Sample records for nitrogen oxides combustion

  1. Combuster. [low nitrogen oxide formation

    NASA Technical Reports Server (NTRS)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  2. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  3. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  4. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  5. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  6. 40 CFR 52.277 - Oxides of nitrogen, combustion gas concentration limitations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen, combustion gas concentration limitations. 52.277 Section 52.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Oxides of nitrogen, combustion gas concentration limitations. (a) The following rules are being retained...

  7. Numerical modelling of emissions of nitrogen oxides in solid fuel combustion.

    PubMed

    Bešenić, Tibor; Mikulčić, Hrvoje; Vujanović, Milan; Duić, Neven

    2018-06-01

    Among the combustion products, nitrogen oxides are one of the main contributors to a negative impact on the environment, participating in harmful processes such as tropospheric ozone and acid rains production. The main source of emissions of nitrogen oxides is the human combustion of fossil fuels. Their formation models are investigated and implemented with the goal of obtaining a tool for studying the nitrogen-containing pollutant production. In this work, numerical simulation of solid fuel combustion was carried out on a three-dimensional model of a drop tube furnace by using the commercial software FIRE. It was used for simulating turbulent fluid flow and temperature field, concentrations of the reactants and products, as well as the fluid-particles interaction by numerically solving the integro-differential equations describing these processes. Chemical reactions mechanisms for the formation of nitrogen oxides were implemented by the user functions. To achieve reasonable calculation times for running the simulations, as well as efficient coupling with the turbulent mixing process, the nitrogen scheme is limited to sufficiently few homogeneous reactions and species. Turbulent fluctuations that affect the reaction rates of nitrogen oxides' concentration are modelled by probability density function approach. Results of the implemented model for nitrogen oxides' formation from coal and biomass are compared to the experimental data. Temperature, burnout and nitrogen oxides' concentration profiles are compared, showing satisfactory agreement. The new model allows the simulation of pollutant formation in the real-world applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Method for reducing nitrogen oxides in combustion effluents

    DOEpatents

    Zauderer, Bert

    2000-01-01

    Method for reducing nitrogen oxides (NO.sub.x) in the gas stream from the combustion of fossil fuels is disclosed. In a narrow gas temperature zone, NO.sub.x is converted to nitrogen by reaction with urea or ammonia with negligible remaining ammonia and other reaction pollutants. Specially designed injectors are used to introduce air atomized water droplets containing dissolved urea or ammonia into the gaseous combustion products in a manner that widely disperses the droplets exclusively in the optimum reaction temperature zone. The injector operates in a manner that forms droplet of a size that results in their vaporization exclusively in this optimum NO.sub.x -urea/ammonia reaction temperature zone. Also disclosed is a design of a system to effectively accomplish this injection.

  9. Method for removal of nitrogen oxides from stationary combustion sources

    NASA Technical Reports Server (NTRS)

    Cooper, Charles D. (Inventor); Collins, Michelle M. (Inventor); Clausen, III, Christian A. (Inventor)

    2004-01-01

    A method for removing NO.sub.X from gas streams emanating from stationary combustion sources and manufacturing plants utilizes the injection of hydrogen peroxide into the gas stream for rapid gas-phase oxidation of NO to NO.sub.2 and water-soluble nitrogen acids HNO.sub.2 and HNO.sub.3. The nitrogen acids may be removed from the oxidized gas stream by wet scrubbing or by contact with a particulate alkaline material to form a nitrite/nitrate salt.

  10. Nitrogen oxides emissions from the MILD combustion with the conditions of recirculation gas.

    PubMed

    Park, Min; Shim, Sung Hoon; Jeong, Sang Hyun; Oh, Kwang-Joong; Lee, Sang-Sup

    2017-04-01

    The nitrogen oxides (NO x ) reduction technology by combustion modification which has economic benefits as a method of controlling NO x emitted in the combustion process, has recently been receiving a lot of attention. Especially, the moderate or intense low oxygen dilution (MILD) combustion which applied high temperature flue gas recirculation has been confirmed for its effectiveness with regard to solid fuel as well. MILD combustion is affected by the flue gas recirculation ratio and the composition of recirculation gas, so its NO x reduction efficiency is determined by them. In order to investigate the influence of factors which determine the reduction efficiency of NO x in MILD coal combustion, this study changed the flow rate and concentration of nitrogen (N 2 ), carbon dioxide (CO 2 ) and steam (H 2 O) which simulate the recirculation gas during the MILD coal combustion using our lab-scale drop tube furnace and performed the combustion experiment. As a result, its influence by the composition of recirculation gas was insignificant and it was shown that flue gas recirculation ratio influences the change of NO x concentration greatly. We investigated the influence of factors determining the nitrogen oxides (NO x ) reduction efficiency in MILD coal combustion, which applied high-temperature flue gas recirculation. Using a lab-scale drop tube furnace and simulated recirculation gas, we conducted combustion testing changing the recirculation gas conditions. We found that the flue gas recirculation ratio influences the reduction of NO x emissions the most.

  11. Controls for maintaining low nitrogen oxides content in internal combustion engine exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebke, H.; Moro, B.; Schoenborn, M.

    1976-08-10

    A control system and apparatus for measuring and monitoring the nitrogen oxides content of internal combustion engine exhaust gases is described. The exhaust gases are contacted with the reducing electrode of a sensor cell having a predetermined potential established between the cell electrodes so that the reducing electrode is able to reduce both the nitrogen oxides and oxygen content of the exhaust gas. The current flowing through the sensor cell is measured to determine whether the nitrogen oxides content of the exhaust gas is sufficiently low.

  12. The effect of emission from coal combustion in nonindustrial sources on deposition of sulfur and oxidized nitrogen in Poland.

    PubMed

    Kryza, Maciej; Werner, Małgorzata; Błaś, Marek; Dore, Anthony J; Sobik, Mieczysław

    2010-07-01

    Poland has one of the largest sulfur and nitrogen emissions in Europe. This is mainly because coal is a main fuel in industrial and nonindustrial combustion. The aim of this paper is to assess the amount of sulfur and nitrogen deposited from SNAP sector 02 (nonindustrial sources) coal combustion. To assess this issue, the Fine Resolution Atmospheric Multipollutant Exchange (FRAME) model was used. The results suggest that industrial combustion has the largest impact on deposition of oxidized sulfur, whereas the oxidized nitrogen national deposition budget is dominated by transboundary transport. The total mass of pollutants deposited in Poland, originating from nonindustrial coal combustion, is 45 Gg of sulfur and 2.5 Gg of nitrogen, which is over 18% of oxidized sulfur and nearly 2% of oxidized nitrogen deposited. SNAP 02 is responsible for up to 80% of dry-deposited sulfur and 11% of nitrogen. The contribution to wet deposition is largest in central Poland in the case of sulfur and in some areas can exceed 11%. For oxidized nitrogen, nonindustrial emissions contribute less than 1% over the whole area of Poland. The switch from coal to gas fuel in this sector will result in benefits in sulfur and nitrogen deposition reduction.

  13. Furnace devices aerodynamics optimization for fuel combustion efficiency improvement and nitrogen oxide emission reduction

    NASA Astrophysics Data System (ADS)

    Volkov, E. P.; Prokhorov, V. B.; Arkhipov, A. M.; Chernov, S. L.; Kirichkov, V. S.; Kaverin, A. A.

    2017-11-01

    MPEI conducts researches on physical and mathematical models of furnace chambers for improvement of power-generation equipment fuel combustion efficiency and ecological safety. Results of these researches are general principles of furnace aerodynamics arrangement for straight-flow burners and various fuels. It has been shown, that staged combustion arrangement with early heating and igniting with torch distribution in all furnace volume allows to obtain low carbon in fly ash and nitrogen oxide emission and also to improve boiler operation reliability with expand load adjustment range. For solid fuel combustion efficiency improvement it is practical to use high-placed and strongly down-tilted straight-flow burners, which increases high-temperature zone residence time for fuel particles. In some cases, for this combustion scheme it is possible to avoid slag-tap removal (STR) combustion and to use Dry-bottom ash removal (DBAR) combustion with tolerable carbon in fly ash level. It is worth noting that boilers with STR have very high nitrogen oxide emission levels (1200-1800 mg/m3) and narrow load adjustment range, which is determined by liquid slag output stability, so most industrially-developed countries don’t use this technology. Final decision about overhaul of boiler unit is made with regard to physical and mathematical modeling results for furnace and zonal thermal calculations for furnace and boiler as a whole. Overhaul of boilers to provide staged combustion and straight-flow burners and nozzles allows ensuring regulatory nitrogen oxide emission levels and corresponding best available technology criteria, which is especially relevant due to changes in Russian environmental regulation.

  14. COMBUSTION MODIFICATION CONTROL OF NITROGEN OXIDES (EPA/600/F-95/012)

    EPA Science Inventory

    EPA's efforts in research and development of nitrogen oxide (NOx) control technologies by
    means of modifying the combustion process have played a major role in reducing stationary
    source NOx emissions by over 3 million tons (2.73 x 10^6 tonnes) annually, and have led to at<...

  15. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  16. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  17. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  18. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  19. 40 CFR Table 1 to Subpart Kkkk of... - Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Stationary Combustion Turbines 1 Table 1 to Subpart KKKK of Part 60 Protection of Environment ENVIRONMENTAL... Standards of Performance for Stationary Combustion Turbines Pt. 60, Subpt. KKKK, Table 1 Table 1 to Subpart KKKK of Part 60—Nitrogen Oxide Emission Limits for New Stationary Combustion Turbines Combustion...

  20. Modeling of Nitrogen Oxides Emissions from CFB Combustion

    NASA Astrophysics Data System (ADS)

    Kallio, S.; Keinonen, M.

    In this work, a simplified description of combustion and nitrogen oxides chemistry was implemented in a 1.5D model framework with the aim to compare the results with ones earlier obtained with a detailed reaction scheme. The simplified chemistry was written using 12 chemical components. Heterogeneous chemistry is given by the same models as in the earlier work but the homogeneous and catalytic reactions have been altered. The models have been taken from the literature. The paper describes the numerical model with emphasis on the chemistry submodels. A simulation of combustion of bituminous coal in the Chalmers 12 MW boiler is conducted and the results are compared with the results obtained earlier with the detailed chemistry description. The results are also compared with measured O2, CO, NO and N2O profiles. The simplified reaction scheme produces equally good results as earlier obtained with the more elaborate chemistry description.

  1. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen, preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1979-01-01

    The effect of combustor operating conditions on the conversion of fuel-bound nitrogen (FBN) to nitrogen oxides NO sub x was analytically determined. The effect of FBN and of operating conditions on carbon monoxide (CO) formation was also studied. For these computations, the combustor was assumed to be a two stage, adiabatic, perfectly-stirred reactor. Propane-air was used as the combustible mixture and fuel-bound nitrogen was simulated by adding nitrogen atoms to the mixture. The oxidation of propane and formation of NO sub x and CO were modeled by a fifty-seven reaction chemical mechanism. The results for NO sub x and CO formation are given as functions of primary and secondary stage equivalence ratios and residence times.

  2. Nitrogen enriched combustion of a natural gas internal combustion engine to reduce NO.sub.x emissions

    DOEpatents

    Biruduganti, Munidhar S.; Gupta, Sreenath Borra; Sekar, R. Raj; McConnell, Steven S.

    2008-11-25

    A method and system for reducing nitrous oxide emissions from an internal combustion engine. An input gas stream of natural gas includes a nitrogen gas enrichment which reduces nitrous oxide emissions. In addition ignition timing for gas combustion is advanced to improve FCE while maintaining lower nitrous oxide emissions.

  3. Pulsation-based method for reduction of nitrogen oxides content in torch combustion products

    NASA Astrophysics Data System (ADS)

    Berg, I. A.; Porshnev, S. V.; Oshchepkova, V. Y.; Kit, M.

    2018-01-01

    Out of all ways to fuel bum the torch combustion systems is used most often. Even though the processes in the steam boiler are stochastic, the system can be controlled rather easily by changing the flowrate of the air pumped into it and - in case of balanced flue units - exhausters load. Advantages offered by torch-based combustion systems are offset by a disadvantage resulted in oxidation of nitrogen contained in the air. This paper provides rationale for an NOx content reduction method that employs pulsation mode of fuel combustion; it also describes combustion control and monitoring system employed for implementation of this method. Described methodology can be used not only for pulsation combustion studies but also for studies of torches formed by conventional burning systems. The outcome of the experimental study supports the assumption that it is possible to create conditions for NOx content reduction in flue gases by means of cycling the fuel supply on/off valve at the rate of 6 Hz.

  4. Intramolecular distribution of stable nitrogen and oxygen isotopes of nitrous oxide emitted during coal combustion.

    PubMed

    Ogawa, Mitsuteru; Yoshida, Naohiro

    2005-11-01

    The intramolecular distribution of stable isotopes in nitrous oxide that is emitted during coal combustion was analyzed using an isotopic ratio mass spectrometer equipped with a modified ion collector system (IRMS). The coal was combusted in a test furnace fitted with a single burner and the flue gases were collected at the furnace exit following removal of SO(x), NO(x), and H2O in order to avoid the formation of artifact nitrous oxide. The nitrous oxide in the flue gases proved to be enriched in 15N relative to the fuel coal. In air-staged combustion experiments, the staged air ratio was controlled over a range of 0 (unstaged combustion), 20%, and 30%. As the staged air ratio increased, the delta15N and delta18O of the nitrous oxide in the flue gases became depleted. The central nitrogen of the nitrous oxide molecule, N(alpha), was enriched in 15N relative to that occupying the end position of the molecule, N(beta), but this preference, expressed as delta15N(alpha)-delta15N(beta), decreased with the increase in the staged air ratio. Thermal decomposition and hydrogen reduction experiments carried out using a tube reactor allowed qualitative estimates of the kinetic isotope effects that occurred during the decomposition of the nitrous oxide and quantitative estimates of the extent to which the nitrous oxide had decomposed. The site preference of nitrous oxide increased with the extent of the decomposition reactions. Assuming that no site preference exists in nitrous oxide before decomposition, the behavior of nitrous oxide in the test combustion furnace was analyzed using the Rayleigh equation based on a single distillation model. As a result, the extent of decomposition of nitrous oxide was estimated as 0.24-0.26 during the decomposition reaction governed by the thermal decomposition and as 0.35-0.38 during the decomposition reaction governed by the hydrogen reduction in staged combustion. The intramolecular distribution of nitrous oxide can be a valuable

  5. Simultaneous removal of nitrogen oxides and sulfur oxides from combustion gases

    DOEpatents

    Clay, David T.; Lynn, Scott

    1976-10-19

    A process for the simultaneous removal of sulfur oxides and nitrogen oxides from power plant stack gases comprising contacting the stack gases with a supported iron oxide catalyst/absorbent in the presence of sufficient reducing agent selected from the group consisting of carbon monoxide, hydrogen, and mixtures thereof, to provide a net reducing atmosphere in the SO.sub.x /NO.sub.x removal zone. The sulfur oxides are removed by absorption substantially as iron sulfide, and nitrogen oxides are removed by catalytic reduction to nitrogen and ammonia. The spent iron oxide catalyst/absorbent is regenerated by oxidation and is recycled to the contacting zone. Sulfur dioxide is also produced during regeneration and can be utilized in the production of sulfuric acid and/or sulfur.

  6. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOEpatents

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  7. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    NASA Astrophysics Data System (ADS)

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  8. CONTROLLING NITROGEN OXIDES

    EPA Science Inventory

    Recent research indicates that nitrogen oxides (NOx) could be one of the most troublesome air pollutants of the 1980's. More than 20 million metric tons of NOx are annually polluting our air as a result of the widespread combustion of fossil fuels in power plants, industrial boil...

  9. A Mechanistic Investigation of Nitrogen Evolution and Corrosion with Oxy-Combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale Tree; Andrew Mackrory; Thomas Fletcher

    A premixed, staged, down-fired, pulverized coal reactor and a flat flame burner were used to study the evolution of nitrogen in coal contrasting differences in air and oxy-combustion. In the premixed reactor, the oxidizer was staged to produce a fuel rich zone followed by a burnout zone. The initial nominal fuel rich zone stoichiometric ratio (S.R.) of 0.85 selected produced higher NO reductions in the fuel rich region under oxy-combustion conditions. Air was found to be capable of similar NO reductions when the fuel rich zone was at a much lower S.R. of 0.65. At a S.R. of 0.85, oxy-combustionmore » was measured to have higher CO, unburned hydrocarbons, HCN and NH{sub 3} in the fuel rich region than air at the same S.R. There was no measured difference in the initial formation of NO. The data suggest devolatilization and initial NO formation is similar for the two oxidizers when flame temperatures are the same, but the higher CO{sub 2} leads to higher concentrations of CO and nitrogen reducing intermediates at a given equivalence ratio which increases the ability of the gas phase to reduce NO. These results are supported by flat flame burner experiments which show devolatilization of nitrogen from the coal and char to be similar for air and oxy-flame conditions at a given temperature. A model of premixed combustion containing devolatilization, char oxidation and detailed kinetics captures most of the trends seen in the data. The model suggests CO is high in oxy-combustion because of dissociation of CO{sub 2}. The model also predicts a fraction (up to 20%, dependent on S.R.) of NO in air combustion can be formed via thermal processes with the source being nitrogen from the air while in oxy-combustion equilibrium drives a reduction in NO of similar magnitude. The data confirm oxy-combustion is a superior oxidizer to air for NO control because NO reduction can be achieved at higher S.R. producing better char burnout in addition to NO from recirculated flue gas being

  10. Method of removing oxides of sulfur and oxides of nitrogen from exhaust gases

    DOEpatents

    Walker, Richard J.

    1986-01-01

    A continuous method is presented for removing both oxides of sulfur and oxides of nitrogen from combustion or exhaust gases with the regeneration of the absorbent. Exhaust gas is cleaned of particulates and HCl by a water scrub prior to contact with a liquid absorbent that includes an aqueous solution of bisulfite and sulfite ions along with a metal chelate, such as, an iron or zinc aminopolycarboxylic acid. Following contact with the combustion gases the spent absorbent is subjected to electrodialysis to transfer bisulfite ions into a sulfuric acid solution while splitting water with hydroxide and hydrogen ion migration to equalize electrical charge. The electrodialysis stack includes alternate layers of anion selective and bipolar membranes. Oxides of nitrogen are removed from the liquid absorbent by air stripping at an elevated temperature and the regenerated liquid absorbent is returned to contact with exhaust gases for removal of sulfur oxides and nitrogen oxides.

  11. Oxide Protective Coats for Ir/Re Rocket Combustion Chambers

    NASA Technical Reports Server (NTRS)

    Fortini, Arthur; Tuffias, Robert H.

    2003-01-01

    An improved material system has been developed for rocket engine combustion chambers for burning oxygen/ hydrogen mixtures or novel monopropellants, which are highly oxidizing at operating temperatures. The baseline for developing the improved material system is a prior iridium/rhenium system for chambers burning nitrogen tetroxide/monomethyl hydrazine mixtures, which are less oxidizing. The baseline combustion chamber comprises an outer layer of rhenium that provides structural support, plus an inner layer of iridium that acts as a barrier to oxidation of the rhenium. In the improved material system, the layer of iridium is thin and is coated with a thermal fatigue-resistant refractory oxide (specifically, hafnium oxide) that serves partly as a thermal barrier to decrease the temperature and thus the rate of oxidation of the rhenium. The oxide layer also acts as a barrier against the transport of oxidizing species to the surface of the iridium. Tests in which various oxygen/hydrogen mixtures were burned in iridium/rhenium combustion chambers lined with hafnium oxide showed that the operational lifetimes of combustion chambers of the improved material system are an order of magnitude greater than those of the baseline combustion chambers.

  12. OXIDATION AND DEVOLATILIZATION OF NITROGEN IN COAL CHAR

    EPA Science Inventory

    The reactions of organically-bound nitrogen in coal char during combustion have been studied in a laboratory furnace using size-graded char particles prepared by the pyrolysis of a Montana lignite. The time-resolved variations of nitrogen-to-carbon ratio during char oxidation hav...

  13. Multi-stage combustion using nitrogen-enriched air

    DOEpatents

    Fischer, Larry E.; Anderson, Brian L.

    2004-09-14

    Multi-stage combustion technology combined with nitrogen-enriched air technology for controlling the combustion temperature and products to extend the maintenance and lifetime cycles of materials in contact with combustion products and to reduce pollutants while maintaining relatively high combustion and thermal cycle efficiencies. The first stage of combustion operates fuel rich where most of the heat of combustion is released by burning it with nitrogen-enriched air. Part of the energy in the combustion gases is used to perform work or to provide heat. The cooled combustion gases are reheated by additional stages of combustion until the last stage is at or near stoichiometric conditions. Additional energy is extracted from each stage to result in relatively high thermal cycle efficiency. The air is enriched with nitrogen using air separation technologies such as diffusion, permeable membrane, absorption, and cryogenics. The combustion method is applicable to many types of combustion equipment, including: boilers, burners, turbines, internal combustion engines, and many types of fuel including hydrogen and carbon-based fuels including methane and coal.

  14. The position of gas turbine power plants with respect to the emission of nitrogen oxides by fossil-fueled energy installations

    NASA Technical Reports Server (NTRS)

    Kaiser, E.

    1977-01-01

    The amount of nitrogen oxides introduced into the atmosphere by gas turbines is very significant in relation to the total amount of nitrogen oxide emissions produced by chemical installations and combustion engines. Turbine manufacturers are therefore working to develop combustion chambers with sufficiently low nitrogen oxide emission concentrations. Attention is given to aspects of nitrogen oxide formation in gas turbines, the parameters which determine this formation, and suitable approaches to reducing nitrogen oxide emissions.

  15. Low-nitrogen oxides combustion of dried sludge using a pilot-scale cyclone combustor with recirculation.

    PubMed

    Shim, Sung Hoon; Jeong, Sang Hyun; Lee, Sang-Sup

    2015-04-01

    Recently, numerical and experimental studies have been conducted to develop a moderate or intense low-oxygen dilution (MILD) combustion technology for solid fuels. The study results demonstrated that intense recirculation inside the furnace by high-momentum air is a key parameter to achieve the MILD combustion of solid fuels. However, the high-velocity air requires a significant amount of electricity consumption. A cyclone-type MILD combustor was therefore designed and constructed in the authors' laboratory to improve the recirculation inside the combustor. The laboratory-scale tests yielded promising results for the MILD combustion of dried sewage sludge. To achieve pilot-scale MILD combustion of dried sludge in this study, the effects of geometric parameters such as the venturi tube configuration, the air injection location, and the air nozzle diameter were investigated. With the optimized geometric and operational conditions, the pilot-scale cyclone combustor demonstrated successful MILD combustion of dried sludge at a rate of 75 kg/hr with an excess air ratio of 1.05. A horizontal cyclone combustor with recirculation demonstrated moderate or intense low-oxygen dilution (MILD) combustion of dried sewage sludge at a rate of 75 kg/hr. Optimizing only geometric and operational conditions of the combustor reduced nitrogen oxide (NOx) emissions to less than 75 ppm. Because the operating cost of the MILD combustor is much lower than that of the selective catalytic reduction (SCR) applied to the conventional combustor, MILD combustion technology with the cyclone type furnace is an eligible option for reducing NOx emissions from the combustion of dried sewage sludge.

  16. Effect of fuel nitrogen and hydrogen content on emissions in hydrocarbon combustion

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Wolfbrandt, G.

    1981-01-01

    How the emissions of nitrogen oxides and carbon monoxide are affected by: (1) the decreased hydrogen content and (2) the increased organic nitrogen content of coal derived fuels is investigated. Previous CRT experimental work in a two stage flame tube has shown the effectiveness of rich lean two stage combustion in reducing fuel nitrogen conversion to nitrogen oxides. Previous theoretical work gave preliminary indications that emissions trends from the flame tube experiment could be predicted by a two stage, well stirred reactor combustor model using a detailed chemical mechanism for propane oxidation and nitrogen oxide formation. Additional computations are reported and comparisons with experimental results for two additional fuels and a wide range of operating conditions are given. Fuels used in the modeling are pure propane, a propane toluene mixture and pure toluene. These give hydrogen contents 18, 11 and 9 percent by weight, respectively. Fuel bound nitrogen contents of 0.5 and 1.0 percent were used. Results are presented for oxides of nitrogen and also carbon monoxide concentrations as a function of primary equivalence ratio, hydrogen content and fuel bound nitrogen content.

  17. Advanced modeling of nitrogen oxide emissions in circulating fluidized bed combustors: Parametric study of coal combustion and nitrogen compound chemistries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kilpinen, P.; Kallio, S.; Hupa, M.

    1999-07-01

    This paper describes work-in-progress aimed at developing an emission model for circulating fluidized bed combustors using detailed homogeneous and heterogeneous chemical kinetics. The main emphasis is on nitrogen oxides (NO{sub x}, N{sub 2}O) but also unburned gases (CO, C{sub x}H{sub y}) and sulfur dioxide (SO{sub 2}) will be investigated in the long run. The hydrodynamics is described by a 1.5-dimensional model where the riser is divided into three regions: a dense bubbling bed at the bottom, a vigorously mixed splash zone, and a transport zone. The two latter zones are horizontally split into a core region and an annular region.more » The solids circulation rate is calculated from the known solids inventory and the pressure and mass balances over the entire circulation loop. The solids are divided into classes according to size and type or particle. The model assumes instantaneous fuel devolatilization at the bottom and an even distribution of volatiles in the suspension phase of the dense bed. For addition of secondary air, a complete penetration and an instantaneous mixing with the combustor gases in the core region is assumed. The temperature distribution is assumed to be known, and no energy balance is solved. A comprehensive kinetic scheme of about 300 elementary gas-phase reactions is used to describe the homogeneous oxidation of the volatiles including both hydrocarbon and volatile-nitrogen components (NH{sub 3}, HCN). Heterogeneous char combustion to CO and CO{sub 2}, and char-nitrogen conversion to NO, N{sub 2}O, and N{sub 2} are described by a single particle model that includes 15 reaction steps given in the form of 6 net reaction paths. In the paper, the model is briefly described. A special emphasis is put on the evaluation of chemistry submodels. Modeling results on nitrogen oxides' formation are compared with measured concentration profiles in a 12 MW CFBC riser from literature. The importance of accurate chemistry description on predictions is

  18. Flame tube parametric studies for control of fuel bound nitrogen using rich-lean two-stage combustion

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.; Wolfbrandt, G.

    1980-01-01

    An experimental parametric study of rich-lean two-stage combustion in a flame tube is described and approaches for minimizing the conversion of fuel-bound nitrogen to nitrogen oxides in a premixed, homogeneous combustion system are evaluated. Air at 672 K and 0.48 MPa was premixed with fuel blends of propane, toluene, and pyridine at primary equivalence ratios ranging from 0.5 to 2.0 and secondary equivalence ratios of 0.5 to 0.7. Distillates of SRC-II, a coal syncrude, were also tested. The blended fuels were proportioned to vary fuel hydrogen composition from 9.0 to 18.3 weight percent and fuel nitrogen composition from zero to 1.5 weight percent. Rich-lean combustion proved effective in reducing fuel nitrogen to NO sub x conversion; conversion rates up to 10 times lower than those normally produced by single-stage combustion were achieved. The optimum primary equivalence ratio, where the least NO sub x was produced and combustion efficiency was acceptable, shifted between 1.4 and 1.7 with changes in fuel nitrogen content and fuel hydrogen content. Increasing levels of fuel nitrogen content lowered the conversion rate, but not enough to avoid higher NO sub x emissions as fuel nitrogen increased.

  19. Influence of the technique for injection of flue gas and the configuration of the swirl burner throat on combustion of gaseous fuel and formation of nitrogen oxides in the flame

    NASA Astrophysics Data System (ADS)

    Dvoinishnikov, V. A.; Khokhlov, D. A.; Knyaz'kov, V. P.; Ershov, A. Yu.

    2017-05-01

    How the points at which the flue gas was injected into the swirl burner and the design of the burner outlet influence the formation and development of the flame in the submerged space, as well as the formation of nitrogen oxides in the combustion products, have been studied. The object under numerical investigation is the flame of the GMVI combined (oil/gas) burner swirl burner fitted with a convergent, biconical, cylindrical, or divergent throat at the burner outlet with individual supply of the air and injection of the gaseous fuel through tubing. The burners of two designs were investigated; they differ by the absence or presence of an inlet for individual injection of the flue gas. A technique for numerical simulation of the flame based on the CFD methods widely used in research of this kind underlies the study. Based on the summarized results of the numerical simulation of the processes that occur in jet flows, the specific features of the aerodynamic pattern of the flame have been established. It is shown that the flame can be conventionally divided into several sections over its length in all investigations. The lengths of each of the sections, as well as the form of the fields of axial velocity, temperatures, concentrations of the fuel, oxygen, and carbon and nitrogen oxides, are different and determined by the design features of the burner, the flow rates of the agent, and the compositions of the latter in the burner ducts as well as the configuration of the burner throat and the temperature of the environment. To what degree the burner throat configuration and the techniques for injection of the flue gas at different ambient temperatures influence the formation of nitrogen oxides has been established. It is shown that the supply of the recirculation of flue gas into the fuel injection zone enables a considerable reduction in the formation of nitrogen oxides in the flame combustion products. It has been established that the locations of the zones of

  20. Experimental and analytical study of nitric oxide formation during combustion of propane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Wakelyn, N. T.; Jachimowski, C. J.; Wilson, C. H.

    1978-01-01

    A jet-stirred combustor, constructed of castable zirconia and with an Inconel injector, was used to study nitric oxide formation in propane-air combustion with residence times in the range from 3.2 to 3.3 msec and equivalence ratios varying from 0.7 to 1.4. Measurements were made of combustor operating temperature and of nitric oxide concentration. Maximum nitric oxide concentrations of the order of 55 ppm were found in the range of equivalence ratio from 1.0 to 1.1. A finite-rate chemical kinetic mechanism for propane combustion and nitric oxide formation was assembled by coupling an existing propane oxidation mechanism with the Zeldovich reactions and reactions of molecular nitrogen with hydrocarbon fragments. Analytical studies using this mechanism in a computer simulation of the experimental conditions revealed that the hydrocarbon-fragment-nitrogen reactions play a significant role in nitric oxide formation during fuel-rich combustion.

  1. Nitrogen oxides in the troposphere - Global and regional budgets

    NASA Technical Reports Server (NTRS)

    Logan, J. A.

    1983-01-01

    The cycle of nitrogen oxides in the troposphere is discussed from both global and regional perspectives. Global sources for NO(x) are estimated to be of magnitude 50 (+ or - 25) x 10 to the 12th gm N/yr. Nitrogen oxides are derived from combustion of fossil fuels (40 percent) and biomass burning (25 percent) with the balance from lightning and microbial activity in soils. Estimates for the rate of removal of NOx based on recent atmospheric and precipitation chemistry data are consistent with global source strengths derived here. Industrial and agricultural activities provide approximately two thirds of the global source for NOx. In North America, sources from combustion of fossil fuels exceed natural sources by a factor of 3-13. Wet deposition removes about one third of the combustion source of NOx over North America, while dry deposition removes a similar amount. The balance is exported from the continent. Deposition of nitrate in precipitation over eastern Canada and the western Atlantic is clearly influenced by sources of NOx in the eastern United States.

  2. Analysis of alternative pathways for reducing nitrogen oxide emissions

    EPA Science Inventory

    Strategies for reducing tropospheric ozone typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the ...

  3. Reduction of Nitrogen Oxides Emissions from a Coal-Fired Boiler Unit

    NASA Astrophysics Data System (ADS)

    Zhuikov, Andrey V.; Feoktistov, Dmitry V.; Koshurnikova, Natalya N.; Zlenko, Lyudmila V.

    2016-02-01

    During combustion of fossil fuels a large amount of harmful substances are discharged into the atmospheres of cities by industrial heating boiler houses. The most harmful substances among them are nitrogen oxides. The paper presents one of the most effective technological solutions for suppressing nitrogen oxides; it is arrangement of circulation process with additional mounting of the nozzle directed into the bottom of the ash hopper. When brown high-moisture coals are burnt in the medium power boilers, generally fuel nitrogen oxides are produced. It is possible to reduce their production by two ways: lowering the temperature in the core of the torch or decreasing the excess-air factor in the boiler furnace. Proposed solution includes the arrangement of burning process with additional nozzle installed in the lower part of the ash hopper. Air supply from these nozzles creates vortex involving large unburned fuel particles in multiple circulations. Thereby time of their staying in the combustion zone is prolonging. The findings describe the results of the proposed solution; and recommendations for the use of this technological method are given for other boilers.

  4. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, D.J.; Bonk, D.L.; Dowdy, T.E.

    1998-01-13

    Polluting NO{sub x} gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO{sub x} gases are removed is directed to introducing NO{sub x}-free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor. 2 figs.

  5. Removal of oxides of nitrogen from gases in multi-stage coal combustion

    DOEpatents

    Mollot, Darren J.; Bonk, Donald L.; Dowdy, Thomas E.

    1998-01-01

    Polluting NO.sub.x gas values are removed from off-gas of a multi-stage coal combustion process which includes an initial carbonizing reaction, firing of char from this reaction in a fluidized bed reactor, and burning of gases from the carbonizing and fluidized bed reactions in a topping combustor having a first, fuel-rich zone and a second, fuel-lean zone. The improvement by means of which NO.sub.x gases are removed is directed to introducing NO.sub.x -free oxidizing gas such as compressor air into the second, fuel-lean zone and completing combustion with this source of oxidizing gas. Excess air fed to the fluidized bed reactor is also controlled to obtain desired stoichiometry in the first, fuel-rich zone of the topping combustor.

  6. Chemical kinetic models for combustion of hydrocarbons and formation of nitric oxide

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Wilson, C. H.

    1980-01-01

    The formation of nitrogen oxides NOx during combustion of methane, propane, and a jet fuel, JP-4, was investigated in a jet stirred combustor. The results of the experiments were interpreted using reaction models in which the nitric oxide (NO) forming reactions were coupled to the appropriate hydrocarbon combustion reaction mechanisms. Comparison between the experimental data and the model predictions reveals that the CH + N2 reaction process has a significant effect on NO formation especially in stoichiometric and fuel rich mixtures. Reaction models were assembled that predicted nitric oxide levels that were in reasonable agreement with the jet stirred combustor data and with data obtained from a high pressure (5.9 atm (0.6 MPa)), prevaporized, premixed, flame tube type combustor. The results also suggested that the behavior of hydrocarbon mixtures, like JP-4, may not be significantly different from that of pure hydrocarbons. Application of the propane combustion and nitric oxide formation model to the analysis of NOx emission data reported for various aircraft gas turbines showed the contribution of the various nitric oxide forming processes to the total NOx formed.

  7. Reversed flow fluidized-bed combustion apparatus

    DOEpatents

    Shang, Jer-Yu; Mei, Joseph S.; Wilson, John S.

    1984-01-01

    The present invention is directed to a fluidized-bed combustion apparatus provided with a U-shaped combustion zone. A cyclone is disposed in the combustion zone for recycling solid particulate material. The combustion zone configuration and the recycling feature provide relatively long residence times and low freeboard heights to maximize combustion of combustible material, reduce nitrogen oxides, and enhance sulfur oxide reduction.

  8. Nitrogen oxides storage catalysts containing cobalt

    DOEpatents

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  9. Nitric oxide reduction in coal combustion: role of char surface complexes in heterogeneous reactions.

    PubMed

    Arenillas, Ana; Rubiera, Fernando; Pis, José J

    2002-12-15

    Nitrogen oxides are one of the major environmental problems arising from fossil fuel combustion. Coal char is relatively rich in nitrogen, and so this is an important source of nitrogen oxides during coal combustion. However, due to its carbonaceous nature, char can also reduce NO through heterogeneous reduction. The objectives of this work were on one hand to compare NO emissions from coal combustion in two different types of equipment and on the other hand to study the influence of char surface chemistry on NO reduction. A series of combustion tests were carried out in two different scale devices: a thermogravimetric analyzer coupled to a mass spectrometer and an FTIR (TG-MS-FTIR) and a fluidized bed reactor with an on line battery of analyzers. The TG-MS-FTIR system was also used to perform a specific study on NO heterogeneous reduction reactions using chars with different surface chemistry. According to the results obtained, it can be said that the TG-MS-FTIR system provides valuable information about NO heterogeneous reduction and it can give good trends of the behavior in other combustion equipments (i.e., fluidized bed combustors). It has been also pointed out that NO-char interaction depends to a large extent on temperature. In the low-temperature range (<800 degrees C), NO heterogeneous reduction seems to be controlled by the evolution of surface complexes. In the high-temperature range (>800 degrees C), a different mechanism is involved in NO heterogeneous reduction, the nature of the carbon matrix being a key factor.

  10. Effects of combustion temperature on air emissions and support fuel consumption in full scale fluidized bed sludge incineration: with particular focus on nitrogen oxides and total organic carbon.

    PubMed

    Löschau, Margit

    2018-04-01

    This article describes a pilot test at a sewage sludge incineration plant and shows its results considering the impacts of reducing the minimum combustion temperature from 850°C to 800°C. The lowering leads to an actual reduction of the average combustion temperature by 25 K and a significant reduction in the fuel oil consumption for support firing. The test shall be used for providing evidence that the changed combustion conditions do not result in higher air pollutant emissions. The analysis focusses on the effects of the combustion temperature on nitrogen oxides (NO x ) and total organic carbon emissions. The evaluation of all continuously monitored emissions shows reduced emission levels compared to the previous years, especially for NO x .

  11. Chemicl-looping combustion of coal with metal oxide oxygen carriers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siriwardane, R.; Tian, H.; Richards, G.

    2009-01-01

    The combustion and reoxidation properties of direct coal chemical-looping combustion (CLC) over CuO, Fe2O3, Co3O4, NiO, and Mn2O3 were investigated using thermogravimetric analysis (TGA) and bench-scale fixed-bed flow reactor studies. When coal is heated in either nitrogen or carbon dioxide (CO2), 50% of weight loss was observed because of partial pyrolysis, consistent with the proximate analysis. Among various metal oxides evaluated, CuO showed the best reaction properties: CuO can initiate the reduction reaction as low as 500 °C and complete the full combustion at 700 °C. In addition, the reduced copper can be fully reoxidized by air at 700 °C.more » The combustion products formed during the CLC reaction of the coal/metal oxide mixture are CO2 and water, while no carbon monoxide was observed. Multicycle TGA tests and bench-scale fixed-bed flow reactor tests strongly supported the feasibility of CLC of coal by using CuO as an oxygen carrier. Scanning electron microscopy (SEM) images of solid reaction products indicated some changes in the surface morphology of a CuO-coal sample after reduction/oxidation reactions at 800 °C. However, significant surface sintering was not observed. The interactions of fly ash with metal oxides were investigated by X-ray diffraction and thermodynamic analysis. Overall, the results indicated that it is feasible to develop CLC with coal by metal oxides as oxygen carriers.« less

  12. Combustion mechanism of double-base propellant containing nitrogen heterocyclic nitroamines (II): The temperature distribution of the flame and its chemical structure

    NASA Astrophysics Data System (ADS)

    Yan, Qi-Long; Song, Zhen-Wei; Shi, Xiao-Bing; Yang, Zhi-Yuan; Zhang, Xiao-Hong

    2009-03-01

    In order to evaluate the actual pros and cons in the use of new nitroamines for solid rocket applications, the combustion properties of double-base propellants containing nitrogen heterocyclic nitroamines such as RDX, TNAD, HMX and DNP are investigated by means of high-speed photography technique, Non-contact wavelet-based measurement of flame temperature distribution. The chemical reactions in different combustion zone which control the burning characteristics of the double-base propellant containing nitrogen heterocyclic nitroamines were systematically investigated and descriptions of the detailed thermal decomposition mechanisms from solid phase to liquid phase or to gas phase are also included. It was indicated that the thermodynamic phase transition consisting of both evaporation and condensation of NC+NG, HMX, TNAD, RDX and DNP, are considered to provide a complete description of the mass transfer process in the combustion of these double-base propellants, and the combustion mechanisms of them are mainly involved with the oxidation mechanism of the NO 2, formaldehyde (CH 2O) and hydrogen cyanide (HCN). The entire oxidation reaction rate might be dependent on the pressure of the combustion chamber and temperature of the gas phase.

  13. An analytical study of nitrogen oxides and carbon monoxide emissions in hydrocarbon combustion with added nitrogen - Preliminary results

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.

    1980-01-01

    The influence of ground-based gas turbine combustor operating conditions and fuel-bound nitrogen (FBN) found in coal-derived liquid fuels on the formation of nitrogen oxides and carbon monoxide is investigated. Analytical predictions of NOx and CO concentrations are obtained for a two-stage, adiabatic, perfectly-stirred reactor operating on a propane-air mixture, with primary equivalence ratios from 0.5 to 1.7, secondary equivalence ratios of 0.5 or 0.7, primary stage residence times from 12 to 20 msec, secondary stage residence times of 1, 2 and 3 msec and fuel nitrogen contents of 0.5, 1.0 and 2.0 wt %. Minimum nitrogen oxide but maximum carbon monoxide formation is obtained at primary zone equivalence ratios between 1.4 and 1.5, with percentage conversion of FBN to NOx decreasing with increased fuel nitrogen content. Additional secondary dilution is observed to reduce final pollutant concentrations, with NOx concentration independent of secondary residence time and CO decreasing with secondary residence time; primary zone residence time is not observed to affect final NOx and CO concentrations significantly. Finally, comparison of computed results with experimental values shows a good semiquantitative agreement.

  14. Low NOx combustion using cogenerated oxygen and nitrogen streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kobayashi, Hisashi; Bool, Lawrence E; Snyder, William J

    Combustion of hydrocarbon fuel is achieved with less formation of NOx by feeding the fuel into a slightly oxygen-enriched atmosphere, and separating air into oxygen-rich and nitrogen-rich streams which are fed separately into the combustion device.

