strategy to increase crop production and profitability for the greenhouse tomato (Lycopersicon esculentum Mill). In this study, using an ebb-and-flood hydroponics system, we modified plant architecture and spacing and determined the effects on fruit yield and harvest index at two light levels. Single-cluster plants pruned to allow two leaves above the cluster had 25% higher fruit yields than did plants pruned directly above the cluster; this was due to an increase in fruit weight, not fruit number. Both fruit yield and harvest index were greater for all single-cluster plants at the higher light level because of increases in both fruit weight and fruit number. Fruit yield for two-cluster plants was 30% to 40% higher than for single-cluster plants, and there was little difference in the dates or length of the harvest period. Fruit yield for three-cluster plants was not significantly different from that of two-cluster plants; moreover, the harvest period was delayed by 5 days. Plant density (5.5, 7.4, 9.2 plants/m2) affected fruit yield/plant, but not fruit yield/unit area. Given the higher costs for materials and labor associated with higher plant densities, a two-cluster crop at 5.5 plants/m2 with two leaves above the cluster was the best of the production system strategies tested.

  17. Vibronic structure of the cyclopentadienyl radical and its nonrigid van der Waals cluster with nitrogen

    NASA Astrophysics Data System (ADS)

    Sun, S.; Bernstein, E. R.

    1995-09-01

    Fluorescence excitation and two color mass resolved excitation spectroscopy are employed to study the D1(2A2″)←D0(2E1″) vibronic transitions of the cyclopentadienyl radical (cpd) and its van der Waals cluster with nitrogen. The radical is created by photolysis of the cyclopentadiene dimer and cooled by expansion from a supersonic nozzle. The cpd(N2)1 cluster is generated in this cooling process. Mass resolved excitation spectra of cpd are obtained for the first 1200 cm-1 of the D1←D0 transition. The excitation spectrum of cpd(N2)1 shows a complicated structure for the origin transition. With the application of hole burning spectroscopy, we are able to assign all the cluster transitions to a single isomer. The features are assigned to a 55 cm-1 out-of-plane van der Waals mode stretch and contortional (rotational) motions of the N2 molecule with respect to the cpd radical. Empirical potential energy calculations are used to predict the properties of this cluster and yield the following results: (1) the N2 molecular axis is perpendicular to the cpd fivefold axis and parallel to the plane of the cpd ring with the two molecular centers of mass lying on the fivefold ring axis; (2) the binding energy of cpd(N2)1 is 434 cm-1; and (3) the rotational motion of the N2 molecule is essentially unhindered about the cpd fivefold axis. The molecular symmetry group D5h(MS) is applied to the nonrigid cluster, and optical selection rules exclude even↔odd transitions (Δn=0, ±2, ±4,... allowed) between the different contortional levels. Tentative assignments are given to the observed contortional features based on these considerations. The barrier to internal rotation is also small in the excited state. The results for the cpd(N2)1 van der Waals cluster are compared to those for the benzene (N2)1 and benzyl radical (N2)1 clusters.

  18. Gephyrin expression and clustering affects the size of glutamatergic synaptic contacts

    PubMed Central

    Yu, Wendou; De Blas, Angel L.

    2009-01-01

    We have recently shown that disrupting the expression and postsynaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or overexpression of a dominant negative gephyrin-EGFP fusion protein, leads to decreased number of postsynaptic gephyrin and GABAA receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABAA receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts. Knocking down gephyrin with gephyrin RNAi, or preventing gephyrin clustering by overexpression of the dominant negative gephyrin-EGFP fusion protein, leads to larger postsynaptic PSD-95 clusters and larger presynaptic glutamatergic terminals. On the other hand, overexpression of gephyrin leads to slightly smaller PSD-95 clusters and presynaptic glutamatergic terminals. The change in size of PSD-95 clusters were accompanied by a parallel change in the size of NR2-NMDA receptor clusters. It is concluded that the levels of expression and clustering of gephyrin, a protein that concentrates at the postsynaptic complex of the inhibitory synapses, not only has homotypic effects on GABAergic synaptic contacts, but also has heterotypic effects on glutamatergic synaptic contacts. We are proposing that gephyrin is a counterpart of the postsynaptic glutamatergic scaffold protein PSD-95 in regulating the number and/or size of the excitatory and inhibitory synaptic contacts. PMID:18199120

  19. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry.

    PubMed

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  20. Roostocks/Scion/Nitrogen Interactions Affect Secondary Metabolism in the Grape Berry

    PubMed Central

    Habran, Aude; Commisso, Mauro; Helwi, Pierre; Hilbert, Ghislaine; Negri, Stefano; Ollat, Nathalie; Gomès, Eric; van Leeuwen, Cornelis; Guzzo, Flavia; Delrot, Serge

    2016-01-01

    The present work investigates the interactions between soil content, rootstock, and scion by focusing on the effects of roostocks and nitrogen supply on grape berry content. Scions of Cabernet Sauvignon (CS) and Pinot Noir (PN) varieties were grafted either on Riparia Gloire de Montpellier (RGM) or 110 Richter (110R) rootstock. The 4 rooststock/scion combinations were fertilized with 3 different levels of nitrogen after fruit set. Both in 2013 and 2014, N supply increased N uptake by the plants, and N content both in vegetative and reproductory organs. Rootstock, variety and year affected berry weight at harvest, while nitrogen did not affect significantly this parameter. Grafting on RGM consistently increased berry weight compared to 110R. PN consistently produced bigger berries than CS. CS berries were heavier in 2014 than in 2013, but the year effect was less marked for PN berries. The berries were collected between veraison and maturity, separated in skin and pulp, and their content was analyzed by conventional analytical procedures and untargeted metabolomics. For anthocyanins, the relative quantitation was fairly comparable with both LC-MS determination and HPLC-DAD, which is a fully quantitative technique. The data show complex responses of the metabolite content (sugars, organic acids, amino acids, anthocyanins, flavonols, flavan-3-ols/procyanidins, stilbenes, hydroxycinnamic, and hydroxybenzoic acids) that depend on the rootstock, the scion, the vintage, the nitrogen level, the berry compartment. This opens a wide range of possibilities to adjust the content of these compounds through the choice of the roostock, variety and nitrogen fertilization. PMID:27555847

  1. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the world's land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation according

  2. Biological soil crusts emit large amounts of NO and HONO affecting the nitrogen cycle in drylands

    NASA Astrophysics Data System (ADS)

    Tamm, Alexandra; Wu, Dianming; Ruckteschler, Nina; Rodríguez-Caballero, Emilio; Steinkamp, Jörg; Meusel, Hannah; Elbert, Wolfgang; Behrendt, Thomas; Sörgel, Matthias; Cheng, Yafang; Crutzen, Paul J.; Su, Hang; Pöschl, Ulrich; Weber, Bettina

    2016-04-01

    Dryland systems currently cover ˜40% of the worl&dacute;s land surface and are still expanding as a consequence of human impact and global change. In contrast to that, information on their role in global biochemical processes is limited, probably induced by the presumption that their sparse vegetation cover plays a negligible role in global balances. However, spaces between the sparse shrubs are not bare, but soils are mostly covered by biological soil crusts (biocrusts). These biocrust communities belong to the oldest life forms, resulting from an assembly between soil particles and cyanobacteria, lichens, bryophytes, and algae plus heterotrophic organisms in varying proportions. Depending on the dominating organism group, cyanobacteria-, lichen-, and bryophyte-dominated biocrusts are distinguished. Besides their ability to restrict soil erosion they fix atmospheric carbon and nitrogen, and by doing this they serve as a nutrient source in strongly depleted dryland ecosystems. In this study we show that a fraction of the nitrogen fixed by biocrusts is metabolized and subsequently returned to the atmosphere in the form of nitric oxide (NO) and nitrous acid (HONO). These gases affect the radical formation and oxidizing capacity within the troposphere, thus being of particular interest to atmospheric chemistry. Laboratory measurements using dynamic chamber systems showed that dark cyanobacteria-dominated crusts emitted the largest amounts of NO and HONO, being ˜20 times higher than trace gas fluxes of nearby bare soil. We showed that these nitrogen emissions have a biogenic origin, as emissions of formerly strongly emitting samples almost completely ceased after sterilization. By combining laboratory, field, and satellite measurement data we made a best estimate of global annual emissions amounting to ˜1.1 Tg of NO-N and ˜0.6 Tg of HONO-N from biocrusts. This sum of 1.7 Tg of reactive nitrogen emissions equals ˜20% of the soil release under natural vegetation

  3. Familial Clustering of Executive Functioning in Affected Sibling Pair Families with ADHD

    ERIC Educational Resources Information Center

    Slaats-Willemse, Dorine; Swaab-Barneveld, Hanna; De Sonneville, Leo; Buitelaar, Jan

    2005-01-01

    Objective: To investigate familial clustering of executive functioning (i.e., response inhibition, fine visuomotor functioning, and attentional control) in attention-deficit/hyperactivity disorder (ADHD)-affected sibling pairs. Method: Fifty-two affected sibling pairs aged 6 to 18 years and diagnosed with ADHD according to DSM-IV performed the…

  4. The liquid nitrogen fill level meter for the AGATA triple cluster detector

    NASA Astrophysics Data System (ADS)

    Lersch, Daniel; Pascovici, Gheorghe; Birkenbach, Benedikt; Bruyneel, Bart; Eberth, Jürgen; Hess, Herbert; Reiter, Peter; Wiens, Andreas; Georg Thomas, Heinz; Agata Collaboration

    2011-06-01

    A novel liquid nitrogen fill level meter has been put into operation for the all-position dewar of the triple cluster detector of the Advanced GAmma Tracking Array. The new device is based on a capacitance measurement between a metallic cylindrical tube inside the dewar and the inner wall of the cryostat. The fill level dependent capacitance is converted by a C/ V-transducer into a DC voltage signal. Direct monitoring of the LN 2 level inside the detector dewar has been performed with several AGATA detectors at various inclinations and rotation angles of the detector axis. The time-dependent LN 2 consumption is an additional quantity used to survey the status of the cryostat. Supplementary results are the investigations of the LN 2 consumption and the heat loss of the detector during different modes of operation.

  5. A Minimal Nitrogen Fixation Gene Cluster from Paenibacillus sp. WLY78 Enables Expression of Active Nitrogenase in Escherichia coli

    PubMed Central

    Zhao, Dehua; Liu, Xiaomeng; Zhang, Bo; Xie, Jianbo; Hong, Yuanyuan; Li, Pengfei; Chen, Sanfeng; Dixon, Ray; Li, Jilun

    2013-01-01

    Most biological nitrogen fixation is catalyzed by molybdenum-dependent nitrogenase, an enzyme complex comprising two component proteins that contains three different metalloclusters. Diazotrophs contain a common core of nitrogen fixation nif genes that encode the structural subunits of the enzyme and components required to synthesize the metalloclusters. However, the complement of nif genes required to enable diazotrophic growth varies significantly amongst nitrogen fixing bacteria and archaea. In this study, we identified a minimal nif gene cluster consisting of nine nif genes in the genome of Paenibacillus sp. WLY78, a gram-positive, facultative anaerobe isolated from the rhizosphere of bamboo. We demonstrate that the nif genes in this organism are organized as an operon comprising nifB, nifH, nifD, nifK, nifE, nifN, nifX, hesA and nifV and that the nif cluster is under the control of a σ70 (σA)-dependent promoter located upstream of nifB. To investigate genetic requirements for diazotrophy, we transferred the Paenibacillus nif cluster to Escherichia coli. The minimal nif gene cluster enables synthesis of catalytically active nitrogenase in this host, when expressed either from the native nifB promoter or from the T7 promoter. Deletion analysis indicates that in addition to the core nif genes, hesA plays an important role in nitrogen fixation and is responsive to the availability of molybdenum. Whereas nif transcription in Paenibacillus is regulated in response to nitrogen availability and by the external oxygen concentration, transcription from the nifB promoter is constitutive in E. coli, indicating that negative regulation of nif transcription is bypassed in the heterologous host. This study demonstrates the potential for engineering nitrogen fixation in a non-nitrogen fixing organism with a minimum set of nine nif genes. PMID:24146630

  6. COIL power extraction enhanced by reducing/eliminating iodine clusters in a high Mach number nitrogen mixing nozzle

    NASA Astrophysics Data System (ADS)

    Marshall, J.; Healey, K.; Croker, B.; Kendrick, K.; Yang, T. T.; Hsia, Y. C.; Dickerson, R. A.; Forman, L.

    2006-02-01

    Heterogeneous iodine cluster formation has been identified as the responsible factor resulting in large iodine titration requirements for Boeing's first high Mach number nitrogen ejector nozzle. A solution employing geometrically produced aerodynamic heating in the flow was envisioned to break up these clusters. Horizontal and vertical wire arrays (cluster busters) placed downstream of the nozzle exit plane (NEP) have been shown to significantly reduce the optimal iodine titration and to greatly improve the power extraction efficiency of the Chemical Oxygen-Iodine Laser utilizing this first generation ejector nozzle.

  7. The chemistry of nitrogen oxides on small size-selected cobalt clusters, Co{sub n}{sup +}

    SciTech Connect

    Anderson, Marie L.; Lacz, Agnieszka; Drewello, Thomas; Derrick, Peter J.; Woodruff, D. Phil; Mackenzie, Stuart R.

    2009-02-14

    Fourier transform ion cyclotron resonance mass spectrometry has been employed to study the reactions of gas-phase cationic cobalt clusters, Co{sub n}{sup +} (n=4-30), with nitric oxide, NO, and nitrous oxide, N{sub 2}O, under single collision conditions. Isolation of the initial cluster permits detailed investigation of fragmentation channels which characterize the reactions of all but the largest clusters studied. In reaction with N{sub 2}O, most clusters generate the monoxides Co{sub n}O{sup +} without fragmentation, cobalt atom loss accompanying only subsequent reactions. By contrast, chemisorption of even a single NO molecule is accompanied by fragmentation of the cluster. The measured rate coefficients for the Co{sub n}{sup +}+N{sub 2}O reaction as a function of cluster size are significantly smaller than those calculated using the surface charge capture model, while for NO the rates are comparable. The reactions have been studied under high coverage conditions by storing clusters for extended periods to permit multiple reactions to occur. This leads to interesting chemistry on the surface of the cluster resulting in the formation of stable oxide clusters and/or the decomposition of nitric oxide on the cluster with the resulting loss of molecular nitrogen.

  8. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond.

    PubMed

    Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wan, Jones T K; Liu, R B

    2011-04-01

    The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen-vacancy centre in diamond as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile, which become pronounced under dynamical decoupling control. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research, and could also have applications in solid-state quantum computing. PMID:21358646

  9. Does nitrogen gas bubbled through a low density polymer gel dosimeter solution affect the polymerization process?

    PubMed Central

    Shahbazi-Gahrouei, Daryoush; Gholami, Mehrdad; Pourfallah, Tayyeb Allahverdi; Keshtkar, Mohammad

    2015-01-01

    Background: On account of the lower electron density in the lung tissue, the dose distribution in the lung cannot be verified with the existing polymer gel dosimeters. Thus, the aims of this study are to make a low density polymer gel dosimeter and investigate the effect of nitrogen gas bubbles on the R2 responses and its homogeneity. Materials and Methods: Two different types of low density polymer gel dosimeters were prepared according to a composition proposed by De Deene, with some modifications. In the first type, no nitrogen gas was perfused through the gel solution and water. In the second type, to expel the dissolved oxygen, nitrogen gas was perfused through the water and gel solution. The post-irradiation times in the gels were 24 and 5 hours, respectively, with and without perfusion of nitrogen gas through the water and gel solution. Results: In the first type of gel, there was a linear correlation between the doses and R2 responses from 0 to 12 Gy. The fabricated gel had a higher dynamic range than the other low density polymer gel dosimeter; but its background R2 response was higher. In the second type, no difference in R2 response was seen in the dose ranges from 0 to 18 Gy. Both gels had a mass density between 0.35 and 0.45 g.cm-3 and CT values of about -650 to -750 Hounsfield units. Conclusion: It appeared that reactions between gelatin-free radicals and monomers, due to an increase in the gel temperature during rotation in the household mixer, led to a higher R2-background response. In the second type of gel, it seemed that the collapse of the nitrogen bubbles was the main factor that affected the R2-responses. PMID:26015914

  10. Cysteine 295 indirectly affects Ni coordination of carbon monoxide dehydrogenase-II C-cluster

    SciTech Connect

    Inoue, Takahiro; Takao, Kyosuke; Yoshida, Takashi; Wada, Kei; Daifuku, Takashi; Yoneda, Yasuko; Fukuyama, Keiichi; Sako, Yoshihiko

    2013-11-08

    Highlights: •CODH-II harbors a unique [Ni-Fe-S] cluster. •We substituted the ligand residues of Cys{sup 295} and His{sup 261}. •Dramatic decreases in Ni content upon substitutions were observed. •All substitutions did not affect Fe-S clusters assembly. •CO oxidation activity was decreased by the substitutions. -- Abstract: A unique [Ni–Fe–S] cluster (C-cluster) constitutes the active center of Ni-containing carbon monoxide dehydrogenases (CODHs). His{sup 261}, which coordinates one of the Fe atoms with Cys{sup 295}, is suggested to be the only residue required for Ni coordination in the C-cluster. To evaluate the role of Cys{sup 295}, we constructed CODH-II variants. Ala substitution for the Cys{sup 295} substitution resulted in the decrease of Ni content and didn’t result in major change of Fe content. In addition, the substitution had no effect on the ability to assemble a full complement of [Fe–S] clusters. This strongly suggests Cys{sup 295} indirectly and His{sup 261} together affect Ni-coordination in the C-cluster.

  11. Nitrogen abundances and multiple stellar populations in the globular clusters of the Fornax dSph

    SciTech Connect

    Larsen, Søren S.; Strader, Jay

    2014-12-10

    We use measurements of nitrogen abundances in red giants to search for multiple stellar populations in the four most metal-poor globular clusters (GCs) in the Fornax dwarf spheroidal galaxy (Fornax 1, 2, 3, and 5). New imaging in the F343N filter, obtained with the Wide Field Camera 3 on the Hubble Space Telescope, is combined with archival F555W and F814W observations to determine the strength of the NH band near 3370 Å. After accounting for observational errors, the spread in the F343N-F555W colors of red giants in the Fornax GCs is similar to that in M15 and corresponds to an abundance range of Δ[N/Fe] ∼ 2 dex, as observed also in several Galactic GCs. The spread in F555W-F814W is, instead, fully accounted for by observational errors. The stars with the reddest F343N-F555W colors (indicative of N-enhanced composition) have more centrally concentrated radial distributions in all four clusters, although the difference is not highly statistically significant within any individual cluster. From double-Gaussian fits to the color distributions, we find roughly equal numbers of 'N-normal' and 'N-enhanced' stars (formally ∼40% N-normal stars in Fornax 1, 3, and 5 and ∼60% in Fornax 2). We conclude that GC formation, in particular, regarding the processes responsible for the origin of multiple stellar populations, appears to have operated similarly in the Milky Way and in the Fornax dSph. Combined with the high ratio of metal-poor GCs to field stars in the Fornax dSph, this places an important constraint on scenarios for the origin of multiple stellar populations in GCs.

  12. Elucidating Sources and Factors Affecting Delivery of Nitrogen to Surface Waters of New York State

    NASA Astrophysics Data System (ADS)

    Golden, H. E.; Boyer, E. W.; Burns, D. A.; Elliott, E.; Kendall, C.; Butler, T.

    2005-12-01

    Rapid changes in power generation, transportation, and agriculture have appreciably altered nitrogen (N) cycling at regional scales, increasing N inputs to landscapes and surface waters. Numerous studies have linked this surplus N to a host of concerns, including eutrophication and violations in drinking water standards. Inputs of N nation-wide have increased during recent decades, primarily from the production and use of fertilizers, the planting of N-fixing crops, and the combustion of fossil fuels. The role of atmospheric N sources is of particular concern in New York, as rates of atmospheric N deposition in the northeast are among the highest in the nation. Our work aims to quantify nitrogen sources and fate in watersheds throughout the state. Further, we intend to elucidate factors controlling the retention and release of N to surface waters. We quantify nitrogen inputs through both measurement data (e.g., from wet and dry atmospheric deposition, precipitation, streamflow, water quality, and isotopic tracers) and from synoptic spatial databases (e.g., of terrain, land use, and fertilizer inputs). We present preliminary results from large catchments in contrasting spatial settings across the state (different land use configurations and atmospheric deposition gradients), illustrating the contribution of nitrogen sources to each region and factors affecting delivery to surface waters. Further, we present 30 years of temporal data from a large watershed (Fall Creek) in the Finger Lakes region of the state to demonstrate how hydrological and biogeochemical factors, over seasons and under varying hydrological regimes, combine to control N dynamics in surface waters. Our collective work provides information that is necessary to develop sound strategies for understanding and managing nutrients at regional scales.

  13. Nitrogen and phosphorus additions negatively affect tree species diversity in tropical forest regrowth trajectories.

    PubMed

    Siddique, Ilyas; Vieira, Ima Célia Guimarães; Schmidt, Susanne; Lamb, David; Carvalho, Cláudio José Reis; Figueiredo, Ricardo de Oliveira; Blomberg, Simon; Davidson, Eric A

    2010-07-01

    Nutrient enrichment is increasingly affecting many tropical ecosystems, but there is no information on how this affects tree biodiversity. To examine dynamics in vegetation structure and tree species biomass and diversity, we annually remeasured tree species before and for six years after repeated additions of nitrogen (N) and phosphorus (P) in permanent plots of abandoned pasture in Amazonia. Nitrogen and, to a lesser extent, phosphorus addition shifted growth among woody species. Nitrogen stimulated growth of two common pioneer tree species and one common tree species adaptable to both high- and low-light environments, while P stimulated growth only of the dominant pioneer tree Rollinia exsucca (Annonaceae). Overall, N or P addition reduced tree assemblage evenness and delayed tree species accrual over time, likely due to competitive monopolization of other resources by the few tree species responding to nutrient enrichment with enhanced establishment and/or growth rates. Absolute tree growth rates were elevated for two years after nutrient addition. However, nutrient-induced shifts in relative tree species growth and reduced assemblage evenness persisted for more than three years after nutrient addition, favoring two nutrient-responsive pioneers and one early-secondary tree species. Surprisingly, N + P effects on tree biomass and species diversity were consistently weaker than N-only and P-only effects, because grass biomass increased dramatically in response to N + P addition. The resulting intensified competition probably prevented an expected positive N + P synergy in the tree assemblage. Thus, N or P enrichment may favor unknown tree functional response types, reduce the diversity of coexisting species, and delay species accrual during structurally and functionally complex tropical rainforest secondary succession. PMID:20715634

  14. Too Little, Too Late: How the Tidal Evolution of Hot Jupiters Affects Transit Surveys of Clusters

    NASA Technical Reports Server (NTRS)

    Debes, John H.; Jackson, Brian

    2010-01-01

    The tidal evolution of hot Jupiters may change the efficiency of transit surveys of stellar clusters. The orbital decay that hot Jupiters suffer may result in their destruction, leaving fewer transiting planets in older clusters. We calculate the impact tidal evolution has for different assumed stellar populations, including that of 47 Tuc, a globular cluster that was the focus of an intense HST search for transits. We find that in older clusters one expects to detect fewer transiting planets by a factor of two for surveys sensitive to Jupiter-like planets in orbits out to 0.5 AU, and up to a factor of 25 for surveys sensitive to Jupiter-like planets in orbits out to 0.08 AU. Additionally, tidal evolution affects the distribution of transiting planets as a function of semi-major axis, producing larger orbital period gaps for transiting planets as the age of the cluster increases. Tidal evolution can explain the lack of detected exoplanets in 47 Tuc without invoking other mechanisms. Four open clusters residing within the Kepler fields of view have ages that span 0.4-8 Gyr-if Kepler can observe a significant number of planets in these clusters, it will provide key tests for our tidal evolution hypothesis. Finally, our results suggest that observers wishing to discover transiting planets in clusters must have sufficient accuracy to detect lower mass planets, search larger numbers of cluster members, or have longer observation windows to be confident that a significant number of transits will occur for a population of stars.

  15. NITROGEN DEPOSITION AND ORGANIC MATTER MANIPULATIONS AFFECT GROSS AND NET NITROGEN TRANSFORMATIONS IN TWO TEMPERATE FORESTS SOILS

    EPA Science Inventory

    Soil nitrogen transformations are intricately linked to carbon transformations. We utilized two existing organic matter manipulation sites in western Oregon, USA and Hungary to investigate these linkages. Our questions were: 1) Does the quantity and quality of organic matter af...

  16. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2006-01-01

    In 2005, ammonia was produced by 15 companies at 26 plants in 16 states in the United States. Of the total ammonia production capacity, 55% was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas. US producers operated at 66% of their rated capacity. In descending order, Koch Nitrogen, Terra Industries, CF Industries, Agrium and PCS Nitrogen accounted for 81% of the US ammonia production capacity.

  17. The mechansims by which solute nitrogen affects phase transformations and mechanical properties of automotive dual-phase sheet steel

    NASA Astrophysics Data System (ADS)

    Brown, Tyson W.

    Dual-phase steels have seen increased use in automotive applications in recent years, in order to meet the goals of weight reduction and occupant safety. Variations in nitrogen content that may be encountered in steel sourced from a basic oxygen furnace process compared to an electric arc furnace process require that dual-phase steel producers understand the ways that nitrogen affects processing and properties. In the current work, the distribution of nitrogen was investigated in a dual-phase steel with a base chemistry of 0.1 C, 2.0 Mn, 0.2 Cr, 0.2 Mo (wt pct) across a range of nitrogen contents (30-159 ppm) with Al (0.2 and 0.08 wt pct), and Ti (0.02 wt pct) additions used for precipitation control of nitrogen amounts. The distribution of nitrogen amongst trapping sites, including precipitates, grain boundaries, dislocations, and interstitial sites (away from other types of defects) was determined from a combination of electrolytic dissolution, internal friction, and three-dimensional atom probe tomography experiments. Various mechanisms by which different amounts and locations of nitrogen affect phase transformations and mechanical properties were identified from quantitative metallography, dilatometric measurement of phase transformations, tensile testing, and nanoindentation hardness testing. Results indicate nitrogen that is not precipitated with Ti or Al (free nitrogen) partitions to austenite (and thus martensite) during typical intercritical annealing treatments, and is mostly contained in Cottrell atmospheres in martensite. Due to the austenite stabilizing effect of nitrogen, the presence of free nitrogen during intercritical annealing leads to a higher austenite fraction in certain conditions. Thus, the presence of free nitrogen in a dual-phase microstructure will lead to an increase in tensile and yield strengths from both an increase in martensite fraction, and an increase in martensite hardness due to solid solution strengthening. Despite the presence

  18. Ring opening of strained-ring heterocycles containing nitrogen by an osmium cluster complex

    SciTech Connect

    Adams, R.D.; Chen, Gong

    1992-11-01

    The osmium cluster complex Os{sub 3}(CO){sub 10}({mu}-NCH{sub 2}CH{sub 2}CH{sub 2})({mu}-H) (1) was obtained in 34% yield from the reaction of Os{sub 3}(CO){sub 10}(NCMe){sub 2} with azetidine. Complex 1 was characterized crystallographically and shown to contain a four-membered NCH{sub 2}CH{sub 2}CH{sub 2} ring bridging two of the metal atoms via the nitrogen atom. When heated to 125{degrees}C, 1 was transformed to the new complex Os{sub 3}(CO){sub 10}[{mu}-N=C(H)Et]({mu}-H) (2; 27% yield) by an opening of the four-membered ring and a hydrogen shift. Crystal data: for 1, space group P2{sub 1}/c, a = 8.793 (2) A, b = 16.265 (2) A, c = 13.766 (4) A, {Beta} = 110.56 (1){degrees}, Z = 4, 1872 reflections, R = 0.039; for 2, space group P1, a = 92.73 (2){degrees}, {Beta} = 99.03 (2){degrees}, {gamma} = 81.52 (2){degrees}, Z = 6, 4862 reflections, R = 0.024. 16 refs. 2 figs.

  19. Receptor clustering affects signal transduction at the membrane level in the reaction-limited regime

    NASA Astrophysics Data System (ADS)

    Caré, Bertrand R.; Soula, Hédi A.

    2013-01-01

    Many types of membrane receptors are found to be organized as clusters on the cell surface. We investigate the potential effect of such receptor clustering on the intracellular signal transduction stage. We consider a canonical pathway with a membrane receptor (R) activating a membrane-bound intracellular relay protein (G). We use Monte Carlo simulations to recreate biochemical reactions using different receptor spatial distributions and explore the dynamics of the signal transduction. Results show that activation of G by R is severely impaired by R clustering, leading to an apparent blunted biological effect compared to control. Paradoxically, this clustering decreases the half maximal effective dose (ED50) of the transduction stage, increasing the apparent affinity. We study an example of inter-receptor interaction in order to account for possible compensatory effects of clustering and observe the parameter range in which such interactions slightly counterbalance the loss of activation of G. The membrane receptors’ spatial distribution affects the internal stages of signal amplification, suggesting a functional role for membrane domains and receptor clustering independently of proximity-induced receptor-receptor interactions.

  20. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen.

    PubMed

    Cárcamo, Héctor A; Herle, Carolyn E; Lupwayi, Newton Z

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  1. Sitona lineatus (Coleoptera: Curculionidae) Larval Feeding on Pisum sativum L. Affects Soil and Plant Nitrogen

    PubMed Central

    Cárcamo, Héctor A.; Herle, Carolyn E.; Lupwayi, Newton Z.

    2015-01-01

    Adults of Sitona lineatus (pea leaf weevil, PLW) feed on foliage of several Fabaceae species but larvae prefer to feed on nodules of Pisum sativum L. and Vicia faba L. Indirectly, through their feeding on rhizobia, weevils can reduce soil and plant available nitrogen (N). However, initial soil N can reduce nodulation and damage by the weevil and reduce control requirements. Understanding these interactions is necessary to make integrated pest management recommendations for PLW. We conducted a greenhouse study to quantify nodulation, soil and plant N content, and nodule damage by weevil larvae in relation to soil N amendment with urea, thiamethoxam insecticide seed coating and crop stage. PLWs reduced the number of older tumescent (multilobed) nodules and thiamethoxam addition increased them regardless of other factors. Nitrogen amendment significantly increased soil available N (>99% nitrate) as expected and PLW presence was associated with significantly lower levels of soil N. PLW decreased plant N content at early flower and thiamethoxam increased it, particularly at late flower. The study illustrated the complexity of interactions that determine insect herbivory effects on plant and soil nutrition for invertebrates that feed on N-fixing root nodules. We conclude that effects of PLW on nodulation and subsequent effects on plant nitrogen are more pronounced during the early growth stages of the plant. This suggests the importance of timing of PLW infestation and may explain the lack of yield depression in relation to this pest observed in many field studies. Also, pea crops in soils with high levels of soil N are unlikely to be affected by this herbivore and should not require insecticide inputs. PMID:26106086

  2. Sonoran Desert winter annuals affected by density of red brome and soil nitrogen

    USGS Publications Warehouse

    Salo, L.F.; McPherson, G.R.; Williams, D.G.

    2005-01-01

    Red brome [Bromus madritensis subsp. rubens (L.) Husn.] is a Mediterranean winter annual grass that has invaded Southwestern USA deserts. This study evaluated interactions among 13 Sonoran Desert annual species at four densities of red brome from 0 to the equivalent of 1200 plants ma??2. We examined these interactions at low (3 I?g) and high (537 I?g NO3a?? g soila??1) nitrogen (N) to evaluate the relative effects of soil N level on survival and growth of native annuals and red brome. Red brome did not affect emergence or survival of native annuals, but significantly reduced growth of natives, raising concerns about effects of this exotic grass on the fecundity of these species. Differences in growth of red brome and of the three dominant non nitrogen-fixing native annuals at the two levels of soil N were similar. Total species biomass of red brome was reduced by 83% at low, compared to high, N levels, whereas that of the three native species was reduced by from 42 to 95%. Mean individual biomass of red brome was reduced by 87% at low, compared to high, N levels, whereas that of the three native species was reduced by from 72 to 89%.

  3. Use of Nitrogen-15 Isotope Method in Soils and Ground Water to Determine Potential Nitrogen Sources Affecting a Municipal Water Supply in Kansas, USA

    NASA Astrophysics Data System (ADS)

    Townsend, M. A.; Macko, S. A.

    2004-12-01

    Nitrate-N concentrations have increased to greater than 10 mg/L in a municipal water supply in western Kansas from 1995 to 2002. A study was done by the Kansas Geological Survey using the nitrogen-15 natural abundance isotope method to determine potential sources for the increasing nitrate concentrations. Preliminary results of the isotope analyses on water samples suggest that animal waste and/or denitrification enrichment has affected the water supply. Soil samples from areas near the wells that were not treated with manure show a general increase of nitrogen-15 signature (+9 to +15 \\permil) to a depth of 5 m. Soils are silt loams with measurable carbonate (0.8 to 2 % by weight) in the profile, which may permit volatilization enrichment to occur in the soil profile. Wells in the area range from 11 to 20 m in alluvial deposits with depth to water at approximately 9 m). Nitrate-N values range from 8 to 26 mg/L. Nitrogen-15 values range from (+17 to +28 \\permil) with no obvious source of animal waste near the well sites. There are potential nearby long-term sources of animal waste - an abandoned sewage treatment plant and an agricultural testing farm. One well has a reducing chemistry with a nitrate value of 0.9 mg/L and a nitrogen-15 value of +17 \\permil suggesting that alluvial sediment variation also has an impact on the water quality in the study area. The other wells show values of nitrate and nitrogen-15 that are much greater than the associated soils. The use of nitrogen-15 alone permited limited evaluation of sources of nitrate to ground water particularly in areas with carbonate in the soils. Use of oxygen-18 on nitrate will permit the delineation of the processes affecting the nitrogen in the soil profile and determination of the probable sources and the processes that have affected the nitrogen in the ground water. Final results of the nitrogen-15 and oxygen-18 analyses will be presented.

  4. Affective Dispositions and PTSD Symptom Clusters in Female Interpersonal Trauma Survivors.

    PubMed

    Brown, Wilson J; Bruce, Steven E; Buchholz, Katherine R; Artime, Tiffany M; Hu, Emily; Sheline, Yvette I

    2016-02-01

    Interpersonal trauma (IPT) against women can have dire psychological consequences including persistent maladaptive changes in the subjective experience of affect. Contemporary literature has firmly established heightened negative affect (NA) as a risk and maintenance factor for posttraumatic stress disorder (PTSD). However, the relationship between NA and PTSD symptoms is not well understood within IPT survivors, the majority of whom are female, as much of this research has focused on combat veterans. In addition, the connection between positive affect (PA) and PTSD symptoms has yet to be examined. With increased emphasis on "negative alterations in cognitions and mood . . ." as an independent symptom cluster of PTSD in the Diagnostic and Statistical Manual of Mental Disorders (5th ed.; DSM-5), understanding the relationship between self-reported affectivity and the classic PTSD symptom clusters may be increasingly useful in differentiating symptom presentations of trauma-related psychopathology. The current study directly compared self-reported trait NA and PA with total severity and frequency cluster scores from the Clinician-Administered PTSD Scale (CAPS) in 54 female survivors of IPT who met criteria for PTSD. Results identify NA (but not PA) as a consistent predictor of total PTSD symptoms and, specifically, re-experiencing symptoms. PMID:25389192

  5. The reallocation of carbon in P deficient lupins affects biological nitrogen fixation.

    PubMed

    Kleinert, Aleysia; Venter, Mauritz; Kossmann, Jens; Valentine, Alexander

    2014-11-01

    It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth. PMID:25155758

  6. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2004-01-01

    Ammonia is the principal source of fixed nitrogen. It was produced by 17 companies at 34 plants in the United States during 2003. Fifty-three percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock.

  7. Zeolite Soil Application Method Affects Inorganic Nitrogen, Moisture, and Corn Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adoption of new management techniques which improve soil water storage and soil nitrogen plant availability yet limit nitrogen leaching may help improve environmental quality. A benchtop study was conducted to determine the influence of a single urea fertilizer rate (224 kilograms of Nitrogen per ...

  8. Nitrogen

    USGS Publications Warehouse

    Kramer, D.A.

    2007-01-01

    Ammonia was produced by 15 companies at 25 plants in 16 states in the United States during 2006. Fifty-seven percent of U.S. ammonia production capacity was centered in Louisiana, Oklahoma and Texas because of their large reserves of natural gas, the dominant domestic feedstock. In 2006, U.S. producers operated at about 72 percent of their rated capacity (excluding plants that were idle for the entire year). Five companies, Koch Nitrogen, Terra Industries, CF Industries, PCS Nitro-gen, and Agrium, in descending order, accounted for 79 percent U.S. ammonia production capacity. The United States was the world's fourth-ranked ammonia producer and consumer following China, India and Russia. Urea, ammonium nitrate, ammonium phosphates, nitric acid and ammonium sulfate were the major derivatives of ammonia in the United States, in descending order of importance.

  9. Macronutrient content of a hypoenergy diet affects nitrogen retention and muscle function in weight lifters.

    PubMed

    Walberg, J L; Leidy, M K; Sturgill, D J; Hinkle, D E; Ritchey, S J; Sebolt, D R

    1988-08-01

    Weight lifters (WL) attempt to achieve a low body fat while maintaining fat free mass (FFM) and muscle function. Body composition and isometric muscular endurance were tested in 19 experienced male WL at the end of a weight maintenance and exercise routine standardization week. The subjects were assigned to either a control (C), moderate-protein (0.8 g.kg-1.d-1), high-carbohydrate hypoenergy diet (MP/HC), or high-protein (1.6 g.kg-1.d-1), moderate-carbohydrate hypoenergy diet (HP/MC). Both hypoenergy diets provided 75.3 kJ (18 kcal).kg-1.d-1. Apparent nitrogen balance (NBAL) was assessed using nitrogen in the diet, urine, and sweat. Body fat and FFM loss via hydrostatic weighing were not different between the hypoenergy groups. However, lean body mass (LBM) change as assessed by NBAL showed that the MP/HC group had an average negative NBAL of -3.19 g.d-1 while the HP/MC group had a positive NBAL of 4.13 g.d-1. Macronutrient mix did not affect biceps endurance, but quadriceps endurance declined for the HP/MC group during the experimental week. In conclusion, a hypoenergy diet providing twice the RDA for protein was more effective in retaining body protein in WL than a diet with higher carbohydrate but the RDA for protein. However, the lower carbohydrate of this diet contributed to reduced muscular endurance in these athletes. PMID:3182156

  10. Low vapour pressure deficit affects nitrogen nutrition and foliar metabolites in silver birch.

    PubMed

    Lihavainen, Jenna; Ahonen, Viivi; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Oksanen, Elina; Keinänen, Markku

    2016-07-01

    Air humidity indicated as vapour pressure deficit (VPD) is directly related to transpiration and stomatal function of plants. We studied the effects of VPD and nitrogen (N) supply on leaf metabolites, plant growth, and mineral nutrition with young micropropagated silver birches (Betula pendula Roth.) in a growth chamber experiment. Plants that were grown under low VPD for 26 d had higher biomass, larger stem diameter, more leaves, fewer fallen leaves, and larger total leaf area than plants that were grown under high VPD. Initially, low VPD increased height growth rate and stomatal conductance; however, the effect was transient and the differences between low and high VPD plants became smaller with time. Metabolic adjustment to low VPD reflected N deficiency. The concentrations of N, iron, chlorophyll, amino acids, and soluble carbohydrates were lower and the levels of starch, quercetin glycosides, and raffinose were higher in the leaves that had developed under low VPD compared with high VPD. Additional N supply did not fully overcome the negative effect of low VPD on nutrient status but it diminished the effects of low VPD on leaf metabolism. Thus, with high N supply, the glutamine to glutamate ratio and starch production under low VPD became comparable with the levels under high VPD. The present study demonstrates that low VPD affects carbon and nutrient homeostasis and modifies N allocation of plants. PMID:27259554

  11. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere.

    PubMed

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  12. Nitrogen multitemporal monitoring through mosses in urban areas affected by mud volcanoes around Mt. Etna, Italy.

    PubMed

    Bonanno, Giuseppe

    2013-10-01

    Nitrogen emissions were assessed by using mosses as bioindicators in a densely inhabited area affected by mud volcanoes. Such volcanoes, locally called Salinelle, are phenomena that occur around Mt. Etna (Sicily, Italy), and are interpreted as the surface outflow of a hydrothermal system located below Mt. Etna, which releases sedimentary fluids (hydrocarbons and Na-Cl brines) along with magmatic gases (mainly CO2 and He). To date, N emissions from such mud volcanoes have been only quantitatively assessed, and no biomonitoring campaigns are reported about the cumulative effects of these emissions. This study analyzed N concentrations in moss, water and soil samples, collected in a 4-year monitoring campaign. The bryophyte Bryum argenteum, a species widely adopted in surveys of atmospheric pollution, was used as a biological indicator. N concentrations in biomonitors showed relatively low values in the study sites. However, the results of this study suggest that N emissions from Salinelle may have an impact on surrounding ecosystems because N values in moss and water showed a significant correlation. N oxides, in particular, contribute to acidification of ecosystems, thus multitemporal biomonitoring is recommended, especially in those areas where N emitting sources are anthropogenic and natural. PMID:23479119

  13. The form of nitrogen nutrition affects resistance against Pseudomonas syringae pv. phaseolicola in tobacco

    PubMed Central

    Gupta, Kapuganti J.; Mur, Luis A. J.

    2013-01-01

    Different forms of nitrogen (N) fertilizer affect disease development; however, this study investigated the effects of N forms on the hypersensitivity response (HR)—a pathogen-elicited cell death linked to resistance. HR-eliciting Pseudomonas syringae pv. phaseolicola was infiltrated into leaves of tobacco fed with either or . The speed of cell death was faster in -fed compared with -fed plants, which correlated, respectively, with increased and decreased resistance. Nitric oxide (NO) can be generated by nitrate reductase (NR) to influence the formation of the HR. NO generation was reduced in -fed plants where N assimilation bypassed the NR step. This was similar to that elicited by the disease-forming P. syringae pv. tabaci strain, further suggesting that resistance was compromised with feeding. PR1a is a biomarker for the defence signal salicylic acid (SA), and expression was reduced in -fed compared with fed plants at 24h after inoculation. This pattern correlated with actual SA measurements. Conversely, total amino acid, cytosolic and apoplastic glucose/fructose and sucrose were elevated in - treated plants. Gas chromatography/mass spectroscopy was used to characterize metabolic events following different N treatments. Following nutrition, polyamine biosynthesis was predominant, whilst after nutrition, flux appeared to be shifted towards the production of 4-aminobutyric acid. The mechanisms whereby feeding enhances SA, NO, and polyamine-mediated HR-linked defence whilst these are compromised with , which also increases the availability of nutrients to pathogens, are discussed. PMID:23230025

  14. Fungal endophyte Phomopsis liquidambari affects nitrogen transformation processes and related microorganisms in the rice rhizosphere

    PubMed Central

    Yang, Bo; Wang, Xiao-Mi; Ma, Hai-Yan; Yang, Teng; Jia, Yong; Zhou, Jun; Dai, Chuan-Chao

    2015-01-01

    The endophytic fungus Phomopsis liquidambari performs an important ecosystem service by assisting its host with acquiring soil nitrogen (N), but little is known regarding how this fungus influences soil N nutrient properties and microbial communities. In this study, we investigated the impact of P. liquidambari on N dynamics, the abundance and composition of N cycling genes in rhizosphere soil treated with three levels of N (urea). Ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB) and diazotrophs were assayed using quantitative real-time polymerase chain reaction and denaturing gradient gel electrophoresis at four rice growing stages (S0: before planting, S1: tillering stage, S2: grain filling stage, and S3: ripening stage). A significant increase in the available nitrate and ammonium contents was found in the rhizosphere soil of endophyte-infected rice under low N conditions. Moreover, P. liquidambari significantly increased the potential nitrification rates, affected the abundance and community structure of AOA, AOB, and diazotrophs under low N conditions in the S1 and S2 stages. The root exudates were determined due to their important role in rhizosphere interactions. P. liquidambari colonization altered the exudation of organic compounds by rice roots and P. liquidambari increased the concentration of soluble saccharides, total free amino acids and organic acids in root exudates. Plant-soil feedback mechanisms may be mediated by the rice-endophyte interaction, especially in nutrient-limited soil. PMID:26441912

  15. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position.

    PubMed

    Li, Zhi-Xin; Yang, Wei-Jun; Ahammed, Golam Jalal; Shen, Chen; Yan, Peng; Li, Xin; Han, Wen-Yan

    2016-09-01

    Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants. PMID:27380366

  16. Identification of the local vibrational modes of small nitrogen clusters in dilute GaAsN

    NASA Astrophysics Data System (ADS)

    Carvalho, A.; Barker, S. J.; Jones, R.; Williams, R. S.; Ashwin, M. J.; Newman, R. C.; Stavrinou, P. N.; Parry, G.; Jones, T. S.; Öberg, S.; Briddon, P. R.

    2007-12-01

    Ultra-high-resolution infra-red local vibrational mode (IR LVM) spectroscopy measurements together with density-functional calculations have been used to identify the signatures of close substitutional nitrogen ( NAs) pairs in GaAs1-xNx alloys with concentrations of x<0.025. We show that the presence of sub-peaks close to the NAs absorption band can be attributed to nitrogen pairs up to fourth neighbor position. Additionally, we suggest that the nitrogen pairs which give rise to the deepest levels below the conduction band edge are the first to be removed upon annealing.

  17. Severe dietary lysine restriction affects growth and body composition and hepatic gene expression for nitrogen metabolism in growing rats.

    PubMed

    Kim, J; Lee, K S; Kwon, D-H; Bong, J J; Jeong, J Y; Nam, Y S; Lee, M S; Liu, X; Baik, M

    2014-02-01

    Dietary lysine restriction may differentially affect body growth and lipid and nitrogen metabolism, depending on the degree of lysine restriction. This study was conducted to examine the effect of dietary lysine restriction on growth and lipid and nitrogen metabolism with two different degree of lysine restriction. Isocaloric amino acid-defined diets containing 1.4% lysine (adequate), 0.70% lysine (50% moderate lysine restriction) and 0.35% lysine (75% severe lysine restriction) were fed from the age of 52 to 77 days for 25 days in male Sprague-Dawley rats. The 75% severe lysine restriction increased (p < 0.05) food intake, but retarded (p < 0.05) growth, increased (p < 0.05) liver and muscle lipid contents and abdominal fat accumulation, increased (p < 0.05) blood urea nitrogen levels and mRNA levels of the serine-synthesizing 3-phosphoglycerate dehydrogenase gene, but decreased (p < 0.05) urea cycle arginase gene mRNA levels. In contrast, the 50% lysine restriction did not significantly (p > 0.05) affect body growth and lipid and nitrogen metabolism. Our results demonstrate that severe 75% lysine restriction has detrimental effects on body growth and deregulate lipid and nitrogen metabolism. PMID:23441935

  18. Do Forest Age and Soil Depth Affect Carbon and Nitrogen Adsorption in Mineral Horizons?

    NASA Astrophysics Data System (ADS)

    Spina, P. G.; Lovett, G. M.; Fuss, C. B.; Goodale, C. L.; Lang, A.; Fahey, T.

    2015-12-01

    Mineral soils retain large amounts of organic matter through sorption on the surfaces of mineral soils, the largest pools of carbon (C) and nitrogen (N) in the forests of the northeastern U.S. In addition to determining organic matter storage, adsorption and desorption processes are important controllers of runoff chemistry. We are studying adsorption dynamics of mineral soils collected from a chronosequence of hardwood forest sites in the White Mountains, NH to determine how soils vary in their DOM adsorption capacities as a function of effective C and N saturation. We hypothesize that forest age determines proximity to saturation because young forests may need to mine soil organic matter (SOM) in mineral soils to obtain nitrogen to meet growth demands, while the soils of older forests have had time to reaccumulate SOM, eventually reaching C and N saturation. Consequently, we expect adsorption capacities to first increase with forest age in young forests, as the trees mine C and N from mineral surfaces. They will then decrease with forest age in older forests as mining slows and C and N begin to re-accumulate. Batch experiments were conducted with mineral soil samples and dilutions of forest floor leachate. However, preliminary results from a mature forest site (about 100 years old), which we predicted to be a low point of C and N saturation from decades of mining, contradict expectations. Dissolved organic carbon (DOC) adsorption in its shallow mineral soil layers (0-3 cm below E or A horizons) are lower than younger sites ranging from 20 to about 40 years old. In addition to forest age, soil depths also affect N retention dynamics in forest soils. We hypothesized that deeper mineral soils might have greater adsorption capacities due to the fact that they are exposed to less DOC and DON leaching from organic layers and therefore less saturated. Results from the same mature forest site confirm this. Soils from 3-10 cm depth have more potential to adsorb DOC and

  19. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest

  20. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice

    PubMed Central

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  1. The Magea gene cluster regulates male germ cell apoptosis without affecting the fertility in mice.

    PubMed

    Hou, Siyuan; Xian, Li; Shi, Peiliang; Li, Chaojun; Lin, Zhaoyu; Gao, Xiang

    2016-01-01

    While apoptosis is essential for male germ cell development, improper activation of apoptosis in the testis can affect spermatogenesis and cause reproduction defects. Members of the MAGE-A (melanoma antigen family A) gene family are frequently clustered in mammalian genomes and are exclusively expressed in the testes of normal animals but abnormally activated in a wide variety of cancers. We investigated the potential roles of these genes in spermatogenesis by generating a mouse model with a 210-kb genomic deletion encompassing six members of the Magea gene cluster (Magea1, Magea2, Magea3, Magea5, Magea6 and Magea8). Male mice carrying the deletion displayed smaller testes from 2 months old with a marked increase in apoptotic germ cells in the first wave of spermatogenesis. Furthermore, we found that Magea genes prevented stress-induced spermatogenic apoptosis after N-ethyl-N-nitrosourea (ENU) treatment during the adult stage. Mechanistically, deletion of the Magea gene cluster resulted in a dramatic increase in apoptotic germ cells, predominantly spermatocytes, with activation of p53 and induction of Bax in the testes. These observations demonstrate that the Magea genes are crucial in maintaining normal testicular size and protecting germ cells from excessive apoptosis under genotoxic stress. PMID:27226137

  2. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall

    NASA Astrophysics Data System (ADS)

    Wang, Guoqiang; Wu, Binbin; Zhang, Lei; Jiang, Hong; Xu, Zongxue

    2014-06-01

    The loss of available nutrients and the effects of soil erodibility on available nutrients losses were rarely researched. Here, laboratory simulation experiments were conducted to determine the soil erodibility effects on the available nitrogen (AN) and phosphorus (AP) losses. The impacts of rainfall intensity and slope on AN and AP losses were also studied. Two contrasting agricultural soils (Burozems and Cinnamon) that occur throughout the northern erosion region of China were selected. Two rainfall intensities (60 and 120 mm h-1) and two slopes (10% and 20%) were studied. Overall, greater runoff, sediment and available nutrient losses occurred from the Cinnamon soil due to its greater soil erodibility, which was approximately 2.8 times greater than that of the Burozems soil. The influence of runoff on sediment was positively linear. The absolute slope of the regression line between runoff rate and sediment yield rate was suitable as a soil erodibility indicator. Runoff-associated AN and AP losses were mainly controlled by runoff rate, and were weakly affected by soil erodibility (p > 0.05). However, soil erodibility significantly influenced the sediment-associated AN and AP losses (p < 0.01), and a positive logarithmic correlation best described their relationships. Since the runoff-associated AN and AP losses dominated the total AN and AP losses for both soils, soil erodibility also exhibited negligible influence on the total AN and AP losses (p > 0.05). Increasing rainfall intensity and slope generally increased the runoff, sediment, and available nutrient losses for both soils, but had no significant influences on their relationships. Our results provide a better understanding of soil and nutrient loss mechanisms.

  3. Salt tolerant plants increase nitrogen removal from biofiltration systems affected by saline stormwater.

    PubMed

    Szota, Christopher; Farrell, Claire; Livesley, Stephen J; Fletcher, Tim D

    2015-10-15

    Biofiltration systems are used in urban areas to reduce the concentration and load of nutrient pollutants and heavy metals entering waterways through stormwater runoff. Biofilters can, however be exposed to salt water, through intrusion of seawater in coastal areas which could decrease their ability to intercept and retain pollutants. We measured the effect of adding saline stormwater on pollutant removal by six monocotyledonous species with different levels of salt-tolerance. Carex appressa, Carex bichenoviana, Ficinia nodosa, Gahnia filum, Juncus kraussii and Juncus usitatus were exposed to six concentrations of saline stormwater, equivalent to electrical conductivity readings of: 0.09, 2.3, 5.5, 10.4, 20.0 and 37.6 mS cm(-1). Salt-sensitive species: C. appressa, C. bichenoviana and J. usitatus did not survive ≥10.4 mS cm(-1), removing their ability to take up nitrogen (N). Salt-tolerant species, such as F. nodosa and J. kraussii, maintained N-removal even at the highest salt concentration. However, their levels of water stress and stomatal conductance suggest that N-removal would not be sustained at concentrations ≥10.4 mS cm(-1). Increasing salt concentration indirectly increased phosphorus (P) removal, by converting dissolved forms of P to particulate forms which were retained by filter media. Salt concentrations ≥10 mS cm(-1) also reduced removal efficiency of zinc, manganese and cadmium, but increased removal of iron and lead, regardless of plant species. Our results suggest that biofiltration systems exposed to saline stormwater ≤10 mS cm(-1) can only maintain N-removal when planted with salt-tolerant species, while P removal and immobilisation of heavy metals is less affected by species selection. PMID:26150068

  4. Nitrogen storage dynamics are affected by masting events in Fagus crenata.

    PubMed

    Han, Qingmin; Kabeya, Daisuke; Iio, Atsuhiro; Inagaki, Yoshiyuki; Kakubari, Yoshitaka

    2014-03-01

    It is generally assumed that the production of a large crop of seeds depletes stores of resources and that these take more than 1 year to replenish; this is accepted, theoretically, as the proximate mechanism of mast seeding (resource budget model). However, direct evidence of resource depletion in masting trees is very rare. Here, we trace seasonal and inter-annual variations in nitrogen (N) concentration and estimate the N storage pool of individuals after full masting of Fagus crenata in two stands. In 2005, a full masting year, the amount of N in fruit litter represented half of the N present in mature leaves in an old stand (age 190-260 years), and was about equivalent to the amount of N in mature leaves in a younger stand (age 83-84 years). Due to this additional burden, both tissue N concentration and individual N storage decreased in 2006; this was followed by significant replenishment in 2007, although a substantial N store remained even after full masting. These results indicate that internal storage may be important and that N may be the limiting factor for fruiting. In the 4 years following full masting, the old stand experienced two moderate masting events separated by 2 years, whilst trees in the younger stand did not fruit. This different fruiting behavior may be related to different "costs of reproduction" in the full masting year 2005, thus providing more evidence that N may limit fruiting. Compared to the non-fruiting stand, individuals in the fruiting stand exhibited an additional increase in N concentrations in roots early in the 2007 growing season, suggesting additional N uptake from the soil to supply resource demand. The enhanced uptake may alleviate the N storage depletion observed in the full masting year. This study suggests that masting affects N cycle dynamics in mature Fagus crenata and N may be one factor limiting fruiting. PMID:24221082

  5. The Relationship of Cancer Symptom Clusters to Depressive Affect in the Initial Phase of Palliative Radiation

    PubMed Central

    Francoeur, Richard Benoit

    2007-01-01

    Research on comorbidity across cancer symptoms, including pain, fatigue, and depression, could suggest if crossover effects from symptom-specific interventions are plausible. Secondary analyses were conducted on a survey of 268 cancer patients with recurrent disease from a northeastern U.S. city who were initiating palliative radiation for bone pain. Moderator regression analyses predicted variation in depressive affect that could be attributed to symptom clusters. Patients self-reported difficulty controlling each physical symptom over the past month on a Likert scale and depressive symptoms on a validated depression measure (Center for Epidemiologic Studies-Depression [CES-D]) over the past week on a four-category scale. An index of depressive affect was based on items of negative and positive affect from the CES-D. In predicting depressive affect, synergistic interactions of pain with fever, fatigue, and weight loss suggest separate pathways involving pain. A similar interaction with fever occurs when nausea was tested in place of pain. Further, the interaction between pain and fatigue is similar in form to the interaction between difficulty breathing and fatigue (when sleep is not a problem). Follow-up to the latter interaction reveals: 1) additional moderation by hypertension and palliative radiation to the hip/pelvis; and 2) a similar cluster not involving hypertension when appetite problems and weight loss were tested in place of fatigue. The significance and form of these interactions are remarkably consistent. Similar sickness mechanisms could be generating: 1) pain and nausea during fever; 2) pain and fatigue during weight loss; and 3) pain and breathing difficulty when fatigue is pronounced. Crossover effects from symptom-specific interventions appear promising. PMID:15733806

  6. Multifrequency electron spin-echo envelope modulation studies of nitrogen ligation to the manganese cluster of photosystem II.

