Science.gov

Sample records for nitrogen-overfertilized rice plants

  1. Volatiles induction in rice stink bug host grasses and rice plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice stink bug (RSB), Oebalus pugnax F., is an important pest of heading rice in the United States. Little is known about plant volatiles production following herbivory by the rice stink bug. RSB feeding induced volatiles production in different RSB host grasses and rice varieties, and may help expl...

  2. The impact of planting date on management of the rice water weevil in Louisiana rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice water weevil, Lissorhoptrus oryzophilus, is the most destructive insect pest of rice in the United States. Early planting of rice to avoid damaging infestations of the rice water weevil has long been suggested as a management tactic. A five-year study was conducted to characterize the influ...

  3. Epigenetic Inheritance in Rice Plants

    PubMed Central

    Akimoto, Keiko; Katakami, Hatsue; Kim, Hyun-Jung; Ogawa, Emiko; Sano, Cecile M.; Wada, Yuko; Sano, Hiroshi

    2007-01-01

    Background and Aims Epigenetics is defined as mechanisms that regulate gene expression without base sequence alteration. One molecular basis is considered to be DNA cytosine methylation, which reversibly modifies DNA or chromatin structures. Although its correlation with epigenetic inheritance over generations has been circumstantially shown, evidence at the gene level has been limited. The present study aims to find genes whose methylation status directly correlates with inheritance of phenotypic changes. Methods DNA methylation in vivo was artificially reduced by treating rice (Oryza sativa ssp. japonica) seeds with 5-azadeoxycytidine, and the progeny were cultivated in the field for > 10 years. Genomic regions with changed methylation status were screened by the methylation-sensitive amplified polymorphysm (MSAP) method, and cytosine methylation was directly scanned by the bisulfite mapping method. Pathogen infection with Xanthomonas oryzae pv. oryzae, race PR2 was performed by the scissors-dip method on mature leaf blades. Key Results The majority of seedlings were lethal, but some survived to maturity. One line designated as Line-2 showed a clear marker phenotype of dwarfism, which was stably inherited by the progeny over nine generations. MSAP screening identified six fragments, among which two were further characterized by DNA blot hybridization and direct methylation mapping. One clone encoding a retrotransposon gag–pol polyprotein showed a complete erasure of 5-methylcytosines in Line-2, but neither translocation nor expression of this region was detectable. The other clone encoded an Xa21-like protein, Xa21G. In wild-type plants, all cytosines were methylated within the promoter region, whereas in Line-2, corresponding methylation was completely erased throughout generations. Expression of Xa21G was not detectable in wild type but was constitutive in Line-2. When infected with X. oryzae pv. oryzae, against which Xa21 confers resistance in a gene

  4. Analysis of rice Act1 5' region activity in transgenic rice plants.

    PubMed Central

    Zhang, W; McElroy, D; Wu, R

    1991-01-01

    The 5' region of the rice actin 1 gene (Act1) has been developed as an efficient regulator of foreign gene expression in transgenic rice plants. To determine the pattern and level of rice Act1 5' region activity, transgenic rice plants containing the Act1 5' region fused to a bacterial beta-glucuronidase (Gus) coding sequence were generated. Two independent clonal lines of transgenic rice plants were analyzed in detail. Quantitative analysis showed that tissue from these transgenic rice plants have a level of GUS protein that represents as much as 3% of total soluble protein. We were able to demonstrate that Act1-Gus gene expression is constitutive throughout the sporophytic and gametophytic tissues of these transgenic rice plants. Plants from one transgenic line were analyzed for the segregation of GUS activity in pollen by in situ histochemical staining, and the inheritance and stability of Act1-Gus expression were assayed in subsequently derived progeny plants. PMID:1821763

  5. Red rice (Oryza sativa L.) emergence characteristics and influence on rice (O. sativa) yield at different planting dates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cultivated rice yield losses due to red rice infestation vary by cultivar, red rice density, and duration of interference. The competition effects of red rice could be influenced further by emergence characteristics, red rice biotype, and planting time of cultivated rice. We aimed to characterize th...

  6. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants

    PubMed Central

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-01-01

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection. PMID:27185548

  7. Temporal interactions of plant - insect - predator after infection of bacterial pathogen on rice plants.

    PubMed

    Sun, Ze; Liu, Zhuang; Zhou, Wen; Jin, Huanan; Liu, Hao; Zhou, Aiming; Zhang, Aijun; Wang, Man-Qun

    2016-01-01

    Pathogenic infection on plants may affect interactions of host-plants with their herbivores, as well as the herbivores with their predators. In this study, the effects of infection by pathogenic bacterium Xanthomonas oryzae pv. oryzae (Xoo), which causes a vascular disease in rice, on rice plants and consequent interactions with a rice herbivore, brown rice planthopper (BPH) Nilaparvata lugens, and its major predator, Cyrtorhinus lividipennis, were investigated. The results showed that the rice plants exhibited increased resistance to BPH only at 3 d post-inoculation of Xoo, while the Xoo infection did not affect the development and fecundity of BPH. BPH exhibited a higher preference to Xoo infected rice plants, whereas C. lividipennis preferred the Xoo infected rice plants after BPH fed, but preferred healthy rice plants without BPH fed. Volatile organic compounds emitted from Xoo rice were significantly higher than those from healthy rice plants, Xoo infection on BPH fed plants caused rice plants to emit more the herbivore-induced plant volatiles, while all of these changes correlated to the temporal dimension. These results demonstrated that Xoo infection significantly influenced the interactions of rice plants with two non-vectors, BPH and its predator, although these effects exhibited in a temporal pattern after infection. PMID:27185548

  8. Association of arsenic with nutrient elements in rice plants.

    PubMed

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants. PMID:23771154

  9. Electrophysiological responses of the rice leaffolder, cnaphalocrocis medinalis (lepidoptera: pyralidae), to rice plant volatiles

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The electrophysiological activities of 38 synthetic volatiles that were known to be released from the rice plants (Poaceae: Oryza spp.) were studied using electroantennogram (EAG) recording technique on male and female antennae of the rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: ...

  10. Microbial Community Structure in the Rhizosphere of Rice Plants

    PubMed Central

    Breidenbach, Björn; Pump, Judith; Dumont, Marc G.

    2016-01-01

    The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa) was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e., rhizosphere versus bulk soil) had a greater effect on the community structure than did time (e.g., plant growth stage). Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria, and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g., Geobacter, Anaeromyxobacter) and fermenters (e.g., Clostridiaceae, Opitutaceae) were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth. PMID:26793175

  11. Effect of Rice Plants on Nitrogenase Activity of Flooded Soils

    PubMed Central

    Habte, Mitiku; Alexander, Martin

    1980-01-01

    In samples of flooded soil containing blue-green algae (cyanobacteria), the presence of rice plants did not influence the nitrogenase activity of the algae. Nitrogenase activity of heterotrophic bacteria was enhanced by the presence of rice plants, but this activity was not affected by changes in plant density. The rate of nitrogen fixation in the rhizosphere, however, varied significantly among the 16 rice varieties tested. A simple method was devised to test the nitrogen-fixing activity in the root zone of rice varieties, and data were obtained showing marked differences in the activities of the 16 varieties. In tests of two varieties with dissimilar rates of nitrogen fixation in their rhizospheres, the variety which had the greater root weight and lesser shoot weight and which supported greater methane formation had the greater nitrogenase activity. PMID:16345630

  12. Effect of rice plants on nitrogenase activity of flooded soils.

    PubMed

    Habte, M; Alexander, M

    1980-09-01

    In samples of flooded soil containing blue-green algae (cyanobacteria), the presence of rice plants did not influence the nitrogenase activity of the algae. Nitrogenase activity of heterotrophic bacteria was enhanced by the presence of rice plants, but this activity was not affected by changes in plant density. The rate of nitrogen fixation in the rhizosphere, however, varied significantly among the 16 rice varieties tested. A simple method was devised to test the nitrogen-fixing activity in the root zone of rice varieties, and data were obtained showing marked differences in the activities of the 16 varieties. In tests of two varieties with dissimilar rates of nitrogen fixation in their rhizospheres, the variety which had the greater root weight and lesser shoot weight and which supported greater methane formation had the greater nitrogenase activity. PMID:16345630

  13. Transgenic strategies to confer resistance against viruses in rice plants

    PubMed Central

    Sasaya, Takahide; Nakazono-Nagaoka, Eiko; Saika, Hiroaki; Aoki, Hideyuki; Hiraguri, Akihiro; Netsu, Osamu; Uehara-Ichiki, Tamaki; Onuki, Masatoshi; Toki, Seichi; Saito, Koji; Yatou, Osamu

    2014-01-01

    Rice (Oryza sativa L.) is cultivated in more than 100 countries and supports nearly half of the world’s population. Developing efficient methods to control rice viruses is thus an urgent necessity because viruses cause serious losses in rice yield. Most rice viruses are transmitted by insect vectors, notably planthoppers and leafhoppers. Viruliferous insect vectors can disperse their viruses over relatively long distances, and eradication of the viruses is very difficult once they become widespread. Exploitation of natural genetic sources of resistance is one of the most effective approaches to protect crops from virus infection; however, only a few naturally occurring rice genes confer resistance against rice viruses. Many investigators are using genetic engineering of rice plants as a potential strategy to control viral diseases. Using viral genes to confer pathogen-derived resistance against crops is a well-established procedure, and the expression of various viral gene products has proved to be effective in preventing or reducing infection by various plant viruses since the 1990s. RNA interference (RNAi), also known as RNA silencing, is one of the most efficient methods to confer resistance against plant viruses on their respective crops. In this article, we review the recent progress, mainly conducted by our research group, in transgenic strategies to confer resistance against tenuiviruses and reoviruses in rice plants. Our findings also illustrate that not all RNAi constructs against viral RNAs are equally effective in preventing virus infection and that it is important to identify the viral “Achilles’ heel” gene to target for RNAi attack when engineering plants. PMID:24454308

  14. Effect of Plant and Environmental Factors on ALS-resistant Gene Transfer from ClearfieldTM Rice to Red Rice.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Imazethapyr-resistant gene from ClearfieldTM (CL) rice varieties transfers through pollen flow to red rice (Oryza sativa L.), a noxious weed in rice production in southern states. Factors which affect gene transfer rate include, but are not limited to, plant and environmental factors. Thus, we aimed...

  15. Differences in how rice plants processes arsenic in their cells

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Arsenic (As), a carcinogenic heavy metal, is a problem in some drinking water and staple food supplies around the world. Rice plants readily uptake arsenic and transport a portion of it into the grain. Arsenic is also toxic to plants; therefore mechanisms that reduce toxicity or accumulation have ev...

  16. Molecular analysis of rice plant mutated after space flight

    NASA Astrophysics Data System (ADS)

    Cheng, Z.; Li, C.; Wei, L.; Xu, D.; Gu, D.; Guan, S.; Zhao, H.; Xin, P.; Sun, Y.

    We have obtained several rice mutants planted from seeds flown on recoverable satellites. Some new traits, such as good yields, diseases resistances and higher nutrient values, have been identified, putatively as consequences of the space environment. Radiation inside the Chinese recoverable satellite was composed of low flux of high energy particles (>40 Mev/u). To study the mechanisms of plant mutations induced by the space environment, we used dry rice seeds as a model to identify the phenotype of mutations, and used the wealth of the rice genome to identify the mutated genes in the mutants. The research included collecting rice plant mutants in the seeds flown on the satellites, identifying the nature of genomic and proteomic alterations, modifications and identifying the functional changes of the specific genes. The study showed that the rice seeds are a good model for exploring biological effect of space environment since 1) it is easy fly the seeds without specific hardware and crew work, 2) it is easy to obtain pure mutant breed lines for cloning DNA sequence in order to compare with the sequence in the wild type, and 3) it is easy to quantitatively analyze genetics using advanced molecular techniques.

  17. Plant phosphomannose isomerase as a selectable marker for rice transformation

    PubMed Central

    Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo

    2016-01-01

    The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847

  18. Plant phosphomannose isomerase as a selectable marker for rice transformation.

    PubMed

    Hu, Lei; Li, Hao; Qin, Ruiying; Xu, Rongfang; Li, Juan; Li, Li; Wei, Pengcheng; Yang, Jianbo

    2016-01-01

    The E. coli phosphomannose isomerase (EcPMI) gene is widely used as a selectable marker gene (SMG) in mannose (Man) selection-based plant transformation. Although some plant species exhibit significant PMI activity and active PMIs were even identified in Man-sensitive plants, whether plant PMIs can be used as SMGs remains unclear. In this study, we isolated four novel PMI genes from Chlorella variabilis and Oryza sativa. Their isoenzymatic activities were examined in vitro and compared with that of EcPMI. The active plant PMIs were separately constructed into binary vectors as SMGs and then transformed into rice via Agrobacterium. In both Indica and Japonica subspecies, our results indicated that the plant PMIs could select and produce transgenic plants in a pattern similar to that of EcPMI. The transgenic plants exhibited an accumulation of plant PMI transcripts and enhancement of the in vivo PMI activity. Furthermore, a gene of interest was successfully transformed into rice using the plant PMIs as SMGs. Thus, novel SMGs for Man selection were isolated from plants, and our analysis suggested that PMIs encoding active enzymes might be common in plants and could potentially be used as appropriate genetic elements in cisgenesis engineering. PMID:27174847

  19. Enantioselective degradation of metalaxyl in grape, tomato, and rice plants.

    PubMed

    Wang, Meiyun; Hua, Xiude; Zhang, Qing; Yang, Yu; Shi, Haiyan; Wang, Minghua

    2015-02-01

    Enantioselective biodegradation of chiral pesticide metalaxyl in grape, tomato, and rice plants under field conditions were studied. Metalaxyl enantiomers were completely separated with a resolution (Rs) of 5.01 by high-performance liquid chromatography (HPLC) based on a cellulose tris (3-chloro-4-methyl phenyl carbamate) chiral column (Lux Cellulose-2). Metalaxyl enantiomers from matrixes were extracted by acetonitrile and purged using Cleanert Alumina-A solid phase extraction (SPE). The linearity, recovery, precision, sensitivity, and matrix effect of the method were assessed. The result showed that significant stereoselectivity occurred in grape, tomato, and rice plants. In grape, (+)-S-metalaxyl with a half-life of 5.5 d degraded faster than (-)-R-metalaxyl with that of 6.9 d, and the enantiomer fraction (EF) value reached 0.37 at 21 d. The same enantioselectivity was observed in tomato, and the half-life was 2.2 d for the S-enantiomer and 3.0 d for the R-enantiomer. The EF values decreased from 0.49 of 0 d to 0.26 of 14 d. On the other hand, a preferential degradation of the R-form was found in rice plants, with an EF value of 0.70 at 14 d, and the corresponding half-life was 2.3 d for the R-form and 2.8 d for the S-form. PMID:25311959

  20. Suppression of Magnaporthe oryzae and interaction between Bacillus subtilis and rice plants in the control of rice blast.

    PubMed

    Sha, Yuexia; Wang, Qi; Li, Yan

    2016-01-01

    Magnaporthe oryzae, the causative pathogen of rice blast, has caused extensive losses to rice cultivation worldwide. Strains of the bacterium Bacillus subtilis have been used as biocontrol agents against rice blast. However, little has been reported about the interaction between B. subtilis and the rice plant and its mechanism of action. Here, the colonization process and induced disease resistance by B. subtilis SYX04 and SYX20 in rice plants was examined. Strains of B. subtilis labeled with green fluorescent protein reached population of more than 5 × 10(6) CFU/g after 20 days on mature rice leaves and were detected after 3 days on newly grown leaves. Results showed that SYX04 and SYX20 not only inhibited spore germination, germ tube length, and appressorial formation but also caused a series of alterations in the structures of hyphae and conidia. The cell walls and membrane structures of the fungus showed ultrastructural abnormalities, which became severely degraded as observed through scanning electron microscopy and transmission electron microscopy. The mixture of both B. subtilis and M. oryzae resulted in enhanced activity of peroxidase, and polyphenol oxidase while there was significantly more superoxide dismutase activity in plants that had been sprayed with B. subtilis alone. The present study suggests that colonized SYX04 and SYX20 strains protected rice plants and exhibited antifungal activity and induced systemic resistance, thus indicating their potential biological control agents. PMID:27536521

  1. Electrophysiological responses of the rice leaffolder, Cnaphalocrocis medinalis, to rice plant volatiles.

    PubMed

    Sun, Xiao; Liu, Zhuang; Zhang, Aijun; Dong, Hai-Bo; Zeng, Fang-Fang; Pan, Xiang-Yu; Wang, Yongmo; Wang, Man-Qun

    2014-01-01

    The rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae), is one of the most destructive pests of rice. Electrophysiological responses of this species to 38 synthetic volatiles known to be released from rice plants (Poaceae: Oryza spp.) were studied using the electroantennogram (EAG) method. Compounds that elicited the strongest EAG responses for each physiological condition were selected for EAG dose-response tests at five concentrations. These compounds included: methyl salicylate, heptanol, linalool, cyclohexanol, and 2-heptanone for one-day-old male moths; heptanol, hexanal, (Z)-2-hexen-1-ol, and nonadecane for one-day- old females; methyl salicylate, heptanol, (E)-2-hexen-1-ol, and (Z)-2-hexen-1-ol for three-day- old males; linalool, heptanol, (E)-2-hexen-1-ol, 2-heptanone, and hexanal for three-day-old females; 2-heptanone, cyclohexanol, linalool, heptanol, and methyl salicylate for five-day-old virgin females; and methyl benzoate, (Z)-2-hexen-1-ol, heptanol, linalool, and hexanal for five- day-old mated females. Female and male C. medinalis exhibited broad overlap in their EAG responses, and there was no clear difference between male and female EAG responses to different compounds. Statistical analyses revealed that both volatile compound chemical structure and C. medinalis physiological condition (age, sex, and mating condition) had an effect on EAG response. PMID:25373217

  2. Electrophysiological Responses of the Rice Leaffolder, Cnaphalocrocis medinalis, to Rice plant Volatiles

    PubMed Central

    Sun, Xiao; Liu, Zhuang; Zhang, Aijun; Dong, Hai-Bo; Zeng, Fang-Fang; Pan, Xiang-Yu; Wang, Yongmo; Wang, Man-Qun

    2014-01-01

    The rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae), is one of the most destructive pests of rice. Electrophysiological responses of this species to 38 synthetic volatiles known to be released from rice plants (Poaceae: Oryza spp.) were studied using the electroantennogram (EAG) method. Compounds that elicited the strongest EAG responses for each physiological condition were selected for EAG dose-response tests at five concentrations. These compounds included: methyl salicylate, heptanol, linalool, cyclohexanol, and 2-heptanone for one-day-old male moths; heptanol, hexanal, (Z)-2-hexen-1-ol, and nonadecane for one-dayold females; methyl salicylate, heptanol, (E)-2-hexen-1-ol, and (Z)-2-hexen-1-ol for three-dayold males; linalool, heptanol, (E)-2-hexen-1-ol, 2-heptanone, and hexanal for three-day-old females; 2-heptanone, cyclohexanol, linalool, heptanol, and methyl salicylate for five-day-old virgin females; and methyl benzoate, (Z)-2-hexen-1-ol, heptanol, linalool, and hexanal for fiveday- old mated females. Female and male C. medinalis exhibited broad overlap in their EAG responses, and there was no clear difference between male and female EAG responses to different compounds. Statistical analyses revealed that both volatile compound chemical structure and C. medinalis physiological condition (age, sex, and mating condition) had an effect on EAG response. PMID:25373217

  3. Deepwater rice: A model plant to study stem elongation

    SciTech Connect

    Kende, H.; Knaap, E. van der; Cho, H.T.

    1998-12-01

    Semiaquatic plants grow mostly in flood plains and along river beds and are adapted to survive partial submergence during periods of flooding. Among their adaptive features are the development of internal air channels (aerenchyma) that facilitate aeration of submerged organs and the capacity for rapid elongation when the plants become partially covered by floodwaters. In addition to its importance as a crop plant, deepwater rice is also excellent for studying basic aspects of plant growth. The growth response is induced by an environmental signal and is mediated by at least three interacting hormones, namely ethylene, ABA, and GA. Internodal elongation is based on increased cell-division activity and enhanced cell elongation in well-delineated zones of the internode. This allows one to study both processes of growth in an integrated manner. Also, the unusually high growth rates magnify growth-related cellular, physiological, biochemical, and molecular processes, thereby facilitating their analysis. In addition to yielding fundamental insights into the growth process, studies of internodal elongation in deepwater rice may ultimately help to identify genes that could confer at least limited elongation capacity onto modern, high-yielding cultivars.

  4. A built-in strategy for containment of transgenic plants: creation of selectively terminable transgenic rice.

    PubMed

    Lin, Chaoyang; Fang, Jun; Xu, Xiaoli; Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  5. A Built-In Strategy for Containment of Transgenic Plants: Creation of Selectively Terminable Transgenic Rice

    PubMed Central

    Zhao, Te; Cheng, Jiaan; Tu, Juming; Ye, Gongyin; Shen, Zhicheng

    2008-01-01

    Plant transgenic technology has been widely utilized for engineering crops for trait improvements and for production of high value proteins such as pharmaceuticals. However, the unintended spreading of commercial transgenic crops by pollination and seed dispersal is a major concern for environmental and food safety. Simple and reliable containment strategies for transgenes are highly desirable. Here we report a novel method for creating selectively terminable transgenic rice. In this method, the gene(s) of interest is tagged with a RNA interference cassette, which specifically suppresses the expression of the bentazon detoxification enzyme CYP81A6 and thus renders transgenic rice to be sensitive to bentazon, a herbicide used for rice weed control. We generated transgenic rice plants by this method using a new glyphosate resistant 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene from Pesudomonas putida as the gene of interest, and demonstrated that these transgenic rice plants were highly sensitive to bentazon but tolerant to glyphosate, which is exactly the opposite of conventional rice. Field trial of these transgenic rice plants further confirmed that they can be selectively killed at 100% by one spray of bentazon at a regular dose used for conventional rice weed control. Furthermore, we found that the terminable transgenic rice created in this study shows no difference in growth, development and yield compared to its non-transgenic control. Therefore, this method of creating transgenic rice constitutes a novel strategy of transgene containment, which appears simple, reliable and inexpensive for implementation. PMID:18350155

  6. Impact of plant and environmental factors on ALS-resistant gene transfer rate from ClearfieldTM rice to red rice biotypes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pollen-mediated transfer of ALS-resistant gene from ClearfieldTM (CL) rice to red rice can affect the population dynamics and long-term management of red rice. To mitigate gene flow, it is important to understand the plant and environmental factors which affect gene transfer rate. This experiment ai...

  7. Retrotransposon activation followed by rapid repression in introgressed rice plants.

    PubMed

    Liu, B; Wendel, J F

    2000-10-01

    Plant retrotransposons are largely inactive during normal development, but may be activated by stresses. Both copia-like and gypsy-like retrotransposons of rice were activated by introgression of DNA from the wild species Zizania latifolia Griseb. The copy number increase was associated with cytosine methylation changes of the elements. Activity of the elements was ephemeral, as evidenced by nearly identical genomic Southern hybridization patterns among randomly chosen individuals both within and between generations for a given line, and the absence of transcripts based on Northern analysis. DNA hypermethylation, internal sequence deletion, and possibly other mechanisms are likely responsible for the rapid element repression. Implications of the retroelement dynamics on plant genome evolution are discussed. PMID:11081978

  8. Rice-planted area extraction from multi-temporal remote sensing images

    NASA Astrophysics Data System (ADS)

    Shen, Jinxiang; Zhang, Hong; Ma, Yanmei

    2015-12-01

    Rice-planted area and production monitoring has significance for governments to formulate some food related policy. Remote sensing has an obvious advantage for the rice monitoring. As for the rice-planted area, the special growth raw shows different feature in the remote sensing image. In this paper, the multi-temporal Landsat-8 OLI image of Menghun and Mengzhe town in Xishuangbanna autonomous prefecture where planting a large number of rice was used as the test data, the corresponding changes of the difference between NDVI and NDWI was used as the diagnostic feature, and the SAM classification approach was introduced to extract rice-planted area. The experiments shows that the approach could acquire more than 95% of the extraction accuracy.

  9. Phloem-exudate proteome analysis of response to insect brown plant-hopper in rice.

    PubMed

    Du, Ba; Wei, Zhe; Wang, Zhanqi; Wang, Xiaoxiao; Peng, Xinxin; Du, Bo; Chen, Rongzhi; Zhu, Lili; He, Guangcun

    2015-07-01

    Brown plant-hopper (Nilaparvata lugens Stål, BPH), one of the most devastating agricultural insect pests of rice throughout Asia, ingests nutrients from rice sieve tubes and causes a dramatic yield loss. Planting resistant variety is an efficient and economical way to control this pest. Understanding the mechanisms of host resistance is extremely valuable for molecular design of resistant rice variety. Here, we used an iTRAQ-based quantitative proteomics approach to perform analysis of protein expression profiles in the phloem exudates of BPH-resistant and susceptible rice plants following BPH infestation. A total of 238 proteins were identified, most of which were previously described to be present in the phloem of rice and other plants. The expression of genes for selected proteins was confirmed using a laser capture micro-dissection method and RT-PCR. The mRNAs for three proteins, RGAP, TCTP, and TRXH, were further analyzed by using in situ mRNA hybridization and localized in the phloem cells. Our results showed that BPH feeding induced significant changes in the abundance of proteins in phloem sap of rice involved in multiple pathways, including defense signal transduction, redox regulation, and carbohydrate and protein metabolism, as well as cell structural proteins. The results presented provide new insights into rice resistance mechanisms and should facilitate the breeding of novel elite BPH-resistant rice varieties. PMID:26072143

  10. Transgenic rice plants expressing the antifungal AFP protein from Aspergillus giganteus show enhanced resistance to the rice blast fungus Magnaporthe grisea.