  15. Mechanisms and modeling of the effects of additives on the nitrogen oxides emission

    NASA Technical Reports Server (NTRS)

    Kundu, Krishna P.; Nguyen, Hung Lee; Kang, M. Paul

    1991-01-01

    A theoretical study on the emission of the oxides of nitrogen in the combustion of hydrocarbons is presented. The current understanding of the mechanisms and the rate parameters for gas phase reactions were used to calculate the NO(x) emission. The possible effects of different chemical species on thermal NO(x), on a long time scale were discussed. The mixing of these additives at various stages of combustion were considered and NO(x) concentrations were calculated; effects of temperatures were also considered. The chemicals such as hydrocarbons, H2, CH3OH, NH3, and other nitrogen species were chosen as additives in this discussion. Results of these calculations can be used to evaluate the effects of these additives on the NO(x) emission in the industrial combustion system.

  16. Method and system for the removal of oxides of nitrogen and sulfur from combustion processes

    DOEpatents

    Walsh, John V.

    1987-12-15

    A process for removing oxide contaminants from combustion gas, and employing a solid electrolyte reactor, includes: (a) flowing the combustion gas into a zone containing a solid electrolyte and applying a voltage and at elevated temperature to thereby separate oxygen via the solid electrolyte, (b) removing oxygen from that zone in a first stream and removing hot effluent gas from that zone in a second stream, the effluent gas containing contaminant, (c) and pre-heating the combustion gas flowing to that zone by passing it in heat exchange relation with the hot effluent gas.

  17. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advancedmore » digital control/optimization phase of the project.« less

  18. Beryllium particle combustion

    NASA Technical Reports Server (NTRS)

    Prentice, J. L.

    1972-01-01

    A two-year study of the combustion efficiency of single beryllium droplets burning in a variety of oxidizers (primarily mixtures of oxygen/argon and oxygen/nitrogen) is summarized. An advanced laser heating technique was used to acquire systematic quantitative data on the burning of single beryllium droplets at atmospheric pressure. The research confirmed the sensitivity of beryllium droplet combustion to the chemistry of environmental species and provides experimental documentation for the nitrogen-induced droplet fragmentation of burning beryllium droplets.

  19. Nitrogen spark denoxer

    DOEpatents

    Ng, Henry K.; Novick, Vincent J.; Sekar, Ramanujam R.

    1997-01-01

    A NO.sub.X control system for an internal combustion engine includes an oxygen enrichment device that produces oxygen and nitrogen enriched air. The nitrogen enriched air contains molecular nitrogen that is provided to a spark plug that is mounted in an exhaust outlet of an internal combustion engine. As the nitrogen enriched air is expelled at the spark gap of the spark plug, the nitrogen enriched air is exposed to a pulsating spark that is generated across the spark gap of the spark plug. The spark gap is elongated so that a sufficient amount of atomic nitrogen is produced and is injected into the exhaust of the internal combustion engine. The injection of the atomic nitrogen into the exhaust of the internal combustion engine causes the oxides of nitrogen to be reduced into nitrogen and oxygen such that the emissions from the engine will have acceptable levels of NO.sub.X. The oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  20. Nitrogen Dioxide's Impact on Indoor Air Quality

    EPA Pesticide Factsheets

    The two most prevalent oxides of nitrogen are nitrogen dioxide (NO2) and nitric oxide (NO). Both are toxic gases with NO2 being a highly reactive oxidant and corrosive. The primary sources indoors are combustion processes.

  1. Denitrification of combustion gases. [Patent application

    DOEpatents

    Yang, R.T.

    1980-10-09

    A method for treating waste combustion gas to remove the nitrogen oxygen gases therefrom is disclosed wherein the waste gas is first contacted with calcium oxide which absorbs and chemically reacts with the nitrogen oxide gases therein at a temperature from about 100/sup 0/ to 430/sup 0/C. The thus reacted calcium oxide (now calcium nitrate) is then heated at a temperature range between about 430/sup 0/ and 900/sup 0/C, resulting in regeneration of the calcium oxide and production of the decomposition gas composed of nitrogen and nitrogen oxide gas. The decomposition gases can be recycled to the calcium oxide contacting step to minimize the amount of nitrogen oxide gases in the final product gas.

  2. Kinetics of devolatilization and oxidation of a pulverized biomass in an entrained flow reactor under realistic combustion conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jimenez, Santiago; Remacha, Pilar; Ballester, Javier

    2008-03-15

    In this paper the results of a complete set of devolatilization and combustion experiments performed with pulverized ({proportional_to}500 {mu}m) biomass in an entrained flow reactor under realistic combustion conditions are presented. The data obtained are used to derive the kinetic parameters that best fit the observed behaviors, according to a simple model of particle combustion (one-step devolatilization, apparent oxidation kinetics, thermally thin particles). The model is found to adequately reproduce the experimental trends regarding both volatile release and char oxidation rates for the range of particle sizes and combustion conditions explored. The experimental and numerical procedures, similar to those recentlymore » proposed for the combustion of pulverized coal [J. Ballester, S. Jimenez, Combust. Flame 142 (2005) 210-222], have been designed to derive the parameters required for the analysis of biomass combustion in practical pulverized fuel configurations and allow a reliable characterization of any finely pulverized biomass. Additionally, the results of a limited study on the release rate of nitrogen from the biomass particle along combustion are shown. (author)« less

  3. EVALUATION OF TIRE-DERIVED FUEL FOR USE IN NITROGEN OXIDE REDUCTION BY REBURNING

    EPA Science Inventory

    Tire-derived fuel (TDF) was tested in a small-scale (44 kW or 150,000 Btu/hr) combustor to determine its feasibility as a fuel for use in reburning for control of nitrogen oxide (NO). TDF was gravity-fed into upward flowing combustion gases from a primary natural gas flame doped ...

  4. Modelling of nitrogen oxides distribution in the hearth of gas-fired industrial furnace

    NASA Astrophysics Data System (ADS)

    Zhubrin, S.; Glazov, V.; Guzhov, S.

    2017-11-01

    A model is proposed for calculating the formation and transportation of nitrogen oxides in the combustion chamber of an industrial furnace heated by gaseous fuels burning. The calculations use a three-dimensional stationary description of turbulent flow and mixing of fuel and oxidizer flows in the presence of heat transfer, mass transfer, and momentum between them transfer. Simulation of the spatial pattern of nitrogen oxides formation in the working space of the furnace is performed in the programming and computing suite SCAN. It is shown that the temperature non-uniformity over the hearth surface is not too pronounced due to the organization of the inclined flow inlet in the direction of the hearth, which is a desirable feature of the furnace operation. The highest concentration of combustion products is observed in the zone of maximum temperatures. In addition, the existence of two zones of the highest generation of oxides has been determined. The first zone is located approximately in the center of the hearth, and the second is located on the far external surface of the furnace. The possibility of using the developed model in the SCAN complex for carrying out parametric studies and engineering calculations, as well as for modification in the direction of adjusting and adapting the model to the regime-constructive features of specific energy technological devices, is noted.

  5. Decomposition of nitric oxide in a hot nitrogen stream to synthesize air for hypersonic wind tunnel combustion testing

    NASA Technical Reports Server (NTRS)

    Zumdieck, J. F.; Zlatarich, S. A.

    1974-01-01

    A clean source of high enthalpy air was obtained from the exothermic decomposition of nitric oxide in the presence of strongly heated nitrogen. A nitric oxide jet was introduced into a confined coaxial nitrogen stream. Measurements were made of the extent of mixing and reaction. Experimental results are compared with one- and two-dimensional chemical kinetics computations. Both analyses predict much lower reactivity than was observed experimentally. Inlet nitrogen temperatures above 2400 K were sufficient to produce experimentally a completely reacted gas stream of synthetic air.

  6. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  7. Ultrafine particles and nitrogen oxides generated by gas and electric cooking

    PubMed Central

    Dennekamp, M; Howarth, S; Dick, C; Cherrie, J; Donaldson, K; Seaton, A

    2001-01-01

    OBJECTIVES—To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens.
METHODS—Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NOx) were measured by a chemiluminescent ML9841A NOx analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm.
RESULTS—High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NOX were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide.
CONCLUSIONS—Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NOx might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.


Keywords: cooking fuels; nitrogen oxides; ultrafine particles PMID:11452045

  8. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  9. NOx formation from the combustion of monodisperse n-heptane sprays doped with fuel-nitrogen additives

    NASA Technical Reports Server (NTRS)

    Sarv, Hamid; Cernansky, Nicholas P.

    1989-01-01

    A series of experiments with simulated synthetic fuels were conducted in order to investigate the effect of droplet size on the conversion of fuel-nitrogen to NOx. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives and burned as monodisperse fuel droplets under various operating conditions in a spray combustion facility. The experimental results indicate that under stoichiometric and fuel-rich conditions, reducing the droplet size increases the efficiency of fuel-N conversion to NOx. This observation is associated with improved oxidation of the pyrolysis fragments of the additive by better oxygen penetration through the droplet flame zone. The dominant reactions by which fuel-N is transformed to NOx were also considered analytically by a premixed laminar flame code. The calculations are compared to the small droplet size results.

  10. Combustion synthesis of complex oxides

    NASA Astrophysics Data System (ADS)

    Ming, Qimin

    Advanced ceramic materials have numerous applications in electronic engineering, chemical engineering, and semiconductor industry. The synthesis of these materials at an economical cost is the bottleneck in the application of these materials. Self-propagating High-temperature Synthesis (SHS) is a new technique for producing these materials for exothermic systems by a combustion wave that propagates and produces high purity products. The full potential of SHS to produce advanced materials has not yet been utilized. In this study, we used SHS to prepare two types of complex oxides: La 1-xSrxCrO3, La0.89Sr0.1 MnO3, powders, used to make interconnect and cathode of solid oxide fuel cells; and chromium- and gallium-doped La1-xSr xFeO3-delta, mixed ionic and electronic conductive powders used to manufacture ceramic membranes for oxygen separation. A thermodynamic feasibility analysis shows that the oxidation of Cr is the main source of heat generation of La1-xSrxCrO 3, which maintains a stable reaction front. Replacing part of the metallic Cr in the reaction mixture by its oxides decreases the combustion temperature and front propagating velocity and modifies the product morphology. The oxygen needed for the Cr oxidation is provided by the decomposition of CrO3 , SrO2, or NaClO4. The predicted and observed combustion temperatures are in reasonable agreement. TG/DTA analyses of La1-xSrxCrO3 indicated that SHS stability was strongly affected by the transport of oxygen between the two regions, in which oxygen was generated by the decomposition of either NaClO4 or CrO3 and that in which it was consumed by the oxidation of Cr. Partial melting at the high combustion temperature during SHS of La 1-xSrxMnO3 increased product homogeneity. The electrical conductivity at 1000°C in air of SHS-produced cathode material (of 180 O-1·cm-1) matches that of the commercial product made by other processes. However, the SHS process provides much higher productivity and decreases processing

  11. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, Jiri; McVay, Gary L.; Peden, Charles H.; Exarhos, Gregory J.

    1998-01-01

    A method and apparatus for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO.sub.2 is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine.

  12. Chlorine activation indoors and outdoors via surface-mediated reactions of nitrogen oxides with hydrogen chloride

    PubMed Central

    Raff, Jonathan D.; Njegic, Bosiljka; Chang, Wayne L.; Gordon, Mark S.; Dabdub, Donald; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2009-01-01

    Gaseous HCl generated from a variety of sources is ubiquitous in both outdoor and indoor air. Oxides of nitrogen (NOy) are also globally distributed, because NO formed in combustion processes is oxidized to NO2, HNO3, N2O5 and a variety of other nitrogen oxides during transport. Deposition of HCl and NOy onto surfaces is commonly regarded as providing permanent removal mechanisms. However, we show here a new surface-mediated coupling of nitrogen oxide and halogen activation cycles in which uptake of gaseous NO2 or N2O5 on solid substrates generates adsorbed intermediates that react with HCl to generate gaseous nitrosyl chloride (ClNO) and nitryl chloride (ClNO2), respectively. These are potentially harmful gases that photolyze to form highly reactive chlorine atoms. The reactions are shown both experimentally and theoretically to be enhanced by water, a surprising result given the availability of competing hydrolysis reaction pathways. Airshed modeling incorporating HCl generated from sea salt shows that in coastal urban regions, this heterogeneous chemistry increases surface-level ozone, a criteria air pollutant, greenhouse gas and source of atmospheric oxidants. In addition, it may contribute to recently measured high levels of ClNO2 in the polluted coastal marine boundary layer. This work also suggests the potential for chlorine atom chemistry to occur indoors where significant concentrations of oxides of nitrogen and HCl coexist. PMID:19620710

  13. Apparatus for photocatalytic destruction of internal combustion engine emissions during cold start

    DOEpatents

    Janata, J.; McVay, G.L.; Peden, C.H.; Exarhos, G.J.

    1998-07-14

    A method and apparatus are disclosed for the destruction of emissions from an internal combustion engine wherein a substrate coated with TiO{sub 2} is exposed to a light source in the exhaust system of an internal combustion engine thereby catalyzing oxidation/reduction reactions between gaseous hydrocarbons, carbon monoxide, nitrogen oxides and oxygen in the exhaust of the internal combustion engine. 4 figs.

  14. Climate change impacts of US reactive nitrogen.

    PubMed

    Pinder, Robert W; Davidson, Eric A; Goodale, Christine L; Greaver, Tara L; Herrick, Jeffrey D; Liu, Lingli

    2012-05-15

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N(2)O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO(2) equivalents (CO(2)e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at -290 to -510 Tg CO(2)e on a GTP(20) basis. However, these effects are largely short-lived. On a GTP(100) basis, combustion contributes just -16 to -95 Tg CO(2)e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N(2)O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N(2)O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO(2) emission reductions will be required to avoid dangerous climate change.

  15. Climate change impacts of US reactive nitrogen

    PubMed Central

    Pinder, Robert W.; Davidson, Eric A.; Goodale, Christine L.; Greaver, Tara L.; Herrick, Jeffrey D.; Liu, Lingli

    2012-01-01

    Fossil fuel combustion and fertilizer application in the United States have substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions, including oxides of nitrogen, ammonia, and nitrous oxide (N2O). We use the global temperature potential (GTP), calculated at 20 and 100 y, in units of CO2 equivalents (CO2e), as a common metric. The largest cooling effects are due to combustion sources of oxides of nitrogen altering tropospheric ozone and methane concentrations and enhancing carbon sequestration in forests. The combined cooling effects are estimated at −290 to −510 Tg CO2e on a GTP20 basis. However, these effects are largely short-lived. On a GTP100 basis, combustion contributes just −16 to −95 Tg CO2e. Agriculture contributes to warming on both the 20-y and 100-y timescales, primarily through N2O emissions from soils. Under current conditions, these warming and cooling effects partially offset each other. However, recent trends show decreasing emissions from combustion sources. To prevent warming from US reactive nitrogen, reductions in agricultural N2O emissions are needed. Substantial progress toward this goal is possible using current technology. Without such actions, even greater CO2 emission reductions will be required to avoid dangerous climate change. PMID:22547815

  16. Ultrafine particles and nitrogen oxides generated by gas and electric cooking.

    PubMed

    Dennekamp, M; Howarth, S; Dick, C A; Cherrie, J W; Donaldson, K; Seaton, A

    2001-08-01

    To measure the concentrations of particles less than 100 nm diameter and of oxides of nitrogen generated by cooking with gas and electricity, to comment on possible hazards to health in poorly ventilated kitchens. Experiments with gas and electric rings, grills, and ovens were used to compare different cooking procedures. Nitrogen oxides (NO(x)) were measured by a chemiluminescent ML9841A NO(x) analyser. A TSI 3934 scanning mobility particle sizer was used to measure average number concentration and size distribution of aerosols in the size range 10-500 nm. High concentrations of particles are generated by gas combustion, by frying, and by cooking of fatty foods. Electric rings and grills may also generate particles from their surfaces. In experiments where gas burning was the most important source of particles, most particles were in the size range 15-40 nm. When bacon was fried on the gas or electric rings the particles were of larger diameter, in the size range 50-100 nm. The smaller particles generated during experiments grew in size with time because of coagulation. Substantial concentrations of NO(X) were generated during cooking on gas; four rings for 15 minutes produced 5 minute peaks of about 1000 ppb nitrogen dioxide and about 2000 ppb nitric oxide. Cooking in a poorly ventilated kitchen may give rise to potentially toxic concentrations of numbers of particles. Very high concentrations of oxides of nitrogen may also be generated by gas cooking, and with no extraction and poor ventilation, may reach concentrations at which adverse health effects may be expected. Although respiratory effects of exposure to NO(x) might be anticipated, recent epidemiology suggests that cardiac effects cannot be excluded, and further investigation of this is desirable.

  17. Design, analysis, and fabrication of oxide-coated iridium/rhenium combustion chambers

    NASA Technical Reports Server (NTRS)

    Jang, Q.; Tuffias, R. H.; Laferla, R.; Ghoniem, N. M.

    1993-01-01

    Iridium-coated rhenium (Ir/Re) combustion chambers provide high temperature, oxidation-resistant operation for radiation-cooled liquid-fueled rocket engines. A 22-N (5-lb(sub f)) chamber has been operated for 15 hours at 2200 C (4000 F) using nitrogen tetroxide/monomethyl hydrazine (NTO/MMH) propellant, with negligible internal erosion. The oxidation resistance of these chambers could be further increased by the addition of refractory oxide coatings, providing longer life and/or operation in more oxidizing and higher temperature environments. The oxide coatings would serve as a thermal and diffusion barrier for the iridium coating, lowering the temperature of the iridium layer while also preventing the ingress of oxygen and egress of iridium oxides. This would serve to slow the failure mechanisms of Ir/Re chambers, namely the diffusion of rhenium to the inner surface and the oxidation of iridium. Such protection could extend chamber lifetimes by tens or perhaps hundreds of hours, and allow chamber operation on stoichiometric or higher mixture ratio oxygen/hydrogen (O2/H2) propellant. Extensive thermomechanical, thermochemical, and mass transport modeling was performed as a key material/structure design tool. Based on the results of these analyses, several 22-N oxide-coated Ir/Re chambers were fabricated and delivered to NASA Lewis Research Center for hot-fire testing.

  18. Analysis of effect of flameholder characteristics on lean, premixed, partially vaporized fuel-air mixtures quality and nitrogen oxides emissions

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1981-01-01

    An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.

  19. Effect of oxy-combustion flue gas on mercury oxidation.

    PubMed

    Fernández-Miranda, Nuria; Lopez-Anton, M Antonia; Díaz-Somoano, Mercedes; Martínez-Tarazona, M Rosa

    2014-06-17

    This study evaluates the effect of the gases present in a typical oxy-coal combustion atmosphere on mercury speciation and compares it with the mercury speciation produced in conventional air combustion atmospheres. The work was performed at laboratory scale at 150 °C. It was found that the minor constituents (SO2, NOx, and HCl) significantly modify the percentages of Hg(2+) in the gas. The influence of these species on mercury oxidation was demostrated when they were tested individually and also when they were blended in different gas compositions, although the effect was different to the sum of their individual effects. Of the minor constituents, NOx were the main species involved in oxidation of mercury. Moreover, it was found that a large concentration of H2O vapor also plays an important role in mercury oxidation. Around 50% of the total mercury was oxidized in atmospheres with H2O vapor concentrations typical of oxy-combustion conditions. When the atmospheres have similar concentrations of SO2, NO, NO2, HCl, and H2O, the proportion of Hg(0)/Hg(2+) is similar regardless of whether CO2 (oxy-fuel combustion) or N2 (air combustion) are the main components of the gas.

  20. Effect of air-staging on anthracite combustion and NOx formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weidong Fan; Zhengchun Lin; Youyi Li

    Experiments were carried out in a multipath air inlet one-dimensional furnace to assess NOx emission characteristics of the staged combustion of anthracite coal. These experiments allowed us to study the impact of pulverized coal fineness and burnout air position on emission under both deep and shallow air-staged combustion conditions. We also studied the impact of char-nitrogen release on both the burning-out process of the pulverized coal and the corresponding carbon content in fly ash. We found that air-staged combustion affects a pronounced reduction in NOx emissions from the combustion of anthracite coal. The more the air is staged, the moremore » NOx emission is reduced. In shallow air-staged combustion (f{sub M} = 0.85), the fineness of the pulverized coal strongly influences emissions, and finer coals result in lower emissions. Meanwhile, the burnout air position has only a weak effect. In the deep air-staged combustion (f{sub M} = 0.6), the effect of coal fineness is smaller, and the burnout air position has a stronger effect. When the primary combustion air is stable, NOx emissions increase with increasing burnout air. This proves that, in the burnout zone, coal char is responsible for the discharge of fuel-nitrogen that is oxidized to NOx. The measurement of secondary air staging in a burnout zone can help inhibit the oxidization of NO caused by nitrogen release. Air-staged combustion has little effect on the burnout of anthracite coal, which proves to be suitable for air-staged combustion. 31 refs., 11 figs., 1 tab.« less

  1. 40 CFR 52.278 - Oxides of nitrogen control.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...

  2. 40 CFR 52.278 - Oxides of nitrogen control.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...

  3. 40 CFR 52.278 - Oxides of nitrogen control.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...

  4. 40 CFR 52.278 - Oxides of nitrogen control.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Oxides of nitrogen control. 52.278... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control. (a) The following regulations are disapproved because they relax the control of nitrogen oxides...

  5. A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coda Zabetta, Edgardo; Hupa, Mikko

    2008-01-15

    A detailed chemical kinetic mechanism for the simulation of the gas-phase combustion and pyrolysis of biomass-derived fuels was compiled by assembling selected reaction subsets from existing mechanisms (parents). The mechanism, here referred to as ''AaA,'' includes reaction subsets for the oxidation of hydrogen (H{sub 2}), carbon monoxide (CO), light hydrocarbons (C{sub 1} and C{sub 2}), and methanol (CH{sub 3}OH). The mechanism also takes into account reaction subsets of nitrogen pollutants, including the reactions relevant to staged combustion, reburning, and selective noncatalytic reduction (SNCR). The AaA mechanism was validated against suitable experimental data from the literature. Overall, the AaA mechanism gavemore » more accurate predictions than three other mechanisms of reference, although the reference mechanisms performed better occasionally. The predictions from AaA were also found to be consistent with the predictions of its parent mechanisms within most of their range of validity, thus transferring the validity of the parents to the inheriting mechanism (AaA). In parametric studies the AaA mechanism predicted that the effect of methanol on combustion and pollutants is often similar to that of light hydrocarbons, but it also showed that there are important exceptions, thus suggesting that methanol should be taken into account when simulating biomass combustion. To our knowledge, the AaA mechanism is currently the only mechanism that accounts for the chemistry of methanol and nitrogen relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. (author)« less

  6. Metabolism of Nitrogen Oxides in Ammonia-Oxidizing Bacteria

    NASA Astrophysics Data System (ADS)

    Kozlowski, J.; Stein, L. Y.

    2014-12-01

    Ammonia-oxidizing bacteria (AOB) are key microorganisms in the transformation of nitrogen intermediates in most all environments. Until recently there was very little work done to elucidate the physiology of ammonia-oxidizing bacteria cultivated from variable trophic state environments. With a greater variety of ammonia-oxidizers now in pure culture the importance of comparative physiological and genomic analysis is crucial. Nearly all known physiology of ammonia-oxidizing bacteria lies within the Nitrosomonas genus with Nitrosomonas europaea strain ATCC 19718 as the model. To more broadly characterize and understand the nature of obligate ammonia chemolithotrophy and the contribution of AOB to production of nitrogen oxides, Nitrosomonas spp. and Nitrosospira spp. isolated from variable trophic states and with sequenced genomes, were utilized. Instantaneous ammonia- and hydroxylamine-oxidation kinetics as a function of oxygen and substrate concentration were measured using an oxygen micro-sensor. The pathway intermediates nitric oxide and nitrous oxide were measured in real time using substrate-specific micro-sensors to elucidate whether production of these molecules is stoichiometric with rates of substrate oxidation. Genomic inventory was compared among the strains to identify specific pathways and modules to explain physiological differences in kinetic rates and production of N-oxide intermediates as a condition of their adaptation to different ammonium concentrations. This work provides knowledge of how nitrogen metabolism is differentially controlled in AOB that are adapted to different concentrations of ammonium. Overall, this work will provide further insight into the control of ammonia oxidizing chemolithotrophy across representatives of the Nitrosomonas and Nitrosospira genus, which can then be applied to examine additional genome-sequenced AOB isolates.

  7. Nox control for high nitric oxide concentration flows through combustion-driven reduction

    DOEpatents

    Yeh, James T.; Ekmann, James M.; Pennline, Henry W.; Drummond, Charles J.

    1989-01-01

    An improved method for removing nitrogen oxides from concentrated waste gas streams, in which nitrogen oxides are ignited with a carbonaceous material in the presence of substoichiometric quantities of a primary oxidant, such as air. Additionally, reductants may be ignited along with the nitrogen oxides, carbonaceous material and primary oxidant to achieve greater reduction of nitrogen oxides. A scrubber and regeneration system may also be included to generate a concentrated stream of nitrogen oxides from flue gases for reduction using this method.

  8. Performance of PAHs emission from bituminous coal combustion.

    PubMed

    Yan, Jian-Hua; You, Xiao-Fang; Li, Xiao-Dong; Ni, Ming-Jiang; Yin, Xue-Feng; Cen, Ke-Fa

    2004-12-01

    Carcinogenic and mutagenic polycyclic aromatic hydrocarbons (PAHs) generated in coal combustion have caused great environmental health concern. Seventeen PAHs (16 high priority PAHs recommended by USEPA plus Benzo[e]pyrene) present in five raw bituminous coals and released during bituminous coal combustion were studied. The effects of combustion temperature, gas atmosphere, and chlorine content of raw coal on PAHs formation were investigated. Two additives (copper and cupric oxide) were added when the coal was burned. The results indicated that significant quantities of PAHs were produced from incomplete combustion of coal pyrolysis products at high temperature, and that temperature is an important causative factor of PAHs formation. PAHs concentrations decrease with the increase of chlorine content in oxygen or in nitrogen atmosphere. Copper and cupric oxide additives can promote PAHs formation (especially the multi-ring PAHs) during coal combustion.

  9. Characteristics of fundamental combustion and NOx emission using various rank coals.

    PubMed

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  10. 40 CFR 60.72 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides. 60.72... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...) Contain nitrogen oxides, expressed as NO2, in excess of 1.5 kg per metric ton of acid produced (3.0 lb per...

  11. 40 CFR 60.72 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for nitrogen oxides. 60.72... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...) Contain nitrogen oxides, expressed as NO2, in excess of 1.5 kg per metric ton of acid produced (3.0 lb per...

  12. 40 CFR 60.72 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for nitrogen oxides. 60.72... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...) Contain nitrogen oxides, expressed as NO2, in excess of 1.5 kg per metric ton of acid produced (3.0 lb per...

  13. 40 CFR 60.72 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for nitrogen oxides. 60.72... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...) Contain nitrogen oxides, expressed as NO2, in excess of 1.5 kg per metric ton of acid produced (3.0 lb per...

  14. Emission control system for nitrogen oxides using enhanced oxidation, scrubbing, and biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martinez, A.; Cabezas, J.

    2009-05-15

    Nitric oxide (NO) constitutes about 90% of the nitrogen oxide (NOx) species in the flue gases emitted from combustion processes, but NO is difficult to remove in existing scrubbers due to its low solubility. NO may be oxidized with hydrogen peroxide (H{sub 2}O{sub 2}) into soluble species that can be partially removed in wet scrubbers simultaneously with sulfur dioxide (SO{sub 2}) and biofilters located downstream of the scrubber can increase the removal efficiency. This article presents the results of a bench-scale evaluation of such an integrated system combining enhanced oxidation, scrubbing, and biofiltration. Main components of the bench-scale system consistedmore » of a quartz tube in a furnace to simulate the NO oxidation stage and two vertical packed bed cylinders constituting the scrubber and the biofilter. Inlet synthetic gas had a concentration of 50 mu L/L of NO. Overall removal efficiency by the integrated system was in the range of 53% to 93% with an average of 79%, absorption accounted for 43% and biofiltration for 36% of the total removal. Key parameters in the operation of the system are the H{sub 2}O{sub 2}:NO mole ratio, the reaction temperature, the liquid to gas flow ratio, and the biofilter residence time. Experimental results suggest a path for optimization of the technology focusing simultaneously in minimizing H{sub 2}O{sub 2} use in the enhanced oxidation stage, reducing water consumption in the scrubber stage and balancing the residence times in the three stages of the integrated system.« less

  15. 40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...

  16. 40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...

  17. 40 CFR 86.318-79 - Oxides of nitrogen analyzer specifications.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Procedures § 86.318-79 Oxides of nitrogen analyzer specifications. (a) Oxides of nitrogen are to be measured....327. (b) Option. The oxides of nitrogen may be measured with an NDIR analyzer system that meets the...

  18. ATMOSPHERIC NITROGEN FIXATION BY METHANE-OXIDIZING BACTERIA

    PubMed Central

    Davis, J. B.; Coty, V. F.; Stanley, J. P.

    1964-01-01

    Davis, J. B. (Socony Mobil Oil Co., Inc., Dallas, Tex.), V. F. Coty, and J. P. Stanley. Atmospheric nitrogen fixation by methane-oxidizing bacteria. J. Bacteriol. 88:468–472. 1964.—Methane-oxidizing bacteria capable of fixing atmospheric nitrogen were isolated from garden soil, pond mud, oil field soil, and soil exposed to natural gas, indicating a rather wide prevalence in nature. This may explain the high concentration of organic nitrogen commonly found in soils exposed to gas leakage from pipelines or natural-gas seeps. Added molybdenum was a requirement for growth in a nitrogen-free mineral salts medium. All nitrogen-fixing, methane-oxidizing bacteria isolated were gram-negative, nonsporeforming, usually motile rods. Colonies were light yellow, yellow, or white. The most common isolate, which formed light-yellow colonies, is referred to as Pseudomonas methanitrificans sp. n., and is distinguished from Pseudomonas (Methanomonas) methanica by nitrogen-fixing ability and a preponderance of poly-β-hydroxybutyrate in the cellular lipid fraction. Images PMID:14203365

  19. Mercury Adsorption and Oxidation over Cobalt Oxide Loaded Magnetospheres Catalyst from Fly Ash in Oxyfuel Combustion Flue Gas.

    PubMed

    Yang, Jianping; Zhao, Yongchun; Chang, Lin; Zhang, Junying; Zheng, Chuguang

    2015-07-07

    Cobalt oxide loaded magnetospheres catalyst from fly ash (Co-MF catalyst) showed good mercury removal capacity and recyclability under air combustion flue gas in our previous study. In this work, the Hg(0) removal behaviors as well as the involved reactions mechanism were investigated in oxyfuel combustion conditions. Further, the recyclability of Co-MF catalyst in oxyfuel combustion atmosphere was also evaluated. The results showed that the Hg(0) removal efficiency in oxyfuel combustion conditions was relative high compared to that in air combustion conditions. The presence of enriched CO2 (70%) in oxyfuel combustion atmosphere assisted the mercury oxidation due to the oxidation of function group of C-O formed from CO2. Under both atmospheres, the mercury removal efficiency decreased with the addition of SO2, NO, and H2O. However, the enriched CO2 in oxyfuel combustion atmosphere could somewhat weaken the inhibition of SO2, NO, and H2O. The multiple capture-regeneration cycles demonstrated that the Co-MF catalyst also present good regeneration performance in oxyfuel combustion atmosphere.

  20. Fluidized-bed combustion reduces atmospheric pollutants

    NASA Technical Reports Server (NTRS)

    Jonke, A. A.

    1972-01-01

    Method of reducing sulfur and nitrogen oxides released during combustion of fossil fuels is described. Fuel is burned in fluidized bed of solids with simultaneous feeding of crushed or pulverized limestone to control emission. Process also offers high heat transfer rates and efficient contacting for gas-solid reactions.

  1. The Effect of Fuel Quality on Carbon Dioxide and Nitrogen Oxide Emissions, While Burning Biomass and RDF

    NASA Astrophysics Data System (ADS)

    Kalnacs, J.; Bendere, R.; Murasovs, A.; Arina, D.; Antipovs, A.; Kalnacs, A.; Sprince, L.

    2018-02-01

    The article analyses the variations in carbon dioxide emission factor depending on parameters characterising biomass and RDF (refuse-derived fuel). The influence of moisture, ash content, heat of combustion, carbon and nitrogen content on the amount of emission factors has been reviewed, by determining their average values. The options for the improvement of the fuel to result in reduced emissions of carbon dioxide and nitrogen oxide have been analysed. Systematic measurements of biomass parameters have been performed, by determining their average values, seasonal limits of variations in these parameters and their mutual relations. Typical average values of RDF parameters and limits of variations have been determined.

  2. Modeling reactive nitrogen in North America: recent ...

    EPA Pesticide Factsheets

    Nitrogen is an essential building block of all proteins and thus an essential nutrient for all life. The bulk of nitrogen in the environment is tightly bound as non-reactive N2. Reactive nitrogen, which is naturally produced via enzymatic reactions, forest fires and lightning, is continually recycled and cascades through air, water, and soil media (Galloway et al., 2003). Human activity has perturbed this cycle through the combustion of fossil fuels and synthesis of fertilizers. The anthropogenic contribution to this cycle is now larger than natural sources in the United States and globally (Galloway et al., 2004). Reactive nitrogen enters the biosphere primarily from emissions of oxidized nitrogen to the atmosphere from combustion sources, as inorganic fertilizer applied to crops as reduced nitrogen fixed from atmospheric N2 through the Haber-Bosch process, as organic fertilizers such as manure, and through the cultivation of nitrogen fixing crops (Canfield et al., 2010). Both the United States (US) Clean Air Act and the Canadian Environmental Protection Act (CEPA) have substantially reduced the emissions of oxidized nitrogen in North America through NOx controls on smokestacks and exhaust pipes (Sickles and Shadwick, 2015; AQA, 2015). However, reduced nitrogen emissions have remained constant during the last few decades of emission reductions. The National Exposure Research Laboratory’s Atmospheric Modeling Division (AMAD) c

  3. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen... nitrogen are measured, the chemiluminescent oxides of nitrogen analyzer must be checked for NO2 to NO...

  4. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen... nitrogen are measured, the chemiluminescent oxides of nitrogen analyzer must be checked for NO2 to NO...

  5. 40 CFR 60.55a - Standard for nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for nitrogen oxides. 60.55a... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is... gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent...

  6. 40 CFR 60.55a - Standard for nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for nitrogen oxides. 60.55a... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is... gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent...

  7. 40 CFR 60.55a - Standard for nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for nitrogen oxides. 60.55a... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is... gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent...

  8. 40 CFR 60.55a - Standard for nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for nitrogen oxides. 60.55a... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is... gases that contain nitrogen oxides in excess of 180 parts per million by volume, corrected to 7 percent...

  9. Increasing importance of deposition of reduced nitrogen in the United States

    Treesearch

    Yi Li; Bret A. Schichtel; John T. Walker; Donna B. Schwede; Xi Chen; Christopher M. B. Lehmann; Melissa A. Puchalski; David A. Gay; Jeffrey L. Collett

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium...

  10. Catalyst for Decomposition of Nitrogen Oxides

    NASA Technical Reports Server (NTRS)

    Schryer, David R. (Inventor); Akyurtlu, Ates (Inventor); Jordan, Jeffrey D. (Inventor); Akyurtlu, Jale (Inventor)

    2015-01-01

    This invention relates generally to a platinized tin oxide-based catalyst. It relates particularly to an improved platinized tin oxide-based catalyst able to decompose nitric oxide to nitrogen and oxygen without the necessity of a reducing gas.

  11. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.

    PubMed

    Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-11-14

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  12. Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion

    NASA Astrophysics Data System (ADS)

    Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang

    2015-10-01

    The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.

  13. Nitrogen chemistry during burnout in fuel-staged combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kristensen, P.G.; Glarborg, P.; Dam-Johansen, K.

    A parametric study of the chemistry of the burnout zone in reburning has been performed in laboratory plug flow reactors in the temperature range 800--1,350 K. Inlet mole fractions of NO, NH{sub 3}, HCN, CO, and O{sub 2} were varied, together with different temperatures and residence times to simulate reaction conditions in practical systems. Under lean conditions, a minimum in NO emission exists as a function of temperature. Both HCN and NH{sub 3} can act as either NO reductants or as sources for NO by oxidation. Reactions and selectivities for HCN and NH{sub 3} are controlled by the radical poolmore » produced by fuel (CO) oxidation. As increasing amounts of CO were added, temperatures for both ignition and the minimum in NO became lower. At 2% CO, 4% O{sub 2}, and 100 ms residence time, the minimum in NO was found at approximately 1,000 K. At low temperatures, significant amounts of N{sub 2}O were measured in the reactor outlet. This is attributed to N{sub 2}O formation by HCN/NO reactions and to the slow decomposition of N{sub 2}O at these temperatures. Large reductions in NO were seen under fuel-rich conditions and at high temperatures. The observed NO reduction was very much dependent on the inlet mole fraction of O{sub 2}. Detailed chemical kinetic modeling of the experiments showed reasonable predictions for overall fuel-lean conditions, but the model failed to predict experimental results under fuel-rich conditions. The present results provide guidelines for optimizing the conditions for the burnout process of reburning, as well as other processes for NO{sub x} reduction by staged combustion. The results also provide a test basis for verifying kinetic models for nitrogen chemistry at low temperatures (800--1,350 K).« less

  14. Lean, premixed, prevaporized combustion for aircraft gas turbine engines

    NASA Technical Reports Server (NTRS)

    Mularz, E. J.

    1979-01-01

    The application of lean, premixed, prevaporized combustion to aircraft turbine engine systems can result in benefits in terms of superior combustion performance, improved combustor and turbine durability, and environmentally acceptable pollutant emissions. Lean, premixed prevaporized combustion is particularly attractive for reducing the oxides of nitrogen emissions during high altitude cruise. The NASA stratospheric cruise emission reduction program will evolve and demonstrate lean, premixed, prevaporized combustion technology for aircraft engines. This multiphased program is described. In addition, the various elements of the fundamental studies phase of the program are reviewed, and results to date of many of these studies are summarized.

  15. Nitrogen-doped graphene: effect of graphite oxide precursors and nitrogen content on the electrochemical sensing properties.

    PubMed

    Megawati, Monica; Chua, Chun Kiang; Sofer, Zdenek; Klímová, Kateřina; Pumera, Martin

    2017-06-21

    Graphene, produced via chemical methods, has been widely applied for electrochemical sensing due to its structural and electrochemical properties as well as its ease of production in large quantity. While nitrogen-doped graphenes are widely studied materials, the literature showing an effect of graphene oxide preparation methods on nitrogen quantity and chemical states as well as on defects and, in turn, on electrochemical sensing is non-existent. In this study, the properties of nitrogen-doped graphene materials, prepared via hydrothermal synthesis using graphite oxide produced by various classical methods using permanganate or chlorate oxidants Staudenmaier, Hummers, Hofmann and Brodie oxidation methods, were studied; the resulting nitrogen-doped graphene oxides were labeled as ST-GO, HU-GO, HO-GO and BR-GO, respectively. The electrochemical oxidation of biomolecules, such as ascorbic acid, uric acid, dopamine, nicotinamide adenine nucleotide and DNA free bases, was carried out using cyclic voltammetry and differential pulse voltammetry techniques. The nitrogen content in doped graphene oxides increased in the order ST-GO < BR-GO < HO-GO < HU-GO. In the same way, the pyridinic form of nitrogen increased and the electrocatalytic effect of N-doped graphene followed this trend, as shown in the cyclic voltammograms. This is a very important finding that provides insight into the electrocatalytic effect of N-doped graphene. The nitrogen-doped graphene materials exhibited improved sensitivity over bare glassy carbon for ascorbic acid, uric acid and dopamine detection. These studies will enhance our understanding of the effects of graphite oxide precursors on the electrochemical sensing properties of nitrogen-doped graphene materials.

  16. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  17. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  18. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  19. 40 CFR 86.1323-2007 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Exhaust Test Procedures § 86.1323-2007 Oxides of nitrogen analyzer calibration. This section describes the initial and periodic calibration of the chemiluminescent oxides of nitrogen analyzer. (a) Prior to...

  20. REACTIONS OF FUEL NITROGEN COMPOUNDS UNDER CONDITIONS OF INERT PYROLYSIS

    EPA Science Inventory

    The paper describes the pyrolysis of fossil fuels and model nitrogen compounds in helium in a small quartz plow reactor, as part of a study of the chemical mechanisms involved in the conversion of fuel-nitrogen compounds to nitric oxide (NO) during combustion. Hydrogen cyanide (H...

  1. The Oxides of Nitrogen in Air Pollution.

    ERIC Educational Resources Information Center

    California State Air Resources Board, Sacramento.

    Research on the health effects of oxides of nitrogen and on the role of oxides of nitrogen in producing photochemical smog effects is presented in this report. Prepared by the California State Department of Public Health at the request of the State Legislature, it gives a comprehensive review of available information, as well as the need for air…

  2. Synthesis of fine-grained .alpha.-silicon nitride by a combustion process

    DOEpatents

    Holt, J. Birch; Kingman, Donald D.; Bianchini, Gregory M.