    PubMed

    Yeagle, Gregory J; Gilchrist, M Lane; Walker, Lee M; Debus, Richard J; Britt, R David

    2008-03-27

    The CalEPR Center at UC-Davis (http://brittepr.ucdavis.edu) is equipped with five research grade electron paramagnetic resonance (EPR) instruments operating at various excitation frequencies between 8 and 130GHz. Of particular note for this RSC meeting are two pulsed EPR spectrometers working at the intermediate microwave frequencies of 31 and 35GHz. Previous lower frequency electron spin-echo envelope modulation (ESEEM) studies indicated that histidine nitrogen is electronically coupled to the Mn cluster in the S2 state of photosystem II (PSII). However, the amplitude and resolution of the spectra were relatively poor at these low frequencies, precluding any in-depth analysis of the electronic structure properties of this closely associated nitrogen nucleus. With the intermediate frequency instruments, we are much closer to the 'exact cancellation' limit, which optimizes ESEEM spectra for hyperfine-coupled nuclei such as 14N and 15N. Herein, we report the results from ESEEM studies of both 14N- and 15N-labelled PSII at these two frequencies. Spectral simulations were constrained by both isotope datasets at both frequencies, with a focus on high-resolution spectral examination of the histidine ligation to the Mn cluster in the S2 state. PMID:17954435

  7. How Subduction Settings can Affect Planetary Nitrogen Cycle: An Experimental Insight

    NASA Astrophysics Data System (ADS)

    Cedeno, D. G.; Conceicao, R. V.; Wilbert de Souza, M. R.; Carniel, L. C.; Schmitz Quinteiro, R. V.

    2015-12-01

    Nitrogen is one of the main building blocks of life on Earth and its elemental cycle is deeply connected with organic matter and the biological system. It is known that nitrogen can be stored in mantellic phases (such as clinopyroxenes) or in metallic alloys under high pressures, meaning that Earth's mantle, and even the core, could be efficient nitrogen reservoirs. Probably, nitrogen is present in these deep Earth systems since the formation of our planet. Nevertheless, it is possible that superficial nitrogen can be reintroduced in the mantle through tectonic processes along Earth history. This is reinforced by d15N values in inclusions in diamonds and other deep mantle phases. We believe that subduction zones are efficient enough to transport nitrogen from surface to mantle. Clay minerals with high charge exchange capacity (CEC) are good candidates to convey nitrogen in subduction zones, especially when we take into account the similarities between K+ and NH4+. To simulate the high-pressure high-temperature conditions found in subduction zones, we performed a series of experiments with montmorillonite clay mineral undergone to high pressure and high temperature produced by a hydraulic press coupled with toroidal chambers, in pressures ranging from 2.5 to 7.7 GPa and temperatures up to 700oC. We used ex situ XRD analysis to accompany the main montmorillonite structural changes and FTIR analysis to determine quantitatively the presence of nitrogen. So far, our results show that the main structural transition in montmorillonite happens at ~350oC at room pressure and ~450oC at 2.5 and 4.0 GPa and consists in the transformation of an open clay structure to a closed mica structure (tobelite). FTIR data show the presence of nitrogen in all the analysed experiments. With the data obtained, we can presume that clay minerals carried in subduction zones can successfully transport nitrogen and other volatiles to the mantle. However, only cold subduction systems have the

  8. Inhibition of nitrogen-fixing activity of the cyanobiont affects the localization of glutamine synthetase in hair cells of Azolla.

    PubMed

    Uheda, Eiji; Maejima, Kazuhiro

    2009-10-15

    In the Azolla-Anabaena association, the host plant Azolla efficiently incorporates and assimilates ammonium ions that are released from the nitrogen-fixing cyanobiont, probably via glutamine synthetase (GS; EC 6.3.1.2) in hair cells, which are specialized cells protruding into the leaf cavity. In order to clarify the regulatory mechanism underlying ammonium assimilation in the Azolla-Anabaena association, Azolla plants were grown under an argon environment (Ar), in which the nitrogen-fixing activity of the cyanobiont was inhibited specifically and completely. The localization of GS in hair cells was determined by immunoelectron microscopy and quantitative analysis of immunogold labeling. Azolla plants grew healthily under Ar when nitrogen sources, such as NO(3)(-) and NH(4)(+), were provided in the growth medium. Both the number of cyanobacterial cells per leaf and the heterocyst frequency of the plants under Ar were similar to those of plants in a nitrogen environment (N(2)). In hair cells of plants grown under Ar, regardless of the type of nitrogen source provided, only weak labeling of GS was observed in the cytoplasm and in chloroplasts. In contrast, in hair cells of plants grown under N(2), abundant labeling of GS was observed in both sites. These findings indicate that specific inhibition of the nitrogen-fixing activity of the cyanobiont affects the localization of GS isoenzymes. Ammonium fixed and released by the cyanobiont could stimulate GS synthesis in hair cells. Simultaneously, the abundant GS, probably GS1, in these cells, could assimilate ammonium rapidly. PMID:19464754

  9. Climate change affects key nitrogen-fixing bacterial populations on coral reefs

    PubMed Central

    Santos, Henrique F; Carmo, Flávia L; Duarte, Gustavo; Dini-Andreote, Francisco; Castro, Clovis B; Rosado, Alexandre S; van Elsas, Jan Dirk; Peixoto, Raquel S

    2014-01-01

    Coral reefs are at serious risk due to events associated with global climate change. Elevated ocean temperatures have unpredictable consequences for the ocean's biogeochemical cycles. The nitrogen cycle is driven by complex microbial transformations, including nitrogen fixation. This study investigated the effects of increased seawater temperature on bacteria able to fix nitrogen (diazotrophs) that live in association with the mussid coral Mussismilia harttii. Consistent increases in diazotroph abundances and diversities were found at increased temperatures. Moreover, gradual shifts in the dominance of particular diazotroph populations occurred as temperature increased, indicating a potential future scenario of climate change. The temperature-sensitive diazotrophs may provide useful bioindicators of the effects of thermal stress on coral reef health, allowing the impact of thermal anomalies to be monitored. In addition, our findings support the development of research on different strategies to improve the fitness of corals during events of thermal stress, such as augmentation with specific diazotrophs. PMID:24830827

  10. Genetic Variability in Nodulation and Root Growth Affects Nitrogen Fixation and Accumulation in Pea

    PubMed Central

    Bourion, Virginie; Laguerre, Gisele; Depret, Geraldine; Voisin, Anne-Sophie; Salon, Christophe; Duc, Gerard

    2007-01-01

    Background and Aims Legume nitrogen is derived from two different sources, symbiotically fixed atmospheric N2 and soil N. The effect of genetic variability of root and nodule establishment on N acquisition and seed protein yield was investigated under field conditions in pea (Pisum sativum). In addition, these parameters were related to the variability in preference for rhizobial genotypes. Methods Five different spring pea lines (two hypernodulating mutants and three cultivars), previously identified in artificial conditions as contrasted for both root and nodule development, were characterized under field conditions. Root and nodule establishment was examined from the four-leaf stage up to the beginning of seed filling and was related to the patterns of shoot dry matter and nitrogen accumulation. The genetic structure of rhizobial populations associated with the pea lines was obtained by analysis of nodule samples. The fraction of nitrogen derived from symbiotic fixation was estimated at the beginning of seed filling and at physiological maturity, when seed protein content and yield were determined. Key Results The hypernodulating mutants established nodules earlier and maintained them longer than was the case for the three cultivars, whereas their root development and nitrogen accumulation were lower. The seed protein yield was higher in ‘Athos’ and ‘Austin’, the two cultivars with increased root development, consistent with their higher N absorption during seed filling. Conclusion The hypernodulating mutants did not accumulate more nitrogen, probably due to the C cost for nodulation being higher than for root development. Enhancing exogenous nitrogen supply at the end of the growth cycle, by increasing the potential for root N uptake from soil, seems a good option for improving pea seed filling. PMID:17670753

  11. Nitrogen Molecule Adsorption on Cationic Tantalum Clusters and Rhodium Clusters and Desorption from Their Nitride Clusters Studied by Thermal Desorption Spectrometry.

    PubMed

    Mafuné, Fumitaka; Tawaraya, Yuki; Kudoh, Satoshi

    2016-06-23

    Adsorption and desorption of N2 molecules onto cationic Ta and Rh clusters in the gas phase were investigated in the temperature range of 300-1000 K by using thermal desorption spectrometry in combination with density functional theory (DFT) calculations. For Ta6(+), the first N2 molecule was found to adsorb dissociatively, and it remained adsorbed when Ta6(+)N2 was heated to 1000 K. In contrast, the second and the subsequent N2 molecules adsorbed weakly as a molecular form and were released into the gas phase when heated to 600 K. The difference can be explained in terms of the activation barrier between the molecular and dissociative forms. On the other hand, when Ta clusters were generated in the presence of N2 gas by the laser ablation of a Ta rod, isomeric clusters, TanNm(+), having heat resistivity were formed. For Rh6(+), N2 adsorbed molecularly at 300 K and desorbed totally at 450 K. These results were consistent with the DFT calculations, indicating that the dissociative adsorption of N2 is endothermic. PMID:27276438

  12. NITROGEN FERTILIZER RESPONSE OF INDIVIDUAL MAIZE PLANTS AS AFFECTED BY DAY OF EMERGENCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recently developed crop canopy sensors are being evaluated for use in guiding variable rate applications of nitrogen (N) using ground-based equipment. These sensors output real-time information at 10 times a second, providing a sampling spatial resolution of approximately 22 cm for a ground based ap...

  13. Summer legume 'green' nitrogen crops affect winter wheat forage in continuous rotations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Costs for inorganic nitrogen (N) fertilizers in the southern Great Plains (SGP) have increased in recent years with the rise in oil prices. In response, producers have become interested in the potential merits of using annual legumes as N sources. This study described the influence of two summer for...

  14. Nitrogen mineralization in soils amended with manure as affected by environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is the most deficient nutrient in most agricultural production systems; therefore, the economic sustainability of most crops is dependent on adequate supply. Consideration for N availability must be taken into account when incorporating manure into a cropping system’s management practice. S...

  15. MINERALIZATION OF NITROGEN FROM BROILER LITTER AS AFFECTED BY SOIL TEXTURE IN THE SOUTHEASTERN COASTAL PLAIN

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A field study was conducted during 2004-2005 to determine nitrogen (N) mineralization of broiler litter (BL) in two Coastal Plain soils of differing texture, sandy or clayey. The soils were a Tifton loamy sand (fine-loamy, siliceous, thermic, Plinthic Kandiudults) and a Greenville sandy clay loam (...

  16. Maize stover and cob cell wall composition and ethanol potential as affected by nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maize (Zea mays L.) stover and cobs are potential feedstock sources for cellulosic ethanol production. Nitrogen (N) fertilization is an important management decision that influences cellulosic biomass and grain production, but its effect on cell wall composition and subsequent cellulosic ethanol pro...

  17. Variable environment and market affects optimal nitrogen management in wheat and cattle production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The average efficiency of fertilizer nitrogen (N) in grain production of cereals is about 33% worldwide, and a 1% increase in fertilizer N use efficiency (NUE) could annually save US producers 200-400 million US dollars. Process-based crop simulation models provide a unique opportunity to improve f...

  18. Nitrogen Fertilizer Affects the Severity of Anthracnose Crown Rot Disease of Greenhouse Grown Strawberries

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The influence of nitrogen, phosphorus, and potassium on the severity of anthracnose crown rot was evaluated in three greenhouse studies. Strawberry plants were fertilized three times weekly with a modified Hoagland's Nutrient Solution containing the treatments and inoculated eight weeks after treat...

  19. Green manures in continuous wheat systems affect grain yield and nitrogen content

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Continuous winter wheat (Triticum aestivum L. em Thell.) is the foundation for most U.S. southern Great Plains (SGP) agriculture. Inorganic nitrogen (N) fertilizers are important to wheat production, but increasing N prices have caused farmers to reconsider growing legumes during summer fallow for ‘...

  20. Performance of low-input turfgrass species as affected by mowing and nitrogen fertilization in Minnesota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In Minnesota, most lawns and higher cut turfgrass areas consist primarily of species such as Kentucky bluegrass (Poa pratensis L.) and perennial ryegrass (Lolium perenne L.) that require significant management inputs such as frequent mowing and nitrogen fertility. Several studies have shown that oth...

  1. Nitrogen Source Affects Nitrous Oxide Emissions in a Strip-Tilled Continuous Corn Field

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We evaluated the effects of nitrogen (N) source on nitrous oxide (N2O) emissions from a strip-till (ST), irrigated continuous corn field in 2009 near Fort Collins, CO. Emissions were monitored from plots receiving six different inorganic N fertilizer sources (urea, ESN®1, SuperU®, UAN, UAN+Agrotain...

  2. Nitrogen Source Affects Nitrous Oxide Emissions from Irrigated No-Till Corn in Colorado (USA)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Introduction Nitrogen fertilization is essential for optimizing corn yields and economic returns in irrigated cropping systems in the USA Central Great Plains area (Maddux and Halvorson, 2008). However, N application generally increases nitrous oxide (N2O) emissions from cropping systems (Mosier et...

  3. Nickel deficiency affects nitrogenous forms and urease activity in spring xylem sap of pecan

    Technology Transfer Automated Retrieval System (TEKTRAN)

    While nickel (Ni) deficiency occurs in certain agricultural crops, little is known regarding the influence of deficiency on metabolic or physiological processes. We studied the influence of Ni deficiency on the reduced-nitrogen (N) composition of early spring xylem sap of pecan [Carya illinoinensis...

  4. CARBON QUALITY AND QUANTITY AFFECT THE RETENTION AND MICROBIAL PROCESSING OF APPLIED NITROGEN

    EPA Science Inventory

    Excess nitrogen (N) from fertilizer or atmospheric deposition can have harmful effects on the environment and human health. Remediative methods of controlling N leaching and limiting other undesirable effects of excess N need to be explored if N inputs can not be reduced or bett...

  5. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  6. Dissimilatory nitrate reduction to ammonium conserves nitrogen in anthropogenically affected subtropical mangrove sediments in Southeast China.

    PubMed

    Cao, Wenzhi; Yang, Jingxin; Li, Ying; Liu, Baoli; Wang, Feifei; Chang, Changtang

    2016-09-15

    In this study, basic sediment properties, nutrient flux, and nitrogen cycle (including denitrification, anaerobic ammonium oxidation [anammox], nitrification, and dissimilatory nitrate reduction to ammonium [DNRA]) were investigated at two sampling sites with different tree ages in the mangrove region of the Jiulong River Estuary, China. The results show that sediments at mangrove flat area have relatively strong capability to reduce NO3(-), in which the DNRA rate is relatively high (204.53±48.32μmolNm(-2)h(-1)), which is approximately 75.7-85.9% of the total NO3(-) reduction, while the denitrification and anammox rates are relatively low - only approximately 5.6-9.5% and 8.5-14.8% of the total NO3(-) reduction, respectively. Thus, in the nitrogen-enriched subtropical mangrove system, DNRA is the main pathway to reduce NO3(-), and most of the input nitrogen is conserved as NH4(+) in the system, which assures high productivity of the mangrove system. PMID:27368926

  7. How Environment Affects Star Formation: Tracing Activity in High Redshift Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Alberts, Stacey; Pope, A.; Brodwin, M.; Atlee, D. W.; Lin, Y.; Chary, R.; Dey, A.; Eisenhardt, P. R.; Gettings, D.; Gonzalez, A. H.; Jannuzi, B.; Mancone, C.; Moustakas, J.; Snyder, G. F.; Stanford, S. A.; Stern, D.; Weiner, B. J.; Zeimann, G.

    2014-01-01

    The emerging picture of the evolution of cluster galaxies indicates that the epoch of z>1 is a crucial period of active star formation and mass assembly in clusters. In this dissertation, I leverage a uniformly-selected cluster sample from the IRAC Shallow Cluster Survey (ISCS) with Herschel imaging to analyse the star formation (SF) activity in cluster galaxies over the past ten billion years. This analysis is two-fold: 1) using 274 clusters across the 9 square degree Bootes field, I perform a stacking analysis of mass-limited samples of cluster and field galaxies using wide-field Herschel observations over a long redshift baseline, z=0.3-1.5. I find that the average SF activity in cluster galaxies is evolving faster than in the field, with field-like SF in the cluster cores and enhanced SF activity in the cluster outskirts at z>1.2. By further breaking down my analysis by galaxy mass and type, I determine which mechanisms are capable of driving this evolution. 2) I use unique, deep Herschel imaging of 11 spectroscopically-confirmed clusters from z=1.1-1.8 to study the properties of individual infrared bright cluster galaxies as a function of redshift and cluster-centric radius. Combined with ancillary data, I determine the star formation, dust, and AGN properties of the most active cluster galaxies and tie the evolution of these properties back to the environment by comparing to field populations. By combining these two approaches, I constrain cluster galaxy properties during a pivotal epoch of dust-obscured star formation activity and mass assembly in some of the most extreme structures in the Universe.

  8. The interactions of nitrogen dioxide with graphene-stabilized Rh clusters: a DFT study.

    PubMed

    Furlan, Sara; Giannozzi, Paolo

    2013-10-14

    We study the interactions of NO2 gas molecules with Rh nanoparticles supported on graphene, using first-principles molecular dynamics in the Car-Parrinello scheme. The stability, morphology, adsorption energies of various models of Rhx nanoparticles (x = 1, 3, 10, 20) supported on graphene, and the binding of NO2 molecules to the Rh clusters, together with its effect on the graphene properties, are reported. Metastable flat structures anchored to the substrate that can bind NO2 to Rh via both N and O atoms are identified, with adsorption energies in the range 60-70 kcal per mole per molecule. PMID:23945990

  9. Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented).

    PubMed

    Garcia, Danilo; MacDonald, Shane; Archer, Trevor

    2015-01-01

    Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals' experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals' scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons' Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles' homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the

  10. Two different approaches to the affective profiles model: median splits (variable-oriented) and cluster analysis (person-oriented)

    PubMed Central

    MacDonald, Shane; Archer, Trevor

    2015-01-01

    Background. The notion of the affective system as being composed of two dimensions led Archer and colleagues to the development of the affective profiles model. The model consists of four different profiles based on combinations of individuals’ experience of high/low positive and negative affect: self-fulfilling, low affective, high affective, and self-destructive. During the past 10 years, an increasing number of studies have used this person-centered model as the backdrop for the investigation of between and within individual differences in ill-being and well-being. The most common approach to this profiling is by dividing individuals’ scores of self-reported affect using the median of the population as reference for high/low splits. However, scores just-above and just-below the median might become high and low by arbitrariness, not by reality. Thus, it is plausible to criticize the validity of this variable-oriented approach. Our aim was to compare the median splits approach with a person-oriented approach, namely, cluster analysis. Method. The participants (N = 2, 225) were recruited through Amazons’ Mechanical Turk and asked to self-report affect using the Positive Affect Negative Affect Schedule. We compared the profiles’ homogeneity and Silhouette coefficients to discern differences in homogeneity and heterogeneity between approaches. We also conducted exact cell-wise analyses matching the profiles from both approaches and matching profiles and gender to investigate profiling agreement with respect to affectivity levels and affectivity and gender. All analyses were conducted using the ROPstat software. Results. The cluster approach (weighted average of cluster homogeneity coefficients = 0.62, Silhouette coefficients = 0.68) generated profiles with greater homogeneity and more distinctive from each other compared to the median splits approach (weighted average of cluster homogeneity coefficients = 0.75, Silhouette coefficients = 0.59). Most of the

  11. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  12. Hot Ductility Behaviors in the Weld Heat-Affected Zone of Nitrogen-Alloyed Fe-18Cr-10Mn Austenitic Stainless Steels

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Hong, Hyun-Uk

    2015-04-01

    Hot ductility behaviors in the weld heat-affected zone (HAZ) of nitrogen-alloyed Fe-18Cr-10Mn austenitic stainless steels with different nitrogen contents were evaluated through hot tension tests using Gleeble simulator. The results of Gleeble simulations indicated that hot ductility in the HAZs deteriorated due to the formation of δ-ferrite and intergranular Cr2N particles. In addition, the amount of hot ductility degradation was strongly affected by the fraction of δ-ferrite.

  13. Carbon and nitrogen abundances of stellar populations in the globular cluster M 2

    NASA Astrophysics Data System (ADS)

    Lardo, C.; Pancino, E.; Mucciarelli, A.; Milone, A. P.

    2012-12-01

    We present CH and CN index analysis and C and N abundance calculations based on the low-resolution blue spectra of red giant branch (RGB) stars in the Galactic globular cluster NGC 7089 (M 2). Our main goal is to investigate the C-N anticorrelation for this intermediate metallicity cluster. The data were collected with DOLORES, the multiobject, low-resolution facility at the Telescopio Nazionale Galileo. We first looked for CH and CN band strength variations and bimodalities in a sample of RGB stars with 17.5 ≤ V ≤ 14.5. Thus we derived C and N abundances under LTE assumption by comparing observed spectra with synthetic models from the spectral features at 4300 Å (G-band) and at ~3883 Å (CN). Spectroscopic data were coupled with UV photometry obtained during the spectroscopic run. We found a considerable star-to-star variation in both A(C) and A(N) at all luminosities for our sample of 35 targets. These abundances appear to be anticorrelated, with a hint of bimodality in the C content for stars with luminosities below the RBG bump (V ~ 15.7), while the range of variations in N abundances is very large and spans almost ~2 dex. We find additional C depletion as the stars evolve off the RGB bump, in fairly good agreement with theoretical predictions for metal-poor stars in the course of normal stellar evolution. We isolated two groups with N-rich and N-poor stars and found that N abundance variations correlate with the (U - V) color in the DOLORES color-magnitude diagram (CMD). The V, (U - V) CMD for this cluster shows an additional RGB sequence, located at the red of the main RGB and amounting to a small fraction of the total giant population. We identified two CH stars detected in previous studies in our U,V images. These stars, which are both cluster members, fall on this redder sequence, suggesting that the anomalous RGB should have a peculiar chemical pattern. Unfortunately, no additional spectra were obtained for stars in this previously unknown RGB branch

  14. Nitrogen Availability for Sugarbeet affected by Tillage System and Sprinkler Irrigation Method

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Strip tillage (ST) can reduce fuel and labor costs of sugarbeet (Beta vulgaris L.) production. Many shank-type ST implements band fertilizer below the seed without incorporating crop residue into the soil, potentially affecting N availability. Sprinkler irrigation method may also affect N availabili...

  15. AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo

    PubMed Central

    Léran, Sophie; Garg, Bharti; Boursiac, Yann; Corratgé-Faillie, Claire; Brachet, Chantal; Tillard, Pascal; Gojon, Alain; Lacombe, Benoît

    2015-01-01

    Dipeptide (Leu-Leu) and nitrate transport activities of 26 Arabidopsis NPF (NRT1/PTR Family) proteins were screened in Saccharomyces cerevisiae and Xenopus laevis oocytes, respectively. Dipeptide transport activity has been confirmed for 2 already known dipeptide transporters (AtNPF8.1 and AtNPF8.3) but none of the other tested NPFs displays dipeptide transport. The nitrate transport screen resulted in the identification of two new nitrate transporters, AtNPF5.5 and AtNPF5.10. The localization of the mRNA coding for NPF5.5 demonstrates that it is the first NPF transporter reported to be expressed in Arabidopsis embryo. Two independent homozygous npf5.5 KO lines display reduced total nitrogen content in the embryo as compared to WT plants, demonstrating an effect of NPF5.5 function on the embryo nitrogen content. Finally, NPF5.5 gene produces two different transcripts (AtNPF5.5a and AtNPF5.5b) encoding proteins with different N-terminal ends. Both proteins are able to transport nitrate in xenopus oocytes. PMID:25608465

  16. Ruminal nitrogen metabolism in steers as affected by feed intake and dietary urea concentration

    SciTech Connect

    Firkins, J.L.; Berger, L.L.; Merchen, N.R.; Fahey, G.C. Jr.; Mulvaney, R.L.

    1987-11-01

    Four multiple-cannulated steers (340 kg) were used in a 4 x 4 Latin square design with a 2 x 2 factorial arrangement of treatments. Steers were fed a diet of 50% ground hay and 50% concentrate at two intakes (1.4 and 2.1% of BW), with urea and /sup 15/N-enriched ammonium sulfate infused continuously into the rumen at .4 or 1.2% of diet DM. Ratios of purines and diaminopimelic acid-N to N in fluid-associated and particulate-associated bacteria and in protozoa were similar among treatments but were lower for protozoa than for bacteria. Diaminopimelic acid-N:N was higher for fluid-associated vs. particulate-associated bacteria. Enrichment of /sup 15/N was similar between bacteria among treatments and was 30% lower for protozoa. Turnover rates of /sup 15/N in bacteria, NH/sub 3/N, and non-HN/sub 3/N pools were faster for steers infused with 1.2 than those infused with .4% urea, indicating less efficient usage of ammonia with higher urea. A method is described to estimate the proportion of duodenal nitrogen comprising bacterial and protozoal nitrogen.

  17. Does chronic nitrogen deposition during biomass growth affect atmospheric emissions from biomass burning?

    NASA Astrophysics Data System (ADS)

    Giordano, Michael R.; Chong, Joey; Weise, David R.; Asa-Awuku, Akua A.

    2016-03-01

    Chronic nitrogen deposition has measureable impacts on soil and plant health. We investigate burning emissions from biomass grown in areas of high and low NO x deposition. Gas and aerosol-phase emissions were measured as a function of photochemical aging in an environmental chamber at UC-Riverside. Though aerosol chemical speciation was not available, results indicate a systemic compositional difference between biomass grown in high and low deposition areas. Aerosol emissions from biomass grown in areas of high NO x deposition exhibit a lower volatility than biomass grown in a low deposition area. Furthermore, fuel elemental analysis, NO x emission rates, and aerosol particle number distributions differed significantly between the two sites. Despite the limited scale of fuels explored, there is strong evidence that the atmospheric emissions community must pay attention to the regional air quality of biomass fuels growth areas.

  18. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow.

    PubMed

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  19. Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow

    PubMed Central

    Liao, Shu; Yang, Wanqin; Tan, Yu; Peng, Yan; Li, Jun; Tan, Bo; Wu, Fuzhong

    2015-01-01

    Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. PMID:26406249

  20. Nitrogen Assimilation and Protein Synthesis in Wheat Seedlings as Affected by Mineral Nutrition. II. Micronutrients 1

    PubMed Central

    Harper, James E.; Paulsen, Gary M.

    1969-01-01

    Activity of nitrate reductase from Triticum aestivum L. seedlings was decreased by deficiencies of molybdenum, zinc, and chlorine. Nitrate accumulated in molybdenum-deficient seedlings, declined in zinc-deficient seedlings, and was unaffected by the other micronutrient treatments. Glutamic acid dehydrogenase activity was decreased by deficiency of molybdenum, the only nutrient that affected the enzyme. Glutamine synthetase activity was decreased only by copper deficiency, and glutamic-oxaloacetic transaminase was not affected by any micronutrient deficiencies. Incorporation of 14C-leucine into protein by wheat seedlings was increased by molybdenum deficiency, apparently because of decreased inhibition from endogenous amino acids, and was decreased by copper deficiency. Protein content was not affected significantly by the micronutrient treatments. PMID:16657114

  1. Increased nitrogen deposition did not affect the composition and turnover of plant and microbial biomarkers in forest soil density fractions

    NASA Astrophysics Data System (ADS)

    Griepentrog, Marco; Bodé, Samuel; Boeckx, Pascal; Hagedorn, Frank; Wiesenberg, Guido L. B.; Schmidt, Michael W. I.

    2013-04-01

    Increased atmospheric nitrogen (N) deposition and elevated CO2 concentrations affect many forests and their ecosystem functions, including organic matter cycling in soils, the largest carbon pool of terrestrial ecosystems. However, it is still not clear how, and what the underlying mechanisms are. Specific molecules of plant and microbial origin (biomarkers) might respond differently to N deposition, depending on their internal N content. Microbial cell-wall-constituents with high-N content like amino sugars are reliable biomarkers to distinguish between fungal- and bacterial-derived organic residues. Individual lipids are plant-specific biomarkers that lack N in their molecular structure. Here, we tested the effects of elevated CO2 and increased N deposition on the dynamics of plant and microbial biomarkers by studying their composition and turnover in forest soil density fractions. Furthermore, we tested the hypothesis that these biomarkers respond differently to increased N deposition, depending on their internal N content. We used soil samples from a 4-year elevated CO2 and N deposition experiment in model forest ecosystems (open-top chambers), that were fumigated with ambient and 13C-depleted CO2 and treated with two levels of 15N-labeled fertilizer. Bulk soil was separated into free light fraction, occluded light fraction and heavy fraction by density fractionation and ultrasonic dispersion. The heavy fraction was further particle-size fractionated with 20 μm as a cut-off. We determined carbon and N concentrations and their isotopic compositions (δ13C, δ15N) within bulk soil and density fractions. Therein, we extracted and quantified individual amino sugars and lipids and conducted compound-specific stable-isotope-analysis using GC- and LC-IRMS. Results show that amino sugars were mainly stabilized in association with soil minerals. Especially bacterial amino sugars were preferentially associated with soil minerals, exemplified by a consistent decrease

  2. Does nitrogen fertilizer application rate to corn affect nitrous oxide emissions from the rotated soybean crop?

    PubMed

    Iqbal, Javed; Mitchell, David C; Barker, Daniel W; Miguez, Fernando; Sawyer, John E; Pantoja, Jose; Castellano, Michael J

    2015-05-01

    Little information exists on the potential for N fertilizer application to corn ( L.) to affect NO emissions during subsequent unfertilized crops in a rotation. To determine if N fertilizer application to corn affects NO emissions during subsequent crops in rotation, we measured NO emissions for 3 yr (2011-2013) in an Iowa, corn-soybean [ (L.) Merr.] rotation with three N fertilizer rates applied to corn (0 kg N ha, the recommended rate of 135 kg N ha, and a high rate of 225 kg N ha); soybean received no N fertilizer. We further investigated the potential for a winter cereal rye ( L.) cover crop to interact with N fertilizer rate to affect NO emissions from both crops. The cover crop did not consistently affect NO emissions. Across all years and irrespective of cover crop, N fertilizer application above the recommended rate resulted in a 16% increase in mean NO flux rate during the corn phase of the rotation. In 2 of the 3 yr, N fertilizer application to corn (0-225 kg N ha) did not affect mean NO flux rates from the subsequent unfertilized soybean crop. However, in 1 yr after a drought, mean NO flux rates from the soybean crops that received 135 and 225 kg N ha N application in the corn year were 35 and 70% higher than those from the soybean crop that received no N application in the corn year. Our results are consistent with previous studies demonstrating that cover crop effects on NO emissions are not easily generalizable. When N fertilizer affects NO emissions during a subsequent unfertilized crop, it will be important to determine if total fertilizer-induced NO emissions are altered or only spread across a greater period of time. PMID:26024252

  3. Nitrogen Addition as a Result of Long-Term Root Removal Affects Soil Organic Matter Dynamics

    NASA Astrophysics Data System (ADS)

    Crow, S. E.; Lajtha, K.

    2004-12-01

    A long-term field litter manipulation site was established in a mature coniferous forest stand at the H.J. Andrews Experimental Forest, OR, USA in 1997 in order to address how detrital inputs influence soil organic matter formation and accumulation. Soils at this site are Andisols and are characterized by high carbon (C) and low nitrogen (N) contents, due largely to the legacy of woody debris and extremely low atmospheric N deposition. Detrital treatments include trenching to remove roots, doubling wood and needle litter, and removing aboveground litter. In order to determine whether five years of detrital manipulation had altered organic matter quantity and lability at this site, soil from the top 0-5 cm of the A horizon was density fractionated to separate the labile light fraction (LF) from the more recalcitrant mineral soil in the heavy fraction (HF). Both density fractions and whole soils were incubated for one year in chambers designed such that repeated measurements of soil respiration and leachate chemistry could be made. Trenching resulted in the removal of labile root inputs from root exudates and turnover of fine roots and active mycorrhizal communities as well as an increase of available N by removing plant uptake. Since 1999, soil solution chemistry from tension lysimeters has shown greater total N and dissolved organic nitrogen (DON) flux and less dissolved organic carbon (DOC) flux to stream flow in the trenched plots relative to the other detrital treatments. C/N ratio and C content of both light and heavy fractions from the trenched plots were greater than other detrital treatments. In the lab incubation, over the course of a year C mineralization from these soils was suppressed. Cumulative DOC losses and CO2 efflux both were significantly less in soils from trenched plots than in other detrital treatments including controls. After day 150 of the incubation, leachates from the HF of plots with trenched treatments had a DOC/DON ratio significantly

  4. SOIL COMPACTION AND POULTRY LITTER EFFECTS ON FACTORS AFFECTING NITROGEN AVAILABILITY IN A CLAYPAN SOIL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil compaction may affect N mineralization and the subsequent fate of N in agroecosystems. Laboratory incubation and field experiments were conducted to determine the effects of surface soil compaction on soil N mineralization in a claypan soil amended with poultry litter (i.e., turkey excrement mi...

  5. Stand age affects fertilizer nitrogen response in first-year corn following alfalfa

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The amount of N that alfalfa (Medicago sativa L.) provides to subsequent first-year corn (Zea mays L.) depends, in part, on the age of alfalfa at termination. Our objective was to determine how alfalfa stand age affects N availability and fertilizer N requirements for first-year corn. Fertilizer N w...

  6. Processes affecting the transport of nitrogen in groundwater and factors related to slope position

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrate (NO3-) pollution of water resources has been a major problem for years, causing contaminated water supplies, harmful effects on human health, and widespread eutrophication of fresh water resources. The main objectives of this study were to: 1) understand the processes affecting NO3- transpor...

  7. Nitrogen supplementation does not affect level of an Alkaloid swainsonine in four locoweeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Locoweeds are legumes that can be highly poisonous to livestock and wild animals. Locoweed toxicity depends on the association of a plant and a fungal endophyte which produces the alkaloid swainsonine (SWA); however, environmental factors affecting SWA synthesis are unknown. Additionally, locoweeds ...

  8. A global analysis of fine root production as affected by soil nitrogen and phosphorus

    PubMed Central

    Yuan, Z. Y.; Chen, Han Y. H.

    2012-01-01

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg−1. With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO2 emissions. PMID:22764168

  9. Glutamine synthetase mutations which affect expression of nitrogen fixation genes in Klebsiella pneumoniae.

    PubMed Central

    Ausubel, F M; Bird, S C; Durbin, K J; Janssen, K A; Margolskee, R F; Peskin, A P

    1979-01-01

    Previous studies have implicated glutamine synthetase (L-glutamate:ammonia ligase [adenosine diphosphate for-ing], EC 6.6.1.2) as a major controlling element of the nitrogen fixation (nif) genes in Klebsiella pneumoniae. We report here the isolation of a new class of K. pneumoniae mutants which exhibit altered patterns of nif and hut (histidine utlization) regulation. The expression of nif in these mutants, which were isolated as Gln+ (glutamine nonrequiring) revertants of a particular glnA mutation, is extremely sensitive to ammonia repression. These mutants have a Nif- Hut- phenotype at external ammonia concentrations at which wild-type strains are Nif+ Hut+. On the other hand, these mutants can be fully derepressed for nif at very low ammonia concentrations. We adopted the nomenclature "GlnR- (Nif- Hut-)" to facilitate discussion of the phenotype of these mutant strains. The mutations in these strains which confer the GlnR- phenotype map at or near glnA, the structural gene for glutamine synthetase. PMID:40960

  10. Fertilizer residence time affects nitrogen uptake efficiency and growth of sweet corn.

    PubMed

    Zotarelli, L; Scholberg, J M; Dukes, M D; Muñoz-Carpena, R

    2008-01-01

    Understanding plant N uptake dynamics is critical for increasing fertilizer N uptake efficiency (FUE) and minimize the risk of N leaching. The objective of this research was to determine the effect of residence time of N fertilizer on N uptake and FUE of sweet corn. Plants were grown in 25 L columns during the fall and spring to mimic short-term N uptake dynamics. Nitrogen was applied either 1, 3, or 7 d before a weekly leaching event, using KNO3 solution (total of 393 kg N ha(-1)). Residence times (tR) were tR-1, tR-3, and tR-7 d before weekly removal of residual soil N. Plant N uptake was calculated by comparing weekly N recovery from planted with non-planted columns. During the fall, N uptake values at 70 d after emergence were 59, 73, and 126 kg N ha(-1). During the spring, corresponding values were 54, 108, and 159 kg N ha(-1). A linear response of plant growth and yield to the tR was observed under cooler conditions, whereas a quadratic response occurred under warmer conditions. There was correlation between root length density and yield. It is concluded that increasing N fertilizer residence time, which is indicative of better irrigation practices, enhanced overall sweet corn growth, yield, N uptake, and FUE, consequently reduced the risk of N being leached below the root zone before complete N uptake. PMID:18453447

  11. Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism[W

    PubMed Central

    Schmollinger, Stefan; Mühlhaus, Timo; Boyle, Nanette R.; Blaby, Ian K.; Casero, David; Mettler, Tabea; Moseley, Jeffrey L.; Kropat, Janette; Sommer, Frederik; Strenkert, Daniela; Hemme, Dorothea; Pellegrini, Matteo; Grossman, Arthur R.; Stitt, Mark; Schroda, Michael; Merchant, Sabeeha S.

    2014-01-01

    Nitrogen (N) is a key nutrient that limits global primary productivity; hence, N-use efficiency is of compelling interest in agriculture and aquaculture. We used Chlamydomonas reinhardtii as a reference organism for a multicomponent analysis of the N starvation response. In the presence of acetate, respiratory metabolism is prioritized over photosynthesis; consequently, the N-sparing response targets proteins, pigments, and RNAs involved in photosynthesis and chloroplast function over those involved in respiration. Transcripts and proteins of the Calvin-Benson cycle are reduced in N-deficient cells, resulting in the accumulation of cycle metabolic intermediates. Both cytosolic and chloroplast ribosomes are reduced, but via different mechanisms, reflected by rapid changes in abundance of RNAs encoding chloroplast ribosomal proteins but not cytosolic ones. RNAs encoding transporters and enzymes for metabolizing alternative N sources increase in abundance, as is appropriate for the soil environmental niche of C. reinhardtii. Comparison of the N-replete versus N-deplete proteome indicated that abundant proteins with a high N content are reduced in N-starved cells, while the proteins that are increased have lower than average N contents. This sparing mechanism contributes to a lower cellular N/C ratio and suggests an approach for engineering increased N-use efficiency. PMID:24748044

  12. Symbiosis between nitrogen-fixing bacteria and Medicago truncatula is not significantly affected by silver and silver sulfide nanomaterials.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; McLaughlin, Mike J; McNear, David; Bertsch, Paul M

    2016-07-01

    Silver (Ag) engineered nanomaterials (ENMs) are being released into waste streams and are being discharged, largely as Ag2S aged-ENMs (a-ENMs), into agroecosystems receiving biosolids amendments. Recent research has demonstrated that biosolids containing an environmentally relevant mixture of ZnO, TiO2, and Ag ENMs and their transformation products, including Ag2S a-ENMs, disrupted the symbiosis between nitrogen-fixing bacteria and legumes. However, this study was unable to unequivocally determine which ENM or combination of ENMs and a-ENMs was responsible for the observed inhibition. Here, we examined further the effects of polyvinylpyrollidone (PVP) coated pristine Ag ENMs (PVP-Ag), Ag2S a-ENMs, and soluble Ag (as AgSO4) at 1, 10, and 100 mg Ag kg(-1) on the symbiosis between the legume Medicago truncatula and the nitrogen-fixing bacterium, Sinorhizobium melliloti in biosolids-amended soil. Nodulation frequency, nodule function, glutathione reductase production, and biomass were not significantly affected by any of the Ag treatments, even at 100 mg kg(-1), a concentration analogous to a worst-case scenario resulting from long-term, repeated biosolids amendments. Our results provide additional evidence that the disruption of the symbiosis between nitrogen-fixing bacteria and legumes in response to a mixture of ENMs in biosolids-amended soil reported previously may not be attributable to Ag ENMs or their transformation end-products. We anticipate these findings will provide clarity to regulators and industry regarding potential unintended consequences to terrestrial ecosystems resulting from of the use of Ag ENMs in consumer products. PMID:27149150

  13. Do clusters of galaxies affect the spectrum of the microwave background?

    NASA Technical Reports Server (NTRS)

    Markevitch, M.; Blumenthal, G. R.; Forman, W.; Jones, C.; Suniaev, R. A.

    1991-01-01

    The distortion, averaged over the sky, due to the Compton scattering of background photons with electrons in the hot gas in clusters of galaxies is calculated. Using an existing sample of X-ray clusters, various values of the density parameter Omega, and plausible models for cluster evolution, Monte Carlo realizations of the microwave sky are generated. The spatial structure of these simulations shows a network of discrete sources whose properties can be a strong function of both evolution and Omega. The amount of spectral distortion in the models is greatest for models characterized by self-similar cluster evolution in an open universe and is within an order of magnitude of the current upper limits. Thus, improved observational sensitivity must inevitably detect some deviation from a blackbody spectrum.

  14. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems.

    PubMed

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  15. Particulate Organic Matter Affects Soil Nitrogen Mineralization under Two Crop Rotation Systems

    PubMed Central

    Bu, Rongyan; Lu, Jianwei; Ren, Tao; Liu, Bo; Li, Xiaokun; Cong, Rihuan

    2015-01-01

    Changes in the quantity and/or quality of soil labile organic matter between and after different types of cultivation system could play a dominant role in soil nitrogen (N) mineralization. The quantity and quality of particulate organic matter (POM) and potentially mineralizable-N (PMN) contents were measured in soils from 16 paired rice-rapeseed (RR)/cotton-rapeseed (CR) rotations sites in Hubei province, central China. Then four paired soils encompassing low (10th percentile), intermediate (25th and 75th percentiles), and high (90th percentile) levels of soil PMN were selected to further study the effects of POM on soil N mineralization by quantifying the net N mineralization in original soils and soils from which POM was removed. Both soil POM carbon (POM-C) and N (POM-N) contents were 45.8% and 55.8% higher under the RR rotation compared to the CR rotation, respectively. The PMN contents were highly correlated with the POM contents. The PMN and microbial biomass N (MBN) contents concurrently and significantly decreased when POM was removed. The reduction rate of PMN was positively correlated with changes in MBN after the removal of POM. The reduction rates of PMN and MBN after POM removal are lower under RR rotations (38.0% and 16.3%, respectively) than CR rotations (45.6% and 19.5%, respectively). Furthermore, infrared spectroscopy indicated that compounds with low-bioavailability accumulated (e.g., aromatic recalcitrant materials) in the soil POM fraction under the RR rotation but not under the CR rotation. The results of the present study demonstrated that POM plays a vital role in soil N mineralization under different rotation systems. The discrepancy between POM content and composition resulting from different crop rotation systems caused differences in N mineralization in soils. PMID:26647157

  16. Photosynthesis and photoprotection in coffee leaves is affected by nitrogen and light availabilities in winter conditions.

    PubMed

    Pompelli, Marcelo F; Martins, Samuel C V; Antunes, Werner C; Chaves, Agnaldo R M; DaMatta, Fábio M

    2010-09-01

    Coffee is native to shady environments but often grows better and produces higher yields without shade, though at the expense of high fertilization inputs, particularly nitrogen (N). Potted plants were grown under full sunlight and shade (50%) conditions and were fertilized with nutrient solutions containing either 0 or 23 mM N. Measurements were made in southeastern Brazil during winter conditions, when relatively low night temperatures and high diurnal insolation are common. Overall, the net carbon assimilation rate was quite low, which was associated with diffusive, rather than biochemical, constraints. N deficiency led to decreases in the concentrations of chlorophylls (Chl) and total carotenoids as well as in the Chl/N ratio. These conditions also led to qualitative changes in the carotenoid composition, e.g., increased antheraxanthin (A) and zeaxanthin (Z) pools on a Chl basis, particularly at high light, which was linked to increased thermal dissipation of absorbed light. The variable-to-maximum fluorescence ratio at predawn decreased with increasing A+Z pools and decreased linearly with decreasing N. We showed that this ratio was inadequate for assessing photoinhibition under N limitation. Expressed per unit mass, the activities of superoxide dismutase and glutathione reductase were not altered with the treatments. In contrast, ascorbate peroxidase activity was lower in low N plants, particularly under shade, whereas catalase activity was lower in shaded plants than in sun-grown plants, regardless of the N level. Glutamine synthetase activity was greater in sun-grown plants than in shaded individuals at a given N level and decreased with decreasing N application. Our results suggest that the photoprotective and antioxidant capacity per amount of photons absorbed was up-regulated by a low N supply; nevertheless, this capacity, regardless of the light conditions, was not enough to prevent oxidative damage, as judged from the increases in the H(2)O(2) and

  17. Coral Uptake of Inorganic Phosphorus and Nitrogen Negatively Affected by Simultaneous Changes in Temperature and pH

    PubMed Central

    Godinot, Claire; Houlbrèque, Fanny

    2011-01-01

    The effects of ocean acidification and elevated seawater temperature on coral calcification and photosynthesis have been extensively investigated over the last two decades, whereas they are still unknown on nutrient uptake, despite their importance for coral energetics. We therefore studied the separate and combined impacts of increases in temperature and pCO2 on phosphate, ammonium, and nitrate uptake rates by the scleractinian coral S. pistillata. Three experiments were performed, during 10 days i) at three pHT conditions (8.1, 7.8, and 7.5) and normal temperature (26°C), ii) at three temperature conditions (26°, 29°C, and 33°C) and normal pHT (8.1), and iii) at three pHT conditions (8.1, 7.8, and 7.5) and elevated temperature (33°C). After 10 days of incubation, corals had not bleached, as protein, chlorophyll, and zooxanthellae contents were the same in all treatments. However, photosynthetic rates significantly decreased at 33°C, and were further reduced for the pHT 7.5. The photosynthetic efficiency of PSII was only decreased by elevated temperature. Nutrient uptake rates were not affected by a change in pH alone. Conversely, elevated temperature (33°C) alone induced an increase in phosphate uptake but a severe decrease in nitrate and ammonium uptake rates, even leading to a release of nitrogen into seawater. Combination of high temperature (33°C) and low pHT (7.5) resulted in a significant decrease in phosphate and nitrate uptake rates compared to control corals (26°C, pHT = 8.1). These results indicate that both inorganic nitrogen and phosphorus metabolism may be negatively affected by the cumulative effects of ocean warming and acidification. PMID:21949839

  18. Soluble carbohydrate allocation to roots, photosynthetic rate of leaves, and nitrate assimilation as affected by nitrogen stress and irradiance

    NASA Technical Reports Server (NTRS)

    Henry, L. T.; Raper, C. D. Jr

    1991-01-01

    Upon resupply of exogenous nitrogen to nitrogen-stressed plants, uptake rate of nitrogen is enhanced relative to nonstressed plants. Absorption of nitrogen presumably is dependent on availability of carbohydrates in the roots. A buildup in soluble carbohydrates thus should occur in roots of nitrogen-stressed plants, and upon resupply of exogenous nitrogen the increased uptake rate should be accompanied by a rapid decline in carbohydrates to prestress levels. To evaluate this relationship, three sets of tobacco plants growing in a complete hydroponic solution containing 1.0 mM NO3- were either continued in the complete solution for 21 d, transferred to a minus-nitrogen solution for 21 d, or transferred to a minus-nitrogen solution for 8-9 d and then returned to the 1.0 mM NO3- solution. These nitrogen treatments were imposed upon plants growing at photosynthetic photon flux densities of 700 and 350 micromoles m-2 s-1. Soluble carbohydrate levels in roots increased during onset of nitrogen stress to levels that were fourfold greater than in roots of non-stressed plants. Following resupply of external nitrogen, a rapid resumption of nitrogen uptake was accompanied by a decline in soluble carbohydrates in roots to levels characteristic of nonstressed plants. This pattern of soluble carbohydrate levels in roots during onset of and recovery from nitrogen stress occurred at both irradiance levels. The response of net photosynthetic rate to nitrogen stress could be expressed as a nonlinear function of concentration of reduced nitrogen in leaves. The net photosynthetic rate at a given concentration of reduced nitrogen, however, averaged 10% less at the lower than at the higher irradiance. The decline in net photosynthetic rate per unit of reduced nitrogen in leaves at the lower irradiance was accompanied by an increase in the nitrate fraction of total nitrogen in leaves from 20% at the higher irradiance to 38% at the lower irradiance.

  19. Modelling Plant and Soil Nitrogen Feedbacks Affecting Forest Carbon Gain at High CO2

    NASA Astrophysics Data System (ADS)

    McMurtrie, R. E.; Norby, R. J.; Franklin, O.; Pepper, D. A.

    2007-12-01

    Short-term, direct effects of elevated atmospheric CO2 concentrations on plant carbon gain are relatively well understood. There is considerable uncertainty, however, about longer-term effects, which are influenced by various plant and ecosystem feedbacks. A key feedback in terrestrial ecosystems occurs through changes in plant carbon (C) allocation patterns. For instance, if high CO2 were to increase C allocation to roots, then plants may experience positive feedback through improved plant nutrition. A second type of feedback, associated with decomposition of soil-organic matter, may reduce soil-nutrient availability at high CO2. This paper will consider mechanistic models of both feedbacks. Effects of high CO2 on plant C allocation will be investigated using a simple model of forest net primary production (NPP) that incorporates the primary mechanisms of plant carbon and nitrogen (N) balance. The model called MATE (Model Any Terrestrial Ecosystem) includes an equation for annual C balance that depends on light- saturated photosynthetic rate and therefore on [CO2], and an equation for N balance incorporating an expression for N uptake as a function of root mass. The C-N model is applied to a Free Air CO2 Exchange (FACE) experiment at Oak Ridge National Laboratory (ORNL) in Tennessee, USA, where closed-canopy, monoculture stands of the deciduous hardwood sweetgum ( Liquidambar styraciflua) have been growing at [CO2] of 375 and 550 ppm for ten years. Features of this experiment are that the annual NPP response to elevated CO2 has averaged approximately 25% over seven years, but that annual fine-root production has almost doubled on average, with especially large increases in later years of the experiment (Norby et al. 2006). The model provides a simple graphical approach for analysing effects of elevated CO2 and N supply on leaf/root/wood C allocation and productivity. It simulates increases in NPP and fine-root production at the ORNL FACE site that are consistent

  20. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance?

    PubMed Central

    Liebel, Heiko T.; Bidartondo, Martin I.; Gebauer, Gerhard

    2015-01-01

    Background and Aims The green orchid Goodyera repens has been shown to transfer carbon to its mycorrhizal partner, and this flux may therefore be affected by light availability. This study aimed to test whether the C and N exchange between plant and fungus is dependent on light availability, and in addition addressed the question of whether flowering and/or fruiting individuals of G. repens compensate for changes in leaf chlorophyll concentration with changes in C and N flows from fungus to plant. Methods The natural abundances of stable isotopes of plant C and N were used to infer changes in fluxes between orchid and fungus across natural gradients of irradiance at five sites. Mycorrhizal fungi in the roots of G. repens were identified by molecular analyses. Chlorophyll concentrations in the leaves of the orchid and of reference plants were measured directly in the field. Key Results Leaf δ13C values of G. repens responded to changes in light availability in a similar manner to autotrophic reference plants, and different mycorrhizal fungal associations also did not affect the isotope abundance patterns of the orchid. Flowering/fruiting individuals had lower leaf total N and chlorophyll concentrations, which is most probably explained by N investments to form flowers, seeds and shoot. Conclusions The results indicate that mycorrhizal physiology is relatively fixed in G. repens, and changes in the amount and direction of C flow between plant and fungus were not observed to depend on light availability. The orchid may instead react to low-light sites through increased clonal growth. The orchid does not compensate for low leaf total N and chlorophyll concentrations by using a 13C- and 15N-enriched fungal source. PMID:25538109

  1. Hypoxia Affects Nitrogen Uptake and Distribution in Young Poplar (Populus × canescens) Trees

    PubMed Central

    Liu, Bin; Rennenberg, Heinz; Kreuzwieser, Jürgen

    2015-01-01

    The present study with young poplar trees aimed at characterizing the effect of O2 shortage in the soil on net uptake of NO3- and NH4+ and the spatial distribution of the N taken up. Moreover, we assessed biomass increment as well as N status of the trees affected by O2 deficiency. For this purpose, an experiment was conducted in which hydroponically grown young poplar trees were exposed to hypoxic and normoxic (control) conditions for 14 days. 15N-labelled NO3- and NH4+ were used to elucidate N uptake and distribution of currently absorbed N and N allocation rates in the plants. Whereas shoot biomass was not affected by soil O2 deficiency, it significantly reduced root biomass and, consequently, the root-to-shoot ratio. Uptake of NO3- but not of NH4+ by the roots of the trees was severely impaired by hypoxia. As a consequence of reduced N uptake, the N content of all poplar tissues was significantly diminished. Under normoxic control conditions, the spatial distribution of currently absorbed N and N allocation rates differed depending on the N source. Whereas NO3- derived N was mainly transported to the younger parts of the shoot, particularly to the developing and young mature leaves, N derived from NH4+ was preferentially allocated to older parts of the shoot, mainly to wood and bark. Soil O2 deficiency enhanced this differential allocation pattern. From these results we assume that NO3- was assimilated in developing tissues and preferentially used to maintain growth and ensure plant survival under hypoxia, whereas NH4+ based N was used for biosynthesis of storage proteins in bark and wood of the trees. Still, further studies are needed to understand the mechanistic basis as well as the eco-physiological advantages of such differential allocation patterns. PMID:26308462

  2. A systematic review of factors affecting children's right to health in cluster randomized trials in Kenya.

    PubMed

    Oduwo, Elizabeth; Edwards, Sarah J L

    2014-01-01

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot' studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children's right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children's right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination': the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive' group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children's access to treatment in Kenya or otherwise inconsistently with children's right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children's right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial access or

  3. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    USGS Publications Warehouse

    Miller, D.N.; Smith, R.L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (> 300????M) and NH4+ (51-800????M). The second site was 2.5??km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200????M with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350??g- 1 and 33 to 35,000??g- 1, respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  4. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria.

    PubMed

    Miller, Daniel N; Smith, Richard L

    2009-01-26

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O2 (>300 microM) and NH4+ (51-800 microM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O2, NH4+, and NO3- (0-300, 0-500, and 100-200 microM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g(-1) and 33 to 35,000 g(-1), respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable. PMID:19059672

  5. Microbial characterization of nitrification in a shallow, nitrogen-contaminated aquifer, Cape Cod, Massachusetts and detection of a novel cluster associated with nitrifying Betaproteobacteria

    NASA Astrophysics Data System (ADS)

    Miller, Daniel N.; Smith, Richard L.

    2009-01-01

    Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a plume of contamination were examined using culture-based and molecular techniques targeting nitrification processes. The first site, located beneath a sewage effluent infiltration bed, received treated effluent containing O 2 (> 300 µM) and NH 4+ (51-800 µM). The second site was 2.5 km down-gradient near the leading edge of the ammonium zone within the contaminant plume and featured vertical gradients of O 2, NH 4+, and NO 3- (0-300, 0-500, and 100-200 µM with depth, respectively). Ammonia- and nitrite-oxidizers enumerated by the culture-based MPN method were low in abundance at both sites (1.8 to 350 g - 1 and 33 to 35,000 g - 1 , respectively). Potential nitrifying activity measured in core material in the laboratory was also very low, requiring several weeks for products to accumulate. Molecular analysis of aquifer DNA (nested PCR followed by cloning and 16S rDNA sequencing) detected primarily sequences associated with the Nitrosospira genus throughout the cores at the down-gradient site and a smaller proportion from the Nitrosomonas genus in the deeper anoxic, NH 4+ zone at the down-gradient site. Only a single Nitrosospira sequence was detected beneath the infiltration bed. Furthermore, the majority of Nitrosospira-associated sequences represent an unrecognized cluster. We conclude that an uncharacterized group associated with Nitrosospira dominate at the geochemically stable, down-gradient site, but found little evidence for Betaproteobacteria nitrifiers beneath the infiltration beds where geochemical conditions were more variable.

  6. Does temperature of charcoal creation affect subsequent mineralization of soil carbon and nitrogen?

    NASA Astrophysics Data System (ADS)

    Pelletier-Bergeron, S.; Bradley, R.; Munson, A. D.

    2012-04-01

    Forest fire is the most common form of natural disturbance of boreal forest ecosystems and has primordial influence on successional processes. This may be due in part to the pre-disturbance vegetation development stage and species composition, but these successional pathways could also vary with differences in fire behavior and consequently in fire intensity, defined as the energy released during various phases of a fire. Fire intensity may also affect soil C and N cycling by affecting the quality of the charcoal that is produced. For example, the porosity of coal tends to increase with increasing temperature at which it is produced Higher porosity would logically increase the surface area to which dissolved soil molecules, such as tannins and other phenolics, may be adsorbed. We report on a microcosm study in which mineral and organic soils were jointly incubated for eight weeks with a full factorial array of treatments that included the addition of Kalmia tannins, protein, and wood charcoal produced at five different temperatures. A fourth experimental factor comprised the physical arrangement of the material (stratified vs. mixed), designed to simulate the effect of soil scarification after fire and salvage harvest. We examined the effects of these treatments on soil C and N mineralisation and soil microbial biomass. The furnace temperature at which the charcoal was produced had a significant effect on its physico-chemical properties; increasing furnace temperatures corresponded to a significant increase in % C (P<0.001), and a significant decrease in %O (P<0.001) and %H (P<0.001). Temperature also had significant impacts on microporosity (surface area and volume). Temperature of production had no effect (P=0.1355) on soil microbial biomass. We observed a linear decreasing trend (P<0.001) in qCO2 with increasing temperature of production, which was mainly reflected in a decline in basal respiration. Finally, we found a significant interaction (P=0.010) between

  7. Genome scan identifies a locus affecting gamma-globin expression in human beta-cluster YAC transgenic mice

    SciTech Connect

    Lin, S.D.; Cooper, P.; Fung, J.; Weier, H.U.G.; Rubin, E.M.