    PubMed

    Coca, María; Bortolotti, Cristina; Rufat, Mar; Peñas, Gisela; Eritja, Ramón; Tharreau, Didier; del Pozo, Alvaro Martinez; Messeguer, Joaquima; San Segundo, Blanca

    2004-01-01

    The Aspergillus giganteus antifungal protein (AFP), encoded by the afp gene, has been reported to possess in vitro antifungal activity against various economically important fungal pathogens, including the rice blast fungus Magnaporthe grisea. In this study, transgenic rice ( Oryza sativa ) constitutively expressing the afp gene was generated by Agrobacterium -mediated transformation. Two different DNA constructs containing either the afp cDNA sequence from Aspergillus or a chemically synthesized codon-optimized afp gene were introduced into rice plants. In both cases, the DNA region encoding the signal sequence from the tobacco AP24 gene was N-terminally fused to the coding sequence of the mature AFP protein. Transgenic rice plants showed stable integration and inheritance of the transgene. No effect on plant morphology was observed in the afp -expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of afp plants on the in vitro growth of M. grisea indicated that the AFP protein produced by the trangenic rice plants was biologically active. Several of the T(2) homozygous afp lines were challenged with M. grisea in a detached leaf infection assay. Transformants exhibited resistance to rice blast at various levels. Altogether, the results presented here indicate that AFP can be functionally expressed in rice plants for protection against the rice blast fungus M. grisea. PMID:15159626

  11. Demethylation of methylmercury in growing rice plants: An evidence of self-detoxification.

    PubMed

    Xu, Xiaohan; Zhao, Jiating; Li, Yunyun; Fan, Yuqin; Zhu, Nali; Gao, Yuxi; Li, Bai; Liu, Hanyu; Li, Yu-Feng

    2016-03-01

    Mercury (Hg) is a global pollutant that poses a serious threat to human and the environment. Rice was found as an important source for human exposure to Hg in some areas. In this study, the transportation and transformation of IHg and MeHg in rice plants exposed to IHg or MeHg were investigated. The IHg and MeHg concentrations in rice roots and shoots collected every five days were analyzed by HPLC-ICP-MS and SR-XANES. When exposed to MeHg, the percent of IHg in rice roots and shoots increased while MeHg decreased significantly, suggesting prominent demethylation of MeHg occurred. However no notable MeHg was found in both roots and shoots of rice plant when exposed to IHg. SR-XANES analysis further confirmed the demethylation of MeHg with rice. This study provides a new finding that demethylation of MeHg could occur in growing rice, which may be a self-defense process of rice plant. PMID:26708765

  12. Gene flow from weedy rice populations to cultivated rice varies by plant type

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Gene transfer from crops to its weedy and/or wild relatives has been the research focal point during the last decade. Little is known about the rate and consequences of gene transfer from wild or weedy relatives to the cultivated crops. Red rice, a weed which infests ~ 40% of rice acreage in the sou...

  13. Rice planting systems, global warming and outbreaks of Nilaparvata lugens (Stål).

    PubMed

    Hu, G; Cheng, X N; Qi, G J; Wang, F Y; Lu, F; Zhang, X X; Zhai, B P

    2011-04-01

    Brown Planthopper (BPH, Nilaparvata lugens (Stål)) is one of the most serious pests of rice in both temperate and tropical regions of East and South Asia and has become especially problematic over the past few years. In order to analyze the effect of the change of rice cropping system on the population dynamics of BPH, field surveys of the occurrence and distribution of BPH were performed and other relevant data, including light trap data and ovary dissection data were collected in nearly 40 Chinese counties encompassing six provinces (or municipalities), including Hainan, Guangxi, Anhui, Shanghai, Fujian and Guangdong from April to October in 2007.The mixed planting areas of single- and double-cropping rice in China include Hubei, South and Central Anhui, North Hunan, and North Jiangxi. In these areas, double-cropping rice has now been greatly reduced and single-cropping rice has been rapidly increasing since 1997. The surveys revealed that when the immigration peak of BPH occurred in June and July, the single-cropping rice was at the tillering to booting stage and fit for BPH, but early rice had already matured and most of late rice had not yet been transplanted. BPH immigrants from southern rice areas prefer to inhabit and breed in single-cropping rice paddies. Moreover, farming activities between early rice and late rice interrupted the continuous growth of BPH populations in double-cropping rice paddies. As a result, in comparison with data collected 30 years ago, the spatiotemporal dynamics and migration patterns of BPH have dramatically changed in the lower-middle reaches of the Yangtze River. In the mixed planting areas, due to their high suitability, the BPH population in single-cropping rice grew so quickly that it caused serious local damage and there was mass emigration of macropterous progeny to the Yangtze River Delta in late August and early September.Global warming may also affect BPH populations, where results suggest steadily warmer autumns have

  14. Deposition velocity of gaseous organic iodine from the atmosphere to rice plants

    SciTech Connect

    Muramatsu, Yasuyuki; Shigeo-Uchida; Sumiya, Misako; Ohmomo, Yoichiro

    1996-11-01

    To obtain parameter values for the assessment of {sup 129}I transfer from the atmosphere to rice, deposition of CH{sub 3}I to rice plants has been studied. The mass normalized deposition velocity (V{sub D}) of CH{sub 3}I for rough (unhulled) rice was 0.00048 cm{sup 3} g{sup {minus}1} s{sup {minus}1}, which is about 1/300 of that of I{sub 2}. Translocation of iodine, deposited as CH{sub 3}I on leaves and stems, to rice grain was negligibly small. Distribution of iodine between hull and inner part of the grain was found to depend also on the chemical forms of atmospheric iodine to be deposited. The ratio of the iodine distribution in a grain exposed to CH{sub 3}I was as follows: rough rice: brown rice (hulled rice):polished rice = 1.0:0.49:0.38. The distribution ratio in polished grains for CH{sub 3}I exposed rice was about 20 times higher than that for I{sub 2}. 22 refs., 1 fig., 6 tabs.

  15. Abundance of rice root aphid among selected plant species and on plants grown with different soil-surface media

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rice root aphid, Rhopalosiphum rufiabdominalis (Sasaki), is distributed worldwide and colonizes a wide range of plants. However, relatively little is known about the suitability of different host plants, optimal rearing techniques, and the aphid’s impact on plant fitness. To improve understand...

  16. In-Situ Quantification of Microbial Processes Controlling Methane Emissions From Rice Plants

    NASA Astrophysics Data System (ADS)

    Schroth, M. H.; Cho, R.; Zeyer, J. A.

    2011-12-01

    Methane is an important greenhouse gas contributing to global warming. Among other sources, rice (paddy) soils represent a major nonpoint source of biogenic methane. In flooded paddy soils methane is produced under anaerobic conditions. Conversely, methanotrophic microorganisms oxidize methane to carbon dioxide in the root zone of rice plants, thus reducing overall methane emissions to the atmosphere. We present a novel combination of methods to quantify methanogenesis and methane oxidation in paddy soils and to link methane turnover to net emissions of rice plants. To quantify methane turnover in the presence of high methane background concentrations, small-scale push-pull tests (PPTs) were conducted in paddy soils using stable isotope-labeled substrates. Deuterated acetate and 13-C bicarbonate were employed to discern and quantify acetoclastic and hydrogenotrophic methanogenesis, while 13-C methane was employed to quantify methane oxidation. During 2.5 hr-long PPTs, 140 mL of a test solution containing labeled substrates and nonreactive tracers (Ar, Br-) was injected into paddy soils of potted rice plants. After a short rest period, 480 mL of test solution/pore water mixture was extracted from the same location. Methane turnover was then computed from extraction-phase breakthrough curves of substrates and/or products, and nonreactive tracers. To link methane turnover to net emissions, methane emissions from paddy soils and rice plants were individually determined immediately preceding PPTs using static flux chambers. We will present results of a series of experiments conducted in four different potted rice plants. Preliminary results indicate substantial variability in methane turnover and net emission between different rice plants. The employed combination of methods appears to provide a robust means to quantitatively link methane turnover in paddy soils to net emissions from rice plants.

  17. Rice response to planting date differs at two locations in Louisiana

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting date can have a dramatic effect on crop development and yield. Determining if rice cultivars respond differently to planting date is important when selecting the most appropriate cultivar for a particular planting date. Research was conducted from 1995 through 1997 at two locations in Louis...

  18. Overexpression of OsDof12 affects plant architecture in rice (Oryza sativa L.)

    PubMed Central

    Wu, Qi; Li, Dayong; Li, Dejun; Liu, Xue; Zhao, Xianfeng; Li, Xiaobing; Li, Shigui; Zhu, Lihuang

    2015-01-01

    Dof (DNA binding with one finger) proteins, a class of plant-specific transcription factors, are involved in plant growth and developmental processes and stress responses. However, their biological functions remain to be elucidated, especially in rice (Oryza sativa L.). Previously, we have reported that OsDof12 can promote rice flowering under long-day conditions. Here, we further investigated the other important agronomical traits of the transgenic plants overexpressing OsDof12 and found that overexpressing OsDof12 could lead to reduced plant height, erected leaf, shortened leaf blade, and smaller panicle resulted from decreased primary and secondary branches number. These results implied that OsDof12 is involved in rice plant architecture formation. Furthermore, we performed a series of Brassinosteroid (BR)-responsive tests and found that overexpression of OsDof12 could also result in BR hyposensitivity. Of note, in WT plants the expression of OsDof12 was found up-regulated by BR treatment while in OsDof12 overexpression plants two positive BR signaling regulators, OsBRI1 and OsBZR1, were significantly down-regulated, indicating that OsDof12 may act as a negative BR regulator in rice. Taken together, our results suggested that overexpression of OsDof12 could lead to altered plant architecture by suppressing BR signaling. Thus, OsDof12 might be used as a new potential genetic regulator for future rice molecular breeding. PMID:26500670

  19. A rice chloroplast transit peptide sequence does not alter the cytoplasmic localization of sheep serotonin N-acetyltransferase expressed in transgenic rice plants.

    PubMed

    Byeon, Yeong; Lee, Hyoung Yool; Lee, Kyungjin; Back, Kyoungwhan

    2014-09-01

    Ectopic overexpression of melatonin biosynthetic genes of animal origin has been used to generate melatonin-rich transgenic plants to examine the functional roles of melatonin in plants. However, the subcellular localization of these proteins expressed in the transgenic plants remains unknown. We studied the localization of sheep (Ovis aries) serotonin N-acetyltransferase (OaSNAT) and a translational fusion of a rice SNAT transit peptide to OaSNAT (TS:OaSNAT) in plants. Laser confocal microscopy analysis revealed that both OaSNAT and TS:OaSNAT proteins were localized to the cytoplasm even with the addition of the transit sequence to OaSNAT. Transgenic rice plants overexpressing the TS:OaSNAT fusion transgene exhibited high SNAT enzyme activity relative to untransformed wild-type plants, but lower activity than transgenic rice plants expressing the wild-type OaSNAT gene. Melatonin levels in both types of transgenic rice plant corresponded well with SNAT enzyme activity levels. The TS:OaSNAT transgenic lines exhibited increased seminal root growth relative to wild-type plants, but less than in the OaSNAT transgenic lines, confirming that melatonin promotes root growth. Seed-specific OaSNAT expression under the control of a rice prolamin promoter did not confer high levels of melatonin production in transgenic rice seeds compared with seeds from transgenic plants expressing OaSNAT under the control of the constitutive maize ubiquitin promoter. PMID:24920304

  20. Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil.

    PubMed

    Jia, Yan; Huang, Hai; Sun, Guo-Xin; Zhao, Fang-Jie; Zhu, Yong-Guan

    2012-08-01

    Recent studies have shown that higher plants are unable to methylate arsenic (As), but it is not known whether methylated As species taken up by plants can be volatilized. Rice (Oryza sativa L.) plants were grown axenically or in a nonsterile soil using a two-chamber system. Arsenic transformation and volatilization were investigated. In the axenic system, uptake of As species into rice roots was in the order of arsenate (As(V)) > monomethylarsonic acid (MMAs(V)) > dimethylarsinic acid (DMAs(V)) > trimethylarsine oxide (TMAs(V)O), but the order of the root-to-shoot transport index (Ti) was reverse. Also, volatilization of trimethylarsine (TMAs) from rice plants was detected when plants were treated with TMAs(V)O but not with As(V), DMAs(V), or MMAs(V). In the soil culture, As was volatilized mainly from the soil. Small amounts of TMAs were also volatilized from the rice plants, which took up DMAs(V), MMAs(V), and TMAs(V)O from the soil solution. The addition of dried distillers grain (DDG) to the soil enhanced As mobilization into the soil solution, As methylation and volatilization from the soil, as well as uptake of different As species and As volatilization from the rice plants. Results show that rice is able to volatilize TMAs after the uptake of TMAs(V)O but not able to convert inorganic As, MMAs(V) or DMAs(V) into TMAs and that the extent of As volatilization from rice plants was much smaller than that from the flooded soil. PMID:22724924

  1. Information system of rice planting calendar based on ten-day (Dasarian) rainfall prediction

    SciTech Connect

    Susandi, Armi; Tamamadin, Mamad; Djamal, Erizal; Las, Irsal

    2015-09-30

    This paper describes information system of rice planting calendar to help farmers in determining the time for rice planting. The information includes rainfall prediction in ten days (dasarian) scale overlaid to map of rice field to produce map of rice planting in village level. The rainfall prediction was produced by stochastic modeling using Fast Fourier Transform (FFT) and Non-Linier Least Squares methods to fit the curve of function to the rainfall data. In this research, the Fourier series has been modified become non-linear function to follow the recent characteristics of rainfall that is non stationary. The results have been also validated in 4 steps, including R-Square, RMSE, R-Skill, and comparison with field data. The development of information system (cyber extension) provides information such as rainfall prediction, prediction of the planting time, and interactive space for farmers to respond to the information submitted. Interfaces for interactive response will be critical to the improvement of prediction accuracy of information, both rainfall and planting time. The method used to get this information system includes mapping on rice planting prediction, converting the format file, developing database system, developing website, and posting website. Because of this map was overlaid with the Google map, the map files must be converted to the .kml file format.

  2. Information system of rice planting calendar based on ten-day (Dasarian) rainfall prediction

    NASA Astrophysics Data System (ADS)

    Susandi, Armi; Tamamadin, Mamad; Djamal, Erizal; Las, Irsal

    2015-09-01

    This paper describes information system of rice planting calendar to help farmers in determining the time for rice planting. The information includes rainfall prediction in ten days (dasarian) scale overlaid to map of rice field to produce map of rice planting in village level. The rainfall prediction was produced by stochastic modeling using Fast Fourier Transform (FFT) and Non-Linier Least Squares methods to fit the curve of function to the rainfall data. In this research, the Fourier series has been modified become non-linear function to follow the recent characteristics of rainfall that is non stationary. The results have been also validated in 4 steps, including R-Square, RMSE, R-Skill, and comparison with field data. The development of information system (cyber extension) provides information such as rainfall prediction, prediction of the planting time, and interactive space for farmers to respond to the information submitted. Interfaces for interactive response will be critical to the improvement of prediction accuracy of information, both rainfall and planting time. The method used to get this information system includes mapping on rice planting prediction, converting the format file, developing database system, developing website, and posting website. Because of this map was overlaid with the Google map, the map files must be converted to the .kml file format.

  3. Speciation and degradation of triphenyltin in typical paddy fields and its uptake into rice plants.

    PubMed

    Antes, Fabiane G; Krupp, Eva; Flores, Erico M M; Dressler, Valderi L; Feldmann, Joerg

    2011-12-15

    Triphenyltin (TPhT) is a biocide used worldwide in agriculture, especially in rice crop farming. The distribution and dissipation of TPhT in rice fields, as well as uptake of TPhT and other phenyltin compounds (monophenyltin, MPhT, and diphenyltin, DPhT) is still unknown at present. In this study, speciation analysis of phenyltin compounds was carried out in soil and water from a rice field where TPhT was applied during rice seeding according to legal application rates in Brazil. The results indicate the degradation of biocide and distribution of tin species into soil and water. To evaluate whether TPhT is taken up by plants, rice plants were exposed to three different TPhT application rates in a controlled mesocosm during 7 weeks. After this period, tin speciation was determined in soil, roots, leaves, and grains of rice. Degradation of TPhT was observed in soil, where DPhT and MPhT were detected. MPhT, DPhT, and TPhT were also detected in the roots of plants exposed to all TPhT application rates. Only TPhT was detected in leaves and at relatively low concentration, suggesting selective transport of TPhT in the xylem, in contrast to DPhT and MPhT. Concentration of phenyltin species in rice grains was lower than the limit of detection, suggesting that rice plants do not have the capability to take up TPhT from soil and transport it to the grains. PMID:22074207

  4. Heavy metal bioaccumulation and mobility from rice plants to Nilaparvata lugens (Homoptera: Delphacidae) in China.

    PubMed

    Wan, Ting-li; Liu, Shun; Tang, Qi-yi; Cheng, Jia-an

    2014-06-01

    Samples of soils, rice plants, and the adult, long-winged, brown planthoppers, Nilaparvata lugens (Stål) (Homoptera: Delphacidae), were collected from 18 sites of 9 regions in southern China. The concentrations of seven elements (Cu, Zn, As, Mo, Ag, Cd, and Pb) were measured using inductively coupled plasma mass spectrometry. Heavy metal mobility and bioaccumulation were analyzed in the rice plant-N. lugens system. The concentrations of Zn, As, Cd, and Pb in rice plants were positively correlated with their relevant concentrations in soil samples The bioconcentration factors of the seven elements in the rice plant-N. lugens system showed that the order of metal accumulation was Mo>Zn>Ag>Cd>Cu>Pb>As. In particular, Mo and Zn showed significantly high accumulation in N. lugens. A cluster analysis and factor analysis showed that the bioaccumulation of these seven elements in the rice plant-N. lugens system could be classified into two groups, closely related to their molar mass. The first group consisted of five elements with relatively light molar masses: Cu, Zn, As, Mo, and Ag. Cu and Zn, which have nearly equal molar masses, showed similar accumulation levels in N. lugens. The second group included two elements with relatively heavy molar masses: Cd and Pb. This study demonstrated that bioaccumulation of seven heavy metals was regular in the rice plant-N. lugens system. N. lugens could be used as bioindicators of the contaminated degree for Zn in rice paddy fields. This information may provide a basis for future ecological research on the bioaccumulation mechanism in N. lugens. PMID:24735989

  5. Cyanobacteria-mediated phenylpropanoids and phytohormones in rice (Oryza sativa) enhance plant growth and stress tolerance.

    PubMed

    Singh, Dhananjaya P; Prabha, Ratna; Yandigeri, Mahesh S; Arora, Dilip K

    2011-11-01

    Phenylpropanoids, flavonoids and plant growth regulators in rice (Oryza sativa) variety (UPR 1823) inoculated with different cyanobacterial strains namely Anabaena oryzae, Anabaena doliolum, Phormidium fragile, Calothrix geitonos, Hapalosiphon intricatus, Aulosira fertilissima, Tolypothrix tenuis, Oscillatoria acuta and Plectonema boryanum were quantified using HPLC in pot conditions after 15 and 30 days. Qualitative analysis of the induced compounds using reverse phase HPLC and further confirmation with LC-MS/MS showed consistent accumulation of phenolic acids (gallic, gentisic, caffeic, chlorogenic and ferulic acids), flavonoids (rutin and quercetin) and phytohormones (indole acetic acid and indole butyric acid) in rice leaves. Plant growth promotion (shoot, root length and biomass) was positively correlated with total protein and chlorophyll content of leaves. Enzyme activity of peroxidase and phenylalanine ammonia lyase and total phenolic content was fairly high in rice leaves inoculated with O. acuta and P. boryanum after 30 days. Differential systemic accumulation of phenylpropanoids in plant leaves led us to conclude that cyanobacterial inoculation correlates positively with plant growth promotion and stress tolerance in rice. Furthermore, the study helped in deciphering possible mechanisms underlying plant growth promotion and stress tolerance in rice following cyanobacterial inoculation and indicated the less explored avenue of cyanobacterial colonization in stress tolerance against abiotic stress. PMID:21732035

  6. Physiological and growth response of rice plants (Oryza sativa L.) to Trichoderma spp. inoculants

    PubMed Central

    2014-01-01

    Trichoderma spp., a known beneficial fungus is reported to have several mechanisms to enhance plant growth. In this study, the effectiveness of seven isolates of Trichoderma spp. to promote growth and increase physiological performance in rice was evaluated experimentally using completely randomized design under greenhouse condition. This study indicated that all the Trichoderma spp. isolates tested were able to increase several rice physiological processes which include net photosynthetic rate, stomatal conductance, transpiration, internal CO2 concentration and water use efficiency. These Trichoderma spp. isolates were also able to enhance rice growth components including plant height, leaf number, tiller number, root length and root fresh weight. Among the Trichoderma spp. isolates, Trichoderma sp. SL2 inoculated rice plants exhibited greater net photosynthetic rate (8.66 μmolCO2 m−2 s−1), internal CO2 concentration (336.97 ppm), water use efficiency (1.15 μmoCO2/mmoH2O), plant height (70.47 cm), tiller number (12), root length (22.5 cm) and root fresh weight (15.21 g) compared to the plants treated with other Trichoderma isolates tested. We conclude that beneficial fungi can be used as a potential growth promoting agent in rice cultivation. PMID:24949276

  7. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination.

    PubMed

    Bandaru, Varaprasad; Daughtry, Craig S; Codling, Eton E; Hansen, David J; White-Hansen, Susan; Green, Carrie E

    2016-01-01

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L(-1) sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r²) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs' performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields. PMID:27322304

  8. Evaluating Leaf and Canopy Reflectance of Stressed Rice Plants to Monitor Arsenic Contamination

    PubMed Central

    Bandaru, Varaprasad; Daughtry, Craig S.; Codling, Eton E.; Hansen, David J.; White-Hansen, Susan; Green, Carrie E.

    2016-01-01

    Arsenic contamination is a serious problem in rice cultivated soils of many developing countries. Hence, it is critical to monitor and control arsenic uptake in rice plants to avoid adverse effects on human health. This study evaluated the feasibility of using reflectance spectroscopy to monitor arsenic in rice plants. Four arsenic levels were induced in hydroponically grown rice plants with application of 0, 5, 10 and 20 µmol·L−1 sodium arsenate. Reflectance spectra of upper fully expanded leaves were acquired over visible and infrared (NIR) wavelengths. Additionally, canopy reflectance for the four arsenic levels was simulated using SAIL (Scattering by Arbitrarily Inclined Leaves) model for various soil moisture conditions and leaf area indices (LAI). Further, sensitivity of various vegetative indices (VIs) to arsenic levels was assessed. Results suggest that plants accumulate high arsenic amounts causing plant stress and changes in reflectance characteristics. All leaf spectra based VIs related strongly with arsenic with coefficient of determination (r2) greater than 0.6 while at canopy scale, background reflectance and LAI confounded with spectral signals of arsenic affecting the VIs’ performance. Among studied VIs, combined index, transformed chlorophyll absorption reflectance index (TCARI)/optimized soil adjusted vegetation index (OSAVI) exhibited higher sensitivity to arsenic levels and better resistance to soil backgrounds and LAI followed by red edge based VIs (modified chlorophyll absorption reflectance index (MCARI) and TCARI) suggesting that these VIs could prove to be valuable aids for monitoring arsenic in rice fields. PMID:27322304

  9. Expression of a plant defensin in rice confers resistance to fungal phytopathogens.

    PubMed

    Jha, Sanjay; Chattoo, Bharat B

    2010-06-01

    Transgenic rice (Oryza sativa L. cv. Pusa basmati 1), overexpressing the Rs-AFP2 defensin gene from the Raphanus sativus was generated by Agrobacterium tumefaciens-mediated transformation. Expression levels of Rs-AFP2 ranged from 0.45 to 0.53% of total soluble protein in transgenic plants. It was observed that constitutive expression of Rs-AFP2 suppresses the growth of Magnaporthe oryzae and Rhizoctonia solani by 77 and 45%, respectively. No effect on plant morphology was observed in the Rs-AFP2 expressing rice lines. The inhibitory activity of protein extracts prepared from leaves of Rs-AFP2 plants on the in vitro growth of M. oryzae indicated that the Rs-AFP2 protein produced by transgenic rice plants was biologically active. Transgene expression of Rs-AFP2 was not accompanied by an induction of pathogenesis-related (PR) gene expression, suggesting that the expression of Rs-AFP2 directly inhibits the pathogens. Here, we demonstrate that transgenic rice plants expressing the Rs-AFP2 gene show enhanced resistance to M. oryzae and R. solani, two of the most important pathogens of rice. PMID:19690975

  10. Different pathogenicities of Rice stripe virus from the insect vector and from viruliferous plants.

    PubMed

    Zhao, Wan; Yang, Pengcheng; Kang, Le; Cui, Feng

    2016-04-01

    Persistent plant viruses usually depend on insects for their transmission; they cannot be transmitted between plants or through mechanical inoculation. However, the mechanism by which persistent viruses become pathogenic in insect vectors remains unknown. In this study, we used Rice stripe virus (RSV), its insect vector Laodelphax striatellus and host plant (Oryza sativa) to explore how persistent viruses acquire pathogenicity from insect vectors. RSV acquired phytopathogenicity in both the alimentary tract and the salivary gland of L. striatellus. We mechanically inoculated RSV into rice O. sativa leaves through midrib microinjection. Insect-derived RSV induced a typical stripe symptom, whereas plant-derived RSV only produced chlorosis in rice leaves. Insect-derived RSV had higher expression of genes rdrp, ns2, nsvc2, sp and nsvc4 than plant-derived RSV, and the latter had higher expression of genes cp and ns3 than the former in rice leaves. Different from plant-derived RSV, insect-derived RSV damaged grana stacks within the chloroplast and inhibited photosynthesis by suppressing the photosystem II subunit psbp. This study not only presented a convenient method to mechanically inoculate RSV into plants, but also provided insights into the different pathogenic mechanisms of RSV from the insect vector and from viruliferous plants. PMID:26585422