    1990-01-01

    A combustion synthesis process for the preparation of .alpha.-silicon nitride and composites thereof is disclosed. Preparation of the .alpha.-silicon nitride comprises the steps of dry mixing silicon powder with an alkali metal azide, such as sodium azide, cold-pressing the mixture into any desired shape, or loading the mixture into a fused, quartz crucible, loading the crucible into a combustion chamber, pressurizing the chamber with nitrogen and igniting the mixture using an igniter pellet. The method for the preparation of the composites comprises dry mixing silicon powder (Si) or SiO.sub.2, with a metal or metal oxide, adding a small amount of an alkali metal azide such as sodium azide, introducing the mixture into a suitable combustion chamber, pressurizing the combustion chamber with nitrogen, igniting the mixture within the combustion chamber, and isolating the .alpha.-silicon nitride formed as a reaction product.

  3. [Ecological/hygienic and toxicological evaluation of combustion products of aviation kerosene and liquefied natural gas].

    PubMed

    Afanas'ev, R V; Berezin, G I; Raznoschikov, V V

    2006-01-01

    Products of kerosene combustion in the present-day aeroengines contain more than 200 compounds of incomplete combustion, partial oxidation, and thermal decomposition of fuel and oil. Most of these are strong toxicants for humans. Increase of temperature in the turbine engine combustion chamber led to production of very toxic nitrogen oxides. In search for the ecologically safe and less toxic alternative attention of fuel engineers was drawn to liquefied natural gas which compares well and even excels kerosene in ecological, economic and many other respects.

  4. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Procedures § 86.332-79 Oxides of nitrogen analyzer calibration. (a) At least monthly during testing, perform.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79...

  5. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Procedures § 86.332-79 Oxides of nitrogen analyzer calibration. (a) At least monthly during testing, perform.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79...

  6. 40 CFR 52.278 - Oxides of nitrogen control.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Oxides of nitrogen control. 52.278 Section 52.278 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS California § 52.278 Oxides of nitrogen control...

  7. Laboratory studies of lean combustion

    NASA Technical Reports Server (NTRS)

    Sawyer, R. F.; Schefer, R. W.; Ganji, A. R.; Daily, J. W.; Pitz, R. W.; Oppenheim, A. K.; Angeli, J. W.

    1977-01-01

    The fundamental processes controlling lean combustion were observed for better understanding, with particular emphasis on the formation and measurement of gas-phase pollutants, the stability of the combustion process (blowout limits), methods of improving stability, and the application of probe and optical diagnostics for flow field characterization, temperature mapping, and composition measurements. The following areas of investigation are described in detail: (1) axisymmetric, opposed-reacting-jet-stabilized combustor studies; (2) stabilization through heat recirculation; (3) two dimensional combustor studies; and (4) spectroscopic methods. A departure from conventional combustor design to a premixed/prevaporized, lean combustion configuration is attractive for the control of oxides of nitrogen and smoke emissions, the promotion of uniform turbine inlet temperatures, and, possibly, the reduction of carbon monoxide and hydrocarbons at idle.

  8. 40 CFR 60.72 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for nitrogen oxides. 60.72 Section 60.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Plants § 60.72 Standard for nitrogen oxides. (a) On and after the date on which the performance test...

  9. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  10. Variable oxygen/nitrogen enriched intake air system for internal combustion engine applications

    DOEpatents

    Poola, Ramesh B.; Sekar, Ramanujam R.; Cole, Roger L.

    1997-01-01

    An air supply control system for selectively supplying ambient air, oxygen enriched air and nitrogen enriched air to an intake of an internal combustion engine includes an air mixing chamber that is in fluid communication with the air intake. At least a portion of the ambient air flowing to the mixing chamber is selectively diverted through a secondary path that includes a selectively permeable air separating membrane device due a differential pressure established across the air separating membrane. The permeable membrane device separates a portion of the nitrogen in the ambient air so that oxygen enriched air (permeate) and nitrogen enriched air (retentate) are produced. The oxygen enriched air and the nitrogen enriched air can be selectively supplied to the mixing chamber or expelled to atmosphere. Alternatively, a portion of the nitrogen enriched air can be supplied through another control valve to a monatomic-nitrogen plasma generator device so that atomic nitrogen produced from the nitrogen enriched air can be then injected into the exhaust of the engine. The oxygen enriched air or the nitrogen enriched air becomes mixed with the ambient air in the mixing chamber and then the mixed air is supplied to the intake of the engine. As a result, the air being supplied to the intake of the engine can be regulated with respect to the concentration of oxygen and/or nitrogen.

  11. Method For Selective Catalytic Reduction Of Nitrogen Oxides

    DOEpatents

    Mowery-Evans, Deborah L.; Gardner, Timothy J.; McLaughlin, Linda I.

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  12. Method for selective catalytic reduction of nitrogen oxides

    DOEpatents

    Mowery-Evans, Deborah L [Broomfield, CO; Gardner, Timothy J [Albuquerque, NM; McLaughlin, Linda I [Albuquerque, NM

    2005-02-15

    A method for catalytically reducing nitrogen oxide compounds (NO.sub.x, defined as nitric oxide, NO, +nitrogen dioxide, NO.sub.2) in a gas by a material comprising a base metal consisting essentially of CuO and Mn, and oxides of Mn, on an activated metal hydrous metal oxide support, such as HMO:Si. A promoter, such as tungsten oxide or molybdenum oxide, can be added and has been shown to increase conversion efficiency. This method provides good conversion of NO.sub.x to N.sub.2, good selectivity, good durability, resistance to SO.sub.2 aging and low toxicity compared with methods utilizing vanadia-based catalysts.

  13. Air Quality Criteria for Oxides of Nitrogen (Final Report, 1993)

    EPA Science Inventory

    This criteria document focuses on a review and assessment of the effects on human health and welfare of the nitrogen oxides, nitric oxide (NO) and nitrogen dioxide (NO2), and the related compounds, nitrites, nitrates, nitrogenous acids, and nitrosamines. Although the emphasis is ...

  14. TOTAL NITROGEN DEPOSITION (WET+DRY) FROM THE ATMOSHERE

    EPA Science Inventory

    Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural fertilization and concentrated animal feeding operations (CAFOs) also release Amonium into the air. All these com...

  15. 40 CFR 60.332 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... from paragraph (a) of this section. (f) Stationary gas turbines using water or steam injection for... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  16. 40 CFR 60.332 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... from paragraph (a) of this section. (f) Stationary gas turbines using water or steam injection for... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  17. 40 CFR 60.332 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... from paragraph (a) of this section. (f) Stationary gas turbines using water or steam injection for... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  18. 40 CFR 60.332 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... from paragraph (a) of this section. (f) Stationary gas turbines using water or steam injection for... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  19. 40 CFR 60.332 - Standard for nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... from paragraph (a) of this section. (f) Stationary gas turbines using water or steam injection for... Turbines § 60.332 Standard for nitrogen oxides. (a) On and after the date on which the performance test... stationary gas turbine, any gases which contain nitrogen oxides in excess of: EC16NO91.020 where: STD...

  20. Process for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2003-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: a) directing a vapor stream containing at least one nitrogen-containing oxidizing agent to a first contact zone; b) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen-containing oxidizing agent; c) directing said acid(s) as a second stream to a second contact zone; d) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrate form present within said second stream to nitrate ion; e) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; f) adding hydrogen peroxide to said second contact zone when a level of hydrogen peroxide less than 0.1 % by weight in said second stream is determined by said sampling; g) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and h) removing said solution of potassium nitrate from said second contact zone.

  1. National Combustion Code Used To Study the Hydrogen Injector Design for Gas Turbines

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.; Norris, Andrew T.; Shih, Tsan-Hsing

    2005-01-01

    Hydrogen, in the gas state, has been proposed to replace Jet-A (the fuel used for commercial jet engines) as a fuel for gas turbine combustion. For the combustion of hydrogen and oxygen only, water is the only product and the main greenhouse gas, carbon dioxide, is not produced. This is an obvious benefit of using hydrogen as a fuel. The situation is not as simple when air replaces oxygen in the combustion process. (Air is mainly a mixture of oxygen, nitrogen, and argon. Other components comprise a very small part of air and will not be mentioned.) At the high temperatures found in the combustion process, oxygen reacts with nitrogen, and this produces nitrogen oxide compounds, or NOx--the main component of atmospheric smog. The production of NOx depends mainly on two variables: the temperature at which combustion occurs, and the length of time that the products of combustion stay, or reside, in the combustor. Starting from a lean (excess air) air-to-fuel ratio, the goal of this research was to minimize hot zones caused by incomplete premixing and to keep the residence time short while producing a stable flame. The minimization of these two parameters will result in low- NOx hydrogen combustion.

  2. Nitrogen Oxide Emission, Economic Growth and Urbanization in China: a Spatial Econometric Analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Zhimin; Zhou, Yanli; Ge, Xiangyu

    2018-01-01

    This research studies the nexus of nitrogen oxide emissions and economic development/urbanization. Under the environmental Kuznets curve (EKC) hypothesis, we apply the analysis technique of spatial panel data in the STIRPAT framework, and thus obtain the estimated impacts of income/urbanization on nitrogen oxide emission systematically. The empirical findings suggest that spatial dependence on nitrogen oxide emission distribution exist at provincial level, and the inverse N-shape EKC describes both income-nitrogen oxide and urbanization-nitrogen oxide nexuses. In addition, some well-directed policy advices are made to reduce the nitrogen oxide emission in future.

  3. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  4. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  5. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  6. 40 CFR 92.121 - Oxides of nitrogen analyzer calibration and check.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen analyzer calibration... Procedures § 92.121 Oxides of nitrogen analyzer calibration and check. (a) Quench checks; NO X analyzer. (1... performed in step in paragraph (a)(3)(i) this section. (b) Oxides of nitrogen analyzer calibration. (1...

  7. Investigation of wood combustion in the high-enthalpy oxidizer flow

    NASA Astrophysics Data System (ADS)

    Reshetnikov, S. M.; Zyryanov, I. A.; Budin, A. G.; Pozolotin, A. P.

    2017-01-01

    The experimental data of wood combustion in the high-enthalpy oxidizer flowresearch is presented. Combustion laws of two wood species (pine and birch) in a hybrid rocket engine (HRE) are obtained. Heat flows from the flame to the condensed phase surface are defined. The prospects of the wood use in the HRE (based on thrust characteristics) are shown.

  8. Thermogravimetric-mass spectrometric analysis on combustion of lignocellulosic biomass.

    PubMed

    López-González, D; Fernandez-Lopez, M; Valverde, J L; Sanchez-Silva, L

    2013-09-01

    Combustion characteristics of biomass main components and three lignocellulosic biomass (fir wood, eucalyptus wood and pine bark) were investigated by thermogravimetric analysis coupled with mass spectrometry. The combustion of biomass was divided into two main steps, devolatilization and char oxidation stage. Heating rate effect was also studied. Generally, the higher the heating rate, the higher the decomposition temperature. Furthermore, the weight loss rate decreased due to particle temperature gradients. Combustion kinetics were studied. Models based on reaction order (Oi), nucleation (Ni) and diffusion (Di) achieved the best fitting to the experimental data. Cellulose oxidation presented the highest activation energies. CO, CO2 and H2O were the main components evolved from combustion. Additionally, light hydrocarbons (CH4 and C2H5) were also present. Finally, nitrogen compounds were in a higher proportion than sulfur compounds being released as primary amines and NOx. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero... samples. Proceed as follows: (1) Adjust analyzer to optimize performance. (2) Zero the oxides of nitrogen analyzer with zero grade air or zero grade nitrogen. (3) Calibrate on each normally used operating range...

  10. 40 CFR 52.992 - Area-wide nitrogen oxides exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Area-wide nitrogen oxides exemptions. 52.992 Section 52.992 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides exemptions. (a) The Louisiana Department of Environmental Quality submitted to the EPA on...

  11. 40 CFR 52.992 - Area-wide nitrogen oxides exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Area-wide nitrogen oxides exemptions. 52.992 Section 52.992 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides exemptions. (a) The Louisiana Department of Environmental Quality submitted to the EPA on...

  12. 40 CFR 52.992 - Area-wide nitrogen oxides exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Area-wide nitrogen oxides exemptions. 52.992 Section 52.992 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides exemptions. (a) The Louisiana Department of Environmental Quality submitted to the EPA on...

  13. 40 CFR 52.992 - Area-wide nitrogen oxides exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Area-wide nitrogen oxides exemptions. 52.992 Section 52.992 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides exemptions. (a) The Louisiana Department of Environmental Quality submitted to the EPA on...

  14. Ultra-lean combustion at high inlet temperatures

    NASA Technical Reports Server (NTRS)

    Anderson, D. N.

    1981-01-01

    Combustion at inlet air temperatures of 1100 to 1250 K was studied for application to advanced automotive gas turbine engines. Combustion was initiated by the hot environment, and therefore no external ignition source was used. Combustion was stabilized without a flameholder. The tests were performed in a 12 cm diameter test section at a pressure of 2.5 x 10 to the 5th power Pa, with reference velocities of 32 to 60 m/sec and at maximum combustion temperatures of 1350 to 1850 K. Number 2 diesel fuel was injected by means of a multiple source fuel injector. Unburned hydrocarbons emissions were negligible for all test conditions. Nitrogen oxides emissions were less than 1.9 g NO2/kg fuel for combustion temperatures below 1680 K. Carbon monoxide emissions were less than 16 g CO/kg fuel for combustion temperatures greater than 1600 K, inlet air temperatures higher than 1150 K, and residence times greater than 4.3 microseconds.

  15. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...

  16. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...

  17. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...

  18. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control Strategy: Nitrogen oxides. 52... (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen... using to implement provisions of the Prevention of Significant Deterioration regulations for nitrogen...

  19. TOTAL NITROGEN DEPOSITION (WET+DRY) FROM THE ATMOSHERE (FUTURE)

    EPA Science Inventory

    Oxides of Nitrogen are emitted primarily as by-products of combustion. Sources include power plants, industrial boilers, and automobiles. In addition, agricultural fertilization and concentrated animal feeding operations (CAFOs) also release Amonium into the air. All these com...

  20. Numerical Research of Nitrogen Oxides Formation for Justification of Modernization of P-49 Nazarovsky State District Power Plant Boiler on the Low-temperature Swirl Technology of Burning

    NASA Astrophysics Data System (ADS)

    Trinchenko, A. A.; Paramonov, A. P.; Skouditskiy, V. E.; Anoshin, R. G.

    2017-11-01

    Compliance with increasingly stringent normative requirements to the level of pollutants emissions when using organic fuel in the energy sector as a main source of heat, demands constant improvement of the boiler and furnace equipment and the power equipment in general. The requirements of the current legislation in the field of environmental protection prescribe compliance with established emission standards for both new construction and the improvement of energy equipment. The paper presents the results of numerical research of low-temperature swirl burning in P-49 Nazarovsky state district power plant boiler. On the basis of modern approaches of the diffusion and kinetic theory of burning and the analysis physical and chemical processes of a fuel chemically connected energy transition in thermal, generation and transformation of gas pollutants, the technological method of nitrogen oxides decomposition on the surface of carbon particles with the formation of environmentally friendly carbonic acid and molecular nitrogen is considered during the work of low-temperature swirl furnace. With the use of the developed model, methodology and computer program, variant calculations of the combustion process were carried out and a quantitative estimate of the emission level of the nitrogen oxides of the boiler being modernized. The simulation results the and the experimental data obtained during the commissioning and balance tests of the P-49 boiler with a new furnace are confirmed that the organization of swirl combustion has allowed to increase the efficiency of work, to reduce slagging, to significantly reduce nitrogen oxide emissions, to improve ignition and burnout of fuel.

  1. Indoor Spatial Monitoring of Combustion Generated Pollutants (TSP, CO, and BaP) by Indian Cookstoves

    DTIC Science & Technology

    1988-07-01

    various building materials and consumer products, and combustion appliances. People and pets normally emit C02 , moisture, odors, and microbes. Tobacco ...fuels Group II. Sources both indoor and outdoor: Nitric oxide, nitrogen dioxide Fuel-burning, tobacco smoke Polycyclic hydrocarbons Fuel-burning, tobacco ...smoke Carbon monoxide Fuel-burning, tobacco smoke Carbon dioxide Metabolic activity, combustion Suspended particulate matter Resuspension

  2. Mechanistic Models for Ignition and Combustion of Metallic Powders in Different Environments

    DTIC Science & Technology

    2010-09-17

    relevant chemical species (e.g. oxygen inward or aluminum outward) using Eq. (8.1), which requires as coefficients a pre-exponent and an activation...same experimental configuration was employed to study ignition of aluminum particles in different oxidizers. For oxygen / nitrogen gas mixtures , both...different durations are shown for all environments. The profiles measured for Al combustion in oxygen / nitrogen mixtures are collected in Figs. 10.3

  3. Design and Fabrication of Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged Combustion Thrust Chamber Injectors

    NASA Technical Reports Server (NTRS)

    Garcia, C. P.; Medina, C. R.; Protz, C. S.; Kenny, R. J.; Kelly, G. W.; Casiano, M. J.; Hulka, J. R.; Richardson, B. R.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. On the current project, several configurations of new main injectors were considered for the thrust chamber assembly of the integrated test article. All the injector elements were of the gas-centered swirl coaxial type, similar to those used on the Russian oxidizer-rich staged-combustion rocket engines. In such elements, oxidizer-rich combustion products from the preburner/turbine exhaust flow through a straight tube, and fuel exiting from the combustion chamber and nozzle regenerative cooling circuits is injected near the exit of the oxidizer tube through tangentially oriented orifices that impart a swirl motion such that the fuel flows along the wall of the oxidizer tube in a thin film. In some elements there is an orifice at the inlet to the oxidizer tube, and in some elements there is a sleeve or "shield" inside the oxidizer tube where the fuel enters. In the current project, several variations of element geometries were created, including element size (i.e., number of elements or pattern density), the distance from the exit of the sleeve to the injector face, the width of the gap between the oxidizer tube inner wall and the outer wall of the sleeve, and excluding the sleeve entirely. This paper discusses the design rationale for each of these element variations, including hydraulic, structural

  4. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  5. 40 CFR 60.55a - Standard for nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides. 60.55a Section 60.55a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... § 60.55a Standard for nitrogen oxides. On and after the date on which the initial compliance test is...

  6. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, William A.

    1998-01-01

    A biofilter for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described.

  7. Evaluation on nitrogen oxides and nanoparticle removal and nitrogen monoxide generation using a wet-type nonthermal plasma reactor

    NASA Astrophysics Data System (ADS)

    Takehana, Kotaro; Kuroki, Tomoyuki; Okubo, Masaaki

    2018-05-01

    Nitrogen oxides (NOx) emitted from power plants and combustion sources cause air pollution problems. Selective catalytic reduction technology is remarkably useful for NOx removal. However, there are several drawbacks such as preparation of reducing agents, usage of harmful heavy metals, and higher cost. On the other hand, trace NO is a vasodilator agent and employed in inhalation therapies for treating pulmonary hypertension in humans. Considering these factors, in the present study, a wet-type nonthermal plasma reactor, which can control NOx and nanoparticle emissions and generate NO, is investigated. The fundamental characteristics of the reactor are investigated. First, the experiment of nanoparticle removal is carried out. Collection efficiencies of over 99% are achieved for nanoparticles at 50 and 100 ml min‑1 of liquid flow rates. Second, experiments of NOx removal under air atmosphere and NOx generation under nitrogen atmosphere are carried out. NOx-removal efficiencies of over 95% under the air plasma are achieved in 50–200 ml min‑1 liquid flow rates. Moreover, under nitrogen plasma, NOx is generated, of which the major portion is NO. For example, NO concentration is 25 ppm, while NOx concentration is 31 ppm at 50 ml min‑1 liquid flow rate. Finally, experiments of NO generation under the nitrogen atmosphere with or without flowing water are carried out. When water flows on the inner surface of the reactor, approximately 14 ppm of NO is generated. Therefore, NO generation requires flowing water. It is considered that the reaction of N and OH, which is similar to the extended Zeldovich mechanism, could occur to induce NO formation. From these results, it is verified that the wet-type plasma reactor is useful for NOx removal and NO generation under nitrogen atmosphere with flowing water.

  8. Fuel/oxidizer-rich high-pressure preburners. [staged-combustion rocket engine

    NASA Technical Reports Server (NTRS)

    Schoenman, L.

    1981-01-01

    The analyses, designs, fabrication, and cold-flow acceptance testing of LOX/RP-1 preburner components required for a high-pressure staged-combustion rocket engine are discussed. Separate designs of injectors, combustion chambers, turbine simulators, and hot-gas mixing devices are provided for fuel-rich and oxidizer-rich operation. The fuel-rich design addresses the problem of non-equilibrium LOX/RP-1 combustion. The development and use of a pseudo-kinetic combustion model for predicting operating efficiency, physical properties of the combustion products, and the potential for generating solid carbon is presented. The oxygen-rich design addresses the design criteria for the prevention of metal ignition. This is accomplished by the selection of materials and the generation of well-mixed gases. The combining of unique propellant injector element designs with secondary mixing devices is predicted to be the best approach.

  9. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions

    DOEpatents

    Apel, W.A.

    1998-08-18

    A biofilter is described for reducing concentrations of gaseous nitrogen oxides in a polluted gas comprises a porous organic filter bed medium disposed in a housing, the filter bed medium including a mixed culture of naturally occurring denitrifying bacteria for converting the nitrogen oxides to nitrogen gas, carbon dioxide, and water. A method is described of reducing concentrations of nitrogen oxides in polluted gas comprises conducting the polluted gas through the biofilter so that the denitrifying bacteria can degrade the nitrogen oxides. A preferred filter medium is wood compost, however composts of other organic materials are functional. Regulation of pH, moisture content, exogenous carbon sources, and temperature are described. 6 figs.

  10. Pyrolysis and combustion of tobacco in a cigarette smoking simulator under air and nitrogen atmosphere.

    PubMed

    Busch, Christian; Streibel, Thorsten; Liu, Chuan; McAdam, Kevin G; Zimmermann, Ralf

    2012-04-01

    A coupling between a cigarette smoking simulator and a time-of-flight mass spectrometer was constructed to allow investigation of tobacco smoke formation under simulated burning conditions. The cigarette smoking simulator is designed to burn a sample in close approximation to the conditions experienced by a lit cigarette. The apparatus also permits conditions outside those of normal cigarette burning to be investigated for mechanistic understanding purposes. It allows control of parameters such as smouldering and puff temperatures, as well as combustion rate and puffing volume. In this study, the system enabled examination of the effects of "smoking" a cigarette under a nitrogen atmosphere. Time-of-flight mass spectrometry combined with a soft ionisation technique is expedient to analyse complex mixtures such as tobacco smoke with a high time resolution. The objective of the study was to separate pyrolysis from combustion processes to reveal the formation mechanism of several selected toxicants. A purposely designed adapter, with no measurable dead volume or memory effects, enables the analysis of pyrolysis and combustion gases from tobacco and tobacco products (e.g. 3R4F reference cigarette) with minimum aging. The combined system demonstrates clear distinctions between smoke composition found under air and nitrogen smoking atmospheres based on the corresponding mass spectra and visualisations using principal component analysis.

  11. 40 CFR 52.2308 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.2308 Section 52.2308 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-wide nitrogen oxides (NOX) exemptions. (a) The Texas Natural Resource Conservation Commission (TNRCC...

  12. 40 CFR 52.2308 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.2308 Section 52.2308 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-wide nitrogen oxides (NOX) exemptions. (a) The Texas Natural Resource Conservation Commission (TNRCC...

  13. 40 CFR 52.2308 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.2308 Section 52.2308 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR...-wide nitrogen oxides (NOX) exemptions. (a) The Texas Natural Resource Conservation Commission (TNRCC...

  14. Symposium /International/ on Combustion, 18th, University of Waterloo, Waterloo, Ontario, Canada, August 17-22, 1980, Proceedings

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Problems related to combustion generated pollution are explored, taking into account the mechanism of NO formation from nitrogen compounds in hydrogen flames studied by laser fluorescence, the structure and similarity of nitric oxide production in turbulent diffusion flames, the effect of steam addition on NO formation, and the formation of NO2 by laminar flames. Other topics considered are concerned with propellant combustion, fluidized bed combustion, the combustion of droplets and sprays, premixed flame studies, fire studies, and flame stabilization. Attention is also given to coal flammability, chemical kinetics, turbulent combustion, soot, coal combustion, the modeling of combustion processes, combustion diagnostics, detonations and explosions, ignition, internal combustion engines, combustion studies, and furnaces.

  15. 40 CFR 52.2351 - Area-wide nitrogen oxides (NOX) exemption.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 5 2012-07-01 2012-07-01 false Area-wide nitrogen oxides (NOX) exemption. 52.2351 Section 52.2351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides (NOX) exemption. On May 2, 1997, Ursula Trueman, Director, Division of Air Quality, Utah...

  16. 40 CFR 52.2351 - Area-wide nitrogen oxides (NOX) exemption.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Area-wide nitrogen oxides (NOX) exemption. 52.2351 Section 52.2351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides (NOX) exemption. On May 2, 1997, Ursula Trueman, Director, Division of Air Quality, Utah...

  17. 40 CFR 52.2351 - Area-wide nitrogen oxides (NOX) exemption.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 5 2013-07-01 2013-07-01 false Area-wide nitrogen oxides (NOX) exemption. 52.2351 Section 52.2351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides (NOX) exemption. On May 2, 1997, Ursula Trueman, Director, Division of Air Quality, Utah...

  18. 40 CFR 52.2351 - Area-wide nitrogen oxides (NOX) exemption.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Area-wide nitrogen oxides (NOX) exemption. 52.2351 Section 52.2351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides (NOX) exemption. On May 2, 1997, Ursula Trueman, Director, Division of Air Quality, Utah...

  19. 40 CFR 52.2351 - Area-wide nitrogen oxides (NOX) exemption.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Area-wide nitrogen oxides (NOX) exemption. 52.2351 Section 52.2351 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... nitrogen oxides (NOX) exemption. On May 2, 1997, Ursula Trueman, Director, Division of Air Quality, Utah...

  20. Oxides of Nitrogen Emissions from the Combustion of Monodisperse Liquid Fuel Sprays. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Sarv, H.

    1985-01-01

    A study of NO sub x formation in a one dimensional monodisperse spray combustion system, which allowed independent droplet size variation, was conducted. Temperature, NO and NO sub x concentrations were measured in the transition region, encompassing a 26 to 74 micron droplet size range. Emission measurements of hydrocarbons, carbon monoxide, carbon dioxide and oxygen were also made. The equivalence ratio was varied between 0.8 and 1.2 for the fuels used, including methanol, isopropanaol, n-heptane and n-octane. Pyridine and pyrrole were added to n-heptane as nitrogen-containing additives in order to simulate synthetic fuels. Results obtained from the postflame regions using the pure fuels indicate an optimum droplet size in the range of 43 to 58 microns for minimizing NO sub x production. For the fuels examined, the maximum NO sub x reductions relative to the small droplet size limit were about 10 to 20% for lean and 20 to 30% for stoichiometric and rich mixtures. This behavior is attributed to droplet interactions and the transition from diffusive to premixed type of burning. Preflame vaporization controls the gas phase stoichiometry which has a significant effect on the volume of the hot gases surrounding a fuel droplet, where NO sub x is formed.

  1. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A [Idaho Falls, ID; Heaps, Ronald J [Idaho Falls, ID; Steffler, Eric D [Idaho Falls, ID; Swank, William D [Idaho Falls, ID

    2011-08-30

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  2. Combustible structural composites and methods of forming combustible structural composites

    DOEpatents

    Daniels, Michael A.; Heaps, Ronald J.; Steffler, Eric D.; Swank, W. David

    2013-04-02

    Combustible structural composites and methods of forming same are disclosed. In an embodiment, a combustible structural composite includes combustible material comprising a fuel metal and a metal oxide. The fuel metal is present in the combustible material at a weight ratio from 1:9 to 1:1 of the fuel metal to the metal oxide. The fuel metal and the metal oxide are capable of exothermically reacting upon application of energy at or above a threshold value to support self-sustaining combustion of the combustible material within the combustible structural composite. Structural-reinforcing fibers are present in the composite at a weight ratio from 1:20 to 10:1 of the structural-reinforcing fibers to the combustible material. Other embodiments and aspects are disclosed.

  3. Nitrogen oxides from burning forest fuels examined by thermogravimetry and evolved gas analysis

    Treesearch

    H.B. Clements; Charles K. McMahon

    1980-01-01

    Abstract. Twelve forest fuels that varied widely in nitrogen content were burned in a thermogravimetric system, and nitrogen oxide production was analyzed by chemiluminescence. The effects of fuel nitrogen concentration, available oxygen, flow rate, and heating rate on nitrogen oxide production were examined.Results show that fuel nitrogen is an...

  4. Non-Noble Metal Oxide Catalysts for Methane Catalytic Combustion: Sonochemical Synthesis and Characterisation

    PubMed Central

    Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej

    2017-01-01

    The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190

  5. Carbohydrate-Assisted Combustion Synthesis To Realize High-Performance Oxide Transistors.

    PubMed

    Wang, Binghao; Zeng, Li; Huang, Wei; Melkonyan, Ferdinand S; Sheets, William C; Chi, Lifeng; Bedzyk, Michael J; Marks, Tobin J; Facchetti, Antonio

    2016-06-08

    Owing to high carrier mobilities, good environmental/thermal stability, excellent optical transparency, and compatibility with solution processing, thin-film transistors (TFTs) based on amorphous metal oxide semiconductors (AOSs) are promising alternatives to those based on amorphous silicon (a-Si:H) and low-temperature (<600 °C) poly-silicon (LTPS). However, solution-processed display-relevant indium-gallium-tin-oxide (IGZO) TFTs suffer from low carrier mobilities and/or inferior bias-stress stability versus their sputtered counterparts. Here we report that three types of environmentally benign carbohydrates (sorbitol, sucrose, and glucose) serve as especially efficient fuels for IGZO film combustion synthesis to yield high-performance TFTs. The results indicate that these carbohydrates assist the combustion process by lowering the ignition threshold temperature and, for optimal stoichiometries, enhancing the reaction enthalpy. IGZO TFT mobilities are increased to >8 cm(2) V(-1) s(-1) on SiO2/Si gate dielectrics with significantly improved bias-stress stability. The first correlations between precursor combustion enthalpy and a-MO densification/charge transport are established.

  6. Process and Equipment for Nitrogen Oxide Waste Conversion to Fertilizer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor); Parrish, Clyde F. (Inventor)

    2000-01-01

    The present invention describes a process for converting vapor streams from sources containing at least one nitrogen-containing oxidizing agent therein to a liquid fertilizer composition comprising the steps of: (1) directing a vapor stream containing at least nitrogen-containing oxidizing agent to a first contact zone; (2) contacting said vapor stream with water to form nitrogen oxide(s) from said at least one nitrogen- containing oxidizing agent; (3) directing said acid(s) as a second stream to a second contact zone; (4) exposing said second stream to hydrogen peroxide which is present within said second contact zone in a relative amount of at least 0.1% by weight of said second stream within said second contact zone to convert at least some of any nitrogen oxide species or ions other than in the nitrite form present within said second stream to nitrate ion; (5) sampling said stream within said second contact zone to determine the relative amount of hydrogen peroxide within said second contact zone; (6) adding hydrogen peroxide to said second contact zone when a level on hydrogen peroxide less than 0.1% by weight in said second stream is determined by said sampling; (7) adding a solution comprising potassium hydroxide to said second stream to maintain a pH between 6.0 and 11.0 within said second stream within said second contact zone to form a solution of potassium nitrate; and (8) removing sais solution of potassium nitrate from said second contact zone.

  7. Oxidation of Octopus vulgaris hemocyanin by nitrogen oxides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salvato, B.; Giacometti, G.M.; Beltramini, M.

    1989-01-24

    The reaction of Octopus vulgaris hemocyanin with nitrite was studied under a variety of conditions in which the green half-met derivative is formed. Analytical evidence shows that the amount of chemically detectable nitrite in various samples of the derivative is not proportional to the cupric copper detected by EPR. The kinetics of oxidation of hemocyanin as a function of protein concentration and pH, in the presence of nitrite and ascorbate, is consistent with a scheme in which NO/sub 2/ is the reactive oxidant. We suggest that the green half-methemocyanin contains a metal center with one cuprous and one cupric coppermore » without an exogenous nitrogen oxide ligand.« less

  8. Stabilization of 238Pu-contaminated combustible waste by molten salt oxidation

    NASA Astrophysics Data System (ADS)

    Stimmel, Jay J.; Remerowski, Mary Lynn; Ramsey, Kevin B.; Heslop, J. Mark

    2000-07-01

    Surrogate studies were conducted using the molten salt oxidation system at the Naval Surface Warfare Center-Indian Head Division. This system uses a rotary feed system and an alumina molten salt oxidation vessel. The combustible materials were tested individually and together in a homogenized mixture. A slurry containing pyrolyzed cheesecloth ash spiked with cerium oxide, which is used as a surrogate for plutonium, and ethylene glycol were also treated in the molten salt oxidation vessel.

  9. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    EPA Pesticide Factsheets

    This draft ISA document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA’s decision on retaining or revising the current secondary standards for NO2, SO2, PM 2.5 and PM 10 since the prior release of the assessment. The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes scientific research from atmospheric sciences, exposure and deposition, biogeochemistry, hydrology, soil science, marine science, plant physiology, animal physiology, and ecology conducted at multiple scales (e.g., population, community, ecosystem, landscape levels). Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for oxides of nitrogen, oxides of nitrogen and particulate matter for ecological effects are included; Appendixes provide additional details supporting the ISA. Together, the ISA and Appendixes serve to update and revise the last oxides of nitrogen and oxides of sulfur ISA which was published in 2008 and the ecological portion of the last particulate matter ISA, which was published in 2009.

  10. 40 CFR 52.65 - Control Strategy: Nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control Strategy: Nitrogen oxides. 52.65 Section 52.65 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Alabama § 52.65 Control Strategy: Nitrogen...

  11. Experimental study and kinetic modeling of hydrogen and carbon monoxide oxidation perturbed by nitrogen and sulfur oxides

    NASA Astrophysics Data System (ADS)

    Mueller, Mark Anthony

    2000-10-01

    Increasingly stringent regulations have and will likely continue to place considerable constraints on combustion-generated pollutants, including carbon monoxide, nitrogen oxides, and sulfur oxides. The speciation of these pollutants and, by extension, their impact, is likely affected by kinetic interactions that occur during post-combustion processes. To gain a fundamental understanding of these interactions, the oxidation of hydrogen and carbon monoxide in the presence of trace quantities of NO, NO2, and SO2 was experimentally and numerically studied at conditions relevant to modern internal combustion engines. Experimental data were obtained using a well-characterized flow reactor over pressure and temperature ranges of 0.4--14.0 atm and 750--1040 K, respectively, using dilute (˜1% fuel) H2/O2 and CO/H2O/O2 mixtures perturbed with ppm quantities of NO, NO2, and/or SO2. The overall effects of these species were found to be highly sensitive to pressure, temperature, and equivalence ratio. In general, small quantities of NO promoted fuel consumption by converting HO2 radicals to highly reactive OH radicals, while high concentrations of NO and/or NO2 were inhibiting due to the catalysis of radical recombination reactions. In the absence of NO, SO2 strongly inhibited CO oxidation, but the simultaneous presence of NO and SO2 yielded synergistic effects that significantly reduced the inhibition from SO 2. Over the range of conditions explored, direct interactions between NOx and SOx species did rot appear to significantly influence the relative NO and NO2 concentrations; however, the reaction between NO2 and SO2 may be an important source of SO3 in certain circumstances. A detailed reaction mechanism. has been developed in a hierarchical manner, beginning with the H2/O2 and CO/H2O/O 2 systems and sequentially adding reactions necessary to describe the perturbing effects of NOx and SOx species. The experimental data were used in conjunction with gradient sensitivity and

  12. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.

    PubMed

    Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J

    2010-07-01

    Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.

  13. The influence of oxygen concentration on the combustion of a fuel/oxidizer mixture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biteau, H.; Institut National de l'Environnement Industriel et des Risques, Parc Technologique Alata, Verneuil en Halatte; Fuentes, A.

    2010-04-15

    The aim of the present study is to investigate the influence of the O{sub 2} concentration on the combustion behaviour of a fuel/oxidizer mixture. The material tested is a ternary mixture of lactose, starch, and potassium nitrate, which has already been used in an attempt to estimate heat release rate using the FM-Global Fire Propagation Apparatus. It provides a well-controlled combustion chamber to study the evolution of the combustion products when varying the O{sub 2} concentration, between air and low oxidizer conditions. Different chemical behaviours have been exhibited. When the O{sub 2} concentration was reduced beyond 18%, large variations weremore » observed in the CO{sub 2} and CO concentrations. This critical O{sub 2} concentration seems to be the limit before which the material only uses its own oxidizer to react. On the other hand, mass loss did not highlight this change in chemical reactions and remained similar whatever the test conditions. This presumes that the oxidation of CO into CO{sub 2} are due to reactions occurring in the gas phase especially for large O{sub 2} concentrations. This actual behaviour can be verified using a simplified flammability limit model adapted for the current work. Finally, a sensitivity analysis has been carried out to underline the influence of CO concentration in the evaluation of heat release rate using typical calorimetric methods. The results of this study provide a critical basis for the investigation of the combustion of a fuel/oxidizer mixture and for the validation of future numerical models. (author)« less

  14. Simplified Two-Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydorgen/Oxygen

    NASA Technical Reports Server (NTRS)

    Molnar, Melissa; Marek, C. John

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two-time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (> 1 x 10(exp -20) moles/cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T4). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/air fuel and for the H2/O2. A similar correlation is also developed using data from NASA s Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T4) as a function of overall fuel/air ratio, pressure and initial temperature (T3). High values of the regression coefficient R2 are obtained.

  15. Experimental modeling of NOx and PM generation from combustion of various biodiesel blends for urban transport buses.

    DOT National Transportation Integrated Search

    2016-08-01

    Biodiesel has diverse sources of feedstock and the amount and composition of its emissions vary significantly depending on : combustion conditions. Results of laboratory and field tests reveal that nitrogen oxides (NOx) and particulate matter (PM) : ...

  16. Nitrogen oxides, sulfur trioxide, and mercury emissions during oxy-fuel fluidized bed combustion of Victorian brown coal.

    PubMed

    Roy, Bithi; Chen, Luguang; Bhattacharya, Sankar

    2014-12-16

    This study investigates, for the first time, the NOx, N2O, SO3, and Hg emissions from combustion of a Victorian brown coal in a 10 kWth fluidized bed unit under oxy-fuel combustion conditions. Compared to air combustion, lower NOx emissions and higher N2O formation were observed in the oxy-fuel atmosphere. These NOx reduction and N2O formations were further enhanced with steam in the combustion environment. The NOx concentration level in the flue gas was within the permissible limit in coal-fired power plants in Victoria. Therefore, an additional NOx removal system will not be required using this coal. In contrast, both SO3 and gaseous mercury concentrations were considerably higher under oxy-fuel combustion compared to that in the air combustion. Around 83% of total gaseous mercury released was Hg(0), with the rest emitted as Hg(2+). Therefore, to control harmful Hg(0), a mercury removal system may need to be considered to avoid corrosion in the boiler and CO2 separation units during the oxy-fuel fluidized-bed combustion using this coal.

  17. Oxidized Nitrogen in Precipitation, Throughfall, and Streamfall from a Forested Watershed in Oklahoma

    USGS Publications Warehouse

    Lawrence, Stephen J.; Wigington, Parker J.

    1987-01-01

    Oxidized nitrogen (nitrite plus nitrate N) concentrations were measured from bulk precipitation, bulk throughfall, and screamflow in a 7. 86 hectare forested watershed in southeastern Oklahoma during the wet season from March through June 1983. Oxidized nitrogen inputs comparable to results of other studies were recorded during the 19 rainstorms sampled. Oxidized nitrogen concentrations appeared to increase after rainfall interacted with the pine and hardwood canopies and were inversely related to both rainfall and throughfall depth. Oxidized N concentrations in streamflow were greatest during the rising limb of storm flow with subsequent decreases during the falling limb of storm hydrographs and lowest during base flow. The oxidized N inputs from bulk precipitation were considerably greater than outputs from streamflow resulting in a net retention of oxidized nitrogen within the watershed during the study period.

  18. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  19. Numerical study of rice husk and coal co-combustion characteristics in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Wang, Zuomin; Li, Jiuru

    2018-02-01

    This paper discussed the rationality of coal and rice husk co-combustion. Using ICEM software, a two-dimensional model of the riser has been established for circulating fluidized bed experimental table. Using Fluent software, numerical simulation has been made for the combustion reaction of different proportions of rice husk mixed with coal. The results show that, with the increase of rice husk ratio, both the combustion temperature and the amount of nitrogen oxides decrease and the effect is gradually reduced. In this simulation, the rice husks occupying about 30% is a reasonable proportion.

  20. Nitrous oxide production by lithotrophic ammonia-oxidizing bacteria and implications for engineered nitrogen-removal systems.

    PubMed

    Chandran, Kartik; Stein, Lisa Y; Klotz, Martin G; van Loosdrecht, Mark C M

    2011-12-01

    Chemolithoautotrophic AOB (ammonia-oxidizing bacteria) form a crucial component in microbial nitrogen cycling in both natural and engineered systems. Under specific conditions, including transitions from anoxic to oxic conditions and/or excessive ammonia loading, and the presence of high nitrite (NO₂⁻) concentrations, these bacteria are also documented to produce nitric oxide (NO) and nitrous oxide (N₂O) gases. Essentially, ammonia oxidation in the presence of non-limiting substrate concentrations (ammonia and O₂) is associated with N₂O production. An exceptional scenario that leads to such conditions is the periodical switch between anoxic and oxic conditions, which is rather common in engineered nitrogen-removal systems. In particular, the recovery from, rather than imposition of, anoxic conditions has been demonstrated to result in N₂O production. However, applied engineering perspectives, so far, have largely ignored the contribution of nitrification to N₂O emissions in greenhouse gas inventories from wastewater-treatment plants. Recent field-scale measurements have revealed that nitrification-related N₂O emissions are generally far higher than emissions assigned to heterotrophic denitrification. In the present paper, the metabolic pathways, which could potentially contribute to NO and N₂O production by AOB have been conceptually reconstructed under conditions especially relevant to engineered nitrogen-removal systems. Taken together, the reconstructed pathways, field- and laboratory-scale results suggest that engineering designs that achieve low effluent aqueous nitrogen concentrations also minimize gaseous nitrogen emissions.