    2000-03-01

    Genetic factors affecting post-natal g-globin expression - a major modifier of the severity of both b-thalassemia and sickle cell anemia, have been difficult to study. This is especially so in mice, an organism lacking a globin gene with an expression pattern equivalent to that of human g-globin. To model the human b-cluster in mice, with the goal of screening for loci affecting human g-globin expression in vivo, we introduced a human b-globin cluster YAC transgene into the genome of FVB mice . The b-cluster contained a Greek hereditary persistence of fetal hemoglobin (HPFH) g allele resulting in postnatal expression of human g-globin in transgenic mice. The level of human g-globin for various F1 hybrids derived from crosses between the FVB transgenics and other inbred mouse strains was assessed. The g-globin level of the C3HeB/FVB transgenic mice was noted to be significantly elevated. To map genes affecting postnatal g-globin expression, a 20 centiMorgan (cM) genome scan of a C3HeB/F VB transgenics [prime] FVB backcross was performed, followed by high-resolution marker analysis of promising loci. From this analysis we mapped a locus within a 2.2 cM interval of mouse chromosome 1 at a LOD score of 4.2 that contributes 10.4% of variation in g-globin expression level. Combining transgenic modeling of the human b-globin gene cluster with quantitative trait analysis, we have identified and mapped a murine locus that impacts on human g-globin expression in vivo.

  8. DMPP-added nitrogen fertilizer affects soil N2O emission and microbial activity in Southern Italy

    NASA Astrophysics Data System (ADS)

    Vitale, Luca; De Marco, Anna; Maglione, Giuseppe; Polimeno, Franca; Di Tommasi, Paul; Magliulo, Vincenzo

    2014-05-01

    Arable sites contributes to global N2O emission due to massive utilization of nitrogen fertilizers. N2O derives from the biological processes such as nitrification and denitrification influenced by soil nitrogen availability. The use of nitrogen fertilizers added with nitrification inhibitors represents one among the proposed strategy to reduce soil N2O emission form arable sites. The aim of this work was to evaluate the effects of 3,4-dimethylphyrazole phosphate (DMPP), a nitrification inhibitor, on N2O emission and microbial activity of a soil cropped to potato in Southern Italy. The experiment was a randomized block design with two treatments applied and three replicates: control (C) and DMPP (Entec®, K+S Nitrogen) plots, both supplied with the same amount of ammonium nitrate. The nitrogen fertilizer was supplied in three events: at 0 Day After Sowing (DAS; 100 kg N ha-1), at 57 DAS (30 kg N ha-1), and at 71 DAS (30 kg N ha-1). Soil N2O emission was monitored by both dynamic and static chambers. Static chambers were located both on hills and furrows whereas dynamic chambers were located on furrows. Air samples were collected from chambers at different times and analysed by a gas chromatograph (SRI 8610C, Gas Chromatograph). Fluxes were estimated as a linear interpolation of N2O changes over a 30 min time. Microbial biomass and basal respiration were determined as CO2 evolution, analysed by means of an IRGA (Li6200, Licor), on 2 g of fresh soil over a 4h incubation time. Microbial biomass was determined by Substrate Induced Respiration method. Data show no statistical differences in N2O fluxes measured with either dynamic chambers between C and DMPP plots in studied period. However, after the first fertilization event, when the fertilizer was applied as 100 kg N ha-1, the average N2O fluxes measured with static chambers were higher in DMPP plots compared to C plots. In the same period, the microbial biomass significantly decreased in DMPP plots as compared to C

  9. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2015-04-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  10. Large-scale dynamics associated with clustering of extratropical cyclones affecting Western Europe

    NASA Astrophysics Data System (ADS)

    Pinto, Joaquim G.; Gómara, Iñigo; Masato, Giacomo; Dacre, Helen F.; Woollings, Tim; Caballero, Rodrigo

    2014-12-01

    Some recent winters in Western Europe have been characterized by the occurrence of multiple extratropical cyclones following a similar path. The occurrence of such cyclone clusters leads to large socio-economic impacts due to damaging winds, storm surges, and floods. Recent studies have statistically characterized the clustering of extratropical cyclones over the North Atlantic and Europe and hypothesized potential physical mechanisms responsible for their formation. Here we analyze 4 months characterized by multiple cyclones over Western Europe (February 1990, January 1993, December 1999, and January 2007). The evolution of the eddy driven jet stream, Rossby wave-breaking, and upstream/downstream cyclone development are investigated to infer the role of the large-scale flow and to determine if clustered cyclones are related to each other. Results suggest that optimal conditions for the occurrence of cyclone clusters are provided by a recurrent extension of an intensified eddy driven jet toward Western Europe lasting at least 1 week. Multiple Rossby wave-breaking occurrences on both the poleward and equatorward flanks of the jet contribute to the development of these anomalous large-scale conditions. The analysis of the daily weather charts reveals that upstream cyclone development (secondary cyclogenesis, where new cyclones are generated on the trailing fronts of mature cyclones) is strongly related to cyclone clustering, with multiple cyclones developing on a single jet streak. The present analysis permits a deeper understanding of the physical reasons leading to the occurrence of cyclone families over the North Atlantic, enabling a better estimation of the associated cumulative risk over Europe.

  11. Root-zone acidity affects relative uptake of nitrate and ammonium from mixed nitrogen sources

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; Henry, L. T.; Chaillou, S.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1990-01-01

    Soybean plants (Glycine max [L.] Merr. cv Ransom) were grown for 21 days on 4 sources of N (1.0 mM NO3-, 0.67 mM NO3- plus 0.33 mM NH4+, 0.33 mM NO3- plus 0.67 mM NH4+, and 1.0 mM NH4+) in hydroponic culture with the acidity of the nutrient solution controlled at pH 6.0, 5.5, 5.0, and 4.5. Dry matter and total N accumulation of the plants was not significantly affected by N-source at any of the pH levels except for decreases in these parameters in plants supplied solely with NH4+ at pH 4.5. Shoot-to-root ratios increased in plants which had an increased proportion [correction of proporiton] of NH4(+)-N in their nutrient solutions at all levels of root-zone pH. Uptake of NO3- and NH4+ was monitored daily by ion chromatography as depletion of these ions from the replenished hydroponic solutions. At all pH levels the proportion of either ion that was absorbed increased as the ratio of that ion increased in the nutrient solution. In plants which were supplied with sources of NO3- plus NH4+, NH4+ was absorbed at a ratio of 2:1 over NO3- at pH 6.0. As the pH of the root-zone declined, however, NH4+ uptake decreased and NO3- uptake increased. Thus, the NH4+ to NO3- uptake ratio declined with decreases in root-zone pH. The data indicate a negative effect of declining root-zone pH on NH4+ uptake and supports a hypothesis that the inhibition of growth of plants dependent on NH4(+)-N at low pH is due to a decline in NH4+ uptake and a consequential limitation of growth by N stress.

  12. Microbial Characterization of Nitrification in a Shallow, Nitrogen-Contaminated Aquifer, Cape Cod, Massachusetts and Detection of a Novel Cluster Associated with Nitrifying Betaproteobacteria

    Technology Transfer Automated Retrieval System (TEKTRAN)

    : Groundwater nitrification is a poorly characterized process affecting the speciation and transport of nitrogen. Cores from two sites in a sewage-contaminated groundwater plume were examined for microbial and molecular evidence of nitrification processes. The first, located beneath a sewage effl...

  13. Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations of dissolved organic carbon

    USGS Publications Warehouse

    Waldrop, M.P.; Zak, D.R.

    2006-01-01

    Recent evidence suggests that atmospheric nitrate (NO3- ) deposition can alter soil carbon (C) storage by directly affecting the activity of lignin-degrading soil fungi. In a laboratory experiment, we studied the direct influence of increasing soil NO 3- concentration on microbial C cycling in three different ecosystems: black oak-white oak (BOWO), sugar maple-red oak (SMRO), and sugar maple-basswood (SMBW). These ecosystems span a broad range of litter biochemistry and recalcitrance; the BOWO ecosystem contains the highest litter lignin content, SMRO had intermediate lignin content, and SMBW leaf litter has the lowest lignin content. We hypothesized that increasing soil solution NO 3- would reduce lignolytic activity in the BOWO ecosystem, due to a high abundance of white-rot fungi and lignin-rich leaf litter. Due to the low lignin content of litter in the SMBW, we further reasoned that the NO3- repression of lignolytic activity would be less dramatic due to a lower relative abundance of white-rot basidiomycetes; the response in the SMRO ecosystem should be intermediate. We increased soil solution NO3- concentrations in a 73-day laboratory incubation and measured microbial respiration and soil solution dissolved organic carbon (DOC) and phenolics concentrations. At the end of the incubation, we measured the activity of ??-glucosidase, N-acetyl-glucosaminidase, phenol oxidase, and peroxidase, which are extracellular enzymes involved with cellulose and lignin degradation. We quantified the fungal biomass, and we also used fungal ribosomal intergenic spacer analysis (RISA) to gain insight into fungal community composition. In the BOWO ecosystem, increasing NO 3- significantly decreased oxidative enzyme activities (-30% to -54%) and increased DOC (+32% upper limit) and phenolic (+77% upper limit) concentrations. In the SMRO ecosystem, we observed a significant decrease in phenol oxidase activity (-73% lower limit) and an increase in soluble phenolic concentrations

  14. How nitrogen and sulphur addition, and a single drought event affect root phosphatase activity in Phalaris arundinacea.

    PubMed

    Robroek, Bjorn J M; Adema, Erwin B; Venterink, Harry Olde; Leonardson, Lars; Wassen, Martin J

    2009-03-15

    Conservation and restoration of fens and fen meadows often aim to reduce soil nutrients, mainly nitrogen (N) and phosphorus (P). The biogeochemistry of P has received much attention as P-enrichment is expected to negatively impact on species diversity in wetlands. It is known that N, sulphur (S) and hydrological conditions affect the biogeochemistry of P, yet their interactive effects on P-dynamics are largely unknown. Additionally, in Europe, climate change has been predicted to lead to increases in summer drought. We performed a greenhouse experiment to elucidate the interactive effects of N, S and a single drought event on the P-availability for Phalaris arundinacea. Additionally, the response of plant phosphatase activity to these factors was measured over the two year experimental period. In contrast to results from earlier experiments, our treatments hardly affected soil P-availability. This may be explained by the higher pH in our soils, hampering the formation of Fe-P or Fe-Al complexes. Addition of S, however, decreased the plants N:P ratio, indicating an effect of S on the N:P stoichiometry and an effect on the plant's P-demand. Phosphatase activity increased significantly after addition of S, but was not affected by the addition of N or a single drought event. Root phosphatase activity was also positively related to plant tissue N and P concentrations, plant N and P uptake, and plant aboveground biomass, suggesting that the phosphatase enzyme influences P-biogeochemistry. Our results demonstrated that it is difficult to predict the effects of wetland restoration, since the involved mechanisms are not fully understood. Short-term and long-term effects on root phosphatase activity may differ considerably. Additionally, the addition of S can lead to unexpected effects on the biogeochemistry of P. Our results showed that natural resource managers should be careful when restoring degraded fens or preventing desiccation of fen ecosystems. PMID:19101022

  15. Grief and attitudes toward suicide in peers affected by a cluster of suicides as adolescents.

    PubMed

    Abbott, Caroline H; Zakriski, Audrey L

    2014-12-01

    Eighty-five young adults exposed to a cluster of peer suicides as adolescents completed measures of attitudes toward suicide, grief, and social support. Closeness to the peers lost to suicide was positively correlated with grief and the belief that suicide is not preventable, with grief further elevated in close individuals with high social support from friends. Overall, social support was related to healthy attitudes about suicide including preventability, yet it was also related to some stigmatizing beliefs. Compared with 67 young adults who had not been exposed to a suicide cluster, the exposed sample was more likely to think that suicide is normal but more likely to think of it as incomprehensible. PMID:24806293

  16. Seizure Clustering during Drug Treatment Affects Seizure Outcome and Mortality of Childhood-Onset Epilepsy

    ERIC Educational Resources Information Center

    Sillanpaa, Matti; Schmidt, Dieter

    2008-01-01

    To provide evidence of whether seizure clustering is associated with drug resistance and increased mortality in childhood-onset epilepsy, a prospective, long-term population-based study was performed. One hundred and twenty patients who had been followed since disease onset (average age 37.0 years, SD 7.1, median 40.0, range 11-42; incident cases)…

  17. Changes in the salinity tolerance of sweet pepper plants as affected by nitrogen form and high CO2 concentration.

    PubMed

    Piñero, María C; Pérez-Jiménez, Margarita; López-Marín, Josefa; Del Amor, Francisco M

    2016-08-01

    The assimilation and availability of nitrogen in its different forms can significantly affect the response of primary productivity under the current atmospheric alteration and soil degradation. An elevated CO2 concentration (e[CO2]) triggers changes in the efficiency and efficacy of photosynthetic processes, water use and product yield, the plant response to stress being altered with respect to ambient CO2 conditions (a[CO2]). Additionally, NH4(+) has been related to improved plant responses to stress, considering both energy efficiency in N-assimilation and the overcoming of the inhibition of photorespiration at e[CO2]. Therefore, the aim of this work was to determine the response of sweet pepper plants (Capsicum annuum L.) receiving an additional supply of NH4(+) (90/10 NO3(-)/NH4(+)) to salinity stress (60mM NaCl) under a[CO2] (400μmolmol(-1)) or e[CO2] (800μmolmol(-1)). Salt-stressed plants grown at e[CO2] showed DW accumulation similar to that of the non-stressed plants at a[CO2]. The supply of NH4(+) reduced growth at e[CO2] when salinity was imposed. Moreover, NH4(+) differentially affected the stomatal conductance and water use efficiency and the leaf Cl(-), K(+), and Na(+) concentrations, but the extent of the effects was influenced by the [CO2]. An antioxidant-related response was prompted by salinity, the total phenolics and proline concentrations being reduced by NH4(+) at e[CO2]. Our results show that the effect of NH4(+) on plant salinity tolerance should be globally re-evaluated as e[CO2] can significantly alter the response, when compared with previous studies at a[CO2]. PMID:27317970

  18. Continuous nitrogen application differentially affects growth, yield,and nitrogen use efficiency of Leymus chinensis in two saline–sodic soils of Northeastern China

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leymus chinensis (Trin.) Tzvel. (Poaceae) is a dominant plant in the Western Songnen plain of Northeastern China, Soil salinization and alkalization, nitrogen deficiency and current management practices have resulted in grassland degradation in the region. The objective of this study was to investig...

  19. Nitrogen fertilization rate affects feeding, larval performance, and oviposition preference of the beet armyworm, Spodoptera exigua, on cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) is one of the most critical chemical elements for plant and animal growth. Development and oviposition of the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae) was studied in relation to varying nitrogen levels in cotton, Gossypium hirsutum L. The development of S. exig...

  20. Corn silage hybrid type and quality of alfalfa hay affect dietary nitrogen utilization by early lactating dairy cows.

    PubMed

    Holt, M S; Neal, K; Eun, J-S; Young, A J; Hall, J O; Nestor, K E

    2013-10-01

    This experiment was conducted to determine the effects of corn silage (CS) hybrids and quality of alfalfa hay (AH) in high-forage dairy diets on N utilization, ruminal fermentation, and lactational performance by early-lactating dairy cows. Eight multiparous Holstein cows were used in a duplicated 4 × 4 Latin square experiment with a 2 × 2 factorial arrangement of dietary treatments. The 8 cows (average days in milk = 23 ± 11.2) were surgically fitted with ruminal cannula, and the 2 squares were conducted simultaneously. Within square, cows were randomly assigned to a sequence of 4 diets: conventional CS (CCS) or brown midrib CS (BMR) was combined with fair-quality AH [FAH: 46.7% neutral detergent fiber (NDF) and 18.4% crude protein (CP)] or high-quality AH (HAH: 39.2% NDF and 20.7% CP) to form 4 treatments: CCS with FAH, CCS with HAH, BMR with FAH, and BMR with HAH. Diets were isonitrogenous across treatments, averaging 15.9% CP. Each period lasted a total of 21 d, with 14 d for treatment adaptation and 7d for data collection and sampling. Intake of DM and milk yield did not differ in response to CS hybrids or AH quality. Although feeding BMR-based diets decreased urinary N output by 24%, it did not affect fecal N output. Feeding HAH decreased urinary N output by 15% but increased fecal N output by 20%. Nitrogen efficiency [milk N (g/d)/intake N (g/d)] tended to increase for BMR treatments. Ruminal ammonia-N concentration was lower for cows fed BMR-based diets than for those fed CCS-based diets but was not affected by quality of AH. Feeding BMR-based diets or HAH decreased milk urea N concentration by 23 or 15%, respectively, compared with CCS-based diets or FAH. Total volatile fatty acid concentration increased with HAH but was not influenced by CS hybrids. Feeding BMR-based diets decreased urinary N-to-fecal N ratio (UN:FN), and it was further reduced by feeding HAH. Although cows fed the BMR-based diets tended to increase milk N-to-manure N ratio, the

  1. Vertical Chlorophyll Canopy Structure Affects the Remote Sensing Based Predictability of LAI, Chlorophyll and Leaf Nitrogen in Agricultural Fields

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Houborg, R.; Bienkowski, J.; Braban, C. F.; Dalgaard, T.; van Dijk, N.; Dragosits, U.; Holmes, E.; Magliulo, V.; Schelde, K.; Di Tommasi, P.; Vitale, L.; Theobald, M.; Cellier, P.; Sutton, M.

    2012-12-01

    Leaf nitrogen and leaf surface area influence the exchange of gases between terrestrial ecosystems and the atmosphere, and they play a significant role in the global cycles of carbon, nitrogen and water. Remote sensing can be used to estimate leaf area index (LAI), chlorophyll content (CHL) and leaf nitrogen (N), but methods are often developed using plot-scale data and not verified over extended regions characterized by variations in environmental boundary conditions (soil, atmosphere) and canopy structures. Estimation of N can be indirect due to its association with CHL, however N is also included in pigments such as carotenoids and anthocyanin which have different spectral signatures than CHL. Photosynthesis optimization theory suggests that plants will distribute their N resources in proportion to the light gradient within the canopy. Such vertical variation in CHL and N complicates the evaluation of remote sensing-based methods. Typically remote sensing studies measure CHL of the upper leaf, which is then multiplied by the green LAI to represent canopy chlorophyll content, or random sampling is used. In this study, field measurements and high spatial resolution (10-20 m) remote sensing images acquired from the HRG and HRVIR sensors aboard the SPOT satellites were used to assess the predictability of LAI, CHL and N in five European agricultural landscapes located in Denmark, Scotland (United Kingdom), Poland, The Netherlands and Italy . All satellite images were atmospherically using the 6SV1 model with atmospheric inputs estimated by MODIS and AIRS data. Five spectral vegetation indices (SVIs) were calculated (the Normalized Difference Vegetation index, the Simple Ratio, the Enhanced Vegetation Index-2, the Green Normalized Difference Vegetation Index, and the green Chlorophyll Index), and an image-based inverse canopy radiative transfer modelling system, REGFLEC (REGularized canopy reFLECtance) was applied to each of the five European landscapes. While the

  2. How the extinction of extragalactic background light affects surface photometry of galaxies, groups and clusters

    NASA Astrophysics Data System (ADS)

    Zackrisson, E.; Micheva, G.; Östlin, G.

    2009-08-01

    The faint regions of galaxies, groups and clusters hold important clues about how these objects formed, and surface photometry at optical and near-infrared wavelengths represents a powerful tool for studying such structures. Here, we identify a hitherto unrecognized problem with this technique, related to how the night sky flux is typically measured and subtracted from astronomical images. While most of the sky flux comes from regions between the observer and the target object, a small fraction - the extragalactic background light (EBL) - comes from behind. We argue that since this part of the sky flux can be subjected to extinction by dust present in the galaxy/group/cluster studied, standard reduction procedures may lead to a systematic oversubtraction of the EBL. Even very small amounts of extinction can lead to spurious features in radial surface brightness profiles and colour maps of extended objects. We assess the likely impact of this effect on a number of topics in extragalactic astronomy where very deep surface photometry is currently attempted, including studies of stellar haloes, starburst host galaxies, disc truncations and diffuse intragroup/intracluster light. We argue that EBL extinction may provide at least a partial explanation for the anomalously red colours reported for the haloes of disc galaxies and for the hosts of local starburst galaxies. EBL extinction effects also mimic truncations in discs with unusually high dust opacities, but are unlikely to be the cause of such features in general. Failure to account for EBL extinction can also give rise to a non-negligible underestimate of intragroup and intracluster light at the faintest surface brightness levels currently probed. Finally, we discuss how EBL extinction effects may be exploited to provide an independent constraint on the surface brightness of the EBL, using a combination of surface photometry and direct star counts.

  3. Power training and postmenopausal hormone therapy affect transcriptional control of specific co-regulated gene clusters in skeletal muscle

    PubMed Central

    Fey, Vidal; Törmäkangas, Timo; Ronkainen, Paula H. A.; Taaffe, Dennis R.; Takala, Timo; Koskinen, Satu; Cheng, Sulin; Puolakka, Jukka; Kujala, Urho M.; Suominen, Harri; Sipilä, Sarianna; Kovanen, Vuokko

    2010-01-01

    At the moment, there is no clear molecular explanation for the steeper decline in muscle performance after menopause or the mechanisms of counteractive treatments. The goal of this genome-wide study was to identify the genes and gene clusters through which power training (PT) comprising jumping activities or estrogen containing hormone replacement therapy (HRT) may affect skeletal muscle properties after menopause. We used musculus vastus lateralis samples from early stage postmenopausal (50–57 years old) women participating in a yearlong randomized double-blind placebo-controlled trial with PT and HRT interventions. Using microarray platform with over 24,000 probes, we identified 665 differentially expressed genes. The hierarchical clustering method was used to assort the genes. Additionally, enrichment analysis of gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways was carried out to clarify whether assorted gene clusters are enriched with particular functional categories. The analysis revealed transcriptional regulation of 49 GO/KEGG categories. PT upregulated transcription in “response to contraction”—category revealing novel candidate genes for contraction-related regulation of muscle function while HRT upregulated gene expression related to functionality of mitochondria. Moreover, several functional categories tightly related to muscle energy metabolism, development, and function were affected regardless of the treatment. Our results emphasize that during the early stages of the postmenopause, muscle properties are under transcriptional modulation, which both PT and HRT partially counteract leading to preservation of muscle power and potentially reducing the risk for aging-related muscle weakness. More specifically, PT and HRT may function through improving energy metabolism, response to contraction as well as by preserving functionality of the mitochondria. Electronic supplementary material The online version of this

  4. Stratification and Storage of Soil Organic Carbon and Nitrogen as Affected by Tillage Practices in the North China Plain

    PubMed Central

    Zhang, Xiang-Qian; Kong, Fan-Lei; Chen, Fu; Lal, Rattan; Zhang, Hai-Lin

    2015-01-01

    Tillage practices can redistribute the soil profiles, and thus affects soil organic carbon (SOC), and its storage. The stratification ratio (SR) can be an indicator of soil quality. This study was conducted to determine tillage effects on the profile distribution of certain soil properties in winter wheat (Triticum aestivum L.) and summer maize (Zea mays L.) systems in the North China Plain (NCP). Three tillage treatments, including no till (NT), rotary tillage (RT), and plow tillage (PT), were established in 2001 in Luancheng County, Hebei Province. The concentration, storage, and SR of SOC and soil total nitrogen (TN) were assessed in both the wheat and maize seasons. Compared with RT and PT, the mean SRs for all depth ratios of SOC under NT increased by 7.85% and 30.61% during the maize season, and by 14.67% and 30.91% during the wheat season, respectively. The SR of TN for 0–5:30–50 cm increased by 140%, 161%, and 161% in the maize season, and 266%, 154%, and 122% in the wheat season compared to the SR for 0–5:5–10 cm under NT, RT and PT, respectively. The data indicated that SOC and TN were both concentrated in the surface-soil layers (0–10 cm) under NT but were distributed relatively evenly through the soil profile under PT. Meanwhile, the storage of SOC and TN was higher under NT for the surface soil (0–10 cm) but was higher under PT for the deeper soil (30–50 cm). Furthermore, the storage of SOC and TN was significantly related to SR of SOC and TN along the whole soil profile (P<0.0001). Therefore, SR could be used to explain and indicate the changes in the storage of SOC and TN. Further, NT stratifies SOC and TN, enhances the topsoil SOC storage, and helps to improve SOC sequestration and soil quality. PMID:26075391

  5. Long-term nitrogen additions increase likelihood of climate stress and affect recovery from wildfire in a lowland heath.

    PubMed

    Southon, Georgina E; Green, Emma R; Jones, Alan G; Barker, Chris G; Power, Sally A

    2012-09-01

    Increases in the emissions and associated atmospheric deposition of nitrogen (N) have the potential to cause significant changes to the structure and function of N-limited ecosystems. Here, we present the results of a long-term (13 year) experiment assessing the impacts of N addition (30 kg ha(-1)  yr(-1) ) on a UK lowland heathland under a wide range of environmental conditions, including the occurrence of prolonged natural drought episodes and a severe summer fire. Our findings indicate that elevated N deposition results in large, persistent effects on Calluna growth, phenology and chemistry, severe suppression of understorey lichen flora and changes in soil biogeochemistry. Growing season rainfall was found to be a strong driver of inter-annual variation in Calluna growth and, although interactions between N and rainfall for shoot growth were not significant until the later phase of the experiment, N addition exacerbated the extent of drought injury to Calluna shoots following naturally occurring droughts in 2003 and 2009. Following a severe wildfire at the experimental site in 2006, heathland regeneration dynamics were significantly affected by N, with a greater abundance of pioneering moss species and suppression of the lichen flora in plots receiving N additions. Significant interactions between climate and N were also apparent post fire, with the characteristic stimulation in Calluna growth in +N plots suppressed during dry years. Carbon (C) and N budgets demonstrate large increases in both above- and below-ground stocks of these elements in N-treated plots prior to the fire, despite higher levels of soil microbial activity and organic matter turnover. Although much of the organic material was removed during the fire, pre-existing treatment differences were still evident following the burn. Post fire accumulation of below-ground C and N stocks was increased rapidly in N-treated plots, highlighting the role of N deposition in ecosystem C sequestration

  6. Does training frequency and supervision affect compliance, performance and muscular health? A cluster randomized controlled trial.

    PubMed

    Dalager, Tina; Bredahl, Thomas G V; Pedersen, Mogens T; Boyle, Eleanor; Andersen, Lars L; Sjøgaard, Gisela

    2015-10-01

    The aim was to determine the effect of one weekly hour of specific strength training within working hours, performed with the same total training volume but with different training frequencies and durations, or with different levels of supervision, on compliance, muscle health and performance, behavior and work performance. In total, 573 office workers were cluster-randomized to: 1 WS: one 60-min supervised session/week, 3 WS: three 20-min supervised sessions/week, 9 WS: nine 7-min supervised sessions/week, 3 MS: three 20-min sessions/week with minimal supervision, or REF: a reference group without training. Outcomes were diary-based compliance, total training volume, muscle performance and questionnaire-based health, behavior and work performance. Comparisons were made among the WS training groups and between 3 WS and 3 MS. If no difference, training groups were collapsed (TG) and compared with REF. Results demonstrated similar degrees of compliance, mean(range) of 39(33-44)%, and total training volume, 13.266(11.977-15.096)kg. Musculoskeletal pain in neck and shoulders were reduced with approx. 50% in TG, which was significant compared with REF. Only the training groups improved significantly their muscle strength 8(4-13)% and endurance 27(12-37)%, both being significant compared with REF. No change in workability, productivity or self-rated health was demonstrated. Secondary analysis showed exercise self-efficacy to be a significant predictor of compliance. Regardless of training schedule and supervision, similar degrees of compliance were shown together with reduced musculoskeletal pain and improved muscle performance. These findings provide evidence that a great degree of flexibility is legitimate for companies in planning future implementation of physical exercise programs at the workplace. ClinicalTrials.gov, number NCT01027390. PMID:25816746

  7. The Genetics of Symbiotic Nitrogen Fixation: Comparative Genomics of 14 Rhizobia Strains by Resolution of Protein Clusters

    PubMed Central

    Black, Michael; Moolhuijzen, Paula; Chapman, Brett; Barrero, Roberto; Howieson, John; Hungria, Mariangela; Bellgard, Matthew

    2012-01-01

    The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core ‘symbiome’—the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome. PMID:24704847

  8. Winter Cover Crop Seeding Rate and Variety Affects during 8 Years of Organic Vegetables 2. Cover Crop Nitrogen Accumulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Winter cover crops (CC) can improve nutrient-use efficiency in vegetable systems. Nitrogen uptake (NU), and shoot residue quality of rye (Secale cereale L.), legume-rye, and mustard was determined in December, January, and February or March during the first 8 yr of the Salinas Organic Cropping Syst...

  9. Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts.

    PubMed

    Harsch, Michael J; Gardner, Richard C

    2013-01-01

    Two volatile thiols, 3-mercaptohexan-1-ol (3MH), and 3-mercaptohexyl-acetate (3MHA), reminiscent of grapefruit and passion fruit respectively, are critical varietal aroma compounds in Sauvignon Blanc (SB) wines. These aromatic thiols are not present in the grape juice but are synthesized and released by the yeast during alcoholic fermentation. Single deletion mutants of 67 candidate genes in a laboratory strain of Saccharomyces cerevisiae were screened using gas chromatography mass spectrometry for their thiol production after fermentation of SB grape juice. None of the deletions abolished production of the two volatile thiols. However, deletion of 17 genes caused increases or decreases in production by as much as twofold. These 17 genes, mostly related to sulfur and nitrogen metabolism in yeast, may act by altering the regulation of the pathway(s) of thiol production or altering substrate supply. Deleting subsets of these genes in a wine yeast strain gave similar results to the laboratory strain for sulfur pathway genes but showed strain differences for genes involved in nitrogen metabolism. The addition of two nitrogen sources, urea and di-ammonium phosphate, as well as two sulfur compounds, cysteine and S-ethyl-L-cysteine, increased 3MH and 3MHA concentrations in the final wines. Collectively these results suggest that sulfur and nitrogen metabolism are important in regulating the synthesis of 3MH and 3MHA during yeast fermentation of grape juice. PMID:22684328

  10. Effect of nitrogen as co-dopant in carbon and boron-doped ZnO clusters

    NASA Astrophysics Data System (ADS)

    Kapila, Neha; Sharma, Gaurav; Mudahar, Isha; Sharma, Hitesh

    2016-05-01

    The effect of N as co-dopant have been investigated on magnetic properties of C and B-doped (ZnO)n clusters (n = 1 - 16) using spin-polarized density functional theory. Total energy calculations show that C and N more stable when substituted at O site, whereas B is more stable at the Zn site. The B:N co-doping is energetically more stable than C:N which is more stable than N:N doping. C and N atoms do not show tendency to form clusters when doped separately. The magnetic moment (MM) of C-doped ZnO clusters is enhanced significantly with N co-doping. The MM of 2 μB, 1 μB and 1 μB per atom is induced due to C, N and B respectively. The MM of 3 μB or 5 μB and 2 μB or 4 μB are observed for co-doping of 2C:N and C:2N respectively. In contrary, the MM in 2B:N and B:2N co-doped (ZnO)n remains 1 μB for n=2-4, 12 and 16. The results are in agreement with the available theoretical results.

  11. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis

    PubMed Central

    Sarasketa, Asier; González-Moro, M. Begoña; González-Murua, Carmen; Marino, Daniel

    2016-01-01

    Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source (NO3- and NH4+), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to NH4+ accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, NH4+ accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment. PMID:26870054

  12. Analysis of variables affecting unemployment rate and detecting for cluster in West Java, Central Java, and East Java in 2012

    NASA Astrophysics Data System (ADS)

    Samuel, Putra A.; Widyaningsih, Yekti; Lestari, Dian

    2016-02-01

    The objective of this study is modeling the Unemployment Rate (UR) in West Java, Central Java, and East Java, with rate of disease, infant mortality rate, educational level, population size, proportion of married people, and GDRP as the explanatory variables. Spatial factors are also considered in the modeling since the closer the distance, the higher the correlation. This study uses the secondary data from BPS (Badan Pusat Statistik). The data will be analyzed using Moran I test, to obtain the information about spatial dependence, and using Spatial Autoregressive modeling to obtain the information, which variables are significant affecting UR and how great the influence of the spatial factors. The result is, variables proportion of married people, rate of disease, and population size are related significantly to UR. In all three regions, the Hotspot of unemployed will also be detected districts/cities using Spatial Scan Statistics Method. The results are 22 districts/cities as a regional group with the highest unemployed (Most likely cluster) in the study area; 2 districts/cities as a regional group with the highest unemployed in West Java; 1 district/city as a regional groups with the highest unemployed in Central Java; 15 districts/cities as a regional group with the highest unemployed in East Java.

  13. Elevated CO(2) concentration affects leaf photosynthesis-nitrogen relationships in Pinus taeda over nine years in FACE.

    PubMed

    Crous, Kristine Y; Walters, Michael B; Ellsworth, David S

    2008-04-01

    To investigate whether long-term elevated carbon dioxide concentration ([CO(2)]) causes declines in photosynthetic enhancement and leaf nitrogen (N) owing to limited soil fertility, we measured photosynthesis, carboxylation capacity and area-based leaf nitrogen concentration (N(a)) in Pinus taeda L. growing in a long-term free-air CO(2) enrichment (FACE) facility at an N-limited site. We also determined how maximum rates of carboxylation (V(cmax)) and electron transport (J(max)) varied with N(a) under elevated [CO(2)]. In trees exposed to elevated [CO(2)] for 5 to 9 years, the slope of the relationship between leaf photosynthetic capacity (A(net-Ca)) and N(a) was significantly reduced by 37% in 1-year-old needles, whereas it was unaffected in current-year needles. The slope of the relationships of both V(cmax) and J(max) with N(a) decreased in 1-year-old needles after up to 9 years of growth in elevated [CO(2)], which was accompanied by a 15% reduction in N allocation to the carboxylating enzyme. Nitrogen fertilization (110 kg N ha(-1)) in the ninth year of exposure to elevated [CO(2)] restored the slopes of the relationships of V(cmax) and J(max) with N(a) to those of control trees (i.e., in ambient [CO(2)]). The J(max):V(cmax) ratio was unaffected by either [CO(2)] or N fertilization. Changes in the apparent allocation of N to photosynthetic components may be an important adjustment in pines exposed to elevated [CO(2)] on low-fertility sites. We conclude that fundamental relationships between photosynthesis or its component processes with N(a) may be altered in aging pine needles after more than 5 years of exposure to elevated atmospheric [CO(2)]. PMID:18244946

  14. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    NASA Astrophysics Data System (ADS)

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-02-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period.

  15. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta.

    PubMed

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4(+)-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30-40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  16. Five-year changes in soil organic carbon and total nitrogen in coastal wetlands affected by flow-sediment regulation in a Chinese delta

    PubMed Central

    Wang, Junjing; Bai, Junhong; Zhao, Qingqing; Lu, Qiongqiong; Xia, Zhijian

    2016-01-01

    Changes in the sources and sinks of soil organic carbon (SOC) and total nitrogen (TN) in wetland soils as indicators of soil quality and climate change have received attention worldwide. Soil samples were collected in 2007 and 2012 in the coastal wetlands of the Yellow River Delta and the SOC and TN were determined to investigate a five-year change in their content and stock in these wetlands as affected by flow-sediment regulation. Our results revealed that the soils in 2007 exhibited greater electrical conductivities, SOC content and density, and ammonium nitrogen (NH4+-N) levels in the top 10 cm soils (p < 0.05) compared with the soils in 2012. In general, the SOC and TN contents decreased with increasing soil depth. However, the highest ratios of soil organic carbon and total nitrogen (molar C/N ratios) were observed in the 30–40 cm soil layer. A significant SOC loss occurred (p < 0.05) in top 10 cm soils, but only a small change in SOC in the top 50 cm soils. Comparatively, TN levels did not show significant differences in the study period. PMID:26879008

  17. Measuring human rights violations in a conflict-affected country: results from a nationwide cluster survey in Central African Republic

    PubMed Central

    2011-01-01

    Background Measuring human rights violations is particularly challenging during or after armed conflict. A recent nationwide survey in the Central African Republic produced estimates of rates of grave violations against children and adults affected by armed conflict, using an approach known as the "Neighborhood Method". Methods In June and July, 2009, a random household survey was conducted based on population estimates from the 2003 national census. Clusters were assigned systematically proportional to population size. Respondents in randomly selected households were interviewed regarding incidents of killing, intentional injury, recruitment into armed groups, abduction, sexual abuse and rape between January 1, 2008 and the date of interview, occurring in their homes' and those of their three closest neighbors. Results Sixty of the selected 69 clusters were surveyed. In total, 599 women were interviewed about events in 2,370 households representing 13,669 persons. Estimates of annual rates of each violation occurring per 1000 people in each of two strata are provided for children between the ages of five and 17, adults 18 years of age and older and the entire population five years and older, along with a combined and weighted national rate. The national rates for children age five to 17 were estimated to be 0.98/1000/year (95% CI: 0.18 - 1.78) for recruitment, 2.56/1000/year (95% CI: 1.50 - 3.62) for abduction, 1.13/1000/year (95% CI: 0.33 - 1.93) for intentional injury, 10.72/1000 girls/year (95% CI: 7.40 - 14.04) for rape, and 4.80/1000 girls/year (95% CI: 2.61 - 6.00) for sexual abuse. No reports of any violation against a person under the age of five were recorded and there were no reports of rape or sexual abuse of males. No children were reported to have been killed during the recall period. Rape and abduction were the most frequently reported events. Conclusions The population-based figures greatly augment existing information on human rights violations in

  18. Metabolic profiles of Lolium perenne are differentially affected by nitrogen supply, carbohydrate content, and fungal endophyte infection.

    PubMed

    Rasmussen, Susanne; Parsons, Anthony J; Fraser, Karl; Xue, Hong; Newman, Jonathan A

    2008-03-01

    Lolium perenne cultivars differing in their capacity to accumulate water soluble carbohydrates (WSCs) were infected with three strains of fungal Neotyphodium lolii endophytes or left uninfected. The endophyte strains differed in their alkaloid profiles. Plants were grown at two different levels of nitrogen (N) supply in a controlled environment. Metabolic profiles of blades were analyzed using a variety of analytical methods. A total of 66 response variables were subjected to a principle components analysis and factor rotation. The first three rotated factors (46% of the total variance) were subsequently analyzed by analysis of variance. At high N supply nitrogenous compounds, organic acids and lipids were increased; WSCs, chlorogenic acid (CGA), and fibers were decreased. The high-sugar cultivar 'AberDove' had reduced levels of nitrate, most minor amino acids, sulfur, and fibers compared to the control cultivar 'Fennema', whereas WSCs, CGA, and methionine were increased. In plants infected with endophytes, nitrate, several amino acids, and, magnesium were decreased; WSCs, lipids, some organic acids, and CGA were increased. Regrowth of blades was stimulated at high N, and there was a significant endophyte x cultivar interaction on regrowth. Mannitol, a fungal specific sugar alcohol, was significantly correlated with fungal biomass. Our findings suggest that effects of endophytes on metabolic profiles of L. perenne can be considerable, depending on host plant characteristics and nutrient supply, and we propose that a shift in carbon/N ratios and in secondary metabolite production as seen in our study is likely to have impacts on herbivore responses. PMID:18218971

  19. Change in Uptake, Transport and Accumulation of Ions in Nerium oleander (Rosebay) as Affected by Different Nitrogen Sources and Salinity

    PubMed Central

    Abdolzadeh, Ahmad; Shima, Kazuto; Lambers, Hans; Chiba, Kyozo

    2008-01-01

    Background and Aims The source of nitrogen plays an important role in salt tolerance of plants. In this study, the effects of NaCl on net uptake, accumulation and transport of ions were investigated in Nerium oleander with ammonium or nitrate as the nitrogen source in order to analyse differences in uptake and cycling of ions within plants. Methods Plants were grown in a greenhouse in hydroponics under different salt treatments (control vs. 100 mm NaCl) with ammonium or nitrate as the nitrogen source, and changes in ion concentration in plants, xylem sap exuded from roots and stems, and phloem sap were determined. Key Results Plant weight, leaf area and photosynthetic rate showed a higher salt tolerance of nitrate-fed plants compared with that of ammonium-fed plants. The total amount of Na+ transported in the xylem in roots, accumulated in the shoot and retranslocated in the phloem of ammonium-fed plants under salt treatment was 1·8, 1·9 and 2·7 times more, respectively, than that of nitrate-treated plants. However, the amount of Na+ accumulated in roots in nitrate-fed plants was about 1·5 times higher than that in ammonium-fed plants. Similarly, Cl− transport via the xylem to the shoot and its retranslocation via the phloem (Cl− cycling) were far greater with ammonium treatment than with nitrate treatment under conditions of salinity. The uptake and accumulation of K+ in shoots decreased more due to salinity in ammonium-fed plants compared with nitrate-fed plants. In contrast, K+ cycling in shoots increased due to salinity, with higher rates in the ammonium-treated plants. Conclusions The faster growth of nitrate-fed plants under conditions of salinity was associated with a lower transport and accumulation of Na+ and Cl− in the shoot, whereas in ammonium-fed plants accumulation and cycling of Na+ and Cl− in shoots probably caused harmful effects and reduced growth of plants. PMID:18772147

  20. Structure-function relationships affecting the sensing mechanism of monolayer-protected cluster doped xerogel amperometric glucose biosensors.

    PubMed

    DiPasquale, Luke T; Poulos, Nicholas G; Hall, Jackson R; Minocha, Aastha; Bui, Tram Anh; Leopold, Michael C

    2015-07-15

    A systematic study of the structure-function relationships critical to understanding the sensing mechanism of 1st generation amperometric glucose biosensors with an embedded nanoparticle (NP) network is presented. Xerogel-based films featuring embedded glucose oxidase enzyme and doped with alkanethiolate-protected gold NPs, known as monolayer protected clusters (MPCs), exhibit significantly enhanced performance compared to analogous systems without NPs including higher sensitivity, faster response time, and extended linear/dynamic ranges. The proposed mechanism involves diffusion of the glucose to glucose oxidase within the xerogel, enzymatic reaction production of H2O2 with subsequent diffusion to the embedded network of MPCs where it is oxidized, an event immediately reported via fast electron transfer (ET) through the MPC system to the working electrode. Various aspects of the film construct and strategy are systematically probed using amperometry, voltammetry, and solid-state electronic conductivity measurements, including the effects of MPC peripheral chain length, MPC functionalization via place-exchange reaction, MPC core size, and the MPC density or concentration within the xerogel composite films. The collective results of these experiments support the proposed mechanism and identify interparticle spacing and the electronic communication through the MPC network is the most significant factor in the sensing scheme with the diffusional aspects of the mechanism that may be affected by film/MPC hydrophobicity and functionality (i.e., glucose and H2O2 diffusion) shown to be less substantial contributors to the overall enhanced performance. Understanding the structure-function relationships of effective sensing schemes allows for the employment of the strategy for future biosensor design toward clinically relevant targets. PMID:25819004

  1. Six-year growth of Eucalyptus saligna plantings as affected by nitrogen and phosphorus fertilizer. Forest Service research paper (Final)

    SciTech Connect

    Whitesell, C.D.; DeBell, D.S.; Schubert, T.H.

    1987-10-01

    Growth responses of Eucalyptus saligna to nitrogen (N) and phosphorus (P) fertilizers were assessed in bioenergy plantations on abandoned sugarcane land in Hawaii. Fertilizers were applied three times (0.6, and 15 months after planting) in a factorial design with four dosages each of N(0, 25, 50, and 75 g urea per tree) and P(0, 30, 60, and 90 g triple superphosphate per tree). Phosphorus and the N x P interaction had little effect on tree growth. Effects of N, however, were dramatic during the first year, and benefits were sustained through 6 years. Effects of N on height growth and diameter growth dropped markedly during the third year and thereafter. Bioenergy plantations of E. saligna established on similar sites and soils will benefit from high dosages of N fertilizer and presumably from repeated applications.

  2. School-based mental health intervention for children in war-affected Burundi: a cluster randomized trial

    PubMed Central

    2014-01-01

    Background Armed conflicts are associated with a wide range of impacts on the mental health of children and adolescents. We evaluated the effectiveness of a school-based intervention aimed at reducing symptoms of posttraumatic stress disorder, depression, and anxiety (treatment aim); and improving a sense of hope and functioning (preventive aim). Methods We conducted a cluster randomized trial with 329 children in war-affected Burundi (aged 8 to 17 (mean 12.29 years, standard deviation 1.61); 48% girls). One group of children (n = 153) participated in a 15-session school-based intervention implemented by para-professionals, and the remaining 176 children formed a waitlist control condition. Outcomes were measured before, one week after, and three months after the intervention. Results No main effects of the intervention were identified. However, longitudinal growth curve analyses showed six favorable and two unfavorable differences in trajectories between study conditions in interaction with several moderators. Children in the intervention condition living in larger households showed decreases on depressive symptoms and function impairment, and those living with both parents showed decreases on posttraumatic stress disorder and depressive symptoms. The groups of children in the waitlist condition showed increases in depressive symptoms. In addition, younger children and those with low levels of exposure to traumatic events in the intervention condition showed improvements on hope. Children in the waitlist condition who lived on their original or newly bought land showed improvements in hope and function impairment, whereas children in the intervention condition showed deterioration on these outcomes. Conclusions Given inconsistent effects across studies, findings do not support this school-based intervention as a treatment for posttraumatic stress disorder and depressive symptoms in conflict-affected children. The intervention appears to have more consistent

  3. Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: A case study in Central China

    NASA Astrophysics Data System (ADS)

    Lin, Shan; Iqbal, Javed; Hu, Ronggui; Wu, Jinshui; Zhao, Jinsong; Ruan, Leilei; Malghani, Saadatullah

    2011-03-01

    Agricultural soils are one of the major sources of atmospheric nitrous oxide (N 2O) emission. Red soil, one of the typical agricultural soils in sub-tropical China, plays an important role in the global N 2O flux emissions. To determine its N mineralization potential, a field study was conducted to assess the effect of application of nitrogen (N) fertilizer in a rape field under red soil at the experimental station of Heshengqiao at Xianning, Hubei, China. To estimate N-induced N 2O flux, we examined N 2O flux during the growth stages of the rape field including four treatments: fertilizer PK (N0), fertilizer NPK (60 kg N ha -1) (N1), fertilizer NPK (120 kg N ha -1) (N2), fertilizer NPK (240 kg N ha -1) (N3). There were distinct variations in soil N 2O fluxes (from 0.16 to 0.90 kg N ha -1), with higher values being observed during the spring and autumn while low values were observed during winter season. Among different treatments, N fertilization significantly increased the N 2O fluxes, with highest fluxes from N3 while lowest values being observed from N0 treatment. This suggested increased microbial activity in response to increased N fertilizer application. It was interesting to note that fertilizer-induced emissions decreased as the applied fertilizer amount was increased. During the whole growing season, N 2O flux did not correlate with soil temperature, but it significantly correlated to other environmental variables; water-filled pore space (WFPS), soil NO 3--N and NH 4+-N contents, which suggests the need for efficient water use and low inorganic nitrogen fertilizer management practices.

  4. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    The Eucha-Spavinaw Basin in Northeastern Oklahoma and Northwestern Arkansas is the source of water for Lake Eucha and Spavinaw Lake, which are part of the water supply for the city of Tulsa, Oklahoma. Lake Eucha and Spavinaw Lakes have experienced deteriorating water quality largely due to growth of algae, notably cyanobacteria, from the excess input of nutrients. As a result, the city of Tulsa has spent millions of dollars to eliminate taste and odor problems resulting from production of algal and bacterial byproducts. To evaluate changes in nutrient loading resulting from a reduction in land application of poultry litter, installation of best management practices, and reductions in the phosphorus concentrations in wastewater effluent, the U.S. Geological Survey investigated nitrogen and phosphorus concentrations from samples collected during baseflow and runoff and used regression models to estimate nitrogen and phosphorus loads, yields, and flow-weighted concentrations in two major tributaries to Lake Eucha, Spavinaw and Beaty Creeks, for the period 2002-2009. Estimated mean flow-weighted total unfiltered nitrogen and phosphorus concentrations in the basin were about 5 to 10 times greater than the 75th percentile of flow-weighted nutrient concentrations in other mostly undeveloped basins of the United States. Spavinaw and Beaty Creeks contributed an estimated mean annual total load of about 762,500 kilograms of nitrogen and 49,200 kilograms of phosphorus per year, 76 to 91 percent of which was transported to Lake Eucha by runoff. Thirty-four percent of the nitrogen load and 48 percent of the phosphorus load to Lake Eucha occurred during the year 2008 which was the wettest year on record for the Eucha-Spavinaw Basin. The results of this analysis indicate that although efforts were made to control nutrient loading, nutrient concentrations, especially phosphorus, were substantially augmented by non-point sources and that most loading occurs during runoff events

  5. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate.

    PubMed

    Brix, Hans; Dyhr-Jensen, Kirsten; Lorenzen, Bent

    2002-12-01

    The NH(4)(+) and NO(3)(-) uptake kinetics by Typha latifolia L. were studied after prolonged hydroponics growth at constant pH 3.5, 5.0, 6.5 or 7.0 and with NH(4)(+) or NO(3)(-) as the sole N-source. In addition, the effects of pH and N source on H(+) extrusion and adenine nucleotide content were examined. Typha latifolia was able to grow with both N sources at near neutral pH levels, but the plants had higher relative growth rates, higher tissue concentrations of the major nutrients, higher contents of adenine nucleotides, and higher affinity for uptake of inorganic nitrogen when grown on NH(4)(+). Growth almost completely stopped at pH 3.5, irrespective of N source, probably as a consequence of pH effects on plasma membrane integrity and H(+) influx into the root cells. Tissue concentrations of the major nutrients and adenine nucleotides were severely reduced at low pH, and the uptake capacity for inorganic nitrogen was low, and more so for NO(3)(-)-fed than for NH(4)(+)-fed plants. The maximum uptake rate, V(max), was highest for NH(4)(+) at pH 6.5 (30.9 micro mol h(-1) g(-1) root dry weight) and for NO(3)(-) at pH 5.0 (31.7 micro mol h(-1) g(-1) root dry weight), and less than 10% of these values at pH 3.5. The affinity for uptake as estimated by the half saturation constant, K((1/2)), was lowest at low pH for NH(4)(+) and at high pH for NO(3)(-). The changes in V(max) and K((1/2)) were thus consistent with the theory of increasing competition between cations and H(+) at low pH and between anions and OH(-) at high pH. C(min) was independent of pH, but slightly higher for NO(3)(-) than for NH(4)(+) (C(min)(NH(4)(+)) approximately 0.8 mmol m(-3); C(min)(NO(3)(-)) approximately 2.8 mmol m(-3)). The growth inhibition at low pH was probably due to a reduced nutrient uptake and a consequential limitation of growth by nutrient stress. Typha latifolia seems to be well adapted to growth in wetland soils where NH(4)(+) is the prevailing nitrogen compound, but very low p

  6. Inclusion of sainfoin (Onobrychis viciifolia) silage in dairy cow rations affects nutrient digestibility, nitrogen utilization, energy balance, and methane emissions.

    PubMed

    Huyen, N T; Desrues, O; Alferink, S J J; Zandstra, T; Verstegen, M W A; Hendriks, W H; Pellikaan, W F

    2016-05-01

    Sainfoin (Onobrychis viciifolia) is a tanniniferous legume forage that has potential nutritional and health benefits preventing bloating, reducing nematode larval establishment, improving N utilization, and reducing greenhouse gas emissions. However, the use of sainfoin as a fodder crop in dairy cow rations in northwestern Europe is still relatively unknown. The objective of this study was to evaluate the effect of sainfoin silage on nutrient digestibility, animal performance, energy and N utilization, and CH4 production. Six rumen-cannulated, lactating dairy cows with a metabolic body weight (BW(0.75)) of 132.5±3.6kg were randomly assigned to either a control (CON) or a sainfoin (SAIN)-based diet over 2 experimental periods of 25 d each in a crossover design. The CON diet was a mixture of grass silage, corn silage, concentrate, and linseed. In the SAIN diet, 50% of grass silage dry matter (DM) of the CON diet was exchanged for sainfoin silage. The cows were adapted to 95% of ad libitum feed intake for a 21-d period before being housed in climate-controlled respiration chambers for 4 d, during which time feed intake, apparent total-tract digestibility, N and energy balance, and CH4 production was determined. Data were analyzed using a mixed model procedure. Total daily DM, organic matter, and neutral detergent fiber intake did not differ between the 2 diets. The apparent digestibility of DM, organic matter, neutral detergent fiber, and acid detergent fiber were, respectively, 5.7, 4.0, 15.7, and 14.8% lower for the SAIN diet. Methane production per kilogram of DM intake was lowest for the SAIN diet, CH4 production as a percentage of gross energy intake tended to be lower, and milk yield was greater for the SAIN diet. Nitrogen intake, N retention, and energy retained in body protein were greater for the SAIN than for the CON diet. Nitrogen retention as a percentage of N intake tended to be greater for the SAIN diet. These results suggest that inclusion of sainfoin

  7. Corrosion behavior in high heat input welded heat-affected zone of Ni-free high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel

    SciTech Connect

    Moon, Joonoh Ha, Heon-Young; Lee, Tae-Ho

    2013-08-15

    The pitting corrosion and interphase corrosion behaviors in high heat input welded heat-affected zone (HAZ) of a metastable high-nitrogen Fe–18Cr–10Mn–N austenitic stainless steel were explored through electrochemical tests. The HAZs were simulated using Gleeble simulator with high heat input welding condition of 300 kJ/cm and the peak temperature of the HAZs was changed from 1200 °C to 1350 °C, aiming to examine the effect of δ-ferrite formation on corrosion behavior. The electrochemical test results show that both pitting corrosion resistance and interphase corrosion resistance were seriously deteriorated by δ-ferrite formation in the HAZ and their aspects were different with increasing δ-ferrite fraction. The pitting corrosion resistance was decreased by the formation of Cr-depleted zone along δ-ferrite/austenite (γ) interphase resulting from δ-ferrite formation; however it didn't depend on δ-ferrite fraction. The interphase corrosion resistance depends on the total amount of Cr-depleted zone as well as ferrite area and thus continuously decreased with increasing δ-ferrite fraction. The different effects of δ-ferrite fraction on pitting corrosion and interphase corrosion were carefully discussed in terms of alloying elements partitioning in the HAZ based on thermodynamic consideration. - Highlights: • Corrosion behavior in the weld HAZ of high-nitrogen austenitic alloy was studied. • Cr{sub 2}N particle was not precipitated in high heat input welded HAZ of tested alloy. • Pitting corrosion and interphase corrosion show a different behavior. • Pitting corrosion resistance was affected by whether or not δ-ferrite forms. • Interphase corrosion resistance was affected by the total amount of δ-ferrite.

  8. Phosphorus availability and elevated CO2 affect biological nitrogen fixation and nutrient fluxes in a clover-dominated sward.

    PubMed

    Edwards, Everard J; McCaffery, Stephanie; Evans, John R

    2006-01-01

    The response of biological nitrogen fixation (BNF) to elevated CO(2) was examined in white clover (Trifolium repens)-dominated swards under both high and low phosphorus availability. Mixed swards of clover and buffalo grass (Stenotaphrum secundatum) were grown for 15 months in 0.2 m2 sand-filled mesocosms under two CO2 treatments (ambient and twice ambient) and three nutrient treatments [no N, and either low or high P (5 or 134 kg P ha(-1)); the third nutrient treatment was supplied with high P and N (240 kg N ha(-1))]. Under ambient CO2, high P increased BNF from 410 to 900 kg ha(-1). Elevated CO2 further increased BNF to 1180 kg ha(-1) with high P, but there was no effect of CO2 on BNF with low P. Allocation of N belowground increased by approx. 50% under elevated CO2 irrespective of supplied P. The results suggest that where soil P availability is low, elevated CO2 will not increase BNF, and pasture quality could decrease because of a reduction in aboveground N. PMID:16390427

  9. Partial shading of lateral branches affects growth, and foliage nitrogen- and water-use efficiencies in the conifer Cunninghamia lanceolata growing in a warm monsoon climate.