  11. ACC deaminase and IAA producing growth promoting bacteria from the rhizosphere soil of tropical rice plants.

    PubMed

    Bal, Himadri Bhusan; Das, Subhasis; Dangar, Tushar K; Adhya, Tapan K

    2013-12-01

    Beneficial plant-associated bacteria play a key role in supporting and/or promoting plant growth and health. Plant growth promoting bacteria present in the rhizosphere of crop plants can directly affect plant metabolism or modulate phytohormone production or degradation. We isolated 355 bacteria from the rhizosphere of rice plants grown in the farmers' fields in the coastal rice field soil from five different locations of the Ganjam district of Odisha, India. Six bacteria producing both ACC deaminase (ranging from 603.94 to 1350.02 nmol α-ketobutyrate mg(-1)  h(-1) ) and indole acetic acid (IAA; ranging from 10.54 to 37.65 μM ml(-1) ) in pure cultures were further identified using polyphasic taxonomy including BIOLOG((R)) , FAME analysis and the 16S rRNA gene sequencing. Phylogenetic analyses of the isolates resulted into five major clusters to include members of the genera Bacillus, Microbacterium, Methylophaga, Agromyces, and Paenibacillus. Seed inoculation of rice (cv. Naveen) by the six individual PGPR isolates had a considerable impact on different growth parameters including root elongation that was positively correlated with ACC deaminase activity and IAA production. The cultures also had other plant growth attributes including ammonia production and at least two isolates produced siderophores. Study indicates that presence of diverse rhizobacteria with effective growth-promoting traits, in the rice rhizosphere, may be exploited for a sustainable crop management under field conditions. PMID:23681643

  12. Sago-Type Palms Were an Important Plant Food Prior to Rice in Southern Subtropical China

    PubMed Central

    Yang, Xiaoyan; Barton, Huw J.; Wan, Zhiwei; Li, Quan; Ma, Zhikun; Li, Mingqi; Zhang, Dan; Wei, Jun

    2013-01-01

    Poor preservation of plant macroremains in the acid soils of southern subtropical China has hampered understanding of prehistoric diets in the region and of the spread of domesticated rice southwards from the Yangtze River region. According to records in ancient books and archaeological discoveries from historical sites, it is presumed that roots and tubers were the staple plant foods in this region before rice agriculture was widely practiced. But no direct evidences provided to test the hypothesis. Here we present evidence from starch and phytolith analyses of samples obtained during systematic excavations at the site of Xincun on the southern coast of China, demonstrating that during 3,350–2,470 aBC humans exploited sago palms, bananas, freshwater roots and tubers, fern roots, acorns, Job's-tears as well as wild rice. A dominance of starches and phytoliths from palms suggest that the sago-type palms were an important plant food prior to the rice in south subtropical China. We also believe that because of their reliance on a wide range of starch-rich plant foods, the transition towards labour intensive rice agriculture was a slow process. PMID:23667584

  13. Source attributions of heavy metals in rice plant along highway in Eastern China.

    PubMed

    Feng, Jinfei; Wang, Yinxi; Zhao, Jian; Zhu, Liqun; Bian, Xinmin; Zhang, Weijian

    2011-01-01

    Air and soil pollution from traffic has been considered as a critical issue to crop production and food safety, however, few efforts have been paid on distinguish the source origin of traffic-related contaminants in rice plant along highway. Therefore, we investigated metals (Pb, Cd, Cr, Zn and Cu) concentrations and stable Pb isotope ratios in rice plants exposed and unexposed to highway traffic pollution in Eastern China in 2008. Significant differences in metals concentrations between the exposed and unexposed plants existed in leaf for Pb, Cd and Zn, in stem only for Zn, and in grain for Pb and Cd. About 46% of Pb and 41% of Cd in the grain were attributed to the foliar uptake from atmosphere, and there were no obvious contribution of atmosphere to the accumulations of Cr, Zn and Cu in grain. Except for Zn, all of the heavy metals in stem were attributed to the root uptake from soil, although significant accumulations of Pb and Cd from atmosphere existed in leaf. This indicated that different processes existed in the subsequent translocation of foliar-absorbed heavy metals between rice organs. The distinct separation of stable Pb isotope ratios among rice grain, leaf, stem, soil and vehicle exhaust further provided evidences on the different pathways of heavy metal accumulation in rice plant. These results suggested that further more attentions should be paid to the atmospheric deposition of heavy metals from traffic emission when plan crop layout for food safety along highway. PMID:22125909

  14. Biochar amendment reduced methylmercury accumulation in rice plants.

    PubMed

    Shu, Rui; Wang, Yongjie; Zhong, Huan

    2016-08-01

    There is growing concern about methylmercury (MeHg) accumulation in rice grains and thus enhanced dietary exposure to MeHg in Asian countries. Here, we explored the possibility of reducing grain MeHg levels by biochar amendment, and the underlying mechanisms. Pot (i.e., rice cultivation in biochar amended soils) and batch experiments (i.e., incubation of amended soils under laboratory conditions) were carried out, to investigate MeHg dynamics (i.e., MeHg production, partitioning and phytoavailability in paddy soils, and MeHg uptake by rice) under biochar amendment (1-4% of soil mass). We demonstrate for the first time that biochar amendment could evidently reduce grain MeHg levels (49-92%). The declines could be attributed to the combined effects of: (1) increased soil MeHg concentrations, probably explained by the release of sulfate from biochar and thus enhanced microbial production of MeHg (e.g., by sulfate-reducing bacteria), (2) MeHg immobilization in soils, facilitated by the large surface areas and high organosulfur content of biochar, and (3) biodilution of MeHg in rice grains, due to the increased grain biomass under biochar amendment (35-79%). These observations together with mechanistic explanations improve understanding of MeHg dynamics in soil-rice systems, and support the possibility of reducing MeHg phytoaccumulation under biochar amendment. PMID:27045620

  15. Investigating the biology of plant infection by the rice blast fungus Magnaporthe oryzae.

    PubMed

    Martin-Urdiroz, Magdalena; Oses-Ruiz, Miriam; Ryder, Lauren S; Talbot, Nicholas J

    2016-05-01

    The rice blast fungus, Magnaporthe oryzae, is responsible for the most serious disease of rice and is a continuing threat to ensuring global food security. The fungus has also, however, emerged as a model experimental organism for understanding plant infection processes by pathogenic fungi. This is largely due to its amenability to both classical and molecular genetics, coupled with the efforts of a very large international research community. This review, which is based on a plenary presentation at the 28th Fungal Genetics Conference in Asilomar, California in March 2015, describes recent progress in understanding how M. oryzae uses specialised cell called appressoria to bring about plant infection and the underlying biology of this developmental process. We also review how the fungus is then able to proliferate within rice tissue, deploying effector proteins to facilitate its spread by suppressing plant immunity and promoting growth and development of the fungus. PMID:26703899

  16. No-tillage effects on N and P exports across a rice-planted watershed.

    PubMed

    Liang, Xinqiang; Wang, Zhibo; Zhang, Yixiang; Zhu, Chunyan; Lin, Limin; Xu, Lixian

    2016-05-01

    No tillage (NT) can be used as a management tool to alleviate the negative effects of agricultural practices on the environment by reducing the runoff volume and nutrient exports. The main objective of this research was to quantify the effect of NT on nitrogen (N) and phosphorus (P) exports across a rice-planted watershed using the soil and water assessment tool (SWAT) model. Results show that total N and P runoff exports from rice fields across the watershed ranged from 7.2 to 22.8 kg N/ha and 0.56 to 6.80 kg P/ha, respectively, over five rice-growing seasons under conventional tillage (CT) practice. The adoption of NT reduced the runoff volume, and the total N and total P exports by 25.9, 8.5, and 7.8 %, respectively, compared with the total exports under CT practice in the same study area. Rice yields were reduced by 0.7-1.9 % within the first 4 years after the adoption of NT, but began to rise in the fifth year. These results suggest that a long-term period of NT practice is necessary to reduce N and P exports without comprising the rice yield on rice-planted watersheds. In addition, the benefits of implementing NT practice alone were limited, and other practices, such as water and nutrient management, should be combined with NT practice. PMID:26797950

  17. Interaction between sulfur and lead in toxicity, iron plaque formation and lead accumulation in rice plant.

    PubMed

    Yang, Junxing; Liu, Zhiyan; Wan, Xiaoming; Zheng, Guodi; Yang, Jun; Zhang, Hanzhi; Guo, Lin; Wang, Xuedong; Zhou, Xiaoyong; Guo, Qingjun; Xu, Ruixiang; Zhou, Guangdong; Peters, Marc; Zhu, Guangxu; Wei, Rongfei; Tian, Liyan; Han, Xiaokun

    2016-06-01

    Human activities have resulted in lead and sulfur accumulation in paddy soils in parts of southern China. A combined soil-sand pot experiment was conducted to investigate the influence of S supply on iron plaque formation and Pb accumulation in rice (Oryza sativa L.) under two Pb levels (0 and 600 mg kg(-1)), combined with four S concentrations (0, 30, 60, and 120 mg kg(-1)). Results showed that S supply significantly decreased Pb accumulation in straw and grains of rice. This result may be attributed to the enhancement of Fe plaque formation, decrease of Pb availability in soil, and increase of reduced glutathione (GSH) in rice leaves. Moderate S supply (30 mg kg(-1)) significantly increased Fe plaque formation on the root surface and in the rhizosphere, whereas excessive S supply (60 and 120 mg kg(-1)) significantly decreased the amounts of iron plaque on the root surface. Sulfur supply significantly enhanced the GSH contents in leaves of rice plants under Pb treatment. With excessive S application, the rice root acted as a more effective barrier to Pb accumulation compared with iron plaque. Excessive S supply may result in a higher monosulfide toxicity and decreased iron plaque formation on the root surface during flooded conditions. However, excessive S supply could effectively decrease Pb availability in soils and reduce Pb accumulation in rice plants. PMID:26946285

  18. Plant root transcriptome profiling reveals a strain-dependent response during Azospirillum-rice cooperation

    PubMed Central

    Drogue, Benoît; Sanguin, Hervé; Chamam, Amel; Mozar, Michael; Llauro, Christel; Panaud, Olivier; Prigent-Combaret, Claire; Picault, Nathalie; Wisniewski-Dyé, Florence

    2014-01-01

    Cooperation involving Plant Growth-Promoting Rhizobacteria results in improvements of plant growth and health. While pathogenic and symbiotic interactions are known to induce transcriptional changes for genes related to plant defense and development, little is known about the impact of phytostimulating rhizobacteria on plant gene expression. This study aims at identifying genes significantly regulated in rice roots upon Azospirillum inoculation, considering possible favored interaction between a strain and its original host cultivar. Genome-wide analyzes of Oryza sativa japonica cultivars Cigalon and Nipponbare were performed, by using microarrays, seven days post-inoculation with Azospirillum lipoferum 4B (isolated from Cigalon) or Azospirillum sp. B510 (isolated from Nipponbare) and compared to the respective non-inoculated condition. A total of 7384 genes were significantly regulated, which represent about 16% of total rice genes. A set of 34 genes is regulated by both Azospirillum strains in both cultivars, including a gene orthologous to PR10 of Brachypodium, and these could represent plant markers of Azospirillum-rice interactions. The results highlight a strain-dependent response of rice, with 83% of the differentially expressed genes being classified as combination-specific. Whatever the combination, most of the differentially expressed genes are involved in primary metabolism, transport, regulation of transcription and protein fate. When considering genes involved in response to stress and plant defense, it appears that strain B510, a strain displaying endophytic properties, leads to the repression of a wider set of genes than strain 4B. Individual genotypic variations could be the most important driving force of rice roots gene expression upon Azospirillum inoculation. Strain-dependent transcriptional changes observed for genes related to auxin and ethylene signaling highlight the complexity of hormone signaling networks in the Azospirillum-rice

  19. Population Growth and Characterization of Plant Injuries of Steneotarsonemus spinki Smiley (Acari: Tarsonemidae) on Rice.

    PubMed

    Jaimez-Ruiz, I A; Otero-Colina, G; Valdovinos-Ponce, G; Villanueva-Jiménez, J A; Vera-Graziano, J

    2015-06-01

    Rice is attacked by Steneotarsonemus spinki Smiley, a mite that has dispersed throughout many countries causing important loss on rice production. Rice plants of the variety Morelos A-92 were infested with S. spinki, and its population growth was estimated along plant development. Further, the morphological and histological injuries associated to the mite attack were characterized. The highest infestation level was obtained 13 weeks after plant infestation, with an average of 58.5 mites per plant, predominantly females. Morphological injuries were categorized from level 0 (no injuries from uninfested plants) to level 3, characterized by the highest injuries represented by blotches on the adaxial epidermis of the leaf sheath and on panicles and grains. Plants ranked within levels 0, 1, and 2 for morphological injury did not exhibit clear histological injuries, while those at level 3 exhibited histological injury characterized by destruction of cells of the adaxial epidermis, disorder, color change, and hypertrophy in the mesophyll cells, as well as color change in the abaxial epidermis. Thus, it presented a significant correlation between morphological injuries and mite density level, which can be further adopted to help the control decision-making process for this mite on rice. PMID:26013275

  20. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients.

    PubMed

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-02-01

    The transfer coefficient (TF) from soil to rice plants of (134)Cs and (137)Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure (134)Cs and (137)Cs radioactivity at 5-cm intervals. (134)Cs and (137)Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the (134)Cs and (137)Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the (40)K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019-0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10-0.16, 0.013-0.017 and 0.005-0.013, respectively. PMID:23103577

  1. Fenton process-affected transformation of roxarsone in paddy rice soils: Effects on plant growth and arsenic accumulation in rice grain.

    PubMed

    Qin, Junhao; Li, Huashou; Lin, Chuxia

    2016-08-01

    Batch and greenhouse experiments were conducted to examine the effects of Fenton process on transformation of roxarsone in soils and its resulting impacts on the growth of and As uptake by a rice plant cultivar. The results show that addition of Fenton reagent markedly accelerated the degradation of roxarsone and produced arsenite, which was otherwise absent in the soil without added Fenton reagent. Methylation of arsenate was also enhanced by Fenton process in the earlier part of the experiment due to abundant supply of arsenate from Roxarsone degradation. Overall, addition of Fenton reagent resulted in the predominant presence of arsenate in the soils. Fenton process significantly improved the growth of rice in the maturity stage of the first crop, The concentration of methylated As species in the rice plant tissues among the different growth stages was highly variable. Addition of Fenton reagent into the soils led to reduced uptake of soil-borne As by the rice plants and this had a significant effect on reducing the accumulation of As in rice grains. The findings have implications for understanding As biogeochemistry in paddy rice field receiving rainwater-borne H2O2 and for development of mitigation strategies to reduce accumulation of As in rice grains. PMID:27060198

  2. Co-expression of a modified maize ribosome-inactivating protein and a rice basic chitinase gene in transgenic rice plants confers enhanced resistance to sheath blight.

    PubMed

    Kim, Ju-Kon; Jang, In-Cheol; Wu, Ray; Zuo, Wei-Neng; Boston, Rebecca S; Lee, Yong-Hwan; Ahn, Il-Pyung; Nahm, Baek Hie

    2003-08-01

    Chitinases, beta-1,3-glucanases, and ribosome-inactivating proteins are reported to have antifungal activity in plants. With the aim of producing fungus-resistant transgenic plants, we co-expressed a modified maize ribosome-inactivating protein gene, MOD1, and a rice basic chitinase gene, RCH10, in transgenic rice plants. A construct containing MOD1 and RCH10 under the control of the rice rbcS and Act1 promoters, respectively, was co-transformed with a plasmid containing the herbicide-resistance gene bar as a selection marker into rice by particle bombardment. Several transformants analyzed by genomic Southern-blot hybridization demonstrated integration of multiple copies of the foreign gene into rice chromosomes. Immunoblot experiments showed that MOD1 formed approximately 0.5% of the total soluble protein in transgenic leaves. RCH10 expression was examined using the native polyacrylamide-overlay gel method, and high RCH10 activity was observed in leaf tissues where endogenous RCH10 is not expressed. R1 plants were analyzed in a similar way, and the Southern-blot patterns and levels of transgene expression remained the same as in the parental line. Analysis of the response of R2 plants to three fungal pathogens of rice, Rhizoctonia solani, Bipolaris oryzae, and Magnaporthe grisea, indicated statistically significant symptom reduction only in the case of R. solani (sheath blight). The increased resistance co-segregated with herbicide tolerance, reflecting a correlation between the resistance phenotype and transgene expression. PMID:12885168

  3. The enhanced drought tolerance of rice plants under ammonium is related to aquaporin (AQP).

    PubMed

    Ding, Lei; Gao, Cuimin; Li, Yingrui; Li, Yong; Zhu, Yiyong; Xu, Guohua; Shen, Qirong; Kaldenhoff, Ralf; Kai, Lei; Guo, Shiwei

    2015-05-01

    Previously, we demonstrated that drought resistance in rice seedlings was increased by ammonium (NH4(+)) treatment, but not by nitrate (NO3(-)) treatment, and that the change was associated with root development. To study the effects of different forms of nitrogen on water uptake and root growth under drought conditions, we subjected two rice cultivars (cv. 'Shanyou 63' hybrid indica and cv. 'Yangdao 6' indica, China) to polyethylene glycol-induced drought stress in a glasshouse using hydroponic culture. Under drought conditions, NH4(+) significantly stimulated root growth compared to NO3(-), as indicated by the root length, surface area, volume, and numbers of lateral roots and root tips. Drought stress decreased the root elongation rate in both cultivars when they were supplied with NO3(-), while the rate was unaffected in the presence of NH4(+). Drought stress significantly increased root protoplast water permeability, root hydraulic conductivity, and the expression of root aquaporin (AQP) plasma intrinsic protein (PIP) genes in rice plants supplied with NH4(+); these changes were not observed in plants supplied with NO3(-). Additionally, ethylene, which is involved in the regulation of root growth, accumulated in rice roots supplied with NO3(-) under conditions of drought stress. We conclude that the increase in AQP expression and/or activity enhanced the root water uptake ability and the drought tolerance of rice plants supplied with NH4(+). PMID:25804805

  4. Delivery of roxarsone via chicken diet→chicken→chicken manure→soil→rice plant.

    PubMed

    Yao, Lixian; Huang, Lianxi; He, Zhaohuan; Zhou, Changmin; Lu, Weisheng; Bai, Cuihua

    2016-10-01

    Roxarsone (ROX), a widely used feed additive, occurs as itself and its metabolites in animal manure. Rice is prone to accumulate As than other staple food. Four diets with 0, 40, 80 and 120mgROXkg(-1) were fed in chickens, and four chicken manures (CMs) were collected to fertilize rice plants in a soil culture experiment. Linear regression analysis shows that the slopes of As species including 4-hydroxy-phenylarsonic acid, As(V), As(III), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) in CM versus dietary ROX were 0.033, 0.314, 0.033, 0.054 and 0.138, respectively. Both As(III) and DMA were determined in all rice grains, and As(III), As(V), MMA and DMA in rice hull, but detectable As forms in rice straws and soils increased with increasing ROX dose. Grain As(III) was unrelated to ROX dose but exceeded the Chinese rice As limit (0.15mgAs(III)kg(-1)). Dietary ROX enhanced straw As(III) mostly, with the slope of 0.020, followed by hull DMA (0.006) and grain DMA (0.002). The slopes of soil As(V) and As(III) were 0.003 and 0.001. This is the first report illustrating the quantitative delivery of ROX via food chain, which helps to evaluate health and environmental risks caused by ROX use in animal production. PMID:27265740

  5. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images.

    PubMed

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-01-01

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems. PMID:25965027

  6. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images

    PubMed Central

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-01-01

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural–urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems. PMID:25965027

  7. Seasonal changes in supercooling points and glycerol content in overwintering larvae of the asiatic rice borer from rice and water-oat plants.

    PubMed

    Hou, Maolin; Lin, Wei; Han, Yongqiang

    2009-08-01

    The Asiatic rice borer Chilo suppressalis (Walker) occurs mainly on rice Oryza sativa L. and water-oat Zizania latifolia (Turcz). Certain ecological and physiological differentiations between rice and water-oat populations have been shown. To determine whether there is host-associated differentiation in supercooling capacity, seasonal changes in supercooling points, glycerol content, and other physiological parameters of naturally occurring C. suppressalis larvae overwintering in rice and water-oat plants were compared over the winter. Supercooling points were low in the winter (November and December), significantly higher in March, and significantly lower in the water-oat population than in the rice population in the winter. Larvae from the water-oat population experienced a significant weight loss from December to March and were heavier than those from the rice population in the winter. Body water content (percentage of fresh weight) was low in the winter and increased significantly in March; no population differences were detected. Hemolymph glycerol content was high in the winter and dropped significantly in March; interpopulation differences were significant in December. Hemolymph trehalose content increased in the winter, and no population differences were detected. Whole body glucose and lipid content varied differently between the rice and the water-oat populations over the winter. It was found that variations in hemolymph glycerol content were responsible for the host-associated seasonal changes in supercooling capacity of overwintering larvae of the Asiatic rice borer. PMID:19689898

  8. Mapping paddy rice planting area in wheat-rice double-cropped areas through integration of Landsat-8 OLI, MODIS, and PALSAR images

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Xiao, Xiangming; Qin, Yuanwei; Dong, Jinwei; Zhang, Geli; Kou, Weili; Jin, Cui; Zhou, Yuting; Zhang, Yao

    2015-05-01

    As farmland systems vary over space and time (season and year), accurate and updated maps of paddy rice are needed for studies of food security and environmental problems. We selected a wheat-rice double-cropped area from fragmented landscapes along the rural-urban complex (Jiangsu Province, China) and explored the potential utility of integrating time series optical images (Landsat-8, MODIS) and radar images (PALSAR) in mapping paddy rice planting areas. We first identified several main types of non-cropland land cover and then identified paddy rice fields by selecting pixels that were inundated only during paddy rice flooding periods. These key temporal windows were determined based on MODIS Land Surface Temperature and vegetation indices. The resultant paddy rice map was evaluated using regions of interest (ROIs) drawn from multiple high-resolution images, Google Earth, and in-situ cropland photos. The estimated overall accuracy and Kappa coefficient were 89.8% and 0.79, respectively. In comparison with the National Land Cover Data (China) from 2010, the resultant map better detected changes in the paddy rice fields and revealed more details about their distribution. These results demonstrate the efficacy of using images from multiple sources to generate paddy rice maps for two-crop rotation systems.

  9. The critical levels and the maximum metal uptake for wheat and rice plants when applying metal oxides to soil

    SciTech Connect

    Muramoto, S.; Nishizaki, H.; Aoyama, I. )

    1990-04-01

    Wheat is more sensitive to CdO and ZnO compared with rice plant. The yield of wheat decreased by 30% in the presence of 30 ppm Cd, but that of rice plants by only 8%. The critical levels of meal uptake by wheat and rice plants for applying metal oxides to soil (CdO, ZnO, PbO) were determined. The highest concentration obtained for wheat grain was 141 micrograms/g Cd at the Cd 10,000 ppm in soil. This value is higher than the value of 4.97 micrograms/g for unpolished rice and higher than any other we have seen in the reports for treatment with CdO. Also, concentration of more than 1.0 micrograms/g Cd in wheat was observed at 5 pm Cd, while similar concentrations for rice plants were observed at 30 ppm Cd in soil.

  10. F-box gene family is expanded in herbaceous annual plants Arabidopsis and rice relative to woody perennial plant Populus

    SciTech Connect

    Yang, Xiaohan; Kalluri, Udaya C; Jawdy, Sara; Gunter, Lee E; Yin, Tongming; Tschaplinski, Timothy J; Weston, David; Ranjan, Priya; Tuskan, Gerald A

    2008-01-01

    F-box proteins are generally responsible for substrate recognition in the Skp1-Cullin-F-box complexes that are involved in protein degradation via the ubiquitin-26S proteosome pathway. In plants, F-box genes influence a variety of biological processes such as leaf senescence, branching, self-incompatibility and responses to biotic and abiotic stresses. The number of F-box genes in Populus (~320) is less than half that found in Arabidopsis (~660) or rice (~680), even though the total number of genes in Populus is equivalent to that in rice and 1.5 times that in Arabidopsis. We performed comparative genomic analysis between the woody perennial plant Populus and the herbaceous annual plants Arabidopsis and rice in order to explicate the functional implications of this large gene family. Our analyses reveal interspecific differences in genomic distribution, orthologous relationship, intron evolution, protein domain structure and gene expression. The set of F-box genes shared by these three species appear to be involved in core biological processes essential for plant growth and development; lineage-specific differences primarily occurred because of an expansion of the F-box genes via tandem duplications in Arabidopsis and rice. The present study provides insights into the relationship between the structure and composition of the F-box gene family in herbaceous and woody species and their associated developmental and physiological features.

  11. PDH45 overexpressing transgenic tobacco and rice plants provide salinity stress tolerance via less sodium accumulation

    PubMed Central

    Nath, Manoj; Garg, Bharti; Sahoo, Ranjan Kumar; Tuteja, Narendra

    2015-01-01

    Salinity stress negatively affects the crop productivity worldwide, including that of rice. Coping with these losses is a major concern for all countries. The pea DNA helicase, PDH45 is a unique member of helicase family involved in the salinity stress tolerance. However, the exact mechanism of the PDH45 in salinity stress tolerance is yet to be established. Therefore, the present study was conducted to investigate the mechanism of PDH45-mediated salinity stress tolerance in transgenic tobacco and rice lines along with wild type (WT) plants using CoroNa Green dye based sodium localization in root and shoot sections. The results showed that under salinity stress root and shoot of PDH45 overexpressing transgenic tobacco and rice accumulated less sodium (Na+) as compared to their respective WT. The present study also reports salinity tolerant (FL478) and salinity susceptible (Pusa-44) varieties of rice accumulated lowest and highest Na+ level, respectively. All the varieties and transgenic lines of rice accumulate differential Na+ ions in root and shoot. However, roots accumulate high Na+ as compared to the shoots in both tobacco and rice transgenic lines suggesting that the Na+ transport in shoot is somehow inhibited. It is proposed that the PDH45 is probably involved in the deposition of apoplastic hydrophobic barriers and consequently inhibit Na+ transport to shoot and therefore confers salinity stress tolerance to PDH45 overexpressing transgenic lines. This study concludes that tobacco (dicot) and rice (monocot) transgenic plants probably share common salinity tolerance mechanism mediated by PDH45 gene. PMID:25830863

  12. Changes of paddy rice planting areas in Northeastern Asia from 1986 to 2014 based on Landsat data

    NASA Astrophysics Data System (ADS)

    Dong, J.; Xiao, X.; Kou, W.; Qin, Y.; Wang, J.; Zhang, G.; Jin, C.; Zhou, Y.; Menarguez, M. A.; Moore, B., III

    2014-12-01

    Paddy rice is an important cereal crop and main grain source for more than half of the global human population. However, knowledge about its area and spatial pattern is still limited due to large changes in agriculture in different regions; for example, higher latitude areas underwent increase (e.g., northeastern China) and decrease (e.g., South Korea) of paddy rice planting areas due to climatic warming, urbanization and other drivers. It is necessary to track paddy rice planting area changes in these regions in the past decades. We developed a pixel- and phenology-based image analysis system, Landsat-RICE, to map the paddy rice by using Landsat imagery. The algorithm was based on the unique physical and spectral characteristics of paddy rice fields during the flooding and transplanting phases. First, Landsat images are preprocessed and time series vegetation indices (NDVI, EVI, and LSWI) are generated. Second, MODIS Land Surface Temperature (LST) data were used to define thermal plant growing season (0 oC, 5 oC and 10 oC), which provides a guide for selection of Landsat images within the period of flooding and transplanting. Third, several non-cropland land cover maps (e.g., permanent water bodies, built-up and barren lands, sparsely vegetated lands, and evergreen vegetation) are produced through analysis of Landsat-based vegetation indices within the plant growing season and combined as a mask. Fourthly, vegetation index data within the time window of flooded and rice transplanting were analyzed to identify flood/transplanting signals. Finally, the maps of paddy rice planting areas were generated through overlying the results from Step 3 and 4. Paddy rice planting area changes were investigated in some hotspots of Northeastern Asia from 1986 to 2014 at 30-m spatial resolution and 5-year interval. This study has demonstrated that our newly developed Landsat-Rice system is robust and effective for tracking paddy rice changes in cold temperate and temperate zones.