  1. [Catalytic combustion of soot on combined oxide catalysts].

    PubMed

    He, Xu-wen; Yu, Jun-jie; Kang, Shou-fang; Hao, Zheng-ping; Hu, Chun

    2005-01-01

    Combined oxide catalysts are prepared for catalytic combustion of soot and regeneration from diesel emissions. Thermo-gravimetric analysis(TGA) and temperature programmed oxidation(TPO)are used to evaluate the activity of catalysts under the influence of composition,atomic ration, H2O, calcinations temperature and mass ration between catalysts and soot. Results show that Cu-Mo-O had high activity among double metal oxide catalysts. Among multicomponent metal oxide catalysts, Cu-K-Mo-O had high activity when atomic ratio Cu: K: Mo = 1:1:2 and mass ration between catalysts and soot equals 5: 1. Under this condition, soot ignition temperature of Cu-K-Mo-O catalyst was 327 degrees C. H2O addition and calcinations temperature had little influence on it,which is one kind of compatible catalyst for soot control and catalytic regeneration from diesel emissions.

  2. Increasing importance of deposition of reduced nitrogen in the United States

    PubMed Central

    Li, Yi; Schichtel, Bret A.; Walker, John T.; Schwede, Donna B.; Chen, Xi; Lehmann, Christopher M. B.; Puchalski, Melissa A.; Gay, David A.; Collett, Jeffrey L.

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium deposition, by contrast, have increased in many regions. Together these changes have altered the balance between oxidized and reduced nitrogen deposition. Across most of the United States, wet deposition has transitioned from being nitrate-dominated in the 1980s to ammonium-dominated in recent years. Ammonia has historically not been routinely measured because there are no specific regulatory requirements for its measurement. Recent expansion in ammonia observations, however, along with ongoing measurements of nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) US nitrogen deposition budget. Observations from 37 sites reveal that reduced nitrogen contributes, on average, ∼65% of the total inorganic nitrogen deposition budget. Dry deposition of ammonia plays an especially key role in nitrogen deposition, contributing from 19% to 65% in different regions. Future progress toward reducing US nitrogen deposition will be increasingly difficult without a reduction in ammonia emissions. PMID:27162336

  3. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  4. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen oxides...

  5. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  6. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  7. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Nitrogen Oxides Requirements for... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides Requirements for Affected Facilities Municipal waste combustor technology Nitrogen oxides emission limit (parts...

  8. 40 CFR Table 1 to Subpart Cb of... - Nitrogen Oxides Guidelines for Designated Facilities

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Nitrogen Oxides Guidelines for... September 20, 1994 Pt. 60, Subpt. Cb, Table 1 Table 1 to Subpart Cb of Part 60—Nitrogen Oxides Guidelines for Designated Facilities Municipal waste combustor technology Before April 28, 2009,nitrogen oxides...

  9. GREENOUSE GASES FROM SMALL-SCALE COMBUSTION DEVICES IN DEVELOPING COUNTRIES, PHASE IIA. HOUSEHOLD STOVES IN INDIA

    EPA Science Inventory

    The report contains a systematic set of measurements of carbon dioxide (CO2), carbon monoxide, methane, total non-methane organic compounds, nitrous oxide, sulfur dioxide, nitrogen dioxide, and total suspended particulate emissions from the commonest combustion devices in the wor...

  10. Advanced Subsonic Combustion Rig

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming

    1998-01-01

    Researchers from the NASA Lewis Research Center have obtained the first combustion/emissions data under extreme future engine operating conditions. In Lewis' new world-class 60-atm combustor research facility--the Advanced Subsonic Combustion Rig (ASCR)--a flametube was used to conduct combustion experiments in environments as extreme as 900 psia and 3400 F. The greatest challenge for combustion researchers is the uncertainty of the effects of pressure on the formation of nitrogen oxides (NOx). Consequently, U.S. engine manufacturers are using these data to guide their future combustor designs. The flametube's metal housing has an inside diameter of 12 in. and a length of 10.5 in. The flametube can be used with a variety of different flow paths. Each flow path is lined with a high-temperature, castable refractory material (alumina) to minimize heat loss. Upstream of the flametube is the injector section, which has an inside diameter of 13 in. and a length of 0.5-in. It was designed to provide for quick changeovers. This flametube is being used to provide all U.S. engine manufacturers early assessments of advanced combustion concepts at full power conditions prior to engine production. To date, seven concepts from engine manufacturers have been evaluated and improved. This collaborated development can potentially give U.S. engine manufacturers the competitive advantage of being first in the market with advanced low-emission technologies.

  11. Kinetics and Product Channels in Combustion Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hershberger, John F.

    We report study of the chemical kinetics and/or photochemistry of several chemical reactions of potential interest in understanding the gas phase combustion chemistry of nitrogen-containing molecules. Studies completed during the final grant period include determination of quantum yields of the photolysis of HCNO, fulminic acid, a kinetics and product channel study of the reaction of CN radicals with methyl bromide, and study of the products of the reaction of hydroxymethyl radical with nitric oxide.

  12. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  13. Experimental investigation on regulated and unregulated emissions of a diesel/methanol compound combustion engine with and without diesel oxidation catalyst.

    PubMed

    Zhang, Z H; Cheung, C S; Chan, T L; Yao, C D

    2010-01-15

    The use of methanol in combination with diesel fuel is an effective measure to reduce particulate matter (PM) and nitrogen oxides (NOx) emissions from in-use diesel vehicles. In this study, a diesel/methanol compound combustion (DMCC) scheme was proposed and a 4-cylinder naturally-aspirated direct-injection diesel engine modified to operate on the proposed combustion scheme. The effect of DMCC and diesel oxidation catalyst (DOC) on the regulated emissions of total hydrocarbons (THC), carbon monoxide (CO), NOx and PM was investigated based on the Japanese 13 Mode test cycle. Certain unregulated emissions, including methane, ethyne, ethene, 1,3-butadiene, BTX (benzene, toluene, xylene), unburned methanol and formaldehyde were also evaluated based on the same test cycle. In addition, the soluble organic fraction (SOF) in the particulate and the particulate number concentration and size distribution were investigated at certain selected modes of operation. The results show that the DMCC scheme can effectively reduce NOx, particulate mass and number concentrations, ethyne, ethene and 1,3-butadiene emissions but significantly increase the emissions of THC, CO, NO(2), BTX, unburned methanol, formaldehyde, and the proportion of SOF in the particles. After the DOC, the emission of THC, CO, NO(2), as well as the unregulated gaseous emissions, can be significantly reduced when the exhaust gas temperature is sufficiently high while the particulate mass concentration is further reduced due to oxidation of the SOF. Copyright 2009 Elsevier B.V. All rights reserved.

  14. Effect of Nitrogen Source on Growth and Trichloroethylene Degradation by Methane-Oxidizing Bacteria

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1998-01-01

    The effect of nitrogen source on methane-oxidizing bacteria with respect to cellular growth and trichloroethylene (TCE) degradation ability were examined. One mixed chemostat culture and two pure type II methane-oxidizing strains, Methylosinus trichosporium OB3b and strain CAC-2, which was isolated from the chemostat culture, were used in this study. All cultures were able to grow with each of three different nitrogen sources: ammonia, nitrate, and molecular nitrogen. Both M. trichosporium OB3b and strain CAC-2 showed slightly lower net cellular growth rates and cell yields but exhibited higher methane uptake rates, levels of poly-β-hydroxybutyrate (PHB) production, and naphthalene oxidation rates when grown under nitrogen-fixing conditions. The TCE-degrading ability of each culture was measured in terms of initial TCE oxidation rates and TCE transformation capacities (mass of TCE degraded/biomass inactivated), measured both with and without external energy sources. Higher initial TCE oxidation rates and TCE transformation capacities were observed in nitrogen-fixing mixed, M. trichosporium OB3b, and CAC-2 cultures than in nitrate- or ammonia-supplied cells. TCE transformation capacities were found to correlate with cellular PHB content in all three cultures. The results of this study suggest that the nitrogen-fixing capabilities of methane-oxidizing bacteria can be used to select for high-activity TCE degraders for the enhancement of bioremediation in fixed-nitrogen-limited environments. PMID:9726896

  15. Sulfur dioxide and nitrogen oxides emissions from U.S. pulp and paper mills, 1980-2005.

    PubMed

    Pinkerton, John E

    2007-08-01

    Comprehensive surveys conducted at 5-yr intervals were used to estimate sulfur dioxide (SO,) and nitrogen oxides (NO.) emissions from U.S. pulp and paper mills for 1980, 1985, 1990, 1995, 2000, and 2005. Over the 25-yr period, paper production increased by 50%, whereas total SO, emissions declined by 60% to 340,000 short tons (t) and total NO, emissions decreased approximately 15% to 230,000 t. The downward emission trends resulted from a combination of factors, including reductions in oil and coal use, steadily declining fuel sulfur content, lower pulp and paper production in recent years, increased use of flue gas desulfurization systems on boilers, growing use of combustion modifications and add-on control systems to reduce boiler and gas turbine NO, emissions, and improvements in kraft recovery furnace operations.

  16. The Increasing Importance of Deposition of Reduced Nitrogen ...

    EPA Pesticide Factsheets

    Rapid development of agricultural activities and fossil fuel combustion in the United States has led to a great increase in reactive nitrogen (Nr) emissions in the second half of the twentieth century. These emissions have been linked to excess nitrogen (N) deposition (i.e. deposition exceeding critical loads) in natural ecosystems through dry and wet deposition pathways. U.S. efforts to reduce nitrogen oxides (NOx) emissions since the 1970s have substantially reduced nitrate deposition, as evidenced by decreasing trends in long-term wet deposition data. These decreases in nitrate deposition along with increases in wet ammonium deposition have altered the balance between oxidized (nitrate) and reduced (ammonium) nitrogen deposition. Across most of the U.S., wet deposition has transitioned from being nitrate dominated in the 1980s to ammonium dominated in recent years. Because ammonia has not been a regulated air pollutant in the U.S., it has historically not been commonly measured. Recent measurement efforts, however, provide a more comprehensive look at ammonia concentrations across several regions of the U.S. These data, along with more routine measurements of gas phase nitric acid and fine particle ammonium and nitrate, permit new insight into the balance of oxidized and reduced nitrogen in the total (wet + dry) U.S. inorganic reactive nitrogen deposition budget. Utilizing two years of N-containing gas and fine particle observations from 37 U.S. monitoring si

  17. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  18. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  19. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the national primary annual ambient air quality standard for oxides of nitrogen is 53 parts per billion (ppb...

  20. Interactions between nitrogen cycling and methane oxidation in the pelagic waters of the Gulf of Mexico.

    NASA Astrophysics Data System (ADS)

    Joye, S. B.; Weber, S.; Battles, J.; Montoya, J. P.

    2014-12-01

    Methane is an important greenhouse gas that plays a critical role in climate variation. Although a variety of marine methane sources and sinks have been identified, key aspects of the fate of methane in the ocean remain poorly constrained. At cold seeps in the Gulf of Mexico and elsewhere, methane is introduced into the overlying water column via fluid escape from the seabed. We quantified the fate of methane in the water column overlying seafloor cold seeps, in a brine basin, and at several control sites. Our goals were to determine the factors that regulated methane consumption and assimilation and to explore how these controlling factors varied among and between sites. In particular, we examined the impact of nitrogen availability on methane oxidation and studied the ability of methane oxidizing bacteria to fix molecular nitrogen. Methane oxidation rates were highest in the methane rich bottom waters of natural hydrocabron seeps. At these sites, inorganic nitrogen addition stimulated methane oxidation in laboratory experiments. In vitro shipboard experiments revealed that rates of methane oxidation and nitrogen fixation were correlated strongly, suggesting that nitrogen fixation may have been mediated by methanotrophic bacteria. The highest rates of methane oxidation and nitrogen fixation were observed in the deepwater above at natural hydrocarbon seeps. Rates of methane oxidation were substantial along the chemocline of a brine basin but in these ammonium-rich brines, addition of inorganic nitrogen had little impact on methane oxidation suggesting that methanotrophy in these waters were not nitrogen limited. Control sites exhibited the lowest methane concentrations and methane oxidation rates but even these waters exhibited substantial potential for methane oxidation when methane and inorganic nitrogen concentrations were increased. Together, these data suggest that the availability of inorganic nitrogen plays a critical role in regulating methane oxidation in

  1. Determining nitrogen oxides in the school

    NASA Astrophysics Data System (ADS)

    Fernández Bou, Eva; Corominas Del Hoyo, Ariadna

    2014-05-01

    The main objectives of our project are that students become familiar with a professional chemistry laboratory and make them aware of humans' contribution to the change of our planet. This project has been successfully repeated for several years and consists in analyzing different substances in the atmosphere, such as nitrogen oxides, sulfur oxides and ozone. We use a device which makes the air go through a solution that captures the substance we want to determine. First we prepare a calibration curve with some solutions of known concentrations prepared in the lab. Then we analyze the sample with a spectrophotometer by measuring its absorbance. In this way we determine the concentration of the particular substance we are interested in. When we analyze gases in the atmosphere, we are able to see how the concentrations of these substances change in our town due to human activities. This year we will be focusing on nitrogen oxides and comparing our results with some others from previous years. We should remark the fact that a former student is the one responsible for leading the project. She had also participated in the project when she was studying in the school. Students learn this way the importance of communication and sharing science knowledge, which is another of our project goals.

  2. Solution combustion synthesis of oxide semiconductors

    NASA Astrophysics Data System (ADS)

    Thomas, Abegayl Lorenda Shara-Lynn

    The quest for stable and efficient photocatalytic materials beyond TiO2 and WO3 has over the years led to the development of new materials that possess varied interfacial energetics. This dissertation study focused on using for the first time a novel method, solution combustion synthesis (SCS), to prepare two distinct families of binary metal-based oxide semiconductor materials. Detailed studies on material characteristics and applications were carried out on tungsten- and niobium-based oxide semiconductors with varying principal metals. Initial emphasis was placed on the SCS of tungsten-based oxide semiconductors (ZnWO4, CuWO4, and Ag2WO4). The influence of different tungsten precursor's on the resultant product was of particular relevance to this study, with the most significant effects highlighted. Upon characterization, each sample's photocatalytic activity towards methyl orange dye degradation was studied, and benchmarked against their respective commercial oxide sample, obtained by solid-state ceramic synthesis. Detailed analysis highlighted the importance of the SCS process as a time- and energy-efficient method to produce crystalline nano-sized materials even without additional or excessive heat treatment. It was observed that using different tungstate precursors does influence the structural and morphological make-up of the resulting materials. The as-synthesized tungstate materials showed good photocatalytic performance for the degradation of methyl orange dye, while taking into account specific surface area and adsorbed dye amount on the surface of the material. Like the tungstate's, niobium-based oxide semiconductors CuNb 2O6 and ZnNb2O6 were the first to be synthesized via solution combustion synthesis. Particular attention was placed on the crystal structures formed while using an oxalate niobium precursor during the reaction process. X-ray patterns yielded a multiphase structure for the ZnNb2O6 and a single phase structure for CuNb 2O6

  3. Nitrogen removal from wastewater by a catalytic oxidation method.

    PubMed

    Huang, T L; Macinnes, J M; Cliffe, K R

    2001-06-01

    The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.

  4. Effect of Electric Field in the Stabilized Premixed Flame on Combustion Process Emissions

    NASA Astrophysics Data System (ADS)

    Otto, Krickis

    2017-10-01

    The effect of the AC and DC electrical field on combustion processes has been investigated by various researchers. The results of these experiments do not always correlate, due to different experiment conditions and experiment equipment variations. The observed effects of the electrical field impact on the combustion process depends on the applied voltage polarity, flame speed and combustion physics. During the experiment was defined that starting from 1000 V the ionic wind takes the effect on emissions in flue gases, flame shape and combustion instabilities. Simulation combustion process in hermetically sealed chamber with excess oxygen amount 3 % in flue gases showed that the positive effect of electrical field on emissions lies in region from 30 to 400 V. In aforementioned voltage range carbon monoxide emissions were reduced by 6 % and at the same time the nitrogen oxide emissions were increased by 3.5 %.

  5. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  6. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  7. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  8. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Oxides of nitrogen, carbon monoxide....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  9. Process and apparatus for afterburning of combustible pollutants from an internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurent, P.A.

    1978-07-04

    In a process for the afterburning of the combustible pollutants from an internal combustion engine, in order to automatically reduce the secondary induction rate when power increases without using a controlling valve actuatd by the carburetor venturi depression, there is provided a volumetric efficiency of the secondary air pump linked to and activated by the engine and a volumetric efficiency which decreases when the ratio between its back pressure and suction pressure increases, this reduction being achieved through the proper selection of the pump volumetric compression ratio r: between 0.6 c and 1.3 c when a steeply decreasing trend ismore » required, and above 1.3 c if a slower and slower decreasing trend is required. To perform this process an afterburner apparatus has a nitrogen oxide reducing catalyst placed inside the afterburner reactor on the gas stream immediately at the outlet of a torus, in which the gases are homogenized and their reaction with preinjection air is terminated.« less

  10. Analytical study of mechanisms for nitric oxide formation during combustion of methane in a jet-stirred combustor

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.

    1975-01-01

    The role of chemical kinetics in the formation of nitric oxide during the combustion of methane was examined analytically by means of a detailed chemical mechanism for the oxidation of methane, for the reaction between hydrocarbon fragments, and for the formation of nitric oxide. By comparing predicted nitric oxide levels with values reported in the literature from jet-stirred combuster experiments, it was determined that the nitric oxide levels observed in fuel-rich flames cannot be described by a mechanism in which the rate of nitric oxide formation is controlled solely by the kinetics of oxygen atom formation. A proposed mechanism for the formation of nitric oxide in methane-rich flames reproduces the observed levels. The oxidation of hydrogen cyanide appears to be an important factor in nitric oxide formation.

  11. Relationship between peroxyacetyl nitrate and nitrogen oxides in the clean troposphere

    NASA Technical Reports Server (NTRS)

    Singh, H. B.; Salas, L. J.; Ridley, B. A.; Shetter, J. D.; Donahue, N. M.

    1985-01-01

    The first study is presented in which the mixing ratios of peroxyactyl nitrate (PAN) and nitrogen oxides, as well as those of peroxypropionyl nitrate and O3 and relevant meteorological parameters, were measured concurrently at a location that receives clean, continental air. The results show that, in clean conditions, nitrogen oxides present in the form of PAN can be as much or more abundant than the inorganic form. In addition, PAN can be an important source of peroxyacetyl radicals which may be important to oxidation processes in the gas as well as liquid phases.

  12. Reduction of nitrogen oxides with catalytic acid resistant aluminosilicate molecular sieves and ammonia

    DOEpatents

    Pence, Dallas T.; Thomas, Thomas R.

    1980-01-01

    Noxious nitrogen oxides in a waste gas stream such as the stack gas from a fossil-fuel-fired power generation plant or other industrial plant off-gas stream is catalytically reduced to elemental nitrogen and/or innocuous nitrogen oxides employing ammonia as reductant in the presence of a zeolite catalyst in the hydrogen or sodium form having pore openings of about 3 to 10 A.

  13. A thermodynamic analysis of the environmental indicators of natural gas combustion processes

    NASA Astrophysics Data System (ADS)

    Elsukov, V. K.

    2010-07-01

    Environmental indicators of the natural gas combustion process are studied using the model of extreme intermediate states developed at the Melent’ev Institute of Power Engineering Systems. Technological factors responsible for generation of polycyclic aromatic hydrocarbons and hydrogen cyanide are revealed. Measures for reducing the amounts of polycyclic aromatic hydrocarbons, hydrogen cyanide, nitrogen oxide, and other pollutants emitted from boilers are developed.

  14. Supercapacitors based on nitrogen-doped reduced graphene oxide and borocarbonitrides

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, K.; Moses, Kota; Govindaraj, A.; Rao, C. N. R.

    2013-12-01

    Nitrogen-doped reduced graphene oxide (RGO) samples with different nitrogen content, prepared by two different methods, as well as nitrogen-doped few-layer graphene have been investigated as supercapacitor electrodes. Two electrode measurements have been carried out both in aqueous (6M KOH) and in ionic liquid media. Nitrogen-doped reduced graphene oxides exhibit satisfactory specific capacitance, the values reaching 126F/g at a scan rate of 10mV/s in aqueous medium. Besides providing supercapacitor characteristics, the study has shown the nitrogen content and surface area to be important factors. High surface-area borocarbonitrides, BxCyNz, prepared by the urea route appear to be excellent supercapacitor electrode materials. Thus, BC4.5N exhibits a specific capacitance of 169F/g at a scan rate of 10mV/s in aqueous medium. In an ionic liquid medium, nitrogen-doped RGO and BC4.5N exhibit specific capacitance values of 258F/g and 240F/g at a scan rate of 5mV/s. The ionic liquid enables a larger operating voltage range of 0.0-2.5V compared to 0.0-1V in aqueous medium.

  15. Hot-Fire Test Results of an Oxygen/RP-2 Multi-Element Oxidizer-Rich Staged-Combustion Integrated Test Article

    NASA Technical Reports Server (NTRS)

    Hulka, J. R.; Protz, C. S.; Garcia, C. P.; Casiano, M. J.; Parton, J. A.

    2016-01-01

    As part of the Combustion Stability Tool Development project funded by the Air Force Space and Missile Systems Center, the NASA Marshall Space Flight Center was contracted to assemble and hot-fire test a multi-element integrated test article demonstrating combustion characteristics of an oxygen/hydrocarbon propellant oxidizer-rich staged-combustion engine thrust chamber. Such a test article simulates flow through the main injectors of oxygen/kerosene oxidizer-rich staged combustion engines such as the Russian RD-180 or NK-33 engines, or future U.S.-built engine systems such as the Aerojet-Rocketdyne AR-1 engine or the Hydrocarbon Boost program demonstration engine. For the thrust chamber assembly of the test article, several configurations of new main injectors, using relatively conventional gas-centered swirl coaxial injector elements, were designed and fabricated. The design and fabrication of these main injectors are described in a companion paper at this JANNAF meeting. New ablative combustion chambers were fabricated based on hardware previously used at NASA for testing at similar size and pressure. An existing oxygen/RP-1 oxidizer-rich subscale preburner injector from a previous NASA-funded program, along with existing and new inter-connecting hot gas duct hardware, were used to supply the oxidizer-rich combustion products to the oxidizer circuit of the main injector of the thrust chamber. Results from independent hot-fire tests of the preburner injector in a combustion chamber with a sonic throat are described in companion papers at this JANNAF conference. The resulting integrated test article - which includes the preburner, inter-connecting hot gas duct, main injector, and ablative combustion chamber - was assembled at Test Stand 116 at the East Test Area of the NASA Marshall Space Flight Center. The test article was well instrumented with static and dynamic pressure, temperature, and acceleration sensors to allow the collected data to be used for

  16. Method for combined removal of mercury and nitrogen oxides from off-gas streams

    DOEpatents

    Mendelsohn, Marshall H [Downers Grove, IL; Livengood, C David [Lockport, IL

    2006-10-10

    A method for removing elemental Hg and nitric oxide simultaneously from a gas stream is provided whereby the gas stream is reacted with gaseous chlorinated compound to convert the elemental mercury to soluble mercury compounds and the nitric oxide to nitrogen dioxide. The method works to remove either mercury or nitrogen oxide in the absence or presence of each other.

  17. THREE-STAGE COMBUSTION (REBURNING) ON A FULL SCALE OPERATING BOILER IN THE U.S.S.R.

    EPA Science Inventory

    The report gives results of a program to complete preliminary design of a three- stage combustion (reburn) system for nitrogen oxide (NOx) emissions control on an operating boiler in the U. S.S. R. he program to design the reburn system consisted of five tasks: visiting the Ladyz...

  18. Summary of Simplified Two Time Step Method for Calculating Combustion Rates and Nitrogen Oxide Emissions for Hydrogen/Air and Hydrogen/Oxygen

    NASA Technical Reports Server (NTRS)

    Marek, C. John; Molnar, Melissa

    2005-01-01

    A simplified single rate expression for hydrogen combustion and nitrogen oxide production was developed. Detailed kinetics are predicted for the chemical kinetic times using the complete chemical mechanism over the entire operating space. These times are then correlated to the reactor conditions using an exponential fit. Simple first order reaction expressions are then used to find the conversion in the reactor. The method uses a two time step kinetic scheme. The first time averaged step is used at the initial times with smaller water concentrations. This gives the average chemical kinetic time as a function of initial overall fuel air ratio, temperature, and pressure. The second instantaneous step is used at higher water concentrations (greater than l x 10(exp -20)) moles per cc) in the mixture which gives the chemical kinetic time as a function of the instantaneous fuel and water mole concentrations, pressure and temperature (T(sub 4)). The simple correlations are then compared to the turbulent mixing times to determine the limiting properties of the reaction. The NASA Glenn GLSENS kinetics code calculates the reaction rates and rate constants for each species in a kinetic scheme for finite kinetic rates. These reaction rates are used to calculate the necessary chemical kinetic times. This time is regressed over the complete initial conditions using the Excel regression routine. Chemical kinetic time equations for H2 and NOx are obtained for H2/Air fuel and for H2/O2. A similar correlation is also developed using data from NASA's Chemical Equilibrium Applications (CEA) code to determine the equilibrium temperature (T(sub 4)) as a function of overall fuel/air ratio, pressure and initial temperature (T(sub 3)). High values of the regression coefficient R squared are obtained.

  19. Copper slag as a catalyst for mercury oxidation in coal combustion flue gas.

    PubMed

    Li, Hailong; Zhang, Weilin; Wang, Jun; Yang, Zequn; Li, Liqing; Shih, Kaimin

    2018-04-01

    Copper slag is a byproduct of the pyrometallurgical smelting of copper concentrate. It was used in this study to catalyze elemental mercury (Hg 0 ) oxidation in simulated coal combustion flue gas. The copper slag exhibited excellent catalytic performance in Hg 0 oxidation at temperatures between 200 °C and 300 °C. At the most optimal temperature of 250 °C, a Hg 0 oxidation efficiency of 93.8% was achieved under simulated coal combustion flue gas with both a high Hg 0 concentration and a high gas hourly space velocity of 128,000 h -1 . Hydrogen chloride (HCl) was the flue gas component responsible for Hg 0 oxidation over the copper slag. The transition metal oxides, including iron oxides and copper oxide in the copper slag, exhibited significant catalytic activities in the surface-mediated oxidation of Hg 0 in the presence of HCl. It is proposed that the Hg 0 oxidation over the copper slag followed the Langmuir-Hinshelwood mechanism whereby reactive chlorine species that originated from HCl reacted with the physically adsorbed Hg 0 to form oxidized mercury. This study demonstrated the possibility of reusing copper slag as a catalyst for Hg 0 oxidation and revealed the mechanisms involved in the process and the key factors in the performance. This knowledge has fundamental importance in simultaneously reducing industrial waste and controlling mercury emissions from coal-fired power plants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Plasma-assisted combustion technology for NOx reduction in industrial burners.

    PubMed

    Lee, Dae Hoon; Kim, Kwan-Tae; Kang, Hee Seok; Song, Young-Hoon; Park, Jae Eon

    2013-10-01

    Stronger regulations on nitrogen oxide (NOx) production have recently promoted the creation of a diverse array of technologies for NOx reduction, particularly within the combustion process, where reduction is least expensive. In this paper, we discuss a new combustion technology that can reduce NOx emissions within industrial burners to single-digit parts per million levels without employing exhaust gas recirculation or other NOx reduction mechanisms. This new technology uses a simple modification of commercial burners, such that they are able to perform plasma-assisted staged combustion without altering the outer configuration of the commercial reference burner. We embedded the first-stage combustor within the head of the commercial reference burner, where it operated as a reformer that could host a partial oxidation process, producing hydrogen-rich reformate or synthesis gas product. The resulting hydrogen-rich flow then ignited and stabilized the combustion flame apart from the burner rim. Ultimately, the enhanced mixing and removal of hot spots with a widened flame area acted as the main mechanisms of NOx reduction. Because this plasma burner acted as a low NOx burner and was able to reduce NOx by more than half compared to the commercial reference burner, this methodology offers important cost-effective possibilities for NOx reduction in industrial applications.

  1. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant

    NASA Astrophysics Data System (ADS)

    Ao, Wen; Liu, Peijin; Yang, Wenjing

    2016-12-01

    In solid propellants, aluminum is widely used to improve the performance, however the condensed combustion products especially the large agglomerates generated from aluminum combustion significantly affect the combustion and internal flow inside the solid rocket motor. To clarify the properties of the condensed combustion products of aluminized propellants, a constant-pressure quench vessel was adopted to collect the combustion products. The morphology and chemical compositions of the collected products, were then studied by using scanning electron microscopy coupled with energy dispersive (SEM-EDS) method. Various structures have been observed in the condensed combustion products. Apart from the typical agglomerates or smoke oxide particles observed before, new structures including the smoke oxide clusters, irregular agglomerates and carbon-inclusions are discovered and investigated. Smoke oxide particles have the highest amount in the products. The highly dispersed oxide particle is spherical with very smooth surface and is on the order of 1-2 μm, but due to the high temperature and long residence time, these small particles will aggregate into smoke oxide clusters which are much larger than the initial particles. Three types of spherical agglomerates have been found. As the ambient gas temperature is much higher than the boiling point of Al2O3, the condensation layer inside which the aluminum drop is burning would evaporate quickly, which result in the fact that few "hollow agglomerates" has been found compared to "cap agglomerates" and "solid agglomerates". Irregular agglomerates usually larger than spherical agglomerates. The formation of irregular agglomerates likely happens by three stages: deformation of spherical aluminum drops; combination of particles with various shape; finally production of irregular agglomerates. EDS results show the ratio of O to Al on the surface of agglomerates is lower in comparison to smoke oxide particles. C and O account for

  2. Prediction of the production of nitrogen oxide (NOx) in turbojet engines

    NASA Astrophysics Data System (ADS)

    Tsague, Louis; Tsogo, Joseph; Tatietse, Thomas Tamo

    Gaseous nitrogen oxides (NO+NO2=NOx) are known as atmospheric trace constituent. These gases remain a big concern despite the advances in low NOx emission technology because they play a critical role in regulating the oxidization capacity of the atmosphere according to Crutzen [1995. My life with O 3, NO x and other YZO x S; Nobel Lecture; Chemistry 1995; pp 195; December 8, 1995] . Aircraft emissions of nitrogen oxides ( NOx) are regulated by the International Civil Aviation Organization. The prediction of NOx emission in turbojet engines by combining combustion operational data produced information showing correlation between the analytical and empirical results. There is close similarity between the calculated emission index and experimental data. The correlation shows improved accuracy when the 2124 experimental data from 11 gas turbine engines are evaluated than a previous semi empirical correlation approach proposed by Pearce et al. [1993. The prediction of thermal NOx in gas turbine exhausts. Eleventh International Symposium on Air Breathing Engines, Tokyo, 1993, pp. 6-9]. The new method we propose predict the production of NOx with far more improved accuracy than previous methods. Since a turbojet engine works in an atmosphere where temperature, pressure and humidity change frequently, a correction factor is developed with standard atmospheric laws and some correlations taken from scientific literature [Swartwelder, M., 2000. Aerospace engineering 410 Term Project performance analysis, November 17, 2000, pp. 2-5; Reed, J.A. Java Gas Turbine Simulator Documentation. pp. 4-5]. The new correction factor is validated with experimental observations from 19 turbojet engines cruising at altitudes of 9 and 13 km given in the ICAO repertory [Middleton, D., 1992. Appendix K (FAA/SETA). Section 1: Boeing Method Two Indices, 1992, pp. 2-3]. This correction factor will enable the prediction of cruise NOx emissions of turbojet engines at cruising speeds. The ICAO

  3. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  4. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  5. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  6. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  7. 40 CFR 52.326 - Area-wide nitrogen oxides (NOX) exemptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Area-wide nitrogen oxides (NOX) exemptions. 52.326 Section 52.326 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Colorado § 52.326 Area-wide nitrogen...

  8. TECHNOLOGY INNOVATIONS AND EXPERIENCE CURVES FOR NITROGEN OXIDES CONTROL TECHNOLOGIES

    EPA Science Inventory

    This paper reviews the regulatory history for nitrogen oxides (NOX) pollutant emissions from stationary sources, primarily in coal-fired power plants. Nitrogen dioxide (NO2) is one of the six criteria pollutants regulated by the 1970 Clean Air Act where Nati...

  9. Community Composition of Nitrous Oxide-Related Genes in Salt Marsh Sediments Exposed to Nitrogen Enrichment.

    PubMed

    Angell, John H; Peng, Xuefeng; Ji, Qixing; Craick, Ian; Jayakumar, Amal; Kearns, Patrick J; Ward, Bess B; Bowen, Jennifer L

    2018-01-01

    Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated profiles of microbial communities and communities of micro-organisms containing specific nitrogen cycling genes that encode several enzymes ( amoA, norB, nosZ) related to nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms involved in the production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that previously measured rates of nitrous oxide production and consumption are likely the result of changes in community structure, not simply changes in microbial activity.

  10. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    DOEpatents

    Pederson, L.R.; Chick, L.A.; Exarhos, G.J.

    1992-05-19

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  11. Method of making metal oxide ceramic powders by using a combustible amino acid compound

    DOEpatents

    Pederson, Larry R.; Chick, Lawrence A.; Exarhos, Gregory J.

    1992-01-01

    This invention is directed to the formation of homogeneous, aqueous precursor mixtures of at least one substantially soluble metal salt and a substantially soluble, combustible co-reactant compound, typically an amino acid. This produces, upon evaporation, a substantially homogeneous intermediate material having a total solids level which would support combustion. The homogeneous intermediate material essentially comprises highly dispersed or solvated metal constituents and the co-reactant compound. The intermediate material is quite flammable. A metal oxide powder results on ignition of the intermediate product which combusts same to produce the product powder.

  12. Microbiological Diversity Demonstrates the Potential which Collaboratively Metabolize Nitrogen Oxides ( NOx) under Smog Environmental Stress

    NASA Astrophysics Data System (ADS)

    Chen, X. Z.; Zhao, X. H.; Chen, X. P.

    2018-03-01

    Recently, smoggy weather has become a daily in large part of China because of rapidly economic growth and accelerative urbanization. Stressed on the smoggy situation and economic growth, the green and environment-friendly technology is necessary to reduce or eliminate the smog and promote the sustainable development of economy. Previous studies had confirmed that nitrogen oxides ( NOx ) is one of crucial factors which forms smog. Microorganisms have the advantages of quickly growth and reproduction and metabolic diversity which can collaboratively Metabolize various NOx. This study will design a kind of bacteria & algae cultivation system which can metabolize collaboratively nitrogen oxides in air and intervene in the local nitrogen cycle. Furthermore, the nitrogen oxides can be transformed into nitrogen gas or assembled in protein in microorganism cell by regulating the microorganism types and quantities and metabolic pathways in the system. Finally, the smog will be alleviated or eliminated because of reduction of nitrogen oxides emission. This study will produce the green developmental methodology.

  13. The Determination of Total Nitrogen Oxides in Stack Gases. Phenoldisulfonic Acid Method.

    ERIC Educational Resources Information Center

    Thorpe, Charles J. D.

    The well known Saltzman method for oxides of nitrogen is intended for the determination of these constituents in the ambient atmosphere in the range of a few parts per billion to about 5ppm. However, when sulfur dioxide is present in the gas to be sampled and/or the concentration range of the oxides of nitrogen is from five to several thousand…

  14. 40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Oxides of nitrogen analyzer calibration. 86.223-94 Section 86.223-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... nitrogen analyzer calibration. The provisions of § 86.123-78 apply to this subpart if NOX measurements are...

  15. 40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Oxides of nitrogen analyzer calibration. 86.223-94 Section 86.223-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... nitrogen analyzer calibration. The provisions of § 86.123-78 apply to this subpart if NOX measurements are...

  16. 40 CFR 86.223-94 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Oxides of nitrogen analyzer calibration. 86.223-94 Section 86.223-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... nitrogen analyzer calibration. The provisions of § 86.123-78 apply to this subpart if NOX measurements are...

  17. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  18. Environmental and economic evaluation of selective non-catalytic reduction of nitrogen oxides

    NASA Astrophysics Data System (ADS)

    Parchevskii, V. M.; Shchederkina, T. E.; Proshina, A. O.

    2017-11-01

    There are two groups of atmosphere protecting measures: technology (primary) and treatment (secondary). When burning high-calorie low-volatile brands of coals in the furnaces with liquid slag removal to achieve emission standards required joint use of these two methods, for example, staged combustion and selective non-catalytic reduction recovery (SNCR). For the economically intelligent combination of these two methods it is necessary to have information not only about the environmental performance of each method, but also the operating costs per unit of reduced emission. The authors of this report are made an environmental-economic analysis of SNCR on boiler Π-50P Kashirskaya power station. The obtained results about the dependence of costs from the load of the boiler and the mass emissions of nitrogen oxides then approximates into empirical formulas, is named as environmental and economic characteristics, which is suitable for downloading into controllers and other control devices for subsequent implementation of optimal control of emissions to ensure compliance with environmental regulations at the lowest cost at any load of the boiler.

  19. Spray-combustion synthesis: Efficient solution route to high-performance oxide transistors

    PubMed Central

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P. H.; Bedzyk, Michael J.; Ferragut, Rafael; Marks, Tobin J.; Facchetti, Antonio

    2015-01-01

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations. PMID:25733848

  20. Spray-combustion synthesis: efficient solution route to high-performance oxide transistors.

    PubMed

    Yu, Xinge; Smith, Jeremy; Zhou, Nanjia; Zeng, Li; Guo, Peijun; Xia, Yu; Alvarez, Ana; Aghion, Stefano; Lin, Hui; Yu, Junsheng; Chang, Robert P H; Bedzyk, Michael J; Ferragut, Rafael; Marks, Tobin J; Facchetti, Antonio

    2015-03-17

    Metal-oxide (MO) semiconductors have emerged as enabling materials for next generation thin-film electronics owing to their high carrier mobilities, even in the amorphous state, large-area uniformity, low cost, and optical transparency, which are applicable to flat-panel displays, flexible circuitry, and photovoltaic cells. Impressive progress in solution-processed MO electronics has been achieved using methodologies such as sol gel, deep-UV irradiation, preformed nanostructures, and combustion synthesis. Nevertheless, because of incomplete lattice condensation and film densification, high-quality solution-processed MO films having technologically relevant thicknesses achievable in a single step have yet to be shown. Here, we report a low-temperature, thickness-controlled coating process to create high-performance, solution-processed MO electronics: spray-combustion synthesis (SCS). We also report for the first time, to our knowledge, indium-gallium-zinc-oxide (IGZO) transistors having densification, nanoporosity, electron mobility, trap densities, bias stability, and film transport approaching those of sputtered films and compatible with conventional fabrication (FAB) operations.

  1. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Astrophysics Data System (ADS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-10-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  2. Low NOx heavy fuel combustor concept program. Phase 1: Combustion technology generation

    NASA Technical Reports Server (NTRS)

    Lew, H. G.; Carl, D. R.; Vermes, G.; Dezubay, E. A.; Schwab, J. A.; Prothroe, D.

    1981-01-01

    The viability of low emission nitrogen oxide (NOx) gas turbine combustors for industrial and utility application. Thirteen different concepts were evolved and most were tested. Acceptable performance was demonstrated for four of the combustors using ERBS fuel and ultralow NOx emissions were obtained for lean catalytic combustion. Residual oil and coal derived liquids containing fuel bound nitrogen (FBN) were also used at test fuels, and it was shown that staged rich/lean combustion was effective in minimizing the conversion of FBN to NOx. The rich/lean concept was tested with both modular and integral combustors. While the ceramic lined modular configuration produced the best results, the advantages of the all metal integral burners make them candidates for future development. An example of scaling the laboratory sized combustor to a 100 MW size engine is included in the report as are recommendations for future work.

  3. Chapter 7: Impact of Nitrogen and Climate Change Interactions on Ambient Air Pollution and Human Health

    EPA Science Inventory

    Nitrogen oxides (NOX) are important components of ambient and indoor air pollution and are emitted from a range of combustion sources, including on-road mobile sources, electric power generators, and non-road mobile sources. While anthropogenic sources dominate, NOX is also forme...

  4. Nitrogen management to reduce nitrous oxide emissions

    USDA-ARS?s Scientific Manuscript database

    Nitrous oxide (N2O) emissions from agricultural soils represent a complex interaction between the inputs of nitrogen into the soil and the soil environment. Mitigating these emissions will have a positive impact on greenhouse gases. Agriculture is the primary source of N2O emissions and must develop...