    PubMed

    Dong, Tingfa; Li, Junyu; Zhang, Yuanbin; Korpelainen, Helena; Niinemets, Ülo; Li, Chunyang

    2015-06-01

    The degree to which branches are autonomous in their acclimation responses to alteration in light environment is still poorly understood. We investigated the effects of shading of the sapling crown of Cunninghamia lanceolata (Lamb.) Hook on the whole-tree and mid-crown branch growth and current-year foliage structure and physiology. Four treatments providing 0, 50, 75 and 90% shading compared with full daylight (denoted as Treatment(0), Treatment(50%), Treatment(75%) and Treatment(90%), and Shaded(0), Shaded(50%), Shaded(75%) and Shaded(90%) for the shaded branches and Sunlit(0), Sunlit(50%), Sunlit(75%) and Sunlit(90%) for the opposite sunlit branches under natural light conditions, respectively), were applied over two consecutive growing seasons. Shading treatments decreased the growth of basal stem diameter, leaf dry mass per unit leaf area, stomatal conductance, transpiration rate, the ratio of water-soluble to structural leaf nitrogen content, photosynthetic nitrogen-use efficiency and instantaneous and long-term (estimated from carbon isotope composition) water-use efficiency in shaded branches. Differences between shaded and sunlit branches increased with increasing severity and duration of shading. A non-autonomous, partly compensatory behavior of non-shaded branches was observed for most traits, thus reflecting the dependence between the traits of sunlit branches and the severity of shading of the opposite crown half. The results collectively indicated that tree growth and branch and leaf acclimation responses of C. lanceolata are not only affected by the local light environment, but also by relative within-crown light conditions. We argue that such a non-autonomous branch response to changes in light conditions can improve whole-tree resource optimization. These results contribute to better understanding of tree growth and utilization of water and nitrogen under heterogeneous light conditions within tree canopies. PMID:26032625

  10. Nitrogen regulation of fungal secondary metabolism in fungi

    PubMed Central

    Tudzynski, Bettina

    2014-01-01

    Fungi occupy diverse environments where they are constantly challenged by stressors such as extreme pH, temperature, UV exposure, and nutrient deprivation. Nitrogen is an essential requirement for growth, and the ability to metabolize a wide variety of nitrogen sources enables fungi to colonize different environmental niches and survive nutrient limitations. Favored nitrogen sources, particularly ammonium and glutamine, are used preferentially, while the expression of genes required for the use of various secondary nitrogen sources is subject to a regulatory mechanism called nitrogen metabolite repression. Studies on gene regulation in response to nitrogen availability were carried out first in Saccharomyces cerevisiae, Aspergillus nidulans, and Neurospora crassa. These studies revealed that fungi respond to changes in nitrogen availability with physiological and morphological alterations and activation of differentiation processes. In all fungal species studied, the major GATA transcription factor AreA and its co-repressor Nmr are central players of the nitrogen regulatory network. In addition to growth and development, the quality and quantity of nitrogen also affects the formation of a broad range of secondary metabolites (SMs). Recent studies, mainly on species of the genus Fusarium, revealed that AreA does not only regulate a large set of nitrogen catabolic genes, but can also be involved in regulating production of SMs. Furthermore, several other regulators, e.g., a second GATA transcription factor, AreB, that was proposed to negatively control nitrogen catabolic genes by competing with AreA for binding to GATA elements, was shown to act as activator of some nitrogen-repressed as well as nitrogen-induced SM gene clusters. This review highlights our latest understanding of canonical (AreA-dependent) and non-canonical nitrogen regulation mechanisms by which fungi may regulate biosynthesis of certain SMs in response to nitrogen availability. PMID:25506342

  11. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  12. Precursors and factors affecting formation of haloacetonitriles and chloropicrin during chlor(am)ination of nitrogenous organic compounds in drinking water.

    PubMed

    Jia, Aiyin; Wu, Chunde; Duan, Yan

    2016-05-01

    This study investigated the precursors and factors affecting formation of haloacetonitriles (HANs) and chloropicrin (TCNM) during chlorination/chloramination of eight amino acids in the effluent water of V-type clarifying filtration from a drinking water treatment plant. The yields of trichloroacetonitrile (TCAN), dichloroacetonitrile (DCAN) and TCNM were higher during chlorination than during chloramination. Tyrosine and tryptophan produced the greatest amount of DCAN and also generated a small amount of TCAN during chlorination process. Besides, the yields of DCAN were higher than TCNM during chlorination/chloramination. Contact time, Cl2:org-N molar ratios, pH, temperature and bromide ion affected nitrogenous disinfection by-products (N-DBPs) formation during chlorination of tryptophan in different degrees. TCAN, DCAN and TCNM formation showed the increasing and then decreasing with prolonged contact time. Higher Cl2:org-N molar ratios improved N-DBPs formation within a certain range. The pH affected N-DBPs formation differently. HANs increased with increasing pH from 5 to 6 and decreased with increasing pH from 6 to 9, while TCNM increased with increasing pH from 5 to 9. Higher temperatures enhanced TCNM formation, but reduced the formation of TCAN and DCAN. The presence of bromide ions improved the yields of HANs and TCNM and shifted N-DBPs to more brominated ones. PMID:26859617

  13. Feed ingredients differing in fermentable fibre and indigestible protein content affect fermentation metabolites and faecal nitrogen excretion in growing pigs.

    PubMed

    Jha, R; Leterme, P

    2012-04-01

    To study the fermentation characteristics of different non-conventional dietary fibre (DF) sources with varying levels of indigestible CP content and their effects on the production of fermentation metabolites and on faecal nitrogen (N) excretion, an experiment was conducted with 40 growing pigs (initial BW 23 kg) using wheat bran (WB), pea hulls (PH), pea inner fibres (PIF), sugar beet pulp (SBP) or corn distillers dried grains with solubles (DDGS). The diets also contained soya protein isolate, pea starch and sucrose, and were supplemented with vitamin-mineral premix. Faecal samples were collected for 3 consecutive days from day 10, fed with added indigestible marker (chromic oxide) for 3 days from day 13 and pigs were slaughtered on day 16 from the beginning of the experiment. Digesta from the ileum and colon were collected and analysed for short-chain fatty acids (SCFA) and ammonia (NH3) content. The apparent total tract N digestibility was the lowest (P < 0.001) in diets based on DDGS (74%), medium in diets with WB and SBP (76% each) and highest in those with PIF and PH (79% and 81%, respectively). Expressed per kg fermented non-starch polysaccharides (NSP), faecal N excretion was higher with DDGS and WB diets (130 and 113 g/kg NSP fermented, respectively) and lower with PIF, PH and SBP diets (42, 52 and 55 g/kg NSP fermented, respectively). The PH-based diets had the highest (P < 0.05) SCFA concentrations, both in the ileum and the colon (27 and 122 mMol/kg digesta, respectively). The highest NH3 concentration was also found in the colon of pigs fed with PH (132 mMol/kg digesta). Loading plot of principle component analysis revealed that the CP : NSP ratio was positively related with faecal N excretion and NH3 concentration in colon contents, whereas negatively related with SCFA concentration in colon contents. In conclusion, pea fibres and SBP increased SCFA and reduced NH3 concentration in the pig's intestine and reduced faecal N excretion, which makes pea

  14. Soil carbon dioxide emission and carbon content as affected by irrigation, tillage, cropping system, and nitrogen fertilization.

    PubMed

    Sainju, Upendra M; Jabro, Jalal D; Stevens, William B

    2008-01-01

    Management practices can influence soil CO(2) emission and C content in cropland, which can effect global warming. We examined the effects of combinations of irrigation, tillage, cropping systems, and N fertilization on soil CO(2) flux, temperature, water, and C content at the 0- to 20-cm depth from May to November 2005 at two sites in the northern Great Plains. Treatments were two irrigation systems (irrigated vs. non-irrigated) and six management practices that contained tilled and no-tilled malt barley (Hordeum vulgaris L.) with 0 to 134 kg N ha(-1), no-tilled pea (Pisum sativum L.), and a conservation reserve program (CRP) planting applied in Lihen sandy loam (sandy, mixed, frigid, Entic Haplustolls) in western North Dakota. In eastern Montana, treatments were no-tilled malt barley with 78 kg N ha(-1), no-tilled rye (Secale cereale L.), no-tilled Austrian winter pea, no-tilled fallow, and tilled fallow applied in dryland Williams loam (fine-loamy, mixed Typic Argiborolls). Irrigation increased CO(2) flux by 13% compared with non-irrigation by increasing soil water content in North Dakota. Tillage increased CO(2) flux by 62 to 118% compared with no-tillage at both places. The flux was 1.5- to 2.5-fold greater with tilled than with non-tilled treatments following heavy rain or irrigation in North Dakota and 1.5- to 2.0-fold greater with crops than with fallow following substantial rain in Montana. Nitrogen fertilization increased CO(2) flux by 14% compared with no N fertilization in North Dakota and cropping increased the flux by 79% compared with fallow in no-till and 0 kg N ha(-1) in Montana. The CO(2) flux in undisturbed CRP was similar to that in no-tilled crops. Although soil C content was not altered, management practices influenced CO(2) flux within a short period due to changes in soil temperature, water, and nutrient contents. Regardless of irrigation, CO(2) flux can be reduced from croplands to a level similar to that in CRP planting using no

  15. A systematic review of factors affecting children’s right to health in cluster randomized trials in Kenya

    PubMed Central

    2014-01-01

    Following the South African case, Treatment Action Campaign and Others v Minister of Health and Others, the use of 'pilot’ studies to investigate interventions already proven efficacious, offered free of charge to government, but confined by the government to a small part of the population, may violate children’s right to health, and the negative duty on governments not to prevent access to treatment. The applicants challenged a government decision to offer Nevirapine in a few pilot sites when evidence showed Nevirapine significantly reduced HIV transmission rates and despite donor offers of a free supply. The government refused to expand access, arguing they needed to collect more information, and citing concerns about long-term hazards, side effects, resistance and inadequate infrastructure. The court ruled this violated children’s right to health and asked the government to immediately expand access. Cluster randomized trials involving children are increasingly popular, and are often used to reduce 'contamination’: the possibility that members of a cluster adopt behavior of other clusters. However, they raise unique issues insufficiently addressed in literature and ethical guidelines. This case provides additional crucial guidance, based on a common human rights framework, for the Kenyan government and other involved stakeholders. Children possess special rights, often represent a 'captive’ group, and so motivate extra consideration. In a systematic review, we therefore investigated whether cluster trial designs are used to prevent or delay children’s access to treatment in Kenya or otherwise inconsistently with children’s right to health as outlined in the above case. Although we did not find state sponsored cluster trials, most had significant public sector involvement. Core obligations under children’s right to health were inadequately addressed across trials. Few cluster trials reported rationale for cluster randomization, offered post- trial

  16. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status.

    PubMed

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0-20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20-30 cm layer. Soil moisture in the 20-50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20-50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants' ability to access nutrients and water. An optimal

  17. Soil Tillage Management Affects Maize Grain Yield by Regulating Spatial Distribution Coordination of Roots, Soil Moisture and Nitrogen Status

    PubMed Central

    Wang, Xinbing; Zhou, Baoyuan; Sun, Xuefang; Yue, Yang; Ma, Wei; Zhao, Ming

    2015-01-01

    The spatial distribution of the root system through the soil profile has an impact on moisture and nutrient uptake by plants, affecting growth and productivity. The spatial distribution of the roots, soil moisture, and fertility are affected by tillage practices. The combination of high soil density and the presence of a soil plow pan typically impede the growth of maize (Zea mays L.).We investigated the spatial distribution coordination of the root system, soil moisture, and N status in response to different soil tillage treatments (NT: no-tillage, RT: rotary-tillage, SS: subsoiling) and the subsequent impact on maize yield, and identify yield-increasing mechanisms and optimal soil tillage management practices. Field experiments were conducted on the Huang-Huai-Hai plain in China during 2011 and 2012. The SS and RT treatments significantly reduced soil bulk density in the top 0–20 cm layer of the soil profile, while SS significantly decreased soil bulk density in the 20–30 cm layer. Soil moisture in the 20–50 cm profile layer was significantly higher for the SS treatment compared to the RT and NT treatment. In the 0-20 cm topsoil layer, the NT treatment had higher soil moisture than the SS and RT treatments. Root length density of the SS treatment was significantly greater than density of the RT and NT treatments, as soil depth increased. Soil moisture was reduced in the soil profile where root concentration was high. SS had greater soil moisture depletion and a more concentration root system than RT and NT in deep soil. Our results suggest that the SS treatment improved the spatial distribution of root density, soil moisture and N states, thereby promoting the absorption of soil moisture and reducing N leaching via the root system in the 20–50 cm layer of the profile. Within the context of the SS treatment, a root architecture densely distributed deep into the soil profile, played a pivotal role in plants’ ability to access nutrients and water. An

  18. Sequencing and Transcriptional Analysis of the Streptococcus thermophilus Histamine Biosynthesis Gene Cluster: Factors That Affect Differential hdcA Expression▿ †

    PubMed Central

    Calles-Enríquez, Marina; Eriksen, Benjamin Hjort; Andersen, Pia Skov; Rattray, Fergal P.; Johansen, Annette H.; Fernández, María; Ladero, Victor; Alvarez, Miguel A.

    2010-01-01

    Histamine, a toxic compound that is formed by the decarboxylation of histidine through the action of microbial decarboxylases, can accumulate in fermented food products. From a total of 69 Streptococcus thermophilus strains screened, two strains, CHCC1524 and CHCC6483, showed the capacity to produce histamine. The hdc clusters of S. thermophilus CHCC1524 and CHCC6483 were sequenced, and the factors that affect histamine biosynthesis and histidine-decarboxylating gene (hdcA) expression were studied. The hdc cluster began with the hdcA gene, was followed by a transporter (hdcP), and ended with the hdcB gene, which is of unknown function. The three genes were orientated in the same direction. The genetic organization of the hdc cluster showed a unique organization among the lactic acid bacterial group and resembled those of Staphylococcus and Clostridium species, thus indicating possible acquisition through a horizontal transfer mechanism. Transcriptional analysis of the hdc cluster revealed the existence of a polycistronic mRNA covering the three genes. The histidine-decarboxylating gene (hdcA) of S. thermophilus demonstrated maximum expression during the stationary growth phase, with high expression levels correlated with high histamine levels. Limited expression was evident during the lag and exponential growth phases. Low-temperature (4°C) incubation of milk inoculated with a histamine-producing strain showed lower levels of histamine than did inoculated milk kept at 42°C. This reduction was attributed to a reduction in the activity of the HdcA enzyme itself rather than a reduction in gene expression or the presence of a lower cell number. PMID:20656875

  19. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, P.-G.; Mitchell, M. J.; McHale, P. J.; Driscoll, C. T.; McHale, M. R.; Inamdar, S.; Park, J.-H.

    2015-10-01

    Lakes nested in forested watersheds play important roles in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and dissolved inorganic nitrogen (DIN) in the Arbutus Lake Watershed to evaluate how a lake nested in a forested watershed affects the dynamics of DOC and DON in the Adirondack Mountains of New York State, USA. We observed no significant long-term changes of concentrations and fluxes of DOC and DON in the Lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the Lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass-balances between inlet and outlet for the period from 2000 to 2009 suggested that the Lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 μmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: +87 μmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low % retention ((influx - outflux) / influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating a lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different biogeochemical

  20. Formation of Metal Clusters or Nitrogen-Bridged Adducts by Reaction of a Bis(amino)stannylene with Halides of Two-Valent Transition Metals.

    PubMed

    Veith, Michael; Müller, Alice; Stahl, Lothar; Nötzel, Martin; Jarczyk, Maria; Huch, Volker

    1996-06-19

    When the cyclic bis(amino)stannylene Me(2)Si(NtBu)(2)Sn is allowed to react with metal halides MX(2) (M = Cr, Fe, Co, Zn; X = Cl, Br [Zn]) adducts of the general formula [Me(2)Si(NtBu)(2)Sn.MX(2)](n) are obtained. The compounds are generally dimeric (n = 2) except the ZnBr(2) adduct, which is monomeric in benzene. The crystal structures of [Me(2)Si(NtBu)(2)Sn.CoCl(2)](2) (triclinic, space group &Pmacr;1; a = 8.620(9) Å, b = 9.160(9) Å, c = 12.280(9) Å, alpha = 101.2(1) degrees, beta = 97.6(1) degrees, gamma = 105.9(1) degrees, Z = 1) and of [Me(2)Si(NtBu)(2)Sn.ZnCl(2)](2) (monoclinic, space group P2(1)/c; a = 8.156(9) Å, b = 16.835(12) Å, c = 13.206(9) Å, beta = 94.27(6) degrees, Z = 2) were determined by X-ray diffraction techniques. The two compounds form similar polycyclic, centrosymmetrical assemblies of metal atoms bridged by chlorine or nitrogen atoms. While in the case of the cobalt compound Co is pentacoordinated by three chlorine and two nitrogen atoms, in the zinc derivative Zn is almost tetrahedrally coordinated by three chlorine atoms and one nitrogen atom. The iron derivative [Me(2)Si(NtBu)(2)Sn.FeCl(2)](2) seems to be isostructural with the cobalt compound as can be deduced from the crystal data (triclinic, a = 8.622(7) Å, b = 9.158(8) Å, c = 12.353(8) Å, alpha = 101.8(1) degrees, beta = 96.9(1) degrees, gamma = 105.9(1) degrees, Z = 1). If NiBr(2), PdCl(2), or PtCl(2) is combined with the stannylene, the reaction product is totally different: 4 equiv of the stannylene are coordinating per metal halide, forming the molecular compound [Me(2)Si(NtBu)(2)Sn](4)MX(2), which crystallizes with half a mole of benzene per molecular formula. The crystal structures of [Me(2)Si(NtBu)(2)Sn](4).NiBr(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.86(4) Å, c = 14.32(2) Å, Z = 16) and [Me(2)Si(NtBu)(2)Sn](4).PdCl(2).(1)/(2)C(6)H(6) (tetragonal, space group I4(1)/a, a = b = 43.99(4) Å, c = 14.318(14) Å, Z = 16) reveal the two compounds to

  1. Evaluation of a Classroom-Based Psychosocial Intervention in Conflict-Affected Nepal: A Cluster Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Jordans, Mark J. D.; Komproe, Ivan H.; Tol, Wietse A.; Kohrt, Brandon A.; Luitel, Nagendra P.; Macy, Robert D.; de Jong, Joop T. V. M.

    2010-01-01

    Background: In situations of ongoing violence, childhood psychosocial and mental health problems require care. However, resources and evidence for adequate interventions are scarce for children in low- and middle-income countries. This study evaluated a school-based psychosocial intervention in conflict-affected, rural Nepal. Methods: A cluster…

  2. Proteins associated with heat-induced leaf senescence in creeping bentgrass as affected by foliar application of nitrogen, cytokinins, and an ethylene inhibitor.

    PubMed

    Jespersen, David; Huang, Bingru

    2015-02-01

    Heat stress causes premature leaf senescence in cool-season grass species. The objective of this study was to identify proteins regulated by nitrogen, cytokinins, and ethylene inhibitor in relation to heat-induced leaf senescence in creeping bentgrass (Agrostis stolonifera). Plants (cv. Penncross) were foliar sprayed with 18 mM carbonyldiamide (N source), 25 μM aminoethoxyvinylglycine (AVG, ethylene inhibitor), 25 μM zeatin riboside (ZR, cytokinin), or a water control, and then exposed to 20/15°C (day/night) or 35/30°C (heat stress) in growth chambers. All treatments suppressed heat-induced leaf senescence, as shown by higher turf quality and chlorophyll content, and lower electrolyte leakage in treated plants compared to the untreated control. A total of 49 proteins were responsive to N, AVG, or ZR under heat stress. The abundance of proteins in photosynthesis increased, with ribulose-1,5-bisphosphate carboxylase/oxygenase affected by all three treatments, chlorophyll a/b-binding protein by AVG and N or Rubisco activase by AVG. Proteins for amino acid metabolism were upregulated, including alanine aminotransferase by three treatments and ferredoxin-dependent glutamate synthase by AVG and N. Upregulated proteins also included catalase by AVG and N and heat shock protein by ZR. Exogenous applications of AVG, ZR, or N downregulated proteins in respiration (enolase, glyceraldehyde 3-phosphate dehydrogenase, and succinate dehygrogenase) under heat stress. Alleviation of heat-induced senescence by N, AVG, or ZR was associated with enhanced protein abundance in photosynthesis and amino acid metabolism and stress defense systems (heat shock protection and antioxidants), as well as suppression of those imparting respiration metabolism. PMID:25407697

  3. Does the spatial arrangement of disturbance within forested watersheds affect loadings of nitrogen to stream waters? A test using Landsat and synoptic stream water data

    NASA Astrophysics Data System (ADS)

    Cowles, Travis R.; McNeil, Brenden E.; Eshleman, Keith N.; Deel, Lindsay N.; Townsend, Philip A.

    2014-02-01

    Remotely sensed maps of forest disturbance provide a powerful tool for predicting spatial and temporal variability in the loading of nitrogen to receiving waters, key data needed for effective watershed management of nutrient pollution. We hypothesize that the spatial arrangement of disturbances within small-forested watersheds can affect N loadings. To test this, we developed schemes for spatially weighting maps of yearly disturbance produced through change analysis of the Landsat Tasseled Cap Disturbance Index (DI), and evaluated the ability of each scheme to predict N concentrations, and subsequently estimated N loads, from forty low-order streams within the Savage River drainage of western Maryland, USA during the 2006-2010 water years, a period encompassing extensive defoliations by gypsy moths (Lymantria dispar). We generated a base scheme of unweighted, watershed averaged change in DI (ΔDI), and five other schemes that weighted ΔDI by either a pixel's flow accumulation value, the distance to the watershed outlet, or proximity to the stream. Over the five years, the flow accumulation scheme tended to perform better than other weighting schemes, and even explained slightly more variability than the base scheme during years of moderate N loads (R2 = 0.15 vs. 0.03 in 2007 and R2 = 0.30 vs. 0.18 in 2010). However, this best spatial weighting scheme explained comparable or less variability during the two post-defoliation years with larger N loads (R2 = 0.43 vs. 0.44 in 2008 and R2 = 0.31 vs. 0.48 in 2009). Thus, for the purposes of utilizing remote sensing information within watershed management of nutrient pollution, these results suggest that coarse-scale, high temporal frequency data such as MODIS could be well suited for characterizing forest disturbance and predicting the resultant episodic N loads.

  4. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. PMID:26467713

  5. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others.

    PubMed

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype's baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  6. Genotypic Tannin Levels in Populus tremula Impact the Way Nitrogen Enrichment Affects Growth and Allocation Responses for Some Traits and Not for Others

    PubMed Central

    Bandau, Franziska; Decker, Vicki Huizu Guo; Gundale, Michael J.; Albrectsen, Benedicte Riber

    2015-01-01

    Plant intraspecific variability has been proposed as a key mechanism by which plants adapt to environmental change. In boreal forests where nitrogen availability is strongly limited, nitrogen addition happens indirectly through atmospheric N deposition and directly through industrial forest fertilization. These anthropogenic inputs of N have numerous environmental consequences, including shifts in plant species composition and reductions in plant species diversity. However, we know less about how genetic differences within plant populations determine how species respond to eutrophication in boreal forests. According to plant defense theories, nitrogen addition will cause plants to shift carbon allocation more towards growth and less to chemical defense, potentially enhancing vulnerability to antagonists. Aspens are keystone species in boreal forests that produce condensed tannins to serve as chemical defense. We conducted an experiment using ten Populus tremula genotypes from the Swedish Aspen Collection that express extreme levels of baseline investment into foliar condensed tannins. We investigated whether investment into growth and phenolic defense compounds in young plants varied in response to two nitrogen addition levels, corresponding to atmospheric N deposition and industrial forest fertilization. Nitrogen addition generally caused growth to increase, and tannin levels to decrease; however, individualistic responses among genotypes were found for height growth, biomass of specific tissues, root:shoot ratios, and tissue lignin and N concentrations. A genotype’s baseline ability to produce and store condensed tannins also influenced plant responses to N, although this effect was relatively minor. High-tannin genotypes tended to grow less biomass under low nitrogen levels and more at the highest fertilization level. Thus, the ability in aspen to produce foliar tannins is likely associated with a steeper reaction norm of growth responses, which suggests a

  7. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2.

    PubMed

    Schlexer, Philomena; Ruiz Puigdollers, Antonio; Pacchioni, Gianfranco

    2015-09-14

    The charge state of Ag and Au atoms and clusters (Ag4 and Au4, Ag5 and Au5) adsorbed on defective TiO2 anatase(101) and tetragonal ZrO2(101) has been systematically investigated as a function of oxide doping and defectivity using a DFT+U approach. As intrinsic defects, we have considered the presence of oxygen vacancies. As extrinsic defects, substitutional nitrogen- and niobium-doping have been investigated, respectively. Both surface and sub-surface defects and dopants have been considered. Whereas on surfaces with oxygen vacancies or Nb-doping, atoms and clusters may become negatively charged, N-doping always leads to the formation of positively charged adsorbates, independently of the supporting material (TiO2 or ZrO2). This suggests the possibility to tune the electronic properties of supported metal clusters by selective doping of the oxide support, an effect that may result in complete changes in chemical reactivity. PMID:26248205

  8. Importance of within-lake processes in affecting the dynamics of dissolved organic carbon and dissolved organic and inorganic nitrogen in an Adirondack forested lake/watershed

    NASA Astrophysics Data System (ADS)

    Kang, Phil-Goo; Mitchell, Myron J.; McHale, Patrick J.; Driscoll, Charles T.; Inamdar, Shreeram; Park, Ji-Hyung

    2016-05-01

    Lakes nested in forested watersheds play an important role in mediating the concentrations and fluxes of dissolved organic matter. We compared long-term patterns of concentrations and fluxes of dissolved organic carbon (DOC) and dissolved organic (DON) and inorganic nitrogen (DIN) in aquatic ecosystems of the Arbutus Lake watershed to evaluate how a lake nested in a forested watershed affects the sources (e.g., production) and sinks (e.g., retention) of DOC and DON in the Adirondack Mountains of New York, USA. We observed no significant long-term changes of DOC and DON in the lake outlet since 1983 and 1994, respectively. However, the temporal patterns of DOC and DON concentrations in the lake inlet showed significant seasonality such as increases during the vegetation-growing season along with notable decreases in the dormant season. A comparison of mass balances between inlet and outlet for the period from 2000 to 2009 suggested that the lake was a sink of DOC (mean of influx minus outflux: +1140 mol C ha-1 yr-1). In contrast, the difference of discharge-weighted DON concentrations (mean of inlet minus outlet: -1.0 µmol N L-1) between inlet and outlet was much smaller than the discharge-weighted DOC concentrations (average of inlet minus outlet: + 87 µmol C L-1). DON fluxes showed considerable variation among years (mean of influx minus outflux: +8 mol N ha-1 yr-1; range of differences: -15 to 27 mol N ha-1 yr-1). DON exhibited low percent retention ((influx-outflux)/influx) (mean: 6.9 %, range: -34.8 to +31.2) compared to DOC (mean: 30.1 %, range: +9.2 to +44.1). The resultant increase of DON within the lake was closely linked with a net decrease of DIN through monthly Pearson correlation analysis, suggesting the importance of biotic factors in mediating lake DON dynamics. Our results show different relative retentions of DOC compared with DON, along with a larger retention of DIN than DON, suggesting that DOC and DON might display substantially different

  9. The application of ascorbate or its immediate precursor, galactono-1,4-lactone, does not affect the response of nitrogen-fixing pea nodules to water stress.

    PubMed

    Zabalza, Ana; Gálvez, Loli; Marino, Daniel; Royuela, Mercedes; Arrese-Igor, Cesar; González, Esther M

    2008-05-26

    Nitrogen fixation in legumes is dramatically inhibited by abiotic stresses, and this reduction is often associated with oxidative damage. Although ascorbate (ASC) has been firmly associated with antioxidant defence, recent studies have suggested that the functions of ASC are related primarily to developmental processes. This study examines the hypothesis that ASC is involved in alleviating the oxidative damage to nodules caused by an increase in reactive oxygen species (ROS) under water stress. The hypothesis was tested by supplying 5mM ASC to pea plants (Pisum sativum L.) experiencing moderate water stress (ca. -1 MPa) and monitoring plant responses in relation to those experiencing the same water stress without ASC. A supply of exogenous ASC increased the nodule ASC+dehydroascorbate (DHA) pool compared to water-stressed nodules without ASC, and significantly modulated the response to water stress of the unspecific guaiacol peroxidase (EC 1.11.1.7) in leaves and nodules. However, ASC supply did not produce recovery from water stress in other nodule antioxidant enzymes, nodule carbon and nitrogen enzymes, or nitrogen fixation. The supply of the immediate ASC precursor, galactono-1,4-lactone (GL), increased the nodule ASC+DHA pool, but also failed to prevent the decline of nitrogen fixation and the reduction of carbon flux in nodules. These results suggest that ASC has a limited role in preventing the negative effects of water stress on nodule metabolism and nitrogen fixation. PMID:17931744

  10. Working with men to prevent intimate partner violence in a conflict-affected setting: a pilot cluster randomized controlled trial in rural Côte d’Ivoire

    PubMed Central

    2014-01-01

    Background Evidence from armed conflict settings points to high levels of intimate partner violence (IPV) against women. Current knowledge on how to prevent IPV is limited—especially within war-affected settings. To inform prevention programming on gender-based violence in settings affected by conflict, we evaluated the impact of adding a targeted men’s intervention to a community-based prevention programme in Côte d’Ivoire. Methods We conducted a two-armed, non-blinded cluster randomized trial in Côte d’Ivoire among 12 pair-matched communities spanning government-controlled, UN buffer, and rebel–controlled zones. The intervention communities received a 16-week IPV prevention intervention using a men’s discussion group format. All communities received community-based prevention programmes. Baseline data were collected from couples in September 2010 (pre-intervention) and follow-up in March 2012 (one year post-intervention). The primary trial outcome was women’s reported experiences of physical and/or sexual IPV in the last 12 months. We also assessed men’s reported intention to use physical IPV, attitudes towards sexual IPV, use of hostility and conflict management skills, and participation in gendered household tasks. An adjusted cluster-level intention to treat analysis was used to compare outcomes between intervention and control communities at follow-up. Results At follow-up, reported levels of physical and/or sexual IPV in the intervention arm had decreased compared to the control arm (ARR 0.52, 95% CI 0.18-1.51, not significant). Men participating in the intervention reported decreased intentions to use physical IPV (ARR 0.83, 95% CI 0.66-1.06) and improved attitudes toward sexual IPV (ARR 1.21, 95% CI 0.77-1.91). Significant differences were found between men in the intervention and control arms’ reported ability to control their hostility and manage conflict (ARR 1.3, 95% CI 1.06-1.58), and participation in gendered household tasks (ARR

  11. Transcriptional Profiling Identifies a Role for BrlA in the Response to Nitrogen Depletion and for StuA in the Regulation of Secondary Metabolite Clusters in Aspergillus fumigatus▿ ‡

    PubMed Central

    Twumasi-Boateng, Kwame; Yu, Yan; Chen, Dan; Gravelat, Fabrice N.; Nierman, William C.; Sheppard, Donald C.

    2009-01-01

    Conidiation (asexual sporulation) is a key developmental process in filamentous fungi. We examined the gene regulatory roles of the Aspergillus fumigatus developmental transcription factors StuAp and BrlAp during conidiation. Conidiation was completely abrogated in an A. fumigatus ΔbrlA mutant and was severely impaired in a ΔstuA mutant. We determined the full genome conidiation transcriptomes of wild-type and ΔbrlA and ΔstuA mutant A. fumigatus and found that BrlAp and StuAp governed overlapping but distinct transcriptional programs. Six secondary metabolite biosynthetic clusters were found to be regulated by StuAp, while only one cluster exhibited BrlAp-dependent expression. The ΔbrlA mutant, but not the ΔstuA mutant, had impaired downregulation of genes encoding ribosomal proteins under nitrogen-limiting, but not carbon-limiting, conditions. Interestingly, inhibition of the target of rapamycin (TOR) pathway also caused downregulation of ribosomal protein genes in both the wild-type strain and the ΔbrlA mutant. Downregulation of these genes by TOR inhibition was associated with conidiation in the wild-type strain but not in the ΔbrlA mutant. Therefore, BrlAp-mediated repression of ribosomal protein gene expression is not downstream of the TOR pathway. Furthermore, inhibition of ribosomal protein gene expression is not sufficient to induce conidiation in the absence of BrlAp. PMID:19028996

  12. Targeted enhancement of glutamate-to-γ-aminobutyrate conversion in Arabidopsis seeds affects carbon-nitrogen balance and storage reserves in a development-dependent manner.

    PubMed

    Fait, Aaron; Nesi, Adriano Nunes; Angelovici, Ruthie; Lehmann, Martin; Pham, Phuong Anh; Song, Luhua; Haslam, Richard P; Napier, Johnathan A; Galili, Gad; Fernie, Alisdair R

    2011-11-01

    In seeds, glutamate decarboxylase (GAD) operates at the metabolic nexus between carbon and nitrogen metabolism by catalyzing the unidirectional decarboxylation of glutamate to form γ-aminobutyric acid (GABA). To elucidate the regulatory role of GAD in seed development, we generated Arabidopsis (Arabidopsis thaliana) transgenic plants expressing a truncated GAD from Petunia hybrida missing the carboxyl-terminal regulatory Ca(2+)-calmodulin-binding domain under the transcriptional regulation of the seed maturation-specific phaseolin promoter. Dry seeds of the transgenic plants accumulated considerable amounts of GABA, and during desiccation the content of several amino acids increased, although not glutamate or proline. Dry transgenic seeds had higher protein content than wild-type seeds but lower amounts of the intermediates of glycolysis, glycerol and malate. The total fatty acid content of the transgenic seeds was 50% lower than in the wild type, while acyl-coenzyme A accumulated in the transgenic seeds. Labeling experiments revealed altered levels of respiration in the transgenic seeds, and fractionation studies indicated reduced incorporation of label in the sugar and lipid fractions extracted from transgenic seeds. Comparative transcript profiling of the dry seeds supported the metabolic data. Cellular processes up-regulated at the transcript level included the tricarboxylic acid cycle, fatty acid elongation, the shikimate pathway, tryptophan metabolism, nitrogen-carbon remobilization, and programmed cell death. Genes involved in the regulation of germination were similarly up-regulated. Taken together, these results indicate that the GAD-mediated conversion of glutamate to GABA during seed development plays an important role in balancing carbon and nitrogen metabolism and in storage reserve accumulation. PMID:21921115

  13. Adsorption of nitrogen oxide molecules to the surface of nanosized nickel clusters formed on the (111) surface of a magnesium oxide film

    NASA Astrophysics Data System (ADS)

    Remar, D. F.; Turiev, A. M.; Tsidaeva, N. I.; Magkoev, T. T.

    2010-10-01

    The properties of the systems formed on deposition of Ni atoms on the (111) surface of a MgO film of thickness equal to six monomolecular layers grown on a Mo(110) crystal face and the adsorption of NO nitrogen oxide molecules to the system surface have been studied by methods of electron spectroscopy (AES, XPES, LEED, LEIBSS) and reflective infrared absorption spectroscopy. On deposition of Ni atoms on the surface of MgO at a substrate temperature of 600 K, three-dimensional islands of Ni are formed. The subsequent adsorption of NO results in molecule dissociation even at 110 K. The efficiency of this process depends on the morphology of the Ni layer.

  14. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway.

    PubMed Central

    Vander Wauven, C; Piérard, A; Kley-Raymann, M; Haas, D

    1984-01-01

    Pseudomonas aeruginosa PAO was able to grow in the absence of exogenous terminal electron acceptors, provided that the medium contained 30 to 40 mM L-arginine and 0.4% yeast extract. Under strictly anaerobic conditions (O2 at less than 1 ppm), growth could be measured as an increase in protein and proceeded in a non-exponential way; arginine was largely converted to ornithine but not entirely consumed at the end of growth. In the GasPak anaerobic jar (Becton Dickinson and Co.), the wild-type strain PAO1 grew on arginine-yeast extract medium in 3 to 5 days; mutants could be isolated that were unable to grow under these conditions. All mutants (except one) were defective in at least one of the three enzymes of the arginine deiminase pathway (arcA, arcB, and arcC mutants) or in a novel function that might be involved in anaerobic arginine uptake (arcD mutants). The mutations arcA (arginine deiminase), arcB (catabolic ornithine carbamoyltransferase), arcC (carbamate kinase), and arcD were highly cotransducible and mapped in the 17-min chromosome region. Some mutations in the arc cluster led to low, noninducible levels of all three arginine deiminase pathway enzymes and thus may affect control elements required for induction of the postulated arc operon. Two fluorescent pseudomonads (P. putida and P. fluorescens) and P. mendocina, as well as one PAO mutant, possessed an inducible arginine deiminase pathway and yet were unable to grow fermentatively on arginine. The ability to use arginine-derived ATP for growth may provide P. aeruginosa with a selective advantage when oxygen and nitrate are scarce. PMID:6438064

  15. Outcomes and moderators of a preventive school-based mental health intervention for children affected by war in Sri Lanka: a cluster randomized trial

    PubMed Central

    TOL, WIETSE A.; KOMPROE, IVAN H.; JORDANS, MARK J.D.; VALLIPURAM, ANAVARATHAN; SIPSMA, HEATHER; SIVAYOKAN, SAMBASIVAMOORTHY; MACY, ROBERT D.; DE JONG, JOOP T.

    2012-01-01

    We aimed to examine outcomes, moderators and mediators of a preventive school-based mental health intervention implemented by paraprofessionals in a war-affected setting in northern Sri Lanka. A cluster randomized trial was employed. Subsequent to screening 1,370 children in randomly selected schools, 399 children were assigned to an intervention (n=199) or waitlist control condition (n=200). The intervention consisted of 15 manualized sessions over 5 weeks of cognitive behavioral techniques and creative expressive elements. Assessments took place before, 1 week after, and 3 months after the intervention. Primary outcomes included post-traumatic stress disorder (PTSD), depressive, and anxiety symptoms. No main effects on primary outcomes were identified. A main effect in favor of intervention for conduct problems was observed. This effect was stronger for younger children. Furthermore, we found intervention benefits for specific subgroups. Stronger effects were found for boys with regard to PTSD and anxiety symptoms, and for younger children on pro-social behavior. Moreover, we found stronger intervention effects on PTSD, anxiety, and function impairment for children experiencing lower levels of current war-related stressors. Girls in the intervention condition showed smaller reductions on PTSD symptoms than waitlisted girls. We conclude that preventive school-based psychosocial interventions in volatile areas characterized by ongoing war-related stressors may effectively improve indicators of psychological wellbeing and posttraumatic stress-related symptoms in some children. However, they may undermine natural recovery for others. Further research is necessary to examine how gender, age and current war-related experiences contribute to differential intervention effects. PMID:22654944

  16. Richness, biomass, and nutrient content of a wetland macrophyte community affect soil nitrogen cycling in a diversity-ecosystem functioning experiment

    USGS Publications Warehouse

    Korol, Alicia R.; Ahn, Changwoo; Noe, Gregory

    2016-01-01

    The development of soil nitrogen (N) cycling in created wetlands promotes the maturation of multiple biogeochemical cycles necessary for ecosystem functioning. This development proceeds from gradual changes in soil physicochemical properties and influential characteristics of the plant community, such as competitive behavior, phenology, productivity, and nutrient composition. In the context of a 2-year diversity experiment in freshwater mesocosms (0, 1, 2, 3, or 4 richness levels), we assessed the direct and indirect impacts of three plant community characteristics – species richness, total biomass, and tissue N concentration – on three processes in the soil N cycle – soil net ammonification, net nitrification, and denitrification potentials. Species richness had a positive effect on net ammonification potential (NAP) through higher redox potentials and likely faster microbial respiration. All NAP rates were negative, however, due to immobilization and high rates of ammonium removal. Net nitrification was inhibited at higher species richness without mediation from the measured soil properties. Higher species richness also inhibited denitrification potential through increased redox potential and decreased nitrification. Both lower biomass and/or higher tissue ratios of carbon to nitrogen, characteristics indicative of the two annual plants, were shown to have stimulatory effects on all three soil N processes. The two mediating physicochemical links between the young macrophyte community and microbial N processes were soil redox potential and temperature. Our results suggest that early-successional annual plant communities play an important role in the development of ecosystem N multifunctionality in newly created wetland soils.

  17. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce

    PubMed Central

    Dao, Madjelia C. E.; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008–2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  18. A 6-Year-Long Manipulation with Soil Warming and Canopy Nitrogen Additions does not Affect Xylem Phenology and Cell Production of Mature Black Spruce.

    PubMed

    Dao, Madjelia C E; Rossi, Sergio; Walsh, Denis; Morin, Hubert; Houle, Daniel

    2015-01-01

    The predicted climate warming and increased atmospheric inorganic nitrogen deposition are expected to have dramatic impacts on plant growth. However, the extent of these effects and their interactions remains unclear for boreal forest trees. The aim of this experiment was to investigate the effects of increased soil temperature and nitrogen (N) depositions on stem intra-annual growth of two mature stands of black spruce [Picea mariana (Mill.) BSP] in Québec, QC, Canada. During 2008-2013, the soil around mature trees was warmed up by 4°C with heating cables during the growing season and precipitations containing three times the current inorganic N concentration were added by frequent canopy applications. Xylem phenology and cell production were monitored weekly from April to October. The 6-year-long experiment performed in two sites at different altitude showed no substantial effect of warming and N-depositions on xylem phenological phases of cell enlargement, wall thickening and lignification. Cell production, in terms of number of tracheids along the radius, also did not differ significantly and followed the same patterns in control and treated trees. These findings allowed the hypothesis of a medium-term effect of soil warming and N depositions on the growth of mature black spruce to be rejected. PMID:26617610

  19. Tensile Deformation Behavior and Phase Transformation in the Weld Coarse-Grained Heat-Affected Zone of Metastable High-Nitrogen Fe-18Cr-10Mn-N Stainless Steel

    NASA Astrophysics Data System (ADS)

    Moon, Joonoh; Lee, Tae-Ho; Park, Seong-Jun; Jang, Jae-il; Jang, Min-Ho; Ha, Heon-Young; Hwang, Byoungchul

    2013-07-01

    The tensile deformation behavior and phase transformation in the weld coarse-grained heat-affected zone (CGHAZ) of a metastable high-nitrogen austenitic stainless steel was explored through tensile tests, nanoindentation experiments, and transmission electron microscopy analysis. True stress-strain response during tensile test was found to be seriously affected by δ-ferrite fraction, which depends on peak temperature of the CGHAZs. The strain-induced martensitic transformation (SIMT) occurred in base steel, whereas the SIMT disappeared and deformation twinning occurred predominantly in the CGHAZs. The relationship among true stress-strain response, nanoindentation hardness, and deformed microstructures was carefully investigated and discussed in terms of changes of stacking fault energy.

  20. Sequences of nifX, nifW, nifZ, nifB and two ORF in the Frankia nitrogen fixation gene cluster.

    PubMed

    Harriott, O T; Hosted, T J; Benson, D R

    1995-08-01

    The actinomycete Frankia alni fixes N2 in root nodules of several non-leguminous plants. It is one of the few known N2-fixing members of the high-GC Gram+ lineage of prokaryotes. Thus, we have undertaken a study of its nitrogen fixation gene (nif) organization to compare with that of the more extensively characterized proteobacteria. A cosmid (pFN1) containing the nif region of Fa CpI1 was isolated from a cosmid library using the nifHDK genes of Fa CpI1 as a probe. A 4.5-kb BamHI fragment that mapped downstream from the previously characterized nifHDK genes was cloned and sequenced. Based on nt and aa sequence similarities to nif from other N2-fixing bacteria, eight ORF were identified and designated nifX, orf3, orf1, nifW, nifZ, nifB, orf2 and nifU. A region that hybridized to Rhizobium meliloti and Klebsiella pneumoniae nifA did not appear to contain a nifA-like gene. We have revised the map of the Fa nif region to reflect current information. PMID:7642138

  1. Modeling forest development after fire disturbance: Climate, soil organic layer, and nitrogen jointly affect forest canopy species and long-term ecosystem carbon accumulation in the North American boreal forest

    NASA Astrophysics Data System (ADS)

    Trugman, A. T.; Fenton, N.; Bergeron, Y.; Xu, X.; Welp, L.; Medvigy, D.

    2015-12-01

    Soil organic layer dynamics strongly affect boreal forest development after fire. Field studies show that soil organic layer thickness exerts a species-specific control on propagule establishment in the North American boreal forest. On organic soils thicker than a few centimeters, all propagules are less able to recruit, but broadleaf trees recruit less effectively than needleleaf trees. In turn, forest growth controls organic layer accumulation through modulating litter input and litter quality. These dynamics have not been fully incorporated into models, but may be essential for accurate projections of ecosystem carbon storage. Here, we develop a data-constrained model for understanding boreal forest development after fire. We update the ED2 model to include new aspen and black spruce species-types, species-specific propagule survivorship dependent on soil organic layer depth, species-specific litter decay rates, dynamically accumulating moss and soil organic layers, and nitrogen fixation by cyanobacteria associated with moss. The model is validated against diverse observations ranging from monthly to centennial timescales and spanning a climate gradient in Alaska, central Canada, and Quebec. We then quantify differences in forest development that result from changes in organic layer accumulation, temperature, and nitrogen. We find that (1) the model accurately reproduces a range of observations throughout the North American boreal forest; (2) the presence of a thick organic layer results in decreased decomposition and decreased aboveground productivity, effects that can increase or decrease ecosystem carbon uptake depending on location-specific attributes; (3) with a mean warming of 4°C, some forests switch from undergoing succession to needleleaf forests to recruiting multiple cohorts of broadleaf trees, decreasing ecosystem accumulation by ~30% after 300 years; (4) the availability of nitrogen regulates successional dynamics such than broadleaf species are

  2. Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-12-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, as well as changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero N (control), optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. SN0, SNopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon), with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  3. Net global warming potential and greenhouse gas intensity in a double cropping cereal rotation as affected by nitrogen and straw management

    NASA Astrophysics Data System (ADS)

    Huang, T.; Gao, B.; Christie, P.; Ju, X.

    2013-08-01

    The effects of nitrogen and straw management on global warming potential (GWP) and greenhouse gas intensity (GHGI) in a winter wheat-summer maize double-cropping system on the North China Plain were investigated. We measured nitrous oxide (N2O) emissions and studied net GWP (NGWP) and GHGI by calculating the net exchange of CO2 equivalent (CO2-eq) from greenhouse gas emissions, agricultural inputs and management practices, and changes in soil organic carbon (SOC), based on a long-term field experiment established in 2006. The field experiment includes six treatments with three fertilizer N levels (zero-N control, optimum and conventional N) and straw removal (i.e. N0, Nopt and Ncon) or return (i.e. N0, Nopt and SNcon). Optimum N management (Nopt, SNopt) saved roughly half of the fertilizer N compared to conventional agricultural practice (Ncon, SNcon) with no significant effect on grain yields. Annual mean N2O emissions reached 3.90 kg N2O-N ha-1 in Ncon and SNcon, and N2O emissions were reduced by 46.9% by optimizing N management of Nopt and SNopt. Straw return increased annual mean N2O emissions by 27.9%. Annual SOC sequestration was 0.40-1.44 Mg C ha-1 yr-1 in plots with N application and/or straw return. Compared to the conventional N treatments the optimum N treatments reduced NGWP by 51%, comprising 25% from decreasing N2O emissions and 75% from reducing N fertilizer application rates. Straw return treatments reduced NGWP by 30% compared to no straw return because the GWP from increments of SOC offset the GWP from higher emissions of N2O, N fertilizer and fuel after straw return. The GHGI trends from the different nitrogen and straw management practices were similar to the NGWP. In conclusion, optimum N and straw return significantly reduced NGWP and GHGI and concomitantly achieved relatively high grain yields in this important winter wheat-summer maize double-cropping system.

  4. A new measurement of the fusion reaction nitrogen- 14(proton,photon)oxygen-15 and its impact on hydrogen burning, globular clusters, and the age of the universe

    NASA Astrophysics Data System (ADS)

    Runkle, Robert Charles

    2003-10-01

    Stars create the light we observe from energy liberated by nuclear fusion reactions. For most of their lives, stars exist as main-sequence objects quiescently burning hydrogen. At temperatures present in stars slightly larger than the Sun, the CN cycle dominates hydrogen burning and thus a star's macroscopic properties such as luminosity and main sequence turnoff. Because it is the slowest step in the CN cycle, the 14N(p,γ)15O reaction dictates the rate of hydrogen burning. This fact mandates a good understanding of the 14N(p,γ)15O reaction rate. Although this reaction is well understood at high energies, there are large uncertainties at astrophysically relevant energies. We conducted a new measurement of the 14N(p,γ)15O low energy cross section that extends very close to temperatures present in massive stars. The previous uncertainty in the reaction rate resulted from the possible contribution of a subthreshold resonance in the ground state transition. Our measurement suggests that this resonance does not contribute significantly. We conclude that the 6793 keV state in 15O dominates the low energy cross section. Indirect measurements support our extrapolation of this state to very low energies, which results in a factor of two reduction in the reaction rate for temperature below 108 K. This new result has a significant impact on the theory of the evolution of massive stars. It significantly increases the predicted age of the oldest globular clusters and helps provide a better constraint on cosmological parameters that determine the present age of the Universe.

  5. Tannic acid reduces recovery of water-soluble carbon and nitrogen from soil and affects the composition of Bradford-reactive soil protein

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tannins are plant-derived polyphenolic compounds that precipitate proteins, bind to metals and complex with other compounds and may be particularly important in soil ecosystems. Solutions of tannic acid, or other phenolic compounds, were added to soil samples to determine if they would affect recov...

  6. Food web of a confined and anthropogenically affected coastal basin (the Mar Piccolo of Taranto) revealed by carbon and nitrogen stable isotopes analyses.

    PubMed

    Bongiorni, Lucia; Fiorentino, Federica; Auriemma, Rocco; Aubry, Fabrizio Bernardi; Camatti, Elisa; Camin, Federica; Nasi, Federica; Pansera, Marco; Ziller, Luca; Grall, Jacques

    2016-07-01

    Carbon and nitrogen stable isotope analysis was used to examine the food web of the Mar Piccolo of Taranto, a coastal basin experiencing several anthropogenic impacts. Main food sources (algal detritus, seaweeds, particulate organic matter (POM) and sediment organic matter (SOM)) and benthic and pelagic consumers were collected during two contrasting seasons (June and April), at four sites distributed over two inlets, and characterized by different level of confinements, anthropogenic inputs and the presence of mussels farming. δ(13)C values of organic sources revealed an important contribution of POM to both planktonic and benthic pathways, as well as the influence of terrigenous inputs within both inlets, probably due to high seasonal land runoff. Although δ(13)C of both sources and consumers varied little between sampling sites and dates, δ(15)N spatial variability was higher and clearly reflected the organic enrichment in the second inlet as well as the uptake of anthropogenically derived material by benthic consumers. On the other hand, within the first inlet, the isotopic composition of consumers did not change in response to chemical contamination. However, the impact of polluted sediments near the Navy Arsenal in the first inlet was detectable at the level of the macrobenthic trophic structure, showing high dominance of motile, upper level consumers capable to face transient conditions and the reduction of the more resident deposit feeders. We therefore underline the great potential of matching stable isotope analysis with quantitative studies of community structure to assess the effects of multiple anthropogenic stressors. PMID:26381790

  7. Ordered Semiconducting Nitrogen-Graphene Alloys

    SciTech Connect

    Xiang, H. J.; Huang, B.; Li, Z. Y.; Wei, S. H.; Yang, J. L.; Gong, X. G.

    2012-01-01

    The interaction between substitutional nitrogen atoms in graphene is studied by performing first-principles calculations. The effective nearest-neighbor interaction between nitrogen dopants is found to be highly repulsive because of the strong electrostatic repulsion between nitrogen atoms. This interaction prevents the full nitrogen-carbon phase separation in nitrogen-doped graphene. Interestingly, there are two relatively stable nitrogen-nitrogen pair configurations, whose stability can be attributed to the anisotropy in the charge redistribution induced by nitrogen doping. We reveal two stable, ordered, semiconducting N-doped graphene structures, C{sub 3}N and C{sub 12}N, through the cluster-expansion technique and particle-swarm optimization method. In particular, we show that C{sub 12}N has a direct band gap of 0.98 eV. The heterojunctions between C{sub 12}N and graphene nanoribbons might be a promising basis for organic solar cells.

  8. Nitrogen Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is a need to improve the management of nitrogen inputs to agricultural systems because they increase the potential for losses of reactive nitrogen to the environment, resulting in negative impacts to water and air resources. There is a need to reduce nitrate leaching, emissions of N2O from agr...

  9. Route of tracer administration does not affect ileal endogenous nitrogen recovery measured with the 15N-isotope dilution technique in pigs fed rapidly digestible diets.

    PubMed

    Steendam, C A Carina; Verstegen, Martin W A; Tamminga, Seerp; Boer, Huug; van 't End, Marianne; Verstappen, Berthe; Caine, William R; Visser, G Henk

    2004-11-01

    The (15)N-isotope dilution technique ((15)N-IDT), with either pulse-dose oral administration or continuous i.v. administration of [(15)N]-l-leucine (carotid artery), both at 5 mg/(kg body weight . d), was used to measure ileal (postvalve T-cecum cannula) endogenous nitrogen recovery (ENR) in pigs (9 +/- 0.6 kg). Diets were cornstarch, enzyme-hydrolyzed casein with no (control) or high (4%) content of quebracho extract (Schinopsis spp.) rich in condensed tannins. Blood was sampled from a catheter in the external jugular vein. Mean plasma (15)N-enrichment at d 8-10 was higher (P = 0.0009) after i.v. than after oral administration [0.0356 vs. 0.0379 atom% excess (APE)]. Plasma (15)N-enrichment for i.v. infused pigs was 0.01117 APE higher (P < 0.0001) and for orally dosed pigs 0.0081 APE lower (P < 0.0001) at 11 h postprandial compared with 1 h postprandial. Apparent ileal N digestibility was higher (P < 0.0001) for the control (85.5%) than for the quebracho diet (69.5%). ENR was calculated from the ratio of (15)N-enrichment of plasma and digesta. The ENR for the quebracho diet was approximately 300% higher than for the control diet (6.03 vs. 1.94 g/kg dry matter intake, P < 0.001). The real N digestibility (92.2 +/- 0.4%) was equal for both diets (P = 0.1030) and both tracer methods (P = 0.9730). We concluded that oral administration of [(15)N]leucine provides reasonable estimates of ENR in pigs fed semipurified diets with high or low content of tannins; however, one must be careful in extrapolating this conclusion to studies with other protein sources or feeding frequencies. PMID:15514277

  10. ELEVATED CO{sub 2} IN A PROTOTYPE FREE-AIR CO{sub 2} ENRICHMENT FACILITY AFFECTS PHOTOSYNTHETIC NITROGEN RELATIONS IN A MATURING PINE FOREST

    SciTech Connect

    ELLSWORTH,D.S.; LA ROCHE,J.; HENDREY,G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric [CO{sub 2}] {approx} 550 {micro}mol mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Their findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. While carboxylation efficiency per unit N apparently decreased under elevated CO{sub 2}, photosynthetic rates in trees at elevated CO{sub 2} concentrations {approx} 550 pmol mol{sub {minus}1} are still

  11. Elevated CO{sub 2} in a prototype free-air CO{sub 2} enrichment facility affects photosynthetic nitrogen relations in a maturing pine forest

    SciTech Connect

    Ellsworth, D.S.; LaRoche, J.; Hendrey, G.R.

    1998-03-01

    A maturing loblolly pine (Pinus taeda L.) forest was exposed to elevated CO{sub 2} in the natural environment in a perturbation study conducted over three seasons using the free-air CO{sub 2} enrichment (FACE) technique. At the time measurements were begun in this study, the pine canopy was comprised entirely of foliage which had developed under elevated CO{sub 2} conditions (atmospheric CO{sub 2} {approx} 550 {micro}mol/mol{sup {minus}1}). Measurements of leaf photosynthetic responses to CO{sub 2} were taken to examine the effects of elevated CO{sub 2} on photosynthetic N nutrition in a pine canopy under elevated CO{sub 2}. Photosynthetic CO{sub 2} response curves (A-c{sub i} curves) were similar in FACE trees under elevated CO{sub 2} compared with counterpart trees in ambient plots for the first foliage cohort produced in the second season of CO{sub 2} exposure, with changes in curve form detected in the foliage cohorts subsequently produced under elevated CO{sub 2}. Differences in the functional relationship between carboxylation rate and N{sub a} suggest that for a given N{sub a} allocated among successive cohorts of foliage in the upper canopy, V{sub c max} was 17% lower in FACE versus Ambient trees. The authors also found that foliar Rubisco content per unit total protein derived from Western blot analysis was lower in late-season foliage in FACE foliage compared with ambient-grown foliage. The results illustrate a potentially important mode of physiological adjustment to growth conditions that may operate in forest canopies. Findings suggest that mature loblolly pine trees growing in the field may have the capacity for shifts in intrinsic nitrogen utilization for photosynthesis under elevated CO{sub 2} that are not dependent on changes in leaf N. Findings suggest a need for continued examination of internal feedbacks at the whole-tree and ecosystem level in forests that may influence long-term photosynthetic responses to elevated CO{sub 2}.

  12. Nitrogen quantification with SNMS

    NASA Astrophysics Data System (ADS)

    Goschnick, J.; Natzeck, C.; Sommer, M.

    1999-04-01

    Plasma-based secondary neutral mass spectrometry (plasma SNMS) is a powerful analytical method for determining the elemental concentrations of almost any kind of material at low cost by using a cheap quadrupole mass filter. However, a quadrupole-based mass spectrometer is limited to nominal mass resolution. Atomic signals are sometimes superimposed by molecular signals (2 or 3 atomic clusters such as CH +, CH 2+ or metal oxide clusters) and/or intensities of double-charged species. Especially in the case of nitrogen several interferences can impede the quantification. This article reports on methods to recognize and deconvolute superpositions of N + with CH 2+, Li 2+, and Si 2+ at mass 14 D (Debye) occurring during analysis of organic and inorganic substances. The recognition is based on the signal pattern of N +, Li +, CH +, and Si +. The latter serve as indicators for a probable interference of molecular or double-charged species with N on mass 14 D. The subsequent deconvolution use different shapes of atomic and cluster kinetic energy distributions (kEDs) to determine the quantities of the intensity components by a linear fit of N + and non-atomic kEDs obtained from several organic and inorganic standards into the measured kED. The atomic intensity fraction yields a much better nitrogen concentration than the total intensity of mass 14 D after correction.

  13. Processing of soybean meal and 00-rapeseed meal reduces protein digestibility and pig growth performance but does not affect nitrogen solubilization along the small intestine.