  13. Evaluating the non-rice host plant species of Sesamia inferens (Lepidoptera: Noctuidae) as natural refuges: resistance management of Bt rice.

    PubMed

    Liu, Zhuorong; Gao, Yulin; Luo, Ju; Lai, Fengxiang; Li, Yunhe; Fu, Qiang; Peng, Yufa

    2011-06-01

    Although rice (Oryza sativa L.) lines that express Bacillus thuringiensis (Bt) toxins have shown great potential for managing the major Lepidoptera pests of rice in southern China, including Sesamia inferens, their long-term use is dependent on managing resistance development to Bt toxins in pest populations. The maintenance of "natural" refuges, non-Bt expressing plants that are hosts for a target pest, has been proposed as a means to minimize the evolution of resistance to Bt toxins in transgenic plants. In the current study, field surveys and greenhouse experiments were conducted to identify host plants of S. inferens that could serve as "natural" refuges in rice growing areas of southern China. A field survey showed that 34 plant species in four families can be alternative host plants of S. inferens. Based on injury level under field conditions, rice (Oryza sativa L.); water oat (Zizania latifolia Griseb.); corn (Zea mays L.); tidalmarsh flatsedge (Cyperus serotinus Rottb.); and narrow-leaved cat-tail (Typha angustifolia Linn.) were identified as the primary host plant species of S. inferens. Greenhouse experiments further demonstrated that water oat, corn, and narrow-leaved cat-tail could support the survival and development of S. inferens. Interestingly, greenhouse experiments showed that S. inferens preferred to lay eggs on tidalmarsh flatsedge compared with the other three nonrice host species, although no pupae were found in the plants examined in field surveys. Few larvae were found to survive on tidalmarsh flatsedge in greenhouse bioassays, suggesting that tidalmarsh flatsedge could serve as a "dead-end" trap crop for S. inferens, but is not a candidate to serve as natural refuge to maintain susceptible S. inferens. Overall, these results suggest that water-oat, corn, and narrow-leaved cat-tail might serve as "natural refuge" for S. inferens in rice planting area of southern China when Bt rice varieties are planted. PMID:22251655

  14. DITCH PLANT PRODUCTIVITY UNDER VARIABLE FLOODING: A STUDY OF RICE CUTGRASS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Vegetated drainages are an effective method for removal of pollutants associated with agricultural runoff. Leersia oryzoides (Rice Cutgrass), a plant common to agricultural ditches, may be particularly effective in the remediation; however, the responses of L. oryzoides to flooding are undocumented...

  15. Associations between host plant concentrations of selected biochemical nutrients and Mexican rice borer, Eoreuma loftini, infestation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mexican rice borer, Eoreuma loftini (Dyar) (Lepidoptera: Crambidae), is an economic pest of sugarcane and other graminaceous host crops, and it attacks grassy weeds. Oviposition preference has been known to be for plants with leaves that form folds. This study is the first to associate the nutr...

  16. Soil and plant minerals associated with rice straighthead disorder induced by arsenic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of arsenic (As) as monosodium methanearsonate (MSMA) to soil has become the common practice for evaluation of rice straighthead, a physiological disorder. So far, no study has reported on soil mineral availability and plant mineral uptake as affected by the MSMA straighthead evaluation. ...

  17. Phytoremediation of the herbicides atrazine and metolachlor by transgenic rice plants expressing human CYP1A1, CYP2B6, and CYP2C19.

    PubMed

    Kawahigashi, Hiroyuki; Hirose, Sakiko; Ohkawa, Hideo; Ohkawa, Yasunobu

    2006-04-19

    This study evaluated the expression of human cytochrome P450 genes CYP1A1, CYP2B6, and CYP2C19 in rice plants (Oryza sativa cv. Nipponbare) introduced using the plasmid pIKBACH. The transgenic rice plants (pIKBACH rice plants) became more tolerant toward various herbicides than nontransgenic Nipponbare rice plants. Rice plants expressing pIKBACH grown in soil showed tolerance to the herbicides atrazine, metolachlor, and norflurazon and to a mixture of the three herbicides. The degradation of atrazine and metolachlor by pIKBACH rice plants was evaluated to confirm the metabolic activity of the introduced P450s. Although both pIKBACH and nontransgenic Nipponbare rice plants could decrease the amounts of the herbicides in plant tissue and culture medium, pIKBACH rice plants removed greater amounts in greenhouse experiments. The ability of pIKBACH rice plants to remove atrazine and metolachlor from soil was confirmed in large-scale experiments. The metabolism of herbicides by pIKBACH rice plants was enhanced by the introduced P450 species. Assuming that public and commercial acceptance is forthcoming, pIKBACH rice plants may become useful tools for the breeding of herbicide-tolerant crops and for phytoremediation of environmental pollution by organic chemicals. PMID:16608219

  18. Different bacterial populations associated with the roots and rhizosphere of rice incorporate plant-derived carbon.

    PubMed

    Hernández, Marcela; Dumont, Marc G; Yuan, Quan; Conrad, Ralf

    2015-03-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with (13)CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with (13)C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the "Spartobacteria" and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  19. Different Bacterial Populations Associated with the Roots and Rhizosphere of Rice Incorporate Plant-Derived Carbon

    PubMed Central

    Hernández, Marcela; Yuan, Quan; Conrad, Ralf

    2015-01-01

    Microorganisms associated with the roots of plants have an important function in plant growth and in soil carbon sequestration. Rice cultivation is the second largest anthropogenic source of atmospheric CH4, which is a significant greenhouse gas. Up to 60% of fixed carbon formed by photosynthesis in plants is transported below ground, much of it as root exudates that are consumed by microorganisms. A stable isotope probing (SIP) approach was used to identify microorganisms using plant carbon in association with the roots and rhizosphere of rice plants. Rice plants grown in Italian paddy soil were labeled with 13CO2 for 10 days. RNA was extracted from root material and rhizosphere soil and subjected to cesium gradient centrifugation followed by 16S rRNA amplicon pyrosequencing to identify microorganisms enriched with 13C. Thirty operational taxonomic units (OTUs) were labeled and mostly corresponded to Proteobacteria (13 OTUs) and Verrucomicrobia (8 OTUs). These OTUs were affiliated with the Alphaproteobacteria, Betaproteobacteria, and Deltaproteobacteria classes of Proteobacteria and the “Spartobacteria” and Opitutae classes of Verrucomicrobia. In general, different bacterial groups were labeled in the root and rhizosphere, reflecting different physicochemical characteristics of these locations. The labeled OTUs in the root compartment corresponded to a greater proportion of the 16S rRNA sequences (∼20%) than did those in the rhizosphere (∼4%), indicating that a proportion of the active microbial community on the roots greater than that in the rhizosphere incorporated plant-derived carbon within the time frame of the experiment. PMID:25616793

  20. Using SPOT-5 images in rice farming for detecting BPH (Brown Plant Hopper)

    NASA Astrophysics Data System (ADS)

    Ghobadifar, F.; Wayayok, A.; Shattri, M.; Shafri, H.

    2014-06-01

    Infestation of rice plant-hopper such as Brown Plant Hopper (BPH) (Nilaparvata lugens) is one of the most notable risk in rice yield in tropical areas especially in Asia. In order to use visible and infrared images to detect stress in rice production caused by BPH infestation, several remote sensing techniques have been developed. Initial recognition of pest infestation by means of remote sensing will spreads, for precision farming practice. To address this issue, detection of sheath blight in rice farming was examined by using SPOT-5 images. Specific image indices such as Normalized decrease food production costs, limit environmental hazards, and enhance natural pest control before the problem Normalized Difference Vegetation Index (NDVI), Standard difference indices (SDI) and Ratio Vegetation Index (RVI) were used for analyses using ENVI 4.8 and SPSS software. Results showed that all the indices to recognize infected plants are significant at α = 0.01. Examination of the association between the disease indices indicated that band 3 (near infrared) and band 4 (mid infrared) have a relatively high correlation. The selected indices declared better association for detecting healthy plants from diseased ones. Consequently, these sorts of indices especially NDVI could be valued as indicators for developing techniques for detecting the sheath blight of rice by using remote sensing. This infers that they are useful for crop disease detection but the spectral resolution is probably not sufficient to distinguish plants with light infections (low severity level). Using the index as an indicator can clarify the threshold for zoning the outbreaks. Quick assessment information is very useful in precision farming to practice site specific management such as pesticide application.

  1. Temporal changes of radiocesium in irrigated paddy fields and its accumulation in rice plants in Fukushima.

    PubMed

    Yang, Baolu; Onda, Yuichi; Wakiyama, Yoshifumi; Yoshimura, Kazuya; Sekimoto, Hitoshi; Ha, Yiming

    2016-01-01

    About half of the total paddy field area, which is the dominant agricultural land in Fukushima Prefecture, was contaminated by radiocesium released by the Fukushima Daiichi Nuclear Power Plant accident. In this study, we investigated the temporal changes of radiocesium in soil, irrigation water, and rice plant in two adjacent rice paddies, with and without surface-soil-removal, in Fukushima Prefecture for over three years (2012-2014) after the nuclear accident. Our results showed that radiocesium migrated into 24-28 cm soil layers and that the activity concentration of radiocesium in paddy soils showed a significant reduction in 2014. The newly added radiocesium to paddies through irrigation water contributed only a maximum value of 0.15% and 0.75% of the total amount present in control and decontaminated paddies, respectively, throughout the study period. The radiocesium activity concentration in suspended sediment in irrigation water exponentially decreased, and the effective half-lives (Teff) for (137)Cs and (134)Cs were 1.3 and 0.9 years, respectively. Additionally, the average suspended sediment concentration in irrigation water increased between 2012 and 2014, suggesting that enhanced soil erosion had occurred in the surrounding environment. Radiocesium accumulation in rice plant also decreased with time in both paddies. However, the concentration ratio of radiocesium for rice plant in the decontaminated paddy increased compared with control paddy, despite approximately 96% of fallout radiocesium removed in paddy soil. Further analysis is required to clarify the reasons of high concentration ratio of radiocesium for rice plant in the decontaminated paddy. PMID:26561453

  2. Annual Changes of Paddy Rice Planting Areas in Northeastern Asia from MODIS images in 2000-2014

    NASA Astrophysics Data System (ADS)

    Xiao, X.; Zhang, G.; Dong, J.; Menarguez, M. A.; Kou, W.; Jin, C.; Qin, Y.; Zhou, Y.; Wang, J.; Moore, B., III

    2014-12-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, estimation of greenhouse gas (methane) emissions, and understanding avian influenza virus transmission. Over the past two decades, paddy rice cultivation has expanded northward in temperate and cold temperate zones, particularly in Northeastern China. There is a need to quantify and map changes in paddy rice planting areas in Northeastern Asia (Japan, North and South Korea, and northeast China) at annual interval. We developed a pixel- and phenology-based image analysis system, MODIS-RICE, to map the paddy rice in Northeastern Asia by using multi-temporal MODIS thermal and surface reflectance imagery. Paddy rice fields during the flooding and transplanting phases have unique physical and spectral characteristics, which make it possible for the development of an automated and robust algorithm to track flooding and transplanting phases of paddy rice fields over time. In this presentation, we will show the MODIS-based annual maps of paddy rice planting area in the Northeastern Asia from 2000-2014 (500-m spatial resolution). Accuracy assessments using high-resolution images show that the resultant paddy rice map of Northeastern Asia had a comparable accuracy to the existing products, including 2010 Landsat-based National Land Cover Dataset (NLCD) of China, the 2010 RapidEye-based paddy rice map in North Korea, and the 2010 AVNIR-2-based National Land Cover Dataset in Japan in terms of both area and spatial pattern of paddy rice. This study has demonstrated that our novel MODIS-Rice system, which use both thermal and optical MODIS data over a year, are simple and robust tools to identify and map paddy rice fields in temperate and cold temperate zones.

  3. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields.

    PubMed

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  4. Physiological and Molecular Basis of Susceptibility and Tolerance of Rice Plants to Complete Submergence

    PubMed Central

    JACKSON, MICHAEL B.; RAM, PHOOL C.

    2003-01-01

    Rice plants are much damaged by several days of total submergence. The effect can be a serious problem for rice farmers in the rainfed lowlands of Asia, and runs contrary to a widespread belief amongst plant biologists that rice is highly tolerant of submergence. This article assesses the characteristics of the underwater environment that may damage rice plants, examines various physiological mechanisms of injury, and reviews recent progress achieved using linkage mapping to locate quantitative traits loci (QTL) for tolerance inherited from a submergence‐tolerant cultivar FR13A. Progress towards identifying the gene(s) involved through physical mapping of a dominant tolerance locus on chromosome 9 is also summarized. Available physiological evidence points away from responses to oxygen shortage as being inextricably involved in submergence injury. An imbalance between production and consumption of assimilates is seen as being especially harmful, and is exacerbated by strongly accelerated leaf extension and leaf senescence that are ethylene‐mediated and largely absent from FR13A and related cultivars. DNA markers for a major QTL for tolerance are shown to be potentially useful in breeding programmes designed to improve submergence tolerance. PMID:12509343

  5. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-07-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions.

  6. Tracking Se Assimilation and Speciation through the Rice Plant - Nutrient Competition, Toxicity and Distribution.

    PubMed

    Nothstein, Alexandra K; Eiche, Elisabeth; Riemann, Michael; Nick, Peter; Winkel, Lenny H E; Göttlicher, Jörg; Steininger, Ralph; Brendel, Rita; von Brasch, Matthias; Konrad, Gabriele; Neumann, Thomas

    2016-01-01

    Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0-2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2-16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice. PMID:27116220

  7. Tracking Se Assimilation and Speciation through the Rice Plant – Nutrient Competition, Toxicity and Distribution

    PubMed Central

    Eiche, Elisabeth; Riemann, Michael; Nick, Peter; Winkel, Lenny H. E.; Göttlicher, Jörg; Steininger, Ralph; Brendel, Rita; von Brasch, Matthias; Konrad, Gabriele; Neumann, Thomas

    2016-01-01

    Up to 1 billion people are affected by low intakes of the essential nutrient selenium (Se) due to low concentrations in crops. Biofortification of this micronutrient in plants is an attractive way of increasing dietary Se levels. We investigated a promising method of Se biofortification of rice seedlings, as rice is the primary staple for 3 billion people, but naturally contains low Se concentrations. We studied hydroponic Se uptake for 0–2500 ppb Se, potential phyto-toxicological effects of Se and the speciation of Se along the shoots and roots as a function of added Se species, concentrations and other nutrients supplied. We found that rice germinating directly in a Se environment increased plant-Se by factor 2–16, but that nutrient supplementation is required to prevent phyto-toxicity. XANES data showed that selenite uptake mainly resulted in the accumulation of organic Se in roots, but that selenate uptake resulted in accumulation of selenate in the higher part of the shoot, which is an essential requirement for Se to be transported to the grain. The amount of organic Se in the plant was positively correlated with applied Se concentration. Our results indicate that biofortification of seedlings with selenate is a successful method to increase Se levels in rice. PMID:27116220

  8. Optimizing rice plant photosynthate allocation reduces N2O emissions from paddy fields

    PubMed Central

    Jiang, Yu; Huang, Xiaomin; Zhang, Xin; Zhang, Xingyue; Zhang, Yi; Zheng, Chengyan; Deng, Aixing; Zhang, Jun; Wu, Lianhai; Hu, Shuijin; Zhang, Weijian

    2016-01-01

    Rice paddies are a major source of anthropogenic nitrous oxide (N2O) emissions, especially under alternate wetting-drying irrigation and high N input. Increasing photosynthate allocation to the grain in rice (Oryza sativa L.) has been identified as an effective strategy of genetic and agronomic innovation for yield enhancement; however, its impacts on N2O emissions are still unknown. We conducted three independent but complementary experiments (variety, mutant study, and spikelet clipping) to examine the impacts of rice plant photosynthate allocation on paddy N2O emissions. The three experiments showed that N2O fluxes were significantly and negatively correlated with the ratio of grain yield to total aboveground biomass, known as the harvest index (HI) in agronomy (P < 0.01). Biomass accumulation and N uptake after anthesis were significantly and positively correlated with HI (P < 0.05). Reducing photosynthate allocation to the grain by spikelet clipping significantly increased white root biomass and soil dissolved organic C and reduced plant N uptake, resulting in high soil denitrification potential (P < 0.05). Our findings demonstrate that optimizing photosynthate allocation to the grain can reduce paddy N2O emissions through decreasing belowground C input and increasing plant N uptake, suggesting the potential for genetic and agronomic efforts to produce more rice with less N2O emissions. PMID:27378420

  9. Expression and functional analysis of the plant-specific histone deacetylase HDT701 in rice

    PubMed Central

    Zhao, Jinhui; Zhang, Jianxia; Zhang, Wei; Wu, Kunlin; Zheng, Feng; Tian, Lining; Liu, Xuncheng; Duan, Jun

    2015-01-01

    Reversible histone acetylation and deacetylation at the N-terminus of histone tails play a crucial role in regulating eukaryotic gene activity. Acetylation of core histones is associated with gene activation, whereas deacetylation of histone is often correlated with gene repression. The level of histone acetylation is antagonistically catalyzed by histone acetyltransferases citation(HATs) and histone deacetylases (HDACs). In this work, we examined the subcellular localization, expression pattern and function of HDT701, a member of the plant-specific HD2-type histone deacetylase in rice. HDT701 is localized at the subcellular level in the nucleus. Histochemical GUS-staining analysis revealed that HDT701 is constitutively expressed throughout the life cycle of rice. Overexpression of HDT701 in rice decreases ABA, salt and osmotic stress resistance during seed germination. Delayed seed germination of HDT701 overexpression lines is associated with decreased histone H4 acetylation and down-regulated expression of GA biosynthetic genes. Moreover, overexpression of HDT701 in rice enhances salt and osmotic stress resistance during the seedling stage. Taken together, our findings suggested that HDT701 may play an important role in regulating seed germination in response to abiotic stresses in rice. PMID:25653654

  10. Plant regeneration methods for rapid generation of a large scale Ds transposant population in rice.

    PubMed

    Xuan, Yuan Hu; Huang, Jin; Yi, Gihwan; Park, Dong-Soo; Park, Soo Kwon; Eun, Moo Young; Yun, Doh Won; Lee, Gang-Seob; Kim, Tae Ho; Han, Chang-deok

    2013-01-01

    To mutagenize rice genomes, a two-element system is utilized. This system comprises an immobile Ac element driven by the CaMV 35S promoter, and a gene trap Ds carrying a partial intron with alternative splice acceptors fused to the GUS coding region. Rapid, large-scale generation of a Ds transposant population was achieved using a plant regeneration procedure involving the tissue culture of seed-derived calli carrying Ac and Ds elements. During tissue cultures, Ds mobility accompanies changes in methylation patterns of a terminal region of Ds, where over 70% of plants contained independent Ds insertions. In the transposon population, around 12% of plants expressed GUS at the early seedling stage. A flanking-sequence-tag (FST) database has been established by cloning over 19,968 Ds insertion sites and the Ds map shows relatively uniform distribution across the rice chromosomes. PMID:23918423

  11. Assessment of water sources to plant growth in rice based cropping systems by stable water isotopes

    NASA Astrophysics Data System (ADS)

    Mahindawansha, Amani; Kraft, Philipp; Racela, Heathcliff; Breuer, Lutz

    2016-04-01

    Rice is one of the most water-consuming crops in the world. Understanding water source utilization of rice will help us to improve water use efficiency (WUE) in paddy management. The objectives of our study are to evaluate the isotopic compositions of surface ponded water, soil water, irrigation water, groundwater, rain water and plant water and based on stable water isotope signatures to evaluate the contributions of various water sources to plant growth (wet rice, aerobic rice and maize) together with investigating the contribution of water from different soil horizons for plant growth in different maturity periods during wet and dry seasons. Finally we will compare the water balances and crop yields in both crops during both seasons and calculate the water use efficiencies. This will help to identify the most efficient water management systems in rice based cropping ecosystems using stable water isotopes. Soil samples are collected from 9 different depths at up to 60 cm in vegetative, reproductive and matured periods of plant growth together with stem samples. Soil and plant samples are extracted by cryogenic vacuum extraction. Root samples are collected up to 60 cm depth from 10 cm intercepts leading calculation of root length density and dry weight. Groundwater, surface water, rain water and irrigation water are sampled weekly. All water samples are analyzed for hydrogen and oxygen isotope ratios (d18O and dD) using Los Gatos Research DLT100. Rainfall records, ground water level, surface water level fluctuations and the amount of water irrigated in each field will be measured during the sampling period. The direct inference approach which is based on comparing isotopic compositions (dD and d18O) between plant stem water and soil water will be used to determine water sources taken up by plant. Multiple-source mass balance assessment can provide the estimated range of potential contributions of water from each soil depth to root water uptake of a crop. These

  12. Serobactins-mediated iron acquisition systems optimize competitive fitness of Herbaspirillum seropedicae inside rice plants.

    PubMed

    Rosconi, Federico; Trovero, María F; de Souza, Emanuel M; Fabiano, Elena

    2016-09-01

    Herbaspirillum seropedicae Z67 is a diazotrophic endophyte able to colonize the interior of many economically relevant crops such as rice, wheat, corn and sorghum. Under iron-deficient conditions, this organism secretes serobactins, a suite of lipopetide siderophores. The role of siderophores in the interaction between endophytes and their plant hosts are not well understood. In this work, we aimed to determine the importance of serobactins-mediated iron acquisition systems in the interaction of H. seropedicae with rice plants. First we provide evidence, by using a combination of genome analysis, proteomic and genetic studies, that the Hsero_2345 gene encodes a TonB-dependent receptor involved in iron-serobactin complex internalization when iron bioavailability is low. Our results show that survival of the Hsero_2345 mutant inside rice plants was not significantly different from that of the wild-type strain. However, when plants were co-inoculated at equal ratios with the wild-type strain and with a double mutant defective in serobactins synthesis and internalization, recovery of mutant was significantly impaired after 8 days post-inoculation. These results demonstrate that serobactins-mediated iron acquisition contributes to competitive fitness of H. seropedicae inside host plants. PMID:26715074

  13. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria

    PubMed Central

    Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1–19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82–116 μg mL-1) and produced indole acetic acid (0.48–1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice. PMID:27532545

  14. Plant Growth Promotion and Suppression of Bacterial Leaf Blight in Rice by Inoculated Bacteria.

    PubMed

    Yasmin, Sumera; Zaka, Abha; Imran, Asma; Zahid, Muhammad Awais; Yousaf, Sumaira; Rasul, Ghulam; Arif, Muhammad; Mirza, Muhammad Sajjad

    2016-01-01

    The present study was conducted to evaluate the potential of rice rhizosphere associated antagonistic bacteria for growth promotion and disease suppression of bacterial leaf blight (BLB). A total of 811 rhizospheric bacteria were isolated and screened against 3 prevalent strains of BLB pathogen Xanthomonas oryzae pv. oryzae (Xoo) of which five antagonistic bacteria, i.e., Pseudomonas spp. E227, E233, Rh323, Serratia sp. Rh269 and Bacillus sp. Rh219 showed antagonistic potential (zone of inhibition 1-19 mm). Production of siderophores was found to be the common biocontrol determinant and all the strains solubilized inorganic phosphate (82-116 μg mL-1) and produced indole acetic acid (0.48-1.85 mg L-1) in vitro. All antagonistic bacteria were non-pathogenic to rice, and their co-inoculation significantly improved plant health in terms of reduced diseased leaf area (80%), improved shoot length (31%), root length (41%) and plant dry weight (60%) as compared to infected control plants. Furthermore, under pathogen pressure, bacterial inoculation resulted in increased activity of defense related enzymes including phenylalanine ammonia-lyase and polyphenol oxidase, along with 86% increase in peroxidase and 53% increase in catalase enzyme activities in plants inoculated with Pseudomonas sp. Rh323 as well as co-inoculated plants. Bacterial strains showed good colonization potential in the rice rhizosphere up to 21 days after seed inoculation. Application of bacterial consortia in the field resulted in an increase of 31% in grain yield and 10% in straw yield over non-inoculated plots. Although, yield increase was statistically non-significant but was accomplished with overall saving of 20% chemical fertilizers. The study showed that Pseudomonas sp. Rh323 can be used to develop dual-purpose inoculum which can serve not only to suppress BLB but also to promote plant growth in rice. PMID:27532545

  15. Eliminating aluminum toxicity in an acid sulfate soil for rice cultivation using plant growth promoting bacteria.

    PubMed

    Panhwar, Qurban Ali; Naher, Umme Aminun; Radziah, Othman; Shamshuddin, Jusop; Razi, Ismail Mohd

    2015-01-01

    Aluminum toxicity is widely considered as the most important limiting factor for plants growing in acid sulfate soils. A study was conducted in laboratory and in field to ameliorate Al toxicity using plant growth promoting bacteria (PGPB), ground magnesium limestone (GML) and ground basalt. Five-day-old rice seedlings were inoculated by Bacillus sp., Stenotrophomonas maltophila, Burkholderia thailandensis and Burkholderia seminalis and grown for 21 days in Hoagland solution (pH 4.0) at various Al concentrations (0, 50 and 100 μM). Toxicity symptoms in root and leaf were studied using scanning electron microscope. In the field, biofertilizer (PGPB), GML and basalt were applied (4 t·ha-1 each). Results showed that Al severely affected the growth of rice. At high concentrations, the root surface was ruptured, leading to cell collapse; however, no damages were observed in the PGPB inoculated seedlings. After 21 days of inoculation, solution pH increased to >6.0, while the control treatment remained same. Field study showed that the highest rice growth and yield were obtained in the bio-fertilizer and GML treatments. This study showed that Al toxicity was reduced by PGPB via production of organic acids that were able to chelate the Al and the production of polysaccharides that increased solution pH. The release of phytohormones further enhanced rice growth that resulted in yield increase. PMID:25710843

  16. Geochemical patterns and microbial contribution to iron plaque formation in the rice plant rhizosphere

    NASA Astrophysics Data System (ADS)

    Maisch, Markus; Murata, Chihiro; Unger, Julia; Kappler, Andreas; Schmidt, Caroline

    2015-04-01

    Rice is the major food source for more than half of the world population and 80 percent of the worldwide rice cultivation is performed on water logged paddy soils. The establishment of reducing conditions in the soil and across the soil-water interface not only stimulates the microbial production and release of the greenhouse gas methane. These settings also create optimal conditions for microbial iron(III) reduction and therefore saturate the system with reduced ferrous iron. Through the reduction and dissolution of ferric minerals that are characterized by their high surface activity, sorbed nutrients and contaminants (e.g. arsenic) will be mobilized and are thus available for uptake by plants. Rice plants have evolved a strategy to release oxygen from their roots in order to prevent iron toxification in highly ferrous environments. The release of oxygen to the reduced paddy soil causes ferric iron plaque formation on the rice roots and finally increases the sorption capacity for toxic metals. To this date the geochemical and microbiological processes that control the formation of iron plaque are not deciphered. It has been hypothesized that iron(II)-oxidizing bacteria play a potential role in the iron(III) mineral formation along the roots. However, not much is known about the actual processes, mineral products, and geochemical gradients that establish within the rhizosphere. In the present study we have developed a growth set-up that allows the co-cultivation of rice plants and iron(II)-oxidizing bacteria, as well as the visual observation and in situ measurement of geochemical parameters. Oxygen and dissolved iron(II) gradients have been measured using microelectrodes and show geochemical hot spots that offer optimal growth conditions for microaerophilic iron(II) oxidizers. First mineral identification attempts of iron plaque have been performed using Mössbauer spectroscopy and microscopy. The obtained results on mineraology and crystallinity have been

  17. Arabidopsis thaliana: A Model Host Plant to Study Plant-Pathogen Interaction Using Rice False Smut Isolates of Ustilaginoidea virens.