  5. Effect of Nitrogen Oxides on Elemental Mercury Removal by Nanosized Mineral Sulfide.

    PubMed

    Li, Hailong; Zhu, Lei; Wang, Jun; Li, Liqing; Lee, Po-Heng; Feng, Yong; Shih, Kaimin

    2017-08-01

    Because of its large surface area, nanosized zinc sulfide (Nano-ZnS) has been demonstrated in a previous study to be efficient for removal of elemental mercury (Hg 0 ) from coal combustion flue gas. The excellent mercury adsorption performance of Nano-ZnS was found to be insusceptible to water vapor, sulfur dioxide, and hydrogen chloride. However, nitrogen oxides (NO X ) apparently inhibited mercury removal by Nano-ZnS; this finding was unlike those of many studies on the promotional effect of NO X on Hg 0 removal by other sorbents. The negative effect of NO X on Hg 0 adsorption over Nano-ZnS was systematically investigated in this study. Two mechanisms were identified as primarily responsible for the inhibitive effect of NO X on Hg 0 adsorption over Nano-ZnS: (1) active sulfur sites on Nano-ZnS were oxidized to inactive sulfate by NO X ; and (2) the chemisorbed mercury, i.e., HgS, was reduced to Hg 0 by NO X . This new insight into the role of NO X in Hg 0 adsorption over Nano-ZnS can help to optimize operating conditions, maximize Hg 0 adsorption, and facilitate the application of Nano-ZnS as a superior alternative to activated carbon for Hg 0 removal using existing particulate matter control devices in power plants.

  6. Facile Preparation of Highly Conductive Metal Oxides by Self-Combustion for Solution-Processed Thermoelectric Generators.

    PubMed

    Kang, Young Hun; Jang, Kwang-Suk; Lee, Changjin; Cho, Song Yun

    2016-03-02

    Highly conductive indium zinc oxide (IZO) thin films were successfully fabricated via a self-combustion reaction for application in solution-processed thermoelectric devices. Self-combustion efficiently facilitates the conversion of soluble precursors into metal oxides by lowering the required annealing temperature of oxide films, which leads to considerable enhancement of the electrical conductivity of IZO thin films. Such enhanced electrical conductivity induced by exothermic heat from a combustion reaction consequently yields high performance IZO thermoelectric films. In addition, the effect of the composition ratio of In to Zn precursors on the electrical and thermoelectric properties of the IZO thin films was investigated. IZO thin films with a composition ratio of In:Zn = 6:2 at the low annealing temperature of 350 °C showed an enhanced electrical conductivity, Seebeck coefficient, and power factor of 327 S cm(-1), 50.6 μV K(-1), and 83.8 μW m(-1) K(-2), respectively. Moreover, the IZO thin film prepared at an even lower temperature of 300 °C retained a large power factor of 78.7 μW m(-1) K(-2) with an electrical conductivity of 168 S cm(-1). Using the combustive IZO precursor, a thermoelectric generator consisting of 15 legs was fabricated by a printing process. The thermoelectric array generated a thermoelectric voltage of 4.95 mV at a low temperature difference (5 °C). We suggest that the highly conductive IZO thin films by self-combustion may be utilized for fabricating n-type flexible printed thermoelectric devices.

  7. Oxides of nitrogen at two sites in New Zealand

    NASA Astrophysics Data System (ADS)

    Stedman, D. H.; McEwan, M. J.

    1983-02-01

    Oxides of nitrogen, ozone and solar UV radiation were measured at two New Zealand sites, four months at Mt. John near Lake Tekapo, and one month at the New Zealand Department of scientific and Industrial Research, Physics and Engineering Laboratory Atmospheric Station (PELAS) near Lauder. The former site proved ideal for clean-air measurements. Ozone concentrations of ˜20-25 ppb, with little diurnal variation were accompanied by total nitrogen oxide (NOy) levels frequently less than 150 ppt (parts in 1012 by volume). The noon NO and NO2 data were well correlated with a slope comparable to model values. Gaseous HNO3 was observed to be significantly above the noise level (˜15 ppt) for only twenty-seven four-hour averages. For these a median of 43 ppt was obtained with a median ([NOy]-[HNO3])/[HNO3] ratio of 7.5, not comparable with model values of around 1.1. This low HNO3 may arise from the fact that the Mt. John site is downwind of a mountain range which experiences significant upwind precipitation. At the PELAS site, strong diurnal variation of ozone and much larger NOy concentrations were observed. The difference is apparently caused by local sources of nitrogen oxides and the local meteorology at the fertile valley PELAS site.

  8. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  9. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  10. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  11. 40 CFR 60.52b - Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metals, acid gases, organics, and nitrogen oxides. 60.52b Section 60.52b Protection of Environment... § 60.52b Standards for municipal waste combustor metals, acid gases, organics, and nitrogen oxides. (a... (total mass), corrected to 7 percent oxygen. (d) The limits for nitrogen oxides are specified in...

  12. Abrupt recent trend changes in atmospheric nitrogen dioxide over the Middle East

    PubMed Central

    Lelieveld, Jos; Beirle, Steffen; Hörmann, Christoph; Stenchikov, Georgiy; Wagner, Thomas

    2015-01-01

    Nitrogen oxides, released from fossil fuel use and other combustion processes, affect air quality and climate. From the mid-1990s onward, nitrogen dioxide (NO2) has been monitored from space, and since 2004 with relatively high spatial resolution by the Ozone Monitoring Instrument. Strong upward NO2 trends have been observed over South and East Asia and the Middle East, in particular over major cities. We show, however, that a combination of air quality control and political factors, including economical crisis and armed conflict, has drastically altered the emission landscape of nitrogen oxides in the Middle East. Large changes, including trend reversals, have occurred since about 2010 that could not have been predicted and therefore are at odds with emission scenarios used in projections of air pollution and climate change in the early 21st century. PMID:26601240

  13. Transformation of Cerium Oxide Nanoparticles from a Diesel Fuel Additive during Combustion in a Diesel Engine.

    PubMed

    Dale, James G; Cox, Steven S; Vance, Marina E; Marr, Linsey C; Hochella, Michael F

    2017-02-21

    Nanoscale cerium oxide is used as a diesel fuel additive to reduce particulate matter emissions and increase fuel economy, but its fate in the environment has not been established. Cerium oxide released as a result of the combustion of diesel fuel containing the additive Envirox, which utilizes suspended nanoscale cerium oxide to reduce particulate matter emissions and increase fuel economy, was captured from the exhaust stream of a diesel engine and was characterized using a combination of bulk analytical techniques and high resolution transmission electron microscopy. The combustion process induced significant changes in the size and morphology of the particles; ∼15 nm aggregates consisting of 5-7 nm faceted crystals in the fuel additive became 50-300 nm, near-spherical, single crystals in the exhaust. Electron diffraction identified the original cerium oxide particles as cerium(IV) oxide (CeO 2 , standard FCC structure) with no detectable quantities of Ce(III), whereas in the exhaust the ceria particles had additional electron diffraction reflections indicative of a CeO 2 superstructure containing ordered oxygen vacancies. The surfactant coating present on the cerium oxide particles in the additive was lost during combustion, but in roughly 30% of the observed particles in the exhaust, a new surface coating formed, approximately 2-5 nm thick. The results of this study suggest that pristine, laboratory-produced, nanoscale cerium oxide is not a good substitute for the cerium oxide released from fuel-borne catalyst applications and that future toxicity experiments and modeling will require the use/consideration of more realistic materials.

  14. CRYOGENIC TRAPPING OF OXIDIZED MERCURY SPECIES FROM COMBUSTION FLUE GAS. (R827649)

    EPA Science Inventory

    To further understand the speciation and partitioning of mercury species in combustion systems, it is necessary to be able to identify and quantitate the various forms of oxidized mercury. Currently accepted methods for speciating mercury (Ontario Hydro Method, EPA Method 29, ...

  15. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  16. Analysis of alternative pathways for reducing nitrogen oxide emissions.

    PubMed

    Loughlin, Daniel H; Kaufman, Katherine R; Lenox, Carol S; Hubbell, Bryan J

    2015-09-01

    Strategies for reducing tropospheric ozone (O3) typically include modifying combustion processes to reduce the formation of nitrogen oxides (NOx) and applying control devices that remove NOx from the exhaust gases of power plants, industrial sources and vehicles. For portions of the U.S., these traditional controls may not be sufficient to achieve the National Ambient Air Quality Standard for ozone. We apply the MARKet ALlocation (MARKAL) energy system model in a sensitivity analysis to explore whether additional NOx reductions can be achieved through extensive electrification of passenger vehicles, adoption of energy efficiency and conservation measures within buildings, and deployment of wind and solar power in the electric sector. Nationally and for each region of the country, we estimate the NOx implications of these measures. Energy efficiency and renewable electricity are shown to reduce NOx beyond traditional controls. Wide-spread light duty vehicle electrification produces varied results, with NOx increasing in some regions and decreasing in others. However, combining vehicle electrification with renewable electricity reduces NOx in all regions. State governments are charged with developing plans that demonstrate how air quality standards will be met and maintained. The results presented here provide an indication of the national and regional NOx reductions available beyond traditional controls via extensive adoption of energy efficiency, renewable electricity, and vehicle electrification.

  17. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions.

    PubMed

    Lee, Chun W; Serre, Shannon D; Zhao, Yongxin; Lee, Sung Jun; Hastings, Thomas W

    2008-04-01

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury (Hg(o)) oxidation under SCR conditions. A low sulfur Powder River Basin (PRB) subbituminous coal combustion fly ash was injected into the entrained-flow reactor along with sulfur dioxide (SO2), nitrogen oxides (NOx), hydrogen chloride (HCl), and trace Hg(o). Concentrations of Hg(o) and total mercury (Hg) upstream and downstream of the SCR catalyst were measured using a Hg monitor. The effects of HCl concentration, SCR operating temperature, catalyst space velocity, and feed rate of PRB fly ash on Hg(o) oxidation were evaluated. It was observed that HCl provides the source of chlorine for Hg(o) oxidation under simulated PRB coal-fired SCR conditions. The decrease in Hg mass balance closure across the catalyst with decreasing HCl concentration suggests that transient Hg capture on the SCR catalyst occurred during the short test exposure periods and that the outlet speciation observed may not be representative of steady-state operation at longer exposure times. Increasing the space velocity and operating temperature of the SCR led to less Hg(o) oxidized. Introduction of PRB coal fly ash resulted in slightly decreased outlet oxidized mercury (Hg2+) as a percentage of total inlet Hg and correspondingly resulted in an incremental increase in Hg capture. The injection of ammonia (NH3) for NOx reduction by SCR was found to have a strong effect to decrease Hg oxidation. The observations suggest that Hg(o) oxidation may occur near the exit region of commercial SCR reactors. Passage of flue gas through SCR systems without NH3 injection, such as during the low-ozone season, may also impact Hg speciation and capture in the flue gas.

  18. Reducing mode circulating fluid bed combustion

    DOEpatents

    Lin, Yung-Yi; Sadhukhan, Pasupati; Fraley, Lowell D.; Hsiao, Keh-Hsien

    1986-01-01

    A method for combustion of sulfur-containing fuel in a circulating fluid bed combustion system wherein the fuel is burned in a primary combustion zone under reducing conditions and sulfur captured as alkaline sulfide. The reducing gas formed is oxidized to combustion gas which is then separated from solids containing alkaline sulfide. The separated solids are then oxidized and recycled to the primary combustion zone.

  19. Investigation of combustion characteristics of methane-hydrogen fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  20. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 2 2011-07-01 2011-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the...

  1. 40 CFR 50.11 - National primary and secondary ambient air quality standards for oxides of nitrogen (with...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false National primary and secondary ambient air quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). 50.11 Section... quality standards for oxides of nitrogen (with nitrogen dioxide as the indicator). (a) The level of the...

  2. Nitrogen oxides at the UTLS: Combining observations from research aircraft and in-service aircraft

    NASA Astrophysics Data System (ADS)

    Ziereis, Helmut; Stratmann, Greta; Schlager, Hans; Gottschaldt, Klaus-Dirk; Rauthe-Schöch, Armin; Zahn, Andreas; Hoor, Peter; van, Peter

    2016-04-01

    Nitrogen oxides have a decisive influence on the chemistry of the upper troposphere and lower stratosphere. They are key constituents of several reaction chains influencing the production of ozone. They also play an essential role in the cycling of hydroxyl radicals and therefore influence the lifetime of methane. Due to their short lifetime and their variety of sources there is still a high uncertainty about the abundance of nitrogen oxides in the UTLS. Dedicated aircraft campaigns aim to study specific atmospheric questions like lightning, long range transport or aircraft emissions. Usually, within a short time period comprehensive measurements are performed within a more or less restricted region. Therefore, especially trace constituents like nitrogen oxides with short lifetime and a variety of different sources are not represented adequately. On the other hand, routine measurements from in-service aircraft allow observations over longer time periods and larger regions. However, it is nearly impossible to influence the scheduling of in-service aircraft and thereby time and space of the observations. Therefore, the combination of dedicated aircraft campaigns and routine observations might supplement each other. For this study we combine nitrogen oxides data sets obtained with the IAGOS-CARIBIC (Civil Aircraft for the Regular Investigation of the Atmosphere Based on an Instrument Container) flying laboratory and with the German research aircraft HALO (High altitude and long range research aircraft). Data have been acquired within the IAGOS-CARIBIC project on a monthly base using a Lufthansa Airbus A340-600 since December 2004. About four flights are performed each month covering predominantly northern mid-latitudes. Additional flights have been conducted to destinations in South America and South Africa. Since 2012 HALO has been operational. Nitrogen oxides measurements have been performed during six missions covering mid latitudes, tropical as well as Polar

  3. Flex-flame burner and combustion method

    DOEpatents

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  4. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  5. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  6. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  7. 40 CFR 77.6 - Penalties for excess emissions of sulfur dioxide and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfur dioxide and nitrogen oxides. 77.6 Section 77.6 Protection of Environment ENVIRONMENTAL PROTECTION... sulfur dioxide and nitrogen oxides. (a)(1) If excess emissions of sulfur dioxide occur at the affected... under paragraph (a)(1) of this section for any increase in excess emissions of sulfur dioxide determined...

  8. Trend and future of diesel engine: Development of high efficiency and low emission low temperature combustion diesel engine

    NASA Astrophysics Data System (ADS)

    Ho, R. J.; Yusoff, M. Z.; Palanisamy, K.

    2013-06-01

    Stringent emission policy has put automotive research & development on developing high efficiency and low pollutant power train. Conventional direct injection diesel engine with diffused flame has reached its limitation and has driven R&D to explore other field of combustion. Low temperature combustion (LTC) and homogeneous charge combustion ignition has been proven to be effective methods in decreasing combustion pollutant emission. Nitrogen Oxide (NOx) and Particulate Matter (PM) formation from combustion can be greatly suppressed. A review on each of method is covered to identify the condition and processes that result in these reductions. The critical parameters that allow such combustion to take place will be highlighted and serves as emphasis to the direction of developing future diesel engine system. This paper is written to explore potential of present numerical and experimental methods in optimizing diesel engine design through adoption of the new combustion technology.

  9. Modeling complex chemical effects in turbulent nonpremixed combustion

    NASA Technical Reports Server (NTRS)

    Smith, Nigel S. A.

    1995-01-01

    Virtually all of the energy derived from the consumption of combustibles occurs in systems which utilize turbulent fluid motion. Since combustion is largely related to the mixing of fluids and mixing processes are orders of magnitude more rapid when enhanced by turbulent motion, efficiency criteria dictate that chemically powered devices necessarily involve fluid turbulence. Where combustion occurs concurrently with mixing at an interface between two reactive fluid bodies, this mode of combustion is called nonpremixed combustion. This is distinct from premixed combustion where flame-fronts propagate into a homogeneous mixture of reactants. These two modes are limiting cases in the range of temporal lag between mixing of reactants and the onset of reaction. Nonpremixed combustion occurs where this lag tends to zero, while premixed combustion occurs where this lag tends to infinity. Many combustion processes are hybrids of these two extremes with finite non-zero lag times. Turbulent nonpremixed combustion is important from a practical standpoint because it occurs in gas fired boilers, furnaces, waste incinerators, diesel engines, gas turbine combustors, and afterburners etc. To a large extent, past development of these practical systems involved an empirical methodology. Presently, efficiency standards and emission regulations are being further tightened (Correa 1993), and empiricism has had to give way to more fundamental research in order to understand and effectively model practical combustion processes (Pope 1991). A key element in effective modeling of turbulent combustion is making use of a sufficiently detailed chemical kinetic mechanism. The prediction of pollutant emission such as oxides of nitrogen (NO(x)) and sulphur (SO(x)) unburned hydrocarbons, and particulates demands the use of detailed chemical mechanisms. It is essential that practical models for turbulent nonpremixed combustion are capable of handling large numbers of 'stiff' chemical species

  10. [Ammonia-oxidizing archaea and their important roles in nitrogen biogeochemical cycling: a review].

    PubMed

    Liu, Jing-Jing; Wu, Wei-Xiang; Ding, Ying; Shi, De-Zhi; Chen, Ying-Xu

    2010-08-01

    As the first step of nitrification, ammonia oxidation is the key process in global nitrogen biogeochemical cycling. So far, the autotrophic ammonia-oxidizing bacteria (AOB) in the beta- and gamma-subgroups of proteobacteria have been considered as the most important contributors to ammonia oxidation, but the recent researches indicated that ammonia-oxidizing archaea (AOA) are widely distributed in various kinds of ecosystems and quantitatively predominant, playing important roles in the global nitrogen biogeochemical cycling. This paper reviewed the morphological, physiological, and ecological characteristics and the molecular phylogenies of AOA, and compared and analyzed the differences and similarities of the ammonia monooxygenase (AMO) and its encoding genes between AOA and AOB. In addition, the potential significant roles of AOA in nitrogen biogeochemical cycling in aquatic and terrestrial ecosystems were summarized, and the future research directions of AOA in applied ecology and environmental protection were put forward.

  11. Method and apparatus for nitrogen oxide determination

    DOEpatents

    Hohorst, Frederick A.

    1990-01-01

    Method and apparatus for determining nitrogen oxide content in a high temperature process gas, which involves withdrawing a sample portion of a high temperature gas containing nitrogen oxide from a source to be analyzed. The sample portion is passed through a restrictive flow conduit, which may be a capillary or a restriction orifice. The restrictive flow conduit is heated to a temperature sufficient to maintain the flowing sample portion at an elevated temperature at least as great as the temperature of the high temperature gas source, to thereby provide that deposition of ammonium nitrate within the restrictive flow conduit cannot occur. The sample portion is then drawn into an aspirator device. A heated motive gas is passed to the aspirator device at a temperature at least as great as the temperature of the high temperature gas source. The motive gas is passed through the nozzle of the aspirator device under conditions sufficient to aspirate the heated sample portion through the restrictive flow conduit and produce a mixture of the sample portion in the motive gas at a dilution of the sample portion sufficient to provide that deposition of ammonium nitrate from the mixture cannot occur at reduced temperature. A portion of the cooled dilute mixture is then passed to analytical means capable of detecting nitric oxide.

  12. Nitrogen evolution during the co-combustion of hydrothermally treated municipal solid waste and coal in a bubbling fluidized bed.

    PubMed

    Lu, Liang; Jin, Yuqi; Liu, Hongmei; Ma, Xiaojun; Yoshikawa, Kunio

    2014-01-01

    Nitrogen evolution was studied during the co-combustion of hydrothermally treated municipal solid wastes (HT MSW) and coal in a bubbling fluidized bed (BFB). HT MSW blending ratios as 10%, 20% and 30% (wt.%) were selected and tested at 700, 800, 900 °C. Emissions of NO and N2O from blends were measured and compared with the results of mono-combustion trials. Moreover, concentrations of precursors like NH3 and HCN were also quantified. The results are summarized as follows: NO emissions were predominant in all the cases, which rose with increasing temperature. The blending of HT MSW contributed to the NO reduction. N2O emissions decreased with temperature rising and the blending of HT MSW also presented positive effects. At 30% HT MSW addition, both NO and N2O emissions showed the lowest values (391.85 ppm and 55.33 ppm, respectively at 900 °C). For the precursors, more HCN was detected than NH3 and both played important roles on the gas side nitrogen evolution. Copyright © 2013. Published by Elsevier Ltd.

  13. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  14. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  15. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  16. 40 CFR 60.33b - Emission guidelines for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 60.33b Section 60.33b Protection of Environment..., acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals... oxygen. (d) For approval, a State plan shall include emission limits for nitrogen oxides at least as...

  17. 40 CFR Table 2 to Subpart Fff of... - Nitrogen Oxides Requirements for Affected Facilities

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Nitrogen Oxides Requirements for Affected Facilities 2 Table 2 to Subpart FFF of Part 62 Protection of Environment ENVIRONMENTAL PROTECTION... Before September 20, 1994 Pt. 62, Subpt. FFF, Table 2 Table 2 to Subpart FFF of Part 62—Nitrogen Oxides...

  18. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  19. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  20. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  1. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  2. 40 CFR 60.4320 - What emission limits must I meet for nitrogen oxides (NOX)?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false What emission limits must I meet for nitrogen oxides (NOX)? 60.4320 Section 60.4320 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... nitrogen oxides (NOX)? (a) You must meet the emission limits for NOX specified in Table 1 to this subpart...

  3. Application of a Chemiluminescence Detector for the Measurement of Total Oxides of Nitrogen and Ammonia in the Atmosphere

    NASA Technical Reports Server (NTRS)

    Hodgeson, J. A.; Bell, J. P.; Rehme, K. A.; Krost, K. J.; Stevens, R. K.

    1971-01-01

    By means of the thermal conversion of nitrogen dioxide to the nitric oxide, the chemiluminescent nitric oxide monitor, based on the nitric oxide plus ozone reaction, may be used for monitoring nitrogen dioxide plus nitric oxide (NO(x)). Under conditions previously described, ammonia is also converted to nitric oxide and therefore interferes. A metal surface, gold wool or stainless steel, operated at two different temperatures has been used to convert only nitrogen dioxide or nitrogen dioxide plus ammonia. Quantitative conversion of nitrogen dioxide to nitric oxide has been obtained at temperatures as low as 200 C. Conversion of ammonia is effected at temperatures of 300 C or higher. By the addition of a converter the basic nitric oxide monitor may be used for measuring NO(x) or NO(x) plus ammonia. As an alternate mode, for a fixed high temperature, a specific scrubber is described for removing NH3 without affecting NO2 concentrations.

  4. Combustion synthesized indium-tin-oxide (ITO) thin film for source/drain electrodes in all solution-processed oxide thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tue, Phan Trong; Inoue, Satoshi; Takamura, Yuzuru; Shimoda, Tatsuya

    2016-06-01

    We report combustion solution synthesized (SCS) indium-tin-oxide (ITO) thin film, which is a well-known transparent conductive oxide, for source/drain (S/D) electrodes in solution-processed amorphous zirconium-indium-zinc-oxide TFT. A redox-based combustion synthetic approach is applied to ITO thin film using acetylacetone as a fuel and metal nitrate as oxidizer. The structural and electrical properties of SCS-ITO precursor solution and thin films were systematically investigated with changes in tin concentration, indium metal precursors, and annealing conditions such as temperature, time, and ambient. It was found that at optimal conditions the SCS-ITO thin film exhibited high crystalline quality, atomically smooth surface (RMS ~ 4.1 Å), and low electrical resistivity (4.2 × 10-4 Ω cm). The TFT using SCS-ITO film as the S/D electrodes showed excellent electrical properties with negligible hysteresis. The obtained "on/off" current ratio, subthreshold swing factor, subthreshold voltage, and field-effect mobility were 5 × 107, 0.43 V/decade, 0.7 V, and 2.1 cm2/V s, respectively. The performance and stability of the SCS-ITO TFT are comparable to those of the sputtered-ITO TFT, emphasizing that the SCS-ITO film is a promising candidate for totally solution-processed oxide TFTs.

  5. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels

    PubMed Central

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants. PMID:29320529

  6. How exogenous nitric oxide regulates nitrogen assimilation in wheat seedlings under different nitrogen sources and levels.

    PubMed

    Balotf, Sadegh; Islam, Shahidul; Kavoosi, Gholamreza; Kholdebarin, Bahman; Juhasz, Angela; Ma, Wujun

    2018-01-01

    Nitrogen (N) is one of the most important nutrients for plants and nitric oxide (NO) as a signaling plant growth regulator involved in nitrogen assimilation. Understanding the influence of exogenous NO on nitrogen metabolism at the gene expression and enzyme activity levels under different sources of nitrogen is vitally important for increasing nitrogen use efficiency (NUE). This study investigated the expression of key genes and enzymes in relation to nitrogen assimilation in two Australian wheat cultivars, a popular high NUE cv. Spitfire and a normal NUE cv. Westonia, under different combinations of nitrogen and sodium nitroprusside (SNP) as the NO donor. Application of NO increased the gene expressions and activities of nitrogen assimilation pathway enzymes in both cultivars at low levels of nitrogen. At high nitrogen supplies, the expressions and activities of N assimilation genes increased in response to exogenous NO only in cv. Spitfire but not in cv. Westonia. Exogenous NO caused an increase in leaf NO content at low N supplies in both cultivars, while under high nitrogen treatments, cv. Spitfire showed an increase under ammonium nitrate (NH4NO3) treatment but cv. Westonia was not affected. N assimilation gene expression and enzyme activity showed a clear relationship between exogenous NO, N concentration and N forms in primary plant nitrogen assimilation. Results reveal the possible role of NO and different nitrogen sources on nitrogen assimilation in Triticum aestivum plants.

  7. The Paralinear Oxidation of SiC in Combustion Environments

    NASA Technical Reports Server (NTRS)

    Opila, Elizabeth J.; Greenbauer-Seng, Leslie (Technical Monitor)

    2000-01-01

    SiC is proposed for structural applications in high pressure, high temperature. high gas velocity environments of turbine and rocket engines. These environments are typically composed of complex gas mixtures containing carbon dioxide, oxygen, water vapor, and nitrogen. It is known that the primary oxidant for SiC in these environments is water vapor.

  8. [Bacterial anaerobic ammonia oxidation (Anammox) in the marine nitrogen cycle--a review].

    PubMed

    Hong, Yiguo; Li, Meng; Gu, Jidong

    2009-03-01

    Anaerobic ammonium oxidation (Anammox) is a microbial oxidation process of ammonium, with nitrite as the electron acceptor and dinitrogen gas as the main product, and is performed by a clade of deeply branched Planctomycetes, which possess an intracytoplasmic membrane-bounded organelle, the anammoxosome, for the Anammox process. The wide distribution of Anammox bacteria in different natural environments has been greatly modified the traditional view of biogeochemical cycling of nitrogen, in which microbial denitrifier is considered as the only organism to respire nitrate and nitrite to produce nitric and nitrous oxides, and eventually nitrogen gas. More evidences indicate that Anammox is responsible for the production of more than 50% of oceanic N2 and plays an important role in global nitrogen cycling. Moreover, due to the close relationship between nitrogen and carbon cycling, it is anticipated that Anammox process might also affect the concentration of CO2 in the atmosphere, and influence the global climate change. In addition, the simultaneous transformation of nitrite and ammonium in wastewater treatment by Anammox would allow a 90% reduction in operational costs and provide a much more effective biotechnological process for wastewater treatment.

  9. Oxidation of Ca-α-SiAlON Powders Prepared by Combustion Synthesis

    PubMed Central

    Li, Jinfu; Li, Zhongmin; Wang, Enhui; Wang, Zhanjun; Yin, Xiaowei; Zhang, Zuotai

    2015-01-01

    The oxidation of Ca-α-SiAlON synthesized by the combustion synthesis (CS) method with different additives was investigated in air atmosphere using thermogravimetric (TG) analysis in a temperature range from 1453 K to 1653 K. The experimental results indicated that oxidation was controlled by mixed chemical and diffusion steps. The oxidation products by XRD analysis were composed of SiO2 and CaAl2Si2O8 at low oxidation temperature, whereas the SiO2-Al2O3-CaO ternary glassy phase was formed at elevated temperature. The deviation of oxidation resistance from each sample may be due to the morphological difference brought about by different additive additions. This study reveals the effects of additives on the oxidation resistance of synthesized Ca-α-SiAlON powders. PMID:28793657

  10. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.

    PubMed

    Wood, Ezra C; Herndon, Scott C; Timko, Michael T; Yelvington, Paul E; Miake-Lye, Richard C

    2008-03-15

    Measurements of nitrogen oxides from a variety of commercial aircraft engines as part of the JETS-APEX2 and APEX3 campaigns show that NOx (NOx [triple bond] NO + NO2) is emitted primarily in the form of NO2 at idle thrust and NO at high thrust. A chemical kinetics combustion model reproduces the observed NO2 and NOx trends with engine power and sheds light on the relevant chemical mechanisms. Experimental evidence is presented of rapid conversion of NO to NO2 in the exhaust plume from engines at low thrust. The rapid conversion and the high NO2/NOx emission ratios observed are unrelated to ozone chemistry. NO2 emissions from a CFM56-3B1 engine account for approximately 25% of the NOx emitted below 3000 feet (916 m) and 50% of NOx emitted below 500 feet (153 m) during a standard ICAO (International Civil Aviation Organization) landing-takeoff cycle. Nitrous acid (HONO) accounts for 0.5% to 7% of NOy emissions from aircraft exhaust depending on thrust and engine type. Implications for photochemistry near airports resulting from aircraft emissions are discussed.

  11. Cross-system comparisons of soil nitrogen transformations and nitrous oxide flux in tropical forest ecosystems

    NASA Technical Reports Server (NTRS)

    Matson, Pamela A.; Vitousek, Peter M.

    1987-01-01

    Soil nitrogen transformations and nitrous oxide flux across the soil-air interface have been measured in a variety of tropical forest sites and correlated with patterns of nitrogen circulation. Nitrogen mineralizaton and nitrification potentials were found to be high in the relatively fertile Costa Rica sites and the Amazonian oxisol/ultisols, intermediate in Amazonian white sand soils, and low in the Hawaiian montane sites. Nitrous oxide fluxes ranged from 0 to 6.2 ng/sq cm per h, and the mean flux per site was shown to be highly correlated with mean nitrogen mineralization.

  12. Sources of atmospheric nitrous oxide from combustion

    NASA Technical Reports Server (NTRS)

    Hao, W. M.; Wofsy, S. C.; Mcelroy, M. B.; Beer, J. M.; Toqan, M. A.

    1987-01-01

    Emissions of nitrous oxide (N2O) have been analyzed from industrial boilers and from a large experimental combustor burning natural gas, oil, or coal. Production of N2O and production of NO(x) were observed to be correlated, with an average molar ratio of 0.58:1 (N2O-N:NO). In conventional single-stage combustors, about 14 percent of fuel nitrogen is converted to N2O and 24 percent is converted to NO(x). Conversion of fuel nitrogen to N2O was much less efficient in a two-stage experimental combustor and in wood fires. A model is presented describing emissions of N2O globally, from the beginning of the industrial revolution to the present. It is expected that concentrations of N2O should rise more than 20 percent to about 367 ppb by the year 2050, based on conservative projections of world energy consumption.

  13. Nitrogen-doped hierarchical porous carbon with high surface area derived from graphene oxide/pitch oxide composite for supercapacitors.

    PubMed

    Ma, Yuan; Ma, Chang; Sheng, Jie; Zhang, Haixia; Wang, Ranran; Xie, Zhenyu; Shi, Jingli

    2016-01-01

    A nitrogen-doped hierarchical porous carbon has been prepared through one-step KOH activation of pitch oxide/graphene oxide composite. At a low weight ratio of KOH/composite (1:1), the as-prepared carbon possesses high specific surface area, rich nitrogen and oxygen, appropriate mesopore/micropore ratio and considerable small-sized mesopores. The addition of graphene oxide plays a key role in forming 4 nm mesopores. The sample PO-GO-16 presents the characteristics of large surface area (2196 m(2) g(-1)), high mesoporosity (47.6%), as well as rich nitrogen (1.52 at.%) and oxygen (6.9 at.%). As a result, PO-GO-16 electrode shows an outstanding capacitive behavior: high capacitance (296 F g(-1)) and ultrahigh-rate performance (192 F g(-1) at 10 A g(-1)) in 6 M KOH aqueous electrolyte. The balanced structure characteristic, low-cost and high performance, make the porous carbon a promising electrode material for supercapacitors. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... section 126 relating to emissions of nitrogen oxides. 52.34 Section 52.34 Protection of Environment... of nitrogen oxides. (a) Definitions. For purposes of this section, the following definitions apply... of nitrogen. (6) OTAG means the Ozone Transport Assessment Group (active 1995-1997), a national work...

  15. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... section 126 relating to emissions of nitrogen oxides. 52.34 Section 52.34 Protection of Environment... of nitrogen oxides. (a) Definitions. For purposes of this section, the following definitions apply... of nitrogen. (6) OTAG means the Ozone Transport Assessment Group (active 1995-1997), a national work...

  16. 40 CFR 52.34 - Action on petitions submitted under section 126 relating to emissions of nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... section 126 relating to emissions of nitrogen oxides. 52.34 Section 52.34 Protection of Environment... of nitrogen oxides. (a) Definitions. For purposes of this section, the following definitions apply... of nitrogen. (6) OTAG means the Ozone Transport Assessment Group (active 1995-1997), a national work...

  17. Nitrogen Oxide Fluxes and Nitrogen Cycling during Postagricultural Succession and Forest Fertilization in the Humid Tropics.

    Treesearch

    Heather Erickson; Michael Keller; Eric Davidson

    2001-01-01

    The effects of changes in tropical land use on soil emissions of nitrous oxide (N2O) and nitric oxide (NO) are not well understood. We examined emissions of N2O and NO and their relationships to land use and forest composition, litterfall, soil nitrogen (N) pools and turnover, soil moisture, and patterns of carbon (C) cycling in a lower montane, subtropical wet region...

  18. 78 FR 54813 - Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-06

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 52 [EPA-R01-OAR-2012-0895; FRL- 9900-85-Region1] Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen Exemption and... proposed Approval and Promulgation of Air Quality Implementation Plans; Maine; Oxides of Nitrogen Exemption...

  19. Formation of calcium in the products of iron oxide-aluminum thermite combustion in air

    NASA Astrophysics Data System (ADS)

    Gromov, A. A.; Gromov, A. M.; Popenko, E. M.; Sergienko, A. V.; Sabinskaya, O. G.; Raab, B.; Teipel, U.

    2016-10-01

    The composition of condensed products resulting from the combustion of thermite mixtures (Al + Fe2O3) in air is studied by precise methods. It is shown that during combustion, calcium is formed and stabilized in amounts of maximal 0.55 wt %, while is missing from reactants of 99.7 wt % purity. To explain this, it is hypothesized that a low-energy nuclear reaction takes place alongside the reactions of aluminum oxidation and nitridation, resulting in the formation of calcium (Kervran-Bolotov reaction).

  20. 76 FR 11082 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Oxides of Nitrogen Budget...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-01

    ... Promulgation of Air Quality Implementation Plans; Ohio; Oxides of Nitrogen Budget Trading Program; Technical... concerning 240 allowances under the Nitrogen Oxides Budget Trading Program added to the SIP by EPA rulemaking... EPA approve rule revisions [[Page 11083

  1. Cylinder-averaged histories of nitrogen oxide in a DI diesel with simulated turbocharging

    NASA Astrophysics Data System (ADS)

    Donahue, Ronald J.; Borman, Gary L.; Bower, Glenn R.

    1994-10-01

    An experimental study was conducted using the dumping technique (total cylinder sampling) to produce cylinder mass-averaged nitric oxide histories. Data were taken using a four stroke diesel research engine employing a quiescent chamber, high pressure direct injection fuel system, and simulated turbocharging. Two fuels were used to determine fuel cetane number effects. Two loads were run, one at an equivalence ratio of 0.5 and the other at a ratio of 0.3. The engine speed was held constant at 1500 rpm. Under the turbocharged and retarded timing conditions of this study, nitric oxide was produced up to the point of about 85% mass burned. Two different models were used to simulate the engine mn conditions: the phenomenological Hiroyasu spray-combustion model, and the three dimensional, U.W.-ERO modified KIVA-2 computational fluid dynamic code. Both of the models predicted the correct nitric oxide trend. Although the modified KIVA-2 combustion model using Zeldovich kinetics correctly predicted the shapes of the nitric oxide histories, it did not predict the exhaust concentrations without arbitrary adjustment based on experimental values.

  2. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    EPA Pesticide Factsheets

    EPA is announcing the availability of the First External Review Draft of the Integrated Science Assessment for Oxides of Nitrogen – Health Criteria for public comment and independent peer review. This draft document provides EPA’s evaluation and synthesis of the most policy-relevant science related to the health effects of oxides of nitrogen. When final, it will provide a critical part of the scientific foundation for EPA’s decision regarding the adequacy of the current primary (health-based) national ambient air quality standards for nitrogen dioxide. The Clean Air Act (CAA) requires EPA to periodically review and revise, as appropriate, existing air quality criteria and NAAQS. The CAA also requires an independent scientific committee to review the criteria and to advise the Administrator regarding any recommended revisions to the existing criteria and standards, as may be appropriate. The Clean Air Scientific Advisory Committee (CASAC) of EPA’s Science Advisory Board serves as this independent scientific committee. The ISA is one of the four major elements of the NAAQS review process that will inform the Agency’s final decisions; other components of the process are an integrated plan highlighting the key policy-relevant issues; a risk/exposure assessment if warranted; and an advance notice of proposed rulemaking (ANPRM) reflecting the Agency’s views regarding options to retain or revise the NO2 NAAQS based on the evaluation of key information cont

  3. Fluidized coal combustion

    NASA Technical Reports Server (NTRS)

    Moynihan, P. I.; Young, D. L.

    1979-01-01

    Fluidized-bed coal combustion process, in which pulverized coal and limestone are burned in presence of forced air, may lead to efficient, reliable boilers with low sulfur dioxide and nitrogen dioxide emissions.

  4. Real-time combustion controls and diagnostics sensors (CCADS)

    DOEpatents

    Thornton, Jimmy D.; Richards, George A.; Dodrill, Keith A.; Nutter, Jr., Roy S.; Straub, Douglas

    2005-05-03

    The present invention is directed to an apparatus for the monitoring of the combustion process within a combustion system. The apparatus comprises; a combustion system, a means for supplying fuel and an oxidizer, a device for igniting the fuel and oxidizer in order to initiate combustion, and a sensor for determining the current conducted by the combustion process. The combustion system comprises a fuel nozzle and an outer shell attached to the combustion nozzle. The outer shell defines a combustion chamber. Preferably the nozzle is a lean premix fuel nozzle (LPN). Fuel and an oxidizer are provided to the fuel nozzle at separate rates. The fuel and oxidizer are ignited. A sensor positioned within the combustion system comprising at least two electrodes in spaced-apart relationship from one another. At least a portion of the combustion process or flame is between the first and second electrodes. A voltage is applied between the first and second electrodes and the magnitude of resulting current between the first and second electrodes is determined.

  5. Reduced No.sub.x combustion method

    DOEpatents

    Delano, Mark A.

    1991-01-01

    A combustion method enabling reduced NO.sub.x formation wherein fuel and oxidant are separately injected into a combustion zone in a defined velocity relation, combustion gases are aspirated into the oxidant stream prior to intermixture with the fuel, and the fuel is maintained free from contact with oxygen until the intermixture.

  6. Contamination Detection and Mitigation Strategies for Unsymmetric Dimethylhydrazine/Nitrogen Tetroxide Non-Combustion Product Residues

    NASA Technical Reports Server (NTRS)

    Greene, Benjamin; Buchanan, Vanessa D.; Baker, David L.

    2006-01-01

    Dimethylamine and nitrite, which are non-combustion reaction products of unsymmetrical dimethylhydrazine (UDMH) and nitrogen tetroxide (NTO) propellants, can contaminate spacesuits during extra-vehicular activity (EVA) operations. They can react with water in the International Space Station (ISS) airlock to form N-nitrosodimethylamine (NDMA), a carcinogen. Detection methods for assessing nitrite and dimethylamine contamination were investigated. The methods are based on color-forming reactions in which intensity of color is proportional to concentration. A concept color detection kit using a commercially available presumptive field test for methamphetamine coupled with nitrite test strips was developed and used to detect dimethylamine and nitrite. Contamination mitigation strategies were also developed.

  7. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  8. 40 CFR 89.112 - Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., hydrocarbon, and particulate matter exhaust emission standards. 89.112 Section 89.112 Protection of....112 Oxides of nitrogen, carbon monoxide, hydrocarbon, and particulate matter exhaust emission... emissions of oxides of nitrogen, carbon monoxide, hydrocarbon, and nonmethane hydrocarbon are measured using...

  9. Smoldering Combustion Experiments in Microgravity

    NASA Technical Reports Server (NTRS)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  10. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    PubMed

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  11. Problems in Catalytic Oxidation of Hydrocarbons and Detailed Simulation of Combustion Processes

    NASA Astrophysics Data System (ADS)

    Xin, Yuxuan

    This dissertation research consists of two parts, with Part I on the kinetics of catalytic oxidation of hydrocarbons and Part II on aspects on the detailed simulation of combustion processes. In Part I, the catalytic oxidation of C1--C3 hydrocarbons, namely methane, ethane, propane and ethylene, was investigated for lean hydrocarbon-air mixtures over an unsupported Pd-based catalyst, from 600 to 800 K and under atmospheric pressure. In Chapter 2, the experimental facility of wire microcalorimetry and simulation configuration were described in details. In Chapter 3 and 4, the oxidation rate of C1--C 3 hydrocarbons is demonstrated to be determined by the dissociative adsorption of hydrocarbons. A detailed surface kinetics model is proposed with deriving the rate coefficient of hydrocarbon dissociative adsorption from the wire microcalorimetry data. In Part II, four fundamental studies were conducted through detailed combustion simulations. In Chapter 5, self-accelerating hydrogen-air flames are studied via two-dimensional detailed numerical simulation (DNS). The increase in the global flame velocity is shown to be caused by the increase of flame surface area, and the fractal structure of the flame front is demonstrated by the box-counting method. In Chapter 6, skeletal reaction models for butane combustion are derived by using directed relation graph (DRG) and DRG-aided sensitivity analysis (DRGASA), and uncertainty minimization by polynomial chaos expansion (MUM-PCE) mothodes. The dependence of model uncertainty is subjected to the completeness of the model. In Chapter 7, a systematic strategy is proposed to reduce the cost of the multicomponent diffusion model by accurately accounting for the species whose diffusivity is important to the global responses of the combustion systems, and approximating those of less importance by the mixture-averaged model. The reduced model is validated in an n-heptane mechanism with 88 species. In Chapter 8, the influence of Soret

  12. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream

    PubMed Central

    Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-01-01

    ABSTRACT Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ15NNO2− and δ18ONO2−, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of “Candidatus Nitrosocaldus.” The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ18O value of nitrite produced from ammonia oxidation varied with the δ18O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ18ONO2− in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. IMPORTANCE Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying

  13. Nitrogen and Oxygen Isotope Effects of Ammonia Oxidation by Thermophilic Thaumarchaeota from a Geothermal Water Stream.