    PubMed

    Hulshof, T G; van der Poel, A F B; Hendriks, W H; Bikker, P

    2016-06-01

    An experiment was conducted to determine the effects of processing of soybean meal (SBM) and 00-rapeseed meal (RSM) on N solubilization in chyme, CP digestibility along the small intestine, metabolic load as determined by organ weight, body composition, and growth performance in growing pigs. The SBM and RSM were processed by secondary toasting (at 95°C for 30 min) in the presence of lignosulfonate, resulting in processed SBM (pSBM) and processed RSM (pRSM) as a model for overprocessed protein sources. Fifty-four growing pigs were each fed 1 of the 6 experimental diets. Four of the diets contained SBM, pSBM, RSM, or pRSM as the sole protein source. The remaining 2 experimental diets contained pSBM or pRSM and were supplemented with crystalline AA to the same standardized ileal digestible AA levels as the SBM or RSM diet. Pigs were slaughtered at 40 kg, and organ weights were recorded. The organs plus blood and empty carcass were analyzed for CP content. The small intestine was divided into 3 segments, and chyme samples were taken from the last meter of each segment. Chyme of the SBM, pSBM, RSM, and pRSM diets was centrifuged to separate the soluble and insoluble fractions, and N content was determined in the latter. The amount of insoluble N as a fraction of N in chyme at each small intestinal segment was not affected by processing. Diet type, comprising effects of processing and supplementing crystalline AA, affected ( < 0.05) the G:F and standardized ileal digestibility (SID) of CP. Processing reduced G:F from 0.56 to 0.38 for SBM and 0.49 to 0.40 for RSM, whereas supplementing crystalline AA increased G:F to the level of the SBM and RSM diets. Processing reduced the SID of CP from 87.2% to 69.2% for SBM and 71.0% to 52.2% for RSM. Diet type affected ( < 0.05) the CP content in the empty body, with processing reducing this content from 170 to 144 g/kg empty BW for SBM and 157 to 149 g/kg empty BW for RSM and supplementing crystalline AA restoring this content

  14. Nitrogen Uptake in Spinach

    NASA Astrophysics Data System (ADS)

    Ramirez, J.; VanBenthem, P.

    2013-12-01

    A plant's absorption of nitrogen can be encouraged by a variety of environmental factors, especially the application of fertilizers. As a common limiting factor in plant growth, not up taking enough nitrogen can be a result of an unhealthy plant. Moreover, as farmers seek out methods to increase growth of plants, fertilizers are used as a solution to the issue of nitrogen deficiency to incorporate additional nitrogen from chemical or organic sources, by not using the right fertilizer can greatly affect the plats. The point of this research project is to determine the effect of various fertilizers on the plant growth, and to correlate the measured nitrogen, water and chlorophyll content in spinach leaves. Spinach leaves were used because they are known to quickly uptake chemicals in the environment. The spinach plants were exposed to four different growing parameters, which are referred to as control, ammonium nitrate, MiracleGro , and organic. The spinach was originally placed in nitrogen deficient soil with only 2.2x10 4 weight percent (wt. %) nitrogen. The leaves in the control group were grown in this nitrogen deficient soil without any fertilizer added. Ammomium nitrate and MiracleGro were added to the spinach in the A and MG groups, respectively, and organic chicken stool was used for the O group. By using a spectral imaging system and flame combustion techniques, the chlorophyll content can be related to the nitrogen content in the spinach leaves. In these spinach leaves, nitrogen and chlorophyll content were measured, chlorophyll is a green pigment that plays a crucial role in producing nutrients for green plants. The lack of chlorophyll will allow the plant to become susceptible to diseases, so it is extremely important that the plants have a high content of chlorophyll. The role of nitrogen in chlorophyll is very important and helps in the creation of chlorophyll; therefore it is necessary that an appropriate amount of nitrogen is added for optimal growth

  15. Cluster ion beam profiling of organics by secondary ion mass spectrometry--does sodium affect the molecular ion intensity at interfaces?

    PubMed

    Green, Felicia M; Gilmore, Ian S; Seah, Martin P

    2008-12-01

    The use of cluster ion beam sputtering for depth profiling organic materials is of growing technological importance and is a very active area of research. At the 44th IUVSTA Workshop on "Sputtering and Ion Emission by Cluster Ion Beams", recent results were presented of a cluster ion beam depth profile of a thin organic molecular layer on a silicon wafer substrate. Those data showed that the intensity of molecular secondary ions is observed to increase at the interface and this was explained in terms of the higher stopping power in the substrate and a consequently higher sputtering yield and even higher secondary ion molecular sputtering yield. An alternative hypothesis was postulated in the workshop discussion which may be paraphrased as: "under primary ion bombardment of an organic layer, mobile ions such as sodium may migrate to the interface with the inorganic substrate and this enhancement of the sodium concentration increases the ionisation probability, so increasing the molecular ion yield observed at the interface". It is important to understand if measurement artefacts occur at interfaces for quantification as these are of great technological relevance - for example, the concentration of drug in a drug delivery system. Here, we evaluate the above hypothesis using a sample that exhibits regions of high and low sodium concentration at both the organic surface and the interface with the silicon wafer substrate. There is no evidence to support the hypothesis that the probability of molecular secondary ion ionisation is related to the sodium concentration at these levels. PMID:19039819

  16. Haplotypes in the APOA1-C3-A4-A5 gene cluster affect plasma lipids in both humans and baboons

    SciTech Connect

    Wang, Qian-fei; Liu, Xin; O'Connell, Jeff; Peng, Ze; Krauss, Ronald M.; Rainwater, David L.; VandeBerg, John L.; Rubin, Edward M.; Cheng, Jan-Fang; Pennacchio, Len A.

    2003-09-15

    Genetic studies in non-human primates serve as a potential strategy for identifying genomic intervals where polymorphisms impact upon human disease-related phenotypes. It remains unclear, however, whether independently arising polymorphisms in orthologous regions of non-human primates leads to similar variation in a quantitative trait found in both species. To explore this paradigm, we studied a baboon apolipoprotein gene cluster (APOA1/C3/A4/A5) for which the human gene orthologs have well established roles in influencing plasma HDL-cholesterol and triglyceride concentrations. Our extensive polymorphism analysis of this 68 kb gene cluster in 96 pedigreed baboons identified several haplotype blocks each with limited diversity, consistent with haplotype findings in humans. To determine whether baboons, like humans, also have particular haplotypes associated with lipid phenotypes, we genotyped 634 well characterized baboons using 16 haplotype tagging SNPs. Genetic analysis of single SNPs, as well as haplotypes, revealed an association of APOA5 and APOC3 variants with HDL cholesterol and triglyceride concentrations, respectively. Thus, independent variation in orthologous genomic intervals does associate with similar quantitative lipid traits in both species, supporting the possibility of uncovering human QTL genes in a highly controlled non-human primate model.

  17. Nitrogen species

    NASA Astrophysics Data System (ADS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; McCormick, M. P.; Noxon, J.; Owens, A. J.

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  18. Nitrogen species

    NASA Technical Reports Server (NTRS)

    Harries, J. E.; Brasseur, G.; Coffey, M. T.; Fischer, H.; Gille, J.; Jones, R.; Louisnard, N.; Mccormick, M. P.; Noxon, J.; Owens, A. J.

    1985-01-01

    Total odd nitrogen, NO(y), may be defined as the sum of all active nitrogen species that interchange photochemically with one another on a time scale of the order of weeks or less. As noted, NO + NO2 reactions dominate the processes controlling the ozone balance in the contemporary stratosphere. The observational data from non-satellite platforms are reviewed. The growth in available satellite data in the past four years is considered. Some of the most important scientific issues are discussed, taking into account new results from atmospheric models (mainly 2-D). The model results are compared with the observational data.

  19. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  20. Interaction of air temperature and nitrogen supply on root growth and nitrogen uptake by corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient uptake rates by plants are governed by both plant processes and soil properties. Simulation models of nitrogen uptake should account for both demand and availability of nitrogen. The goal of this study was to quantify root growth and nitrogen uptake by corn plants (maize) as affected by air...

  1. Nitrogen dioxide

    Integrated Risk Information System (IRIS)

    Nitrogen dioxide ; CASRN 10102 - 44 - 0 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogeni

  2. Nitrogen Starvation and TorC1 Inhibition Differentially Affect Nuclear Localization of the Gln3 and Gat1 Transcription Factors Through the Rare Glutamine tRNACUG in Saccharomyces cerevisiae

    PubMed Central

    Tate, Jennifer J.; Rai, Rajendra; Cooper, Terrance G.

    2015-01-01

    A leucine, leucyl-tRNA synthetase–dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors

  3. Nitrogen starvation and TorC1 inhibition differentially affect nuclear localization of the Gln3 and Gat1 transcription factors through the rare glutamine tRNACUG in Saccharomyces cerevisiae.

    PubMed

    Tate, Jennifer J; Rai, Rajendra; Cooper, Terrance G

    2015-02-01

    A leucine, leucyl-tRNA synthetase-dependent pathway activates TorC1 kinase and its downstream stimulation of protein synthesis, a major nitrogen consumer. We previously demonstrated, however, that control of Gln3, a transcription activator of catabolic genes whose products generate the nitrogenous precursors for protein synthesis, is not subject to leucine-dependent TorC1 activation. This led us to conclude that excess nitrogen-dependent down-regulation of Gln3 occurs via a second mechanism that is independent of leucine-dependent TorC1 activation. A major site of Gln3 and Gat1 (another GATA-binding transcription activator) control occurs at their access to the nucleus. In excess nitrogen, Gln3 and Gat1 are sequestered in the cytoplasm in a Ure2-dependent manner. They become nuclear and activate transcription when nitrogen becomes limiting. Long-term nitrogen starvation and treatment of cells with the glutamine synthetase inhibitor methionine sulfoximine (Msx) also elicit nuclear Gln3 localization. The sensitivity of Gln3 localization to glutamine and inhibition of glutamine synthesis prompted us to investigate the effects of a glutamine tRNA mutation (sup70-65) on nitrogen-responsive control of Gln3 and Gat1. We found that nuclear Gln3 localization elicited by short- and long-term nitrogen starvation; growth in a poor, derepressive medium; Msx or rapamycin treatment; or ure2Δ mutation is abolished in a sup70-65 mutant. However, nuclear Gat1 localization, which also exhibits a glutamine tRNACUG requirement for its response to short-term nitrogen starvation or growth in proline medium or a ure2Δ mutation, does not require tRNACUG for its response to rapamycin. Also, in contrast with Gln3, Gat1 localization does not respond to long-term nitrogen starvation. These observations demonstrate the existence of a specific nitrogen-responsive component participating in the control of Gln3 and Gat1 localization and their downstream production of nitrogenous precursors. This

  4. Nitrogen Mineralization Response to Tillage Practices on Low and High Nitrogen Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In strip tillage, crop residue is left on soil surface, decreasing the contact between soil and the residue, and therefore reducing decomposition rates compared to conventional tillage methods. Decomposition rates directly affect carbon and nitrogen ratios, which can affect nitrogen mineralization r...

  5. Modeling Clustered Data with Very Few Clusters.

    PubMed

    McNeish, Daniel; Stapleton, Laura M

    2016-01-01

    Small-sample inference with clustered data has received increased attention recently in the methodological literature, with several simulation studies being presented on the small-sample behavior of many methods. However, nearly all previous studies focus on a single class of methods (e.g., only multilevel models, only corrections to sandwich estimators), and the differential performance of various methods that can be implemented to accommodate clustered data with very few clusters is largely unknown, potentially due to the rigid disciplinary preferences. Furthermore, a majority of these studies focus on scenarios with 15 or more clusters and feature unrealistically simple data-generation models with very few predictors. This article, motivated by an applied educational psychology cluster randomized trial, presents a simulation study that simultaneously addresses the extreme small sample and differential performance (estimation bias, Type I error rates, and relative power) of 12 methods to account for clustered data with a model that features a more realistic number of predictors. The motivating data are then modeled with each method, and results are compared. Results show that generalized estimating equations perform poorly; the choice of Bayesian prior distributions affects performance; and fixed effect models perform quite well. Limitations and implications for applications are also discussed. PMID:27269278

  6. Electronic structure calculations of group III nitride clusters

    NASA Astrophysics Data System (ADS)

    Kandalam, Anil Kumar

    2002-04-01

    Group III nitrides have become materials of choice in the manufacturing of devices used in opto-electronic and high-temperature high-power electronic industries. Hence, these materials received wide attention and have become the focus of several theoretical and experimental studies. Though these materials are studied in bulk and thin film forms, research at the cluster level is still lacking. Hence, a first principles calculation, based on the Generalized Gradient Approximation (GGA) to Density Functional Theory (DFT) was initiated to study the structural and electronic properties of AlnN n, GanNn, and InnNn, (n = 1--6) clusters. The calculated results show that the small polyatomic nitride clusters (monomer, triatomic and dimer) have a strong tendency to form N-N multiple bonds leading to the weakening of any existent metal-N or metal-metal bonds. In the absence of the N-N bonds, the metal-nitrogen bond dominates, forming short bond-lengths and large force constants. However, the strength of these heteronuclear bonds decreases in going from Al to Ga and In, whereas the weak metal-metal bond increases its strength from Al to Ga to In in the nitride clusters. Starting from the trimers M3N3, a distinct structural difference between the lowest energy configurations of AlnNn and that of GanNn, and In nNn, clusters has been observed. For AlnNn, clusters, the metal-nitrogen bond is found to dominate the lowest energy configurations. As the cluster size is increased from Al3N3 to Al 6N6, a transition from planar ring structures towards a bulk-like three dimensional configurations is seen. However, in GanN n, and InnNn clusters, no such trend is observed and the lowest energy configurations are dominated either by N2 or (N3)- sub-units. The segregation of N atoms within the stoichiometric clusters indicates the possibility of N2 and N3 based defects in the thin-film deposition process which may affect the quality of the thin-film devices based on Group III nitrides.

  7. Meaningful Clusters

    SciTech Connect

    Sanfilippo, Antonio P.; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2004-05-26

    We present an approach to the disambiguation of cluster labels that capitalizes on the notion of semantic similarity to assign WordNet senses to cluster labels. The approach provides interesting insights on how document clustering can provide the basis for developing a novel approach to word sense disambiguation.

  8. Regulation of genes involved in nitrogen utilization on different C/N ratios and nitrogen sources in the model ectomycorrhizal fungus Hebeloma cylindrosporum.

    PubMed

    Avolio, Meghan; Müller, Tobias; Mpangara, Anja; Fitz, Michael; Becker, Ben; Pauck, Alexander; Kirsch, Anja; Wipf, Daniel

    2012-10-01

    Nitrogen (N) utilization by ectomycorrhizal fungi is an essential aspect of their ecosystem function. N deposition changes both the N pools and the carbon/nitrogen (C/N) ratio of the substrates where ectomycorrhizal fungi are found, and it is important to understand how these changes affect the N forms used by ectomycorrhizal fungi. To overcome the difficulties of studying ectomycorrhizal fungi in situ, we investigated all known N genes in the model fungus, Hebeloma cylindrosporum in a culture study. In addition to studying the regulation of all known N utilization genes, we aimed to understand whether there are gene clusters that undergo similar regulation. Lastly we studied how C/N ratio, N transporter type, and N source affected relative gene expression levels. We grew the D2 strain of H. cylindrosporum on a range of inorganic and organic N sources under low, medium, and high C/N ratios. We found three gene clusters that were regulated in a similar pattern. Lastly, we found C/N ratio, N source and N transporter type all affected gene expression levels. Relative expression levels were highest on the high C/N ratio, BSA and diLeucine N sources, and inorganic N transporters were always expressed at higher levels than organic N transporters. These results suggest that inorganic N sources may always the default preference for H. cylindrosporum, regardless of both the N sources and the C/N ratio of the substrate. PMID:22302131

  9. Effects of Nitrogen Fertilization on Tritrophic Interactions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plant—herbivore—natural enemy interactions are basic components of nearly all ecosystems, and nitrogen can exert a variety of effects on plants which can significantly alter these interactions. We present a diagram illustrating the various ways that nitrogen can affect three trophic levels and revi...

  10. Interactive effects of nitrogen deposition and insect herbivory on carbon and nitrogen dynamics: Results from CENTURY

    NASA Astrophysics Data System (ADS)

    Throop, H. L.; Holland, E. A.; Parton, W. J.; Ojima, D. S.; Keough, C.

    2002-12-01

    The direct effects of nitrogen deposition on nutrient availability in ecosystems have been well studied, however, little is known about the indirect effects of nitrogen deposition on insect herbivory and subsequent changes to ecosystem processes. Numerous empirical studies have demonstrated that host plant nitrogen concentration can strongly affect individual insect consumption rates and population dynamics. We used the CENTURY ecosystem model to explore how interactions between nitrogen deposition and insect herbivory might affect plant production and the pools and fluxes of carbon and nitrogen in an old field community. We modified the preexisting CENTURY mammalian grazing functions to reflect patterns of insect herbivory. Vegetative tissue loss to herbivores was modeled as a dynamic function based on the carbon to nitrogen ratio of aboveground vegetation. Parameterization of the plant response to nitrogen and herbivory was based on field data collected on Ambrosia artemisiifolia (common ragweed, Asteraceae). The modeled response to nitrogen deposition included a strong increase in plant production, decreased plant C:N ratios, and increased soil organic carbon pools. Insect herbivory alone generally caused depressed aboveground production, decreased soil organic carbon pools, and decreased nitrogen mineralization rates. These relationships broke down, however, under moderate nitrogen deposition loads (over 30 kg N ha-1 yr-1) in simulations where insect herbivory increased in response to declining plant C:N. In these cases, herbivory acted to depress the positive influence of nitrogen deposition on carbon storage in soil and vegetative pools and caused strong increases in nitrogen mineralization rates. The results of these simulations suggest that herbivory may play an increasingly important role in affecting ecosystem processes under conditions of high nitrogen deposition. Including effects of herbivory in ecosystem analyses, particularly in systems where rates

  11. Mass-spectrometric observation of ion ejection from clusters

    NASA Astrophysics Data System (ADS)

    Vostrikov, A. A.; Dubov, D. Iu.; Gileva, V. P.

    1989-08-01

    Results of mass spectrometry measurements in clustered molecular beams of water and nitrogen oxide are reported. The clusters were formed under conditions of free expansion of N2O and superheated steam through a sonic nozzle. It is found that, for a mean cluster size of less than 100, the true cluster concentration in the beam is distorted by the evaporation of molecules from ionized clusters. The evaporation intensity depends to a large degree on the ionizing electron energy. For the cluster sizes investigated (100 or less), the observed density of the microcluster ions is found to be related to ion ejection from the clusters.

  12. Nitrogen Supply Uses Hydrazine

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.

    1984-01-01

    Liquid hydrazine dissociated and residual gas removed to produce almost pure nitrogen. Nitrogen-generation module catalytically dissociates liquid hydrazine then dissociates and separates product gases to yield almost pure nitrogen.

  13. Nitrogen uptake and utilization by intact plants

    NASA Technical Reports Server (NTRS)

    Raper, C. D., Jr.; Tolley-Henry, L. C.

    1986-01-01

    The results of experiments support the proposed conceptual model that relates nitrogen uptake activity by plants as a balanced interdependence between the carbon-supplying function of the shoot and the nitrogen-supplying function of the roots. The data are being used to modify a dynamic simulation of plant growth, which presently describes carbon flows through the plant, to describe nitrogen uptake and assimilation within the plant system. Although several models have been proposed to predict nitrogen uptake and partitioning, they emphasize root characteristics affecting nutrient uptake and relay on empirical methods to describe the relationship between nitrogen and carbon flows within the plant. Researchers, on the other hand, propose to continue to attempt a mechanistic solution in which the effects of environment on nitrogen (as well as carbon) assimilation are incorporated through their direct effects on photosynthesis, respiration, and aging processes.

  14. NifB and NifEN protein levels are regulated by ClpX2 under nitrogen fixation conditions in Azotobacter vinelandii.

    PubMed

    Martínez-Noël, Giselle; Curatti, Leonardo; Hernandez, Jose A; Rubio, Luis M

    2011-03-01

    The major part of biological nitrogen fixation is catalysed by the molybdenum nitrogenase that carries at its active site the iron and molybdenum cofactor (FeMo-co). The nitrogen fixation (nif) genes required for the biosynthesis of FeMo-co are derepressed in the absence of a source of fixed nitrogen. The nifB gene product is remarkable because it assembles NifB-co, a complex cluster proposed to comprise a [6Fe-9S-X] cluster, from simpler [Fe-S] clusters common to other metabolic pathways. NifB-co is a common intermediate of the biosyntheses of the cofactors present in the molybdenum, vanadium and iron nitrogenases. In this work, the expression of the Azotobacter vinelandii nifB gene was uncoupled from its natural nif regulation to show that NifB protein levels are lower in cells growing diazotrophically than in cells growing at the expense of ammonium. A. vinelandii carries a duplicated copy of the ATPase component of the ubiquitous ClpXP protease (ClpX2), which is induced under nitrogen fixing conditions. Inactivation of clpX2 resulted in the accumulation of NifB and NifEN and a defect in diazotrophic growth, especially when iron was in short supply. Mutations in nifE, nifN and nifX or in nifA also affected NifB accumulation, suggesting that NifB susceptibility to degradation might vary during its catalytic cycle. PMID:21231969

  15. Soil carbon storage and N{sub 2}O emissions from wheat agroecosystems as affected by free-air CO{sub 2} enrichment (FACE) and nitrogen treatments. Final Report - February 12, 1999

    SciTech Connect

    S. W. Leavitt; A. D. Matthias; T. L. Thompson; R. A. Rauschkolb

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grain yield, phenology, length of growing season, water-use efficiency ecosystem production, below ground processes (eg, root and microbial activity, carbon and nitrogen cycling), etc.

  16. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations on nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  17. Sulfur and nitrogen uptake by loblolly pine seedlings as influenced by nitrogen and sulfur addition

    SciTech Connect

    Kelly, J.M.; Johnson, D.W.

    1982-12-01

    The influence of increasing levels of nitrogen addition at several levels of sulfur input on nitrogen and sulfur uptake by loblolly pine seedlings was evaluated in a greenhouse study. All possible combinations of nitrogen and sulfur were incorporated into soil collected from the A horizon of a southeastern forest soil at rates of 0, 200, 500, and 1,000 ..mu..g/g of N, and 0, 14, 35, and 70 ..mu..g/g of S. Soil samples collected at the end of the study indicated that a similar amount of soil SO/sub 4/-S had been mineralized in all treatment combinations, compared to a general pattern of increasing soil nitrogen mineralization with increasing nitrogen input. Most mineralized sulfate appeared to come from nonprotein organic compounds as there was not a significant concomitant release of nitrogen. Both shoot and root biomass responded significantly to nitrogen addition, but there was no sulfur or nitrogen-sulfur interaction response. Nitrogen treatment generally increased shoot nitrogen concentration compared to a general decrease in shoot total-, sulfate-, and organically bound-sulfur. Organically bound-sulfur concentrations were 26 to 60 percent below sulfur values calculated from an S/N ratio of 0.03 on a gram atom basis. The results show that increased nitrogen addition affected both growth and sulfur status of loblolly pine seedlings, but not entirely in the manner predicted by theoretical considerations.

  18. A single model for the variety of multiple-population formation(s) in globular clusters: a temporal sequence

    NASA Astrophysics Data System (ADS)

    D'Antona, F.; Vesperini, E.; D'Ercole, A.; Ventura, P.; Milone, A. P.; Marino, A. F.; Tailo, M.

    2016-05-01

    We explain the multiple populations recently found in the `prototype' globular cluster (GC) NGC 2808 in the framework of the asymptotic giant branch (AGB) scenario. The chemistry of the five - or more - populations is approximately consistent with a sequence of star formation events, starting after the Type II supernova epoch, lasting approximately until the time when the third dredge-up affects the AGB evolution (age ˜90-120 Myr), and ending when the Type Ia supernovae begin exploding in the cluster, eventually clearing it from the gas. The formation of the different populations requires episodes of star formation in AGB gas diluted with different amounts of pristine gas. In the nitrogen-rich, helium-normal population identified in NGC 2808 by the UV Legacy Survey of GCs, the nitrogen increase is due to the third dredge-up in the smallest mass AGB ejecta involved in the star formation of this population. The possibly iron-rich small population in NGC 2808 may be a result of contamination by a single Type Ia supernova. The NGC 2808 case is used to build a general framework to understand the variety of `second-generation' stars observed in GCs. Cluster-to-cluster variations are ascribed to differences in the effects of the many processes and gas sources which may be involved in the formation of the second generation. We discuss an evolutionary scheme, based on pollution by delayed Type II supernovae, which accounts for the properties of s-Fe-anomalous clusters.

  19. Quintuplet Cluster

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Penetrating 25,000 light-years of obscuring dust and myriad stars, NASA's Hubble Space Telescope has provided the clearest view yet of one of the largest young clusters of stars inside our Milky Way galaxy, located less than 100 light-years from the very center of the Galaxy. Having the equivalent mass greater than 10,000 stars like our sun, the monster cluster is ten times larger than typical young star clusters scattered throughout our Milky Way. It is destined to be ripped apart in just a few million years by gravitational tidal forces in the galaxy's core. But in its brief lifetime it shines more brightly than any other star cluster in the Galaxy. Quintuplet Cluster is 4 million years old. It has stars on the verge of blowing up as supernovae. It is the home of the brightest star seen in the galaxy, called the Pistol star. This image was taken in infrared light by Hubble's NICMOS camera in September 1997. The false colors correspond to infrared wavelengths. The galactic center stars are white, the red stars are enshrouded in dust or behind dust, and the blue stars are foreground stars between us and the Milky Way's center. The cluster is hidden from direct view behind black dust clouds in the constellation Sagittarius. If the cluster could be seen from earth it would appear to the naked eye as a 3rd magnitude star, 1/6th of a full moon's diameter apart.

  20. Galaxy Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Christopher J. Miller

    2012-03-01

    There are many examples of clustering in astronomy. Stars in our own galaxy are often seen as being gravitationally bound into tight globular or open clusters. The Solar System's Trojan asteroids cluster at the gravitational Langrangian in front of Jupiter’s orbit. On the largest of scales, we find gravitationally bound clusters of galaxies, the Virgo cluster (in the constellation of Virgo at a distance of ˜50 million light years) being a prime nearby example. The Virgo cluster subtends an angle of nearly 8◦ on the sky and is known to contain over a thousand member galaxies. Galaxy clusters play an important role in our understanding of theUniverse. Clusters exist at peaks in the three-dimensional large-scale matter density field. Their sky (2D) locations are easy to detect in astronomical imaging data and their mean galaxy redshifts (redshift is related to the third spatial dimension: distance) are often better (spectroscopically) and cheaper (photometrically) when compared with the entire galaxy population in large sky surveys. Photometric redshift (z) [Photometric techniques use the broad band filter magnitudes of a galaxy to estimate the redshift. Spectroscopic techniques use the galaxy spectra and emission/absorption line features to measure the redshift] determinations of galaxies within clusters are accurate to better than delta_z = 0.05 [7] and when studied as a cluster population, the central galaxies form a line in color-magnitude space (called the the E/S0 ridgeline and visible in Figure 16.3) that contains galaxies with similar stellar populations [15]. The shape of this E/S0 ridgeline enables astronomers to measure the cluster redshift to within delta_z = 0.01 [23]. The most accurate cluster redshift determinations come from spectroscopy of the member galaxies, where only a fraction of the members need to be spectroscopically observed [25,42] to get an accurate redshift to the whole system. If light traces mass in the Universe, then the locations

  1. Protein dynamics and the all-ferrous [Fe4 S4 ] cluster in the nitrogenase iron protein.

    PubMed

    Tan, Ming-Liang; Perrin, B Scott; Niu, Shuqiang; Huang, Qi; Ichiye, Toshiko

    2016-01-01

    In nitrogen fixation by Azotobacter vinelandii nitrogenase, the iron protein (FeP) binds to and subsequently transfers electrons to the molybdenum-FeP, which contains the nitrogen fixation site, along with hydrolysis of two ATPs. However, the nature of the reduced state cluster is not completely clear. While reduced FeP is generally thought to contain an [Fe4 S4 ](1+) cluster, evidence also exists for an all-ferrous [Fe4 S4 ](0) cluster. Since the former indicates a single electron is transferred per two ATPs hydrolyzed while the latter indicates two electrons could be transferred per two ATPs hydrolyzed, an all-ferrous [Fe4 S4 ](0) cluster in FeP is potenially two times more efficient. However, the 1+/0 reduction potential has been measured in the protein at both 460 and 790 mV, causing the biological significance to be questioned. Here, "density functional theory plus Poisson Boltzmann" calculations show that cluster movement relative to the protein surface observed in the crystal structures could account for both measured values. In addition, elastic network mode analysis indicates that such movement occurs in low frequency vibrations of the protein, implying protein dynamics might lead to variations in reduction potential. Furthermore, the different reductants used in the conflicting measurements of the reduction potential could be differentially affecting the protein dynamics. Moreover, even if the all-ferrous cluster is not the biologically relevant cluster, mutagenesis to stabilize the conformation with the more exposed cluster may be useful for bioengineering more efficient enzymes. PMID:26271353

  2. Occupational Clusters.

    ERIC Educational Resources Information Center

    Pottawattamie County School System, Council Bluffs, IA.

    The 15 occupational clusters (transportation, fine arts and humanities, communications and media, personal service occupations, construction, hospitality and recreation, health occupations, marine science occupations, consumer and homemaking-related occupations, agribusiness and natural resources, environment, public service, business and office…

  3. Data Clustering

    NASA Astrophysics Data System (ADS)

    Wagstaff, Kiri L.

    2012-03-01

    On obtaining a new data set, the researcher is immediately faced with the challenge of obtaining a high-level understanding from the observations. What does a typical item look like? What are the dominant trends? How many distinct groups are included in the data set, and how is each one characterized? Which observable values are common, and which rarely occur? Which items stand out as anomalies or outliers from the rest of the data? This challenge is exacerbated by the steady growth in data set size [11] as new instruments push into new frontiers of parameter space, via improvements in temporal, spatial, and spectral resolution, or by the desire to "fuse" observations from different modalities and instruments into a larger-picture understanding of the same underlying phenomenon. Data clustering algorithms provide a variety of solutions for this task. They can generate summaries, locate outliers, compress data, identify dense or sparse regions of feature space, and build data models. It is useful to note up front that "clusters" in this context refer to groups of items within some descriptive feature space, not (necessarily) to "galaxy clusters" which are dense regions in physical space. The goal of this chapter is to survey a variety of data clustering methods, with an eye toward their applicability to astronomical data analysis. In addition to improving the individual researcher’s understanding of a given data set, clustering has led directly to scientific advances, such as the discovery of new subclasses of stars [14] and gamma-ray bursts (GRBs) [38]. All clustering algorithms seek to identify groups within a data set that reflect some observed, quantifiable structure. Clustering is traditionally an unsupervised approach to data analysis, in the sense that it operates without any direct guidance about which items should be assigned to which clusters. There has been a recent trend in the clustering literature toward supporting semisupervised or constrained

  4. Cluster generator

    DOEpatents

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  5. Variation in foliar nitrogen and albedo in response to nitrogen fertilization and elevated CO2.

    PubMed

    Wicklein, Haley F; Ollinger, Scott V; Martin, Mary E; Hollinger, David Y; Lepine, Lucie C; Day, Michelle C; Bartlett, Megan K; Richardson, Andrew D; Norby, Richard J

    2012-08-01

    Foliar nitrogen has been shown to be positively correlated with midsummer canopy albedo and canopy near infrared (NIR) reflectance over a broad range of plant functional types (e.g., forests, grasslands, and agricultural lands). To date, the mechanism(s) driving the nitrogen–albedo relationship have not been established, and it is unknown whether factors affecting nitrogen availability will also influence albedo. To address these questions, we examined variation in foliar nitrogen in relation to leaf spectral properties, leaf mass per unit area, and leaf water content for three deciduous species subjected to either nitrogen (Harvard Forest, MA, and Oak Ridge, TN) or CO(2) fertilization (Oak Ridge, TN). At Oak Ridge, we also obtained canopy reflectance data from the airborne visible/infrared imaging spectrometer (AVIRIS) to examine whether canopy-level spectral responses were consistent with leaf-level results. At the leaf level, results showed no differences in reflectance or transmittance between CO(2) or nitrogen treatments, despite significant changes in foliar nitrogen. Contrary to our expectations, there was a significant, but negative, relationship between foliar nitrogen and leaf albedo, a relationship that held for both full spectrum leaf albedo as well as leaf albedo in the NIR region alone. In contrast, remote sensing data indicated an increase in canopy NIR reflectance with nitrogen fertilization. Collectively, these results suggest that altered nitrogen availability can affect canopy albedo, albeit by mechanisms that involve canopy-level processes rather than changes in leaf-level reflectance. PMID:22294028

  6. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  7. Nitrogen segregation in nanocarbons.

    PubMed

    Ewels, C P; Erbahar, D; Wagner, Ph; Rocquefelte, X; Arenal, R; Pochet, P; Rayson, M; Scardamaglia, M; Bittencourt, C; Briddon, P

    2014-01-01

    We explore the behaviour of nitrogen doping in carbon nanomaterials, notably graphene, nanotubes, and carbon thin films. This is initially via a brief review of the literature, followed by a series of atomistic density functional calculations. We show that at low concentrations, substitutional nitrogen doping in the sp(2)-C graphenic basal plane is favoured, however once the nitrogen concentration reaches a critical threshold there is a transition towards the formation of the more thermodynamically-favoured nitrogen terminated 'zigzag' type edges. These can occur either via formation of finite patches (polycyclic aromatic azacarbons), strips of sp(2) carbon with zigzag nitrogen edges, or internal nitrogen-terminated hole edges within graphenic planes. This transition to edge formation is especially favoured when the nitrogen can be partially functionalised with, e.g. hydrogen. By comparison with available literature results, notably from electron energy loss spectroscopy and X-ray spectroscopy, the current results suggest that much of the nitrogen believed to be incorporated into carbon nanoobjects is instead likely to be present terminating the edges of carbonaceous impurities attached to nanoobject's surface. By comparison to nitrogen-doped tetrahedrally amorphous carbon, we suggest that this transition at around 10-20% nitrogen concentration and above towards sp(2) coordination via internal nitrogen-terminated edge formation may be a general property of nitrogen-doped carbon materials. PMID:25468305

  8. Nitrogen dioxide detection

    DOEpatents

    Sinha, Dipen N.; Agnew, Stephen F.; Christensen, William H.

    1993-01-01

    Method and apparatus for detecting the presence of gaseous nitrogen dioxide and determining the amount of gas which is present. Though polystyrene is normally an insulator, it becomes electrically conductive in the presence of nitrogen dioxide. Conductance or resistance of a polystyrene sensing element is related to the concentration of nitrogen dioxide at the sensing element.

  9. Long-term performance of vertical-flow and horizontal-flow constructed wetlands as affected by season, N load, and operating stage for treating nitrogen from domestic sewage.

    PubMed

    Kim, Seong-Heon; Cho, Ju-Sik; Park, Jong-Hwan; Heo, Jong-Soo; Ok, Yong-Sik; Delaune, Ronald D; Seo, Dong-Cheol

    2016-01-01

    To investigate the long-term nitrogen treatment efficiency in vertical-flow (VF)-horizontal-flow (HF) hybrid constructed wetlands (CWs), the nitrogen removal efficiency under different seasons, N loads, and three operating stages (representing age of the wetland) were evaluated over a 12-year period. The average total nitrogen (TN) removal efficiencies in the effluent during the operation period were in the following order: summer (75.2%) > spring (73.4%) ≒ autumn (72.6%) > winter (66.4%). The removal efficiencies of TN in summer, autumn, and spring were generally higher than those in winter. At different stages of operation (years), the average TN removal rates in the effluent were in the following order: middle stage (73.4%; years 2006-2009) > last stage (72.0%; years 2010-2013) > beginning stage (70.1%; years 2002-2005). In VF-HF CWs, the amount of average TN removal (mg N m(-2) day(-1)) over the 12-year period was in the order of summer (5.5) ≒ autumn (5.1) > spring (4.3) ≒ winter (4.2) for the VF bed and in the order of summer (3.5) ≒ spring (3.5) ≒ autumn (3.3) > winter (2.7) for the HF bed, showing that the amount of TN removal per unit area (m(2)) in summer was slightly greater than that in other seasons. The amount of TN removal in the VF bed was slightly greater than that in the HF bed. Using three-dimensional simulation graphs, the maximum TN removal rate was at inflow N loads below 2.7 g m(-2) day(-1) in the summer season, whereas the minimum TN removal rate was at inflow N loads below 1.4 g m(-2) day(-1) in the winter season. Consequently, the TN removal efficiency was very stable over the 12 years of operation in VF-HF hybrid CWs. Results demonstrate that the VF-HF hybrid CWs possess good buffer capacity for treating TN from domestic sewage for extended periods of time. PMID:26298340

  10. Nitrogen in Interplanetary Dust Particles

    NASA Astrophysics Data System (ADS)

    Keller, L. P.; Thomas, K. L.; Bradley, J. P.; McKay, D. S.

    1995-09-01

    Little is known about the abundance, distribution and chemical state of nitrogen in IDPs with the exceptions of the isotopic enrichment in 15N displayed by many particles [1-3], and the inferred association of nitrogen with polyaromatic hydrocarbons in some IDPs [4]. Like carbon, nitrogen is strongly fractionated among meteoritic materials and it is well known that the most primitive carbon-rich meteorites also tend to have high nitrogen abundances [5]. Nitrogen-bearing compounds are also a significant component of the carbonaceous material (CHON particles) sampled during the comet Halley encounter [e.g. 6]. We describe here the first reported detection and location of nitrogen concentrations in several IDPs using electron energy-loss spectroscopy. Three chondritic, anhydrous IDPs (L2011R11, L2008F13, and a fragment from L2006, cluster 14) were embedded in sulfur [7] and tranmission electron microscope (TEM) specimens were prepared by ultramicrotomy. The IDP thin sections were placed on copper TEM grids with SiO thin film substrates and analyzed using a JEOL 2010 TEM equipped with a thin-window energy-dispersive X-ray detector and a Gatan 666 parallel EELS spectrometer. We also analyzed W7027H14, a carbon-rich, chondritic-porous IDP that was embedded in epoxy. The EELS data from carbon-rich amorphous regions of the analyzed IDPs typically show a small, but distinct nitrogen edge at ~400 eV (Figure 1). The nitrogen is not homogeneously distributed in the carbonaceous material in the four IDPs analyzed to date, but occurs in "hot spots". However, these "hot spots" do not appear to be associated with a distinct N-bearing mineral (e.g. nitrides); the nitrogen is indigenous to the carbonaceous material in these IDPs. Although the quantitative N analyses using EELS are still in progress, the preliminary data from one IDP (L2011R11) indicates an upper N/C atom ratio of ~0.1, which is comparable to the chondritic value (N/C ~0.08, [8]). It should be noted however, that the

  11. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  12. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  13. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected source or nitrogen oxide occur at an affected unit during any year, the owners and operators...

  14. Infrared spectra of organic liquids and cluster model of substance

    NASA Astrophysics Data System (ADS)

    Verveyko, Vyacheslav N.; Verveyko, Marina V.; Melnikov, Gennady A.

    2016-03-01

    We consider the effective field theory based on the consideration of the rotation and libration of molecules in surroundings represented as effective clusters. The suitable distribution function with respect to the number of particles, which form a cluster, is discussed. This approach is applied to the forecasting of infrared spectrum frequencies of liquids using liquefied inert gases, nitrogen, oxygen, benzene and water as examples.

  15. SVM clustering

    PubMed Central

    Winters-Hilt, Stephen; Merat, Sam

    2007-01-01

    Background Support Vector Machines (SVMs) provide a powerful method for classification (supervised learning). Use of SVMs for clustering (unsupervised learning) is now being considered in a number of different ways. Results An SVM-based clustering algorithm is introduced that clusters data with no a priori knowledge of input classes. The algorithm initializes by first running a binary SVM classifier against a data set with each vector in the set randomly labelled, this is repeated until an initial convergence occurs. Once this initialization step is complete, the SVM confidence parameters for classification on each of the training instances can be accessed. The lowest confidence data (e.g., the worst of the mislabelled data) then has its' labels switched to the other class label. The SVM is then re-run on the data set (with partly re-labelled data) and is guaranteed to converge in this situation since it converged previously, and now it has fewer data points to carry with mislabelling penalties. This approach appears to limit exposure to the local minima traps that can occur with other approaches. Thus, the algorithm then improves on its weakly convergent result by SVM re-training after each re-labeling on the worst of the misclassified vectors – i.e., those feature vectors with confidence factor values beyond some threshold. The repetition of the above process improves the accuracy, here a measure of separability, until there are no misclassifications. Variations on this type of clustering approach are shown. Conclusion Non-parametric SVM-based clustering methods may allow for much improved performance over parametric approaches, particularly if they can be designed to inherit the strengths of their supervised SVM counterparts. PMID:18047717

  16. Nitrogen control of chloroplast differentiation

    SciTech Connect

    Schmidt, G.W.

    1992-07-01

    This project is directed toward understanding how the availability of nitrogen affects the accumulation of chloroplast pigments and proteins functioning in energy transduction and carbon metabolism. Molecular analyses performed with Chlamydomonas reinhardtii grown in a continuous culture system such that ammonium concentration is maintained at a low steady-state concentration so as to limit cell division. As compared to chloroplasts from cells of non-limiting nitrogen provisions, chloroplasts of N-limited cells are profoundly chlorophyll-deficient but still assimilate carbon for deposition of as starch and as storage lipids. Chlorophyll deficiency arises by limiting accumulation of appropriate nuclear-encoded mRNAs of and by depressed rates of translation of chloroplast mRNAs for apoproteins of reaction centers. Chloroplast translational effects can be partially ascribed to diminished rates of chlorophyll biosynthesis in N-limited cells, but pigment levels are not determinants for expression of the nuclear light-harvesting protein genes. Consequently, other signals that are responsive to nitrogen availability mediate transcriptional or post-transcriptional processes for accumulation of the mRNAs for LHC apoproteins and other mRNAs whose abundance is dependent upon high nitrogen levels. Conversely, limited nitrogen availability promotes accumulation of other proteins involved in carbon metabolism and oxidative electron transport in chloroplasts. Hence, thylakoids of N-limited cells exhibit enhanced chlororespiratory activities wherein oxygen serves as the electron acceptor in a pathway that involves plastoquinone and other electron carrier proteins that remain to be thoroughly characterized. Ongoing and future studies are also outlined.

  17. Cluster tidal fields: Effects on disk galaxies

    NASA Technical Reports Server (NTRS)

    Valluri, Monica

    1993-01-01

    A variety of observations of galaxies in clusters indicate that the gas in these galaxies is strongly affected by the cluster environment. We present results of a study of the dynamical effects of the mean cluster tidal field on a disk galaxy as it falls into a cluster for the first time on a bound orbit with constant angular momentum (Valluri 1992). The problem is studied in the restricted 3-body framework. The cluster is modelled by a modified Hubble potential and the disk galaxy is modelled as a flattened spheroid.

  18. Flameless nitrogen skid unit

    SciTech Connect

    Loesch, S.B.; John, J.C.; Mints, D.K.

    1984-03-27

    A flameless nitrogen vaporizing unit includes a first internal combustion engine driving a nitrogen pump through a transmission. A second internal combustion engine drives three hydraulic oil pumps against a variable back pressure so that a variable load may be imposed upon the second engine. Liquid nitrogen is pumped from the nitrogen pump driven by the first engine into a first heat exchanger where heat is transferred from exhaust gases from the first and second internal combustion engines to the liquid nitrogen to cause the nitrogen to be transformed into a gaseous state. The gaseous nitrogen then flows into a second heat exchanger where it is superheated by an engine coolant fluid to heat the gaseous nitrogen to essentially an ambient temperature. The superheated nitrogen is then injected into the well. The engine coolant fluid flows in a coolant circulation system. Heat is transferred to the coolant fluid directly from the internal combustion engine. Heat is also provided to the coolant fluid from lubrication oil pumped by the three pumps attached to the second internal combustion engine. The coolant fluid circulating system includes a comingling chamber for comingling warmer coolant fluid flowing from the internal combustion engines to the second heat exchanger with cooler coolant fluids flowing from the second heat exchanger to the internal combustion engines. Methods of vaporizing nitrogen are also disclosed.

  19. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  20. Plasma polymerization of an ethylene-nitrogen gas mixture

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T.

    1975-01-01

    A procedure has been developed whereby nitrogen can be incorporated into an organic film from an ethylene-nitrogen gas mixture using an internal electrode capacitively coupled radio frequency reactor. The presence of nitrogen has been shown directly by infrared transmittance spectra and electron spectroscopic chemical analysis data, and further indirect evidence was provided by dielectric measurements and by the reverse osmosis properties of the film. Preparation of a nitrogen containing film did not require vapor from an organic nitrogen containing liquid monomer. Some control over the bonding and stoichiometry of the polymer film was provided by the added degree of freedom of the nitrogen partial pressure in the gas mixture. This new parameter strongly affected the dielectric properties of the plasma polymerized film and could affect the reverse osmosis behavior.

  1. [Vertical Distribution Characteristics of Typical Forest Soil Organic Nitrogen in Dawei Mountain].

    PubMed

    Ding, Xian-qing; Ma, Hui-jing; Zhu, Xiao-long; Chen, Shan; Hou, Hong-bo; Peng, Pei-qin

    2015-10-01

    To clarify altitudinal gradient of subtropical forest soil total nitrogen and organic nitrogen, soil samples were collected per 10 cm on soil profile (0-100 cm) in Dawei Mountain, researched the variation of soil organic nitrogen and correlation with soil physical and chemical properties. The results showed that: (1) Total nitrogen, acid hydrolysable organic nitrogen and soluble organic nitrogen decreased with the increase of depth, content of each component in mountain granite yellow-brown soils was much higher affected by altitude; (2) The average percentage of soil organic nitrogen to total nitrogen was 97.39% ± 1.17%, and soil acid hydrolysable organic nitrogen was 64.38% ± 10.68%, each component decreased with the increase of soil depth; (3) Soil soluble organic nitrogen content was 9.92- 23.45 mg x kg(-1), free amino acids (1.62 - 12.02 mg x kg(-1)) accounted for about 27.36% ± 9.95% of soluble organic nitrogen; (4) Soil acid hydrolysable organic nitrogen and soluble organic nitrogen were significantly positively correlated with total nitrogen, total soluble nitrogen and inorganic nitrogen (P < 0.05), were highly significantly correlated with soil bulk density, organic carbon, and total phosphorus (P < 0.01). Organic nitrogen was the main body of soil nitrogen in typical subtropical forest, each component showed a downward trend increase with soil depth affected by altitude and soil physical and chemical properties. There was a close conversion relationship between soil organic nitrogen and other nitrogen forms, the characteristics of soil organic nitrogen will have profound impact on nitrogen cycling of forest ecological system. PMID:26841616

  2. Mapping quantitative trait loci for nitrogen uptake and utilization efficiency in rice (Oryza sativa L.) at different nitrogen fertilizer levels.

    PubMed

    Dai, G J; Cheng, S H; Hua, Z T; Zhang, M L; Jiang, H B; Feng, Y; Shen, X H; Su, Y A; He, N; Ma, Z B; Ma, X Q; Hou, S G; Wang, Y R

    2015-01-01

    Genetic improvement is the fundamental basis for improving nitrogen-use efficiency. A better understanding of genetic factors controlling nitrogen uptake and utilization is required for crop genetic improvement. In this study, we identified the quantitative trait loci (QTLs) associated with traits of nitrogen uptake and utilization by using the single-sequence repeat marker method and a recombinant inbred line (RIL) population derived from a super hybrid Xieyou9308. All the traits investigated were inherited quantitatively by continuous variation and showed normal distribution in phenotype with transgressive segregation in the RIL population. Most of the traits were significantly correlated with each other except for nitrogen absorption ability (NAA) with nitrogen harvest index (NHI) and NHI with agricultural nitrogen-absorption efficiency (ANAE). At logarithmic odds value of 2.3, total 13 candidate QTLs, including 4 for NAA, 2 for NHI, 2 for physiological nitrogen-use efficiency, 1 for agricultural nitrogen-use efficiency (ANUE), and 4 for ANAE, were detected and mapped on chromosomes 2, 3, 4, 5, 8, 9, 10, and 12. Significant pleiotropic effect or neighboring expression of QTLs was observed among traits. At position 64.8 cM on chromosome 4 near the marker RM5757, there was a QTL cluster of NAA, ANUE, and ANAE, and at chromosome 5 near the marker RM5968, there was a QTL cluster of NAA and ANUE. The QTL clusters might provide partial explanation and genetic mechanism for the observed correlations between nitrogen uptake and utilization efficiency traits and might form a basis for future breeding programs. PMID:26400271

  3. Toward a mechanistic modeling of nitrogen limitation for photosynthesis

    NASA Astrophysics Data System (ADS)

    Xu, C.; Fisher, R. A.; Travis, B. J.; Wilson, C. J.; McDowell, N. G.

    2011-12-01

    The nitrogen limitation is an important regulator for vegetation growth and global carbon cycle. Most current ecosystem process models simulate nitrogen effects on photosynthesis based on a prescribed relationship between leaf nitrogen and photosynthesis; however, there is a large amount of variability in this relationship with different light, temperature, nitrogen availability and CO2 conditions, which can affect the reliability of photosynthesis prediction under future climate conditions. To account for the variability in nitrogen-photosynthesis relationship under different environmental conditions, in this study, we developed a mechanistic model of nitrogen limitation for photosynthesis based on nitrogen trade-offs among light absorption, electron transport, carboxylization and carbon sink. Our model shows that strategies of nitrogen storage allocation as determined by tradeoff among growth and persistence is a key factor contributing to the variability in relationship between leaf nitrogen and photosynthesis. Nitrogen fertilization substantially increases the proportion of nitrogen in storage for coniferous trees but much less for deciduous trees, suggesting that coniferous trees allocate more nitrogen toward persistence compared to deciduous trees. The CO2 fertilization will cause lower nitrogen allocation for carboxylization but higher nitrogen allocation for storage, which leads to a weaker relationship between leaf nitrogen and maximum photosynthesis rate. Lower radiation will cause higher nitrogen allocation for light absorption and electron transport but less nitrogen allocation for carboxylyzation and storage, which also leads to weaker relationship between leaf nitrogen and maximum photosynthesis rate. At the same time, lower growing temperature will cause higher nitrogen allocation for carboxylyzation but lower allocation for light absorption, electron transport and storage, which leads to a stronger relationship between leaf nitrogen and maximum

  4. Nitrogen In Saturn's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D. J.; Reisenfeld, D.; Shappirio, M. D.; Baragiola, R.; Michael, M.; Shematovich, V. I.; Crary, F.; Young, D. T.

    2004-12-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions in the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to our models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and CAPS Cassini instrument team programs.

  5. Nitrogen abundances in damped Lyalpha absorbers

    NASA Astrophysics Data System (ADS)

    Zafar, T.; Centurión, M.; Molaro, P.; Péroux, C.; D'Odorico, V.; Vladilo, G.

    Nitrogen is thought to have both primary and secondary origins depending on whether the seed carbon and oxygen are produced by the star itself (primary) or already present in the interstellar medium (secondary) from which star forms. Damped Lyalpha (DLA) and sub-DLA systems with typical metallicities of -3.0≲ Z/Z⊙ ≲ -0.5 are excellent tools to study nitrogen production. We made a search for nitrogen in the European Southern Observatory (ESO) Ultraviolet Visual Echelle Spectrograph (UVES) advanced data products (EUADP) database. In the EUADP database, we find 10 new measurements and 9 upper limits of nitrogen. We further compiled DLA/sub-DLA data from the literature with estimates available of nitrogen and alpha -elements. This yields a total of 98 systems, i.e. the largest nitrogen abundance sample investigated so far. In agreement with previous studies, we indeed find a bimodal [N/alpha ] behaviour: three-quarter systems show a mean value of [N/alpha ] =-0.87 with a scatter of 0.21 dex and one-quarter shows ratios clustered at [N/alpha ] = -1.43 with a lower dispersion of 0.13 dex. The high [N/alpha ] group is consistent with the blue compact dwarves and dwarf irregular galaxies, suggesting primary nitrogen production. The low [N/alpha ] group is the lowest ever observed in any astrophysical site and probably provides an evidence of the primary production by fast rotating massive stars in young sites. Moreover, we find a transition between the two [N/alpha ] groups around [N/H] ≃-2.5. The transition is not abrupt and there are a few systems lying in the transition region. Additional observations of DLAs/sub-DLAs below [N/H] <-2.5 would provide more clues.

  6. Genome-wide expression profiling of maize in response to individual and combined water and nitrogen stresses

    PubMed Central

    2013-01-01

    Background Water and nitrogen are two of the most critical inputs required to achieve the high yield potential of modern corn varieties. Under most agricultural settings however they are often scarce and costly. Fortunately, tremendous progress has been made in the past decades in terms of modeling to assist growers in the decision making process and many tools are now available to achieve more sustainable practices both environmentally and economically. Nevertheless large gaps remain between our empirical knowledge of the physiological changes observed in the field in response to nitrogen and water stresses, and our limited understanding of the molecular processes leading to those changes. Results This work examines in particular the impact of simultaneous stresses on the transcriptome. In a greenhouse setting, corn plants were grown under tightly controlled nitrogen and water conditions, allowing sampling of various tissues and stress combinations. A microarray profiling experiment was performed using this material and showed that the concomitant presence of nitrogen and water limitation affects gene expression to an extent much larger than anticipated. A clustering analysis also revealed how the interaction between the two stresses shapes the patterns of gene expression over various levels of water stresses and recovery. Conclusions Overall, this study suggests that the molecular signature of a specific combination of stresses on the transcriptome might be as unique as the impact of individual stresses, and hence underlines the difficulty to extrapolate conclusions obtained from the study of individual stress responses to more complex settings. PMID:23324127

  7. Cultivar effects on nitrogen fixation in peas and lentils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing nitrogen fixation in legume crops could increase cropping productivity and reduce nitrogen fertilizer use. Studies have found that crop genotype, rhizobial strain, and occasionally genotype-specific interactions affect N fixation, but this knowledge has not yet been used to evaluate or br...

  8. Virtual Cluster Management with Xen

    SciTech Connect

    Bhatia, Nikhil; Vetter, Jeffrey S

    2008-01-01

    Recently, virtualization of hardware resources to run multiple instances of independent virtual machines over physical hosts has gained popularity due to an industry-wide focus on the need to reduce the cost of operation of an enterprise computing infrastructure. Xen is an open source hypervisor that provides a virtual machine abstraction layer which is very similar to the underlying physical machine. Using multiple physical hosts, each hosting multiple virtual machines over a VMM like Xen, system administrators can setup a high-availability virtual cluster to meet the ever-increasing demands of their data centers. In such an environment, the Xen hypervisor enables live migration of individual virtual machine instances from one physical node to another without significantly affecting the performance of the applications running on a target virtual machine. This paper describes a scalable Virtual Cluster Manager that provides such application agnostic cluster management capabilities to the system administrators maintaining virtual clusters over Xen powered virtual nodes.

  9. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Aubriet, F.; Gaumet, Jean-Jacques; De Jong, Wibe A.; Groenewold, G. S.; Gianotto, Anita K.; McIIwain, Michael E.; Van Stipdonk, Michael J.; Leavitt, Christopher M.

    2009-05-11

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  10. Cerium Oxyhydroxide Clusters: Formation, Structure and Reactivity

    SciTech Connect

    Frederic Aubriet; Jean-Jacques Gaumet; Wibe A de Jong; Groenewold, Gary S; Gianotto, Anita K; McIlwain, Michael E; Michael J. Van Stipdonk; Christopher M. Leavitt

    2009-06-01

    Cerium oxyhydroxide cluster anions were produced by irradiating ceric oxide particles using 355 nm laser pulses that were synchronized with pulses of nitrogen gas admitted to the irradiation chamber. The gas pulse stabilized the nascent clusters that are largely anhydrous [CexOy] ions and neutrals. These initially-formed species react with water, principally forming closed-shell (c-s) oxohydroxy species that are described by the general formula [CexOy(OH)z]-. In general, the extent of hydroxylation varies from a value of 3 OH per Ce atom when x = 1 to a value slightly greater than 1 for x > 8. The Ce3 and Ce6 species deviate significantly from this trend: the x = 3 cluster accommodates more hydroxyl moieties compared to neighboring congeners at x = 2 and x = 4. Conversely, the x = 6 cluster is significantly less hydroxylated. Density functional theory (DFT) modeling of the cluster structures show that the hydrated clusters are hydrolyzed, and contain one-to-multiple hydroxide moieties, but not datively bound water. DFT also predicts an energetic preference for formation of highly symmetric structures as the size of the clusters increases. The calculated structures indicate that the ability of the Ce3 oxyhydroxide to accommodate more extensive hydroxylation is due to a more open, hexagonal structure in which the Ce atoms can participate in multiple hydrolysis reactions. Conversely the Ce6 oxyhydroxide has an octahedral structure that is not conducive to hydrolysis. In addition to the c-s clusters, open-shell (o-s) oxyhydroxides and superoxides are also formed, and they become more prominent as the size of the clusters increases, suggesting that the larger ceria clusters have an increased ability to stabilize a non-bonding electron. The overall intensity of the clusters tends to monotonically decrease as the cluster size increases, however this trend is interrupted at Ce13, which is significantly more stable compared to neighboring congeners, suggesting formation of

  11. Foliar Nitrogen Fertilization for Perennial Nursery Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) availability affects plant growth and development and is intimately linked to the quality of nursery plants. In nursery production, N is commonly applied to the soil as controlled release and/or liquid fertilizers. However, research has shown that combining foliar N fertilization with a...

  12. Nitrogen trading tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The nitrogen cycle is impacted by human activities, including those that increase the use of nitrogen in agricultural systems, and this impact can be seen in effects such as increased nitrate (NO3) levels in groundwater or surface water resources, increased concentration of nitrous oxide (N2O) in th...