    PubMed

    Andargie, Mebeaselassie; Li, Jianxiong

    2016-01-01

    Rice false smut fungus which is a biotrophic fungal pathogen causes an important rice disease and brings a severe damage where rice is cultivated. We established a new fungal-plant pathosystem where Ustilaginoidea virens was able to interact compatibly with the model plant Arabidopsis thaliana. Disease symptoms were apparent on the leaves of the plants after 6 days of post inoculation in the form of chlorosis. Cytological studies showed that U. virens caused a heavy infestation inside the cells of the chlorotic tissues. Development and colonization of aerial mycelia in association with floral organ, particularly on anther and stigma of the flowers after 3 weeks of post inoculation was evident which finally caused infection on the developing seeds and pod tissues. The fungus adopts a uniquely biotrophic infection strategy in roots and spreads without causing a loss of host cell viability. We have also demonstrated that U. virens isolates infect Arabidopsis and the plant subsequently activates different defense response mechanisms which are witnessed by the expression of pathogenesis-related genes, PR-1, PR-2, PR-5, PDF1.1, and PDF1.2. The established A. thaliana-U. virens pathosystem will now permit various follow-up molecular genetics and gene expression experiments to be performed to identify the defense signals and responses that restrict fungal hyphae colonization in planta and also provide initial evidence for tissue-adapted fungal infection strategies. PMID:26941759

  18. Ethnobotanical investigation of 'wild' food plants used by rice farmers in Kalasin, Northeast Thailand

    PubMed Central

    2011-01-01

    Background Wild food plants are a critical component in the subsistence system of rice farmers in Northeast Thailand. One of the important characteristics of wild plant foods among farming households is that the main collection locations are increasingly from anthropogenic ecosystems such as agricultural areas rather than pristine ecosystems. This paper provides selected results from a study of wild food conducted in several villages in Northeast Thailand. A complete botanical inventory of wild food plants from these communities and surrounding areas is provided including their diversity of growth forms, the different anthropogenic locations were these species grow and the multiplicity of uses they have. Methods Data was collected using focus groups and key informant interviews with women locally recognized as knowledgeable about contemporarily gathered plants. Plant species were identified by local taxonomists. Results A total of 87 wild food plants, belonging to 47 families were reported, mainly trees, herbs (terrestrial and aquatic) and climbers. Rice fields constitute the most important growth location where 70% of the plants are found, followed by secondary woody areas and home gardens. The majority of species (80%) can be found in multiple growth locations, which is partly explained by villagers moving selected species from one place to another and engaging in different degrees of management. Wild food plants have multiple edible parts varying from reproductive structures to vegetative organs. More than two thirds of species are reported as having diverse additional uses and more than half of them are also regarded as medicine. Conclusions This study shows the remarkable importance of anthropogenic areas in providing wild food plants. This is reflected in the great diversity of species found, contributing to the food and nutritional security of rice farmers in Northeast Thailand. PMID:22067578

  19. Rice proteomics: A move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology.

    PubMed

    Agrawal, Ganesh Kumar; Rakwal, Randeep

    2011-05-01

    Growing rice is an important socio-economic activity. Rice proteomics has achieved a tremendous progress in establishing techniques to proteomes of almost all tissues, organs, and organelles during the past one decade (year 2000-2010). We have compiled these progresses time to time over this period. The present compilation discusses proteomics research in rice published between 1st April 2008 and 30th July 2010. Progress continues mainly towards protein cataloging deep into the proteome with high-confident protein assignment and some functional significance than ever before by (i) identifying previously unreported/low-abundance proteins, (ii) quantifying relative/absolute values of proteins, (iii) assigning protein responses to biotic/abiotic stresses, (iv) protein localization into organelles, (v) validating previous proteomes and eliminating false-positive proteins, and (vi) discovering potential biomarkers for tissues, organs, organelles, and for screening transgenic plants and food-safety evaluation. The notable achievements in global mapping of phosphorylation sites and identifying several novel secreted proteins into the extracellular space are worth appreciating. Our ever-increasing knowledge on the rice proteomics is beginning to impact the biology of not only rice, but also crops and plants. These major achievements will be discussed in this review keeping in mind newcomers, young, and established scientists in proteomics and plants. PMID:21462347

  20. Vermicompost humic acids modulate the accumulation and metabolism of ROS in rice plants.

    PubMed

    García, Andrés Calderín; Santos, Leandro Azevedo; de Souza, Luiz Gilberto Ambrósio; Tavares, Orlando Carlos Huertas; Zonta, Everaldo; Gomes, Ernane Tarcisio Martins; García-Mina, José Maria; Berbara, Ricardo Luis Louro

    2016-03-15

    This work aims to determine the reactive oxygen species (ROS) accumulation, gene expression, anti-oxidant enzyme activity, and derived effects on membrane lipid peroxidation and certain stress markers (proline and malondialdehyde-MDA) in the roots of unstressed and PEG-stressed rice plants associated with vermicompost humic acid (VCHA) application. The results show that the application of VCHA to the roots of unstressed rice plants caused a slight but significant increase in root ROS accumulation and the gene expression and activity of the major anti-oxidant enzymes (superoxide dismutase and peroxidase). This action did not have negative effects on root development, and an increase in both root growth and root proliferation occurred. However, the root proline and MDA concentrations and the root permeability results indicate the development of a type of mild stress associated with VCHA application. When VCHA was applied to PEG-stressed plants, a clear alleviation of the inhibition in root development linked to PEG-mediated osmotic stress was observed. This was associated with a reduction in root ROS production and anti-oxidant enzymatic activity caused by osmotic stress. This alleviation of stress caused by VCHA was also reflected as a reduction in the PEG-mediated concentration of MDA in the root as well as root permeability. In summary, the beneficial action of VCHA on the root development of unstressed or PEG-stressed rice plants clearly involves the modulation of ROS accumulation in roots. PMID:26851887

  1. Low Temperature Storage of Southern Rice Black-Streaked Dwarf Virus-Infected Rice Plants Cannot Sustain Virus Transmission by the Vector.

    PubMed

    Liu, Danfeng; Li, Pei; Han, Yongqiang; Lei, Wenbin; Hou, Maolin

    2016-02-01

    Southern rice black-streaked dwarf virus (SRBSDV) is a novel virus transmitted by white-backed planthopper Sogatella furcifera (Hováth) (Hemiptera: Delphacidae). Due to low virus transmission efficiency by the planthopper, researchers are frequently confronted with shortage of viruliferous vectors or infected rice plants, especially in winter and the following spring. To find new ways to maintain virus-infected materials, viral rice plants were stored at -80°C for 45 or 140 d and evaluated as virus sources in virus transmission by the vector. SRBSDV virions were not degraded during storage at -80°C as indicated by reverse transcription-polymerase chain reaction and reverse transcription real-time PCR detection. The planthopper nymphs fed on the infected thawed plants for 48 h survived at about 40% and showed positive detection of SRBSDV, but they lost the virus after feeding for another 20 d (the circulative transmission period) on noninfected plants. Transmission electron microscope images indicated broken capsid of virions in infected thawed leaves in contrast to integrity capsid of virions in infected fresh leaves. These results show that low temperature storage of SRBSDV-infected rice plants cannot sustain virus transmission by white-backed planthopper. PMID:26405060

  2. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants.

    PubMed

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K

    2016-03-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  3. Knocking down mitochondrial iron transporter (MIT) reprograms primary and secondary metabolism in rice plants

    PubMed Central

    Vigani, Gianpiero; Bashir, Khurram; Ishimaru, Yasuhiro; Lehmann, Martin; Casiraghi, Fabio Marco; Nakanishi, Hiromi; Seki, Motoaki; Geigenberger, Peter; Zocchi, Graziano; Nishizawa, Naoko K.

    2016-01-01

    Iron (Fe) is an essential micronutrient for plant growth and development, and its reduced bioavailability strongly impairs mitochondrial functionality. In this work, the metabolic adjustment in the rice (Oryza sativa) mitochondrial Fe transporter knockdown mutant (mit-2) was analysed. Biochemical characterization of purified mitochondria from rice roots showed alteration in the respiratory chain of mit-2 compared with wild-type (WT) plants. In particular, proteins belonging to the type II alternative NAD(P)H dehydrogenases accumulated strongly in mit-2 plants, indicating that alternative pathways were activated to keep the respiratory chain working. Additionally, large-scale changes in the transcriptome and metabolome were observed in mit-2 rice plants. In particular, a strong alteration (up-/down-regulation) in the expression of genes encoding enzymes of both primary and secondary metabolism was found in mutant plants. This was reflected by changes in the metabolic profiles in both roots and shoots of mit-2 plants. Significant alterations in the levels of amino acids belonging to the aspartic acid-related pathways (aspartic acid, lysine, and threonine in roots, and aspartic acid and ornithine in shoots) were found that are strictly connected to the Krebs cycle. Furthermore, some metabolites (e.g. pyruvic acid, fumaric acid, ornithine, and oligosaccharides of the raffinose family) accumulated only in the shoot of mit-2 plants, indicating possible hypoxic responses. These findings suggest that the induction of local Fe deficiency in the mitochondrial compartment of mit-2 plants differentially affects the transcript as well as the metabolic profiles in root and shoot tissues. PMID:26685186

  4. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    PubMed Central

    Hardoim, Pablo R.; Hardoim, Cristiane C. P.; van Overbeek, Leonard S.; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  5. Dynamics of seed-borne rice endophytes on early plant growth stages.

    PubMed

    Hardoim, Pablo R; Hardoim, Cristiane C P; van Overbeek, Leonard S; van Elsas, Jan Dirk

    2012-01-01

    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed. PMID:22363438

  6. Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants.

    PubMed

    Kyozuka, Junko; Shimamoto, Ko

    2002-01-01

    In order to clarify the evolutionary relationship of floral organs between grasses and dicots, we expressed OsMADS3, a rice (Oryza sativa L.) AGAMOUS(AG) ortholog, in rice plants under the control of an Actin1 promoter. As a consequence of the ectopic expression of the OsMADS3, lodicules were homeotically transformed into stamens. In total, the transformation of lodicules to staminoid organs was observed in 18 out of 26 independent transgenic lines. In contrast to the almost complete transformation occurring in lodicules, none of the transgenic plants exhibited any morphological alterations in the palea or the lemma. Our results confirmed the prediction that the lodicule is an equivalent of a dicot petal and that the ABC model can be applied to rice at least for organ specification in lodicules and stamens. PMID:11828031

  7. RED RICE DIVERSITY AND PLANTING DATE EFFECTS ON RISK OF GENE FLOW

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice (Oryza sativa L.) is a problematic weed in rice production worldwide. Red rice control is difficult with conventional herbicides due to its similar biology and physiology as cultivated rice. However, herbicide-resistant (HR) rice provides a valuable tool for red rice management, but with a ...

  8. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.

    PubMed

    Nogueira, Francisco G E; Castro, Isabela A; Bastos, Ana R R; Souza, Guilherme A; de Carvalho, Janice G; Oliveira, Luiz C A

    2011-02-28

    The leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations. The objective was also to evaluate the efficiency of such formulations as a nutrient supply for rice plants in an Oxisoil, under greenhouse conditions. The application of PK enriched-collagen formulations resulted in N contents in the vegetative parts and grains of rice plants which were equivalent or superior to those obtained with urea and commercial NPK formulations. PMID:21167640

  9. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-03-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice.

  10. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M

    2015-01-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice. PMID:25731663

  11. Inspections of radiocesium concentration levels in rice from Fukushima Prefecture after the Fukushima Dai-ichi Nuclear Power Plant accident

    PubMed Central

    Nihei, Naoto; Tanoi, Keitaro; Nakanishi, Tomoko M.

    2015-01-01

    We summarize the inspections of radiocesium concentration levels in rice produced in Fukushima Prefecture, Japan, for 3 years from the nuclear accident in 2011. In 2011, three types of verifications, preliminary survey, main inspection, and emergency survey, revealed that rice with radiocesium concentration levels over 500 Bq/kg (the provisional regulation level until March 2012 in Japan) was identified in the areas north and west of the Fukushima nuclear power plant. The internal exposure of an average adult eating rice grown in the area north of the nuclear plant was estimated as 0.05 mSv/year. In 2012, Fukushima Prefecture authorities decided to investigate the radiocesium concentration levels in all rice using custom-made belt conveyor testers. Notably, rice with radiocesium concentration levels over 100 Bq/kg (the new standard since April 2012 in Japan) were detected in only 71 and 28 bags out of the total 10,338,000 in 2012 and 11,001,000 in 2013, respectively. We considered that there were almost no rice exceeding 100 Bq/kg produced in Fukushima Prefecture after 3 years from the nuclear accident, and the safety of Fukushima's rice were ensured because of the investigation of all rice. PMID:25731663

  12. Disruption of secondary wall cellulose biosynthesis alters cadmium translocation and tolerance in rice plants.

    PubMed

    Song, Xue-Qin; Liu, Li-Feng; Jiang, Yi-Jun; Zhang, Bao-Cai; Gao, Ya-Ping; Liu, Xiang-Ling; Lin, Qing-Shan; Ling, Hong-Qing; Zhou, Yi-Hua

    2013-05-01

    Tricheary elements (TEs), wrapped by secondary cell wall, play essential roles in water, mineral, and nutrient transduction. Cadmium (Cd) is a toxic heavy metal that is absorbed by roots and transported to shoot, leaves, and grains through vascular systems in plants. As rice is a major source of Cd intake, many efforts have been made to establish 'low-Cd rice'. However, no links have been found between cellulose biosynthesis and cadmium accumulation. We report here a rice brittle culm13 mutant, resulting from a novel missense mutation (E101K) [corrected] in the N-terminus of cellulose synthase subunit 9 (CESA9). Except for the abnormal mechanical strength, the mutant plants are morphologically indistinguishable from the wild-type plants. Transmission electron microscopy (TEM) and chemical analyses showed a slight reduction in secondary wall thickness and 22% decrease in cellulose content in bc13 plants. Moreover, this mutation unexpectedly confers the mutant plants Cd tolerance due to less Cd accumulation in leaves. Expression analysis of the genes required for Cd uptake and transport revealed complicated alterations after applying Cd to wild-type and bc13. The mutants were further found to have altered vascular structure. More importantly, Cd concentration in the xylem saps from the bc13 plants was significantly lower than that from the wild-type. Combining the analyses of CESA9 gene expression and Cd content retention in the cell-wall residues, we conclude that CESA9(E101K) [corrected] mutation alters cell-wall properties in the conducting tissues, which consequently affects Cd translocation efficiency that largely contributes to the low Cd accumulation in the mutant plants. PMID:23376772

  13. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere.

    PubMed

    Sahoo, Ranjan K; Ansari, Mohammad W; Tuteja, Renu; Tuteja, Narendra

    2015-01-01

    Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms. PMID:25303666

  14. Molecular characterization and biological response to respiration inhibitors of Pyricularia isolates from ctenanthe and rice plants.

    PubMed

    Paplomatas, Epaminondas J; Pappas, Athanasios C; Syranidou, Elene

    2005-07-01

    The molecular profile and the biological response of isolates of Pyricularia oryzae Cavara obtained from ctenanthe to two strobilurins (azoxystrobin, kresoxim-methyl) and the phenylpyridinamine fungicide fluazinam were characterized, and compared with isolates from rice plants. Five different isozymes (alpha-esterase, lactate, malate, isocitrate and sorbitol dehydrogenases) and five random decamer primers for RAPD-PCR were used to generate molecular markers. Using unweighted pair-group with arithmetic average analysis, ctenanthe isolates were found to form a separate group distinct from that of the rice isolates for both sets of markers. Amplified polymorphic sequences of mitochondrial cytochrome b that were digested with Fnu4HI or StyI revealed no differences among Pyricularia isolates at amino acid positions 143 or 129 which confer resistance to strobilurins in several fungi. In absence of the alternative respiration inhibitor salicylhydroxamic acid (SHAM) the three fungicides showed inferior and variable efficacy, with a trend toward the rice isolate being less sensitive. The addition of SHAM enhanced the effectiveness of all fungicides against isolates regardless of their origin. Appressorium formation was the most vulnerable target of action of the respiration inhibitors and azoxystrobin the most effective. This is the first report of a comparison between the molecular profiles and sensitivities to respiration inhibitors for Pyricularia oryzae isolates from a non-gramineous host and from rice. PMID:15739234

  15. Study on allelopathic effects of Rice and Wheat Soil-Like Substrate on several plants

    NASA Astrophysics Data System (ADS)

    Li, Leyuan; Fu, Wenting; He, Wenting; Liu, Hong

    Rice and wheat are the traditional food of Chinese people, and therefore the main crop candidates for bio-regenerative life-support systems. Recycling rice and wheat straw is an important issue concerning the system. In order to decide if the mixed-substrate made of rice and wheat straw is suitable of plant cultivation, Rice and Wheat Soil-Like Substrate was tested in an aqueous extract germination experiment. The effects of different concentrations of aqueous extract on seed vigor, seedling growth and development situations and the physiological and biochemical characteristics of wheat, lettuce and pumpkin were studied, and the presence and degrees of allelopathic effects were analyzed. The test results showed that this type of SLS exerted different degrees of allelopathic effect on wheat and lettuce; this allelopathic effect was related to the concentration of SLS aqueous extract. The most significant phenomenon is that with the increase of aqueous extract concentration, the seed germination, root length and shoot fresh weight of wheat decreased; and every concentration of aqueous extract showed significant inhibition on the root length and root fresh weight of lettuce. However, this type of SLS showed little effect on the growth of pumpkin seedlings. Contents changes of chlorophyll and endogenous hormones in wheat and lettuce seedlings, and the chemical compositions of SLS were measured, and the mechanism of allelopathic effect was preliminarily analyzed.

  16. Expression of peanut Iron Regulated Transporter 1 in tobacco and rice plants confers improved iron nutrition.

    PubMed

    Xiong, Hongchun; Guo, Xiaotong; Kobayashi, Takanori; Kakei, Yusuke; Nakanishi, Hiromi; Nozoye, Tomoko; Zhang, Lixia; Shen, Hongyun; Qiu, Wei; Nishizawa, Naoko K; Zuo, Yuanmei

    2014-07-01

    Iron (Fe) limitation is a widespread agricultural problem in calcareous soils and severely limits crop production. Iron Regulated Transporter 1 (IRT1) is a key component for Fe uptake from the soil in dicot plants. In this study, the peanut (Arachis hypogaea L.) AhIRT1 was introduced into tobacco and rice plants using an Fe-deficiency-inducible artificial promoter. Induced expression of AhIRT1 in tobacco plants resulted in accumulation of Fe in young leaves under Fe deficient conditions. Even under Fe-excess conditions, the Fe concentration was also markedly enhanced, suggesting that the Fe status did not affect the uptake and translocation of Fe by AhIRT1 in the transgenic plants. Most importantly, the transgenic tobacco plants showed improved tolerance to Fe limitation in culture in two types of calcareous soils. Additionally, the induced expression of AhIRT1 in rice plants also resulted in high tolerance to low Fe availability in calcareous soils. PMID:24727792

  17. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice

    PubMed Central

    Zheng, Ming; Wang, Yihua; Liu, Xi; Sun, Juan; Wang, Yunlong; Xu, Yang; Lv, Jia; Long, Wuhua; Zhu, Xiaopin; Guo, Xiuping; Jiang, Ling; Wang, Chunming; Wan, Jianmin

    2016-01-01

    Mutations of ribosomal proteins (RPs) are known to cause developmental abnormalities in yeast, mammals, and dicotyledonous plants; however, their effects have not been studied in rice. Here, we identifiy a ribosomal biogenesis mutant, rice minute-like1 (rml1) that displays a minute phenotype as evidenced by retarded growth and defects in the vascular system. We determine that RML1 encodes a ribosome large subunit protein 3B (RPL3B) in rice by means of map-based cloning and genetic complementation. RPL3B is abundantly expressed in all the tissues, whereas RPL3A, another RPL3 gene family member, is expressed at low levels. Notably, the expression level of RPL3A in the rml1 mutant is similar to that in the wild-type, suggesting that RPL3A provides no functional compensation for RPL3B in rml1 plants. Ribosomal profiles show that mutation of RPL3B leads to a significant reduction in free 60S ribosomal subunits and polysomes, indicating a ribosomal insufficiency in the rml1 mutant. Our results demonstrate that the ribosomal protein gene RPL3B is required for maintaining normal leaf morphology and plant architecture in rice through its regulation of ribosome biogenesis. PMID:27241493

  18. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice.

    PubMed

    Zheng, Ming; Wang, Yihua; Liu, Xi; Sun, Juan; Wang, Yunlong; Xu, Yang; Lv, Jia; Long, Wuhua; Zhu, Xiaopin; Guo, Xiuping; Jiang, Ling; Wang, Chunming; Wan, Jianmin

    2016-05-01

    Mutations of ribosomal proteins (RPs) are known to cause developmental abnormalities in yeast, mammals, and dicotyledonous plants; however, their effects have not been studied in rice. Here, we identifiy a ribosomal biogenesis mutant, rice minute-like1 (rml1) that displays a minute phenotype as evidenced by retarded growth and defects in the vascular system. We determine that RML1 encodes a ribosome large subunit protein 3B (RPL3B) in rice by means of map-based cloning and genetic complementation. RPL3B is abundantly expressed in all the tissues, whereas RPL3A, another RPL3 gene family member, is expressed at low levels. Notably, the expression level of RPL3A in the rml1 mutant is similar to that in the wild-type, suggesting that RPL3A provides no functional compensation for RPL3B in rml1 plants. Ribosomal profiles show that mutation of RPL3B leads to a significant reduction in free 60S ribosomal subunits and polysomes, indicating a ribosomal insufficiency in the rml1 mutant. Our results demonstrate that the ribosomal protein gene RPL3B is required for maintaining normal leaf morphology and plant architecture in rice through its regulation of ribosome biogenesis. PMID:27241493

  19. Studies on the sources of benzo[a]pyrene in grain and aboveground tissues of rice plants.

    PubMed

    Li, Peijun; Li, Xiaojun; Stagnitti, Frank; Zhang, Hairong; Lin, Xin; Zang, Shuyan; Zhuo, Junchen; Xiong, Xianzhe

    2009-02-15

    Rice plant pot experiments designed to identify benzo[a]pyrene (B[a]P) sources in plant tissues were conducted in an air-quality controlled greenhouse built to prevent contamination from B[a]P air pollution. Results from quartz sand cultures with control and 50, 100 and 500 microgkg(-1) of B[a]P treatments were compared with those from outdoor field experiments, in which rice plants were exposed to polluted air in the urban area of Shenyang, China. When B[a]P was strictly controlled in both air and quartz sand culture medium, the background values of B[a]P in rice plant tissues were uniformly very low. There was no significant difference of B[a]P contents of rice grain between control and treatments of B[a]P in controlled air quality trials. This indicated that the source of B[a]P in the rice grains is not from any B[a]P in the root culture media. The B[a]P content of rice grain, husk, and stem with leaf sampled from outdoor field was up to 7.33-, 9.21- and 27.10-fold higher than corresponding tissues from air-quality controlled conditions. This indicated that polluted air is the main source of B[a]P in aboveground tissues. Therefore control of B[a]P pollution in ambient air is of prime importance for improving the quality of cereal crops. PMID:18585859

  20. Interconversion between Methoxylated and Hydroxylated Polychlorinated Biphenyls in Rice Plants: An Important but Overlooked Metabolic Pathway.