    PubMed

    Nishizawa, Manabu; Sakai, Sanae; Konno, Uta; Nakahara, Nozomi; Takaki, Yoshihiro; Saito, Yumi; Imachi, Hiroyuki; Tasumi, Eiji; Makabe, Akiko; Koba, Keisuke; Takai, Ken

    2016-08-01

    Ammonia oxidation regulates the balance of reduced and oxidized nitrogen pools in nature. Although ammonia-oxidizing archaea have been recently recognized to often outnumber ammonia-oxidizing bacteria in various environments, the contribution of ammonia-oxidizing archaea is still uncertain due to difficulties in the in situ quantification of ammonia oxidation activity. Nitrogen and oxygen isotope ratios of nitrite (δ(15)NNO2- and δ(18)ONO2-, respectively) are geochemical tracers for evaluating the sources and the in situ rate of nitrite turnover determined from the activities of nitrification and denitrification; however, the isotope ratios of nitrite from archaeal ammonia oxidation have been characterized only for a few marine species. We first report the isotope effects of ammonia oxidation at 70°C by thermophilic Thaumarchaeota populations composed almost entirely of "Candidatus Nitrosocaldus." The nitrogen isotope effect of ammonia oxidation varied with ambient pH (25‰ to 32‰) and strongly suggests the oxidation of ammonia, not ammonium. The δ(18)O value of nitrite produced from ammonia oxidation varied with the δ(18)O value of water in the medium but was lower than the isotopic equilibrium value in water. Because experiments have shown that the half-life of abiotic oxygen isotope exchange between nitrite and water is longer than 33 h at 70°C and pH ≥6.6, the rate of ammonia oxidation by thermophilic Thaumarchaeota could be estimated using δ(18)ONO2- in geothermal environments, where the biological nitrite turnover is likely faster than 33 h. This study extended the range of application of nitrite isotopes as a geochemical clock of the ammonia oxidation activity to high-temperature environments. Because ammonia oxidation is generally the rate-limiting step in nitrification that regulates the balance of reduced and oxidized nitrogen pools in nature, it is important to understand the biological and environmental factors underlying the regulation of

  14. Removal of nitrogen oxides from gas streams by biofiltration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, K.B.; Barnes, J.M.; Apel, W.A.

    1994-12-31

    Nitrogen oxides (NO{sub x}) are primary air pollutants and, as such, there is considerable interest in the development of efficient, cost effective technologies to remediate NO{sub x} containing emissions. Biofiltration involves the venting of contaminated gas streams through biologically active material such as soil or compost. This technology has been used successfully to control odors as well as volatile organic compounds from a variety of industrial and public sources. The purpose of this study was to evaluate the feasibility of using biofiltration to convert NO{sub x} to nitrogen gas.

  15. An Overview of Low-Emission Combustion Research

    NASA Technical Reports Server (NTRS)

    DelRosario, Ruben

    2014-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the Nitrogen Oxides (NOx) emission reduction in aircraft propulsion will be presented. The technology advancements and their impact on aircraft emissions will be discussed in the context of NASAs Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented will show how the past and current efforts have laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  16. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the Monterey Bay Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area...

  17. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona on April 13, 1994 for the Maricopa County ozone nonattainment area from the NOX RACT requirements...

  18. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona on April 13, 1994 for the Maricopa County ozone nonattainment area from the NOX RACT requirements...

  19. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the Monterey Bay Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area...

  20. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the Monterey Bay Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area...

  1. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona on April 13, 1994 for the Maricopa County ozone nonattainment area from the NOX RACT requirements...

  2. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona on April 13, 1994 for the Maricopa County ozone nonattainment area from the NOX RACT requirements...

  3. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the Monterey Bay Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area...

  4. 40 CFR 52.136 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the State of Arizona on April 13, 1994 for the Maricopa County ozone nonattainment area from the NOX RACT requirements...

  5. 40 CFR 52.235 - Control strategy for ozone: Oxides of nitrogen.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 3 2012-07-01 2012-07-01 false Control strategy for ozone: Oxides of... for ozone: Oxides of nitrogen. EPA is approving an exemption request submitted by the Monterey Bay Unified Air Pollution Control District on April 26, 1994 for the Monterey Bay ozone nonattainment area...

  6. 91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    91. VIEW OF OXYGEN AND GASEOUS NITROGEN TANKS AND OXIDIZER APRON FROM NORTH - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    PubMed

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The formation of nitrogen-containing organic oxidation products in a heavily polluted urban environment

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Cheng, X.; Zheng, Y.; Li, Y.; Zhu, T.; Zhang, Q.; Canagaratna, M. R.; Nowark, J.; Worsnop, D. R.

    2017-12-01

    Nitrogen-containing organic oxidation products are important species that may contribute to secondary organic aerosol and to redistribute nitrogen oxides through photolysis and oxidation. We deployed a nitrate ion chemical ionization time-of-flight mass spectrometer and a long time-of-flight aerosol mass spectrometer in Beijing for various seasons to study the nitrogen-containing organic species in both gas and particle phases. High concentrations of nitrated phenols were observed in both winter and summer, due to contributions from both primary and secondary sources. The concentrations of gaseous dinitrophenols tracked the severe haze events and correlated well with many highly oxygenated organic molecules. We also identified mass spectral tracers for quantifying organic nitrates. Significant photochemical production of nitrate and organic nitrates were evident during severe haze events, which may contribute to persistent particle formation. The findings are consistent with observed high OH turnover rates, highlighting the importance of gaseous oxidation pathways on persistent particle formation during haze.

  9. Attempts to minimize nitrogen oxide emission from diesel engine by using antioxidant-treated diesel-biodiesel blend.

    PubMed

    Rashedul, Hasan Khondakar; Kalam, Md Abdul; Masjuki, Haji Hassan; Teoh, Yew Heng; How, Heoy Geok; Monirul, Islam Mohammad; Imdadul, Hassan Kazi

    2017-04-01

    The study represents a comprehensive analysis of engine exhaust emission variation from a compression ignition (CI) diesel engine fueled with diesel-biodiesel blends. Biodiesel used in this investigation was produced through transesterification procedure from Moringa oleifera oil. A single cylinder, four-stroke, water-cooled, naturally aspirated diesel engine was used for this purpose. The pollutants from the exhaust of the engine that are monitored in this study are nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke opacity. Engine combustion and performance parameters are also measured together with exhaust emission data. Some researchers have reported that the reason for higher NO emission of biodiesel is higher prompt NO formation. The use of antioxidant-treated biodiesel in a diesel engine is a promising approach because antioxidants reduce the formation of free radicals, which are responsible for the formation of prompt NO during combustion. Two different antioxidant additives namely 2,6-di-tert-butyl-4-methylphenol (BHT) and 2,2'-methylenebis(4-methyl-6-tert-butylphenol) (MBEBP) were individually dissolved at a concentration of 1% by volume in MB30 (30% moringa biodiesel with 70% diesel) fuel blend to investigate and compare NO as well as other emissions. The result shows that both antioxidants reduced NO emission significantly; however, HC, CO, and smoke were found slightly higher compared to pure biodiesel blends, but not more than the baseline fuel diesel. The result also shows that both antioxidants were quite effective in reducing peak heat release rate (HRR) and brake-specific fuel consumption (BSFC) as well as improving brake thermal efficiency (BTE) and oxidation stability. Based on this study, antioxidant-treated M. oleifera biodiesel blend (MB30) can be used as a very promising alternative source of fuel in diesel engine without any modifications.

  10. Nitrogen Doped Graphene Supported Pt Nanoflowers as Electrocatalysts for Oxidation of Formaldehyde.

    PubMed

    Xie, Aijuan; Zhou, Wenting; Luo, Shiping; Chen, Yu; Zhou, Xiaoqing; Chao, Yao

    2017-02-01

    A facile Pt nanoflowers/nitrogen-doped graphene (PtNFs/NG) electrocatalyst was prepared via depositing Pt nanoflowers (PtNFs) onto the nitrogen-doped graphene (NG) matrix with urea as the nitrogen source and PtNFs/NG modified glassy carbon electrode (GCE) was prepared by electro-chemical method. Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Raman spectroscope, X-ray photoelectron spectroscopy (XPS) and Scanning electron microscope (SEM) were used to characterize the resulting composites. Also oxidation of formaldehyde on the resulting PtNFs/NG modified electrode was investigated. The influence of deposition time, electrodeposition potential and formaldehyde concentration on electrooxidation of formaldehyde was detected, the experimental results indicate the high performance of PtNFs/NG catalyst for formaldehyde oxidation is at electrodeposition time of 300 s with the applied potential of −0.3 V. Electrochemical process, electrocatalytic stability and chronoamperometry were also inspected, it was indicated that formalde-hyde oxidation reaction on the PtNFs/NG electrode is diffusion-controlled and PtNFs/NG exhibits a high catalytic activity, stability as well as excellent poisoning-tolerance towards formaldehyde oxidation, which is attributed to the synergistic effect of PtNFs and NG. It turns out that PtNFs/NG can be used in direct liquid-feed fuel cells as a promising alternative catalyst.

  11. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  12. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  13. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  14. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Unitsa,b,c Municipal waste combustion technology Limits for class I municipal...

  15. Detailed mechanism of toluene oxidation and comparison with benzene

    NASA Technical Reports Server (NTRS)

    Bittker, David A.

    1988-01-01

    A detailed mechanism for the oxidation of toluene in both argon and nitrogen dilutents is presented. The mechanism was used to compute experimentally ignition delay times for shock-heated toluene-oxygen-argon mixtures with resonably good success over a wide range of initial temperatures and pressures. Attempts to compute experimentally measured concentration profiles for toluene oxidation in a turbulent reactor were partially successful. An extensive sensitivity analysis was performed to determine the reactions which control the ignition process and the rates of formation and destruction of various species. The most important step was found to be the reaction of toluene with molecular oxygen, followed by the reactions of hydroperoxyl and atomic oxygen with benzyl radicals. These findings contrast with the benzene oxidation, where the benzene-molecular oxygen reaction is quite unimportant and the reaction of phenyl with molecular oxygen dominates. In the toluene mechanism the corresponding reaction of benzyl radicals with oxygen is unimportant. Two reactions which are important in the oxidation of benzene also influence the oxidation of toluene for several conditions. These are the oxidations of phenyl and cyclopentadienyl radicals by molecular oxygen. The mechanism presented successfully computes the decrease of toluene concentration with time in the nitrogen diluted turbulent reactor. This fact, in addition to the good prediction of ignition delay times, shows that this mechanism can be used for modeling the ignition and combustion process in practical, well-mixed combustion systems.

  16. 40 CFR Table 3 to Subpart Bbbb of... - Model Rule-Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emission Limits for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart BBBB of Part... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 60, Subpt. BBBB, Table 3 Table... Municipal Waste Combustion Units a b c Municipal waste combustion technology Limits for class I municipal...

  17. Anaerobic Ammonium Oxidation and its Contribution to Nitrogen Removal in China's Coastal Wetlands

    NASA Astrophysics Data System (ADS)

    Hou, L., Sr.

    2016-02-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China's coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China's coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China's coastal wetland ecosystems.

  18. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  19. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  20. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference... and periodic calibration. Prior to its initial use and monthly thereafter, or within one month prior... following table). Example calibration points (%) Acceptable for calibration? 20, 30, 40, 50, 60, 70 No...

  1. Synthesis of antimony-doped tin oxide (ATO) nanoparticles by the nitrate-citrate combustion method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Jianrong; Gao Lian

    2004-12-02

    Antimony-doped tin oxide (ATO) nanoparticles having rutile structure have been synthesized by the combustion method using citric acid (CA) as fuel and nitrate as an oxidant, the metal sources were granulated tin and Sb{sub 2}O{sub 3}. The influence of citric acid (fuel) to metal ratio on the average crystallite size, specific surface area and morphology of the nanoparticles has been investigated. X-ray diffraction showed the tin ions were reduced to elemental tin during combustion reaction. The average ATO crystallite size increased with the increase of citric acid (fuel). Powder morphology and the comparison of crystallite size and grain size showsmore » that the degree of agglomeration of the powder decreased with an increase of the ratio. The highest specific surface area was 37.5 m{sup 2}/g when the citric acid to tin ratio was about 6.« less

  2. Reactive nitrogen oxides in the southeast United States national parks: source identification, origin, and process budget

    NASA Astrophysics Data System (ADS)

    Tong, Daniel Quansong; Kang, Daiwen; Aneja, Viney P.; Ray, John D.

    2005-01-01

    We present in this study both measurement-based and modeling analyses for elucidation of source attribution, influence areas, and process budget of reactive nitrogen oxides at two rural southeast United States sites (Great Smoky Mountains national park (GRSM) and Mammoth Cave national park (MACA)). Availability of nitrogen oxides is considered as the limiting factor to ozone production in these areas and the relative source contribution of reactive nitrogen oxides from point or mobile sources is important in understanding why these areas have high ozone. Using two independent observation-based techniques, multiple linear regression analysis and emission inventory analysis, we demonstrate that point sources contribute a minimum of 23% of total NOy at GRSM and 27% at MACA. The influence areas for these two sites, or origins of nitrogen oxides, are investigated using trajectory-cluster analysis. The result shows that air masses from the West and Southwest sweep over GRSM most frequently, while pollutants transported from the eastern half (i.e., East, Northeast, and Southeast) have limited influence (<10% out of all air masses) on air quality at GRSM. The processes responsible for formation and removal of reactive nitrogen oxides are investigated using a comprehensive 3-D air quality model (Multiscale Air Quality SImulation Platform (MAQSIP)). The NOy contribution associated with chemical transformations to NOz and O3, based on process budget analysis, is as follows: 32% and 84% for NOz, and 26% and 80% for O3 at GRSM and MACA, respectively. The similarity between NOz and O3 process budgets suggests a close association between nitrogen oxides and effective O3 production at these rural locations.

  3. Partitioning of Nitric Acid to Nitrate by NaCl and CaCO3 and Its Effect on Nitrogen Deposition

    NASA Astrophysics Data System (ADS)

    Evans, M. C.; Campbell, S. W.; Poor, N. D.

    2003-12-01

    Nitrogen oxides produced by combustion in automobile engines, power plant boilers, and industrial processes are transformed to nitric acid in the atmosphere. This nitric acid then deposits to land or water and may be a significant nitrogen input to sensitive coastal estuaries. The sodium chloride from sea salt spray and calcium carbonate from mineral dust react in the atmosphere with nitric acid to form sodium nitrate or calcium nitrate, respectively. The nitrate particle deposition velocity can be substantially lower than that of nitric acid, which may lower the atmospheric nitrogen deposition rate near the urban sources of nitrogen oxides but raise the deposition rate over the open water. The relative effects of different ambient air concentrations of sodium chloride and calcium carbonate on nitrogen atmospheric deposition rates were examined by using the EQUISOLVII model to estimate the partitioning of nitric acid to nitrate combined with the NOAA buoy model and Williams model to calculate the gas and aerosol deposition velocities.

  4. A case study of the relative effects of power plant nitrogen oxides and sulfur dioxide emission reductions on atmospheric nitrogen deposition.

    PubMed

    Vijayaraghavan, Krish; Seigneur, Christian; Bronson, Rochelle; Chen, Shu-Yun; Karamchandani, Prakash; Walters, Justin T; Jansen, John J; Brandmeyer, Jo Ellen; Knipping, Eladio M

    2010-03-01

    The contrasting effects of point source nitrogen oxides (NOx) and sulfur dioxide (SO2) air emission reductions on regional atmospheric nitrogen deposition are analyzed for the case study of a coal-fired power plant in the southeastern United States. The effect of potential emission reductions at the plant on nitrogen deposition to Escambia Bay and its watershed on the Florida-Alabama border is simulated using the three-dimensional Eulerian Community Multiscale Air Quality (CMAQ) model. A method to quantify the relative and individual effects of NOx versus SO2 controls on nitrogen deposition using air quality modeling results obtained from the simultaneous application of NOx and SO2 emission controls is presented and discussed using the results from CMAQ simulations conducted with NOx-only and SO2-only emission reductions; the method applies only to cases in which ambient inorganic nitrate is present mostly in the gas phase; that is, in the form of gaseous nitric acid (HNO3). In such instances, the individual effects of NOx and SO2 controls on nitrogen deposition can be approximated by the effects of combined NOx + SO2 controls on the deposition of NOy, (the sum of oxidized nitrogen species) and reduced nitrogen species (NHx), respectively. The benefit of controls at the plant in terms of the decrease in nitrogen deposition to Escambia Bay and watershed is less than 6% of the overall benefit due to regional Clean Air Interstate Rule (CAIR) controls.

  5. Species measurements in a hypersonic, hydrogen-air, combustion wake

    NASA Technical Reports Server (NTRS)

    Skinner, K. A.; Stalker, R. J.

    1995-01-01

    A continuously sampling, time-of-flight mass spectrometer has been used to measure relative species concentrations in a two-dimensional, hydrogen-air combustion wake at mainstream Mach numbers exceeding 5. The experiments, which were conducted in a free piston shock tunnel, yielded distributions of hydrogen, oxygen, nitrogen, water and nitric oxide at stagnation enthalpies ranging from 5.6 MJ kg(exp -1) to 1.2 MJ kg(exp -1) and at a distance of approximately 100 times the thickness of the initial hydrogen jet. The amount of hydrogen that was mixed in stoichiometric proportions was approximately independent of the stagnation enthalpy, in spite of the fact that the proportion of hydrogen in the wake increased with stagnation enthalpy. Roughly 50 percent of the mixed hydrogen underwent combustion at the highest enthalpy. The proportion of hydrogen reacting to water could be approximately predicted using reaction rates based on mainstream temperatures.

  6. Flammability of Heterogeneously Combusting Metals

    NASA Technical Reports Server (NTRS)

    Jones, Peter D.

    1998-01-01

    Most engineering materials, including some metals, most notably aluminum, burn in homogeneous combustion. 'Homogeneous' refers to both the fuel and the oxidizer being in the same phase, which is usually gaseous. The fuel and oxidizer are well mixed in the combustion reaction zone, and heat is released according to some relation like q(sub c) = delta H(sub c)c[((rho/rho(sub 0))]exp a)(exp -E(sub c)/RT), Eq. (1) where the pressure exponent a is usually close to unity. As long as there is enough heat released, combustion is sustained. It is useful to conceive of a threshold pressure beyond which there is sufficient heat to keep the temperature high enough to sustain combustion, and beneath which the heat is so low that temperature drains away and the combustion is extinguished. Some materials burn in heterogeneous combustion, in which the fuel and oxidizer are in different phases. These include iron and nickel based alloys, which burn in the liquid phase with gaseous oxygen. Heterogeneous combustion takes place on the surface of the material (fuel). Products of combustion may appear as a solid slag (oxide) which progressively covers the fuel. Propagation of the combustion melts and exposes fresh fuel. Heterogeneous combustion heat release also follows the general form of Eq.(1), except that the pressure exponent a tends to be much less than 1. Therefore, the increase in heat release with increasing pressure is not as dramatic as it is in homogeneous combustion. Although the concept of a threshold pressure still holds in heterogeneous combustion, the threshold is more difficult to identify experimentally, and pressure itself becomes less important relative to the heat transfer paths extant in any specific application. However, the constants C, a, and E(sub c) may still be identified by suitable data reduction from heterogeneous combustion experiments, and may be applied in a heat transfer model to judge the flammability of a material in any particular actual

  7. 40 CFR 60.46b - Compliance and performance test methods and procedures for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and procedures for particulate matter and nitrogen oxides. 60.46b Section 60.46b Protection of... nitrogen oxides. (a) The PM emission standards and opacity limits under § 60.43b apply at all times except... oil having a nitrogen content greater than 0.30 weight percent shall determine compliance with the NOX...

  8. 40 CFR 60.46b - Compliance and performance test methods and procedures for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and procedures for particulate matter and nitrogen oxides. 60.46b Section 60.46b Protection of... nitrogen oxides. (a) The PM emission standards and opacity limits under § 60.43b apply at all times except... oil having a nitrogen content greater than 0.30 weight percent shall determine compliance with the NOX...

  9. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    DOE PAGES

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; ...

    2016-01-14

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizesmore » the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Here, owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells.« less

  10. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte

    PubMed Central

    Zhuang, Zhongbin; Giles, Stephen A.; Zheng, Jie; Jenness, Glen R.; Caratzoulas, Stavros; Vlachos, Dionisios G.; Yan, Yushan

    2016-01-01

    The development of a low-cost, high-performance platinum-group-metal-free hydroxide exchange membrane fuel cell is hindered by the lack of a hydrogen oxidation reaction catalyst at the anode. Here we report that a composite catalyst, nickel nanoparticles supported on nitrogen-doped carbon nanotubes, has hydrogen oxidation activity similar to platinum-group metals in alkaline electrolyte. Although nitrogen-doped carbon nanotubes are a very poor hydrogen oxidation catalyst, as a support, it increases the catalytic performance of nickel nanoparticles by a factor of 33 (mass activity) or 21 (exchange current density) relative to unsupported nickel nanoparticles. Density functional theory calculations indicate that the nitrogen-doped support stabilizes the nanoparticle against reconstruction, while nitrogen located at the edge of the nanoparticle tunes local adsorption sites by affecting the d-orbitals of nickel. Owing to its high activity and low cost, our catalyst shows significant potential for use in low-cost, high-performance fuel cells. PMID:26762466

  11. Detailed Kinetic Mechanism of the Combustion of Homogeneous Gaseous Mixtures with Participation of Oxygen-containing Oxidants

    NASA Astrophysics Data System (ADS)

    Baevich, V. Ya

    1987-05-01

    The kinetic mechanisms of the oxidation and combustion of hydrogen, methane, methyl alcohol, acetylene, ethylene, ethane, and methylamine, using oxygen as well as hydrogen peroxide and nitric acid as oxidants, are discussed. The calculated and experimental data obtained under static conditions, in a flow, during flame propagation, and in shock tubes are compared. The bibliography includes 184 references.

  12. Effect of nitrogen-containing impurities on the activity of perovskitic catalysts for the catalytic combustion of methane.

    PubMed

    Buchneva, Olga; Gallo, Alessandro; Rossetti, Ilenia

    2012-11-05

    LaMnO(3), either pure or doped with 10 mol % Sr, has been prepared by flame pyrolysis in nanostructured form. Such catalysts have been tested for the catalytic flameless combustion of methane, achieving very high catalytic activity. The resistance toward poisoning by some model N-containing impurities has been checked in order to assess the possibility of operating the flameless catalytic combustion with biogas, possibly contaminated by S- or N-based compounds. This would be a significant improvement from the environmental point of view because the application of catalytic combustion to gas turbines would couple improved energy conversion efficiency and negligible noxious emissions, while the use of biogas would open the way to energy production from a renewable source by means of very efficient technologies. A different behavior has been observed for the two catalysts; namely, the undoped sample was more or less heavily poisoned, whereas the Sr-doped sample showed slightly increasing activity upon dosage of N-containing compounds. A possible reaction mechanism has been suggested, based on the initial oxidation of the organic backbone, with the formation of NO. The latter may adsorb more or less strongly depending on the availability of surface oxygen vacancies (i.e., depending on doping). Decomposition of NO may leave additional activated oxygen species on the surface, available for low-temperature methane oxidation and so improving the catalytic performance.

  13. Integrated Science Assessment (ISA) for Oxides of Nitrogen ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Oxides of Nitrogen and Sulfur - Ecological Criteria. This document represents a concise synthesis and evaluation of the most policy-relevant science and will ultimately provide the scientific bases for EPA's decision on retaining or revising the current secondary standards for oxides of nitrogen (NO2 and SO2). The intent of the ISA, according to the CAA, is to “accurately reflect the latest scientific knowledge expected from the presence of [a] pollutant in ambient air” (U.S. Code, 1970a, 1970b). It includes scientific research from atmospheric sciences, exposure and deposition, biogeochemistry, hydrology, soil science, marine science, plant physiology, animal physiology, and ecology conducted at multiple scales (e.g., population, community, ecosystem, landscape levels). Key information and judgments formerly found in the Air Quality Criteria Documents (AQCDs) for NOX and SOX are included; Annexes provide a more detailed discussion of the most pertinent scientific literature. Together, the ISA and Annexes serve to update and revise the last NOX and SOX AQCDs which were published in 1993 and 1982, respectively.

  14. HSR combustion analytical research

    NASA Technical Reports Server (NTRS)

    Nguyen, H. Lee

    1992-01-01

    Increasing the pressure and temperature of the engines of a new generation of supersonic airliners increases the emissions of nitrogen oxides (NO(x)) to a level that would have an adverse impact on the Earth's protective ozone layer. In the process of evolving and implementing low emissions combustor technologies, NASA LeRC has pursued a combustion analysis code program to guide combustor design processes, to identify potential concepts of the greatest promise, and to optimize them at low cost, with short turnaround time. The computational analyses are evaluated at actual engine operating conditions. The approach is to upgrade and apply advanced computer programs for gas turbine applications. Efforts were made in further improving the code capabilities for modeling the physics and the numerical methods of solution. Then test cases and measurements from experiments are used for code validation.

  15. Nitrogen dioxide produced by self-sustained pyrolysis of nitrous oxide

    NASA Technical Reports Server (NTRS)

    Sabol, A. P.

    1965-01-01

    Apparatus is developed for achieving continuous self-sustaining pyrolysis reaction in the production of nitrogen dioxide from nitrous oxide. The process becomes self-sustaining because of the exothermic reaction and the regenerative heating of the gases in the pyrolysis chamber.

  16. Air Quality Criteria for Oxides of Nitrogen (Final Report, 1982)

    EPA Science Inventory

    This document is an evaluation and assessment of scientific information relative to determining the health and welfare effects associated with exposure to various concentrations of nitrogen oxides in ambient air. The document is not intended as a complete, detailed literature rev...

  17. Isothermal Oxidation of Magnetite to Hematite in Air and Cyclic Reduction/Oxidation Under Carbon Looping Combustion Conditions

    NASA Astrophysics Data System (ADS)

    Simmonds, Tegan; Hayes, Peter C.

    2017-12-01

    In the carbon looping combustion process the oxygen carrier is regenerated through oxidation in air; this process has been simulated by the oxidation of dense synthetic magnetite for selected temperatures and times. The oxidation of magnetite in air is shown to occur through the formation of dense hematite layers on the particle surface. This dense hematite forms through lath type shear transformations or solid-state diffusion through the product layer. Cyclic reduction in CO-CO2/oxidation in air of hematite single crystals has been carried out under controlled laboratory conditions at 1173 K (900 °C). It has been shown that the initial reduction step is critical to determining the product microstructure, which consists of gas pore dendrites in the magnetite matrix with blocky hematite formed on the pore surfaces. The progressive growth of the magnetite layer with the application of subsequent cycles appears to continue until no original hematite remains, after which physical disintegration of the particles takes place.

  18. 40 CFR 60.49b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...

  19. 40 CFR 60.49b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...

  20. 40 CFR 60.49b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...

  1. 40 CFR 60.49b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...

  2. 40 CFR 60.49b - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...

  3. High efficiency stoichiometric internal combustion engine system

    DOEpatents

    Winsor, Richard Edward; Chase, Scott Allen

    2009-06-02

    A power system including a stoichiometric compression ignition engine in which a roots blower is positioned in the air intake for the engine to control air flow. Air flow is decreased during part power conditions to maintain the air-fuel ratio in the combustion chamber of the engine at stoichiometric, thus enabling the use of inexpensive three-way catalyst to reduce oxides of nitrogen. The roots blower is connected to a motor generator so that when air flow is reduced, electrical energy is stored which is made available either to the roots blower to temporarily increase air flow or to the system electrical load and thus recapture energy that would otherwise be lost in reducing air flow.

  4. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference...-squares best-fit straight line is two percent or less of the value at each data point, calculate... at any point, use the best-fit non-linear equation which represents the data to within two percent of...

  5. 40 CFR 90.318 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... chemiluminescent oxides of nitrogen analyzer as described in this section. (b) Initial and Periodic Interference...-squares best-fit straight line is two percent or less of the value at each data point, calculate... at any point, use the best-fit non-linear equation which represents the data to within two percent of...

  6. Evaluation of a dual-chamber kerosene-heater combustion technology. Topical report, June-December 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardas, A.

    1987-10-01

    A kerosene heater equipped with a dual-chamber combustor was procured, tested, and technically evaluated to determine its applicability to natural gas combustion. The kerosene heater was found to have nitric oxide (NO), nitrogen dioxide (NO/sub 2/), and carbon monoxide (CO) emissions of 0.0)2, 0.006 and 0.02 lb/10/sup 6/ Btu input, respectively, much lower than those of blue-flame natural-gas combustors. A basic study was conducted to understand the interaction between kerosene combustion and the surrounding metal sleeves forming the dual chamber. Combustion characteristics of kerosene and natural gas were compared to formulate potential designs of low-emitting natural gas combustors. Three conceptsmore » were developed for low-emitting burners: an atmospheric burner to replace the kerosene wick in the dual chamber; the same concept with a powered vent; and a two-stage system equipped with a powered vent.« less

  7. Correlation of black smoke and nitrogen oxides emissions through field testing of in-use diesel vehicles.

    PubMed

    Lin, Cherng-Yuan; Chen, Lih-Wei; Wang, Li-Ting

    2006-05-01

    Diesel vehicles are one of the major forms of transportation, especially in metropolitan regions. However, air pollution released from diesel vehicles causes serious damage to both human health and the environment, and as a result is of great public concern. Nitrogen oxides and black smoke are two significant emissions from diesel engines. Understanding the correlation between these two emissions is an important step toward developing the technology for an appropriate strategy to control or eliminate them. This study field-tested 185 diesel vehicles at an engine dynamometer station for their black smoke reflectivity and nitrogen oxides concentration to explore the correlation between these two pollutants. The test results revealed that most of the tested diesel vehicles emitted black smoke with low reflectivity and produced low nitrogen oxides concentration. The age of the tested vehicles has a significant influence on the NOx emission. The older the tested vehicles, the higher the NOx concentrations emitted, however, there was no obvious correlation between the age of the tested diesel vehicles and the black smoke reflectivity. In addition, if the make and engine displacement volume of the tested diesel vehicles are not taken into consideration, then the correlation between the black smoke reflectivity and nitrogen oxides emission weakens. However, when the tested vehicles were classified into various groups based on their makes and engine displacement volumes, then the make of a tested vehicle became a dominant factor for both the quantity and the trend of the black smoke reflectivity, as well as the NOx emission. Higher emission indices of black smoke reflectivity and nitrogen oxides were observed if the diesel vehicles were operated at low engine speed and full engine load conditions. Moreover, the larger the displacement volume of the engine of the tested vehicle, the lower the emission indices of both black smoke reflectivity and nitrogen oxides emitted. The

  8. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  9. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  10. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  11. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  12. 40 CFR Table 2 to Subpart Cb of... - Nitrogen Oxides Limits for Existing Designated Facilities Included in an Emissions Averaging Plan...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Nitrogen Oxides Limits for Existing.... 60, Subpt. Cb, Table 2 Table 2 to Subpart Cb of Part 60—Nitrogen Oxides Limits for Existing... by volume) b On and after April 28, 2009, nitrogen oxides emission limit (parts permillion by volume...

  13. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  14. SEMICONDUCTOR TECHNOLOGY: Influence of nitrogen dose on the charge density of nitrogen-implanted buried oxide in SOI wafers

    NASA Astrophysics Data System (ADS)

    Zhongshan, Zheng; Zhongli, Liu; Ning, Li; Guohua, Li; Enxia, Zhang

    2010-02-01

    To harden silicon-on-insulator (SOI) wafers fabricated using separation by implanted oxygen (SIMOX) to total-dose irradiation, the technique of nitrogen implantation into the buried oxide (BOX) layer of SIMOX wafers can be used. However, in this work, it has been found that all the nitrogen-implanted BOX layers reveal greater initial positive charge densities, which increased with increasing nitrogen implantation dose. Also, the results indicate that excessively large nitrogen implantation dose reduced the radiation tolerance of BOX for its high initial positive charge density. The bigger initial positive charge densities can be ascribed to the accumulation of implanted nitrogen near the Si-BOX interface after annealing. On the other hand, in our work, it has also been observed that, unlike nitrogen-implanted BOX, all the fluorine-implanted BOX layers show a negative charge density. To obtain the initial charge densities of the BOX layers, the tested samples were fabricated with a metal-BOX-silicon (MBS) structure based on SIMOX wafers for high-frequency capacitance-voltage (C-V) analysis.

  15. Influence of Method of Adding Water to Combustible Mixture on Diesel Engine Performance

    NASA Astrophysics Data System (ADS)

    Devyanin, S. N.; Bigaev, A. V.; Markov, V. A.

    2018-03-01

    The supply of water to the cylinders of the diesel engine is one way to reduce the maximum temperature in the combustion zone of the fuel. A reduction of the maximum combustion temperature allows reducing the formation of nitrogen oxides and improving the environmental characteristics of the engine, which remains one of the urgent tasks at the present stage of their development. The methods of supplying water to the engine together with air at the inlet and with the fuel into the cylinder are well known. This article considers the influence of the way the water is supplied to the engine cylinders on its environmental characteristics. It presents the results of experimental studies on the internal combustion engine and analysis of the method of adding water on the engine performance from exhaust gas toxicity, operating efficiency and its thermal state. There are marked different effects on the motor performance of the method of adding water.

  16. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  17. 40 CFR 62.14103 - Emission limits for municipal waste combustor metals, acid gases, organics, and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustor metals, acid gases, organics, and nitrogen oxides. 62.14103 Section 62.14103 Protection of... combustor metals, acid gases, organics, and nitrogen oxides. (a) The emission limits for municipal waste combustor metals are specified in paragraphs (a)(1) through (a)(3) of this section. (1) The owner or...

  18. Low-temperature conversion of ammonia to nitrogen in water with ozone over composite metal oxide catalyst.

    PubMed

    Chen, Yunnen; Wu, Ye; Liu, Chen; Guo, Lin; Nie, Jinxia; Chen, Yu; Qiu, Tingsheng

    2018-04-01

    As one of the most important water pollutants, ammonia nitrogen emissions have increased year by year, which has attracted people's attention. Catalytic ozonation technology, which involves production of ·OH radical with strong oxidation ability, is widely used in the treatment of organic-containing wastewater. In this work, MgO-Co 3 O 4 composite metal oxide catalysts prepared with different fabrication conditions have been systematically evaluated and compared in the catalytic ozonation of ammonia (50mg/L) in water. In terms of high catalytic activity in ammonia decomposition and high selectivity for gaseous nitrogen, the catalyst with MgO-Co 3 O 4 molar ratio 8:2, calcined at 500°C for 3hr, was the best one among the catalysts we tested, with an ammonia nitrogen removal rate of 85.2% and gaseous nitrogen selectivity of 44.8%. In addition, the reaction mechanism of ozonation oxidative decomposition of ammonia nitrogen in water with the metal oxide catalysts was discussed. Moreover, the effect of coexisting anions on the degradation of ammonia was studied, finding that SO 4 2- and HCO 3 - could inhibit the catalytic activity while CO 3 2- and Br - could promote it. The presence of coexisting cations had very little effect on the catalytic ozonation of ammonia nitrogen. After five successive reuses, the catalyst remained stable in the catalytic ozonation of ammonia. Copyright © 2017. Published by Elsevier B.V.

  19. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    NASA Astrophysics Data System (ADS)

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-10-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8-10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems.

  20. Anaerobic ammonium oxidation and its contribution to nitrogen removal in China’s coastal wetlands

    PubMed Central

    Hou, Lijun; Zheng, Yanling; Liu, Min; Li, Xiaofei; Lin, Xianbiao; Yin, Guoyu; Gao, Juan; Deng, Fengyu; Chen, Fei; Jiang, Xiaofen

    2015-01-01

    Over the past several decades, human activities have caused substantial enrichment of reactive nitrogen in China’s coastal wetlands. Although anaerobic ammonium oxidation (anammox), the process of oxidizing ammonium into dinitrogen gas through the reduction of nitrite, is identified as an important process for removing reactive nitrogen, little is known about the dynamics of anammox and its contribution to nitrogen removal in nitrogen-enriched environments. Here, we examine potential rates of anammox and associate them with bacterial diversity and abundance across the coastal wetlands of China using molecular and isotope tracing techniques. High anammox bacterial diversity was detected in China’s coastal wetlands and included Candidatus Scalindua, Kuenenia, Brocadia, and Jettenia. Potential anammox rates were more closely associated with the abundance of anammox bacteria than to their diversity. Among all measured environmental variables, temperature was a key environmental factor, causing a latitudinal distribution of the anammox bacterial community composition, biodiversity and activity along the coastal wetlands of China. Based on nitrogen isotope tracing experiments, anammox was estimated to account for approximately 3.8–10.7% of the total reactive nitrogen removal in the study area. Combined with denitrification, anammox can remove 20.7% of the total external terrigenous inorganic nitrogen annually transported into China’s coastal wetland ecosystems. PMID:26494435

  1. Surface oxidation of GaN(0001): Nitrogen plasma-assisted cleaning for ultrahigh vacuum applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Subhashis; Schmidt, Thomas, E-mail: tschmidt@ifp.uni-bremen.de; Kruse, Carsten

    The cleaning of metal-organic vapor-phase epitaxial GaN(0001) template layers grown on sapphire has been investigated. Different procedures, performed under ultrahigh vacuum conditions, including degassing and exposure to active nitrogen from a radio frequency nitrogen plasma source have been compared. For this purpose, x-ray photoelectron spectroscopy, reflection high-energy electron diffraction, and scanning tunneling microscopy have been employed in order to assess chemical as well as structural and morphological surface properties. Initial degassing at 600 °C under ultrahigh vacuum conditions only partially eliminates the surface contaminants. In contrast to plasma assisted nitrogen cleaning at temperatures as low as 300 °C, active-nitrogen exposure at temperaturesmore » as high as 700 °C removes the majority of oxide species from the surface. However, extended high-temperature active-nitrogen cleaning leads to severe surface roughening. Optimum results regarding both the removal of surface oxides as well as the surface structural and morphological quality have been achieved for a combination of initial low-temperature plasma-assisted cleaning, followed by a rapid nitrogen plasma-assisted cleaning at high temperature.« less

  2. Theoretical studies of oxides relevant to the combustion of fossil fuels

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Michael

    : adsorption isotherms, Gibbs free energy, enthalpy, entropy and desorption free energy. It was found that, when the maximum loading was compared to the regeneration costs, IRMOF-10 had the best performance, followed by IRMOF-8 then IRMOF-1. During the combustion of coal, not only is CO2 produced, but also the trace elements of arsenic and selenium escape into the environment though this process. Both arsenic and selenium are known to have a harmful effects on the environment and human health. Arsenic is also known to poison the catalytic converter used in selective catalytic reduction of NOx . These trace elements have been found on fly ash or in the hot flue gases released into the atmosphere. In flue gases they most often exist as oxides. There have been many experimental and a few theoretical studies on the monomeric oxides, AsOx and SeOx, where x = 1, 2, or 3. However, little is known concerning the corresponding dimeric oxides, As2Ox and Se2Ox, where x = 3 or 5, though these compounds are expected from their similarities to nitrogen and sulfur chemistry, respectively. From an experimental perspective, they are very challenging to study due to the high temperatures, complex environments and low concentrations needed for a direct study of the form and structures of the dimeric oxides. From a theoretical perspective, they can be challenging to study due to their multireference character and the need for both dynamic and non-dynamic electron correlation due to bonds forming and breaking during isomerization. However, high level multireference ab initio methods which account for both dynamic and non-dynamic electron correlation can be used. In the work contained in this thesis, GVVPT2 and CR-CC(2,3) were used to study the relative stabilities of all relevant isomers and transition states of As2Ox and Se2Ox. The structures used where generated through DFT using the B3LYP functional. Not only were plausible stationary points located for all species, it was further confirmed

  3. A series of inorganic solid nitrogen sources for the synthesis of metal nitride clusterfullerenes: the dependence of production yield on the oxidation state of nitrogen and counter ion.