  13. Update: Biological Nitrogen Fixation.

    ERIC Educational Resources Information Center

    Wiseman, Alan; And Others

    1985-01-01

    Updates knowledge on nitrogen fixation, indicating that investigation of free-living nitrogen-fixing organisms is proving useful in understanding bacterial partners and is expected to lead to development of more effective symbioses. Specific areas considered include biochemistry/genetics, synthesis control, proteins and enzymes, symbiotic systems,…

  14. The Fixation of Nitrogen.

    ERIC Educational Resources Information Center

    Andrew, S. P. S.

    1978-01-01

    Discusses the fixation of atmospheric nitrogen in the form of ammonia as one of the foundations of modern chemical industry. The article describes ammonia production and synthesis, purifying the hydrogen-nitrogen mix, nitric acid production, and its commericial plant. (HM)

  15. Modeling Atmospheric Reactive Nitrogen

    EPA Science Inventory

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media. Human ...

  16. Soil Nitrogen Budgets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen (N) recoveries are commonly 45% to 70% for modern field-crop systems. Nitrogen budgets are a valuable tool for improving N efficiency because they assess the size of various N pools, N gains from the atmosphere, N losses to the environment, and the interactions among soil-N-cycle processes...

  17. Nitrogen Application Rate and Carbon Asssimilation in Potato: What can this tell us about nitrogen demand and uptake?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The interaction between nitrogen application rate and carbon assimilation in potato strongly affects growth and developmental rates. Two consecutive experiments were carried out in the summer of 2005 in six sunlit, controlled environment plant growth chambers with six nitrogen application rates and ...

  18. The size of star clusters accreted by the Milky Way

    NASA Astrophysics Data System (ADS)

    Miholics, Meghan; Webb, Jeremy J.; Sills, Alison

    2014-12-01

    We perform N-body simulations of a cluster that forms in a dwarf galaxy and is then accreted by the Milky Way to investigate how a cluster's structure is affected by a galaxy merger. We find that the cluster's half-mass radius will respond quickly to this change in potential. When the cluster is placed on an orbit in the Milky Way with a stronger tidal field the cluster experiences a sharp decrease in size in response to increased tidal forces. Conversely, when placed on an orbit with a weaker tidal field, the cluster expands since tidal forces decrease and no longer limit the expansion due to internal effects. In all cases, we find that the cluster's half-mass radius will eventually be indistinguishable from a cluster that has always lived in the Milky Way on that orbit. These adjustments occur within 1-2 half-mass relaxation times of the cluster in the dwarf galaxy. We also find this effect to be qualitatively independent of the time that the cluster is taken from the dwarf galaxy. In contrast to the half-mass radius, we show the core radius of the cluster is not affected by the potential the cluster lives in. Our work suggests that structural properties of accreted clusters are not distinct from clusters born in the Milky Way. Other cluster properties, such as metallicity and horizontal branch morphology, may be the only way to identify accreted star clusters in the Milky Way.

  19. Nitrogen in Chinese coals

    USGS Publications Warehouse

    Wu, D.; Lei, J.; Zheng, B.; Tang, X.; Wang, M.; Hu, Jiawen; Li, S.; Wang, B.; Finkelman, R.B.

    2011-01-01

    Three hundred and six coal samples were taken from main coal mines of twenty-six provinces, autonomous regions, and municipalities in China, according to the resource distribution and coal-forming periods as well as the coal ranks and coal yields. Nitrogen was determined by using the Kjeldahl method at U. S. Geological Survey (USGS), which exhibit a normal frequency distribution. The nitrogen contents of over 90% Chinese coal vary from 0.52% to 1.41% and the average nitrogen content is recommended to be 0.98%. Nitrogen in coal exists primarily in organic form. There is a slight positive relationship between nitrogen content and coal ranking. ?? 2011 Science Press, Institute of Geochemistry, CAS and Springer Berlin Heidelberg.

  20. Hydrogen and nitrogen control in ladle and casting operations

    SciTech Connect

    Fruehan, R. J.; Misra, Siddhartha

    2005-01-15

    In recent years there has been an increasing demand to reduce and control the amount of dissolved gases in steel. Hydrogen and nitrogen are two of the most important gases which when dissolved in liquid steel affect its properties significantly.

  1. Demonstrating Paramagnetism Using Liquid Nitrogen.

    ERIC Educational Resources Information Center

    Simmonds, Ray; And Others

    1994-01-01

    Describes how liquid nitrogen is attracted to the poles of neodymium magnets. Nitrogen is not paramagnetic, so the attraction suggests that the liquid nitrogen contains a small amount of oxygen, which causes the paramagnetism. (MVL)

  2. Molecular Biology of Nitrogen Fixation

    ERIC Educational Resources Information Center

    Shanmugam, K. T.; Valentine, Raymond C.

    1975-01-01

    Reports that as a result of our increasing knowledge of the molecular biology of nitrogen fixation it might eventually be possible to increase the biological production of nitrogenous fertilizer from atmospheric nitrogen. (GS)

  3. CARTILAGE CELL CLUSTERS

    PubMed Central

    Lotz, Martin K.; Otsuki, Shuhei; Grogan, Shawn P.; Sah, Robert; Terkeltaub, Robert; D’Lima, Darryl

    2010-01-01

    The formation of new cell clusters is a histological hallmark of arthritic cartilage but the biology of clusters and their role in disease are poorly understood. This is the first comprehensive review of clinical and experimental conditions associated with cluster formation. Genes and proteins that are expressed in cluster cells, the cellular origin of the clusters, mechanisms that lead to cluster formation and the role of cluster cells in pathogenesis are discussed. PMID:20506158

  4. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  5. The CORE study protocol: a stepped wedge cluster randomised controlled trial to test a co-design technique to optimise psychosocial recovery outcomes for people affected by mental illness in the community mental health setting

    PubMed Central

    Palmer, Victoria J; Chondros, Patty; Piper, Donella; Callander, Rosemary; Weavell, Wayne; Godbee, Kali; Potiriadis, Maria; Richard, Lauralie; Densely, Konstancja; Herrman, Helen; Furler, John; Pierce, David; Schuster, Tibor; Iedema, Rick; Gunn, Jane

    2015-01-01

    Introduction User engagement in mental health service design is heralded as integral to health systems quality and performance, but does engagement improve health outcomes? This article describes the CORE study protocol, a novel stepped wedge cluster randomised controlled trial (SWCRCT) to improve psychosocial recovery outcomes for people with severe mental illness. Methods An SWCRCT with a nested process evaluation will be conducted over nearly 4 years in Victoria, Australia. 11 teams from four mental health service providers will be randomly allocated to one of three dates 9 months apart to start the intervention. The intervention, a modified version of Mental Health Experience Co-Design (MH ECO), will be delivered to 30 service users, 30 carers and 10 staff in each cluster. Outcome data will be collected at baseline (6 months) and at completion of each intervention wave. The primary outcome is improvement in recovery score using the 24-item Revised Recovery Assessment Scale for service users. Secondary outcomes are improvements to user and carer mental health and well-being using the shortened 8-item version of the WHOQOL Quality of Life scale (EUROHIS), changes to staff attitudes using the 19-item Staff Attitudes to Recovery Scale and recovery orientation of services using the 36-item Recovery Self Assessment Scale (provider version). Intervention and usual care periods will be compared using a linear mixed effects model for continuous outcomes and a generalised linear mixed effects model for binary outcomes. Participants will be analysed in the group that the cluster was assigned to at each time point. Ethics and dissemination The University of Melbourne, Human Research Ethics Committee (1340299.3) and the Federal and State Departments of Health Committees (Project 20/2014) granted ethics approval. Baseline data results will be reported in 2015 and outcomes data in 2017. Trial registration number Australian and New Zealand Clinical Trials Registry ACTRN

  6. The nitrogen cycle.

    PubMed

    Stein, Lisa Y; Klotz, Martin G

    2016-02-01

    Nitrogen is the fourth most abundant element in cellular biomass, and it comprises the majority of Earth's atmosphere. The interchange between inert dinitrogen gas (N2) in the extant atmosphere and 'reactive nitrogen' (those nitrogen compounds that support, or are products of, cellular metabolism and growth) is entirely controlled by microbial activities. This was not the case, however, in the primordial atmosphere, when abiotic reactions likely played a significant role in the inter-transformation of nitrogen oxides. Although such abiotic reactions are still important, the extant nitrogen cycle is driven by reductive fixation of dinitrogen and an enzyme inventory that facilitates dinitrogen-producing reactions. Prior to the advent of the Haber-Bosch process (the industrial fixation of N2 into ammonia, NH3) in 1909, nearly all of the reactive nitrogen in the biosphere was generated and recycled by microorganisms. Although the Haber-Bosch process more than quadrupled the productivity of agricultural crops, chemical fertilizers and other anthropogenic sources of fixed nitrogen now far exceed natural contributions, leading to unprecedented environmental degradation. PMID:26859274

  7. Nitrogen control in bacteria.

    PubMed Central

    Merrick, M J; Edwards, R A

    1995-01-01

    Nitrogen metabolism in prokaryotes involves the coordinated expression of a large number of enzymes concerned with both utilization of extracellular nitrogen sources and intracellular biosynthesis of nitrogen-containing compounds. The control of this expression is determined by the availability of fixed nitrogen to the cell and is effected by complex regulatory networks involving regulation at both the transcriptional and posttranslational levels. While the most detailed studies to date have been carried out with enteric bacteria, there is a considerable body of evidence to show that the nitrogen regulation (ntr) systems described in the enterics extend to many other genera. Furthermore, as the range of bacteria in which the phenomenon of nitrogen control is examined is being extended, new regulatory mechanisms are also being discovered. In this review, we have attempted to summarize recent research in prokaryotic nitrogen control; to show the ubiquity of the ntr system, at least in gram-negative organisms; and to identify those areas and groups of organisms about which there is much still to learn. PMID:8531888

  8. The N-Terminal Domain of Human DNA Helicase Rtel1 Contains a Redox Active Iron-Sulfur Cluster

    PubMed Central

    Landry, Aaron P.

    2014-01-01

    Human telomere length regulator Rtel1 is a superfamily II DNA helicase and is essential for maintaining proper length of telomeres in chromosomes. Here we report that the N-terminal domain of human Rtel1 (RtelN) expressed in Escherichia coli cells produces a protein that contains a redox active iron-sulfur cluster with the redox midpoint potential of −248 ± 10 mV (pH 8.0). The iron-sulfur cluster in RtelN is sensitive to hydrogen peroxide and nitric oxide, indicating that reactive oxygen/nitrogen species may modulate the DNA helicase activity of Rtel1 via modification of its iron-sulfur cluster. Purified RtelN retains a weak binding affinity for the single-stranded (ss) and double-stranded (ds) DNA in vitro. However, modification of the iron-sulfur cluster by hydrogen peroxide or nitric oxide does not significantly affect the DNA binding activity of RtelN, suggesting that the iron-sulfur cluster is not directly involved in the DNA interaction in the N-terminal domain of Rtel1. PMID:25147792

  9. Flow over gravel beds with clusters

    NASA Astrophysics Data System (ADS)

    Little, M.; Venditti, J. G.

    2014-12-01

    The structure of a gravel bed has been shown to alter the entrainment threshold. Structures such as clusters, reticulate stone cells and other discrete structures lock grains together, making it more difficult for them to be mobilized. These structures also generate form drag, reducing the shear stress available for mobilization. Form drag over gravel beds is often assumed to be negligible, but this assumption is not well supported. Here, we explore how cluster density and arrangement affect flow resistance and the flow structure over a fixed gravel bed in a flume experiment. Cluster density was varied from 6 to 68.3 clusters per square meter which corresponds to areal bed coverages of 2 to 17%. We used regular, irregular and random arrangements of the clusters. Our results show that flow resistance over a planar gravel bed initially declines, then increases with flow depth. The addition of clusters increases flow resistance, but the effect is dependent on cluster density, flow depth and arrangement. At the highest density, clusters can increase flow resistance as by as much as 8 times when compared to flat planar bed with no grain-related form drag. Spatially resolved observations of flow over the clusters indicate that a well-defined wake forms in the lee of each cluster. At low cluster density, the wakes are isolated and weak. As cluster density increases, the wakes become stronger. At the highest density, the wakes interact and the within cluster flow field detaches from the overlying flow. This generates a distinct shear layer at the height of the clusters. In spite of this change in the flow field at high density, our results suggest that flow resistance simply increases with cluster density. Our results suggest that the form drag associated with a gravel bed can be substantial and that it depends on the arrangement of the grains on the bed.

  10. Nitrogen Backbone Oligomers

    PubMed Central

    Wang, Hongbo; Eremets, Mikhail I.; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-01-01

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations. PMID:26286836

  11. Nitrogen Backbone Oligomers

    NASA Astrophysics Data System (ADS)

    Wang, Hongbo; Eremets, Mikhail I.; Troyan, Ivan; Liu, Hanyu; Ma, Yanming; Vereecken, Luc

    2015-08-01

    We found that nitrogen and hydrogen directly react at room temperature and pressures of ~35 GPa forming chains of single-bonded nitrogen atom with the rest of the bonds terminated with hydrogen atoms - as identified by IR absorption, Raman, X-ray diffraction experiments and theoretical calculations. At releasing pressures below ~10 GPa, the product transforms into hydrazine. Our findings might open a way for the practical synthesis of these extremely high energetic materials as the formation of nitrogen-hydrogen compounds is favorable already at pressures above 2 GPa according to the calculations.

  12. Interaction of soil type and carbon dioxide concentration in grassland soil pore water nitrogen concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing CO2 concentrations have been shown to limit soil nitrogen availability in terrestrial ecosystems, thereby limiting plant growth. Because changes in nitrogen availability can affect the composition of available nitrogen forms, we are interested in how changes in CO2 concentrations could af...

  13. Modelling the ecosystem effects of nitrogen deposition: Model of Ecosystem Retention and Loss of Inorganic Nitrogen (MERLIN

    NASA Astrophysics Data System (ADS)

    Cosby, B. J.; Ferrier, R. C.; Jenkins, A.; Emmett, B. A.; Wright, R. F.; Tietema, A.

    A catchment-scale mass-balance model of linked carbon and nitrogen cycling in ecosystems has been developed for simulating leaching losses of inorganic nitrogen. The model (MERLIN) considers linked biotic and abiotic processes affecting the cycling and storage of nitrogen. The model is aggregated in space and time and contains compartments intended to be observable and/or interpretable at the plot or catchment scale. The structure of the model includes the inorganic soil, a plant compartment and two soil organic compartments. Fluxes in and out of the ecosystem and between compartments are regulated by atmospheric deposition, hydrological discharge, plant uptake, litter production, wood production, microbial immobilization, mineralization, nitrification, and denitrification. Nitrogen fluxes are controlled by carbon productivity, the C:N ratios of organic compartments and inorganic nitrogen in soil solution. Inputs required are: 1) temporal sequences of carbon fluxes and pools- 2) time series of hydrological discharge through the soils, 3) historical and current external sources of inorganic nitrogen; 4) current amounts of nitrogen in the plant and soil organic compartments; 5) constants specifying the nitrogen uptake and immobilization characteristics of the plant and soil organic compartments; and 6) soil characteristics such as depth, porosity, bulk density, and anion/cation exchange constants. Outputs include: 1) concentrations and fluxes of NO3 and NH4 in soil solution and runoff; 2) total nitrogen contents of the organic and inorganic compartments; 3) C:N ratios of the aggregated plant and soil organic compartments; and 4) rates of nitrogen uptake and immobilization and nitrogen mineralization. The behaviour of the model is assessed for a combination of land-use change and nitrogen deposition scenarios in a series of speculative simulations. The results of the simulations are in broad agreement with observed and hypothesized behaviour of nitrogen dynamics in

  14. Detonation of Meta-stable Clusters

    SciTech Connect

    Kuhl, Allen; Kuhl, Allen L.; Fried, Laurence E.; Howard, W. Michael; Seizew, Michael R.; Bell, John B.; Beckner, Vincent; Grcar, Joseph F.

    2008-05-31

    We consider the energy accumulation in meta-stable clusters. This energy can be much larger than the typical chemical bond energy (~;;1 ev/atom). For example, polymeric nitrogen can accumulate 4 ev/atom in the N8 (fcc) structure, while helium can accumulate 9 ev/atom in the excited triplet state He2* . They release their energy by cluster fission: N8 -> 4N2 and He2* -> 2He. We study the locus of states in thermodynamic state space for the detonation of such meta-stable clusters. In particular, the equilibrium isentrope, starting at the Chapman-Jouguet state, and expanding down to 1 atmosphere was calculated with the Cheetah code. Large detonation pressures (3 and 16 Mbar), temperatures (12 and 34 kilo-K) and velocities (20 and 43 km/s) are a consequence of the large heats of detonation (6.6 and 50 kilo-cal/g) for nitrogen and helium clusters respectively. If such meta-stable clusters could be synthesized, they offer the potential for large increases in the energy density of materials.

  15. An analysis of hospital brand mark clusters.

    PubMed

    Vollmers, Stacy M; Miller, Darryl W; Kilic, Ozcan

    2010-07-01

    This study analyzed brand mark clusters (i.e., various types of brand marks displayed in combination) used by hospitals in the United States. The brand marks were assessed against several normative criteria for creating brand marks that are memorable and that elicit positive affect. Overall, results show a reasonably high level of adherence to many of these normative criteria. Many of the clusters exhibited pictorial elements that reflected benefits and that were conceptually consistent with the verbal content of the cluster. Also, many clusters featured icons that were balanced and moderately complex. However, only a few contained interactive imagery or taglines communicating benefits. PMID:20582849

  16. Cluster headache

    MedlinePlus

    ... the body released during an allergic response) or serotonin (chemical made by nerve cells). A problem in a small area at the base of the brain called the hypothalamus may be involved. More men than women are affected. The headaches can occur at any ...

  17. Food, Feed and Fuel: a Story About Nitrogen

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.; Burke, M. B.; Mooney, H. A.; Steinfeld, H.

    2008-12-01

    Humans obtain metabolic energy by eating food. Nitrogen is required to grow food, but natural supplies of N for human purposes have been inadequate since the beginning of the twentieth century. The Haber-Bosch process now provides a virtually inexhaustible supply of nitrogen, limited primarily by the cost of energy. However, most nitrogen used in food production is lost to the environment, where it cascades through environmental reservoirs contributing to many of the major environmental issues of the day. Furthermore, growing international trade in nitrogen-containing commodities is increasingly replacing wind and water as an important international transporter of nitrogen around the globe. Finally, the rapid growth in crop-based biofuels, and its attendant effects on the global production and trade of all agricultural commodities, could greatly affect global patterns of N use and loss. In the light of the findings above, this paper examines the role of nitrogen in food, feed and fuel production. It describes the beneficial consequences for food production and the negative consequences associated with the commodity nitrogen cascade and the environmental nitrogen cascade. The paper reviews estimates of future projections of nitrogen demands for food and fuel, including the impact of changing diets in the developing world. The paper concludes by presenting the potential interactions among global change, agricultural production and the nitrogen and carbon cycles.

  18. Dipole oscillation modes in light α -clustering nuclei

    NASA Astrophysics Data System (ADS)

    He, W. B.; Ma, Y. G.; Cao, X. G.; Cai, X. Z.; Zhang, G. Q.

    2016-07-01

    The α cluster states are discussed in a model frame of extended quantum molecular dynamics. Different α cluster structures are studied in detail, such as 8Be two-α cluster structure, 12C triangle structure, 12 chain structure, 16O chain structure, 16O kite structure, and 16O square structure. The properties studied include the width of wave packets for different α clusters, momentum distribution, and the binding energy among α clusters. We also discuss how the α cluster degree of freedom affects nuclear collective vibrations. The cluster configurations in 12C and 16O are found to have corresponding characteristic spectra of giant dipole resonance (GDR), and the coherences of different α clusters' dipole oscillations are described in detail. The geometrical and dynamical symmetries of α -clustering configurations are responsible for the number and centroid energies of peaks of GDR spectra. Therefore, the GDR can be regarded as an effective probe to diagnose different α cluster configurations in light nuclei.

  19. [Seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization in subalpine forests along an elevational gradient in western Sichuan, China].

    PubMed

    Yin, Rui; Xu, Zhen-Feng; Wu, Fu-Zhong; Yang, Wan-Qin; Xiong, Li; Xiao, Sa; Ma, Zhi-Liang; Li, Zhi-Ping

    2013-12-01

    The seasonal dynamics of soil labile nitrogen pools and net nitrogen mineralization of three subalpine forests along an elevation gradient (3600, 3300 and 3000 m), western Sichuan, China were examined. Obvious seasonal dynamics were found in soil labile nitrogen pools (ammonium, nitrate, microbial biomass nitrogen and dissolved organic nitrogen) and net nitrogen mineralization rate, but the seasonality varied with the measured nitrogen pools. The concentrations of soil nitrate (8.38-89.60 mg x kg(-1)) were significantly higher than those of ammonium (0.44-8.43 mg x kg(-1)) in four sampling periods (non-growing season, early, middle and late growing season). Regardless of the elevation, the rate of soil net nitrogen mineralization was negative (-0.77 to -0.56 mg x kg(-1) x d(-1)) early in the growing season, but positive in the other three periods. Except for nitrate, the contents of ammonium, microbial biomass nitrogen and dissolved organic nitrogen varied significantly with elevation and the altitude effects on those pools were dependent on seasons. In summary, soil nitrification was the major process of net soil nitrogen mineralization and soil nitrogen mineralization was not affected by elevational gradient. Soil nitrogen mineralization (0.42-0.99 mg x kg(-1) x d(-1)) in winter was considerable in this area. Relatively high inorganic nitrogen in early spring might be favorable for vegetation growth, but might also be lost from soil ecosystem through leaching. PMID:24697050

  20. Expanding the nitrogen regulatory protein superfamily: Homology detection at below random sequence identity.

    PubMed

    Kinch, Lisa N; Grishin, Nick V

    2002-07-01

    Nitrogen regulatory (PII) proteins are signal transduction molecules involved in controlling nitrogen metabolism in prokaryots. PII proteins integrate the signals of intracellular nitrogen and carbon status into the control of enzymes involved in nitrogen assimilation. Using elaborate sequence similarity detection schemes, we show that five clusters of orthologs (COGs) and several small divergent protein groups belong to the PII superfamily and predict their structure to be a (betaalphabeta)(2) ferredoxin-like fold. Proteins from the newly emerged PII superfamily are present in all major phylogenetic lineages. The PII homologs are quite diverse, with below random (as low as 1%) pairwise sequence identities between some members of distant groups. Despite this sequence diversity, evidence suggests that the different subfamilies retain the PII trimeric structure important for ligand-binding site formation and maintain a conservation of conservations at residue positions important for PII function. Because most of the orthologous groups within the PII superfamily are composed entirely of hypothetical proteins, our remote homology-based structure prediction provides the only information about them. Analogous to structural genomics efforts, such prediction gives clues to the biological roles of these proteins and allows us to hypothesize about locations of functional sites on model structures or rationalize about available experimental information. For instance, conserved residues in one of the families map in close proximity to each other on PII structure, allowing for a possible metal-binding site in the proteins coded by the locus known to affect sensitivity to divalent metal ions. Presented analysis pushes the limits of sequence similarity searches and exemplifies one of the extreme cases of reliable sequence-based structure prediction. In conjunction with structural genomics efforts to shed light on protein function, our strategies make it possible to detect

  1. Mineral commodity profiles: nitrogen

    USGS Publications Warehouse

    Kramer, Deborah A.

    2004-01-01

    Overview -- Nitrogen (N) is an essential element of life and a part of all animal and plant proteins. As a part of the DNA and RNA molecules, nitrogen is an essential constituent of each individual's genetic blueprint. As an essential element in the chlorophyll molecule, nitrogen is vital to a plant's ability to photosynthesize. Some crop plants, such as alfalfa, peas, peanuts, and soybeans, can convert atmospheric nitrogen into a usable form by a process referred to as 'fixation.' Most of the nitrogen that is available for crop production, however, comes from decomposing animal and plant waste or from commercially produced fertilizers. Commercial fertilizers contain nitrogen in the form of ammonium and/or nitrate or in a form that is quickly converted to the ammonium or nitrate form once the fertilizer is applied to the soil. Ammonia is generally the source of nitrogen in fertilizers. Anhydrous ammonia is commercially produced by reacting nitrogen with hydrogen under high temperatures and pressures. The source of nitrogen is the atmosphere, which is almost 80 percent nitrogen. Hydrogen is derived from a variety of raw materials, which include water, and crude oil, coal, and natural gas hydrocarbons. Nitrogen-based fertilizers are produced from ammonia feedstocks through a variety of chemical processes. Small quantities of nitrates are produced from mineral resources principally in Chile. In 2002, anhydrous ammonia and other nitrogen materials were produced in more than 70 countries. Global ammonia production was 108 million metric tons (Mt) of contained nitrogen. With 28 percent of this total, China was the largest producer of ammonia. Asia contributed 46 percent of total world ammonia production, and countries of the former U.S.S.R. represented 13 percent. North America also produced 13 percent of the total; Western Europe, 9 percent; the Middle East, 7 percent; Central America and South America, 5 percent; Eastern Europe, 3 percent; and Africa and Oceania

  2. NEO-FFI personality clusters in trichotillomania.

    PubMed

    Keuthen, Nancy J; Tung, Esther S; Tung, Matthew G; Curley, Erin E; Flessner, Christopher A

    2016-05-30

    The purpose of this study was to determine whether personality prototypes exist among hair pullers and if these groups differ in hair pulling (HP) characteristics, clinical correlates, and quality of life. 164 adult hair pullers completed the NEO-Five Factor Inventory (NEO-FFI; Costa and McCrae, 1992) and self-report measures of HP severity, HP style, affective state, and quality of life. A latent class cluster analysis using NEO-FFI scores was performed to separate participants into clusters. Bonferroni-corrected t-tests were used to compare clusters on HP, affective, and quality of life variables. Multiple regression was used to determine which variables significantly predicted quality of life. Two distinct personality prototypes were identified. Cluster 1 (n=96) had higher neuroticism and lower extraversion, agreeableness, and conscientiousness when compared to cluster 2 (n=68). No significant differences in demographics were reported for the two personality clusters. The clusters differed on extent of focused HP, severity of depression, anxiety, and stress, as well as quality of life. Those in cluster 1 endorsed greater depression, anxiety, and stress, and worse quality of life. Additionally, only depression and cluster membership (based on NEO scores) significantly predicted quality of life. PMID:27016621

  3. Protein Nitrogen Determination

    NASA Astrophysics Data System (ADS)

    Nielsen, S. Suzanne

    The protein content of foods can be determined by numerous methods. The Kjeldahl method and the nitrogen combustion (Dumas) method for protein analysis are based on nitrogen determination. Both methods are official for the purposes of nutrition labeling of foods. While the Kjeldahl method has been used widely for over a hundred years, the recent availability of automated instrumentation for the Dumas method in many cases is replacing use of the Kjeldahl method.

  4. Atmospheric Nitrogen Fluorescence Yield

    NASA Technical Reports Server (NTRS)

    Adams, J. H., Jr.; Christl, M. J.; Fountain, W. F.; Gregory, J. C.; Martens, K. U.; Sokolsky, Pierre; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Several existing and planned experiments estimate the energies of ultra-high energy cosmic rays from air showers using the atmospheric nitrogen fluorescence. The nitrogen fluorescence yield from air shower electrons depends on the atmospheric composition. We will discuss the uncertainties in the fluorescence yield form electrons in the real atmosphere and describe a concept for a small balloon payload to measure the atmospheric fluorescence yield as a function of attitude.

  5. Brucella, nitrogen and virulence.

    PubMed

    Ronneau, Severin; Moussa, Simon; Barbier, Thibault; Conde-Álvarez, Raquel; Zuniga-Ripa, Amaia; Moriyon, Ignacio; Letesson, Jean-Jacques

    2016-08-01

    The brucellae are α-Proteobacteria causing brucellosis, an important zoonosis. Although multiplying in endoplasmic reticulum-derived vacuoles, they cause no cell death, suggesting subtle but efficient use of host resources. Brucellae are amino-acid prototrophs able to grow with ammonium or use glutamate as the sole carbon-nitrogen source in vitro. They contain more than twice amino acid/peptide/polyamine uptake genes than the amino-acid auxotroph Legionella pneumophila, which multiplies in a similar vacuole, suggesting a different nutritional strategy. During these two last decades, many mutants of key actors in nitrogen metabolism (transporters, enzymes, regulators, etc.) have been described to be essential for full virulence of brucellae. Here, we review the genomic and experimental data on Brucella nitrogen metabolism and its connection with virulence. An analysis of various aspects of this metabolism (transport, assimilation, biosynthesis, catabolism, respiration and regulation) has highlighted differences and similarities in nitrogen metabolism with other α-Proteobacteria. Together, these data suggest that, during their intracellular life cycle, the brucellae use various nitrogen sources for biosynthesis, catabolism and respiration following a strategy that requires prototrophy and a tight regulation of nitrogen use. PMID:25471320

  6. Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Bica, E.; Ortolani, S.; Barbuy, B.

    2016-06-01

    A view of the Galactic bulge by means of their globular clusters is fundamental for a deep understanding of its formation and evolution. Connections between the globular cluster and field star properties in terms of kinematics, orbits, chemical abundances, and ages should shed light on different stellar population components. Based on spatial distribution and metallicity, we define a probable best list of bulge clusters, containing 43 entries. Future work on newly discovered objects, mostly from the VVV survey, is suggested. These candidates might alleviate the issue of missing clusters on the far side of the bulge. We discuss the reddening law affecting the cluster distances towards the centre of the Galaxy, and conclude that the most suitable total-to-selective absorption value appears to be R V=3.2, in agreement with recent analyses. An update of elemental abundances for bulge clusters is provided.

  7. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  8. PRECISION FARMING FOR NITROGEN MANAGEMENT

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Approaches to precision nitrogen management vary from region to region depending on crop, soils, landscape, and climate yet all strategies essentially attempt to estimate crop nitrogen demand or plant available nitrogen. In this chapter, we provide case studies that illustrate precision nitrogen ma...

  9. [Modelling nitrogen and phosphorus transfer in Potamogeton malaianus Miq. decompostion].

    PubMed

    Han, Hong-Juan; Zhai, Shui-Jing; Hu, Wei-Ping

    2010-06-01

    Potamogeton malaianus Miq. is one of the dominant species of submerged aquatic vegetations in Lake Taihu, China. The decomposition of its debris and metabolic detritus is an important part of nutrients cycling in the lake water. Nitrogen and phosphorus transfer model in P. malaianus Miq. decomposition has been set up based on an indoor P. malaianus Miq. decomposition experiment to quantitatively characterize the decomposition process. It mainly focuses on the dissolving process of inorganic nitrogen and phosphorus in P. malaianus Miq., the degradation process of its organic nitrogen and phosphorus, and the boundary's adsorbing process of nitrogen and phosphorus in water. There are eight state variables in the model, including inorganic and organic nitrogen in P. malaianus Miq., inorganic and organic phosphorus in P. malaianus Miq., total nitrogen and total phosphorus in water, and nitrogen and phosphorus adsorbed on container boundary. The model calibration showed a good accordance with the observed results of P. malaianus Miq. decomposition experiment. The dissolve rates of inorganic nitrogen and phosphorus in P. malaianus Miq. are 0.04 d(-1) and 0.06 d(-1) respectively. And the decompose rates of these two state variables are 0.005 25 d(-1) and 0.010 44 d(-1) respectively. Model outputs show that 6.7% nitrogen and 35.8% phosphorus can release from P. malaianus Miq. in the former 5 days. Phosphorus release is prior to nitrogen due to the bigger inorganic/organic ratio of phosphorus than that of nitrogen in P. malaianus Miq., Decomposition of P. malaianus Miq. could be affected by water temperature, and the affection is slight when water temperature is lower according to the model. The model also showed that P. malaianus Miq. decomposition process has influences on water quality in the former days, which can be eliminated by adsorbing process later. PMID:20698260

  10. Nitrogen fertilization effects on irrigated no-till corn production and soil carbon and nitrogen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Converting from conventional tillage (CT) to a no-till (NT) production system can affect N requirements for optimizing corn (Zea mays L.) yields while enhancing soil organic carbon (SOC) and N levels. Nitrogen fertilization impacts on irrigated, NT continuous-corn grain, stalk, cob, and stover yiel...

  11. Nitrogen-neutrality: a step towards sustainability

    NASA Astrophysics Data System (ADS)

    Leip, Adrian; Leach, Allison; Musinguzi, Patrick; Tumwesigye, Trust; Olupot, Giregon; Tenywa, John Stephen; Mudiope, Joseph; Hutton, Olivia; Cordovil, Claudia M. d. S.; Bekunda, Mateete; Galloway, James

    2014-11-01

    We propose a novel indicator measuring one dimension of the sustainability of an entity in modern societies: Nitrogen-neutrality. N-neutrality strives to offset Nr releases an entity exerts on the environment from the release of reactive nitrogen (Nr) to the environment by reducing it and by offsetting the Nr releases elsewhere. N-neutrality also aims to increase awareness about the consequences of unintentional releases of nitrogen to the environment. N-neutrality is composed of two quantified elements: Nr released by an entity (e.g. on the basis of the N footprint) and Nr reduction from management and offset projects (N offset). It includes management strategies to reduce nitrogen losses before they occur (e.g., through energy conservation). Each of those elements faces specific challenges with regard to data availability and conceptual development. Impacts of Nr releases to the environment are manifold, and the impact profile of one unit of Nr release depends strongly on the compound released and the local susceptibility to Nr. As such, N-neutrality is more difficult to conceptualize and calculate than C-neutrality. We developed a workable conceptual framework for N-neutrality which was adapted for the 6th International Nitrogen Conference (N2013, Kampala, November 2013). Total N footprint of the surveyed meals at N2013 was 66 kg N. A total of US 3050 was collected from the participants and used to offset the conference’s N footprint by supporting the UN Millennium Village cluster Ruhiira in South-Western Uganda. The concept needs further development in particular to better incorporate the spatio-temporal variability of impacts and to standardize the methods to quantify the required N offset to neutralize the Nr releases impact. Criteria for compensation projects need to be sharply defined to allow the development of a market for N offset certificates.

  12. High permeability heavy oil reservoir nitrogen injection EOR research

    NASA Astrophysics Data System (ADS)

    Wu, Xiaodong; Wang, Yining; Wang, Ruihe; Han, Guoqing; An, Yongsheng

    2014-05-01

    Nitrogen chemically very unreactive under normal showed great inertia. It is difficult to burn , dry, non-explosive , non-toxic , non-corrosive , and thus the use of safe and reliable. Coefficient of variation of nitrogen increases with increasing pressure , less affected by temperature . Under the same conditions, the ratio of the nitrogen gas formation volume factor carbon dioxide gas is high, about three times the carbon dioxide , the greater the elastic expansion of nitrogen play a beneficial role in flooding . EOR project trends increase the number of oil and gas injection gas injection from the calendar view, carbon dioxide miscible flooding gas injection EOR is the focus of the flue gas project currently has less to carry , nitrogen flooding is still subject to considerable attention. Note the nitrogen requirements of the basic conditions for enhanced oil recovery from major tectonic conditions , reservoir properties of crude nature of the gas injection timing and other aspects to consider , for different reservoir injected in different ways. Oilfield against a thick , high permeability and other characteristics, to improve oil recovery by injecting nitrogen indoor experiments conducted nitrogen injection process factors and supporting technical studies ; and introduced the field of nitrogen injection EOR field test conditions .

  13. Nitrogen Inputs via Nitrogen Fixation in Northern Plants and Soils

    NASA Astrophysics Data System (ADS)

    Thorp, N. R.; Wieder, R. K.; Vile, M. A.

    2015-12-01

    Dominated by cold and often acidic water logged environments, mineralization of organic matter is slow in the majority of northern ecosystems. Measures of extractable ammonium and nitrate are generally low and can be undetectable in peat pore waters. Despite this apparent nitrogen limitation, many of these environments produce deep deposits of soil organic matter. Biological nitrogen fixation carried out by autotrophic and heterotrophic diazotrophs associated with cryptograms provides the majority of known nitrogen inputs in these northern ecosystems. Nitrogen fixation was assessed in a variety of northern soils within rhizospheres of dominant plant communities. We investigated the availability of this newly fixed nitrogen to the vascular plant community in nitrogen limited northern plant communities. We tracked nitrogen flow from 15N2 gas fixed in Sphagnum mosses into tissues of two native vascular plant species, boreal cranberry (Vaccinium oxycoccus) and black spruce (Picea mariana). 15N-labeled Sphagnum microcosms were grown within variable mesh size exclusion/inclusion fabrics in a nitrogen addition experiment in situ in order to investigate the role of mycorrhizal fungi in the uptake of newly fixed nitrogen. Up to 24% of daily fixed 15N label was transferred to vascular plant tissues during 2 months. Nitrogen addition resulted in decreased N2 fixation rates; however, with higher nitrogen availability there was a higher rate of 15N label uptake into the vascular plants, likely the result of increased production of dissolved organic nitrogen. Reliance on mycorrhizal networks for nitrogen acquisition was indicated by nitrogen isotope fractionation patterns. Moreover, N2 fixation activities in mosses were stimulated when vascular plants were grown in moss microcosms versus "moss only" treatments. Results indicate that bog vascular plants may derive considerable nitrogen from atmospheric N2 biologically fixed within Sphagnum mosses. This work demonstrates that

  14. A note on the dynamics of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Cooper, R. G.; Miller, R. H.

    1982-03-01

    When a dynamical simulation of galaxy clusters includes the elasticity of galactic collisions, a massive object forms as a result of galaxy mergers which may contain as much as 80% of the cluster mass. The inelasticity of galaxy encounters, as calibrated in galaxy collision experiments, is sufficiently strong to affect galaxy cluster evolution and is an essential part of the physics of galaxy clusters which must be incorporated into dynamical simulations. It is found that, although the merger framework offers a useful model for the formation of poor clusters with a cD galaxy, it does not fit the rich clusters, thereby raising questions as to how galaxy clusters survive and as to the physics which may account for the differences between clusters with and without cD galaxies. It is suggested that the age of galaxy clusters has been overestimated.

  15. Foodservice Occupations Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    Intended to assist vocational teachers in developing and implementing a cluster program in food service occupations, this guide contains sections on cluster organization and implementation and instructional emphasis areas. The cluster organization and implementation section covers goal-based planning and includes a proposed cluster curriculum, a…

  16. Cluster-impact fusion

    SciTech Connect

    Echenique, P.M.; Manson, J.R.; Ritchie, R.H. )

    1990-03-19

    We present a model for the cluster-impact-fusion experiments of Buehler, Friedlander, and Friedman, Calculated fusion rates as a function of bombarding energy for constant cluster size agree well with experiment. The dependence of the fusion rate on cluster size at fixed bombarding energy is explained qualitatively. The role of correlated, coherent collisions in enhanced energy loss by clusters is emphasized.

  17. Soil bacteria hold the key to root cluster formation.

    PubMed

    Lamont, Byron B; Pérez-Fernández, Maria; Rodríguez-Sánchez, Jesús

    2015-05-01

    Root clusters are bunches of hairy rootlets that enhance nutrient uptake among many plants. Since first being reported in 1974, the involvement of rhizobacteria in their formation has received conflicting support. Attempts to identify specific causative organisms have failed and their role has remained speculative. We set up a gnotobiotic experiment using two root-clustered species, Viminaria juncea (Fabaceae) and Hakea laurina (Proteaceae), and inoculated them with two plant-growth-promoting rhizobacteria (PGPR), Bradyrhizobium elkanii and Bacillus mageratium, that produce indole-3-acetic-acid (IAA). Plants were suspended in water culture with four combinations of nitrogen and phosphorus. Clusters only developed in the presence of PGPR in two treatments, were greatly enhanced in another four, suppressed in five, and unaffected in five. Nitrogen amendment was associated with a higher density of clusters. Bradyrhizobium promoted cluster formation in Hakea, whereas Bacillus promoted cluster formation in Viminaria and suppressed it in Hakea. Greater root cluster numbers were due either to a larger root system induced by PGPR (indirect resource effect) and/or to more clusters per unit length of parent root (direct morphogenetic effect). The results are interpreted in terms of greater IAA production by Bradyrhizobium than Bacillus and greater sensitivity of Viminaria to IAA than Hakea. PMID:25534068

  18. Nitrogen tetroxide scrubber data analysis

    NASA Technical Reports Server (NTRS)

    Simon, E. D.

    1978-01-01

    A major difficulty in the analysis of scrubber data is that of separating the physical effects, such as mass transfer, from the physico-chemical effects, such as reaction rates. This is especially true for the absorbtion of nitrogen tetroxide in the various liquids that were tested in the NASA-Kennedy Space Center Hypergolic Toxic Scrubber Program. A fruitful approach to correlating the data for outlet concentrations was to treat the overall absorbtion as a pseudo first-order absorbtion equation. This approach provided a method for normalizing the data to constant inlet concentration, constant sump liquor condition, and constant scrubbing time, and permitted evaluation of the test and fluid parameters that affected both absorbtion rate and scrubbing time. The analysis indicated that scrubber performance may be improved by optimizing liquor concentrations and liquor flowrate distributions.

  19. The nitrogen cycle: Atmosphere interactions

    NASA Technical Reports Server (NTRS)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  20. Arginine and nitrogen storage.

    PubMed

    Llácer, José L; Fita, Ignacio; Rubio, Vicente

    2008-12-01

    When nitrogen is abundant, prokaryotic and eukaryotic oxygen-producing photosynthetic organisms store nitrogen as arginine, by relieving feedback inhibition of the arginine biosynthesis controlling enzyme, N-acetylglutamate kinase (NAGK). The signalling protein PII, an ancient and widely distributed nitrogen/carbon/ADP/ATP sensor, mediates feedback inhibition relief of NAGK by binding to this enzyme. PII phosphorylation or PII binding of ADP or 2-oxoglutarate prevents PII-NAGK complex formation. Crystal structures of NAGK, cyanobacterial and plant PII and corresponding PII-NAGK complexes have been recently determined. In these complexes, two polar PII trimers sandwich one ring-like NAGK hexamer. Each PII subunit contacts one NAGK subunit, triggering a symmetry-restricted narrowing of the NAGK ring, with concomitant adoption by the arginine sites of a low-affinity conformation. PMID:19013524

  1. The Global Nitrogen Story

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2001-05-01

    In the absence of human activities, biotic nitrogen fixation is the primary source of reactive N to the environment. Over the last few decades, human activity has surpassed natural terrestrial nitrogen fixation rates by energy production (fossil fuel combustion) and food production (Haber-Bosch based fertilizer production and crop cultivation). An amount equivalent to over half of the anthropogenic N fixed each year is emitted to the atmosphere or discharged to rivers, for dispersion to environmental systems. An unknown amount of this anthropogenic N is accumulating in the environment resulting in a enhanced greenhouse effect, acid deposition, photochemical smog, stratospheric ozone depletion and eutrophication of fresh and marine waters. This paper will assess the state of knowledge on the global N cycle and present a context in which to place the impacts of humans on nitrogen cycling at regional scales.

  2. Nitrogen fertilization affects corn cellulosic biomass and ethanol yields

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research results on the effects of N management on corn (Zea mays L.) grain production in high-yielding cropping systems are widely available, but information on its effects on cellulosic ethanol potential from corn stover and cobs is limited. Stover and cob biomass and respective ethanol yields all...

  3. Nitrogen Mineralization in a Semiarid Silt Loam Soil in the Pacific Northwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The mineralization of nitrogen from soil organic matter or plant residues can provide a substantial amount of nitrogen for crop growth. Microbial activity in a soil may be adversely affected by either very high or low soil water content. A field study was conducted to determine the affect of three...

  4. Impacts of Human Alteration of the Nitrogen Cycle in the U.S. on Radiative Forcing

    EPA Science Inventory

    Nitrogen cycling processes affect radiative forcing directly through emissions of nitrous oxide (N2O) and indirectly because emissions of nitrogen oxide (NO x ) and ammonia (NH3) affect atmospheric concentrations of methane (CH4), carbon dioxide (CO2), water vapor (H2O), ozone (O...

  5. Geographic clustering of nonmedical exemptions to school immunization requirements and associations with geographic clustering of pertussis.

    PubMed

    Omer, Saad B; Enger, Kyle S; Moulton, Lawrence H; Halsey, Neal A; Stokley, Shannon; Salmon, Daniel A

    2008-12-15

    School immunization requirements are important in controlling vaccine-preventable diseases in the United States. Forty-eight states offer nonmedical exemptions to school immunization requirements. Children with exemptions are at increased risk of contracting and transmitting vaccine-preventable diseases. The clustering of nonmedical exemptions can affect community risk of vaccine-preventable diseases. The authors evaluated spatial clustering of nonmedical exemptions in Michigan and geographic overlap between exemptions clusters and clusters of reported pertussis cases. Kulldorf's scan statistic identified 23 statistically significant census tract clusters for exemption rates and 6 significant census tract clusters for reported pertussis cases between 1993 and 2004. The time frames for significant space-time pertussis clusters were August 1993-September 1993, August 1994-February 1995, May 1998-June 1998, April 2002, May 2003-July 2003, and June 2004-November 2004. Census tracts in exemptions clusters were more likely to be in pertussis clusters (odds ratio = 3.0, 95% confidence interval: 2.5, 3.6). The overlap of exemptions clusters and pertussis clusters remained significant after adjustment for population density, proportion of racial/ethnic minorities, proportion of children aged 5 years or younger, percentage of persons below the poverty level, and average family size (odds ratio = 2.7, 95% confidence interval: 2.2, 3.3). Geographic pockets of vaccine exemptors pose a risk to the whole community. In addition to monitoring state-level exemption rates, health authorities should be mindful of within-state heterogeneity. PMID:18922998

  6. Affective Learning.

    ERIC Educational Resources Information Center

    Brown, Charles T.

    This paper addresses itself to the question, "What does feeling have to do with knowing?" Two movements in affective education are discussed which have come into focus in recent years and which attempt to define the relationship between knowing and feeling. The first, a conscious application of the role of arousal in learning, emphasizes arousal…

  7. Plasticity of nitrogen allocation in the leaves of the invasive wetland grass, Phalaris arundinacea and co-occurring Carex species determines the photosynthetic sensitivity to nitrogen availability.

    PubMed

    Holaday, A Scott; Schwilk, Dylan W; Waring, Elizabeth F; Guvvala, Hasitha; Griffin, Chelsea M; Lewis, O Milo

    2015-04-01

    Phalaris arundinacea displaces the slower-growing, native sedge, Carex stricta, where nitrogen availability is high. Our aim was to address whether morphological and physiological traits associated with carbon gain for P. arundinacea and C. stricta responded to nitrogen supply differently and if the species exhibited different degrees of plasticity in these traits. The plants were grown in gravel and provided modified Hoagland's solution containing four nitrogen concentrations from 0.15 to 15 mM for 6 to 7 weeks. Supplied nitrogen affected the leaf nitrogen content to the same degree for both species. Increasing supplied nitrogen strongly increased CO2 assimilation (A), photosynthetic nitrogen use efficiency (PNUE), and respiration for P. arundinacea but had only a small effect on these parameters for C. stricta. Relative to growth at 15 mM nitrogen, growth at 0.15 mM for young leaves decreased carboxylation capacity and efficiency and the capacity for electron transport for P. arundinacea and a larger, stouter Carex species, Carex lacustris, by 53 to 70% but only 20 to 24% for C. stricta. Leaf nitrogen decreased approximately 50% for all species, but vacuolar nitrate did not decrease for P. arundinacea and C. stricta, suggesting that it does not serve as a nitrogen reserve for use during nitrogen deprivation in these species. After 4 months of nitrogen deprivation, P. arundinacea doubled A in 12 days after being supplied 15 mM nitrogen, whereas A for C. stricta increased only 22%. We propose that one factor linking P. arundinacea abundance to nitrogen availability involves this species' plastic response of carbon gain to nitrogen supply. C. stricta appears to be adapted to tolerate low nitrogen availability but cannot respond as rapidly and extensively as P. arundinacea when nitrogen supply is high. PMID:25659333

  8. Clusters in strong laser fields: Comparison between carbon, platinum, and lead clusters

    NASA Astrophysics Data System (ADS)

    Schumacher, M.; Teuber, S.; Köller, L.; Köhn, J.; Tiggesbäumker, J.; Meiwes-Broer, K. H.

    Carbon and metal clusters are excited by strong femtosecond laser pulses with up to 1016 W/cm2, yielding ionized clusters and highly charged atomic ions. For small carbon clusters and fullerenes the abundance of charged species correlates with the laser power, while for metal clusters the ionization efficiency is additionally strongly affected by the chosen laser pulse width which may result in an enhanced up-charging of the metal particle. In the case of platinum atomic charge states up to z=20 are detected at a pulse duration of about 600 fs. This observation is in accordance with a model based on a multi-plasmon excitation process.

  9. Nitrogen Adsorption on Graphite: Defying Physisorption

    NASA Astrophysics Data System (ADS)

    Tkatchenko, Alexandre; Scheffler, Matthias

    2010-03-01

    The adsorption of a nitrogen molecule at the graphite surface can be considered a paradigm of molecular physisorption [1]. The binding of N2 can be phenomenologically described in terms of a competition between quadrupole--quadrupole and van der Waals dispersion energies. Of particular interest is the relative stability of the so-called ``in-plane'', ``out-of-plane'' and ``pin-wheel'' monolayer structures, in which the nitrogen molecules alternate between parallel and perpendicular configurations on the surface. By combining state-of-the-art electronic structure methods, such as dispersion-corrected density-functional theory and Møller-Plesset second-order perturbation theory along with high-level coupled cluster [CCSD(T)] calculations, we are able to gain quantitative insight into the adsorption mechanism of N2@graphite and achieve very good agreement with experimental desorption enthalpy. We challenge the commonly held view of a closed-shell adsorbed N2 molecule, finding a noticeable charge-density polarization for nitrogen in a perpendicular configuration on the surface. We map out the N2@graphite potential energy surface as a function of sliding and orientation and discuss the influence of quantum zero-point energy for different adsorption sites. [1] D. Marx and H. Wiechert, Adv. Chem. Phys. 95, 213 (1996).

  10. Tracking star formation in dwarf cluster galaxies

    NASA Astrophysics Data System (ADS)

    Rude, Cody Millard

    The evolution of galaxies in dense environments can be affected by close encounters with neighboring galaxies and interactions with the intracluster medium (ICM). Dwarf galaxies may be especially susceptible to these effects due to their low mass. The goal of my dissertation research is to look for signs of star formation in cluster dwarf galaxies by measuring and comparing the r- and u-band luminosity functions of 15 low redshift Abell galaxy clusters using archival data from the Canada-France-Hawaii Telescope (CFHT). Luminosity functions, dwarf-to-giant ratios, and blue fractions are measured in four cluster-centric annuli from stacked cluster data. To account for differences in cluster optical richness, each cluster is scaled according to r200, where r200 is the radius of a sphere, centered on the cluster, whose average density is 200 times the critical density of the universe. The outer region of the cluster sample shows an increase in the faint-end slope of the u-band luminosity function relative to the r-band, indicating star formation in dwarf galaxies. The blue fraction for dwarf galaxies steadily rises with increasing cluster-centric radii. The change in the blue fraction of giant galaxies also increases, but at a lower rate. Additionally, the inner regions of clusters ranging from 0.185 < z < 0.7 from the "Cluster Lensing and Supernova survey with Hubble (CLASH)" are used to generate blue- and red-band luminosity functions, dwarf-to-giant ratios, and blue fractions. Comparisons of the inner region of the CLASH and CFHT clusters show an increase in the blue fraction of dwarf galaxies with redshift that is not present in giant galaxies.

  11. A 2.5-Kilobase Deletion Containing a Cluster of Nine MicroRNAs in the Latency-Associated-Transcript Locus of the Pseudorabies Virus Affects the Host Response of Porcine Trigeminal Ganglia during Established Latency

    PubMed Central

    Mahjoub, Nada; Dhorne-Pollet, Sophie; Fuchs, Walter; Endale Ahanda, Marie-Laure; Lange, Elke; Klupp, Barbara; Arya, Anoop; Loveland, Jane E.; Lefevre, François; Mettenleiter, Thomas C.

    2014-01-01

    ABSTRACT The alphaherpesvirus pseudorabies virus (PrV) establishes latency primarily in neurons of trigeminal ganglia when only the transcription of the latency-associated transcript (LAT) locus is detected. Eleven microRNAs (miRNAs) cluster within the LAT, suggesting a role in establishment and/or maintenance of latency. We generated a mutant (M) PrV deleted of nine miRNA genes which displayed properties that were almost identical to those of the parental PrV wild type (WT) during propagation in vitro. Fifteen pigs were experimentally infected with either WT or M virus or were mock infected. Similar levels of virus excretion and host antibody response were observed in all infected animals. At 62 days postinfection, trigeminal ganglia were excised and profiled by deep sequencing and quantitative RT-PCR. Latency was established in all infected animals without evidence of viral reactivation, demonstrating that miRNAs are not essential for this process. Lower levels of the large latency transcript (LLT) were found in ganglia infected by M PrV than in those infected by WT PrV. All PrV miRNAs were expressed, with highest expression observed for prv-miR-LLT1, prv-miR-LLT2 (in WT ganglia), and prv-miR-LLT10 (in both WT and M ganglia). No evidence of differentially expressed porcine miRNAs was found. Fifty-four porcine genes were differentially expressed between WT, M, and control ganglia. Both viruses triggered a strong host immune response, but in M ganglia gene upregulation was prevalent. Pathway analyses indicated that several biofunctions, including those related to cell-mediated immune response and the migration of dendritic cells, were impaired in M ganglia. These findings are consistent with a function of the LAT locus in the modulation of host response for maintaining a latent state. IMPORTANCE This study provides a thorough reference on the establishment of latency by PrV in its natural host, the pig. Our results corroborate the evidence obtained from the study

  12. Nitrogen Trading Tool (NTT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Natural Resources Conservation Service (NRCS) recently developed a prototype web-based nitrogen trading tool to facilitate water quality credit trading. The development team has worked closely with the Agriculture Research Service Soil Plant Nutrient Research Unit (ARS-SPNR) and the Environmenta...

  13. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  14. The nitrogen cascade

    SciTech Connect

    Galloway J.N.; Aber J.D.; Erisman J.W.; Seitzinger S.P.; Howarth R.W.; Cowling E.B.; Cosby B.J.

    2003-04-01

    Human production of food and energy is the dominant continental process that breaks the triple bond in molecular nitrogen (N{sub 2}) and creates reactive nitrogen (Nr) species. Circulation of anthropogenic Nr in Earth's atmosphere, hydrosphere, and biosphere has a wide variety of consequences, which are magnified with time as Nr moves along its biogeochemical pathway. The same atom of Nr can cause multiple effects in the atmosphere, in terrestrial ecosystems, in freshwater and marine systems, and on human health. We call this sequence of effects the nitrogen cascade. As the cascade progresses, the origin of Nr becomes unimportant. Reactive nitrogen does not cascade at the same rate through all environmental systems; some systems have the ability to accumulate Nr, which leads to lag times in the continuation of the cascade. These lags slow the cascade and result in Nr accumulation in certain reservoirs, which in turn can enhance the effects of Nr on that environment. The only way to eliminate Nr accumulation and stop the cascade is to convert Nr back to nonreactive N{sub 2}.

  15. Soil and fertilizer nitrogen

    SciTech Connect

    Winteringham, F.P.W.

    1985-01-01

    This book describes a study of plant nutrition and environmental protection, and also discusses soil nitrogen in relation to agriculture, forestry, the environment and conservation. It also includes the Summary Report on the Final Meeting of the FAO/IAEA/GSF.

  16. California Nitrogen Index

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California N Index User Manual is designed to help you become accustomed to the software environment in which the N Index runs. This manual will use an example scenario to demonstrate how to use the N Index to assess nitrogen losses. The objective of this theoretical example is to guide you towa...

  17. Nitrogen catch crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High costs of nitrogen (N) fertilizer and the potential for N losses to ground and surface water have resulted in increased interest in using catch crops to recover this N. Research on potatoes has shown that the amount of N lost to leaching can be as much as the amount of N removed from the field ...

  18. Nitrogen in chondritic metal

    NASA Astrophysics Data System (ADS)

    Mathew, K. J.; Marti, K.; Kim, Y.

    2005-02-01

    We report new nitrogen isotopic data in metals of H-, L- and one LL -chondrites, with N abundances in the range of ˜0.3 to 3.3 ppm and half of these <1 ppm. Nitrogen isotopic signatures in metals with low indigenous N concentrations are modified by cosmic ray spallation components; corrections are required to determine the indigenous N signatures. The metals of type 4 and 5 show uniform indigenous nitrogen (δ 15N = -6.8 ± 0.5 ‰) and confirm a reported possible genetic association of chondritic metal with metal in IIE and IVA iron meteorites. Distinct isotopic signatures are observed in two metal samples of the Portales Valley (H6) meteorite which both are inconsistent with signatures in H4 and H5 chondrites, but possibly reveal a record of impact-induced melting and metamorphism on the parent asteroid. Anomalous nitrogen signatures in metals of type 3 chondrites, on the other hand, may reflect residues of surviving presolar isotopic signatures.

  19. Ruminant nitrogen usage

    SciTech Connect

    Not Available

    1985-01-01

    This book brings together the latest research on protein absorption by ruminants and takes a look at the calculation of optimum nutrient requirements, including bacterial digestion, in the calculations. It also describes the parameters of nitrogen conversion in the ruminant and examines the different kinds of protein found in animal feedstuffs.