    PubMed

    Sun, Jianteng; Pan, Lili; Su, Zhenzhu; Zhan, Yu; Zhu, Lizhong

    2016-04-01

    To date, there is limited knowledge on the methoxylation of polychlorinated biphenyls (PCBs) and the relationship between hydroxylated polychlorinated biphenyls (OH-PCBs) and methoxylated polychlorinated biphenyls (MeO-PCBs) in organisms. In this study, rice (Oryza sativa L.) was chosen as the model organism to determine the metabolism of PCBs in plants. Limited para-substituted 4'-OH-CB-61 (major metabolite) and 4'-MeO-CB-61 (minor metabolite) were found after a 5-day exposure to CB-61, while ortho- and meta-substituted products were not detected. Interconversion between OH-PCBs and MeO-PCBs in organisms was observed for the first time. The demethylation ratio of 4'-MeO-CB-61 was 18 times higher than the methylation ratio of 4'-OH-CB-61, indicating that formation of OH-PCBs was easier than formation of MeO-PCBs. The transformation products were generated in the roots after 24 h of exposure. The results of in vivo and in vitro exposure studies show that the rice itself played a key role in the whole transformation processes, while endophytes were jointly responsible for hydroxylation of PCBs and demethylation of MeO-PCBs. Metabolic pathways of PCBs, OH-PCBs, and MeO-PCBs in intact rice plants are proposed. The findings are important in understanding the fate of PCBs and the source of OH-PCBs in the environment. PMID:26928534

  1. Strong shift in the diazotrophic endophytic bacterial community inhabiting rice (Oryza sativa) plants after flooding.

    PubMed

    Ferrando, Lucía; Fernández Scavino, Ana

    2015-09-01

    Flooding impacts soil microbial communities, but its effect on endophytic communities has rarely been explored. This work addresses the effect of flooding on the abundance and diversity of endophytic diazotrophic communities on rice plants established in a greenhouse experiment. The nifH gene was significantly more abundant in roots after flooding, whereas the nifH gene copy numbers in leaves were unaffected and remained low. The PCA (principal component analysis) of T-RFLP (terminal restriction fragment length polymorphism) profiles indicated that root communities of replicate plots were more similar and diverse after flooding than before flooding. The nifH libraries obtained by cloning and 454 pyrosequencing consistently showed a remarkable shift in the diazotrophic community composition after flooding. Gammaproteobacteria (66-98%), mainly of the genus Stenotrophomonas, prevailed in roots before flooding, whereas Betaproteobacteria was the dominant class (26-34%) after flooding. A wide variety of aerotolerant and anaerobic diazotrophic bacteria (e.g. Dechloromonas, Rhodopseudomonas, Desulfovibrio, Geobacter, Chlorobium, Spirochaeta, Selenomonas and Dehalobacter) with diverse metabolic traits were retrieved from flooded rice roots. These findings suggest that endophytic communities could be significantly impacted by changes in plant-soil conditions derived from flooding during rice cropping. PMID:26324852

  2. Assessment of total soil and plant trace elements in rice-based production systems in NE Italy

    NASA Astrophysics Data System (ADS)

    Bini, Claudio; Nadimi-Goki, Mandana; Kato, Yoichi; Vianello, Gilmo; Vittori, Livia; Wahsha, Mohammad; Spiandorello, Massimo

    2014-05-01

    Macro- and micronutrients concentrations, and PTEs contents in soils and plants (rice) from the rice district in the Venetian territory (NE Italy) have been determined by ICP-MS spectrometry, with the following aims: - to determine the background levels of macro- and microelements in the study area; - to assess possible contamination of soils and plants; - to calculate the Translocation Factor (TF) of metals from soil to plant, and the possible hazard for human health. Four rice plots with different rotation systems were investigated from seedling time to harvesting; sampling of soils (0-30cm) and plants was carried out 4 times during growing season (three replicates). Rice plants were separated into roots, stems, leaves and grains, and then oven-dried. Chemical and physical analyses were carried out at the Soil Science Lab of the University of Bologna and Venice, respectively. The results obtained point to a land with moderate soil contamination by trace elements (namely Li, Sn, Tl, Sr, Ti, Fe). Heavy metal (Sb, As, Be, Cd, Co, Cr, Ni, Pb, Cu, V, Zn ) concentrations in soils are below the threshold indicated by the Italian legislation (DM 152/2006). Cd, Sn, and Ti contents in soils are positively correlated with soil pH, while As, Fe, Li, Ti, Tl and Zn are negatively correlated with organic matter content. With the exception of Strontium, soil metal contents are always correlated between variable couples. HMs in plants vary according to the sampling season, texture and moisture, and soil pH. Most non-essential trace elements are accumulated in rice roots and, only in cases of essential micronutrients, in leaves. Therefore, rice can be assumed as an accumulator plant of As, Pb, Cr, Ba, and Ti, whereas it is as an indicator plant for Cu, Fe, Ni, Mn and Zn. The results of multiple linear regression analysis showed that soil pH has a larger effect on Ba, Cr, Cu, Fe, Mn, Ni, Ti and Zn concentrations in grain than other soil parameters. The average translocation of

  3. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth

    PubMed Central

    Singh, Akanksha; Gupta, Rupali; Pandey, Rakesh

    2016-01-01

    The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS), one picomolar (1 pM) of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants’ defensive state. PMID:26742102

  4. Gasification of agricultural residues in a demonstrative plant: Vine pruning and rice husks.

    PubMed

    Biagini, Enrico; Barontini, Federica; Tognotti, Leonardo

    2015-10-01

    Tests with vine pruning and rice husks were carried out in a demonstrative downdraft gasifier (350 kW), to prove the reactor operability, quantify the plant efficiency, and thus extend the range of potential energy feedstocks. Pressure drops, syngas flow rate and composition were monitored to study the material and energy balances, and performance indexes. Interesting results were obtained for vine pruning (syngas heating value 5.7 MJ/m(3), equivalent ratio 0.26, cold gas efficiency 65%, power efficiency 21%), while poorer values were obtained for rice husks (syngas heating value 2.5-3.8 MJ/m(3), equivalent ratio 0.4, cold gas efficiency 31-42%, power efficiency 10-13%). The work contains also a comparison with previous results (wood pellets, corn cobs, Miscanthus) for defining an operating diagram, based on material density and particle size and shape, and the critical zones (reactor obstruction, bridging, no bed buildup, combustion regime). PMID:26183923

  5. Quantitative Trait Locus Mapping and Candidate Gene Analysis for Plant Architecture Traits Using Whole Genome Re-Sequencing in Rice

    PubMed Central

    Lim, Jung-Hyun; Yang, Hyun-Jung; Jung, Ki-Hong; Yoo, Soo-Cheul; Paek, Nam-Chon

    2014-01-01

    Plant breeders have focused on improving plant architecture as an effective means to increase crop yield. Here, we identify the main-effect quantitative trait loci (QTLs) for plant shape-related traits in rice (Oryza sativa) and find candidate genes by applying whole genome re-sequencing of two parental cultivars using next-generation sequencing. To identify QTLs influencing plant shape, we analyzed six traits: plant height, tiller number, panicle diameter, panicle length, flag leaf length, and flag leaf width. We performed QTL analysis with 178 F7 recombinant in-bred lines (RILs) from a cross of japonica rice line ‘SNUSG1’ and indica rice line ‘Milyang23’. Using 131 molecular markers, including 28 insertion/deletion markers, we identified 11 main- and 16 minor-effect QTLs for the six traits with a threshold LOD value > 2.8. Our sequence analysis identified fifty-four candidate genes for the main-effect QTLs. By further comparison of coding sequences and meta-expression profiles between japonica and indica rice varieties, we finally chose 15 strong candidate genes for the 11 main-effect QTLs. Our study shows that the whole-genome sequence data substantially enhanced the efficiency of polymorphic marker development for QTL fine-mapping and the identification of possible candidate genes. This yields useful genetic resources for breeding high-yielding rice cultivars with improved plant architecture. PMID:24599000

  6. Photosynthesis is induced in rice plants that associate with arbuscular mycorrhizal fungi and are grown under arsenate and arsenite stress.

    PubMed

    de Andrade, Sara Adrian Lopez; Domingues, Adilson Pereira; Mazzafera, Paulo

    2015-09-01

    The metalloid arsenic (As) increases in agricultural soils because of anthropogenic activities and may have phytotoxic effects depending on the available concentrations. Plant performance can be improved by arbuscular mycorrhiza (AM) association under challenging conditions, such as those caused by excessive soil As levels. In this study, the influence of AM on CO2 assimilation, chlorophyll a fluorescence, SPAD-chlorophyll contents and plant growth was investigated in rice plants exposed to arsenate (AsV) or arsenite (AsIII) and inoculated or not with Rhizophagus irregularis. Under AsV and AsIII exposure, AM rice plants had greater biomass accumulation and relative chlorophyll content, increased water-use efficiency, higher carbon assimilation rate and higher stomatal conductance and transpiration rates than non-AM rice plants did. Chlorophyll a fluorescence analysis revealed significant differences in the response of AM-associated and -non-associated plants to As. Mycorrhization increased the maximum and actual quantum yields of photosystem II and the electron transport rate, maintaining higher values even under As exposure. Apart from the negative effects of AsV and AsIII on the photosynthetic rates and PSII efficiency in rice leaves, taken together, these results indicate that AM is able to sustain higher rice photosynthesis efficiency even under elevated As concentrations, especially when As is present as AsV. PMID:25935603

  7. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants.

    PubMed

    Park, Ki Youl; Kim, Eun Yu; Seo, Young Sam; Kim, Woo Taek

    2016-03-01

    Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis. PMID:26803502

  8. Plant available silicon in South-east Asian rice paddy soils - relevance of agricultural practice and of abiotic factors

    NASA Astrophysics Data System (ADS)

    Marxen, A.; Klotzbücher, T.; Vetterlein, D.; Jahn, R.

    2012-12-01

    Background Silicon (Si) plays a crucial role in rice production. Si content of rice plants exceeds the content of other major nutrients such as nitrogen, phosphorous or potassium. Recent studies showed that in some environments external supply of Si can enhance the growth of rice plants. Rice plants express specific Si transporters to absorb Si from soil solutions in form of silicic acid, which precipitates in tissue cells forming amorphous silica bodies, called phytoliths. The phytoliths are returned to soils with plant residues. They might be a main source of plant available silicic acid in soils. Aims In this study we assess the effects of rice paddy cultivation on the stocks of `reactive` Si fractions in mineral topsoils of rice paddy fields in contrasting landscapes. The `reactive` Si fractions are presumed to determine the release of plant-available silicic acid in soils. We consider the relevance of abiotic factors (mineral assemblage; soil weathering status) and agricultural practice for these fractions. Agricultural practices, which were assumed to affect the stocks of `reactive` Si were (i) the usage of different rice varieties (which might differ in Si demand), (ii) straw residue management (i.e., whether straw residues are returned to the fields or removed and used e.g. as fodder), and (iii) yield level and number of crops per year. Material and methods Soils (top horizon of about 0-20 cm depth) were sampled from rice paddy fields in 2 mountainous and 5 lowland landscapes of contrasting geologic conditions in Vietnam and the Philippines. Ten paddy fields were sampled per landscape. The rice paddy management within landscapes differed when different farmers and/or communities managed the fields. We analysed the following fractions of `reactive` Si in the soils: acetate-extractable Si (dissolved and easily exchangeable Si), phosphate-extractable Si (adsorbed Si), oxalate extractable Si (Si associated with poorly-ordered sesquioxides), NaOH extractable Si

  9. Identification of class B and class C floral organ identity genes from rice plants.

    PubMed

    Kang, H G; Jeon, J S; Lee, S; An, G

    1998-12-01

    The functions of two rice MADS-box genes were studied by the loss-of-function approach. The first gene, OsMADS4, shows a significant homology to members in the PISTILLATA (PI) family, which is required to specify petal and stamen identity. The second gene, OsMADS3, is highly homologous to the members in the AGAMOUS (AG) family that is essential for the normal development of the internal two whorls, the stamen and carpel, of the flower. These two rice MADS box cDNA clones were connected to the maize ubiquitin promoter in an antisense orientation and the fusion molecules were introduced to rice plants by the Agrobacterium-mediated transformation method. Transgenic plants expressing antisense OsMADS4 displayed alterations of the second and third whorls. The second-whorl lodicules, which are equivalent to the petals of dicot plants in grasses, were altered into palea/lemma-like organs, and the third whorl stamens were changed to carpel-like organs. Loss-of-function analysis of OsMADS3 showed alterations in the third and fourth whorls. In the third whorl, the filaments of the transgenic plants were changed into thick and fleshy bodies, similar to lodicules. Rather than making a carpel, the fourth whorl produced several abnormal flowers. These phenotypes are similar to those of the agamous and plena mutants in Arabidopsis and Antirrhinum, respectively. These results suggest that OsMADS4 belongs to the class B gene family and OsMADS3 belongs to the class C gene family of floral organ identity determination. PMID:9869408

  10. Mitochondrial GPX1 silencing triggers differential photosynthesis impairment in response to salinity in rice plants.

    PubMed

    Lima-Melo, Yugo; Carvalho, Fabricio E L; Martins, Márcio O; Passaia, Gisele; Sousa, Rachel H V; Neto, Milton C Lima; Margis-Pinheiro, Márcia; Silveira, Joaquim A G

    2016-08-01

    The physiological role of plant mitochondrial glutathione peroxidases is scarcely known. This study attempted to elucidate the role of a rice mitochondrial isoform (GPX1) in photosynthesis under normal growth and salinity conditions. GPX1 knockdown rice lines (GPX1s) were tested in absence and presence of 100 mM NaCl for 6 d. Growth reduction of GPX1s line under non-stressful conditions, compared with non-transformed (NT) plants occurred in parallel to increased H2 O2 and decreased GSH contents. These changes occurred concurrently with photosynthesis impairment, particularly in Calvin cycle's reactions, since photochemical efficiency did not change. Thus, GPX1 silencing and downstream molecular/metabolic changes modulated photosynthesis differentially. In contrast, salinity induced reduction in both phases of photosynthesis, which were more impaired in silenced plants. These changes were associated with root morphology alterations but not shoot growth. Both studied lines displayed increased GPX activity but H2 O2 content did not change in response to salinity. Transformed plants exhibited lower photorespiration, water use efficiency and root growth, indicating that GPX1 could be important to salt tolerance. Growth reduction of GPX1s line might be related to photosynthesis impairment, which in turn could have involved a cross talk mechanism between mitochondria and chloroplast originated from redox changes due to GPX1 deficiency. PMID:26799169

  11. Evolving ideas about genetics underlying insect virulence to plant resistance in rice-brown planthopper interactions.

    PubMed

    Kobayashi, Tetsuya

    2016-01-01

    Many plant-parasite interactions that include major plant resistance genes have subsequently been shown to exhibit features of gene-for-gene interactions between plant Resistance genes and parasite Avirulence genes. The brown planthopper (BPH) Nilaparvata lugens is an important pest of rice (Oryza sativa). Historically, major Resistance genes have played an important role in agriculture. As is common in gene-for-gene interactions, evolution of BPH virulence compromises the effectiveness of singly-deployed resistance genes. It is therefore surprising that laboratory studies of BPH have supported the conclusion that virulence is conferred by changes in many genes rather than a change in a single gene, as is proposed by the gene-for-gene model. Here we review the behaviour, physiology and genetics of the BPH in the context of host plant resistance. A problem for genetic understanding has been the use of various insect populations that differ in frequencies of virulent genotypes. We show that the previously proposed polygenic inheritance of BPH virulence can be explained by the heterogeneity of parental populations. Genetic mapping of Avirulence genes indicates that virulence is a monogenic trait. These evolving concepts, which have brought the gene-for-gene model back into the picture, are accelerating our understanding of rice-BPH interactions at the molecular level. PMID:26668110

  12. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors.

    PubMed

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; San Segundo, Blanca

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  13. MicroRNA-mediated regulation of gene expression in the response of rice plants to fungal elicitors

    PubMed Central

    Baldrich, Patricia; Campo, Sonia; Wu, Ming-Tsung; Liu, Tze-Tze; Hsing, Yue-Ie Caroline; Segundo, Blanca San

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that have important regulatory functions in plant growth, development, and response to abiotic stress. Increasing evidence also supports that plant miRNAs contribute to immune responses to pathogens. Here, we used deep sequencing of small RNA libraries for global identification of rice miRNAs that are regulated by fungal elicitors. We also describe 9 previously uncharacterized miRNAs in rice. Combined small RNA and degradome analyses revealed regulatory networks enriched in elicitor-regulated miRNAs supported by the identification of their corresponding target genes. Specifically, we identified an important number of miRNA/target gene pairs involved in small RNA pathways, including miRNA, heterochromatic and trans-acting siRNA pathways. We present evidence for miRNA/target gene pairs implicated in hormone signaling and cross-talk among hormone pathways having great potential in regulating rice immunity. Furthermore, we describe miRNA-mediated regulation of Conserved-Peptide upstream Open Reading Frame (CPuORF)-containing genes in rice, which suggests the existence of a novel regulatory network that integrates miRNA and CPuORF functions in plants. The knowledge gained in this study will help in understanding the underlying regulatory mechanisms of miRNAs in rice immunity and develop appropriate strategies for rice protection. PMID:26083154

  14. Mapping paddy rice planting areas through time series analysis of MODIS land surface temperature and vegetation index data

    NASA Astrophysics Data System (ADS)

    Zhang, Geli; Xiao, Xiangming; Dong, Jinwei; Kou, Weili; Jin, Cui; Qin, Yuanwei; Zhou, Yuting; Wang, Jie; Menarguez, Michael Angelo; Biradar, Chandrashekhar

    2015-08-01

    Knowledge of the area and spatial distribution of paddy rice is important for assessment of food security, management of water resources, and estimation of greenhouse gas (methane) emissions. Paddy rice agriculture has expanded rapidly in northeastern China in the last decade, but there are no updated maps of paddy rice fields in the region. Existing algorithms for identifying paddy rice fields are based on the unique physical features of paddy rice during the flooding and transplanting phases and use vegetation indices that are sensitive to the dynamics of the canopy and surface water content. However, the flooding phenomena in high latitude area could also be from spring snowmelt flooding. We used land surface temperature (LST) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor to determine the temporal window of flooding and rice transplantation over a year to improve the existing phenology-based approach. Other land cover types (e.g., evergreen vegetation, permanent water bodies, and sparse vegetation) with potential influences on paddy rice identification were removed (masked out) due to their different temporal profiles. The accuracy assessment using high-resolution images showed that the resultant MODIS-derived paddy rice map of northeastern China in 2010 had a high accuracy (producer and user accuracies of 92% and 96%, respectively). The MODIS-based map also had a comparable accuracy to the 2010 Landsat-based National Land Cover Dataset (NLCD) of China in terms of both area and spatial pattern. This study demonstrated that our improved algorithm by using both thermal and optical MODIS data, provides a robust, simple and automated approach to identify and map paddy rice fields in temperate and cold temperate zones, the northern frontier of rice planting.

  15. Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle

    NASA Astrophysics Data System (ADS)

    Ding, T. P.; Tian, S. H.; Sun, L.; Wu, L. H.; Zhou, J. X.; Chen, Z. Y.

    2008-12-01

    The silicon isotope fractionation between rice plant and nutrient solution was studied experimentally. Rice plants were grown to maturity with the hydroponic culture in a naturally lit glasshouse. The nutrient solution was sampled for 14 times during the whole rice growth period. The rice plants were collected at various growth stages and different parts of the plants were sampled separately. The silica contents of the samples were determined by the gravimetric method and the silicon isotope compositions were measured using the SiF 4 method. In the growth process, the silicon content in the nutrient solution decreased gradually from 16 mM at starting stage to 0.1-0.2 mM at harvest and the amount of silica in single rice plant increased gradually from 0.00013 g at start to 4.329 g at harvest. Within rice plant the SiO 2 fraction in roots reduced continuously from 0.23 at the seedling stage, through 0.12 at the tiller stage, 0.05 at the jointing stage, 0.023 at the heading stage, to 0.009 at the maturity stage. Accordingly, the fraction of SiO 2 in aerial parts increased from 0.77, through 0.88, 0.95, 0.977, to 0.991 for the same stages. The silicon content in roots decreased from the jointing stage, through the heading stage, to the maturity stage, parallel to the decrease of silicon content in the nutrient solution. At the maturity stage, the silicon content increased from roots, through stem and leaves, to husks, but decreased drastically from husks to grains. These observations show that transpiration and evaporation may play an important role in silica transportation and precipitation within rice plants. It was observed that the δ30Si of the nutrient solution increased gradually from -0.1‰ at start to 1.5‰ at harvest, and the δ30Si of silicon absorbed by bulk rice plant increased gradually from -1.72‰ at start to -0.08‰ at harvest, reflecting the effect of the kinetic silicon isotope fractionation during silicon absorption by rice plants from nutrient

  16. Leaf Lateral Asymmetry in Morphological and Physiological Traits of Rice Plant

    PubMed Central

    Yuan, Shen; Li, Yong; Peng, Shaobing

    2015-01-01

    Leaf lateral asymmetry in width and thickness has been reported previously in rice. However, the differences between the wide and narrow sides of leaf blade in other leaf morphological and physiological traits were not known. This study was conducted to quantify leaf lateral asymmetry in leaf width, leaf thickness, specific leaf weight (SLW), leaf nitrogen (N) concentration based on dry weight (Nw) and leaf area (Na), and chlorophyll meter reading (SPAD). Leaf morphological and physiological traits of the two lateral halves of the top three leaves at heading stage were measured on 23 rice varieties grown in three growing seasons in two locations. Leaf lateral asymmetry was observed in leaf width, leaf thickness, Nw, Na, and SPAD, but not in SLW. On average, the leaf width of the wide side was about 17% higher than that of the narrow side. The wide side had higher leaf thickness than the narrow side whereas the narrow side had higher Nw, Na, and SPAD than the wide side. We conclude that the narrow side of leaf blade maintained higher leaf N status than the wide side based on all N-related parameters, which implies a possibility of leaf lateral asymmetry in photosynthetic rate in rice plant. PMID:26053267

  17. Leaf Lateral Asymmetry in Morphological and Physiological Traits of Rice Plant.

    PubMed

    Yuan, Shen; Li, Yong; Peng, Shaobing

    2015-01-01

    Leaf lateral asymmetry in width and thickness has been reported previously in rice. However, the differences between the wide and narrow sides of leaf blade in other leaf morphological and physiological traits were not known. This study was conducted to quantify leaf lateral asymmetry in leaf width, leaf thickness, specific leaf weight (SLW), leaf nitrogen (N) concentration based on dry weight (Nw) and leaf area (Na), and chlorophyll meter reading (SPAD). Leaf morphological and physiological traits of the two lateral halves of the top three leaves at heading stage were measured on 23 rice varieties grown in three growing seasons in two locations. Leaf lateral asymmetry was observed in leaf width, leaf thickness, Nw, Na, and SPAD, but not in SLW. On average, the leaf width of the wide side was about 17% higher than that of the narrow side. The wide side had higher leaf thickness than the narrow side whereas the narrow side had higher Nw, Na, and SPAD than the wide side. We conclude that the narrow side of leaf blade maintained higher leaf N status than the wide side based on all N-related parameters, which implies a possibility of leaf lateral asymmetry in photosynthetic rate in rice plant. PMID:26053267

  18. Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants.

    PubMed

    Mosa, Kareem A; Kumar, Kundan; Chhikara, Sudesh; Mcdermott, Joseph; Liu, Zijuan; Musante, Craig; White, Jason C; Dhankher, Om Parkash

    2012-12-01

    Rice accumulates high level of arsenic (As) in its edible parts and thus plays an important role in the transfer of As into the food chain. However, the mechanisms of As uptake and its detoxification in rice are not well understood. Recently, members of the Nodulin 26-like intrinsic protein (NIP) subfamily of plant aquaporins were shown to transport arsenite in rice and Arabidopsis. Here we report that members of the rice plasma membrane intrinsic protein (PIP) subfamily are also involved in As tolerance and transport. Based on the homology search with the mammalian AQP9 and yeast Fps1 arsenite transporters, we identified and cloned five rice PIP gene subfamily members. qRT-PCR analysis of PIPs in rice root and shoot tissues revealed a significant down regulation of transcripts encoding OsPIP1;2, OsPIP1;3, OsPIP2;4, OsPIP2;6, and OsPIP2;7 in response to arsenite treatment. Heterologous expression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Xenopus laevis oocytes significantly increased the uptake of arsenite. Overexpression of OsPIP2;4, OsPIP2;6, and OsPIP2;7 in Arabidopsis yielded enhanced arsenite tolerance and higher biomass accumulation. Further, these transgenic plants showed no significant accumulation of As in shoot and root tissues in long term uptake assays. Whereas, short duration exposure to arsenite caused both active influx and efflux of As in the roots. The data suggests a bidirectional arsenite permeability of rice PIPs in plants. These rice PIPs genes will be highly useful for engineering important food and biofuel crops for enhanced crop productivity on contaminated soils without increasing the accumulation of toxic As in the biomass or edible tissues. PMID:22350764

  19. Rice Nutrition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the symptoms of deficiency and toxicity of the major and minor mineral nutrients in rice, as well as a current synopsis of nutrient transporters and their regulation. The availability of sequences from the recently completed rice genome has furthered the knowledge of how plants...