    PubMed

    Liu, Fupin; Guan, Jian; Wei, Tao; Wang, Song; Jiao, Mingzhi; Yang, Shangfeng

    2013-04-01

    A series of nitrogen-containing inorganic solid compounds with variable oxidation states of nitrogen and counter ions have been successfully applied as new inorganic solid nitrogen sources toward the synthesis of Sc-based metal nitride clusterfullerenes (Sc-NCFs), including ammonium salts [(NH4)xH(3-x)PO4 (x = 0-2), (NH4)2SO4, (NH4)2CO3, NH4X (X = F, Cl), NH4SCN], thiocyanate (KSCN), nitrates (Cu(NO3)2, NaNO3), and nitrite (NaNO2). Among them, ammonium phosphates ((NH4)xH(3-x)PO4, x = 1-3) and ammonium thiocyanate (NH4SCN) are revealed to behave as better nitrogen sources than others, and the highest yield of Sc-NCFs is achieved when NH4SCN was used as a nitrogen source. The optimum molar ratio of Sc2O3:(NH4)3PO4·3H2O:C and Sc2O3:NH4SCN:C has been determined to be 1:2:15 and 1:3:15, respectively. The thermal decomposition products of these 12 inorganic compounds have been discussed in order to understand their different performances toward the synthesis of Sc-NCFs, and accordingly the dependence of the production yield of Sc-NCFs on the oxidation state of nitrogen and counter ion is interpreted. The yield of Sc3N@C80 (I(h) + D(5h)) per gram Sc2O3 by using the N2-based group of nitrogen sources (thiocyanate, nitrates, and nitrite) is overall much lower than those by using gaseous N2 and NH4SCN, indicating the strong dependence of the yield of Sc-NCFs on the oxidation state of nitrogen, which is attributed to the "in-situ" redox reaction taking place for the N2-based group of nitrogen sources during discharging. For NH3-based group of nitrogen sources (ammonium salts) which exhibits a (-3) oxidation states of nitrogen, their performance as nitrogen sources is found to be sensitively dependent on the anion, and this is understood by considering their difference on the thermal stability and/or decomposition rate. Contrarily, for the N2-based group of nitrogen sources, the formation of Sc-NCFs is independent to both the oxidation state of nitrogen (+3 or +5) and the

  4. Rapid estimation of organic nitrogen in oil shale waste waters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.M.; Daughton, C.G.; Harris, G.J.

    1984-04-01

    Many of the characteristics of oil shale process waste waters (e.g., malodors, color, and resistance to biotreatment) are imparted by numerous nitrogenous heterocycles and aromatic amines. For the frequent performance assessment of waste treatment processes designed to remove these nitrogenous organic compounds, a rapid and colligative measurement of organic nitrogen is essential. Quantification of organic nitrogen in biological and agricultural samples is usually accomplished using the time-consuming, wet-chemical Kjeldahl method. For oil shale waste waters, whose primary inorganic nitorgen constituent is amonia, organic Kjeldahl nitrogen (OKN) is determined by first eliminating the endogenous ammonia by distillation and then digesting themore » sample in boiling H/sub 2/SO/sub 4/. The organic material is oxidized, and most forms of organically bound nitrogen are released as ammonium ion. After the addition of base, the ammonia is separated from the digestate by distillation and quantified by acidimetric titrimetry or colorimetry. The major failings of this method are the loss of volatile species such as aliphatic amines (during predistillation) and the inability to completely recover nitrogen from many nitrogenous heterocycles (during digestion). Within the last decade, a new approach has been developed for the quantification of total nitrogen (TN). The sample is first combusted, a« less

  5. Nitrous oxide flux and nitrogen transformations across a landscape gradient in Amazonia

    NASA Technical Reports Server (NTRS)

    Livingston, Gerald P.; Vitousek, Peter M.; Matson, Pamela A.

    1988-01-01

    Nitrous oxide flux and nitrogen turnover were measured in three types of Amazonian forest ecosystems within Reserva Florestal Ducke near Manaus, Brazil. Nitrogen mineralization and nitrate production measured during 10-day laboratory incubations were 3-4 times higher in clay soils associated with 'terra firme' forests on ridge-top and slope positions than in 'campinarana' forests on bottomland sand soils. In contrast, nitrous oxide fluxes did not differ significantly among sites, but were highly variable in space and time. The observed frequency distribution of flux was positively skewed, with a mean overall sites and all sampling times of 1.3 ng N2O-N/sq cm per hr. Overall, the flux estimates were comparable to or greater than those of temperature forests, but less than others reported for Amazoonia. Results from a field fertilization experiment suggest that most nitrous oxide flux was associated with denitrification of soil nitrate.

  6. Formation and emission of nitrogen oxide in gas turbine engines: plume effluent characteristics of TF3O-P111+ and TF33-P9 engines. Final technical report, 1 November-17 December 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dill, J.W.; Sowa, W.A.; Samuelsen, G.S.

    1996-06-30

    Phase I of this project focused on the creation of a spatial emissions map of the plume effluent in the exhaust stream directly behind the engine in a jet engine test cell (JETC). Both afterburning TF30-P111+ and non-after-burning TF33-P9 engines were tested. Measurements were taken in conjunction with actual engine tests for validity of the data. Temperature, oxides of nitrogen (NOx), carbon monoxide (CO) concentration, and velocity were among the characteristics measured radially and axially in the plume for each engine type. The main focus of this study was on NOx, consisting of nitric oxide (NO) and nitrogen dioxide (NO2).more » Measurements in the P111+ plume reveal levels of NOx above 300 ppm along the centerline of the effluent. A dip in the NOx emissions at afterburner shows signs of a reburning and/or dilution effect by the atmospheric combustion in the effluent. Significant amounts of NO2 are present in the effluent over the entire power range. Temperatures at military power reach 1100 deg F along the centerline, and CO values are below 80 ppm. Carbon monoxide concentrations decrease from idle to military power (full power, no afterburner), then rise sharply in afterburner. The CO peaks shift outward from centerline as do the temperatures due to the radial geometry of the afterburner combustion (over 10 percent CO at 2850 deg F).« less

  7. Draft Plan for Development of the Integrated Science Assessment for Nitrogen Oxides - Health Criteria

    EPA Science Inventory

    EPA has announced a draft development plan for the next Integrated Science Assessment (ISA) for the health effects of nitrogen oxides (NOX) which will serve as the scientific basis for review of the primary (health-based) National Ambient Air Quality Standard for nitrogen dioxide...

  8. Aspects of the Application of Cavity Enhanced Spectroscopy to Nitrogen Oxides Detection

    PubMed Central

    Wojtas, Jacek; Mikolajczyk, Janusz; Bielecki, Zbigniew

    2013-01-01

    This article presents design issues of high-sensitive laser absorption spectroscopy systems for nitrogen oxides (NOx) detection. Examples of our systems and their investigation results are also described. The constructed systems use one of the most sensitive methods, cavity enhanced absorption spectroscopy (CEAS). They operate at different wavelength ranges using a blue—violet laser diode (410 nm) as well as quantum cascade lasers (5.27 μm and 4.53 μm). Each of them is configured as a one or two channel measurement device using, e.g., time division multiplexing and averaging. During the testing procedure, the main performance features such as detection limits and measurements uncertainties have been determined. The obtained results are 1 ppb NO2, 75 ppb NO and 45 ppb N2O. For all systems, the uncertainty of concentration measurements does not exceed a value of 13%. Some experiments with explosives are also discussed. A setup equipped with a concentrator of explosives vapours was used. The detection method is based either on the reaction of the sensors to the nitrogen oxides directly emitted by the explosives or on the reaction to the nitrogen oxides produced during thermal decomposition of explosive vapours. For TNT, PETN, RDX and HMX a detection limit better than 1 ng has been achieved. PMID:23752566

  9. Method and apparatus for advanced staged combustion utilizing forced internal recirculation

    DOEpatents

    Rabovitser, Iosif K.; Knight, Richard A.; Cygan, David F.; Nester, Serguei; Abbasi, Hamid A.

    2003-12-16

    A method and apparatus for combustion of a fuel in which a first-stage fuel and a first-stage oxidant are introduced into a combustion chamber and ignited, forming a primary combustion zone. At least about 5% of the total heat output produced by combustion of the first-stage fuel and the first-stage oxidant is removed from the primary combustion zone, forming cooled first-stage combustion products. A portion of the cooled first-stage combustion products from a downstream region of the primary combustion zone is recirculated to an upstream region of primary combustion zone. A second-stage fuel is introduced into the combustion chamber downstream of the primary combustion zone and ignited, forming a secondary combustion zone. At least about 5% of the heat from the secondary combustion zone is removed. In accordance with one embodiment, a third-stage oxidant is introduced into the combustion chamber downstream of the secondary combustion zone, forming a tertiary combustion zone.

  10. Overview of Low Emission Combustion Research At NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, D. R.

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  11. Effect of cuprous oxide with different sizes on thermal and combustion behaviors of unsaturated polyester resin.

    PubMed

    Hou, Yanbei; Hu, Weizhao; Gui, Zhou; Hu, Yuan

    2017-07-15

    Cuprous oxide (Cu 2 O) as an effective catalyst has been applied to enhance the fire safety of unsaturated polyester resin (UPR), but the particle size influence on combustion behaviors has not been previously reported. Herein, the UPR/Cu 2 O composites (metal oxide particles with average particle-size of 10, 100, and 200nm) were successfully synthesized by thermosetting process. The effects of Cu 2 O with different sizes on thermostability and combustion behaviors of UPR were characterized by TGA, MCC, TG-IR, FTIR, and SSTF. The results revel that the addition of Cu 2 O contributes to sufficient decomposition of oxygen-containing compounds, which is beneficial to the release of nontoxic compounds. The smallest-sized Cu 2 O performs the excellent catalytic decomposition effect and promotes the complete combustion of UPR, which benefits the enhancement of fire safety. While the other additives retard pyrolysis process and yield more char residue, and thus the flame retardancy of UPR composites was improved. Therefore, catalysis plays a major role for smaller-sized particles during thermal decomposition of matrix, while flame retarded effect became gradual distinctly for the larger-sized additives. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Combustion characteristics of paper and sewage sludge in a pilot-scale fluidized bed.

    PubMed

    Yu, Yong-Ho; Chung, Jinwook

    2015-01-01

    This study characterizes the combustion of paper and sewage sludge in a pilot-scale fluidized bed. The highest temperature during combustion within the system was found at the surface of the fluidized bed. Paper sludge containing roughly 59.8% water was burned without auxiliary fuel, but auxiliary fuel was required to incinerate the sewage sludge, which contained about 79.3% water. The stability of operation was monitored based on the average pressure and the standard deviation of pressure fluctuations. The average pressure at the surface of the fluidized bed decreased as the sludge feed rate increased. However, the standard deviation of pressure fluctuations increased as the sludge feed rate increased. Finally, carbon monoxide (CO) emissions decreased as oxygen content increased in the flue gas, and nitrogen oxide (NOx) emissions were also tied with oxygen content.

  13. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of... of Nitrogen Oxides Controls Applied to Group 1, Boilers 1. Purpose and Applicability This technical...; and which is comparable to the costs of nitrogen oxides controls set pursuant to subsection (b)(1) (of...

  14. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of... of Nitrogen Oxides Controls Applied to Group 1, Boilers 1. Purpose and Applicability This technical...; and which is comparable to the costs of nitrogen oxides controls set pursuant to subsection (b)(1) (of...

  15. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of... of Nitrogen Oxides Controls Applied to Group 1, Boilers 1. Purpose and Applicability This technical...; and which is comparable to the costs of nitrogen oxides controls set pursuant to subsection (b)(1) (of...

  16. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of... of Nitrogen Oxides Controls Applied to Group 1, Boilers 1. Purpose and Applicability This technical...; and which is comparable to the costs of nitrogen oxides controls set pursuant to subsection (b)(1) (of...

  17. 40 CFR Appendix B to Part 76 - Procedures and Methods for Estimating Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Costs of Nitrogen Oxides Controls Applied to Group 1, Boilers B Appendix B to Part 76 Protection of... of Nitrogen Oxides Controls Applied to Group 1, Boilers 1. Purpose and Applicability This technical...; and which is comparable to the costs of nitrogen oxides controls set pursuant to subsection (b)(1) (of...

  18. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol)

    PubMed Central

    2011-01-01

    An experimental investigation of the combustion behavior of nano-aluminum (n-Al) and nano-aluminum oxide (n-Al2O3) particles stably suspended in biofuel (ethanol) as a secondary energy carrier was conducted. The heat of combustion (HoC) was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results. PMID:21711760

  19. Coated oxidizers for combustion stability in solid-propellant rockets

    NASA Technical Reports Server (NTRS)

    Helmy, A. M.; Ramohalli, K. N. R.

    1985-01-01

    Experiments are conducted in a laboratory-scale (6.25-cm diameter) end-burning rocket motor with state-of-the-art, ammonium perchlorate hydroxy-terminated polybutadiene (HTPB), nonmetallized propellants. The concept of tailoring the stability characteristics with a small amount (less than 1 percent by weight) of COATING on the oxidizer is explored. The thermal degradation characteristics of the coat chemical are deduced through theoretical arguments on thermal diffusivity of the composite material (propellant). Several candidate coats are selected and propellants are cast. These propellants (with coated oxidizers) are fired in a laboratory-scale end-burning rocket motor, and real-time pressure histories are recorded. The control propellant (with no coating) is also tested for comparison. The uniformity of the coating, confirmed by SEM pictures and BET adsorption measurements, is thought to be an advance in technology. The frequency of bulk mode instability (BMI), the pressure fluctuation amplitudes, and stability boundaries are correlated with parameters related to the characteristic length (L-asterisk) of the rocket motor. The coated oxidizer propellants, in general, display greater combustion stability than the control (state-of-the-art). The correlations of the various parameters are thought to be new to a field filled with much uncertainty.

  20. Climate Change Impacts of US Reactive Nitrogen Emissions

    NASA Astrophysics Data System (ADS)

    Pinder, R. W.; Davidson, E. A.; Goodale, C. L.; Greaver, T.; Herrick, J.; Liu, L.

    2011-12-01

    By fossil fuel combustion and fertilizer application, the US has substantially altered the nitrogen cycle, with serious effects on climate change. The climate effects can be short-lived, by impacting the chemistry of the atmosphere, or long-lived, by altering ecosystem greenhouse gas fluxes. Here, we develop a coherent framework for assessing the climate change impacts of US reactive nitrogen emissions. We use the global temperature potential (GTP) as a common metric, and we calculate the GTP at 20 and 100 years in units of CO2 equivalents. At both time-scales, nitrogen enhancement of CO2 uptake has the largest impact, because in the eastern US, areas of high nitrogen deposition are co-located with forests. In the short-term, the effect due to NOx altering ozone and methane concentrations is also substantial, but are not important on the 100 year time scale. Finally, the GTP of N2O emissions is substantial at both time scales. We have also attributed these impacts to combustion and agricultural sources, and quantified the uncertainty. Reactive nitrogen from combustion sources contribute more to cooling than warming. The impacts of agricultural sources tend to cancel each other out, and the net effect is uncertain. Recent trends show decreasing reactive nitrogen from US combustion sources, while agricultural sources are increasing. Fortunately, there are many mitigation strategies currently available to reduce the climate change impacts of US agricultural sources.

  1. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for nitrogen oxides (NOX). 60.44b Section 60.44b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... technological system of emission reduction applied when demonstrating compliance under paragraph (f)(1)(i) of...

  2. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for nitrogen oxides (NOX). 60.44b Section 60.44b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... technological system of emission reduction applied when demonstrating compliance under paragraph (f)(1)(i) of...

  3. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for nitrogen oxides (NOX). 60.44b Section 60.44b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... technological system of emission reduction applied when demonstrating compliance under paragraph (f)(1)(i) of...

  4. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for nitrogen oxides (NOX). 60.44b Section 60.44b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... technological system of emission reduction applied when demonstrating compliance under paragraph (f)(1)(i) of...

  5. 40 CFR 60.44b - Standard for nitrogen oxides (NOX).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for nitrogen oxides (NOX). 60.44b Section 60.44b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... technological system of emission reduction applied when demonstrating compliance under paragraph (f)(1)(i) of...

  6. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    EIA Publications

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  7. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  8. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  9. Solid rocket combustion simulator technology using the hybrid rocket for simulation

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar

    1994-01-01

    The hybrid rocket is reexamined in light of several important unanswered questions regarding its performance. The well-known heat transfer limited burning rate equation is quoted, and its limitations are pointed out. Several inconsistencies in the burning rate determination through fuel depolymerization are explicitly discussed. The resolution appears to be through the postulate of (surface) oxidative degradation of the fuel. Experiments are initiated to study the fuel degradation in mixtures of nitrogen/oxygen in the 99.9 percent/0.1 percent to 98 percent/2 percent range. The overall hybrid combustion behavior is studied in a 2 in-diameter rocket motor, where a PMMA tube is used as the fuel. The results include detailed, real-time infrared video images of the combustion zone. Space- and time-averaged images give a broad indication of the temperature reached in the gases. A brief outline is shown of future work, which will specifically concentrate on the exploration of the role of the oxidizer transport to the fuel surface, and the role of the unburned fuel that is reported to escape below the classical time-averaged boundary layer flame.

  10. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis

    DOE PAGES

    Daw, C. Stuart; Finney, Charles E. A.; Kaul, Brian C.; ...

    2014-12-29

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel-economy. One new advanced engine strategy utilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy inmore » the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities.« less

  11. Novel Montmorillonite/TiO₂/MnAl-Mixed Oxide Composites Prepared from Inverse Microemulsions as Combustion Catalysts.

    PubMed

    Napruszewska, Bogna D; Michalik-Zym, Alicja; Rogowska, Melania; Bielańska, Elżbieta; Rojek, Wojciech; Gaweł, Adam; Wójcik-Bania, Monika; Bahranowski, Krzysztof; Serwicka, Ewa M

    2017-11-19

    A novel design of combustion catalysts is proposed, in which clay/TiO₂/MnAl-mixed oxide composites are formed by intermixing exfoliated organo-montmorillonite with oxide precursors (hydrotalcite-like in the case of Mn-Al oxide) obtained by an inverse microemulsion method. In order to assess the catalysts' thermal stability, two calcination temperatures were employed: 450 and 600 °C. The composites were characterized with XRF (X-ray fluorescence), XRD (X-ray diffraction), HR SEM (high resolution scanning electron microscopy, N₂ adsorption/desorption at -196 °C, and H₂ TPR (temperature programmed reduction). Profound differences in structural, textural and redox properties of the materials were observed, depending on the presence of the TiO₂ component, the type of neutralization agent used in the titania nanoparticles preparation (NaOH or NH₃ (aq)), and the temperature of calcination. Catalytic tests of toluene combustion revealed that the clay/TiO₂/MnAl-mixed oxide composites prepared with the use of ammonia showed excellent activity, the composites obtained from MnAl hydrotalcite nanoparticles trapped between the organoclay layers were less active, but displayed spectacular thermal stability, while the clay/TiO₂/MnAl-mixed oxide materials obtained with the aid of NaOH were least active. The observed patterns of catalytic activity bear a direct relation to the materials' composition and their structural, textural, and redox properties.

  12. Flume experiments elucidate relationships between microbial genetics, nitrogen species and hydraulics in controlling nitrous oxide production in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Quick, A. M.; Farrell, T. B.; Reeder, W. J.; Feris, K. P.; Tonina, D.; Benner, S. G.

    2014-12-01

    The hyporheic zone is a potentially important producer of nitrous oxide, a powerful greenhouse gas. The location and magnitude of nitrous oxide generation within the hyporheic zone involves complex interactions between multiple nitrogen species, redox conditions, microbial communities, and hydraulics. To better understand nitrous oxide generation and emissions from streams, we conducted large-scale flume experiments in which we monitored pore waters along hyporheic flow paths within stream dune structures. Measured dissolved oxygen, ammonia, nitrate, nitrite, and dissolved nitrous oxide showed distinct spatial relationships reflecting redox changes along flow paths. Denitrifying genes (nosZ, nirS, and nirK), determined using qPCR, were spatially associated with abundances of nitrogen species. Using residence times along a flow path, clear trends in oxygen conditions, genes encoding for microbial catalysis, and nitrogen species were observed. Hotspots of targeted genes correlated with hotspots for conversion of nitrogen species, including nitrous oxide production and conversion to dinitrogen. Trends were apparent regardless of dune size, allowing for the possibility to apply observed relationships to multiple streambed morphologies. Relating streambed morphology and loading of nitrogen species allows for prediction of nitrous oxide production in the hyporheic zone.

  13. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  14. One - Step synthesis of nitrogen doped reduced graphene oxide with NiCo nanoparticles for ethanol oxidation in alkaline media.

    PubMed

    Kakaei, Karim; Marzang, Kamaran

    2016-01-15

    Development of anode catalysts and catalyst supporting carbonaceous material containing non-precious metal have attracted tremendous attention in the field of direct ethanol fuel cells (DEFCs). Herein, we report the synthesis and electrochemical properties of nitrogen-doped reduced graphene oxide (NRGO) supported Co, Ni and NiCo nanocomposites. The metal NRGO nanocomposites, in which metal nanoparticles are embedded in the highly porous nitrogen-doped graphene matrix, have been synthesized by simply and one-pot method at a mild temperature using GO, urea choline chloride and urea as reducing and doping agent. The fabricated NiCo/NRGO exhibit remarkable electrocatalytic activity (with Tafel slope of 159.1mVdec(-1)) and high stability for the ethanol oxidation reaction (EOR). The superior performance of the alloy based NRGO is attributed to high surface area, well uniform distribution of high-density nitrogen, metal active sites and synergistic effect. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. 40 CFR 60.46b - Compliance and performance test methods and procedures for particulate matter and nitrogen oxides.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and procedures for particulate matter and nitrogen oxides. 60.46b Section 60.46b Protection of... NEW STATIONARY SOURCES Standards of Performance for Industrial-Commercial-Institutional Steam... nitrogen oxides. (a) The PM emission standards and opacity limits under § 60.43b apply at all times except...

  16. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...

  17. 40 CFR 86.332-79 - Oxides of nitrogen analyzer calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Emission Regulations for New Gasoline-Fueled and Diesel-Fueled Heavy-Duty Engines; Gaseous Exhaust Test.... (2) Zero the oxides of nitrogen analyzer. (3) Connect the outlet of the NOX generator (see Figure D79... operating range. (4) Introduce into the NOX generator-analyzer system a span gas with a NO concentration...

  18. National Combustion Code Validated Against Lean Direct Injection Flow Field Data

    NASA Technical Reports Server (NTRS)

    Iannetti, Anthony C.

    2003-01-01

    Most combustion processes have, in some way or another, a recirculating flow field. This recirculation stabilizes the reaction zone, or flame, but an unnecessarily large recirculation zone can result in high nitrogen oxide (NOx) values for combustion systems. The size of this recirculation zone is crucial to the performance of state-of-the-art, low-emissions hardware. If this is a large-scale combustion process, the flow field will probably be turbulent and, therefore, three-dimensional. This research dealt primarily with flow fields resulting from lean direct injection (LDI) concepts, as described in Research & Technology 2001. LDI is a concept that depends heavily on the design of the swirler. The LDI concept has the potential to reduce NOx values from 50 to 70 percent of current values, with good flame stability characteristics. It is cost effective and (hopefully) beneficial to do most of the design work for an LDI swirler using computer-aided design (CAD) and computer-aided engineering (CAE) tools. Computational fluid dynamics (CFD) codes are CAE tools that can calculate three-dimensional flows in complex geometries. However, CFD codes are only beginning to correctly calculate the flow fields for complex devices, and the related combustion models usually remove a large portion of the flow physics.

  19. Copper oxide-based model of persistent free radical formation on combustion-derived particulate matter.

    PubMed

    Lomnicki, Slawo; Truong, Hieu; Vejerano, Eric; Dellinger, Barry

    2008-07-01

    We have found that environmentally persistent free radicals (PFRs) are formed by adsorption of substituted aromatic molecular precursors on the surface of cupric oxide-containing particles at temperatures between 100 and 400 degrees C. This temperature range corresponds to the conditions in the postflame, cool zone of combustion, and thermal processes. Depending upon the nature of the precursor and the adsorption temperature, both substituted phenoxyl and semiquinone radicals are formed. The PFRs are formed through a mechanism of initial physisorption, followed by chemisorption via elimination of water or hydrogen chloride, and electron transfer resulting in the simultaneous reduction of Cu(II) to Cu(I) and formation of the PFR. The PFRs are still observable by electron paramagnetic resonance (EPR) after exposure to air for more than a day. Their lifetimes under vacuum appear to be infinite. Other redox-active transition metals such as iron are expected to also mediate or catalyze the formation of PFRs. The properties of the observed radicals are consistent with radicals previously observed on airborne and combustion-generated particulate matter. We propose a catalytic biochemical cycle for both the particle-associated semiquinone and phenoxyl PFRs that result in the formation of hydroxyl radical and other reactive oxygen species (ROS). This suggests that combustion-generated, particle-associated PFRs may be responsible for the oxidative stress resulting in cardiopulmonary disease and probably cancer that has been attributed to exposure to airborne fine particles.

  20. Nitrogen source effects on the denitrifying anaerobic methane oxidation culture and anaerobic ammonium oxidation bacteria enrichment process.

    PubMed

    Fu, Liang; Ding, Jing; Lu, Yong-Ze; Ding, Zhao-Wei; Zeng, Raymond J

    2017-05-01

    The co-culture system of denitrifying anaerobic methane oxidation (DAMO) and anaerobic ammonium oxidation (Anammox) has a potential application in wastewater treatment plant. This study explored the effects of permutation and combination of nitrate, nitrite, and ammonium on the culture enrichment from freshwater sediments. The co-existence of NO 3 - , NO 2 - , and NH 4 + shortened the enrichment time from 75 to 30 days and achieved a total nitrogen removal rate of 106.5 mg/L/day on day 132. Even though ammonium addition led to Anammox bacteria increase and a higher nitrogen removal rate, DAMO bacteria still dominated in different reactors with the highest proportion of 64.7% and the maximum abundance was 3.07 ± 0.25 × 10 8 copies/L (increased by five orders of magnitude) in the nitrite reactor. DAMO bacteria showed greater diversity in the nitrate reactor, and one was similar to M. oxyfera; DAMO bacteria in the nitrite reactor were relatively unified and similar to M. sinica. Interestingly, no DAMO archaea were found in the nitrate reactor. This study will improve the understanding of the impact of nitrogen source on DAMO and Anammox co-culture enrichment.

  1. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  2. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  3. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  4. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Unitsa,b,c

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for Existing Small Municipal Waste Combustion Unitsa,b,c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Unitsa,b,c ER31JA03.008 ...

  5. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control.

    PubMed

    Waldner, M H; Halter, R; Sigg, A; Brosch, B; Gehrmann, H J; Keunecke, M

    2013-02-01

    Traditionally EfW (Energy from Waste) plants apply a reciprocating grate to combust waste fuel. An integrated steam generator recovers the heat of combustion and converts it to steam for use in a steam turbine/generator set. This is followed by an array of flue gas cleaning technologies to meet regulatory limitations. Modern combustion applies a two-step method using primary air to fuel the combustion process on the grate. This generates a complex mixture of pyrolysis gases, combustion gases and unused combustion air. The post-combustion step in the first pass of the boiler above the grate is intended to "clean up" this mixture by oxidizing unburned gases with secondary air. This paper describes modifications to the combustion process to minimize exhaust gas volumes and the generation of noxious gases and thus improving the overall thermal efficiency of the EfW plant. The resulting process can be coupled with an innovative SNCR (Selective Non-Catalytic Reduction) technology to form a clean and efficient solid waste combustion system. Measurements immediately above the grate show that gas compositions along the grate vary from 10% CO, 5% H(2) and 0% O(2) to essentially unused "pure" air, in good agreement with results from a mathematical model. Introducing these diverse gas compositions to the post combustion process will overwhelm its ability to process all these gas fractions in an optimal manner. Inserting an intermediate step aimed at homogenizing the mixture above the grate has shown to significantly improve the quality of combustion, allowing for optimized process parameters. These measures also resulted in reduced formation of NO(x) (nitrogenous oxides) due to a lower oxygen level at which the combustion process was run (2.6 vol% O(2,)(wet) instead of 6.0 vol% O(2,)(wet)). This reduction establishes optimal conditions for the DyNOR™ (Dynamic NO(x) Reduction) NO(x) reduction process. This innovative SNCR technology is adapted to situations typically

  6. Fuel properties to enable lifted-flame combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Eric

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enablemore » LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  7. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    DOE PAGES

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; ...

    2017-02-10

    Nitrogen-doped graphene oxides (GO:N x) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH 2) 2 ]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:N x synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in whichmore » each N-atom trigonally bonds to three distinct sp 2 -hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:N x . The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.« less

  8. Chemical Modification of Graphene Oxide by Nitrogenation: An X-ray Absorption and Emission Spectroscopy Study

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hao; Ray, Sekhar C.; Mazumder, Debarati; Sharma, Surbhi; Ganguly, Abhijit; Papakonstantinou, Pagona; Chiou, Jau-Wern; Tsai, Huang-Ming; Shiu, Hung-Wei; Chen, Chia-Hao; Lin, Hong-Ji; Guo, Jinghua; Pong, Way-Faung

    2017-02-01

    Nitrogen-doped graphene oxides (GO:Nx) were synthesized by a partial reduction of graphene oxide (GO) using urea [CO(NH2)2]. Their electronic/bonding structures were investigated using X-ray absorption near-edge structure (XANES), valence-band photoemission spectroscopy (VB-PES), X-ray emission spectroscopy (XES) and resonant inelastic X-ray scattering (RIXS). During GO:Nx synthesis, different nitrogen-bonding species, such as pyrrolic/graphitic-nitrogen, were formed by replacing of oxygen-containing functional groups. At lower N-content (2.7 at%), pyrrolic-N, owing to surface and subsurface diffusion of C, N and NH is deduced from various X-ray spectroscopies. In contrast, at higher N-content (5.0 at%) graphitic nitrogen was formed in which each N-atom trigonally bonds to three distinct sp2-hybridized carbons with substitution of the N-atoms for C atoms in the graphite layer. Upon nitrogen substitution, the total density of state close to Fermi level is increased to raise the valence-band maximum, as revealed by VB-PES spectra, indicating an electron donation from nitrogen, molecular bonding C/N/O coordination or/and lattice structure reorganization in GO:Nx. The well-ordered chemical environments induced by nitrogen dopant are revealed by XANES and RIXS measurements.

  9. Simultaneous removal of nitrogen oxide/nitrogen dioxide/sulfur dioxide from gas streams by combined plasma scrubbing technology.

    PubMed

    Chang, Moo Been; Lee, How Ming; Wu, Feeling; Lai, Chi Ren

    2004-08-01

    Oxides of nitrogen (NOx) [nitrogen oxide (NO) + nitrogen dioxide (NO2)] and sulfur dioxide (SO2) are removed individually in traditional air pollution control technologies. This study proposes a combined plasma scrubbing (CPS) system for simultaneous removal of SO2 and NOx. CPS consists of a dielectric barrier discharge (DBD) and wet scrubbing in series. DBD is used to generate nonthermal plasmas for converting NO to NO2. The water-soluble NO2 then can be removed by wet scrubbing accompanied with SO2 removal. In this work, CPS was tested with simulated exhausts in the laboratory and with diesel-generator exhausts in the field. Experimental results indicate that DBD is very efficient in converting NO to NO2. More than 90% removal of NO, NOx, and SO2 can be simultaneously achieved with CPS. Both sodium sulfide (Na2S) and sodium sulfite (Na2SO3) scrubbing solutions are good for NO2 and SO2 absorption. Energy efficiencies for NOx and SO2 removal are 17 and 18 g/kWh, respectively. The technical feasibility of CPS for simultaneous removal of NO, NO2, and SO2 from gas streams is successfully demonstrated in this study. However, production of carbon monoxide as a side-product (approximately 100 ppm) is found and should be considered.

  10. Analysis of nitrification in agricultural soil and improvement of nitrogen circulation with autotrophic ammonia-oxidizing bacteria.

    PubMed

    Matsuno, Toshihide; Horii, Sachie; Sato, Takanobu; Matsumiya, Yoshiki; Kubo, Motoki

    2013-02-01

    Accumulations of inorganic nitrogen (NH₄⁺, NO₂⁻, and NO₃⁻) were analyzed to evaluate the nitrogen circulation activity in 76 agricultural soils. Accumulation of NH₄⁺ was observed, and the reaction of NH₄⁺→ NO₂⁻ appeared to be slower than that of NO₂⁻ → NO₃⁻ in agricultural soil. Two autotrophic and five heterotrophic ammonia-oxidizing bacteria (AOB) were isolated and identified from the soils, and the ammonia-oxidizing activities of the autotrophic AOB were 1.0 × 10³-1.0 × 10⁶ times higher than those of heterotrophic AOB. The relationship between AOB number, soil bacterial number, and ammonia-oxidizing activity was investigated with 30 agricultural soils. The ratio of autotrophic AOB number was 0.00032-0.26% of the total soil bacterial number. The soil samples rich in autotrophic AOB (>1.0 × 10⁴ cells/g soil) had a high nitrogen circulation activity, and additionally, the nitrogen circulation in the agricultural soil was improved by controlling the autotrophic AOBs.

  11. Nitrogen Deposition: A Component of Global Change Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norby, Richard J.

    1997-12-31

    The global cycles of carbon and nitrogen are being perturbed by human activities that increase the transfer from large pools of nonreactive forms of the elements to reactive forms that are essential to the functioning of the terrestrial biosphere. The cycles are closely linked at all scales, and global change analyses must consider carbon and nitrogen cycles together. The increasing amount of nitrogen originating from fossil fuel combustion and deposited to terrestrial ecosystems as nitrogen oxides could increase the capacity of ecosystems to sequester carbon thereby removing some of the excess carbon dioxide from the atmosphere and slowing the developmentmore » of greenhouse warming. Several global and ecosystem models have calculated the amount of carbon sequestration that can be attributed to nitrogen deposition based on assumptions about the allocation of nitrogen among ecosystem components with different carbon-nitrogen ratios. They support the premise that nitrogen deposition is responsible for a an increasing terrestrial carbon sink since industrialization began, but there are large uncertainties related to the continued capacity of ecosystems to retain exogenous nitrogen. Whether terrestrial ecosystems continue to sequester additional carbon will depend in part on their response to increasing atmospheric carbon dioxide concentrations, which is widely thought to be constrained by limited nitrogen availability. Ecosystem models generally support the conclusion that the responses of ecosystems to increasing concentrations of carbon dioxide will be larger, and the range of possible responses will be wider, in ecosystems with increased nitrogen inputs originating as atmospheric deposition.« less

  12. Lectures on combustion theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burstein, S.Z.; Lax, P.D.; Sod, G.A.

    1978-09-01

    Eleven lectures are presented on mathematical aspects of combustion: fluid dynamics, deflagrations and detonations, chemical kinetics, gas flows, combustion instability, flame spread above solids, spark ignition engines, burning rate of coal particles and hydrocarbon oxidation. Separate abstracts were prepared for three of the lectures. (DLC)

  13. Nitrogen doped nanocrystalline semiconductor metal oxide: An efficient UV active photocatalyst for the oxidation of an organic dye using slurry Photoreactor.

    PubMed

    Ramachandran, Saranya; Sivasamy, A; Kumar, B Dinesh

    2016-12-01

    Water pollution is a cause for serious concern in today's world. A major contributor to water pollution is industrial effluents containing dyes and other organic molecules. Waste water treatment has become a priority area in today's applied scientific research as it seeks to minimize the toxicity of the effluents being discharged and increase the possibility of water recycling. An efficient and eco-friendly way of degrading toxic molecules is to use nano metal-oxide photocatalysts. The present study aims at enhancing the photocatalytic activity of a semiconductor metal oxide by doping it with nitrogen. A sol-gel cum combustion method was employed to synthesize the catalyst. The prepared catalyst was characterized by FT-IR, XRD, UV-DRS, FESEM and AFM techniques. UV-DRS result showed the catalyst to possess band gap energy of 2.97eV, thus making it active in the UV region of the spectrum. Its photocatalytic activity was evaluated by the degradation of a model pollutant-Orange G dye, under UV light irradiation. Preliminary experiments were carried out to study the effects of pH, catalyst dosage and initial dye concentration on the extent of dye degradation. Kinetic studies revealed that the reaction followed pseudo first order kinetics. The effect of electrolytes on catalyst efficiency was also studied. The progress of the reaction was monitored by absorption studies and measuring the reduction in COD. The catalyst thus prepared was seen to have a high photocatalytic efficiency. The use of this catalyst is a promising means of waste water treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. An Overview of Low-Emission Combustion Research at NASA Glenn

    NASA Technical Reports Server (NTRS)

    Reddy, Dhanireddy R.; Lee, Chi-Ming

    2016-01-01

    An overview of research efforts at NASA Glenn Research Center (GRC) in low-emission combustion technology that have made a significant impact on the nitrogen oxides (NOx) emission reduction in aircraft propulsion is presented. The technology advancements and their impact on aircraft emissions are discussed in the context of NASA's Aeronautics Research Mission Directorate (ARMD) high-level goals in fuel burn, noise and emission reductions. The highlights of the research presented here show how the past and current efforts laid the foundation for the engines that are flying today as well as how the continued technology advancements will significantly influence the next generation of aviation propulsion system designs.

  15. The Influence of Nitrogen Oxides on Chlorine Chemistry in Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    McNamara, S. M.; Raso, A. R. W.; Wang, S.; Thanekar, S.; Fuentes, J. D.; Shepson, P. B.; Pratt, K.

    2016-12-01

    Active chlorine chemistry in the springtime Arctic boundary layer impacts the fate of atmospheric pollutants and greenhouse gases. Recent field studies have reported high amounts of molecular chlorine (Cl2), up to 400 parts per trillion (ppt), as well as the presence of chlorinated hydrocarbon oxidation products. However, our knowledge of Arctic chlorine chemistry is limited by a paucity of observations. The presence of nitrogen oxides (NOx) may influence the chlorine chemistry in this region. Here, we report chemical ionization mass spectrometry measurements of Cl2, chlorine monoxide (ClO), nitryl chloride (ClNO2), and dinitrogen pentoxide (N2O5), and NOx measurements at Barrow, AK during March-May 2016. To our knowledge, these data represent the first observations of ClNO2 in the Arctic. While the main source of NOx in a pristine Arctic environment is irradiated snow surfaces, anthropogenic sources can significantly enhance local NOx concentrations. The role of NOx in the activation and temporal trends of the reactive chlorine species are examined using a 0-D photochemical model. The prevalence of chlorine chemistry under elevated nitrogen oxide conditions may have significant impacts on the atmospheric composition in an increasingly polluted Arctic.

  16. Investigating co-combustion characteristics of bamboo and wood.

    PubMed

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Study Uncovers Dirty Little Secret: Soil Emissions are Much-Bigger-than-Expected Component of Air Pollution

    NASA Technical Reports Server (NTRS)

    Stricherz, Vince

    2005-01-01

    Nitrogen oxides produced by huge fires and fossil fuel combustion are a major component of air pollution. They are the primary ingredients in ground-level ozone, a pollutant harmful to human health and vegetation. But new research led by a University of Washington atmospheric scientist shows that, in some regions, nitrogen oxides emitted by the soil are much greater than expected and could play a substantially larger role in seasonal air pollution than previously believed. Nitrogen oxide emissions total more than 40 million metric tons worldwide each year, with 64 percent coming from fossil fuel combustion, 14 percent from burning and a surprising 22 percent from soil, said Lyatt Jaegle, a UW assistant professor of atmospheric sciences. The new research shows that the component from soil is about 70 percent greater than scientists expected. Instead of relying on scattered ground-based measurements of burning and combustion and then extrapolating a global total for nitrogen oxide emissions, the new work used actual observations recorded in 2000 by the Global Ozone Monitoring Experiment aboard the European Space Agency's European Remote Sensing 2 satellite. Nitrogen oxide emissions from fossil fuel combustion are most closely linked to major population centers and show up in the satellite's ozone-monitoring measurements of nitrogen dioxide, part of the nitrogen oxides family.

  18. A Preliminary Study on the Toxic Combustion Products Testing of Polymers Used in High-Pressure Oxygen Systems

    NASA Technical Reports Server (NTRS)

    Hshieh, Fu-Yu; Beeson, Harold D.

    2004-01-01

    One likely cause of polymer ignition in a high-pressure oxygen system is adiabatic-compression heating of polymers caused by pneumatic impact. Oxidative _ pyrolysis or combustion of polymers in a high-pressure oxygen system could generate toxic gases. This paper reports the preliminary results of toxic combustion product testing of selected polymers in a pneumatic-impact test system. Five polymers commonly used in high-pressure oxygen systems, Nylon 6/6, polychlorotrifluoroethylene (CTFE), polytetrafluoroethylene (PTFE), fluoroelastomer (Viton(TradeMark) A), and nitrile rubber (Buna N), were tested in a pneumatic-impact test system at 2500- or 3500-psia oxygen pressure. The polymers were ignited and burned, then combustion products were collected in a stainless-steel sample bottle and analyzed by GC/MS/IRD, GC/FID, and GC/Methanizer/FID. The results of adiabatic-compression tests show that combustion of hydrocarbon polymers, nitrogen-containing polymers, and halogenated polymers in high-pressure oxygen systems are relatively complete. Toxicity of the combustion product gas is presumably much lower than the combustion product gas generated from ambient-pressure oxygen (or air) environments. The NASA-Lewis equilibrium code was used to determine the composition of combustion product gas generated from a simulated, adiabatic-compression test of nine polymers. The results are presented and discussed.

  19. Kinetics of the formation of ozone and nitrogen oxides due to a pulsed microwave discharge in air

    NASA Astrophysics Data System (ADS)

    Larin, V. F.; Rumiantsev, S. A.

    1989-03-01

    The paper presents results of a numerical simulation of the kinetics of plasma-chemical processes induced by a single microwave pulse in the stratosphere. It is shown that the gas temperature is one of the main factors influencing the concentration ratio of ozone and nitrogen oxides formed under the effect of a microwave pulse. Long pulses, producing considerable gas heating, favor the formation of nitrogen oxides.