  20. ODD NITROGEN PROCESSES

    SciTech Connect

    Johnston, Harold S.

    1980-01-01

    This chapter is in three parts. The first concerns interpretations that can be made from atmospheric observations regarding nitrogen compounds and ozone, the second reviews some predictions made by atmospheric models, and the third compares between certain model results and atmospheric measurements with an emphasis on detecting evidence of significant disagreements.

  1. Atmospheric Measurements of Neutral Nucleating Clusters (Invited)

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Eisele, F. L.; Smith, J. N.; Chen, M.; Jiang, J.; Kuang, C.; McMurry, P. H.

    2010-12-01

    Nanoparticles produced by nucleation can subsequently grow to cloud condensation nuclei (CCN) within one or two days and hence affect cloud formation, precipitation, and atmospheric radiation budgets. As an intermediate stage between molecules and nanoparticles, neutral molecular clusters are believed to play an important role in processes that lead to boundary layer nucleation. Therefore, knowledge of chemical composition, concentrations, thermodynamic properties, and evolution of neutral molecular clusters is essential to better elucidate the nucleation mechanism and to reduce the uncertainty in nucleation rates used in global climate models. Here we present laboratory and field measurements from a recently developed chemical ionization mass spectrometer (the Cluster-CIMS) designed to measure atmospheric neutral clusters (Zhao et al., 2010). The sensitivity of the Cluster-CIMS was significantly improved by using a unique conical octopole device in the first vacuum stage for transmitting and focusing ions, which was further confirmed by ion trajectory simulations using SIMION. The ion cluster formation in the atmospheric-pressure inlet was controlled by two processes: neutral ionization and ion-induced clustering (IIC), which can be differentiated from the time independency of the intensity ratio between the cluster and monomer ions. Two methods were employed to separate neutral clusters from the ion-induced clustering. The concentrations and distribution of the neutral nucleating clusters containing up to 4 H2SO4 are estimated from the above methods at three measurement sites in the US (NCAR foothill laboratory, Manitou Forest Observatory, and Atlanta). Typically, the molecular cluster concentrations are well correlated with the concentrations of nanoparticles measured simultaneously during the nucleation event periods. The Cluster-CIMS was employed to measure clusters containing both sulfuric acid and amines in summer 2010 at NCAR foothill laboratory

  2. Survey on granularity clustering.

    PubMed

    Ding, Shifei; Du, Mingjing; Zhu, Hong

    2015-12-01

    With the rapid development of uncertain artificial intelligent and the arrival of big data era, conventional clustering analysis and granular computing fail to satisfy the requirements of intelligent information processing in this new case. There is the essential relationship between granular computing and clustering analysis, so some researchers try to combine granular computing with clustering analysis. In the idea of granularity, the researchers expand the researches in clustering analysis and look for the best clustering results with the help of the basic theories and methods of granular computing. Granularity clustering method which is proposed and studied has attracted more and more attention. This paper firstly summarizes the background of granularity clustering and the intrinsic connection between granular computing and clustering analysis, and then mainly reviews the research status and various methods of granularity clustering. Finally, we analyze existing problem and propose further research. PMID:26557926

  3. Release of fuel-bound nitrogen during biomass gasification

    SciTech Connect

    Zhou, J.; Masutani, S.M.; Ishimura, D.M.; Turn, S.Q.; Kinoshita, C.M.

    2000-03-01

    Gasification of four biomass feedstocks (leucaena, sawdust, bagasse, and banagrass) with significantly different fuel-bound nitrogen (FBN) content was investigated to determine the effects of operational parameters and nitrogen content of biomass on the partitioning of FBN among nitrogenous gas species. Experiments were performed using a bench-scale, indirectly heated, fluidized-bed gasifier. Data were obtained over a range of temperatures and equivalence ratios representative of commercial biomass gasification processes. An assay of all major nitrogenous components in the gasification products was performed for the first time, providing a clear accounting of the evolution of FBN. Important findings of this research include the following: (1) NH{sub 3} and N{sub 2} are the dominant species evolved from fuel nitrogen during biomass gasification; >90% of FBN in feedstock is converted to NH{sub 3} and N{sub 2}; (2) relative levels of NH{sub 3} and N{sub 2} are determined by thermochemical reactions in the gasifier; these reactions are affected strongly by temperature; (3) N{sub 2} appears to be primarily produced through the conversion of NH{sub 3} in the gas phase; (4) the structural formula and content of fuel nitrogen in biomass feedstock significantly affect the formation and evolution of nitrogen species during biomass gasification.

  4. The Global Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Galloway, J. N.

    2003-12-01

    Once upon a time nitrogen did not exist. Today it does. In the intervening time the universe was formed, nitrogen was created, the Earth came into existence, and its atmosphere and oceans were formed! In this analysis of the Earth's nitrogen cycle, I start with an overview of these important events relative to nitrogen and then move on to the more traditional analysis of the nitrogen cycle itself and the role of humans in its alteration.The universe is ˜15 Gyr old. Even after its formation, there was still a period when nitrogen did not exist. It took ˜300 thousand years after the big bang for the Universe to cool enough to create atoms; hydrogen and helium formed first. Nitrogen was formed in the stars through the process of nucleosynthesis. When a star's helium mass becomes great enough to reach the necessary pressure and temperature, helium begins to fuse into still heavier elements, including nitrogen.Approximately 10 Gyr elapsed before Earth was formed (˜4.5 Ga (billion years ago)) by the accumulation of pre-assembled materials in a multistage process. Assuming that N2 was the predominate nitrogen species in these materials and given that the temperature of space is -270 °C, N2 was probably a solid when the Earth was formed since its boiling point (b.p.) and melting point (m.p.) are -196 °C and -210 °C, respectively. Towards the end of the accumulation period, temperatures were probably high enough for significant melting of some of the accumulated material. The volcanic gases emitted by the resulting volcanism strongly influenced the surface environment. Nitrogen was converted from a solid to a gas and emitted as N2. Carbon and sulfur were probably emitted as CO and H2S (Holland, 1984). N2 is still the most common nitrogen volcanic gas emitted today at a rate of ˜2 TgN yr-1 (Jaffee, 1992).Once emitted, the gases either remained in the atmosphere or were deposited to the Earth's surface, thus continuing the process of biogeochemical cycling. The rate of

  5. Biogeochemical characteristics of nitrogen and phosphorus in Jiaozhou Bay sediments

    NASA Astrophysics Data System (ADS)

    Li, Xuegang; Song, Jinming; Yuan, Huamao; Dai, Jicui; Li, Ning

    2007-04-01

    Sediment samples were cored from 3 locations representing the inner bay, the outer bay and the bay mouth of Jiaozhou Bay in September 2003 to study the source and biogeochemical characteristics of nitrogen and phosphorus in the bay. The content and vertical distributions of total nitrogen (TN), total phosphorus (TP), organic nitrogen (ON), organic phosphorus (OP), inorganic nitrogen (IN), inorganic phosphorus (IP), the ratio of organic carbon and total nitrogen (OC/TN), and the ratio of total nitrogen and total phosphorus (TN/TP) in the sediments were analyzed. The results show that both TN and TP in surface sediments decrease from the inner bay to the outer bay. In general, ON occupies 50%-70% of TN and IP accounts for more than 60% of TP. In ratio of OC:TN, the nitrogen accumulated in the sediments from the inner bay and the bay mouth came mainly from terrestrial sources, and the portion of autogenetic nitrogen was 28.9% and 13.1%, respectively. However, in the outer bay, nitrogen was mainly autogenetic, accounting for 62.1% of TN, whereas phosphorus was mainly land-derived. The sedimentation fluxes of nitrogen and phosphorus varied spatially. The overall diagenesis rate of nitrogen was higher than that of phosphorus. Specifically, the diagenesis rate of OP was higher than that of IP. However, the diagenesis rate of ON was not always higher than that of IN. In species, the diagenesis rate of IN is sometimes much higher than that of the OC. In various environments, the diagenesis rate is, to some degree, affected by OC, pH, Eh, and Es.

  6. Changes in North Atlantic nitrogen fixation controlled by ocean circulation.

    PubMed

    Straub, Marietta; Sigman, Daniel M; Ren, Haojia; Martínez-García, Alfredo; Meckler, A Nele; Hain, Mathis P; Haug, Gerald H

    2013-09-12

    In the ocean, the chemical forms of nitrogen that are readily available for biological use (known collectively as 'fixed' nitrogen) fuel the global phytoplankton productivity that exports carbon to the deep ocean. Accordingly, variation in the oceanic fixed nitrogen reservoir has been proposed as a cause of glacial-interglacial changes in atmospheric carbon dioxide concentration. Marine nitrogen fixation, which produces most of the ocean's fixed nitrogen, is thought to be affected by multiple factors, including ocean temperature and the availability of iron and phosphorus. Here we reconstruct changes in North Atlantic nitrogen fixation over the past 160,000 years from the shell-bound nitrogen isotope ratio ((15)N/(14)N) of planktonic foraminifera in Caribbean Sea sediments. The observed changes cannot be explained by reconstructed changes in temperature, the supply of (iron-bearing) dust or water column denitrification. We identify a strong, roughly 23,000-year cycle in nitrogen fixation and suggest that it is a response to orbitally driven changes in equatorial Atlantic upwelling, which imports 'excess' phosphorus (phosphorus in stoichiometric excess of fixed nitrogen) into the tropical North Atlantic surface. In addition, we find that nitrogen fixation was reduced during glacial stages 6 and 4, when North Atlantic Deep Water had shoaled to become glacial North Atlantic intermediate water, which isolated the Atlantic thermocline from excess phosphorus-rich mid-depth waters that today enter from the Southern Ocean. Although modern studies have yielded diverse views of the controls on nitrogen fixation, our palaeobiogeochemical data suggest that excess phosphorus is the master variable in the North Atlantic Ocean and indicate that the variations in its supply over the most recent glacial cycle were dominated by the response of regional ocean circulation to the orbital cycles. PMID:23965620

  7. Cluster Morphology Analysis

    PubMed Central

    Jacquez, Geoffrey M.

    2009-01-01

    Most disease clustering methods assume specific shapes and do not evaluate statistical power using the applicable geography, at-risk population, and covariates. Cluster Morphology Analysis (CMA) conducts power analyses of alternative techniques assuming clusters of different relative risks and shapes. Results are ranked by statistical power and false positives, under the rationale that surveillance should (1) find true clusters while (2) avoiding false clusters. CMA then synthesizes results of the most powerful methods. CMA was evaluated in simulation studies and applied to pancreatic cancer mortality in Michigan, and finds clusters of flexible shape while routinely evaluating statistical power. PMID:20234799

  8. Nitrogen fixation control under drought stress. Localized or systemic?

    PubMed

    Marino, Daniel; Frendo, Pierre; Ladrera, Ruben; Zabalza, Ana; Puppo, Alain; Arrese-Igor, Cesar; González, Esther M

    2007-04-01

    Legume-Rhizobium nitrogen fixation is dramatically affected under drought and other environmental constraints. However, it has yet to be established as to whether such regulation of nitrogen fixation is only exerted at the whole-plant level (e.g. by a systemic nitrogen feedback mechanism) or can also occur at a local nodule level. To address this question, nodulated pea (Pisum sativum) plants were grown in a split-root system, which allowed for half of the root system to be irrigated at field capacity, while the other half was water deprived, thus provoking changes in the nodule water potential. Nitrogen fixation only declined in the water-deprived, half-root system and this result was correlated with modifications in the activities of key nodule's enzymes such as sucrose synthase and isocitrate dehydrogenase and in nodular malate content. Furthermore, the decline in nodule water potential resulted in a cell redox imbalance. The results also indicate that systemic nitrogen feedback signaling was not operating in these water-stressed plants, since nitrogen fixation activity was maintained at control values in the watered half of the split-root plants. Thus, the use of a partially droughted split-root system provides evidence that nitrogen fixation activity under drought stress is mainly controlled at the local level rather than by a systemic nitrogen signal. PMID:17416644

  9. U.S. nitrogen science plan focuses collaborative efforts

    NASA Astrophysics Data System (ADS)

    Holland, E. A.; Guenther, A.; Lee-Taylor, J.; Bertman, S. B.; Carroll, M. A.; Shepson, P. B.; Sparks, J. P.

    Nitrogen is a major nutrient in terrestrial ecosystems and an important catalyst in tropospheric photochemistry. Over the last century human activities have dramatically increased inputs of reactive nitrogen (Nr, the combination of oxidized, reduced, and organically bound nitrogen) to the Earth system (Figure 1). Nitrogen cycle perturbations have compromised air quality and human health, acidified ecosystems, and degraded and eutrophied lakes and coastal estuaries [Vitousek et al., 1997a, 1997b; Rabalais, 2002; Howarth et al., 2003; Townsend et al., 2003; Galloway et al., 2004].Increased Nr affects global climate. Use of agricultural fertilizers such as ammonium nitrate leads to increased soil production of nitrous oxide (N2O), which has 320 times the global warming potential of carbon dioxide (CO2). Emission of nitrogen oxides (NOx = nitric oxide, NO + nitrogen dioxide, NO2) from fossil fuel burning leads to increases in tropospheric ozone, another greenhouse gas. Ozone is phytotoxic, and may reduce terrestrial CO2 sequestration. To predict the effects of nitrogen cycling changes under changing climatic conditions, there needs to be a better understanding of the global nitrogen budget.

  10. Aqueous phase removal of nitrogen from nitrogen compounds

    DOEpatents

    Fassbender, Alex G.

    1993-01-01

    A method is disclosed for denitrification of compounds containing nitrogen present in aqueous waste streams. The method comprises the steps of (1) identifying the types of nitrogen compounds present in a waste stream, (2) determining the concentrations of nitrogen compounds, (3) balancing oxidized and reduced form of nitrogen by adding a reactant, and (4) heating the mixture to a predetermined reaction temperature from about 300.degree. C. to about 600.degree. C., thereby resulting in less harmful nitrogen and oxygen gas, hydroxides, alcohols, and hydrocarbons.

  11. The nitrogen and sulphur cycles

    SciTech Connect

    Cole, J.A.; Ferguson, S.J.

    1988-01-01

    This book contains 17 selections. Some of the titles are: Genetic regulation of nitrogen fixation; On the analysis of symbiotic genes of Rhizobium; Regulation of nitrogen assimilation by bacteria; Alternative and conventional nitrogenases; and The role of oxygen and hydrogen in nitrogen fixation.

  12. PERSONAL MONITOR FOR NITROGEN DIOXIDE

    EPA Science Inventory

    An attempt was made to develop a personal monitor to measure nitrogen dioxide. Sampling of nitrogen dioxide is accomplished by permeation through a silicone membrane into a alkaline thymol blue solution. The nitrogen dioxide is converted to nitrite and is then quantitated by colo...

  13. Bacteria and the Nitrogen Economy.

    ERIC Educational Resources Information Center

    Ayanaba, A.

    1982-01-01

    Biological nitrogen fixation accounts for almost 70 percent of nitrogen for plant growth. If food is to keep abreast of population growth, even more nitrogen must be fixed. For this international research institutes continue the search for natural variants in the bacterial population while also pursuing novel genetic engineering methods. (Author)

  14. Universal Cluster Deposition System

    NASA Astrophysics Data System (ADS)

    Qiang, You; Sun, Zhiguang; Sellmyer, David J.

    2001-03-01

    We have developed a universal cluster deposition system (UCDS), which combines a new kind of sputtering-gas-aggregation (SGA) cluster beam source with two atom beams from magnetron sputtering. A highly intense, very stable beam of nanoclusters (like Co, Fe, Ni, Si, CoSm or CoPt) are produced. A quadrupole and/or a new high transmission infinite range mass selector have been designed for the cluster beam. The size distribution (Δd/d) is between 0.05+/-0.10, measured in situ by TOF. A range of mean cluster size is 2 to 10 nm. Usually the deposition rate is about 5 deg/s. The cluster concentration in the film is adjusted through the ratio of cluster and atomic beam deposition rates, as measured in situ with a rotatable quartz microbalance. The UCDS can be used to prepare coated clusters. After exiting from the cluster source, the clusters can be coated first with an atomic or molecular species in an evaporation chamber, and deposited alone or co-deposited with another material. This system is used to deposit simultaneously or alternately mesoscopic thin films or multilayers, and offers the possibility to control independently the incident cluster size and concentration, and thereby the interaction between clusters and cluster-matrix material which is of interest for fundamental research and industry applications. Magnetic properties of Co cluster-assembled materials will be discussed. * Research supported by NSF, DARPA through ARO, and CMRA

  15. Leucine metabolism regulates TRI6 expression and affects deoxynivalenol production and virulence in Fusarium graminearum.

    PubMed

    Subramaniam, Rajagopal; Narayanan, Swara; Walkowiak, Sean; Wang, Li; Joshi, Manisha; Rocheleau, Hélène; Ouellet, Thérèse; Harris, Linda J

    2015-11-01

    TRI6 is a positive regulator of the trichothecene gene cluster and the production of trichothecene mycotoxins [deoxynivalenol (DON)] and acetylated forms such as 15-Acetyl-DON) in the cereal pathogen Fusarium graminearum. As a global transcriptional regulator, TRI6 expression is modulated by nitrogen-limiting conditions, sources of nitrogen and carbon, pH and light. However, the mechanism by which these diverse environmental factors affect TRI6 expression remains underexplored. In our effort to understand how nutrients affect TRI6 regulation, comparative digital expression profiling was performed with a wild-type F. graminearum and a Δtri6 mutant strain, grown in nutrient-rich conditions. Analysis showed that TRI6 negatively regulates genes of the branched-chain amino acid (BCAA) metabolic pathway. Feeding studies with deletion mutants of MCC, encoding methylcrotonyl-CoA-carboxylase, one of the key enzymes of leucine metabolism, showed that addition of leucine specifically down-regulated TRI6 expression and reduced 15-ADON accumulation. Constitutive expression of TRI6 in the Δmcc mutant strain restored 15-ADON production. A combination of cellophane breach assays and pathogenicity experiments on wheat demonstrated that disrupting the leucine metabolic pathway significantly reduced disease. These findings suggest a complex interaction between one of the primary metabolic pathways with a global regulator of mycotoxin biosynthesis and virulence in F. graminearum. PMID:26248604

  16. Soil carbon and nitrogen affected by perennial grass, cover crop, and nitrogen fertilization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil C and N sequestration and the potential for N leaching can be influenced by the type of perennial grass, cover crop, and N fertilization due to differences in crop yields and the amount of residue returned to the soil. We evaluated the effects of the combinations of perennial grasses (energy ca...

  17. Solar nitrogen: evidence for a secular increase in the ratio of nitrogen-15 to nitrogen-14.

    PubMed

    Kerridge, J F

    1975-04-11

    Solar wind nitrogen, implanted in lunar soil samples, exhibits isotopic variations that are related to the time, although not to the duration, of implantation, with earlier samples characterized by lower ratios of nitrogen-15 to nitrogen-14. An increase in the solar nitrogen-15 content during the lifetime of the lunar regolith is probably caused by spallation of oxygen-16 in the surface regions of the sun. PMID:17813736

  18. Role of boron nutrient in nodules growth and nitrogen fixation rates in soybean genotypes under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although boron has a stimulatory effect on nodule growth and nitrogen fixation, mechanisms of how boron affects nodules growth and nitrogen fixation, especially under water stress, are still unknown. The stimulatory effect of boron (B) on nodules and nitrogen fixation (NF) is influenced by biotic (s...

  19. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  20. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste... nitrogen oxides in excess of the emission limits listed in table 2 of this subpart for affected...

  1. EINSTEIN Cluster Alignments Revisited

    NASA Astrophysics Data System (ADS)

    Chambers, S. W.; Melott, A. L.; Miller, C. J.

    2000-12-01

    We have examined whether the major axes of rich galaxy clusters tend to point (in projection) toward their nearest neighboring cluster. We used the data of Ulmer, McMillan and Kowalski, who used x-ray morphology to define position angles. Our cluster samples, with well measured redshifts and updated positions, were taken from the MX Northern Abell Cluster Survey. The usual Kolmogorov-Smirnov test shows no significant alignment signal for nonrandom angles for all separations less than 100 Mpc/h. Refining the null hypothesis, however, with the Wilcoxon rank-sum test, reveals a high confidence signal for alignment. This confidence is highest when we restrict our sample to small nearest neighbor separations. We conclude that we have identified a more powerful tool for testing cluster-cluster alignments. Moreover, there is a strong signal in the data for alignment, consistent with a picture of hierarchical cluster formation in which matter falls into clusters along large scale filamentary structures.

  2. Matlab Cluster Ensemble Toolbox

    SciTech Connect

    Sapio, Vincent De; Kegelmeyer, Philip

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. With regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.

  3. MODELING THE METALLICITY DISTRIBUTION OF GLOBULAR CLUSTERS

    SciTech Connect

    Muratov, Alexander L.; Gnedin, Oleg Y. E-mail: ognedin@umich.ed

    2010-08-01

    Observed metallicities of globular clusters reflect physical conditions in the interstellar medium of their high-redshift host galaxies. Globular cluster systems in most large galaxies display bimodal color and metallicity distributions, which are often interpreted as indicating two distinct modes of cluster formation. The metal-rich and metal-poor clusters have systematically different locations and kinematics in their host galaxies. However, the red and blue clusters have similar internal properties, such as their masses, sizes, and ages. It is therefore interesting to explore whether both metal-rich and metal-poor clusters could form by a common mechanism and still be consistent with the bimodal distribution. We present such a model, which prescribes the formation of globular clusters semi-analytically using galaxy assembly history from cosmological simulations coupled with observed scaling relations for the amount and metallicity of cold gas available for star formation. We assume that massive star clusters form only during mergers of massive gas-rich galaxies and tune the model parameters to reproduce the observed distribution in the Galaxy. A wide, but not the entire, range of model realizations produces metallicity distributions consistent with the data. We find that early mergers of smaller hosts create exclusively blue clusters, whereas subsequent mergers of more massive galaxies create both red and blue clusters. Thus, bimodality arises naturally as the result of a small number of late massive merger events. This conclusion is not significantly affected by the large uncertainties in our knowledge of the stellar mass and cold gas mass in high-redshift galaxies. The fraction of galactic stellar mass locked in globular clusters declines from over 10% at z > 3 to 0.1% at present.

  4. Methane/nitrogen separation process

    DOEpatents

    Baker, Richard W.; Lokhandwala, Kaaeid A.; Pinnau, Ingo; Segelke, Scott

    1997-01-01

    A membrane separation process for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. We have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen.

  5. Methane/nitrogen separation process

    DOEpatents

    Baker, R.W.; Lokhandwala, K.A.; Pinnau, I.; Segelke, S.

    1997-09-23

    A membrane separation process is described for treating a gas stream containing methane and nitrogen, for example, natural gas. The separation process works by preferentially permeating methane and rejecting nitrogen. The authors have found that the process is able to meet natural gas pipeline specifications for nitrogen, with acceptably small methane loss, so long as the membrane can exhibit a methane/nitrogen selectivity of about 4, 5 or more. This selectivity can be achieved with some rubbery and super-glassy membranes at low temperatures. The process can also be used for separating ethylene from nitrogen. 11 figs.

  6. Understanding the star-forming environment in stellar clusters

    NASA Astrophysics Data System (ADS)

    Wang, Shiya

    The main goal of this thesis is to investigate the physical conditions of the star-forming environment in stellar clusters, especially for the formation of low-mass cluster members. Embedded, young, and intermediate-mass stellar clusters around Herbig Ae/Be stars are sampled. Mid- and near-infrared observations identifying young stars and millimeter interferometric observations probing dense molecular gas and dust continuum are presented. These observations are used to reveal the large-scale young stellar population around the vicinity where the sampled clusters form, probe the physical conditions of dense molecular clumps which are capable of forming individual low-mass cluster members, and examine the influence of the most massive star in the cluster on its siblings and natal cluster-forming cloud. This study shows that stars within the cluster tend to seem younger than those outside the cluster, suggesting a higher and continuous star-forming rate within the cluster than outside, or massive stars are initiated later than low-mass stars within the same cloud. A thorough investigation of young stars and dense gas toward the MWC 1080 cluster further suggests a domination of the most massive star in the cluster on both the natal cloud dispersal and its low-mass cluster members. As active outflows and winds from the Herbig Ae/Be stars increase the non-thermal motion in the cloud, low-mass cluster members are formed within denser and more turbulent cores, than isolated low-mass star-forming cores. In addition, the strong gas dispersal from the Herbig Ae/Be stars also helps the removal of the circumstellar material around nearby low-mass stars. This makes these low-mass cluster members appear older. In summary, this thesis provides the observational evidence showing how the most massive star in the cluster affects the formation and evolution of low-mass cluster members and the physical conditions of star formation in the cluster.

  7. [Affective dependency].

    PubMed

    Scantamburlo, G; Pitchot, W; Ansseau, M

    2013-01-01

    Affective dependency is characterized by emotional distress (insecure attachment) and dependency to another person with a low self-esteem and reassurance need. The paper proposes a reflection on the definition of emotional dependency and the confusion caused by various denominations. Overprotective and authoritarian parenting, cultural and socio-environmental factors may contribute to the development of dependent personality. Psychological epigenetic factors, such as early socio-emotional trauma could on neuronal circuits in prefronto-limbic regions that are essential for emotional behaviour.We also focus on the interrelations between dependent personality, domestic violence and addictions. The objective for the clinician is to propose a restoration of self-esteem and therapeutic strategies focused on autonomy. PMID:23888587

  8. [Pathophysiology of cluster headache].

    PubMed

    Donnet, Anne

    2015-11-01

    The aetiology of cluster headache is partially unknown. Three areas are involved in the pathogenesis of cluster headache: the trigeminal nociceptive pathways, the autonomic system and the hypothalamus. The cluster headache attack involves activation of the trigeminal autonomic reflex. A dysfunction located in posterior hypothalamic gray matter is probably pivotal in the process. There is a probable association between smoke exposure, a possible genetic predisposition and the development of cluster headache. PMID:26470883

  9. Nitrogen in germanium

    NASA Astrophysics Data System (ADS)

    Chambouleyron, I.; Zanatta, A. R.

    1998-07-01

    The known properties of nitrogen as an impurity in, and as an alloy element of, the germanium network are reviewed in this article. Amorphous and crystalline germanium-nitrogen alloys are interesting materials with potential applications for protective coatings and window layers for solar conversion devices. They may also act as effective diffusion masks for III-V electronic devices. The existing data are compared with similar properties of other group IV nitrides, in particular with silicon nitride. To a certain extent, the general picture mirrors the one found in Si-N systems, as expected from the similar valence structure of both elemental semiconductors. However, important differences appear in the deposition methods and alloy composition, the optical properties of as grown films, and the electrical behavior of nitrogen-doped amorphous layers. Structural studies are reviewed, including band structure calculations and the energies of nitrogen-related defects, which are compared with experimental data. Many important aspects of the electronic structure of Ge-N alloys are not yet completely understood and deserve a more careful investigation, in particular the structure of defects associated with N inclusion. The N doping of the a-Ge:H network appears to be very effective, the activation energy of the most effectively doped samples becoming around 120 meV. This is not the case with N-doped a-Si:H, the reasons for the difference remaining an open question. The lack of data on stoichiometric β-Ge3N4 prevents any reasonable assessment on the possible uses of the alloy in electronic and ceramic applications.

  10. Sealing Nitrogen Tetroxide Leaks

    NASA Technical Reports Server (NTRS)

    Garrard, George G.; Houston, Donald W.; Scott, Frank D.

    1990-01-01

    Use of Furmanite FSC-N-6B sealant in clam-shell sealing device makes it possible to stop leaks of nitrogen tetroxide through defective or improperly-seated plumbing fittings. Devised to stop leaks in vent line of small rocket motor on Space Shuttle. Also used on plumbing containing hydrazine and other hazardous fluids, and repair withstands severe temperature, vibration, and shock. Leaks stopped in place, without draining or replacement of leaking parts.

  11. Managing Nitrogen in the anthropocene: integrating social and ecological science

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Mauzerall, D. L.; Davidson, E. A.; Kanter, D.; Cai, R.; Searchinger, T.

    2014-12-01

    Human alteration of the global nitrogen cycle by agricultural activities has provided nutritious food to society, but also poses increasing threats to human and ecosystem health through unintended pollution. Managing nitrogen more efficiently in crop production is critical for addressing both food security and environmental challenges. Technologies and management practices have been developed to increase the uptake of applied nitrogen by crops. However, nitrogen use efficiency (NUE, yield per unit nitrogen input) is also affected by social and economic factors. For example, to maximize profit, farmers may change crop choice or their nitrogen application rate, both of which lead to a change in NUE. To evaluate such impacts, we use both theoretical and empirical approaches on micro (farm) and macro (national) scales: 1) We developed a bio-economic model (NUE3) on a farm scale to investigate how market signals (e.g. fertilizer and crop prices), government policies, and nitrogen-efficient technologies affect NUE. We demonstrate that if factors that influence nitrogen inputs (e.g. fertilizer-to-crop price ratios) are not considered, NUE projections will be poorly constrained. The impact of nitrogen-efficient technologies on NUE not only depends on how technology changes the production function, but also relies on the prices of the technologies, fertilizers, and crops. 2) We constructed a database of the nitrogen budget in crop production for major crops and major crop producing countries from 1961 to 2010. Using this database, we investigate historical trends of NUE and its relationship to agronomic, economic, social, and policy factors. We find that NUE in most developed countries follows a "U-shape" relationship with income level, consistent with the Environmental Kuznets Curve theory. According to the dynamics revealed in the NUE3 model, we propose three major pathways by which economic development affects NUE, namely consumption, technology, and public policy

  12. Nitrogen metabolism in haloarchaea

    PubMed Central

    Bonete, María José; Martínez-Espinosa, Rosa María; Pire, Carmen; Zafrilla, Basilio; Richardson, David J

    2008-01-01

    The nitrogen cycle (N-cycle), principally supported by prokaryotes, involves different redox reactions mainly focused on assimilatory purposes or respiratory processes for energy conservation. As the N-cycle has important environmental implications, this biogeochemical cycle has become a major research topic during the last few years. However, although N-cycle metabolic pathways have been studied extensively in Bacteria or Eukarya, relatively little is known in the Archaea. Halophilic Archaea are the predominant microorganisms in hot and hypersaline environments such as salted lakes, hot springs or salted ponds. Consequently, the denitrifying haloarchaea that sustain the nitrogen cycle under these conditions have emerged as an important target for research aimed at understanding microbial life in these extreme environments. The haloarchaeon Haloferax mediterranei was isolated 20 years ago from Santa Pola salted ponds (Alicante, Spain). It was described as a denitrifier and it is also able to grow using NO3-, NO2- or NH4+ as inorganic nitrogen sources. This review summarizes the advances that have been made in understanding the N-cycle in halophilic archaea using Hfx mediterranei as a haloarchaeal model. The results obtained show that this microorganism could be very attractive for bioremediation applications in those areas where high salt, nitrate and nitrite concentrations are found in ground waters and soils. PMID:18593475

  13. Ice sheets and nitrogen

    PubMed Central

    Wolff, Eric W.

    2013-01-01

    Snow and ice play their most important role in the nitrogen cycle as a barrier to land–atmosphere and ocean–atmosphere exchanges that would otherwise occur. The inventory of nitrogen compounds in the polar ice sheets is approximately 260 Tg N, dominated by nitrate in the much larger Antarctic ice sheet. Ice cores help to inform us about the natural variability of the nitrogen cycle at global and regional scale, and about the extent of disturbance in recent decades. Nitrous oxide concentrations have risen about 20 per cent in the last 200 years and are now almost certainly higher than at any time in the last 800 000 years. Nitrate concentrations recorded in Greenland ice rose by a factor of 2–3, particularly between the 1950s and 1980s, reflecting a major change in NOx emissions reaching the background atmosphere. Increases in ice cores drilled at lower latitudes can be used to validate or constrain regional emission inventories. Background ammonium concentrations in Greenland ice show no significant recent trend, although the record is very noisy, being dominated by spikes of input from biomass burning events. Neither nitrate nor ammonium shows significant recent trends in Antarctica, although their natural variations are of biogeochemical and atmospheric chemical interest. Finally, it has been found that photolysis of nitrate in the snowpack leads to significant re-emissions of NOx that can strongly impact the regional atmosphere in snow-covered areas. PMID:23713125

  14. CLUSTERING OF RARE EVENTS

    EPA Science Inventory

    The clustering of cases of a rare disease is considered. The number of events observed for each unit is assumed to have a Poisson distribution, the mean of which depends upon the population size and the cluster membership of that unit. Here a cluster consists of those units that ...

  15. The evolution of nitrogen cycling

    NASA Technical Reports Server (NTRS)

    Mancinelli, Rocco L.; Mckay, Christopher P.

    1988-01-01

    The energetics of nitrogen transformation reactions and the evolution of nitrogen cycling are examined. It is suggested that meteor impact-produced fixed nitrogen could have caused the entire reservoir of the earth's N2 to convert into fixed nitrogen at the end of accretion. The abiotic fixation rate on the early earth by lightning is estimated at about 1-3 X 10 to the 16th molecules of NO/J. It is found that biological nitrogen fixation may have evolved after the development of an aerobic atmosphere. It is shown that HNO could eventually become NO2(-) and NO3(-) after reaching the earth's surface. It is concluded that the evolutionary sequence for the biological transformation of nitrogen compounds is ammonification - denitrification - nitrification - nitrogen fixation.

  16. Nitrogen chemistry and lung physiology.

    PubMed

    Marozkina, Nadzeya V; Gaston, Benjamin

    2015-01-01

    The versatile chemistry of nitrogen is important to pulmonary physiology. Indeed, almost all redox forms of nitrogen are relevant to pulmonary physiology and to pathophysiology. Here we review the relevance to pulmonary biology of (a) elemental nitrogen; (b) reduced forms of nitrogen such as amines, ammonia, and hydroxylamine; and (c) oxidized forms of nitrogen such as the nitroxyl anion, the nitric oxide free radical, and S-nitrosothiols. Our focus is on oxidized nitrogen in the form of S-nitrosothiol bond-containing species, which are now appreciated to be important to every type of cell-signaling process in the lung. We also review potential clinical applications of nitrogen oxide biochemistry. These principles are being translated into clinical practice as diagnostic techniques and therapies for a range of pulmonary diseases including asthma, cystic fibrosis, adult respiratory distress syndrome, primary ciliary dyskinesia, and pulmonary hypertension. PMID:25668023

  17. Planetesimal clustering in protoplanetary disks

    NASA Astrophysics Data System (ADS)

    Tanga, P.; Michel, P.; Richardson, D. C.

    2001-11-01

    The usual approach to the study of planetary accretion always considers homogeneous distributions of planetesimals and isotropic velocity dispersions. Nevertheless, if small planetesimals (in the 1 cm - 1 m range) were affected by the turbulent gas disk motion, several studies have suggested that the properties of homogeneity could be easily lost (see e.g. Tanga et al. 1996, Bracco et al. 1999, Godon and Livio 2000). In fact, due to gas drag, surface density fluctuations can appear, as well as a correlation in planetesimal velocities. In particular, the presence of vortices seems to be very effective in this sense. Unfortunately, if a dust surface density close to that of a "Minimum Mass" Solar Nebula is assumed, the numerical integration of self-gravitating planetesimal systems in the concerned size range is not possible due to the huge number of particles involved. Therefore, our first step has been the investigation of the role of pure self-gravitation in the evolution of planetesimal clusters in disks of 104 - 106 bodies (implying thus much larger bodies) by use of the gravitational N-body code pkdgrav. Preliminary results clearly show that under certain conditions a local planetesimal clustering can remain compact over several disk revolutions, provided that a velocity correlation among neighbouring particles is present. An appropriate rescaling of these results toward planetesimals of smaller sizes shows that cluster survival is relevant in affecting their dynamics, collisional properties and growth rate. These processes could then be very relevant in the early stages of planetary system formation.

  18. A comparison of models for estimating the riverine export of nitrogen from large watersheds

    USGS Publications Warehouse

    Alexander, R.B.; Johnes, P.J.; Boyer, E.W.; Smith, R.A.

    2002-01-01

    We evaluated the accuracy of six watershed models of nitrogen export in streams (kg km2 yr-1) developed for use in large watersheds and representing various empirical and quasi-empirical approaches described in the literature. These models differ in their methods of calibration and have varying levels of spatial resolution and process complexity, which potentially affect the accuracy (bias and precision) of the model predictions of nitrogen export and source contributions to export. Using stream monitoring data and detailed estimates of the natural and cultural sources of nitrogen for 16 watersheds in the northeastern United States (drainage sizes = 475 to 70,000 km2), we assessed the accuracy of the model predictions of total nitrogen and nitrate-nitrogen export. The model validation included the use of an error modeling technique to identify biases caused by model deficiencies in quantifying nitrogen sources and biogeochemical processes affecting the transport of nitrogen in watersheds. Most models predicted stream nitrogen export to within 50% of the measured export in a majority of the watersheds. Prediction errors were negatively correlated with cultivated land area, indicating that the watershed models tended to over predict export in less agricultural and more forested watersheds and under predict in more agricultural basins. The magnitude of these biases differed appreciably among the models. Those models having more detailed descriptions of nitrogen sources, land and water attenuation of nitrogen, and water flow paths were found to have considerably lower bias and higher precision in their predictions of nitrogen export.

  19. Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco

    PubMed Central

    2010-01-01

    Background Sinorhizobium meliloti and S. medicae are symbiotic nitrogen fixing bacteria in root nodules of forage legume alfalfa (Medicago sativa L.). In Morocco, alfalfa is usually grown in marginal soils of arid and semi-arid regions frequently affected by drought, extremes of temperature and soil pH, soil salinity and heavy metals, which affect biological nitrogen fixing ability of rhizobia and productivity of the host. This study examines phenotypic diversity for tolerance to the above stresses and genotypic diversity at Repetitive Extragenic Pallindromic DNA regions of Sinorhizobium nodulating alfalfa, sampled from marginal soils of arid and semi-arid regions of Morocco. Results RsaI digestion of PCR amplified 16S rDNA of the 157 sampled isolates, assigned 136 isolates as S. meliloti and the rest as S. medicae. Further phenotyping of these alfalfa rhizobia for tolerance to the environmental stresses revealed a large degree of variation: 55.41%, 82.16%, 57.96% and 3.18% of the total isolates were tolerant to NaCl (>513 mM), water stress (-1.5 MPa), high temperature (40°C) and low pH (3.5), respectively. Sixty-seven isolates of S. meliloti and thirteen isolates of S. medicae that were tolerant to salinity were also tolerant to water stress. Most of the isolates of the two species showed tolerance to heavy metals (Cd, Mn and Zn) and antibiotics (chloramphenicol, spectinomycin, streptomycin and tetracycline). The phenotypic clusters observed by the cluster analysis clearly showed adaptations of the S. meliloti and S. medicae strains to the multiple stresses. Genotyping with rep-PCR revealed higher genetic diversity within these phenotypic clusters and classified all the 157 isolates into 148 genotypes. No relationship between genotypic profiles and the phenotypes was observed. The Analysis of Molecular Variance revealed that largest proportion of significant (P < 0.01) genetic variation was distributed within regions (89%) than among regions (11%). Conclusion

  20. Nutritional Performance of Cattle Grazing during Rainy Season with Nitrogen and Starch Supplementation.

    PubMed

    Lazzarini, Ísis; Detmann, Edenio; de Campos Valadares Filho, Sebastião; Paulino, Mário Fonseca; Batista, Erick Darlisson; de Almeida Rufino, Luana Marta; Dos Reis, William Lima Santiago; de Oliveira Franco, Marcia

    2016-08-01

    The objective of this work was to evaluate the effects of supplementation with nitrogen and starch on the nutritional performance of grazing cattle during the rainy season. Five rumen cannulated Nellore steers, averaging 211 kg of body weight (BW), were used. Animals grazed on five signal grass paddocks. Five treatments were evaluated: control (forage only), ruminal supplementation with nitrogen at 1 g of crude protein (CP)/kg BW, ruminal supplementation with starch at 2.5 g/kg BW, supplementation with nitrogen (1 g CP/kg BW) and starch (2.5 g/kg BW), and supplementation with nitrogen (1 g CP/kg BW) and a mixture of corn starch and nitrogenous compounds (2.5 g/kg BW), thereby resulting in an energy part of the supplement with 150 g CP/kg of dry matter (DM). This last treatment was considered an additional treatment. The experiment was carried out according to a 5 ×5 Latin square design following a 2×2+1 factorial arrangement (with or without nitrogen, with or without starch, and the additional treatment). Nitrogen supplementation did not affect (p>0.10) forage intake. Starch supplementation increased (p<0.10) total intake but did not affect (p<0.10) forage intake. There was an interaction between nitrogen and starch (p<0.10) for organic matter digestibility. Organic matter digestibility was increased only by supplying starch and nitrogen together. Nitrogen balance (NB) was increased (p<0.10) by the nitrogen supplementation as well as by starch supplementation. Despite this, even though a significant interaction was not observed (p>0.10), NB obtained with nitrogen plus starch supplementation was greater than NB obtained with either nitrogen or starch exclusive supplementation. Supplementation with starch and nitrogen to beef cattle grazing during the rainy season can possibly improve digestion and nitrogen retention in the animal.. PMID:26954147

  1. Biotic Nitrogen Enrichment Regulates Calcium Sources to Forests

    NASA Astrophysics Data System (ADS)

    Pett-Ridge, J. C.; Perakis, S. S.; Hynicka, J. D.

    2015-12-01

    Calcium is an essential nutrient in forest ecosystems that is susceptible to leaching loss and depletion. Calcium depletion can affect plant and animal productivity, soil acid buffering capacity, and fluxes of carbon and water. Excess nitrogen supply and associated soil acidification are often implicated in short-term calcium loss from soils, but the long-term role of nitrogen enrichment on calcium sources and resupply is unknown. Here we use strontium isotopes (87Sr/86Sr) as a proxy for calcium to investigate how soil nitrogen enrichment from biological nitrogen fixation interacts with bedrock calcium to regulate both short-term available supplies and the long-term sources of calcium in montane conifer forests. Our study examines 22 sites in western Oregon, spanning a 20-fold range of bedrock calcium on sedimentary and basaltic lithologies. In contrast to previous studies emphasizing abiotic control of weathering as a determinant of long-term ecosystem calcium dynamics and sources (via bedrock fertility, climate, or topographic/tectonic controls) we find instead that that biotic nitrogen enrichment of soil can strongly regulate calcium sources and supplies in forest ecosystems. For forests on calcium-rich basaltic bedrock, increasing nitrogen enrichment causes calcium sources to shift from rock-weathering to atmospheric dominance, with minimal influence from other major soil forming factors, despite regionally high rates of tectonic uplift and erosion that can rejuvenate weathering supply of soil minerals. For forests on calcium-poor sedimentary bedrock, we find that atmospheric inputs dominate regardless of degree of nitrogen enrichment. Short-term measures of soil and ecosystem calcium fertility are decoupled from calcium source sustainability, with fundamental implications for understanding nitrogen impacts, both in natural ecosystems and in the context of global change. Our finding that long-term nitrogen enrichment increases forest reliance on atmospheric

  2. A new clustering strategy

    NASA Astrophysics Data System (ADS)

    Feng, Jian-xin; Tang, Jia-fu; Wang, Guang-xing

    2007-04-01

    On the basis of the analysis of clustering algorithm that had been proposed for MANET, a novel clustering strategy was proposed in this paper. With the trust defined by statistical hypothesis in probability theory and the cluster head selected by node trust and node mobility, this strategy can realize the function of the malicious nodes detection which was neglected by other clustering algorithms and overcome the deficiency of being incapable of implementing the relative mobility metric of corresponding nodes in the MOBIC algorithm caused by the fact that the receiving power of two consecutive HELLO packet cannot be measured. It's an effective solution to cluster MANET securely.

  3. Atomic force microscopy study of nitrogen molecule self-assembly at the HOPG-water interface

    NASA Astrophysics Data System (ADS)

    Lu, Yi-Hsien; Yang, Chih-Wen; Hwang, Ing-Shouh

    2014-06-01

    In this work, we investigated the evolution of the graphite-water interface in a nitrogen atmosphere by using frequency-modulation atomic force microscopy (FM-AFM). A highly ordered pyrolytic graphite (HOPG) sample was immersed in pre-degassed water and subsequently placed in the nitrogen environment. The dissolved nitrogen molecules diffused in water and self-assembled into ordered row-like structural domains at the interface. Nucleation and growth processes of the domains were observed. When the coverage of the ordered structure surpassed 50%, small clusters began to appear on the ordered structure. The number density of the clusters increases as the coverage of the ordered structures increases and these clusters may hop on the ordered structures. A model is proposed to explain the evolution of the nitrogen molecule self-assembly process at the interface. The observation of nitrogen clusters may shed light on the nature and nucleation of the so-called nanobubbles at hydrophobic-water interfaces.

  4. Unconventional methods for clustering

    NASA Astrophysics Data System (ADS)

    Kotyrba, Martin

    2016-06-01

    Cluster analysis or clustering is a task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar (in some sense or another) to each other than to those in other groups (clusters). It is the main task of exploratory data mining and a common technique for statistical data analysis used in many fields, including machine learning, pattern recognition, image analysis, information retrieval, and bioinformatics. The topic of this paper is one of the modern methods of clustering namely SOM (Self Organising Map). The paper describes the theory needed to understand the principle of clustering and descriptions of algorithm used with clustering in our experiments.

  5. Stability of Phosphine-Ligated Gold Cluster Ions toward Dissociation: Effect of Ligand and Cluster Size

    NASA Astrophysics Data System (ADS)

    Laskin, Julia

    2015-03-01

    Precise control of the composition of phosphine-ligated gold clusters is of interest to their applications in catalysis, sensing, and drug delivery. Reduction synthesis in solution typically generates a distribution of ligated clusters containing different number of gold atoms and capping ligands. Ligand binding energy is an important factor determining the kinetics of cluster nucleation and growth in solution and hence the resulting cluster distribution. Phosphines are popular capping ligands with tunable electronic and steric properties that affect their binding to the gold core. We examined the effect of the number of gold atoms in the cluster and the properties of the phosphine ligand on the ligand binding energy to the gold core using surface-induced dissociation (SID) of mass selected cluster cations produced through electrospray ionization. SID of vibrationally excited ions is ideally suited for studying gas-phase fragmentation of complex ions such as ligated gold clusters. The energetics, dynamics, and mechanisms of cluster ion fragmentation in the absence of solvent are determined through RRKM modeling of time and kinetic energy dependent SID spectra. This approach provides quantitative information on the ligand binding energies in phosphine-ligated gold clusters important for understanding their formation in solution. Furthermore, ligand binding energies derived from SID data provide the first benchmark values for comparison with electronic structure calculations. This work was supported by the US Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.

  6. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle

    NASA Astrophysics Data System (ADS)

    Casciotti, Karen L.

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status.

  7. Nitrogen and Oxygen Isotopic Studies of the Marine Nitrogen Cycle.

    PubMed

    Casciotti, Karen L

    2016-01-01

    The marine nitrogen cycle is a complex web of microbially mediated reactions that control the inventory, distribution, and speciation of nitrogen in the marine environment. Because nitrogen is a major nutrient that is required by all life, its availability can control biological productivity and ecosystem structure in both surface and deep-ocean communities. Stable isotopes of nitrogen and oxygen in nitrate and nitrite have provided new insights into the rates and distributions of marine nitrogen cycle processes, especially when analyzed in combination with numerical simulations of ocean circulation and biogeochemistry. This review highlights the insights gained from dual-isotope studies applied at regional to global scales and their incorporation into oceanic biogeochemical models. These studies represent significant new advances in the use of isotopic measurements to understand the modern nitrogen cycle, with implications for the study of past ocean productivity, oxygenation, and nutrient status. PMID:26747521

  8. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nitrogen (amino-nitrogen) test system....

  9. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nitrogen (amino-nitrogen) test system....

  10. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nitrogen (amino-nitrogen) test system....

  11. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and urine... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nitrogen (amino-nitrogen) test system....

  12. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2008-04-01

    ... 21 Food and Drugs 8 2008-04-01 2008-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  13. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2016-04-01

    ... 21 Food and Drugs 8 2016-04-01 2016-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  14. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2014 CFR

    2004-04-01

    ... 21 Food and Drugs 8 2004-04-01 2004-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  15. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2007-04-01

    ... 21 Food and Drugs 8 2007-04-01 2007-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  16. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2009-04-01

    ... 21 Food and Drugs 8 2009-04-01 2009-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  17. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2003-04-01

    ... 21 Food and Drugs 8 2003-04-01 2003-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  18. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2006-04-01

    ... 21 Food and Drugs 8 2006-04-01 2006-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  19. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2002-04-01

    ... 21 Food and Drugs 8 2002-04-01 2002-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  20. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    1998-04-01

    ... 21 Food and Drugs 8 1998-04-01 1998-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Test Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma,...

  1. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2012 CFR

    2000-04-01

    ... 21 Food and Drugs 8 2000-04-01 2000-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Clinical Chemistry Test Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in...

  2. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2001-04-01

    ... 21 Food and Drugs 8 2001-04-01 2001-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  3. 21 CFR § 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2011 CFR

    2015-04-01

    ... 21 Food and Drugs 8 2015-04-01 2015-04-01 false Nitrogen (amino-nitrogen) test system. § 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  4. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2013 CFR

    2005-04-01

    ... 21 Food and Drugs 8 2005-04-01 2005-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... Systems § 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure amino acid nitrogen levels in serum, plasma, and...

  5. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    SciTech Connect

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  6. Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe

    NASA Astrophysics Data System (ADS)

    Mulder, C.; Hettelingh, J.-P.; Montanarella, L.; Pasimeni, M. R.; Posch, M.; Voigt, W.; Zurlini, G.

    2015-03-01

    Long-term human interactions with landscape and nature produced a plethora of trends and patterns of environmental disturbances in time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main pollution drivers, affecting both freshwater as terrestrial ecosystems. We investigated the geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon to nitrogen ratios over Europe. After the Second Industrial Revolution (1880-2010), large landscape stretches characterized by different atmospheric deposition caused either by industrialized areas or by intensive agriculture emerged. Nitrogen deposition affects in a still recognizable way recent soil C : N ratios despite the emission abatement of oxidized and reduced nitrogen during the last two decades. Given the seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing evidence for a rapid response of nature to chronic nitrogen supply by atmospheric deposition.

  7. Chemical footprints of anthropogenic nitrogen deposition on recent soil C : N ratios in Europe

    NASA Astrophysics Data System (ADS)

    Mulder, C.; Hettelingh, J.-P.; Montanarella, L.; Pasimeni, M. R.; Posch, M.; Voigt, W.; Zurlini, G.

    2015-07-01

    Long-term human interactions with the natural landscape have produced a plethora of trends and patterns of environmental disturbances across time and space. Nitrogen deposition, closely tracking energy and land use, is known to be among the main drivers of pollution, affecting both freshwater and terrestrial ecosystems. We present a statistical approach for investigating the historical and geographical distribution of nitrogen deposition and the impacts of accumulation on recent soil carbon-to-nitrogen ratios in Europe. After the second Industrial Revolution, large swaths of land emerged characterized by different atmospheric deposition patterns caused by industrial activities or intensive agriculture. Nitrogen deposition affects soil C : N ratios in a still recognizable way despite the abatement of oxidized and reduced nitrogen emissions during the last 2 decades. Given a seemingly disparate land-use history, we focused on ~ 10 000 unmanaged ecosystems, providing statistical evidence for a rapid response of nature to the chronic nitrogen supply through atmospheric deposition.

  8. ASteCA: Automated Stellar Cluster Analysis

    NASA Astrophysics Data System (ADS)

    Perren, G. I.; Vázquez, R. A.; Piatti, A. E.

    2015-04-01

    We present the Automated Stellar Cluster Analysis package (ASteCA), a suit of tools designed to fully automate the standard tests applied on stellar clusters to determine their basic parameters. The set of functions included in the code make use of positional and photometric data to obtain precise and objective values for a given cluster's center coordinates, radius, luminosity function and integrated color magnitude, as well as characterizing through a statistical estimator its probability of being a true physical cluster rather than a random overdensity of field stars. ASteCA incorporates a Bayesian field star decontamination algorithm capable of assigning membership probabilities using photometric data alone. An isochrone fitting process based on the generation of synthetic clusters from theoretical isochrones and selection of the best fit through a genetic algorithm is also present, which allows ASteCA to provide accurate estimates for a cluster's metallicity, age, extinction and distance values along with its uncertainties. To validate the code we applied it on a large set of over 400 synthetic MASSCLEAN clusters with varying degrees of field star contamination as well as a smaller set of 20 observed Milky Way open clusters (Berkeley 7, Bochum 11, Czernik 26, Czernik 30, Haffner 11, Haffner 19, NGC 133, NGC 2236, NGC 2264, NGC 2324, NGC 2421, NGC 2627, NGC 6231, NGC 6383, NGC 6705, Ruprecht 1, Tombaugh 1, Trumpler 1, Trumpler 5 and Trumpler 14) studied in the literature. The results show that ASteCA is able to recover cluster parameters with an acceptable precision even for those clusters affected by substantial field star contamination. ASteCA is written in Python and is made available as an open source code which can be downloaded ready to be used from its official site.

  9. Nitrogen fixation and nitrogen transformations in marine symbioses.

    PubMed

    Fiore, Cara L; Jarett, Jessica K; Olson, Nathan D; Lesser, Michael P

    2010-10-01

    Many marine organisms have coevolved symbiotic relationships with nitrogen-fixing bacteria in nitrogen limited environments such as coral reefs. In addition, some of these organisms also harbor microbes that carry out nitrification and denitrification. Prokaryotes involved in nitrogen fixation and other nitrogen transformations are symbionts in a range of eukaryotic hosts in the marine environment including shipworms, diatoms, corals and sponges. Molecular genetic approaches, and other analytical techniques, have provided exciting new insights into symbiont diversity and the relationship between host and symbiont. We review the current state of knowledge of these symbioses and highlight important avenues for future studies. PMID:20674366

  10. [Effects of seasonal snow cover on soil nitrogen transformation in alpine ecosystem: a review].

    PubMed

    Liu, Lin; Wu, Yan; He, Yi-xin; Wu, Ning; Sun, Geng; Zhang, Lin; Xu, Jun-jun

    2011-08-01

    Seasonal snow cover has pronounced effects on the soil nitrogen concentration and transformation in alpine ecosystem. Snowfall is an important form of nitrogen deposition, which directly affects the content of soil available nitrogen. Different depths and different duration of snow cover caused by snowfall may lead the heterogeneity of abiotic factors (soil temperature and moisture) and biotic factors (soil microbes, alpine plants, and alpine animals), and further, produce complicated effects on the mineralization and immobilization of soil nitrogen. This paper introduced in emphasis the inherent mechanisms of soil nitrogen mineralization and leaching under the effects of frequent freeze-thaw events during the durative melting of snow cover, and summarized the main research results of field in situ experiments about the effects of seasonal snow cover on soil nitrogen in alpine ecosystem based on the possible changes in snow cover in the future. Some suggestions with regard to the effects of seasonal snow cover on soil nitrogen were put forward. PMID:22097387

  11. Understanding Nitrogen Fixation

    SciTech Connect

    Paul J. Chirik

    2012-05-25

    The purpose of our program is to explore fundamental chemistry relevant to the discovery of energy efficient methods for the conversion of atmospheric nitrogen (N{sub 2}) into more value-added nitrogen-containing organic molecules. Such transformations are key for domestic energy security and the reduction of fossil fuel dependencies. With DOE support, we have synthesized families of zirconium and hafnium dinitrogen complexes with elongated and activated N-N bonds that exhibit rich N{sub 2} functionalization chemistry. Having elucidated new methods for N-H bond formation from dihydrogen, C-H bonds and Broensted acids, we have since turned our attention to N-C bond construction. These reactions are particularly important for the synthesis of amines, heterocycles and hydrazines with a range of applications in the fine and commodity chemicals industries and as fuels. One recent highlight was the discovery of a new N{sub 2} cleavage reaction upon addition of carbon monoxide which resulted in the synthesis of an important fertilizer, oxamide, from the diatomics with the two strongest bonds in chemistry. Nitrogen-carbon bonds form the backbone of many important organic molecules, especially those used in the fertilizer and pharamaceutical industries. During the past year, we have continued our work in the synthesis of hydrazines of various substitution patterns, many of which are important precursors for heterocycles. In most instances, the direct functionalization of N{sub 2} offers a more efficient synthetic route than traditional organic methods. In addition, we have also discovered a unique CO-induced N{sub 2} bond cleavage reaction that simultaneously cleaves the N-N bond of the metal dinitrogen compound and assembles new C-C bond and two new N-C bonds. Treatment of the CO-functionalized core with weak Broensted acids liberated oxamide, H{sub 2}NC(O)C(O)NH{sub 2}, an important slow release fertilizer that is of interest to replace urea in many applications. The

  12. Nitrogen fixation apparatus

    DOEpatents

    Chen, Hao-Lin

    1984-01-01

    A method and apparatus for achieving nitrogen fixation includes a volumetric electric discharge chamber. The volumetric discharge chamber provides an even distribution of an electron beam, and enables the chamber to be maintained at a controlled energy to pressure (E/p) ratio. An E/p ratio of from 5 to 15 kV/atm of O.sub.2 /cm promotes the formation of vibrationally excited N.sub.2. Atomic oxygen interacts with vibrationally excited N.sub.2 at a much quicker rate than unexcited N.sub.2, greatly improving the rate at which NO is formed.

  13. Luminescence lifetimes of neutral nitrogen-vacancy centres in synthetic diamond containing nitrogen

    NASA Astrophysics Data System (ADS)

    Liaugaudas, G.; Davies, G.; Suhling, K.; Khan, R. U. A.; Evans, D. J. F.