  20. THIS1 is a putative lipase that regulates tillering, plant height, and spikelet fertility in rice.

    PubMed

    Liu, Wei; Zhang, Dechun; Tang, Mingfeng; Li, Dayong; Zhu, Yuxing; Zhu, Lihuang; Chen, Caiyan

    2013-11-01

    Proper branching and successful reproductive growth is of great importance for rice productivity. Substantial progress has been made in uncovering the molecular mechanisms underlying tillering control and spikelet sterility. However, rice tillering is developmentally controlled, and how it is regulated coordinately with reproductive growth remains unclear. This study characterized a rice mutant, the most obvious phenotypes of which are high tillering, reduced height, and infertile spikelets (named this1). Similarly to the high tiller number and dwarf mutants in rice, the increased tiller number of this1 plants is ascribed to the release of tiller bud outgrowth rather than to increased tiller bud formation. In the this1 mutant, however, the accelerated rate of branching was delayed until the stem elongation stage, while other mutants lost the ability to control branching at all developmental stages. The seed-setting rate of this1 was less than half that of the wild type, owing to defects in pollen maturation, anther dehiscence, and flower opening. Histological analyses showed that the mutation in this1 resulted in anisotropic cell expansion and cell division. Using a map-based cloning approach, This1 was found to encode a class III lipase. Homology searches revealed that THIS1 is conserved in both monocots and eudicots, suggesting that it plays fundamental role in regulating branch and spikelet fertility, as well as other aspects of developmental control. The relative change in expression of marker genes highlighted the possibility that This1 is involved in phytohormone signalling pathways, such as those for strigolactone and auxin. Thus, This1 provides joint control between shoot branching and reproductive development. PMID:24085578

  1. NADPH oxidases regulate septin-mediated cytoskeletal remodeling during plant infection by the rice blast fungus.

    PubMed

    Ryder, Lauren S; Dagdas, Yasin F; Mentlak, Thomas A; Kershaw, Michael J; Thornton, Christopher R; Schuster, Martin; Chen, Jisheng; Wang, Zonghua; Talbot, Nicholas J

    2013-02-19

    The rice blast fungus Magnaporthe oryzae infects plants with a specialized cell called an appressorium, which uses turgor to drive a rigid penetration peg through the rice leaf cuticle. Here, we show that NADPH oxidases (Nox) are necessary for septin-mediated reorientation of the F-actin cytoskeleton to facilitate cuticle rupture and plant cell invasion. We report that the Nox2-NoxR complex spatially organizes a heteroligomeric septin ring at the appressorium pore, required for assembly of a toroidal F-actin network at the point of penetration peg emergence. Maintenance of the cortical F-actin network during plant infection independently requires Nox1, a second NADPH oxidase, which is necessary for penetration hypha elongation. Organization of F-actin in appressoria is disrupted by application of antioxidants, whereas latrunculin-mediated depolymerization of appressorial F-actin is competitively inhibited by reactive oxygen species, providing evidence that regulated synthesis of reactive oxygen species by fungal NADPH oxidases directly controls septin and F-actin dynamics. PMID:23382235

  2. Disruption of OsYSL15 leads to iron inefficiency in rice plants.

    PubMed

    Lee, Sichul; Chiecko, Jeff C; Kim, Sun A; Walker, Elsbeth L; Lee, Youngsook; Guerinot, Mary Lou; An, Gynheung

    2009-06-01

    Uptake and translocation of metal nutrients are essential processes for plant growth. Graminaceous species release phytosiderophores that bind to Fe(3+); these complexes are then transported across the plasma membrane. We have characterized OsYSL15, one of the rice (Oryza sativa) YS1-like (YSL) genes that are strongly induced by iron (Fe) deficiency. The OsYSL15 promoter fusion to beta-glucuronidase showed that it was expressed in all root tissues when Fe was limited. In low-Fe leaves, the promoter became active in all tissues except epidermal cells. This activity was also detected in flowers and seeds. The OsYSL15:green fluorescent protein fusion was localized to the plasma membrane. OsYSL15 functionally complemented yeast strains defective in Fe uptake on media containing Fe(3+)-deoxymugineic acid and Fe(2+)-nicotianamine. Two insertional osysl15 mutants exhibited chlorotic phenotypes under Fe deficiency and had reduced Fe concentrations in their shoots, roots, and seeds. Nitric oxide treatment reversed this chlorosis under Fe-limiting conditions. Overexpression of OsYSL15 increased the Fe concentration in leaves and seeds from transgenic plants. Altogether, these results demonstrate roles for OsYSL15 in Fe uptake and distribution in rice plants. PMID:19376836

  3. Transgenic rice plants expressing a Bacillus subtilis protoporphyrinogen oxidase gene are resistant to diphenyl ether herbicide oxyfluorfen.

    PubMed

    Lee, H J; Lee, S B; Chung, J S; Han, S U; Han, O; Guh, J O; Jeon, J S; An, G; Back, K

    2000-06-01

    Protoporphyrinogen oxidase (Protox), the penultimate step enzyme of the branch point for the biosynthetic pathway of Chl and hemes, is the target site of action of diphenyl ether (DPE) herbicides. However, Bacillus subtilis Protox is known to be resistant to the herbicides. In order to develop the herbicide-resistant plants, the transgenic rice plants were generated via expression of B. subtilis Protox gene under ubiquitin promoter targeted to the cytoplasm or to the plastid using Agrobacterium-mediated gene transformation. The integration and expression of the transgene were investigated at T0 generation by DNA and RNA blots. Most transgenic rice plants revealed one copy transgene insertion into the rice genome, but some with 3 copies. The expression levels of B. subtilis Protox mRNA appeared to correlate with the copy number. Furthermore, the plastidal transgenic lines exhibited much higher expression of the Protox mRNA than the cytoplasmic transgenic lines. The transgenic plants expressing the B. subtilis Protox gene at T0 generation were found to be resistant to oxyfluorfen when judged by cellular damage with respect to cellular leakage, Chl loss, and lipid peroxidation. The transgenic rice plants targeted to the plastid exhibited higher resistance to the herbicide than the transgenic plants targeted to the cytoplasm. In addition, possible resistance mechanisms in the transgenic plants to DPE herbicides are discussed. PMID:10945344

  4. Expression of rice thaumatin-like protein gene in transgenic banana plants enhances resistance to fusarium wilt.

    PubMed

    Mahdavi, F; Sariah, M; Maziah, M

    2012-02-01

    The possibility of controlling Fusarium wilt--caused by Fusarium oxysporum sp. cubensec (race 4)--was investigated by genetic engineering of banana plants for constitutive expression of rice thaumatin-like protein (tlp) gene. Transgene was introduced to cauliflower-like bodies' cluster, induced from meristemic parts of male inflorescences, using particle bombardment with plasmid carrying a rice tlp gene driving by the CaMV 35S promoter. Hygromycin B was used as the selection reagent. The presence and integration of rice tlp gene in genomic DNA confirmed by PCR and Southern blot analyses. RT-PCR revealed the expression of transgene in leaf and root tissues in transformants. Bioassay of transgenic banana plants challenged with Fusarium wilt pathogen showed that expression of TLP enhanced resistance to F. oxysporum sp. cubensec (race 4) compared to control plants. PMID:22183565

  5. Mutualistic fungal endophytes produce phytohormones and organic acids that promote japonica rice plant growth under prolonged heat stress*

    PubMed Central

    Waqas, Muhammad; Khan, Abdul Latif; Shahzad, Raheem; Ullah, Ihsan; Khan, Abdur Rahim; Lee, In-Jung

    2015-01-01

    This study identifies the potential role in heat-stress mitigation of phytohormones and other secondary metabolites produced by the endophytic fungus Paecilomyces formosus LWL1 in japonica rice cultivar Dongjin. The japonica rice was grown in controlled chamber conditions with and without P. formosus LWL1 under no stress (NS) and prolonged heat stress (HS) conditions. Endophytic association under NS and HS conditions significantly improved plant growth attributes, such as plant height, fresh weight, dry weight, and chlorophyll content. Furthermore, P. formosus LWL1 protected the rice plants from HS compared with controls, indicated by the lower endogenous level of stress-signaling compounds such as abscisic acid (25.71%) and jasmonic acid (34.57%) and the increase in total protein content (18.76%–33.22%). Such fungal endophytes may be helpful for sustainable crop production under high environmental temperatures. PMID:26642184

  6. A Sulfonylurea Herbicide Resistance Gene from Arabidopsis thaliana as a New Selectable Marker for Production of Fertile Transgenic Rice Plants.

    PubMed

    Li, Z; Hayashimoto, A; Murai, N

    1992-10-01

    A mutant acetolactate synthase (ALS) gene, csr1-1, isolated from sulfonylurea herbicide-resistant Arabidopsis thaliana, was placed under control of a cauliflower mosaic virus 35S promoter (35S). Rice protoplasts were transformed with the 35S/ALS chimeric gene and regenerated into fertile transgenic rice (Oryza sativa) plants. The 35S/ALS gene was expressed effectively as demonstrated by northern blot hybridization analysis, and conferred to transformed calli at least 200-fold greater chlorsulfuron resistance than nontransformed control calli. Effective selection of 35S/ALS-transformed protoplasts was achieved at extremely low chlorsulfuron concentrations of 10 nm. The results demonstrated that the 35S/ALS gene is an alternative selectable marker for rice protoplast transformation and fertile transgenic rice production. The results also suggest that the mutant form of Arabidopsis ALS enzyme operates normally in rice cells. Thus, the mechanism of protein transport to chloroplast and ALS inhibition by chlorsulfuron is apparently conserved among plant species as diverse as Arabidopsis (dicotyledon) and rice (monocotyledon). PMID:16653044

  7. Traditional and modern plant breeding methods with examples in rice (Oryza sativa L.).

    PubMed

    Breseghello, Flavio; Coelho, Alexandre Siqueira Guedes

    2013-09-01

    Plant breeding can be broadly defined as alterations caused in plants as a result of their use by humans, ranging from unintentional changes resulting from the advent of agriculture to the application of molecular tools for precision breeding. The vast diversity of breeding methods can be simplified into three categories: (i) plant breeding based on observed variation by selection of plants based on natural variants appearing in nature or within traditional varieties; (ii) plant breeding based on controlled mating by selection of plants presenting recombination of desirable genes from different parents; and (iii) plant breeding based on monitored recombination by selection of specific genes or marker profiles, using molecular tools for tracking within-genome variation. The continuous application of traditional breeding methods in a given species could lead to the narrowing of the gene pool from which cultivars are drawn, rendering crops vulnerable to biotic and abiotic stresses and hampering future progress. Several methods have been devised for introducing exotic variation into elite germplasm without undesirable effects. Cases in rice are given to illustrate the potential and limitations of different breeding approaches. PMID:23551250

  8. The availabilities of arsenic and cadmium in rice paddy fields from a mining area: The role of soil extractable and plant silicon.

    PubMed

    Yu, Huan-Yun; Ding, Xiaodong; Li, Fangbai; Wang, Xiangqin; Zhang, Shirong; Yi, Jicai; Liu, Chuanping; Xu, Xianghua; Wang, Qi

    2016-08-01

    Adequate silicon (Si) can greatly boost rice yield and improve grain quality through alleviating stresses associated with heavy metals and metalloids such as arsenic (As) and cadmium (Cd). The soil plant-available Si is relatively low in South China due to severe desilicification and allitization of the soils in this region. Conversely, pollution of heavy metals and metalloids in the soils of this region occurs widely, especially As and Cd pollution in paddy soil. Therefore, evaluating the plant availability of Si in paddy soil of South China and examining its correlation with the availability of heavy metals and metalloids are of great significance. Accordingly, in our study, 107 pairs of soil and rice plant samples were collected from paddy fields contaminated by As and Cd in South China. Significantly positive correlations between Si in rice plants and Si fractions in soils extracted with citric acid, NaOAc-HOAc buffer, and oxalate-ammonium oxalate buffer suggest that these extractants are more suitable for use in extracting plant-available Si in the soils of our present study. Significantly negative correlations between different Si fractions and As or Cd in rice plant tissues and negative exponential correlations between the molar ratios of Si to As/Cd in rice roots, straws, husks or grains and As/Cd in rice grains indicate that Si can significantly alleviate the accumulation of As/Cd from soils to the rice plants. Finally, a contribution assessment of soil properties to As/Cd accumulation in rice grains based on random forest showed that in addition to Si concentrations in soil or rice plants, other factors such as Fe fractions and total phosphorus also contributed largely to As/Cd accumulation in rice grains. Overall, Si exhibited its unique role in mitigating As or Cd stress in rice, and our study results provide strong field evidence for this role. PMID:27209244

  9. Regulation of Expansin Gene Expression Affects Growth and Development in Transgenic Rice Plants

    PubMed Central

    Choi, Dongsu; Lee, Yi; Cho, Hyung-Taeg; Kende, Hans

    2003-01-01

    To investigate the in vivo functions of expansins, we generated transgenic rice plants that express sense and antisense constructs of the expansin gene OsEXP4. In adult plants with constitutive OsEXP4 expression, 12% of overexpressors were taller and 88% were shorter than the average control plants, and most overexpressors developed at least two additional leaves. Antisense plants were shorter and flowered earlier than the average control plants. In transgenic plants with inducible OsEXP4 expression, we observed a close correlation between OsEXP4 protein levels and seedling growth. Coleoptile and mesocotyl length increased by up to 31 and 97%, respectively, in overexpressors, whereas in antisense seedlings, they decreased by up to 28 and 43%, respectively. The change in seedling growth resulted from corresponding changes in cell size, which in turn appeared to be a function of altered cell wall extensibility. Our results support the hypothesis that expansins are involved in enhancing growth by mediating cell wall loosening. PMID:12782731

  10. Disease incidence and severity of rice plants in conventional chemical fertilizer input compared with organic farming systems

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Luo, Fan

    2015-04-01

    To study the impacts of different fertilizer applications on rice growth and disease infection, a 3-year field experiment of rice cultivation was carried out in the suburb of Shanghai from 2012-2014. No any pesticides and herbicides were applied during the entire experiment to prevent their disturbance to rice disease. Compared with green (GM) and cake manures (CM), the application of chemical fertilizer (CF) stimulated the photosysthesis and vegetative growth of rice plants more effectively. Chlorophyll content, height and tiller number of the rice plants treated with the CF were generally higher than those treated with the GM and CM and the control; the contents of nitrate (NO3--N), ammonium (NH4+-N), Kjeldahl nitrogen (KN) and soluble protein treated with the CF were also higher than those with the others during the 3-year experiment. The 3-year experiment also indicated that the incidences of stem borers, shreath blight, leaf rollers and planthoppers of the rice treated with the CF were signficantly higher than those treated with the GM and CM and the control. Especially in 2012 and 2014, the incidences of rice pests and diseases treated with the CF were far more severe than those with the others. As a result, the grain yield treated with the CF was not only lower than that treated with the GM and CM, but also lower than that of the no-fertilizer control. This might be attributed to two reasons: Pests favor the rice seedlings with sufficient N-related nutrients caused by CF application; the excessive accumulation of nutrients in the seedlings might have toxic effects and weaken their immune systems, thus making them more vulnerable to pests and diseases. In comparison, the plants treated with a suitable amount of organic manure showed a better capability of disease resistance and grew more healthy. In addition, the incidences of rice pests and diseases might also be related to climatic conditions. Shanghai was hit by strong subtropical storms in the summer of

  11. Simulation of rice plant temperatures using the UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA)

    NASA Astrophysics Data System (ADS)

    Maruyama, A.; Pyles, D.; Paw U, K.

    2009-12-01

    The thermal environment in the plant canopy affects plants’ growth processes such as flowering and ripening. High temperatures often cause grain sterility and poor filling in serial crops, and reduce their production in tropical and temperate regions. With global warming predicted, these effects have become a major concern worldwide. In this study, we observed the plant body temperature profiles for the rice canopy and simulate them using a higher-order closure micrometeorological model to understand the relationship between plant temperatures and atmospheric condition. Experiments were conducted in rice paddy during 2007-summer season under warm temperate climate in Japan. Leaf temperatures at three different height (0.3, 0.5, 0.7m) and panicle temperatures at 0.9m were measured using fine-thermocouples. The UC Davis Advanced Canopy-Atmosphere-Soil Algorithm (ACASA) was used to calculate plant body temperature profiles in the canopy. ACASA is based on the radiation transfer, higher-order closure of turbulent equations for mass and heat exchange, and detailed plant physiological parameterization for the canopy-atmosphere-soil system. Water temperature was almost constant of 21-23 C throughout the summer because of continuous irrigation. Therefore, larger difference between air temperature at 2 m and water temperature was found on daytime. Observed leaf/panicle temperature was lower near the water surface and higher on upper layer in the canopy. Difference of temperatures between 0.3 m and 0.9 m was around 3-4 C for daytime, and around 1-2 C for nighttime. Calculated result of ACASA recreated these trends of plant temperature profile sufficiently. However, the relationship between plant and air temperature in the canopy was a little different from observed, i.e. observed leaf/panicle temperature were almost the same as air temperature, in contrast the simulated air temperature was 0.5-1.5 C higher than plant temperatures for the both of daytime and night time

  12. A hyperspectral imaging system for an accurate prediction of the above-ground biomass of individual rice plants.

    PubMed

    Feng, Hui; Jiang, Ni; Huang, Chenglong; Fang, Wei; Yang, Wanneng; Chen, Guoxing; Xiong, Lizhong; Liu, Qian

    2013-09-01

    Biomass is an important component of the plant phenomics, and the existing methods for biomass estimation for individual plants are either destructive or lack accuracy. In this study, a hyperspectral imaging system was developed for the accurate prediction of the above-ground biomass of individual rice plants in the visible and near-infrared spectral region. First, the structure of the system and the influence of various parameters on the camera acquisition speed were established. Then the system was used to image 152 rice plants, which selected from the rice mini-core collection, in two stages, the tillering to elongation (T-E) stage and the booting to heading (B-H) stage. Several variables were extracted from the images. Following, linear stepwise regression analysis and 5-fold cross-validation were used to select effective variables for model construction and test the stability of the model, respectively. For the T-E stage, the R(2) value was 0.940 for the fresh weight (FW) and 0.935 for the dry weight (DW). For the B-H stage, the R(2) value was 0.891 for the FW and 0.783 for the DW. Moreover, estimations of the biomass using visible light images were also calculated. These comparisons showed that hyperspectral imaging performed better than the visible light imaging. Therefore, this study provides not only a stable hyperspectral imaging platform but also an accurate and nondestructive method for the prediction of biomass for individual rice plants. PMID:24089866

  13. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice.

    PubMed

    Lucena, Carlos; Romera, Francisco J; García, María J; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed. PMID:26640474

  14. Biochemical characterization of plant Rad52 protein from rice (Oryza sativa).

    PubMed

    Nair, Anuradha; Agarwal, Rachna; Chittela, Rajani Kant

    2016-09-01

    DNA damage in living cells is repaired by two main pathways, homologous recombination (HR) and non-homologous end joining (NHEJ). Of all the genes promoting HR, Rad52 (Radiation sensitive 52) is an important gene which is found to be highly conserved across different species. It was believed that RAD52 is absent in plant systems until lately. However, recent genetic studies have shown the presence of RAD52 homologues in plants. Rad52 homologues in plant systems have not yet been characterized biochemically. In the current study, we bring out the biochemical properties of rice Rad52-2a protein. OsRad52-2a was over-expressed in Escherichia coli BL21 (DE3) cells and the protein was purified. The identity of purified OsRad52-2a protein was confirmed via peptide mass fingerprinting. Gel filtration and native PAGE analysis indicated that the OsRad52-2a protein in its native state probably formed an undecameric structure. Purified OsRad52-2a protein showed binding to single stranded DNA, double stranded DNA. Protein also mediated the renaturation of complementary single strands into duplex DNA in both agarose gel and FRET based assays. Put together, OsRad52-2a forms oligomeric structures and binds to ssDNA/dsDNA for mediating an important function like renaturation during homologous recombination. This study represents the first report on biochemical properties of OsRad52-2a protein from important crop like rice. This information will help in dissecting the recombination and repair machinery in plant systems. PMID:27156135

  15. Ethylene Participates in the Regulation of Fe Deficiency Responses in Strategy I Plants and in Rice

    PubMed Central

    Lucena, Carlos; Romera, Francisco J.; García, María J.; Alcántara, Esteban; Pérez-Vicente, Rafael

    2015-01-01

    Iron (Fe) is very abundant in most soils but its availability for plants is low, especially in calcareous soils. Plants have been divided into Strategy I and Strategy II species to acquire Fe from soils. Strategy I species apply a reduction-based uptake system which includes all higher plants except the Poaceae. Strategy II species apply a chelation-based uptake system which includes the Poaceae. To cope with Fe deficiency both type of species activate several Fe deficiency responses, mainly in their roots. These responses need to be tightly regulated to avoid Fe toxicity and to conserve energy. Their regulation is not totally understood but some hormones and signaling substances have been implicated. Several years ago it was suggested that ethylene could participate in the regulation of Fe deficiency responses in Strategy I species. In Strategy II species, the role of hormones and signaling substances has been less studied. However, in rice, traditionally considered a Strategy II species but that possesses some characteristics of Strategy I species, it has been recently shown that ethylene can also play a role in the regulation of some of its Fe deficiency responses. Here, we will review and discuss the data supporting a role for ethylene in the regulation of Fe deficiency responses in both Strategy I species and rice. In addition, we will review the data about ethylene and Fe responses related to Strategy II species. We will also discuss the results supporting the action of ethylene through different transduction pathways and its interaction with other signals, such as certain Fe-related repressive signals occurring in the phloem sap. Finally, the possible implication of ethylene in the interactions among Fe deficiency responses and the responses to other nutrient deficiencies in the plant will be addressed. PMID:26640474

  16. The pleiotropic ABNORMAL FLOWER AND DWARF1 affects plant height, floral development and grain yield in rice.

    PubMed

    Ren, Deyong; Rao, Yuchun; Wu, Liwen; Xu, Qiankun; Li, Zizhuang; Yu, Haiping; Zhang, Yu; Leng, Yujia; Hu, Jiang; Zhu, Li; Gao, Zhenyu; Dong, Guojun; Zhang, Guangheng; Guo, Longbiao; Zeng, Dali; Qian, Qian

    2016-06-01

    Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull-like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1-green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes. PMID:26486996

  17. The Presence of Fucogalactoxyloglucan and Its Synthesis in Rice Indicates Conserved Functional Importance in Plants1[OPEN

    PubMed Central

    Liu, Lifeng; Paulitz, Jonathan; Pauly, Markus

    2015-01-01

    The predominant structure of the hemicellulose xyloglucan (XyG) found in the cell walls of dicots is a fucogalactoXyG with an XXXG core motif, whereas in the Poaceae (grasses and cereals), the structure of XyG is less xylosylated (XXGGn core motif) and lacks fucosyl residues. However, specialized tissues of rice (Oryza sativa) also contain fucogalactoXyG. Orthologous genes of the fucogalactoXyG biosynthetic machinery of Arabidopsis (Arabidopsis thaliana) are present in the rice genome. Expression of these rice genes, including fucosyl-, galactosyl-, and acetyltransferases, in the corresponding Arabidopsis mutants confirmed their activity and substrate specificity, indicating that plants in the Poaceae family have the ability to synthesize fucogalactoXyG in vivo. The data presented here provide support for a functional conservation of XyG structure in higher plants. PMID:25869654

  18. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    PubMed Central

    Chung, Eu Jin; Hossain, Mohammad Tofajjal; Khan, Ajmal; Kim, Kyung Hyun; Jeon, Che Ok; Chung, Young Ryun

    2015-01-01

    Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208) and Burkholderia glumae (KACC 44022), respectively, were also suppressed effectively by drenching a bacterial suspension (107 cfu/ml) of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%), Bacillus methylotrophicus KACC 13105T (99.65%), Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%), and Bacillus tequilensis KACC 15944T (99.45%). The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the two strains YC

  19. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    USGS Publications Warehouse

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  20. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    PubMed

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695

  1. Increased Fitness of Rice Plants to Abiotic Stress Via Habitat Adapted Symbiosis: A Strategy for Mitigating Impacts of Climate Change

    PubMed Central

    Redman, Regina S.; Kim, Yong Ok; Woodward, Claire J. D. A.; Greer, Chris; Espino, Luis; Doty, Sharon L.; Rodriguez, Rusty J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands. PMID:21750695

  2. Soil radiocesium distribution in rice fields disturbed by farming process after the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Harada, Naoki; Nonaka, Masanori

    2012-11-01

    A magnitude 9.0 earthquake and subsequent large tsunami hit the northeastern coast of Japan on March 11, 2011. This resulted in serious damage to the reactors of the Fukushima Dai-ichi Nuclear Power Plant (FDNPP), operated by the Tokyo Electric Power Company. Large amounts of radionuclides were released from the FDNPP, a proportion of which were deposited onto the ground. In this study, we investigated soil radiocesium contamination of rice fields in Aga and Minamiuonuma, Niigata, ~130 and 200 km away from the FDNPP, respectively, as Niigata is one of the largest rice growing regions in Japan. Soil samples were collected from the plow layer of five rice fields in August and September, 5-6 months after the FDNPP accident. Results showed that radiocesium concentrations (the sum of Cs-134 and Cs-137) in the rice soil samples were ~300 Bq (kg dry soil)(-1). All samples contained a Cs-134/Cs-137 activity ratio of 0.68-0.96 after correction to March 11, 2011, showing that the radiocesium released from the FDNPP were deposited on these areas. Although the rice fields had been disturbed by farming processes after the FDNPP accident, the depth distribution of radiocesium concentrations in the plow layers showed higher concentrations in the upper soil layers. This suggests that spring tillage, flooding and puddling performed before rice transplantation may not disperse radiocesium deposited on the surface through the whole plow layer. In addition, the planar distribution of radiocesium concentrations was examined near the water inlet in one of the rice fields. Highest activities were found aligned with the direction of irrigation water discharge, indicating that radioactivity levels in rice fields may be elevated by an influx of additional radionuclides, probably in irrigation water, during farming. PMID:23000550

  3. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future. PMID:27625658

  4. Exogenously Applied Plant Growth Regulators Enhance the Morpho-Physiological Growth and Yield of Rice under High Temperature

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Ihsan, Zahid; Shah, Adnan N.; Wu, Chao; Yousaf, Muhammad; Nasim, Wajid; Alharby, Hesham; Alghabari, Fahad; Huang, Jianliang

    2016-01-01

    A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future. PMID:27625658

  5. Mechanism of methane transport from the rhizosphere to the atmosphere through rice plants

    SciTech Connect

    Nouchi, Isamu ); Mariko, Shigeru ); Aoki, Kazuyuki )

    1990-09-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths.