  20. Effect of nitrogen addition on the structural, electrical, and optical properties of In-Sn-Zn oxide thin films

    NASA Astrophysics Data System (ADS)

    Jia, Junjun; Torigoshi, Yoshifumi; Suko, Ayaka; Nakamura, Shin-ichi; Kawashima, Emi; Utsuno, Futoshi; Shigesato, Yuzo

    2017-02-01

    Indium-tin-zinc oxide (ITZO) films were deposited at various nitrogen flow ratios using magnetron sputtering. At a nitrogen flow ratio of 40%, the structure of ITZO film changed from amorphous, with a short-range-ordered In2O3 phase, to a c-axis oriented InN polycrystalline phase, where InN starts to nucleate from an amorphous In2O3 matrix. Whereas, nitrogen addition had no obvious effect on the structure of indium-gallium-zinc oxide (IGZO) films even at a nitrogen flow ratio of 100%. Nitrogen addition also suppressed the formation of oxygen-related vacancies in ITZO films when the nitrogen flow ratio was less than 20%, and higher nitrogen addition led to an increase in carrier density. Moreover, a red-shift in the optical band edge was observed as the nitrogen flow ratio increased, which could be attributed to the generation of InN crystallites. We anticipate that the present findings demonstrating nitrogen-addition induced structural changes can help to understand the environment-dependent instability in amorphous IGZO or ITZO based thin-film transistors (TFTs).

  1. Influence of environmental factors on removal of oxides of nitrogen by a photocatalytic coating.

    PubMed

    Cros, Clement J; Terpeluk, Alexandra L; Crain, Neil E; Juenger, Maria C G; Corsi, Richard L

    2015-08-01

    Nitrogen oxides (NOx) emitted from combustion processes have elevated concentrations in large urban areas. They cause a range of adverse health effects, acid rain, and are precursors to formation of other atmospheric pollutants, such as ozone, peroxyacetyl nitrate, and inorganic aerosols. Photocatalytic materials containing a semi-conductor that can be activated by sunlight, such as titanium dioxide, have been studied for their ability to remove NOx. The study presented herein aims to elucidate the environmental parameters that most influence the NOx removal efficiency of photocatalytic coatings in hot and humid climate conditions. Concrete samples coated with a commercially available photocatalytic coating (a stucco) and an uncoated sample have been tested in a reactor simulating reasonable summertime outdoor sunlight, relative humidity and temperature conditions in southeast Texas. Two-level full factorial experiments were completed on each sample for five parameters. It was found that contact time, relative humidity and temperature significantly influenced both NO and NO₂removal. Elevated concentrations of organic pollutants reduced NO removal by the coating. Ultra-violet light intensity did not significantly influence removal of NO or NO₂, however, ultra-violet light intensity was involved in a two-factor interaction that significantly influenced removal of both NO and NO₂.

  2. Hydrotalcite-derived cobalt-aluminum mixed oxide catalysts for toluene combustion

    NASA Astrophysics Data System (ADS)

    Białas, Anna; Mazur, Michal; Natkański, Piotr; Dudek, Barbara; Kozak, Marek; Wach, Anna; Kuśtrowski, Piotr

    2016-01-01

    Hydrotalcite-like compounds (HTlcs) containing cobalt and aluminum (intended Co/Al molar ratio = 3.0) were coprecipitated at 30, 50 and 70 °C. Their crystallinity, which was confirmed by powder X-ray diffraction, increased with the precipitation temperature. Furthermore, HTlcs with various cobalt contents were prepared at 70 °C. Thermogravimetric analysis showed that HTlcs were transformed into stable oxides at 550 °C. The decrease in the crystallite size of the formed spinels with the increase in the precipitation temperature was observed. Low temperature sorption of nitrogen revealed meso-macroporous nature of the oxides with extended interparticle porosity. Aluminum segregated on the samples surface, which contained various amounts of lattice and adsorbed/electrophilic oxygen as detected by X-ray electron spectroscopy. The high ratio of lattice to adsorbed/electrophilic oxygen found for the sample with Co/Al = 3:1 caused that it turned out to be the most efficient catalyst in the total oxidation of toluene (50% conversion at 257 °C).

  3. Liquid Phase Plasma Synthesis of Iron Oxide Nanoparticles on Nitrogen-Doped Activated Carbon Resulting in Nanocomposite for Supercapacitor Applications.

    PubMed

    Lee, Heon; Lee, Won-June; Park, Young-Kwon; Ki, Seo Jin; Kim, Byung-Joo; Jung, Sang-Chul

    2018-03-25

    Iron oxide nanoparticles supported on nitrogen-doped activated carbon powder were synthesized using an innovative plasma-in-liquid method, called the liquid phase plasma (LPP) method. Nitrogen-doped carbon (NC) was prepared by a primary LPP reaction using an ammonium chloride reactant solution, and an iron oxide/NC composite (IONCC) was prepared by a secondary LPP reaction using an iron chloride reactant solution. The nitrogen component at 3.77 at. % formed uniformly over the activated carbon (AC) surface after a 1 h LPP reaction. Iron oxide nanoparticles, 40~100 nm in size, were impregnated homogeneously over the NC surface after the LPP reaction, and were identified as Fe₃O₄ by X-ray photoelectron spectroscopy and X-ray diffraction. NC and IONCCs exhibited pseudo-capacitive characteristics, and their specific capacitance and cycling stability were superior to those of bare AC. The nitrogen content on the NC surface increased the compatibility and charge transfer rate, and the composites containing iron oxide exhibited a lower equivalent series resistance.

  4. Gaseous emissions during concurrent combustion of biomass and non-recyclable municipal solid waste

    PubMed Central

    2011-01-01

    Background Biomass and municipal solid waste offer sustainable sources of energy; for example to meet heat and electricity demand in the form of combined cooling, heat and power. Combustion of biomass has a lesser impact than solid fossil fuels (e.g. coal) upon gas pollutant emissions, whilst energy recovery from municipal solid waste is a beneficial component of an integrated, sustainable waste management programme. Concurrent combustion of these fuels using a fluidised bed combustor may be a successful method of overcoming some of the disadvantages of biomass (high fuel supply and distribution costs, combustion characteristics) and characteristics of municipal solid waste (heterogeneous content, conflict with materials recycling). It should be considered that combustion of municipal solid waste may be a financially attractive disposal route if a 'gate fee' value exists for accepting waste for combustion, which will reduce the net cost of utilising relatively more expensive biomass fuels. Results Emissions of nitrogen monoxide and sulphur dioxide for combustion of biomass are suppressed after substitution of biomass for municipal solid waste materials as the input fuel mixture. Interactions between these and other pollutants such as hydrogen chloride, nitrous oxide and carbon monoxide indicate complex, competing reactions occur between intermediates of these compounds to determine final resultant emissions. Conclusions Fluidised bed concurrent combustion is an appropriate technique to exploit biomass and municipal solid waste resources, without the use of fossil fuels. The addition of municipal solid waste to biomass combustion has the effect of reducing emissions of some gaseous pollutants. PMID:21284885

  5. ROLE OF NITROGEN OXIDES IN NONURBAN OZONE FORMATION IN THE PLANETARY BOUNDARY LAYER OVER N (NORTH) AMERICA, W (WESTERN) EUROPE AND ADJACENT AREAS OF OCEAN

    EPA Science Inventory

    The status of knowledge on photochemical ozone formation and the effects of nitrogen oxides and peroxyacyl nitrates on such formation has been evaluated. The literature is reviewed on nonurban ozone and nitrogen oxide concentration distributions, ozone lifetimes, nitrogen oxide l...

  6. Oxidized Nitrogen Balance over 15 Months at Rural and Urban New York State Locations

    NASA Astrophysics Data System (ADS)

    Schwab, J. J.; Ninneman, M.; Marto, J.; Edgerton, E. S.; Blanchard, C. L.; Shaw, S. L.

    2017-12-01

    Continuous measurements of oxidized nitrogen species (NO, NO2, and HNO3), families of species (NOy, alkyl nitrates [or ANs], and peroxyacetyl nitrates [or PANs]), and particle nitrate (pNO3) were carried out for a fifteen-month period from August 2016 through October 2017 at two locations in New York State. The two sites were a rural research station at Pinnacle State Park in Addison, NY and an urban research station at Queens College in New York City. Four different chemiluminescence analyzers with various converters and denuders were employed to make these measurements. Instrumentation used for the study will be described, as well as some of the challenges created by combining data from these independent analyzers to address the oxidized nitrogen budget at the two sites. The Pinnacle State Park site often experiences quite clean air with low ppb levels of total NOy and a greater fraction of oxidized nitrogen products (NOz species). This contrasts with the urban Queens College location, which experiences stronger NOx sources. Seasonal differences in the NOx/NOy and NOz/NOy ratios, and the makeup of the NOz species, are also significant and will be explored in the presentation.

  7. “Transference Ratios” to Predict Total Oxidized Sulfur and Nitrogen Deposition – Part I, Monitoring Results

    EPA Science Inventory

    Use of model-predicted “transference ratios” is currently under consideration by the US EPA in the formulation of a Secondary National Ambient Air Quality Standard for oxidized nitrogen and oxidized sulfur. This term is an empirical parameter defined for oxidized sulfur (TS)as th...

  8. Fuel combustion exhibiting low NO.sub.x and CO levels

    DOEpatents

    Keller, Jay O.; Bramlette, T. Tazwell; Barr, Pamela K.

    1996-01-01

    Method and apparatus for safely combusting a fuel in such manner that very low levels of NO.sub.x and CO are produced. The apparatus comprises an inlet line (12) containing a fuel and an inlet line (18) containing an oxidant. Coupled to the fuel line (12) and to the oxidant line (18) is a mixing means (11,29,33,40) for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means (11,29,33,40) is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure (8), into a combustion region (2). Coupled to the combustion region (2) is a means (1,29,33) for producing a periodic flow field within the combustion region (2) to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor (1), a rotating band (29), or a rotating cylinder (33) within an acoustic chamber (32) positioned upstream or downstream of the region (2) of combustion. The mixing means can be a one-way flapper valve (11); a rotating cylinder (33); a rotating band (29) having slots (31) that expose open ends (20,21) of said fuel inlet line (12) and said oxidant inlet line (18) simultaneously; or a set of coaxial fuel annuli (43) and oxidizer annuli (42,44). The means for producing a periodic flow field (1, 29, 33) may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion (2).

  9. Combustion kinetics and emission characteristics of polycyclic aromatic hydrocarbons from polylactic acid combustion.

    PubMed

    Chien, Yi-Chi; Liang, Chenju; Liu, Shou-Heng; Yang, Shu-Hua

    2010-07-01

    This study investigates the combustion kinetics and emission factors of 16 U.S. Environmental Protection Agency priority polycyclic aromatic hydrocarbons (PAHs) in polylactic acid (PLA) combustion. Experimentally, two reactions are involved in the PLA combustion process that potentially result in the release of lactide, acetaldehyde, and n-hexaldehyde. The products may continuously be oxidized to form carbon dioxide (CO2) and some PAHs produced because of incomplete combustion. The analytical results indicate that the emission factors for PAHs are in the range of not detectable to 98.04 microg/g. The emission factors are much lower than those of poly(ethylene terephalate) (PET) and other combustion of plastics. Results from this work suggest that combustion is a good choice for waste PLA disposal.

  10. Innovative Clean Coal Technology (ICCT). Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO{sub x}) emissions from high-sulfur coal-fired boilers: Volume 1. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-10-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from U.S., Japanese and European catalyst suppliers on a high-sulfur U.S. coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO.) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the ammonia reacts with NO. to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japan and Europemore » on gas-, oil-, and low-sulfur coal- fired boilers, there are several technical uncertainties associated with applying SCR to U.S. coals. These uncertainties include: 1) potential catalyst deactivation due to poisoning by trace metal species present in U.S. coals that are not present in other fuels. 2) performance of the technology and effects on the balance-of- plant equipment in the presence of high amounts of SO{sub 2} and SO{sub 3}. 3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacturer under typical high-sulfur coal-fired utility operating conditions. These uncertainties were explored by operating nine small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur U.S. coal. In addition, the test facility operating experience provided a basis for an economic study investigating the implementation of SCR technology.« less

  11. MERCURY OXIDATION PROMOTED BY A SELECTIVE CATALYTIC REDUCTION CATALYST UNDER SIMULATED POWDER RIVER BASIN COAL COMBUSTION CONDITIONS

    EPA Science Inventory

    A bench-scale reactor consisting of a natural gas burner and an electrically heated reactor housing a selective catalytic reduction (SCR) catalyst was constructed for studying elemental mercury oxidation under SCR conditions. A low sulfur Power River Basin (PRB) coal combustion ...

  12. Particulate Formation from a Copper Oxide-Based Oxygen Carrier in Chemical Looping Combustion for CO2 Capture

    EPA Science Inventory

    Attrition behavior and particle loss of a copper oxide-based oxygen carrier from a methane chemical looping combustion (CLC) process was investigated in a fluidized bed reactor. The aerodynamic diameters of most elutriated particulates, after passing through a horizontal settling...

  13. Catalyst for reduction of nitrogen oxides

    DOEpatents

    Ott, Kevin C.

    2010-04-06

    A Selective Catalytic Reduction (SCR) catalyst was prepared by slurry coating ZSM-5 zeolite onto a cordierite monolith, then subliming an iron salt onto the zeolite, calcining the monolith, and then dipping the monolith either into an aqueous solution of manganese nitrate and cerium nitrate and then calcining, or by similar treatment with separate solutions of manganese nitrate and cerium nitrate. The supported catalyst containing iron, manganese, and cerium showed 80 percent conversion at 113 degrees Celsius of a feed gas containing nitrogen oxides having 4 parts NO to one part NO.sub.2, about one equivalent ammonia, and excess oxygen; conversion improved to 94 percent at 147 degrees Celsius. N.sub.2O was not detected (detection limit: 0.6 percent N.sub.2O).

  14. Modelling atmospheric oxidation of 2-aminoethanol (MEA) emitted from post-combustion capture using WRF-Chem.

    PubMed

    Karl, M; Svendby, T; Walker, S-E; Velken, A S; Castell, N; Solberg, S

    2015-09-15

    Carbon capture and storage (CCS) is a technological solution that can reduce the amount of carbon dioxide (CO2) emissions from the use of fossil fuel in power plants and other industries. A leading method today is amine based post-combustion capture, in which 2-aminoethanol (MEA) is one of the most studied absorption solvents. In this process, amines are released to the atmosphere through evaporation and entrainment from the CO2 absorber column. Modelling is a key instrument for simulating the atmospheric dispersion and chemical transformation of MEA, and for projections of ground-level air concentrations and deposition rates. In this study, the Weather Research and Forecasting model inline coupled with chemistry, WRF-Chem, was applied to quantify the impact of using a comprehensive MEA photo-oxidation sequence compared to using a simplified MEA scheme. Main discrepancies were found for iminoethanol (roughly doubled in the detailed scheme) and 2-nitro aminoethanol, short MEA-nitramine (reduced by factor of two in the detailed scheme). The study indicates that MEA emissions from a full-scale capture plant can modify regional background levels of isocyanic acid. Predicted atmospheric concentrations of isocyanic acid were however below the limit value of 1 ppbv for ambient exposure. The dependence of the formation of hazardous compounds in the OH-initiated oxidation of MEA on ambient level of nitrogen oxides (NOx) was studied in a scenario without NOx emissions from a refinery area in the vicinity of the capture plant. Hourly MEA-nitramine peak concentrations higher than 40 pg m(-3) did only occur when NOx mixing ratios were above 2 ppbv. Therefore, the spatial variability and temporal variability of levels of OH and NOx need to be taken into account in the health risk assessment. The health risk due to direct emissions of nitrosamines and nitramines from full-scale CO2 capture should be investigated in future studies. Copyright © 2015 Elsevier B.V. All rights

  15. Characterizing dilute combustion instabilities in a multi-cylinder spark-ignited engine using symbolic analysis.

    PubMed

    Daw, C S; Finney, C E A; Kaul, B C; Edwards, K D; Wagner, R M

    2015-02-13

    Spark-ignited internal combustion engines have evolved considerably in recent years in response to increasingly stringent regulations for emissions and fuel economy. One new advanced engine strategy ustilizes high levels of exhaust gas recirculation (EGR) to reduce combustion temperatures, thereby increasing thermodynamic efficiency and reducing nitrogen oxide emissions. While this strategy can be highly effective, it also poses major control and design challenges due to the large combustion oscillations that develop at sufficiently high EGR levels. Previous research has documented that combustion instabilities can propagate between successive engine cycles in individual cylinders via self-generated feedback of reactive species and thermal energy in the retained residual exhaust gases. In this work, we use symbolic analysis to characterize multi-cylinder combustion oscillations in an experimental engine operating with external EGR. At low levels of EGR, intra-cylinder oscillations are clearly visible and appear to be associated with brief, intermittent coupling among cylinders. As EGR is increased further, a point is reached where all four cylinders lock almost completely in phase and alternate simultaneously between two distinct bi-stable combustion states. From a practical perspective, it is important to understand the causes of this phenomenon and develop diagnostics that might be applied to ameliorate its effects. We demonstrate here that two approaches for symbolizing the engine combustion measurements can provide useful probes for characterizing these instabilities. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Novel strategy of nitrogen removal from domestic wastewater using pilot Orbal oxidation ditch.

    PubMed

    Gao, Shou-you; Peng, Yong-zhen; Wang, Shu-ying; Yan, Jun

    2006-01-01

    A pilot-scale Orbal oxidation ditch was operated for 17 months to optimize nitrogen removal from domestic wastewater of average COD to total nitrogen ratio of 2.7, with particular concern about the roles of dissolved oxygen (DO), mixed liquor suspended solids (MLSS) and return activated sludge (RAS) recycle ratio. Remarkable simultaneous nitrification and denitrification (SND) was observed and mean total nitrogen (TN) removal efficiency up to 72.1% was steadily achieved, at DO concentration in the out, middle and inner channel of 0.1, 0.4 and 0.7 mg/L, respectively, with an average MLSS of 5.5 g/L and RAS recycle ratio of 150%. Although the out channel took the major role in TN removal, the role of middle channel should never be ignored. The denitrification potential could be fully developed under low DO, high MLSS with adequate RAS ratio. The sludge settleability was amazingly improved under low DO operation mode, and some explanations were tried. In addition, a series of simplified batch tests were done to determine whether novel microorganisms could make substantial contribution to the performance of nitrogen removal. The results indicated that the SND observed in this Orbal oxidation ditch was more likely a physical phenomenon.

  17. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE PAGES

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    2016-10-04

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  18. Molecular dynamics study of combustion reactions in supercritical environment. Part 1: Carbon dioxide and water force field parameters refitting and critical isotherms of binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masunov, Artem E.; Atlanov, Arseniy Alekseyevich; Vasu, Subith S.

    Oxy-fuel combustion process is expected to drastically increase the energy efficiency and enable easy carbon sequestration. In this technology the combustion products (carbon dioxide and water) are used to control the temperature and nitrogen is excluded from the combustion chamber, so that nitrogen oxide pollutants do not form. Therefore, in oxycombustion the carbon dioxide and water are present in large concentrations in their transcritical state, and may play an important role in kinetics. The computational chemistry methods may assist in understanding these effects, and Molecular Dynamics with ReaxFF force field seem to be a suitable tool for such a study.more » Here we investigate applicability of the ReaxFF to describe the critical phenomena in carbon dioxide and water and find that several nonbonding parameters need adjustment. We report the new parameter set, capable to reproduce the critical temperatures and pressures. Furthermore, the critical isotherms of CO 2/H 2O binary mixtures are computationally studied here for the first time and their critical parameters are reported.« less

  19. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.

    In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less

  20. Quantum Chemical Study of Supercritical Carbon Dioxide Effects on Combustion Kinetics

    DOE PAGES

    Masunov, Artëm E.; Wait, Elizabeth E.; Atlanov, Arseniy A.; ...

    2017-05-03

    In oxy-fuel combustion, the pure oxygen (O 2), diluted with CO 2 is used as oxidant instead air. Hence, the combustion products (CO 2 and H 2O) are free from pollution by nitrogen oxides. Moreover, high pressures results in the near-liquid density of CO 2 at supercritical state (sCO 2). Unfortunately, the effects of sCO 2 on the combustion kinetics are far from being understood. In order to assist in this understanding, in this work we are using quantum chemistry methods. Here we investigate potential energy surfaces of important combustion reactions in the presence of carbon dioxide melocule. All transitionmore » states, reactant and product complexes are reported for three reactions: H 2CO+HO 2→HCO+H 2O 2 (R1), 2HO 2→H 2O 2+O 2 (R2), and CO+OH→CO 2+H (R3). In the reaction R3, covalent binding of CO 2 to OH radical and then CO molecule opens a new pathway, including hydrogen transfer from oxygen to carbon atoms followed by CH bond dissociation. Compared to bimolecular OH+CO mechanism, this pathway reduces the activation barrier by 5 kcal/mol, and is expected to accelerate the reaction. This is the first report of autocatalytic effect in combustion. In case of hydroperoxyl self-reaction 2HO 2→H 2O 2+O 2 the intermediates, containing covalent bonds to CO 2 were found not to be competitive. However, the spectator CO 2 molecule is able to stabilize the cyclic transition state and lower the barrier by 3 kcal/mol. Formation of covalent intermediates was also discovered in H 2CO+HO 2→HCO+H 2O 2 reaction, but these specie lead to substantially higher activation barriers which makes them unlikely to play role in hydrogen transfer kinetics. The van der Waals complexation with carbon dioxide also stabilized transition state and reduces reaction barrier. Lastly, these results indicate that CO 2 environment is likely to have catalytic effect on combustion reactions, which needs to be included in kinetic combustion mechanisms in supercritical CO 2.« less

  1. Effects of preheated combustion air on laminar coflow diffusion flames under normal and microgravity conditions

    NASA Astrophysics Data System (ADS)

    Ghaderi Yeganeh, Mohammad

    Global energy consumption has been increasing around the world, owing to the rapid growth of industrialization and improvements in the standard of living. As a result, more carbon dioxide and nitrogen oxide are being released into the environment. Therefore, techniques for achieving combustion at reduced carbon dioxide and nitric oxide emission levels have drawn increased attention. Combustion with a highly preheated air and low-oxygen concentration has been shown to provide significant energy savings, reduce pollution and equipment size, and uniform thermal characteristics within the combustion chamber. However, the fundamental understanding of this technique is limited. The motivation of the present study is to identify the effects of preheated combustion air on laminar coflow diffusion flames. Combustion characteristics of laminar coflow diffusion flames are evaluated for the effects of preheated combustion air temperature under normal and low-gravity conditions. Experimental measurements are conducted using direct flame photography, particle image velocimetry (PIV) and optical emission spectroscopy diagnostics. Laminar coflow diffusion flames are examined under four experimental conditions: normal-temperature/normal-gravity (case I), preheated-temperature/normal gravity (case II), normal-temperature/low-gravity (case III), and preheated-temperature/low-gravity (case IV). Comparisons between these four cases yield significant insights. In our studies, increasing the combustion air temperature by 400 K (from 300 K to 700 K), causes a 37.1% reduction in the flame length and about a 25% increase in peak flame temperature. The results also show that a 400 K increase in the preheated air temperature increases CH concentration of the flame by about 83.3% (CH is a marker for the rate of chemical reaction), and also increases the C2 concentration by about 60% (C2 is a marker for the soot precursor). It can therefore be concluded that preheating the combustion air

  2. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.

    PubMed

    Nolan, Hugo; Mendoza-Sanchez, Beatriz; Ashok Kumar, Nanjundan; McEvoy, Niall; O'Brien, Sean; Nicolosi, Valeria; Duesberg, Georg S

    2014-02-14

    Herein we use Nitrogen-doped reduced Graphene Oxide (N-rGO) as the active material in supercapacitor electrodes. Building on a previous work detailing the synthesis of this material, electrodes were fabricated via spray-deposition of aqueous dispersions and the electrochemical charge storage mechanism was investigated. Results indicate that the functionalised graphene displays improved performance compared to non-functionalised graphene. The simplicity of fabrication suggests ease of up-scaling of such electrodes for commercial applications.

  3. 40 CFR Table 3 to Subpart Jjj of... - Class I Nitrogen Oxides Emission Limits for Existing Small Municipal Waste Combustion Units a b c

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for Existing Small Municipal Waste Combustion Units a b c 3 Table 3 to Subpart JJJ of Part 62... Municipal Waste Combustion Units Constructed on or Before August 30, 1999 Pt. 62, Subpt. JJJ, Table 3 Table... Waste Combustion Units a b c ER31JA03.008 ...

  4. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  5. Demonstration of Selective Catalytic Reduction (SCR) technology for the control of nitrogen oxide (NO sub x ) emissions from high-sulfur coal-fired boilers: Innovative Clean Coal Technology (ICCT)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-01

    The objective of this project is to demonstrate and evaluate commercially available Selective Catalytic Reduction (SCR) catalysts from US, Japanese and European catalyst suppliers on a high-sulfur US coal-fired boiler. SCR is a post-combustion nitrogen oxide (NO{sub x}) control technology that involves injecting ammonia into the flue gas generated from coal combustion in an electric utility boiler. The flue gas containing ammonia is then passed through a reactor that contains a specialized catalyst. In the presence of the catalyst, the amonia reacts with NO{sub x} to convert it to nitrogen and water vapor. Although SCR is widely practiced in Japanmore » and Europe, there are numerous technical uncertainties associated with applying SCR to US coals. These uncertainties include: (1) potential catalyst deactivation due to poisoning by trace metal species present in US coals that are not present in other fuels. (2) performance of the technology and effects on the balance-of-plant equipment in the presence of high amounts of SO, and SO{sub 3}. (3) performance of a wide variety of SCR catalyst compositions, geometries and methods of manufacture under typical high-sulfur coal-fired utility operating conditions. These uncertainties will be explored by constructing a series of small-scale SCR reactors and simultaneously exposing different SCR catalysts to flue gas derived from the combustion of high sulfur US coal. The demonstration will be performed at Gulf Power Company's Plant Crist Unit No. 5 (75 MW capacity) near Pensacola, Florida. The project will be funded by the US Department of Energy (DOE), Southern Company Services, Inc. (SCS on behalf of the entire Southern electric system), and the Electric Power Research Institute.« less

  6. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric.

    PubMed

    Wang, Haiqiang; Wu, Zhongbiao; Zhao, Weirong; Guan, Baohong

    2007-01-01

    TiO2 loading on woven glass fabric is applied to treat nitrogen oxides (NOx) by photocatalytic oxidation (PCO). In this paper, the PCO behavior of NO at high concentrations was studied by PCO of NOx at source levels (20-168 ppm). The PCO efficiency reached 27% in this experiment, while the inlet NOx concentration was 168 ppm (147 ppm NO). The dependency of the reaction rate on several key influencing factors (relative humidity, space time, inlet concentration, oxygen percentage) was also studied. The results illustrate that the resulting hydroxyl radical and active oxide play an important role in the oxidation of NOx. The reactions are limited by the thermodynamic equilibrium after ca. 15s space time. A possible explanation for the catalyst deactivation is the accumulation of nitric acid and nitrous acid on the TiO2 surface during the PCO of NOx. However, the photocatalytic activity can be recovered with a simple heat treatment. The results from the study of the effect of the inlet concentration were described with the Langmuir-Hinshelwood model.

  7. A Generalizable Top-Down Nanostructuring Method of Bulk Oxides: Sequential Oxygen-Nitrogen Exchange Reaction.

    PubMed

    Lee, Lanlee; Kang, Byungwuk; Han, Suyoung; Kim, Hee-Eun; Lee, Moo Dong; Bang, Jin Ho

    2018-05-27

    A thermal reaction route that induces grain fracture instead of grain growth is devised and developed as a top-down approach to prepare nanostructured oxides from bulk solids. This novel synthesis approach, referred to as the sequential oxygen-nitrogen exchange (SONE) reaction, exploits the reversible anion exchange between oxygen and nitrogen in oxides that is driven by a simple two-step thermal treatment in ammonia and air. Internal stress developed by significant structural rearrangement via the formation of (oxy)nitride and the creation of oxygen vacancies and their subsequent combination into nanopores transforms bulk solid oxides into nanostructured oxides. The SONE reaction can be applicable to most transition metal oxides, and when utilized in a lithium-ion battery, the produced nanostructured materials are superior to their bulk counterparts and even comparable to those produced by conventional bottom-up approaches. Given its simplicity and scalability, this synthesis method could open a new avenue to the development of high-performance nanostructured electrode materials that can meet the industrial demand of cost-effectiveness for mass production. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings.

    PubMed

    Wu, Qian; Gong, Li-Xiu; Li, Yang; Cao, Cheng-Fei; Tang, Long-Cheng; Wu, Lianbin; Zhao, Li; Zhang, Guo-Dong; Li, Shi-Neng; Gao, Jiefeng; Li, Yongjin; Mai, Yiu-Wing

    2018-01-23

    Design and development of smart sensors for rapid flame detection in postcombustion and early fire warning in precombustion situations are critically needed to improve the fire safety of combustible materials in many applications. Herein, we describe the fabrication of hierarchical coatings created by assembling a multilayered graphene oxide (GO)/silicone structure onto different combustible substrate materials. The resulting coatings exhibit distinct temperature-responsive electrical resistance change as efficient early warning sensors for detecting abnormal high environmental temperature, thus enabling fire prevention below the ignition temperature of combustible materials. After encountering a flame attack, we demonstrate extremely rapid flame detection response in 2-3 s and excellent flame self-extinguishing retardancy for the multilayered GO/silicone structure that can be synergistically transformed to a multiscale graphene/nanosilica protection layer. The hierarchical coatings developed are promising for fire prevention and protection applications in various critical fire risk and related perilous circumstances.

  9. Metatranscriptomic and metagenomic description of the bacterial nitrogen metabolism in waste water wet oxidation effluents.

    PubMed

    Crovadore, Julien; Soljan, Vice; Calmin, Gautier; Chablais, Romain; Cochard, Bastien; Lefort, François

    2017-10-01

    Anaerobic digestion is a common method for reducing the amount of sludge solids in used waters and enabling biogas production. The wet oxidation process (WOX) improves anaerobic digestion by converting carbon into methane through oxidation of organic compounds. WOX produces effluents rich in ammonia, which must be removed to maintain the activity of methanogens. Ammonia removal from WOX could be biologically operated by aerobic granules. To this end, granulation experiments were conducted in 2 bioreactors containing an activated sludge (AS). For the first time, the dynamics of the microbial community structure and the expression levels of 7 enzymes of the nitrogen metabolism in such active microbial communities were followed in regard to time by metagenomics and metatranscriptomics. It was shown that bacterial communities adapt to the wet oxidation effluent by increasing the expression level of the nitrogen metabolism, suggesting that these biological activities could be a less costly alternative for the elimination of ammonia, resulting in a reduction of the use of chemicals and energy consumption in sewage plants. This study reached a strong sequencing depth (from 4.4 to 7.6 Gb) and enlightened a yet unknown diversity of the microorganisms involved in the nitrogen pathway. Moreover, this approach revealed the abundance and expression levels of specialised enzymes involved in nitrification, denitrification, ammonification, dissimilatory nitrate reduction to ammonium (DNRA) and nitrogen fixation processes in AS.

  10. CFD analysis of municipal solid waste combustion using detailed chemical kinetic modelling.

    PubMed

    Frank, Alex; Castaldi, Marco J

    2014-08-01

    Nitrogen oxides (NO x ) emissions from the combustion of municipal solid waste (MSW) in waste-to-energy (WtE) facilities are receiving renewed attention to reduce their output further. While NO x emissions are currently 60% below allowed limits, further reductions will decrease the air pollution control (APC) system burden and reduce consumption of NH3. This work combines the incorporation of the GRI 3.0 mechanism as a detailed chemical kinetic model (DCKM) into a custom three-dimensional (3D) computational fluid dynamics (CFD) model fully to understand the NO x chemistry in the above-bed burnout zones. Specifically, thermal, prompt and fuel NO formation mechanisms were evaluated for the system and a parametric study was utilized to determine the effect of varying fuel nitrogen conversion intermediates between HCN, NH3 and NO directly. Simulation results indicate that the fuel nitrogen mechanism accounts for 92% of the total NO produced in the system with thermal and prompt mechanisms accounting for the remaining 8%. Results also show a 5% variation in final NO concentration between HCN and NH3 inlet conditions, demonstrating that the fuel nitrogen intermediate assumed is not significant. Furthermore, the conversion ratio of fuel nitrogen to NO was 0.33, revealing that the majority of fuel nitrogen forms N2. © The Author(s) 2014.

  11. Synthesis of Nitrogen-Doped Mesoporous Carbon for the Catalytic Oxidation of Ethylbenzene

    NASA Astrophysics Data System (ADS)

    Wang, Ruicong; Yu, Yifeng; Zhang, Yue; Lv, Haijun; Chen, Aibing

    2017-06-01

    Nitrogen-doped ordered mesoporous carbon (NOMC) was fabricated via a simple hard-template method by functionalized ionic liquids as carbon and nitrogen source, SBA-15 as a hard-template. The obtained NOMC materials have a high nitrogen content of 5.55 %, a high surface area of 446.2 m2 g-1, and an excellent performance in catalysing oxidation of ethylbenzene. The conversion rate of ethylbenzene can be up to 84.5% and the yield of acetophenone can be up to 69.9%, the results indicated that the NOMC materials have a faster catalytic rate and a higher production of acetophenone than catalyst-free and CMK-3, due to their uniform pore size, high surface area and rich active sites in the carbon pore walls.

  12. Combustion of droplets and sprays

    NASA Astrophysics Data System (ADS)

    Eigenbrod, Christian; Sattelmayer, Thomas; Bäßler, Stefan; Mauss, Fabian; Meisl, Jürgen; Oomens, Bas; Rackwitz, Leif; Tait, Nigel; Angelberger, Christian; Eilts, Peter; Magnusson, Ingemar; Lauvergne, Romain; Tatschl, Reinhard

    2005-10-01

    The combustion of liquid hydrocarbon fuels in internal combustion engines and gas turbines for energy production and aircraft propulsion is intrinsically tied to the formation of pollutants. Apart from aiming for the highest combustion efficiencies in order to lower the operational costs and the emission of CO2, the reduction of poisonous and environmentally harmful exhaust constituents is a challenging task for scientists and engineers. The most prominent pollutants are soot, identified to trigger respiratory diseases and cancer, and nitric oxides such as NO and NO2, which promote the formation of ozone affecting the cardiovascular system when released in the lower atmosphere. Soot and nitric oxides are greenhouse pollutants in the upper atmosphere. Even though only 2-3% of the anthropogenic emission of nitric oxides are contributed by aircraft, it is the only emission at high altitudes. Unfortunately, it has the greatest impact on climate there and it does not matter whether the fuels are fossil or, in the future, biomass.

  13. Register of specialized sources for information on selected fuels and oxidizers. [rocket propellants, bibliographies

    NASA Technical Reports Server (NTRS)

    Ludtke, P. R.

    1975-01-01

    Thirty-eight (38) organizations are listed and described that catalog and file information in their data systems on fuel and oxidizers. The fuels include hydrogen, methane and hydrazine-type fuels; the oxidizers include oxygen, fluorine, flox, nitrogen tetroxide and ozone. The type of available information covers thermophysical properties, propellant systems, propellant fires-control-extinguishment, propellant explosions, propellant combustion, propellant safety, and fluorine chemistry. These organizations have assembled and collated their information so that it will be useful in the solution of engineering problems.

  14. Interference of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1975-01-01

    The interference of small concentrations (less than 4 percent by volume) of oxygen, carbon dioxide, and water vapor on the analysis for oxides of nitrogen by chemiluminescence was measured. The sample gas consisted primarily of nitrogen, with less than 100 parts per million concentration of nitric oxide, and with small concentrations of oxygen, carbon dioxide, and water vapor added. Results obtained under these conditions indicate that although oxygen does not measurably affect the analysis for nitric oxide, the presence of carbon dioxide and water vapor causes the indicated nitric oxide concentration to be too low. An interference factor - defined as the percentage change in indicated nitric oxide concentration (relative to the true nitric oxide concentration) divided by the percent interfering gas present - was determined for carbon dioxide to be -0.60 + or - 0.04 and for water vapor to be -2.1 + or - 0.3.

  15. Experimental identification of nitrogen-vacancy complexes in nitrogen implanted silicon

    NASA Astrophysics Data System (ADS)

    Adam, Lahir Shaik; Law, Mark E.; Szpala, Stanislaw; Simpson, P. J.; Lawther, Derek; Dokumaci, Omer; Hegde, Suri

    2001-07-01

    Nitrogen implantation is commonly used in multigate oxide thickness processing for mixed signal complementary metal-oxide-semiconductor and System on a Chip technologies. Current experiments and diffusion models indicate that upon annealing, implanted nitrogen diffuses towards the surface. The mechanism proposed for nitrogen diffusion is the formation of nitrogen-vacancy complexes in silicon, as indicated by ab initio studies by J. S. Nelson, P. A. Schultz, and A. F. Wright [Appl. Phys. Lett. 73, 247 (1998)]. However, to date, there does not exist any experimental evidence of nitrogen-vacancy formation in silicon. This letter provides experimental evidence through positron annihilation spectroscopy that nitrogen-vacancy complexes indeed form in nitrogen implanted silicon, and compares the experimental results to the ab initio studies, providing qualitative support for the same.

  16. Review of the Secondary National Ambient Air Quality Standard for Nitrogen Oxides, Sulfur Oxides and Particulate Matter: Risk and Exposure Assessment Planning Document

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) is conducting a review of the air quality criteria and the secondary (welfare-based) national ambient air quality standards (NAAQS) for nitrogen oxides (NOx), sulfur oxides (SOx), and particulate matter (PM). The major phases of the ...

  17. NO.sub.x reduction method

    DOEpatents

    Sekar, Ramanujam R.; Hoppie, Lyle O.

    1996-01-01

    A method of reducing oxides of nitrogen (NO.sub.X) in the exhaust of an internal combustion engine includes producing oxygen enriched air and nitrogen enriched air by an oxygen enrichment device. The oxygen enriched air may be provided to the intake of the internal combustion engine for mixing with fuel. In order to reduce the amount of NO.sub.X in the exhaust of the internal combustion engine, the molecular nitrogen in the nitrogen enriched air produced by the oxygen enrichment device is subjected to a corona or arc discharge so as to create a plasma and as a result, atomic nitrogen. The resulting atomic nitrogen then is injected into the exhaust of the internal combustion engine causing the oxides of nitrogen in the exhaust to be reduced into nitrogen and oxygen. In one embodiment of the present invention, the oxygen enrichment device that produces both the oxygen and nitrogen enriched air can include a selectively permeable membrane.

  18. Explosive decomposition of ethylene oxide at elevated condition: effect of ignition energy, nitrogen dilution, and turbulence.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Braithwaite, M; Lemkowitz, S M; Pasman, H J

    2005-02-14

    Experimental and theoretical investigation of explosive decomposition of ethylene oxide (EO) at fixed initial experimental parameters (T=100 degrees C, P=4 bar) in a 20-l sphere was conducted. Safety-related parameters, namely the maximum explosion pressure, the maximum rate of pressure rise, and the Kd values, were experimentally determined for pure ethylene oxide and ethylene oxide diluted with nitrogen. The influence of the ignition energy on the explosion parameters was also studied. All these dependencies are quantified in empirical formulas. Additionally, the effect of turbulence on explosive decomposition of ethylene oxide was investigated. In contrast to previous studies, it is found that turbulence significantly influences the explosion severity parameters, mostly the rate of pressure rise. Thermodynamic models are used to calculate the maximum explosion pressure of pure and of nitrogen-diluted ethylene oxide, at different initial temperatures. Soot formation was experimentally observed. Relation between the amounts of soot formed and the explosion pressure was experimentally observed and was calculated.

  19. Production of nitrogen oxides in air pulse-periodic discharge with apokamp

    NASA Astrophysics Data System (ADS)

    Panarin, Victor A.; Skakun, Victor S.; Sosnin, Eduard A.; Tarasenko, Victor F.

    2018-05-01

    The decomposition products of pulse-periodic discharge atmospheric pressure plasma in apokamp, diffuse and corona modes were determined by optical and chemical methods. It is shown that apokamp discharge formation starts at a critical value of dissipation power in a discharge channel. Simultaneously, due to the thermochemical reactions, plasma starts to efficiently produce nitrogen oxides.

  20. Determination of the δ15N of total nitrogen in solids; RSIL lab code 2893

    USGS Publications Warehouse

    Revesz, Kinga; Qi, Haiping; Coplen, Tyler B.

    2006-01-01

    The purpose of the Reston Stable Isotope Laboratory (RSIL) lab code 2893 is to determine the δ(15N/14N), abbreviated as δ15N , of total nitrogen in solid samples. A Carlo Erba NC 2500 elemental analyzer (EA) is used to convert total nitrogen in a solid sample into N2 gas. The EA is connected to a continuous flow isotope-ratio mass spectrometer (CF-IRMS), which determines relative difference in the isotope-amount ratios of stable nitrogen isotopes (15N/14N)of the product N2 gas. The combustion is quantitative; no isotopic fractionation is involved. Samples are placed in a tin capsule and loaded into the Costech Zero Blank Autosampler of the EA. Under computer control, samples are dropped into a heated reaction tube that contains an oxidant, where the combustion takes place in a helium atmosphere containing an excess of oxygen gas. Combustion products are transported by a helium carrier through a reduction tube to remove excess oxygen and convert all nitrous oxides into N2 and through a drying tube to remove water. The gas-phase products, mainly CO2 and N2, are separated by a gas chromatograph. The gas is then introduced into the isotope-ratio mass spectrometer (IRMS) through a Finnigan MAT (now Thermo Scientific) ConFlo II interface, which also is used to inject N2 reference gas and helium for sample dilution. The IRMS is a Thermo Scientific Delta V Plus CF-IRMS. It has a universal triple collector, two wide cups with a narrow cup in the middle, capable of measuring mass/charge (m/z) 28, 29, 30, simultaneously. The ion beams from N2 are as follows: m/z 28 = N2 = 14N14N; m/z 29 = N2 = 14N15N primarily; m/z 30 = NO = 14N16O primarily, which is a sign of contamination or incomplete reduction.