    2012-10-01

    The decay time of luminescence from neutral nitrogen-vacancy (NV 0) centres in synthetic diamond is reported. The intrinsic luminescence lifetime of NV 0 is measured as τr = 19 ± 2 ns. Neutral substitutional nitrogen atoms ({{N}}_{{s}}^{0}) are shown to quench luminescence from NV0 by dipole-dipole resonant energy transfer at a rate such that the transfer time would equal τr if one {{N}}_{{s}}^{0} atom was ˜3 nm from the NV0. In chemical-vapour-deposited diamonds grown with a small nitrogen content, that are brown as a result of vacancy-cluster defects, the decay time of NV0 equals τr in the as-grown material. However, after annealing at ≥1700 °C to remove the brown colour, luminescence from the NV0 centres is severely quenched. This effect is suggested to be a result of the destruction of NV0 centres and the creation of new NV0 centres localized in vacancy-rich regions of the crystals.

  14. [Clustering of simple obesity].

    PubMed

    Yoshida, K; Matsuda, H; Kurita, M; Umetada, Y

    1988-05-01

    An attempt was made to classify persons with simple obesity from the viewpoint of health education. Subjects of the study were 1,278 male workers in a financing company who underwent health examination. At the time of health examinations, questionnaire survey concerning their life styles was carried out on all the subjects. The obese group consisted of 127 subjects whose obesity indices were over 15% and the control group consisted of 342 subjects whose obesity indices ranged from -5 to 5%. Subjects in the obese group were classified into four clusters based on cluster analysis using five life-style parameters; that is, frequency of taking breakfast, frequency of taking staple food, drinking habits, smoking habits, and frequency of exercise. The first cluster (N = 10) included inactive persons, the second cluster (N = 46) non smokers, the third cluster (N = 39) smokers and heavy drinkers, and the fourth cluster (N = 32) smokers and non-drinkers. Comparison of the four clusters of obese persons with the control group revealed the following findings: 1) All the four clusters had significantly high frequencies of abnormal values of triglyceride (TG) and fasting blood sugar (FBS). 2) The first cluster had significantly high frequencies of abnormal values of glutamic oxalacetic transaminase (GOT) and glutamic pyruvic transaminase (GPT). 3) The second cluster had significantly high frequencies of abnormal values of systolic and diastolic blood pressure, total cholesterol, TG, FBS, uric acid, GOT, GPT and gamma glutamyl transferase (GGT).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3172544

  15. Spectroscopic Factors and Barrier Penetrabilities in Cluster Radioactivity

    SciTech Connect

    Kuklin, S.N.; Adamian, G.G.; Antonenko, N.V.

    2005-09-01

    The cold cluster decay model is presented in the framework of a dinuclear system concept. Spectroscopic factors are extracted from barrier penetrabilities and measured half-lives. The deformation of the light cluster and residual nucleus is shown to affect the nucleus-nucleus potential and decay characteristics. Half-lives are predicted for neutron-deficient actinides and intermediate-mass nuclei. The connection between spontaneous fission and cluster radioactivity is discussed.

  16. Nitrogen In Saturn's Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Smith, H. T.; Sittler, E. C.; Johnson, R. E.; McComas, D.; Reisenfeld, D.; Shappirio, M.; Michael, M.; Shematovich, V. I.; Baragiola, R. A.; Crary, F.; Young, D.

    2004-11-01

    We are analyzing CAPS instrument data on Cassini to look for nitrogen ions in Saturn's magnetosphere. Because Voyager could not separate oxygen and nitrogen, there has been considerable controversy on nitrogen's presence and relative importance. Two principal sources have been suggested: Titan's atmosphere and nitrogen species trapped in Saturn's icy satellite surfaces (Sittler et al 2004). The latter may be primordial nitrogen, likely as NH3 in ice (Stevenson 1982; Squyers et al. 1983) or nitrogen ions that have been implanted in the surface (Delitsky and Lane 2002). We will present the results of Saturnian nitrogen cloud modeling and relevant CAPS observations. We recently described the Titan source (Michael, et al. 2004; Shematovich et al. 2003; Smith et al. 2004; Sittler et al. 2004) in preparation for Cassini's Saturnian plasma measurements. Two components were identified: energetic nitrogen ions formed near Titan and energized as they diffused inward (Sittler et al. 2004) and neutrals in orbits with small perigee that became ionized in the inner magnetosphere (Smith et al 2004). The latter component would be a source of lower energy, co-rotating nitrogen ions to the inner magnetosphere. Such a component would have an energy spectrum similar to nitrogen species sputtered from the icy satellite surfaces (Johnson and Sittler 1990). However, the mass spectrum would differ, likely containing NHx and NOx species also, and, hence, may be separated from the Titan source. Our preliminary analysis for nitrogen species in the CAPS data will be compared to the models. Of interest will be the energy spectra, which can indicate whether any nitrogen present is formed locally or near Titan's orbit and diffused inward. This work is supported by the NASA Planetary Atmospheres, NASA Graduate Student Research, Virginia Space Grant Consortium Graduate Research Fellowship and the CAPS Cassini instrument team programs.

  17. A Clustering Classification of Spare Parts for Improving Inventory Policies

    NASA Astrophysics Data System (ADS)

    Meri Lumban Raja, Anton; Ai, The Jin; Diar Astanti, Ririn

    2016-02-01

    Inventory policies in a company may consist of storage, control, and replenishment policy. Since the result of common ABC inventory classification can only affect the replenishment policy, we are proposing a clustering based classification technique as a basis for developing inventory policy especially for storage and control policy. Hierarchical clustering procedure is used after clustering variables are defined. Since hierarchical clustering procedure requires metric variables only, therefore a step to convert non-metric variables to metric variables is performed. The clusters resulted from the clustering techniques are analyzed in order to define each cluster characteristics. Then, the inventory policies are determined for each group according to its characteristics. A real data, which consists of 612 items from a local manufacturer's spare part warehouse, are used in the research of this paper to show the applicability of the proposed methodology.

  18. Nitrogen fixation and nifH diversity in human gut microbiota.

    PubMed

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R; Horwood, Paul F; Inoue, Jun-Ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A (15)N2 incorporation assay showed significant enrichment of (15)N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  19. Nitrogen fixation and nifH diversity in human gut microbiota

    PubMed Central

    Igai, Katsura; Itakura, Manabu; Nishijima, Suguru; Tsurumaru, Hirohito; Suda, Wataru; Tsutaya, Takumi; Tomitsuka, Eriko; Tadokoro, Kiyoshi; Baba, Jun; Odani, Shingo; Natsuhara, Kazumi; Morita, Ayako; Yoneda, Minoru; Greenhill, Andrew R.; Horwood, Paul F.; Inoue, Jun-ichi; Ohkuma, Moriya; Hongoh, Yuichi; Yamamoto, Taro; Siba, Peter M.; Hattori, Masahira; Minamisawa, Kiwamu; Umezaki, Masahiro

    2016-01-01

    It has been hypothesized that nitrogen fixation occurs in the human gut. However, whether the gut microbiota truly has this potential remains unclear. We investigated the nitrogen-fixing activity and diversity of the nitrogenase reductase (NifH) genes in the faecal microbiota of humans, focusing on Papua New Guinean and Japanese individuals with low to high habitual nitrogen intake. A 15N2 incorporation assay showed significant enrichment of 15N in all faecal samples, irrespective of the host nitrogen intake, which was also supported by an acetylene reduction assay. The fixed nitrogen corresponded to 0.01% of the standard nitrogen requirement for humans, although our data implied that the contribution in the gut in vivo might be higher than this value. The nifH genes recovered in cloning and metagenomic analyses were classified in two clusters: one comprising sequences almost identical to Klebsiella sequences and the other related to sequences of Clostridiales members. These results are consistent with an analysis of databases of faecal metagenomes from other human populations. Collectively, the human gut microbiota has a potential for nitrogen fixation, which may be attributable to Klebsiella and Clostridiales strains, although no evidence was found that the nitrogen-fixing activity substantially contributes to the host nitrogen balance. PMID:27554344

  20. Electron: Cluster interactions

    SciTech Connect

    Scheidemann, A.A.; Kresin, V.V.; Knight, W.D.

    1994-02-01

    Beam depletion spectroscopy has been used to measure absolute total inelastic electron-sodium cluster collision cross sections in the energy range from E {approximately} 0.1 to E {approximately} 6 eV. The investigation focused on the closed shell clusters Na{sub 8}, Na{sub 20}, Na{sub 40}. The measured cross sections show an increase for the lowest collision energies where electron attachment is the primary scattering channel. The electron attachment cross section can be understood in terms of Langevin scattering, connecting this measurement with the polarizability of the cluster. For energies above the dissociation energy the measured electron-cluster cross section is energy independent, thus defining an electron-cluster interaction range. This interaction range increases with the cluster size.

  1. Information-based clustering

    PubMed Central

    Slonim, Noam; Atwal, Gurinder Singh; Tkačik, Gašper; Bialek, William

    2005-01-01

    In an age of increasingly large data sets, investigators in many different disciplines have turned to clustering as a tool for data analysis and exploration. Existing clustering methods, however, typically depend on several nontrivial assumptions about the structure of data. Here, we reformulate the clustering problem from an information theoretic perspective that avoids many of these assumptions. In particular, our formulation obviates the need for defining a cluster “prototype,” does not require an a priori similarity metric, is invariant to changes in the representation of the data, and naturally captures nonlinear relations. We apply this approach to different domains and find that it consistently produces clusters that are more coherent than those extracted by existing algorithms. Finally, our approach provides a way of clustering based on collective notions of similarity rather than the traditional pairwise measures. PMID:16352721

  2. Metformin Improves Diabetic Bone Health by Re-Balancing Catabolism and Nitrogen Disposal

    PubMed Central

    Li, Xiyan; Guo, Yuqi; Yan, Wenbo; Snyder, Michael P.; Li, Xin

    2015-01-01

    Objective Metformin, a leading drug used to treat diabetic patients, is reported to benefit bone homeostasis under hyperglycemia in animal models. However, both the molecular targets and the biological pathways affected by metformin in bone are not well identified or characterized. The objective of this study is to investigate the bioengergeric pathways affected by metformin in bone marrow cells of mice. Materials and Methods Metabolite levels were examined in bone marrow samples extracted from metformin or PBS -treated healthy (Wild type) and hyperglycemic (diabetic) mice using liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. We applied an untargeted high performance LC-MS approach which combined multimode chromatography (ion exchange, reversed phase and hydrophilic interaction (HILIC)) and Orbitrap-based ultra-high accuracy mass spectrometry to achieve a wide coverage. A multivariate clustering was applied to reveal the global trends and major metabolite players. Results A total of 346 unique metabolites were identified, and they are grouped into distinctive clusters that reflected general and diabetes-specific responses to metformin. As evidenced by changes in the TCA and urea cycles, increased catabolism and nitrogen waste that are commonly associated with diabetes were rebalanced upon treatment with metformin. In particular, we found glutamate and succinate whose levels were drastically elevated in diabetic animals were brought back to normal levels by metformin. These two metabolites were further validated as the major targets of metformin in bone marrow stromal cells. Conclusion Overall using limited sample size, our study revealed the metabolic pathways modulated by metformin in bones which have broad implication in our understanding of bone remodeling under hyperglycemia and in finding therapeutic interventions in mammals. PMID:26716870

  3. Orchard nitrogen management: Which nitrogen source is best?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Suboptimal management of nitrogen fertility in pecan orchards leads to a loss of nutmeat yield and quality, but also a waste of natural resources and money. This article reviews several basic guiding principles useful to orchard managers when developing nitrogen management strategies, and determini...

  4. Robustness of a partially interdependent network formed of clustered networks

    NASA Astrophysics Data System (ADS)

    Shao, Shuai; Huang, Xuqing; Stanley, H. Eugene; Havlin, Shlomo

    2014-03-01

    Clustering, or transitivity, a behavior observed in real-world networks, affects network structure and function. This property has been studied extensively, but most of this research has been limited to clustering in single networks. The effect of clustering on the robustness of coupled networks, on the other hand, has received much less attention. Only the case of a pair of fully coupled networks with clustering has recently received study. Here we generalize the study of clustering of a fully coupled pair of networks and apply it to a partially interdependent network of networks with clustering within the network components. We show, both analytically and numerically, how clustering within networks affects the percolation properties of interdependent networks, including the percolation threshold, the size of the giant component, and the critical coupling point at which the first-order phase transition changes to a second-order phase transition as the coupling between the networks is reduced. We study two types of clustering, one proposed by Newman [Phys. Rev. Lett. 103, 058701 (2009), 10.1103/PhysRevLett.103.058701] in which the average degree is kept constant while the clustering is changed, and the other by Hackett et al. [Phys. Rev. E 83, 056107 (2011), 10.1103/PhysRevE.83.056107] in which the degree distribution is kept constant. The first type of clustering is studied both analytically and numerically, and the second is studied numerically.

  5. Mini-clusters

    NASA Technical Reports Server (NTRS)

    Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.

    1985-01-01

    Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.

  6. Management of cluster headache.

    PubMed

    Tfelt-Hansen, Peer C; Jensen, Rigmor H

    2012-07-01

    The prevalence of cluster headache is 0.1% and cluster headache is often not diagnosed or misdiagnosed as migraine or sinusitis. In cluster headache there is often a considerable diagnostic delay - an average of 7 years in a population-based survey. Cluster headache is characterized by very severe or severe orbital or periorbital pain with a duration of 15-180 minutes. The cluster headache attacks are accompanied by characteristic associated unilateral symptoms such as tearing, nasal congestion and/or rhinorrhoea, eyelid oedema, miosis and/or ptosis. In addition, there is a sense of restlessness and agitation. Patients may have up to eight attacks per day. Episodic cluster headache (ECH) occurs in clusters of weeks to months duration, whereas chronic cluster headache (CCH) attacks occur for more than 1 year without remissions. Management of cluster headache is divided into acute attack treatment and prophylactic treatment. In ECH and CCH the attacks can be treated with oxygen (12 L/min) or subcutaneous sumatriptan 6 mg. For both oxygen and sumatriptan there are two randomized, placebo-controlled trials demonstrating efficacy. In both ECH and CCH, verapamil is the prophylactic drug of choice. Verapamil 360 mg/day was found to be superior to placebo in one clinical trial. In clinical practice, daily doses of 480-720 mg are mostly used. Thus, the dose of verapamil used in cluster headache treatment may be double the dose used in cardiology, and with the higher doses the PR interval should be checked with an ECG. At the start of a cluster, transitional preventive treatment such as corticosteroids or greater occipital nerve blockade can be given. In CCH and in long-standing clusters of ECH, lithium, methysergide, topiramate, valproic acid and ergotamine tartrate can be used as add-on prophylactic treatment. In drug-resistant CCH, neuromodulation with either occipital nerve stimulation or deep brain stimulation of the hypothalamus is an alternative treatment strategy

  7. The youngest globular clusters

    NASA Astrophysics Data System (ADS)

    Beck, Sara

    2015-11-01

    It is likely that all stars are born in clusters, but most clusters are not bound and disperse. None of the many protoclusters in our Galaxy are likely to develop into long-lived bound clusters. The super star clusters (SSCs) seen in starburst galaxies are more massive and compact and have better chances of survival. The birth and early development of SSCs takes place deep in molecular clouds, and during this crucial stage the embedded clusters are invisible to optical or UV observations but are studied via the radio-infrared supernebulae (RISN) they excite. We review observations of embedded clusters and identify RISN within 10 Mpc whose exciting clusters have ≈ 106 M⊙ or more in volumes of a few pc3 and which are likely to not only survive as bound clusters, but to evolve into objects as massive and compact as Galactic globulars. These clusters are distinguished by very high star formation efficiency η, at least a factor of 10 higher than the few percent seen in the Galaxy, probably due to the violent disturbances their host galaxies have undergone. We review recent observations of the kinematics of the ionized gas in RISN showing outflows through low-density channels in the ambient molecular cloud; this may protect the cloud from feedback by the embedded H II region.

  8. Acclimation of Nitrogen Uptake Capacity of Rice to Elevated Atmospheric CO2 Concentration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen is one of the major variables affecting the response of crop yields to elevated carbon dioxide. Elevated carbon dioxide increases root size, but there are no consistent reports of carbon dioxide effects on nitrogen uptake rates per unit of root. We proposed a simple concept for analysing ...

  9. Impact of fuel and nitrogen prices on profitability of selected crops: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing prices for fuel and nitrogen (N) fertilizer affect crop production decisions and profitability. Nitrogen response functions were estimated for corn (Zea mays L.), sugar beets (Beta vulgaris L.), dry beans (Phaseolus vulgaris L.), and malt barley (Hordeum vulgare L.) using data from studie...

  10. Nitrogen Metabolism and Seed Composition as Influenced by Glyphosate Application in Glyphosate-Resistant Soybean

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Our previous research demonstrated that glyphosate drift affected nitrogen fixation and nitrogen assimilation in glyphosate-sensitive soybean at early growth stage. The objective of the present study was to investigate the effects of glyphosate application (Gly) of 1.12 kg ae ha-1 and 3.36 kg ae ka...

  11. Nitrogen release during coal combustion

    SciTech Connect

    Baxter, L.L.; Mitchell, R.E.; Fletcher, T.H.; Hurt, R.H.

    1995-02-01

    Experiments in entrained flow reactors at combustion temperatures are performed to resolve the rank dependence of nitrogen release on an elemental basis for a suite of 15 U.S. coals ranging from lignite to low-volatile bituminous. Data were obtained as a function of particle conversion, with overall mass loss up to 99% on a dry, ash-free basis. Nitrogen release rates are presented relative to both carbon loss and overall mass loss. During devolatilization, fractional nitrogen release from low-rank coals is much slower than fractional mass release and noticeably slower than fractional carbon release. As coal rank increases, fractional nitrogen release rate relative to that of carbon and mass increases, with fractional nitrogen release rates exceeding fractional mass and fractional carbon release rates during devolatilization for high-rank (low-volatile bituminous) coals. At the onset of combustion, nitrogen release rates increase significantly. For all coals investigated, cumulative fractional nitrogen loss rates relative to those of mass and carbon passes through a maximum during the earliest stages of oxidation. The mechanism for generating this maximum is postulated to involve nascent thermal rupture of nitrogen-containing compounds and possible preferential oxidation of nitrogen sites. During later stages of oxidation, the cumulative fractional loss of nitrogen approaches that of carbon for all coals. Changes in the relative release rates of nitrogen compared to those of both overall mass and carbon during all stages of combustion are attributed to a combination of the chemical structure of coals, temperature histories during combustion, and char chemistry.

  12. Soil Carbon Storage and N{sub 2}O Emissions from Wheat Agroecosystems as Affected by Free-Air CO{sub 2} Enrichment (FACE) and Nitrogen Treatments. Annual Progress Report - Year 1: August 1, 1996 to July 31, 1997 [Final Report

    SciTech Connect

    Leavitt, S.W.; Matthias, A.; Thompson, T.L.

    1999-02-17

    Rising atmospheric CO{sub 2} concentrations have prompted concern about response of plants and crops to future elevated CO{sub 2} levels, and particularly the extent to which ecosystems will sequester carbon and thus impact the rate of rise of CO{sub 2} concentrations. Free-air CO{sub 2} enrichment (FACE) experimentation was used with wheat agroecosystems for two growing seasons to assess effects of CO{sub 2} and soil nitrogen. Over 20 researchers on this experiment variously examined plant production and grow yield, phenology, length of growing season, water-use efficiency, ecosystem productivity, below ground processes (root and microbial activity, carbon and nitrogen cycling), etc.

  13. Investigating Nitrogen Pollution: Activities and Models.

    ERIC Educational Resources Information Center

    Green Teacher, 2000

    2000-01-01

    Introduces activities on nitrogen, nitrogen pollution from school commuters, nitrogen response in native and introduced species, and nutrient loading models. These activities help students determine the nitrogen contribution from their parents' cars, test native plant responses to nitrogen, and experiment with the results of removing water from…

  14. Clustering versus non-clustering phase synchronizations.

    PubMed

    Liu, Shuai; Zhan, Meng

    2014-03-01

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems. PMID:24697366

  15. Clustering versus non-clustering phase synchronizations

    SciTech Connect

    Liu, Shuai; Zhan, Meng

    2014-03-15

    Clustering phase synchronization (CPS) is a common scenario to the global phase synchronization of coupled dynamical systems. In this work, a novel scenario, the non-clustering phase synchronization (NPS), is reported. It is found that coupled systems do not transit to the global synchronization until a certain sufficiently large coupling is attained, and there is no clustering prior to the global synchronization. To reveal the relationship between CPS and NPS, we further analyze the noise effect on coupled phase oscillators and find that the coupled oscillator system can change from CPS to NPS with the increase of noise intensity or system disorder. These findings are expected to shed light on the mechanism of various intriguing self-organized behaviors in coupled systems.

  16. Atomically precise nitrogen-doped graphene nanoribbons

    NASA Astrophysics Data System (ADS)

    Sinitskii, Alexander

    There is a considerable interest in graphene nanoribbons (GNRs), few-nm-wide strips of graphene with high aspect ratios, because of their intriguing physical properties. For example, GNRs with zigzag edges are predicted to exhibit low-dimensional magnetism, while GNRs with armchair edges can possess large energy band gaps, making them promising materials for future electronics and photovoltaics. The ability to control structural parameters of GNRs, such as their width, edge structure and termination, with atomic precision is the key for practical realization of these intriguing nanoscale properties. Physical properties of GNRs can also be modified by their doping with heteroatoms, such nitrogen, resulting in nitrogen-doped GNRs or N-GNRs. In this talk I will discuss several types of N-GNRs with different doping levels that have been synthesized and systematically studied by spectroscopic, microscopic and transport methods. Incorporation of nitrogen atoms in graphene lattice is shown to be an effective route to affect GNRs' band gap, doping level as well as aggregation behavior. The support from NSF CHE-1455330 is gratefully acknowledged.

  17. Bacterial iron-sulfur cluster sensors in mammalian pathogens

    PubMed Central

    Miller, Halie K.; Auerbuch, Victoria

    2015-01-01

    Iron-sulfur clusters act as important cofactors for a number of transcriptional regulators in bacteria, including many mammalian pathogens. The sensitivity of iron-sulfur clusters to iron availability, oxygen tension, and reactive oxygen and nitrogen species enables bacteria to use such regulators to adapt their gene expression profiles rapidly in response to changing environmental conditions. In this review, we discuss how the [4Fe-4S] or [2Fe-2S] cluster-containing regulators FNR, Wbl, aconitase, IscR, NsrR, SoxR, and AirSR contribute to bacterial pathogenesis through control of both metabolism and classical virulence factors. In addition, we briefly review mammalian iron homeostasis as well as oxidative/nitrosative stress to provide context for understanding the function of bacterial iron-sulfur cluster sensors in different niches within the host. PMID:25738802

  18. Effects of watershed land use on nitrogen concentrations and δ15 nitrogen in groundwater

    USGS Publications Warehouse

    Cole, Marci L.; Kroeger, Kevin D.; McClelland, J.W.; Valiela, I.

    2006-01-01

    Eutrophication is a major agent of change affecting freshwater, estuarine, and marine systems. It is largely driven by transportation of nitrogen from natural and anthropogenic sources. Research is needed to quantify this nitrogen delivery and to link the delivery to specific land-derived sources. In this study we measured nitrogen concentrations and δ 15N values in seepage water entering three freshwater ponds and six estuaries on Cape Cod, Massachusetts and assessed how they varied with different types of land use. Nitrate concentrations and δ 15N values in groundwater reflected land use in developed and pristine watersheds. In particular, watersheds with larger populations delivered larger nitrate loads with higher δ 15N values to receiving waters. The enriched δ 15N values confirmed nitrogen loading model results identifying wastewater contributions from septic tanks as the major N source. Furthermore, it was apparent that N coastal sources had a relatively larger impact on the N loads and isotopic signatures than did inland N sources further upstream in the watersheds. This finding suggests that management priorities could focus on coastal sources as a first course of action. This would require management constraints on a much smaller population.

  19. A nonparametric clustering technique which estimates the number of clusters

    NASA Technical Reports Server (NTRS)

    Ramey, D. B.

    1983-01-01

    In applications of cluster analysis, one usually needs to determine the number of clusters, K, and the assignment of observations to each cluster. A clustering technique based on recursive application of a multivariate test of bimodality which automatically estimates both K and the cluster assignments is presented.

  20. Reactive accelerated cluster erosion (RACE) by ionized cluster beams

    NASA Astrophysics Data System (ADS)

    Gspann, Jürgen

    1996-05-01

    Beams of ionized clusters accelerated up to about 120 keV kinetic energy per cluster are used for cluster impact lithography. Chemical reactions of clusters of CO 2, or of SF 6, respectively, are found to assist the physical erosion by hypervelocity cluster impacts in yielding volatile products. Natural diamond, silicon and Pyrex glass have been microstructured showing very smooth eroded surfaces.

  1. Analysis of 33 MeV Nitrogen irradiated UHMWPE

    SciTech Connect

    Grosso, Mariela del; Chappa, Veronica; Garcia Bermudez, Gerardo

    2007-10-26

    In this work, we irradiated UHMWPE with 33 MeV Nitrogen ions, at several fluences, to generate surface modifications without affecting the bulk properties. These modifications were quantified by means of wear resistance tests and Fourier transform infrared spectroscopy (FTIR) measurements. Experimental results show an optimum ion fluence value that maximizes UHMWPE wear resistance.

  2. Fertilizer placement to maximize nitrogen use by fescue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The method of fertilizer nitrogen(N) application can affect N uptake in tall fescue and therefore its yield and quality. Subsurface-banding (knife) of fertilizer maximizes fescue N uptake in the poorly-drained clay–pan soils of southeastern Kansas. This study was conducted to determine if knifed N r...

  3. Seasonal Nitrogen Cycles on Pluto

    NASA Technical Reports Server (NTRS)

    Hansen, C. J.; Paige, D. A.

    1994-01-01

    A thermal model, developed to predict seasonal nitrogen cycles on Triton, has been modified and applied to Pluto. The model is used to calculate the partitioning of nitrogen between surface frost deposits and the atmosphere, as a function of time for various sets of input parameters.

  4. Nitrogen chiller acceptance test procedure

    SciTech Connect

    Kostelnik, A.J.

    1995-03-07

    This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

  5. Swivel Joint For Liquid Nitrogen

    NASA Technical Reports Server (NTRS)

    Milner, James F.

    1988-01-01

    Swivel joint allows liquid-nitrogen pipe to rotate through angle of 100 degree with respect to mating pipe. Functions without cracking hard foam insulation on lines. Pipe joint rotates on disks so mechanical stress not transmitted to thick insulation on pipes. Inner disks ride on fixed outer disks. Disks help to seal pressurized liquid nitrogen flowing through joint.

  6. Alternative nitrogen sources for cotton

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several alternative nitrogen (N) sources, rates of N, and amendments were evaluated at Prattville, Alabama, on cotton in 2008. Nitrogen rates reported are for sidedress application only. Dry urea produced the highest yield, averaging 1100 pounds lint per acre. Ammonia volatilization was measured fr...

  7. Plant traits related to nitrogen uptake influence plant-microbe competition.

    PubMed

    Moreau, Delphine; Pivato, Barbara; Bru, David; Busset, Hugues; Deau, Florence; Faivre, Céline; Matejicek, Annick; Strbik, Florence; Philippot, Laurent; Mougel, Christophe

    2015-08-01

    Plant species are important drivers of soil microbial communities. However, how plant functional traits are shaping these communities has received less attention though linking plant and microbial traits is crucial for better understanding plant-microbe interactions. Our objective was to determine how plant-microbe interactions were affected by plant traits. Specifically we analyzed how interactions between plant species and microbes involved in nitrogen cycling were affected by plant traits related to 'nitrogen nutrition in interaction with soil nitrogen availability. Eleven plant species, selected along an oligotrophic-nitrophilic gradient, were grown individually in a nitrogen-poor soil with two levels of nitrate availability. Plant traits for both carbon and nitrogen nutrition were measured and the genetic structure and abundance of rhizosphere. microbial communities, in particular the ammonia oxidizer and nitrate reducer guilds, were analyzed. The structure of the bacterial community in the rhizosphere differed significantly between plant species and these differences depended on nitrogen availability. The results suggest that the rate of nitrogen uptake per unit of root biomass and per day is a key plant trait, explaining why the effect of nitrogen availability on the structure of the bacterial community depends on the plant species. We also showed that the abundance of nitrate reducing bacteria always decreased with increasing nitrogen uptake per unit of root biomass per day, indicating that there was competition for nitrate between plants and nitrate reducing bacteria. This study demonstrates that nitrate-reducing microorganisms may be adversely affected by plants with a high nitrogen uptake rate. Our work puts forward the role of traits related to nitrogen in plant-microbe interactions, whereas carbon is commonly considered as the main driver. It also suggests that plant traits related to ecophysiological processes, such as nitrogen uptake rates, are more

  8. The transformation of organic amines by transition metal cluster compounds. Progress report, 1992--1993

    SciTech Connect

    Adams, R.D.

    1993-01-01

    The paper reports results on the following five studies: (1) The activation of tertiary amines by osmium cluster complexes; (2) Nucleophilic ring opening of thietane ligand in metal carbonyl cluster complexes; (3) Ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; (4) Insertion of an alkynes into a metal-metal bond -- evidence for an intramolecular insertion with a trans-stereochemistry; and (5) Cyclobutyne -- the ligand. Plans for future research are also briefly discussed. Two studies are planned: (1) studies of the synthesis and reactivity of strained ring ligands in metal cluster compounds; and (2) studies of the reactivity of dimetallic complexes with alkynes.

  9. Accumulation of cellobiose lipids under nitrogen-limiting conditions by two ustilaginomycetous yeasts, Pseudozyma aphidis and Pseudozyma hubeiensis.

    PubMed

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2013-02-01

    Some basidiomycetous yeast strains extracellularly produce cellobiose lipids (CLs), glycolipid biosurfactants which have strong fungicidal activity. The representative CL producer Ustilago maydis produces CLs together with the other glycolipids, mannosylerythritol lipids (MELs); the preference of the two glycolipids is affected considerably by the nitrogen source. To develop new CL producers, 12 MEL producers were cultured under the nitrogen-limited conditions. Pseudozyma aphidis and Pseudozyma. hubeiensis were characterized as new CL producers. CL production was induced on three strains, P. aphidis, Pseudozyma graminicola, and P. hubeiensis under these conditions. The putative homologous genes of U. maydis cyp1, which encodes a P450 monooxygenase, essential for CL biosynthesis, were partially amplified from their genomic DNA. The nucleotide sequences of the gene fragments from P. hubeiensis and P. aphidis shared identities with U. maydis cyp1 of 99% and 78%, respectively. Furthermore, all of the deduced translation products are tightly clustered in the phylogenic tree of the monooxygenase. These results suggest that the genes involved with CL biosynthesis must be widely distributed in the basidiomycetous fungi as well as the MEL biosynthesis genes, and thus, the genus Pseudozyma has great potential as a biosurfactant producer. PMID:22985214

  10. Simulating star clusters with the AMUSE software framework. I. Dependence of cluster lifetimes on model assumptions and cluster dissolution modes

    SciTech Connect

    Whitehead, Alfred J.; McMillan, Stephen L. W.; Vesperini, Enrico; Portegies Zwart, Simon

    2013-12-01

    We perform a series of simulations of evolving star clusters using the Astrophysical Multipurpose Software Environment (AMUSE), a new community-based multi-physics simulation package, and compare our results to existing work. These simulations model a star cluster beginning with a King model distribution and a selection of power-law initial mass functions and contain a tidal cutoff. They are evolved using collisional stellar dynamics and include mass loss due to stellar evolution. After studying and understanding that the differences between AMUSE results and results from previous studies are understood, we explored the variation in cluster lifetimes due to the random realization noise introduced by transforming a King model to specific initial conditions. This random realization noise can affect the lifetime of a simulated star cluster by up to 30%. Two modes of star cluster dissolution were identified: a mass evolution curve that contains a runaway cluster dissolution with a sudden loss of mass, and a dissolution mode that does not contain this feature. We refer to these dissolution modes as 'dynamical' and 'relaxation' dominated, respectively. For Salpeter-like initial mass functions, we determined the boundary between these two modes in terms of the dynamical and relaxation timescales.

  11. [The Emission Spectroscopy of Nitrogen Discharge under Low Voltage at Room Temperature].

    PubMed

    Shen, Li-hua; Yu, Chun-xia; Yan, Bei; Zhang, Cheng-xiao

    2015-03-01

    A set of direct current (DC) discharge device of N2 plasma was developed, carbon nanotubes (CNT) modified ITO electrode was used as anode, aluminum plate as cathode, with -80 μm separation between them. Nitrogen emission spectra was observed at room temperature and low DC voltage (less than 150 V), and the emission spectrometry was used to diagnose the active species of the process of nitrogen discharge. Under DC discharge, the strongest energy band N2 (C3π(u)), the weak Gaydon's Green system N2 (H3 -Φ(u)-G3 Δ(g)) and the emission line of nitrogen atoms (4 p-4 p0) at 820 nm were observed. Found that metastable state of nitrogen molecules were the main factors leading to a series of excited state nitrogen atoms and nitrogen ionization. Compared the emission spectra under DC with that under alternating current (AC) (1.1 kV), and it can be seen that under DC the spectra band of nitrogen atoms can be obviously observed, and there was a molecular band in the range of 500 - 800 nm. The effect of oxygen and hydrogen on the emission spectra of nitrogen was investigated. The results showed that the oxygen inhibited the luminescence intensity of nitrogen, but the shape of spectra unchanged. All of the second positive system, Gaydon's Green system and atomic lines of nitrogen can be observed. The second positive system and Gaydon's Green system of nitrogen will be greatly affected when the volume ratio of nitrogen and hydrogen greatly affected is 1 : 1, which was due to the hydrogen. The hydrogen can depresse nitrogen plasma activation, and make the Gaydon's Green System disappeared. CNT modified ITO electrode can reduce the breakdown voltage, and the optical signal generated by the weakly ionized gas can be observed by the photo-multiplier tube at low voltage of 10 V. PMID:26117899

  12. Management Affects Soybean Nodulation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Symbiotic dinitrogen fixation may contribute 40 – 70% of the nitrogen required by soybean [Glycine max (L.) Merr.] during the growing season. Therefore, sustaining nitrogen input is critical for profitable grain yield and sustaining long-term soil productivity. We evaluated management practices used...

  13. Abundance and genetic diversity of nifH gene sequences in anthropogenically affected Brazilian mangrove sediments.

    PubMed

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk; Andreote, Fernando Dini

    2012-11-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  14. Abundance and Genetic Diversity of nifH Gene Sequences in Anthropogenically Affected Brazilian Mangrove Sediments

    PubMed Central

    Dias, Armando Cavalcante Franco; Pereira e Silva, Michele de Cassia; Cotta, Simone Raposo; Dini-Andreote, Francisco; Soares, Fábio Lino; Salles, Joana Falcão; Azevedo, João Lúcio; van Elsas, Jan Dirk

    2012-01-01

    Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies. PMID:22941088

  15. 21 CFR 862.1515 - Nitrogen (amino-nitrogen) test system.

    Code of Federal Regulations, 2010 CFR

    1999-04-01

    ... 21 FOOD AND DRUGS 8 1999-04-01 1999-04-01 false Nitrogen (amino-nitrogen) test system. 862.1515... CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test Systems Sec. 862.1515 Nitrogen (amino-nitrogen) test system. (a) Identification. A nitrogen (amino-nitrogen) test system is a device intended to measure...

  16. The LLNL Cluster Tool

    SciTech Connect

    Hunter, S L

    2007-03-27

    {lg_bullet} The Cluster Tool -is a set of linked vacuum chambers -can deposit multiple layers of metal and metal oxides {lg_bullet} Each layer can be deposited without breaking vacuum {lg_bullet} Shadow masks can give each layer a different pattern {lg_bullet} The Cluster Tool will be operational in April

  17. Cluster Interest Inventory.

    ERIC Educational Resources Information Center

    Herzog, Douglas

    The Cluster Interest Inventory is designed to familiarize students with representative occupations in 13 career clusters: (1) agribusiness and natural resources, (2) business marketing, and office occupations, (3) communications and media, (4) consumer and homemaker, (5) fine arts and humanities, (6) health, (7) manufacturing and processing, (8)…

  18. Coma cluster of galaxies

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Atlas Image mosaic, covering 34' x 34' on the sky, of the Coma cluster, aka Abell 1656. This is a particularly rich cluster of individual galaxies (over 1000 members), most prominently the two giant ellipticals, NGC 4874 (right) and NGC 4889 (left). The remaining members are mostly smaller ellipticals, but spiral galaxies are also evident in the 2MASS image. The cluster is seen toward the constellation Coma Berenices, but is actually at a distance of about 100 Mpc (330 million light years, or a redshift of 0.023) from us. At this distance, the cluster is in what is known as the 'Hubble flow,' or the overall expansion of the Universe. As such, astronomers can measure the Hubble Constant, or the universal expansion rate, based on the distance to this cluster. Large, rich clusters, such as Coma, allow astronomers to measure the 'missing mass,' i.e., the matter in the cluster that we cannot see, since it gravitationally influences the motions of the member galaxies within the cluster. The near-infrared maps the overall luminous mass content of the member galaxies, since the light at these wavelengths is dominated by the more numerous older stellar populations. Galaxies, as seen by 2MASS, look fairly smooth and homogeneous, as can be seen from the Hubble 'tuning fork' diagram of near-infrared galaxy morphology. Image mosaic by S. Van Dyk (IPAC).

  19. Probability and Cancer Clusters

    ERIC Educational Resources Information Center

    Hamilton-Keene, Rachael; Lenard, Christoper T.; Mills, Terry M.

    2009-01-01

    Recently there have been several news items about possible cancer clusters in the Australian media. The term "cancer cluster" is used when an unusually large number of people in one geographic area, often a workplace, are diagnosed with cancer in a short space of time. In this paper the authors explore this important health issue using probability…

  20. Illinois' Career Cluster Model

    ERIC Educational Resources Information Center

    Jankowski, Natasha A.; Kirby, Catherine L.; Bragg, Debra D.; Taylor, Jason L.; Oertle, Kathleen M.

    2009-01-01

    This booklet provides information to multiple stakeholders on the implementation of career clusters in Illinois. The booklet is an extension of the previous edition titled "An Introduction to Illinois CTE Programs of Study" (2008), and provides a resource for partners to understand Illinois' Career Cluster Model as its own adaptation of the…

  1. Matlab Cluster Ensemble Toolbox

    Energy Science and Technology Software Center (ESTSC)

    2009-04-27

    This is a Matlab toolbox for investigating the application of cluster ensembles to data classification, with the objective of improving the accuracy and/or speed of clustering. The toolbox divides the cluster ensemble problem into four areas, providing functionality for each. These include, (1) synthetic data generation, (2) clustering to generate individual data partitions and similarity matrices, (3) consensus function generation and final clustering to generate ensemble data partitioning, and (4) implementation of accuracy metrics. Withmore » regard to data generation, Gaussian data of arbitrary dimension can be generated. The kcenters algorithm can then be used to generate individual data partitions by either, (a) subsampling the data and clustering each subsample, or by (b) randomly initializing the algorithm and generating a clustering for each initialization. In either case an overall similarity matrix can be computed using a consensus function operating on the individual similarity matrices. A final clustering can be performed and performance metrics are provided for evaluation purposes.« less

  2. Mixed-Initiative Clustering

    ERIC Educational Resources Information Center

    Huang, Yifen

    2010-01-01

    Mixed-initiative clustering is a task where a user and a machine work collaboratively to analyze a large set of documents. We hypothesize that a user and a machine can both learn better clustering models through enriched communication and interactive learning from each other. The first contribution or this thesis is providing a framework of…

  3. Young Massive Star Clusters

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; McMillan, Stephen L. W.; Gieles, Mark

    2010-09-01

    Young massive clusters (YMCs) are dense aggregates of young stars that form the fundamental building blocks of galaxies. Several examples exist in the Milky Way Galaxy and the Local Group, but they are particularly abundant in starburst and interacting galaxies. The few YMCs that are close enough to resolve are of prime interest for studying the stellar mass function and the ecological interplay between stellar evolution and stellar dynamics. The distant unresolved clusters may be effectively used to study the star-cluster mass function, and they provide excellent constraints on the formation mechanisms of young cluster populations. YMCs are expected to be the nurseries for many unusual objects, including a wide range of exotic stars and binaries. So far only a few such objects have been found in YMCs, although their older cousins, the globular clusters, are unusually rich in stellar exotica. In this review, we focus on star clusters younger than ˜100 Myr, more than a few current crossing times old, and more massive than ˜104M⊙; the size of the cluster and its environment are considered less relevant as distinguishing parameters. We describe the global properties of the currently known young massive star clusters in the Local Group and beyond, and discuss the state of the art in observations and dynamical modeling of these systems. In order to make this review readable by observers, theorists, and computational astrophysicists, we also review the cross-disciplinary terminology.

  4. Blue emitting undecaplatinum clusters

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indranath; Bhuin, Radha Gobinda; Bhat, Shridevi; Pradeep, T.

    2014-07-01

    A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents.A blue luminescent 11-atom platinum cluster showing step-like optical features and the absence of plasmon absorption was synthesized. The cluster was purified using high performance liquid chromatography (HPLC). Electrospray ionization (ESI) and matrix assisted laser desorption ionization (MALDI) mass spectrometry (MS) suggest a composition, Pt11(BBS)8, which was confirmed by a range of other experimental tools. The cluster is highly stable and compatible with many organic solvents. Electronic supplementary information (ESI) available: Details of experimental procedures, instrumentation, chromatogram of the crude cluster; SEM/EDAX, DLS, PXRD, TEM, FT-IR, and XPS of the isolated Pt11 cluster; UV/Vis, MALDI MS and SEM/EDAX of isolated 2 and 3; and 195Pt NMR of the K2PtCl6 standard. See DOI: 10.1039/c4nr02778g

  5. Brightest Cluster Galaxy Identification

    NASA Astrophysics Data System (ADS)

    Leisman, Luke; Haarsma, D. B.; Sebald, D. A.; ACCEPT Team

    2011-01-01

    Brightest cluster galaxies (BCGs) play an important role in several fields of astronomical research. The literature includes many different methods and criteria for identifying the BCG in the cluster, such as choosing the brightest galaxy, the galaxy nearest the X-ray peak, or the galaxy with the most extended profile. Here we examine a sample of 75 clusters from the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT) and the Sloan Digital Sky Survey (SDSS), measuring masked magnitudes and profiles for BCG candidates in each cluster. We first identified galaxies by hand; in 15% of clusters at least one team member selected a different galaxy than the others.We also applied 6 other identification methods to the ACCEPT sample; in 30% of clusters at least one of these methods selected a different galaxy than the other methods. We then developed an algorithm that weighs brightness, profile, and proximity to the X-ray peak and centroid. This algorithm incorporates the advantages of by-hand identification (weighing multiple properties) and automated selection (repeatable and consistent). The BCG population chosen by the algorithm is more uniform in its properties than populations selected by other methods, particularly in the relation between absolute magnitude (a proxy for galaxy mass) and average gas temperature (a proxy for cluster mass). This work supported by a Barry M. Goldwater Scholarship and a Sid Jansma Summer Research Fellowship.

  6. Marketing Occupations. Cluster Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This cluster guide, which is designed to show teachers what specific knowledge and skills qualify high school students for entry-level employment (or postsecondary training) in marketing occupations, is organized into three sections: (1) cluster organization and implementation, (2) instructional emphasis areas, and (3) assessment. The first…

  7. Muster: Massively Scalable Clustering

    Energy Science and Technology Software Center (ESTSC)

    2010-05-20

    Muster is a framework for scalable cluster analysis. It includes implementations of classic K-Medoids partitioning algorithms, as well as infrastructure for making these algorithms run scalably on very large systems. In particular, Muster contains algorithms such as CAPEK (described in reference 1) that are capable of clustering highly distributed data sets in-place on a hundred thousand or more processes.

  8. Recovery and partitioning of nitrogen from early spring and midsummer applications to pecan trees

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective nitrogen (N) management promotes consistent and abundant pecan [Carya illinoinensis (Wangenh.) C. Koch] production while minimizing waste. Recovery and partitioning characteristics of N potentially affects N management decisions; for this reason, we report certain N characteristics exhibi...

  9. THE ROLE OF NITROGEN IN CHROMOPHORIC AND FLUORESCENT DISSOLVED ORGANIC MATTER FORMATION

    EPA Science Inventory

    Microbial and photochemical processes affect chromophoric dissolved organic matter (CDOM) dynamics in the ocean. Some evidence suggests that dissolved nitrogen plays a role in CDOM formation, although this has received little systematic attention in marine ecosystems. Coastal sea...

  10. Cosmology with galaxy clusters

    NASA Astrophysics Data System (ADS)

    Sartoris, Barbara

    2015-08-01

    Clusters of galaxies are powerful probes to constrain parameters that describe the cosmological models and to distinguish among different models. Since, the evolution of the cluster mass function and large-scale clustering contain the informations about the linear growth rate of perturbations and the expansion history of the Universe, clusters have played an important role in establishing the current cosmological paradigm. It is crucial to know how to determine the cluster mass from observational quantities when using clusters as cosmological tools. For this, numerical simulations are helpful to define and study robust cluster mass proxies that have minimal and well understood scatter across the mass and redshift ranges of interest. Additionally, the bias in cluster mass determination can be constrained via observations of the strong and weak lensing effect, X-ray emission, the Sunyaev- Zel’dovic effect, and the dynamics of galaxies.A major advantage of X-ray surveys is that the observable-mass relation is tight. Moreover, clusters can be easily identified in X-ray as continuous, extended sources. As of today, interesting cosmological constraints have been obtained from relatively small cluster samples (~102), X-ray selected by the ROSAT satellite over a wide redshift range (0clusters, the ROSAT All-Sky Survey.The next generation of X-ray telescopes will enhance the statistics of detected clusters and enlarge their redshift coverage. In particular, eROSITA will produce a catalog of >105 clusters with photometric redshifts from multi-band optical surveys (e.g. PanSTARRS, DES, and LSST). This will vastly improve upon current cosmological constraints, especially by the synergy with other cluster surveys that

  11. A Zoo of Radio Relics: Cluster Cores to Filaments

    NASA Astrophysics Data System (ADS)

    Kale, Ruta; Dwarakanath, K. S.

    2011-12-01

    Radio relics in galaxy clusters can be electrons accelerated at cluster merger shocks or adiabatically compressed fossil radio cocoons or dying radio galaxies. The spectral evolution of radio relics is affected by the surrounding thermal plasma. We present a low frequency study of three radio relics representing environments of dense cluster core (A4038), cluster outskirts (A1664) and filaments (A786). The properties of the relics are found to be consistent with the effect of confinement by external medium if the effects of projection are ignored.

  12. Cool Cluster Correctly Correlated

    SciTech Connect

    Sergey Aleksandrovich Varganov

    2005-12-17

    Atomic clusters are unique objects, which occupy an intermediate position between atoms and condensed matter systems. For a long time it was thought that physical and chemical properties of atomic dusters monotonically change with increasing size of the cluster from a single atom to a condensed matter system. However, recently it has become clear that many properties of atomic clusters can change drastically with the size of the clusters. Because physical and chemical properties of clusters can be adjusted simply by changing the cluster's size, different applications of atomic clusters were proposed. One example is the catalytic activity of clusters of specific sizes in different chemical reactions. Another example is a potential application of atomic clusters in microelectronics, where their band gaps can be adjusted by simply changing cluster sizes. In recent years significant advances in experimental techniques allow one to synthesize and study atomic clusters of specified sizes. However, the interpretation of the results is often difficult. The theoretical methods are frequently used to help in interpretation of complex experimental data. Most of the theoretical approaches have been based on empirical or semiempirical methods. These methods allow one to study large and small dusters using the same approximations. However, since empirical and semiempirical methods rely on simple models with many parameters, it is often difficult to estimate the quantitative and even qualitative accuracy of the results. On the other hand, because of significant advances in quantum chemical methods and computer capabilities, it is now possible to do high quality ab-initio calculations not only on systems of few atoms but on clusters of practical interest as well. In addition to accurate results for specific clusters, such methods can be used for benchmarking of different empirical and semiempirical approaches. The atomic clusters studied in this work contain from a few atoms to

  13. Hybridization schemes for clusters

    NASA Astrophysics Data System (ADS)

    Wales, David J.

    The concept of an optimum hybridization scheme for cluster compounds is developed with particular reference to electron counting. The prediction of electron counts for clusters and the interpretation of the bonding is shown to depend critically upon the presumed hybridization pattern of the cluster vertex atoms. This fact has not been properly appreciated in previous work, particularly in applications of Stone's tensor surface harmonic (TSH) theory, but is found to be a useful tool when dealt with directly. A quantitative definition is suggested for the optimum cluster hybridization pattern based directly upon the ease of interpretation of the molecular orbitals, and results are given for a range of species. The relationship of this scheme to the detailed cluster geometry is described using Löwdin's partitioned perturbation theory, and the success and range of application of TSH theory are discussed.

  14. Increase in tropospheric nitrogen dioxide over China observed from space.

    PubMed

    Richter, Andreas; Burrows, John P; Nüss, Hendrik; Granier, Claire; Niemeier, Ulrike

    2005-09-01

    Emissions from fossil fuel combustion and biomass burning reduce local air quality and affect global tropospheric chemistry. Nitrogen oxides are emitted by all combustion processes and play a key part in the photochemically induced catalytic production of ozone, which results in summer smog and has increased levels of tropospheric ozone globally. Release of nitrogen oxide also results in nitric acid deposition, and--at least locally--increases radiative forcing effects due to the absorption of downward propagating visible light. Nitrogen oxide concentrations in many industrialized countries are expected to decrease, but rapid economic development has the potential to increase significantly the emissions of nitrogen oxides in parts of Asia. Here we present the tropospheric column amounts of nitrogen dioxide retrieved from two satellite instruments GOME and SCIAMACHY over the years 1996-2004. We find substantial reductions in nitrogen dioxide concentrations over some areas of Europe and the USA, but a highly significant increase of about 50 per cent-with an accelerating trend in annual growth rate-over the industrial areas of China, more than recent bottom-up inventories suggest. PMID:16136141

  15. Aggregation kinetics and structure of cryoimmunoglobulins clusters

    NASA Astrophysics Data System (ADS)

    Spirito, M. De; Chiappini, R.; Bassi, F. Andreasi; Stasio, E. Di; Giardina, B.; Arcovito, G.

    2002-02-01

    Cryoimmunoglobulins are pathological antibodies characterized by a temperature-dependent reversible insolubility. Rheumatoid factors (RF) are immunoglobulins possessing anti-immunoglobulin activity and usually consist of an IgM antibody that recognizes IgG as antigen. These proteins are present in sera of patients affected by a large variety of different pathologies, such as HCV infection, neoplastic and autoimmune diseases. Aggregation and precipitation of cryoimmunoglobulins, leading to vasculiti, are physical phenomena behind such pathologies. A deep knowledge of the physico-chemical mechanisms regulating such phenomena plays a fundamental role in biological and clinical applications. In this work, a preliminary investigation of the aggregation kinetics and of the final macromolecular structure of the aggregates is presented. Through static light scattering techniques, the gyration radius Rg and the fractal dimension Dm of the growing clusters have been determined. However, while the initial aggregation mechanism could be described using the universal reaction-limited cluster-cluster aggregation (RLCCA) theory, at longest times from the beginning of the process, the RLCCA theory fails and a restructuring of clusters is observed together with an increase of the cluster fractal dimension Dm up to a value Dm∼3. The time tn, at which the restructuring takes place, and the final cluster size can be modulated by varying the quenching temperature.

  16. Eighth international congress on nitrogen fixation

    SciTech Connect

    Not Available

    1990-01-01

    This volume contains the proceedings of the Eighth International Congress on Nitrogen Fixation held May 20--26, 1990 in Knoxville, Tennessee. The volume contains abstracts of individual presentations. Sessions were entitled Recent Advances in the Chemistry of Nitrogen Fixation, Plant-microbe Interactions, Limiting Factors of Nitrogen Fixation, Nitrogen Fixation and the Environment, Bacterial Systems, Nitrogen Fixation in Agriculture and Industry, Plant Function, and Nitrogen Fixation and Evolution.

  17. Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture

    DOEpatents

    Sanfilippo, Antonio; Calapristi, Augustin J.; Crow, Vernon L.; Hetzler, Elizabeth G.; Turner, Alan E.

    2009-12-22

    Document clustering methods, document cluster label disambiguation methods, document clustering apparatuses, and articles of manufacture are described. In one aspect, a document clustering method includes providing a document set comprising a plurality of documents, providing a cluster comprising a subset of the documents of the document set, using a plurality of terms of the documents, providing a cluster label indicative of subject matter content of the documents of the cluster, wherein the cluster label comprises a plurality of word senses, and selecting one of the word senses of the cluster label.

  18. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean.

    PubMed

    Bellaloui, Nacer; Zablotowicz, Robert M; Reddy, Krishna N; Abel, Craig A

    2008-04-23

    Previous research has demonstrated that glyphosate can affect nitrogen fixation or nitrogen assimilation in soybean. This 2-year field study investigated the effects of glyphosate application of 1.12 and 3.36 kg of ae ha(-1) on nitrogen metabolism and seed composition in glyphosate-resistant (GR) soybean. There was no effect of glyphosate application on nitrogen fixation as measured by acetylene reduction assay, soybean yield, or seed nitrogen content. However, there were significant effects of glyphosate application on nitrogen assimilation, as measured by in vivo nitrate reductase activity (NRA) in leaves, roots, and nodules, especially at high rate. Transiently lower leaf nitrogen or (15)N natural abundance in high glyphosate application soybean supports the inhibition of NRA. With the higher glyphosate application level protein was significantly higher (10.3%) in treated soybean compared to untreated soybean. Inversely, total oil and linolenic acid were lowest at the high glyphosate application rate, but oleic acid was greatest (22%) in treated soybean. These results suggest that nitrate assimilation in GR soybean was more affected than nitrogen fixation by glyphosate application and that glyphosate application may alter nitrogen and carbon metabolism. PMID:18363356

  19. Nitrogen in rock: Occurrences and biogeochemical implications

    USGS Publications Warehouse

    Holloway, J.M.; Dahlgren, R.A.

    2002-01-01

    There is a growing interest in the role of bedrock in global nitrogen cycling and potential for increased ecosystem sensitivity to human impacts in terrains with elevated background nitrogen concentrations. Nitrogen-bearing rocks are globally distributed and comprise a potentially large pool of nitrogen in nutrient cycling that is frequently neglected because of a lack of routine analytical methods for quantification. Nitrogen in rock originates as organically bound nitrogen associated with sediment, or in thermal waters representing a mixture of sedimentary, mantle, and meteoric sources of nitrogen. Rock nitrogen concentrations range from trace levels (>200 mg N kg -1) in granites to ecologically significant concentrations exceeding 1000 mg N kg -1 in some sedimentary and metasedimentary rocks. Nitrate deposits accumulated in arid and semi-arid regions are also a large potential pool. Nitrogen in rock has a potentially significant impact on localized nitrogen cycles. Elevated nitrogen concentrations in water and soil have been attributed to weathering of bedrock nitrogen. In some environments, nitrogen released from bedrock may contribute to nitrogen saturation of terrestrial ecosystems (more nitrogen available than required by biota). Nitrogen saturation results in leaching of nitrate to surface and groundwaters, and, where soils are formed from ammonium-rich bedrock, the oxidation of ammonium to nitrate may result in soil acidification, inhibiting revegetation in certain ecosystems. Collectively, studies presented in this article reveal that geologic nitrogen may be a large and reactive pool with potential for amplification of human impacts on nitrogen cycling in terrestrial and aquatic ecosystems.

  20. Quantifying atmospheric nitrogen outflow from the Front Range of Colorado

    NASA Astrophysics Data System (ADS)

    Neuman, J. A.; Eilerman, S. J.; Brock, C. A.; Brown, S. S.; Dube, W. P.; Herndon, S. C.; Holloway, J. S.; Nowak, J. B.; Roscioli, J. R.; Ryerson, T. B.; Sjostedt, S. J.; Thompson, C. R.; Trainer, M.; Veres, P. R.; Wild, R. J.

    2015-12-01

    Reactive nitrogen emitted to the atmosphere from urban, industrial, and agricultural sources can be transported and deposited far from the source regions, affecting vegetation, soils, and water of sensitive ecosystems. Mitigation of atmospheric nitrogen deposition requires emissions characterization and quantification. Ammonia (NH3), a full suite of gas-phase oxidized nitrogen compounds, and particulate matter were measured from an aircraft that flew downwind from concentrated animal feeding operations, oil and gas extraction facilities, and urban areas along the Colorado Front Range in March and April 2015, as part of the Shale Oil and Natural Gas Nexus (SONGNEX) field study. Additionally, NH3 measurements from a fully instrumented aircraft that flew over the same region in July and August 2014 as part of the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) are used to examine atmospheric nitrogen emission and transport. Cross-wind plume transects and altitude profiles were performed over the source regions and 60-240 km downwind. Plumes were transported in the boundary layer with large NH3 mixing ratios (typically 20-100 ppbv) and were tens of km wide. The NH3 in these plumes provided an atmospheric nitrogen burden greater than 0.2 kg N/ha. Nitrogen oxides and their oxidation products and particulate matter were also enhanced in the plumes, but with concentrations substantially less than NH3. With efficient transport followed by wet deposition, these plumes have the potential to provide a large nitrogen input to the neighboring Rocky Mountain National Park, where nitrogen deposition currently exceeds the ecological critical load of 1.5 kg N/ha/yr.