  6. Mechanism of Methane Transport from the Rhizosphere to the Atmosphere through Rice Plants 1

    PubMed Central

    Nouchi, Isamu; Mariko, Shigeru; Aoki, Kazuyuki

    1990-01-01

    To clarify the mechanisms of methane transport from the rhizosphere into the atmosphere through rice plants (Oryza sativa L.), the methane emission rate was measured from a shoot whose roots had been kept in a culture solution with a high methane concentration or exposed to methane gas in the gas phase by using a cylindrical chamber. No clear correlation was observed between change in the transpiration rate and that in the methane emission rate. Methane was mostly released from the culm, which is an aggregation of leaf sheaths, but not from the leaf blade. Micropores which are different from stomata were newly found at the abaxial epidermis of the leaf sheath by scanning electron microscopy. The measured methane emission rate was much higher than the calculated methane emission rate that would result from transpiration and the methane concentration in the culture solution. Rice roots could absorb methane gas in the gas phase without water uptake. These results suggest that methane dissolved in the soil water surrounding the roots diffuses into the cell-wall water of the root cells, gasifies in the root cortex, and then is mostly released through the micropores in the leaf sheaths. Images Figure 7 PMID:16667719

  7. Retromer Is Essential for Autophagy-Dependent Plant Infection by the Rice Blast Fungus

    PubMed Central

    He, Yunlong; Xie, Qiurong; Chen, Ahai; Zheng, Huawei; Shi, Lei; Zhao, Xu; Zhang, Chengkang; Huang, Qingping; Fang, Kunhai; Lu, Guodong; Ebbole, Daniel J.; Li, Guangpu; Naqvi, Naweed I.; Wang, Zonghua

    2015-01-01

    The retromer mediates protein trafficking through recycling cargo from endosomes to the trans-Golgi network in eukaryotes. However, the role of such trafficking events during pathogen-host interaction remains unclear. Here, we report that the cargo-recognition complex (MoVps35, MoVps26 and MoVps29) of the retromer is essential for appressorium-mediated host penetration by Magnaporthe oryzae, the causal pathogen of the blast disease in rice. Loss of retromer function blocked glycogen distribution and turnover of lipid bodies, delayed nuclear degeneration and reduced turgor during appressorial development. Cytological observation revealed dynamic MoVps35-GFP foci co-localized with autophagy-related protein RFP-MoAtg8 at the periphery of autolysosomes. Furthermore, RFP-MoAtg8 interacted with MoVps35-GFP in vivo, RFP-MoAtg8 was mislocalized to the vacuole and failed to recycle from the autolysosome in the absence of the retromer function, leading to impaired biogenesis of autophagosomes. We therefore conclude that retromer is essential for autophagy-dependent plant infection by the rice blast fungus. PMID:26658729

  8. Efficient use of energy in anoxia-tolerant plants with focus on germinating rice seedlings.

    PubMed

    Atwell, Brian J; Greenway, Hank; Colmer, Timothy D

    2015-04-01

    Anoxia tolerance in plants is distinguished by direction of the sparse supply of energy to processes crucial to cell maintenance and sometimes to growth, as in rice seedlings. In anoxic rice coleoptiles energy is used to synthesise proteins, take up K(+) , synthesise cell walls and lipids, and in cell maintenance. Maintenance of electrochemical H(+) gradients across the tonoplast and plasma membrane is crucial for solute compartmentation and thus survival. These gradients sustain some H(+) -solute cotransport and regulate cytoplasmic pH. Pyrophosphate (PPi ), the alternative energy donor to ATP, allows direction of energy to the vacuolar H(+) -PPi ase, sustaining H(+) gradients across the tonoplast. When energy production is critically low, operation of a biochemical pHstat allows H(+) -solute cotransport across plasma membranes to continue for at least for 18 h. In active (e.g. growing) cells, PPi produced during substantial polymer synthesis allows conversion of PPi to ATP by PPi -phosphofructokinase (PFK). In quiescent cells with little polymer synthesis and associated PPi formation, the PPi required by the vacuolar H(+) -PPi ase and UDPG pyrophosphorylase involved in sucrose mobilisation via sucrose synthase might be produced by conversion of ATP to PPi through reversible glycolytic enzymes, presumably pyruvate orthophosphate dikinase. These hypotheses need testing with species characterised by contrasting anoxia tolerance. PMID:25472708

  9. Biochar increases plant available water in a sandy soil under an aerobic rice cropping system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Meinke, H.

    2014-03-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 t ha-1) on the water retention capacity (WRC) of a sandy Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields at 2 and 3 years after application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each t ha-1 of biochar amendment at 2 and 3 years after application. The impact of biochar on soil WRC was most likely related to an increase in overall porosity of the sandy soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5% and 1.6% for each t ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under water limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  10. Generation and Analysis of Transposon Ac/Ds-Induced Chromosomal Rearrangements in Rice Plants.

    PubMed

    Xuan, Yuan Hu; Peterson, Thomas; Han, Chang-Deok

    2016-01-01

    Closely-located transposable elements (TEs) have been known to induce chromosomal breakage and rearrangements via alternative transposition. To study genome rearrangements in rice, an Ac/Ds system has been employed. This system comprises an immobile Ac element expressed under the control of CaMV 35S promoter, and a modified Ds element. A starter line carried Ac and a single copy of Ds at the OsRLG5 (Oryza sativa receptor-like gene 5). To enhance the transpositional activity, seed-derived calli were cultured and regenerated into plants. Among 270 lines regenerated from the starter, one line was selected that contained a pair of inversely-oriented Ds elements at the OsRLG5 (Oryza sativa receptor-like gene 5). The selected line was again subjected to tissue culture to obtain a regenerant population. Among 300 regenerated plants, 107 (36 %) contained chromosomal rearrangements including deletions, duplications, and inversions of various sizes. From 34 plants, transposition mechanisms leading to such genomic rearrangements were analyzed. The rearrangements were induced by sister chromatid transposition (SCT), homologous recombination (HR), and single chromatid transposition (SLCT). Among them, 22 events (65 %) were found to be transmitted to the next generation. These results demonstrate a great potential of tissue culture regeneration and the Ac/Ds system in understanding alternative transposition mechanisms and in developing chromosome engineering in plants. PMID:27557685

  11. Circumnutation and its dependence on the gravity response in rice, morning glory and pea plants: verification by spaceflight experiments

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Kobayashi, Akie; Fujii, Nobuharu; Yano, Sachiko; Shimazu, Toru; Kim, Hyejeong; Tomita, Yuuta; Miyazawa, Yutaka

    Plant organs display helical growth movement known as circumnutation. This movement helps plant organs find suitable environmental cues. The amplitude, period and shape of the circumnutation differ depending on plant species or organs. Although the mechanism for circumnutation is unclear, it has long been argued whether circumnutation is involved with gravitropic response. Previously, we showed that shoots of weeping morning glory (we1 and we2) are impaired in not only the differentiation of endodermis (gravisensing cells) and gravitropic response, but also winding and circumnutation (Kitazawa et al., PNAS 102: 18742-18747, 2005). Here, we report a reduced circumnutation in the shoots of rice and the roots of pea mutants defective in gravitropic response. Coleoptiles of clinorotated rice seedlings and decapped roots of pea seedlings also showed a reduction of their circumnutational movement. These results suggest that circumnutation is tightly related with gravitropic response. In the proposed spaceflight experiments, “Plant Rotation”, we will verify the hypothesis that circumnutation requires gravity response, by using microgravity environment in KIBO module of the International Space Station. We will grow rice and morning glory plants under both muG and 1G conditions on orbit and monitor their growth by a camera. The downlinked images will be analyzed for the measurements of plant growth and nutational movements. This experiment will enable us to answer the question whether circumnutation depends on gravity response or not.

  12. Genome of Pseudomonas sp. FeS53a, a Putative Plant Growth-Promoting Bacterium Associated with Rice Grown in Iron-Stressed Soils.

    PubMed

    de Souza, Rocheli; Sant'Anna, Fernando Hayashi; Ambrosini, Adriana; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Pseudomonas sp. FeS53a was isolated from the roots of rice plants cultivated in one area with a well-established history of iron toxicity. The FeS53a genome sequence provides the genetic basis for understanding its lifestyle and survival in association with rice in conditions of iron toxicity. PMID:25838496

  13. Genome of Pseudomonas sp. FeS53a, a Putative Plant Growth-Promoting Bacterium Associated with Rice Grown in Iron-Stressed Soils

    PubMed Central

    de Souza, Rocheli; Sant’Anna, Fernando Hayashi; Ambrosini, Adriana; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi

    2015-01-01

    Pseudomonas sp. FeS53a was isolated from the roots of rice plants cultivated in one area with a well-established history of iron toxicity. The FeS53a genome sequence provides the genetic basis for understanding its lifestyle and survival in association with rice in conditions of iron toxicity. PMID:25838496

  14. Efficient generation of marker-free transgenic rice plants using an improved transposon-mediated transgene reintegration strategy.

    PubMed

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong; Qu, Shaohong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  15. Genome-Wide Association Study for Traits Related to Plant and Grain Morphology, and Root Architecture in Temperate Rice Accessions

    PubMed Central

    Cozzi, Paolo; Casella, Laura; Riccardi, Paolo; Vattari, Alessandra; Orasen, Gabriele; Perrini, Rosaria; Tacconi, Gianni; Tondelli, Alessandro; Biselli, Chiara; Cattivelli, Luigi; Spindel, Jennifer; McCouch, Susan; Abbruscato, Pamela; Valé, Giampiero; Piffanelli, Pietro; Greco, Raffaella

    2016-01-01

    Background In this study we carried out a genome-wide association analysis for plant and grain morphology and root architecture in a unique panel of temperate rice accessions adapted to European pedo-climatic conditions. This is the first study to assess the association of selected phenotypic traits to specific genomic regions in the narrow genetic pool of temperate japonica. A set of 391 rice accessions were GBS-genotyped yielding—after data editing—57000 polymorphic and informative SNPS, among which 54% were in genic regions. Results In total, 42 significant genotype-phenotype associations were detected: 21 for plant morphology traits, 11 for grain quality traits, 10 for root architecture traits. The FDR of detected associations ranged from 3 · 10−7 to 0.92 (median: 0.25). In most cases, the significant detected associations co-localised with QTLs and candidate genes controlling the phenotypic variation of single or multiple traits. The most significant associations were those for flag leaf width on chromosome 4 (FDR = 3 · 10−7) and for plant height on chromosome 6 (FDR = 0.011). Conclusions We demonstrate the effectiveness and resolution of the developed platform for high-throughput phenotyping, genotyping and GWAS in detecting major QTLs for relevant traits in rice. We identified strong associations that may be used for selection in temperate irrigated rice breeding: e.g. associations for flag leaf width, plant height, root volume and length, grain length, grain width and their ratio. Our findings pave the way to successfully exploit the narrow genetic pool of European temperate rice and to pinpoint the most relevant genetic components contributing to the adaptability and high yield of this germplasm. The generated data could be of direct use in genomic-assisted breeding strategies. PMID:27228161

  16. Efficient Generation of Marker-Free Transgenic Rice Plants Using an Improved Transposon-Mediated Transgene Reintegration Strategy1

    PubMed Central

    Gao, Xiaoqing; Zhou, Jie; Li, Jun; Zou, Xiaowei; Zhao, Jianhua; Li, Qingliang; Xia, Ran; Yang, Ruifang; Wang, Dekai; Zuo, Zhaoxue; Tu, Jumin; Tao, Yuezhi; Chen, Xiaoyun; Xie, Qi; Zhu, Zengrong

    2015-01-01

    Marker-free transgenic plants can be developed through transposon-mediated transgene reintegration, which allows intact transgene insertion with defined boundaries and requires only a few primary transformants. In this study, we improved the selection strategy and validated that the maize (Zea mays) Activator/Dissociation (Ds) transposable element can be routinely used to generate marker-free transgenic plants. A Ds-based gene of interest was linked to green fluorescent protein in transfer DNA (T-DNA), and a green fluorescent protein-aided counterselection against T-DNA was used together with polymerase chain reaction (PCR)-based positive selection for the gene of interest to screen marker-free progeny. To test the efficacy of this strategy, we cloned the Bacillus thuringiensis (Bt) δ-endotoxin gene into the Ds elements and transformed transposon vectors into rice (Oryza sativa) cultivars via Agrobacterium tumefaciens. PCR assays of the transposon empty donor site exhibited transposition in somatic cells in 60.5% to 100% of the rice transformants. Marker-free (T-DNA-free) transgenic rice plants derived from unlinked germinal transposition were obtained from the T1 generation of 26.1% of the primary transformants. Individual marker-free transgenic rice lines were subjected to thermal asymmetric interlaced-PCR to determine Ds(Bt) reintegration positions, reverse transcription-PCR and enzyme-linked immunosorbent assay to detect Bt expression levels, and bioassays to confirm resistance against the striped stem borer Chilo suppressalis. Overall, we efficiently generated marker-free transgenic plants with optimized transgene insertion and expression. The transposon-mediated marker-free platform established in this study can be used in rice and possibly in other important crops. PMID:25371551

  17. Rice ( Oryza) hemoglobins

    PubMed Central

    Arredondo-Peter, Raúl; Moran, Jose F.; Sarath, Gautam

    2014-01-01

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice ( Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a single copy of the thb gene exist in Oryza sativa var. indica and O. sativa var. japonica, Hb transcripts coexist in rice organs and Hb polypeptides exist in rice embryonic and vegetative organs and in the cytoplasm of differentiating cells. At the structural level, the crystal structure of rice Hb1 has been elucidated, and the structures of the other rice Hbs have been modeled. Kinetic analysis indicated that rice Hb1 and 2, and possibly rice Hb3 and 4, exhibit a very high affinity for O 2, whereas rice Hb5 and tHb possibly exhibit a low to moderate affinity for O 2. Based on the accumulated information on the properties of rice Hbs and data from the analysis of other plant and non-plant Hbs, it is likely that Hbs play a variety of roles in rice organs, including O 2-transport, O 2-sensing, NO-scavenging and redox-signaling. From an evolutionary perspective, an outline for the evolution of rice Hbs is available. Rice nshb and thb genes vertically evolved through different lineages, rice nsHbs evolved into clade I and clade II lineages and rice nshbs and thbs evolved under the effect of neutral selection. This review also reveals lacunae in our ability to completely understand rice Hbs. Primary lacunae are the absence of experimental information about the precise functions of rice Hbs, the properties of modeled rice Hbs and the cis-elements and trans-acting factors that regulate the expression of rice hb genes, and the partial understanding of the evolution of rice Hbs. PMID:25653837

  18. Evaluation of rhizosphere, rhizoplane and phyllosphere bacteria and fungi isolated from rice in Kenya for plant growth promoters.

    PubMed

    Mwajita, Mwashasha Rashid; Murage, Hunja; Tani, Akio; Kahangi, Esther M

    2013-01-01

    Rice (Oryza sativa L.) is the most important staple food crop in many developing countries, and is ranked third in Kenya after maize and wheat. Continuous cropping without replenishing soil nutrients is a major problem in Kenya resulting to declining soil fertility. The use of chemical fertilizers to avert the problem of low soil fertility is currently limited due to rising costs and environmental concerns. Many soil micro-organisms are able to solubilize the unavailable phosphorus, increase uptake of nitrogen and also synthesize growth promoting hormones including auxin. The aim of this study was to isolate and characterize phyllosphere, rhizoplane and rhizosphere micro-organisms from Kenyan rice with growth promoting habits. In this study whole plant rice samples were collected from different rice growing regions of Kenya. 76.2%, over 80% and 38.5% of the bacterial isolates were positive for phosphate solubilization, nitrogenase activity and IAA production whereas 17.5% and 5% of the fungal isolates were positive for phosphate solubilization and IAA production respectively. Hence these micro-organisms have potential for utilization as bio-fertilizers in rice production. PMID:24349944

  19. Over-expression of PsGPD, a mushroom glyceraldehyde-3-phosphate dehydrogenase gene, enhances salt tolerance in rice plants.

    PubMed

    Cho, Jung-Il; Lim, Hye-Min; Siddiqui, Zamin Shaheed; Park, Sung-Han; Kim, A-Ram; Kwon, Taek-Ryoun; Lee, Seong-Kon; Park, Soo-Chul; Jeong, Mi-Jeong; Lee, Gang-Seob

    2014-08-01

    Transgenic potatoes expressing glyceraldehyde-3-phosphate dehydrogenase (GPD), isolated from the oyster mushroom, Pleurotus sajor-caju, had increased tolerance to salt stress (Jeong et al. Biochem Biophys Res Commun 278:192-196, 2000). To examine the physiological mechanisms enhancing salt tolerance in GPD-transgenic rice plants, the salt tolerance of five GPD transgenic rice lines (T1-T5) derived from Dongjin rice cultivar were evaluated in a fixed 150 mM saline environment in comparison to two known wild-type rice cultivars, Dongjin (salt sensitive) and Pokali (salt tolerant). Transgenic lines, T2, T3, and T5, had a substantial increase in biomass and relative water content compared to Dongjin. Stomatal conductance and osmotic potential were higher in the GPD transgenic lines and were similar to those in Pokali. The results are discussed based on the comparative physiological response of GPD transgenic lines with those of the salt-sensitive and salt-tolerant rice cultivars. PMID:24737077

  20. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    DOE PAGESBeta

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; et al

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures ofmore » selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.« less

  1. Genetic analysis of inflorescence and plant height components in sorghum (Panicoidae) and comparative genetics with rice (Oryzoidae)

    SciTech Connect

    Zhang, Dong; Kong, Wenqian; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kerr, Alexandra; Mills, Gabriel; Cromwell, Jay; Lugin, Yelena; Phillips, Christine; Paterson, Andrew H

    2015-12-01

    Domestication has played an important role in shaping characteristics of the inflorescence and plant height in cultivated cereals. Taking advantage of meta-analysis of QTLs, phylogenetic analyses in 502 diverse sorghum accessions, GWAS in a sorghum association panel (n = 354) and comparative data, we provide insight into the genetic basis of the domestication traits in sorghum and rice. We performed genome-wide association studies (GWAS) on 6 traits related to inflorescence morphology and 6 traits related to plant height in sorghum, comparing the genomic regions implicated in these traits by GWAS and QTL mapping, respectively. In a search for signatures of selection, we identify genomic regions that may contribute to sorghum domestication regarding plant height, flowering time and pericarp color. Comparative studies across taxa show functionally conserved ‘hotspots’ in sorghum and rice for awn presence and pericarp color that do not appear to reflect corresponding single genes but may indicate co-regulated clusters of genes. We also reveal homoeologous regions retaining similar functions for plant height and flowering time since genome duplication an estimated 70 million years ago or more in a common ancestor of cereals. In most such homoeologous QTL pairs, only one QTL interval exhibits strong selection signals in modern sorghum. Intersections among QTL, GWAS and comparative data advance knowledge of genetic determinants of inflorescence and plant height components in sorghum, and add new dimensions to comparisons between sorghum and rice.

  2. Overexpression of the CC-type glutaredoxin, OsGRX6 affects hormone and nitrogen status in rice plants

    PubMed Central

    El-Kereamy, Ashraf; Bi, Yong-Mei; Mahmood, Kashif; Ranathunge, Kosala; Yaish, Mahmoud W.; Nambara, Eiji; Rothstein, Steven J.

    2015-01-01

    Glutaredoxins (GRXs) are small glutathione dependent oxidoreductases that belong to the Thioredoxin (TRX) superfamily and catalyze the reduction of disulfide bonds of their substrate proteins. Plant GRXs include three different groups based on the motif sequence, namely CPYC, CGFS, and CC-type proteins. The rice CC-type proteins, OsGRX6 was identified during the screening for genes whose expression changes depending on the level of available nitrate. Overexpression of OsGRX6 in rice displayed a semi-dwarf phenotype. The OsGRX6 overexpressors contain a higher nitrogen content than the wild type, indicating that OsGRX6 plays a role in homeostatic regulation of nitrogen use. Consistent with this, OsGRX6 overexpressors displayed delayed chlorophyll degradation and senescence compared to the wild type plants. To examine if the growth defect of these transgenic lines attribute to disturbed plant hormone actions, plant hormone levels were measured. The levels of two cytokinins (CKs), 2-isopentenyladenine and trans-zeatin, and gibberellin A1 (GA1) were increased in these lines. We also found that these transgenic lines were less sensitive to exogenously applied GA, suggesting that the increase in GA1 is a result of the feedback regulation. These data suggest that OsGRX6 affects hormone signaling and nitrogen status in rice plants. PMID:26579177

  3. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice

    PubMed Central

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T.; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata’s OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  4. Modulation of plant defense responses to herbivores by simultaneous recognition of different herbivore-associated elicitors in rice.

    PubMed

    Shinya, Tomonori; Hojo, Yuko; Desaki, Yoshitake; Christeller, John T; Okada, Kazunori; Shibuya, Naoto; Galis, Ivan

    2016-01-01

    Induced plant defense responses against insect herbivores are triggered by wounding and/or perception of herbivore elicitors from their oral secretions (OS) and/or saliva. In this study, we analyzed OS isolated from two rice chewing herbivores, Mythimna loreyi and Parnara guttata. Both types of crude OS had substantial elicitor activity in rice cell system that allowed rapid detection of early and late defense responses, i.e. accumulation of reactive oxygen species (ROS) and defense secondary metabolites, respectively. While the OS from M. loreyi contained large amounts of previously reported insect elicitors, fatty acid-amino acid conjugates (FACs), the elicitor-active P. guttata's OS contained no detectable FACs. Subsequently, elicitor activity associated with the high molecular mass fraction in OS of both herbivores was identified, and shown to promote ROS and metabolite accumulations in rice cells. Notably, the application of N-linolenoyl-Gln (FAC) alone had only negligible elicitor activity in rice cells; however, the activity of isolated elicitor fraction was substantially promoted by this FAC. Our results reveal that plants integrate various independent signals associated with their insect attackers to modulate their defense responses and reach maximal fitness in nature. PMID:27581373

  5. Abiotic stresses affect differently the intron splicing and expression of chloroplast genes in coffee plants (Coffea arabica) and rice (Oryza sativa).

    PubMed

    Nguyen Dinh, Sy; Sai, Than Zaw Tun; Nawaz, Ghazala; Lee, Kwanuk; Kang, Hunseung

    2016-08-20

    Despite the increasing understanding of the regulation of chloroplast gene expression in plants, the importance of intron splicing and processing of chloroplast RNA transcripts under stress conditions is largely unknown. Here, to understand how abiotic stresses affect the intron splicing and expression patterns of chloroplast genes in dicots and monocots, we carried out a comprehensive analysis of the intron splicing and expression patterns of chloroplast genes in the coffee plant (Coffea arabica) as a dicot and rice (Oryza sativa) as a monocot under abiotic stresses, including drought, cold, or combined drought and heat stresses. The photosynthetic activity of both coffee plants and rice seedlings was significantly reduced under all stress conditions tested. Analysis of the transcript levels of chloroplast genes revealed that the splicing of tRNAs and mRNAs in coffee plants and rice seedlings were significantly affected by abiotic stresses. Notably, abiotic stresses affected differently the splicing of chloroplast tRNAs and mRNAs in coffee plants and rice seedlings. The transcript levels of most chloroplast genes were markedly downregulated in both coffee plants and rice seedlings upon stress treatment. Taken together, these results suggest that coffee and rice plants respond to abiotic stresses via regulating the intron splicing and expression of different sets of chloroplast genes. PMID:27448724

  6. OsPIN5b modulates rice (Oryza sativa) plant architecture and yield by changing auxin homeostasis, transport and distribution.

    PubMed

    Lu, Guangwen; Coneva, Viktoriya; Casaretto, José A; Ying, Shan; Mahmood, Kashif; Liu, Fang; Nambara, Eiji; Bi, Yong-Mei; Rothstein, Steven J

    2015-09-01

    Plant architecture attributes such as tillering, plant height and panicle size are important agronomic traits that determine rice (Oryza sativa) productivity. Here, we report that altered auxin content, transport and distribution affect these traits, and hence rice yield. Overexpression of the auxin efflux carrier-like gene OsPIN5b causes pleiotropic effects, mainly reducing plant height, leaf and tiller number, shoot and root biomass, seed-setting rate, panicle length and yield parameters. Conversely, reduced expression of OsPIN5b results in higher tiller number, more vigorous root system, longer panicles and increased yield. We show that OsPIN5b is an endoplasmic reticulum (ER) -localized protein that participates in auxin homeostasis, transport and distribution in vivo. This work describes an example of an auxin-related gene where modulating its expression can simultaneously improve plant architecture and yield potential in rice, and reveals an important effect of hormonal signaling on these traits. PMID:26213119

  7. Arabidopsis thaliana: A Model Host Plant to Study Plant–Pathogen Interaction Using Rice False Smut Isolates of Ustilaginoidea virens

    PubMed Central

    Andargie, Mebeaselassie; Li, Jianxiong

    2016-01-01

    Rice false smut fungus which is a biotrophic fungal pathogen causes an important rice disease and brings a severe damage where rice is cultivated. We established a new fungal-plant pathosystem where Ustilaginoidea virens was able to interact compatibly with the model plant Arabidopsis thaliana. Disease symptoms were apparent on the leaves of the plants after 6 days of post inoculation in the form of chlorosis. Cytological studies showed that U. virens caused a heavy infestation inside the cells of the chlorotic tissues. Development and colonization of aerial mycelia in association with floral organ, particularly on anther and stigma of the flowers after 3 weeks of post inoculation was evident which finally caused infection on the developing seeds and pod tissues. The fungus adopts a uniquely biotrophic infection strategy in roots and spreads without causing a loss of host cell viability. We have also demonstrated that U. virens isolates infect Arabidopsis and the plant subsequently activates different defense response mechanisms which are witnessed by the expression of pathogenesis-related genes, PR-1, PR-2, PR-5, PDF1.1, and PDF1.2. The established A. thaliana–U. virens pathosystem will now permit various follow-up molecular genetics and gene expression experiments to be performed to identify the defense signals and responses that restrict fungal hyphae colonization in planta and also provide initial evidence for tissue-adapted fungal infection strategies. PMID:26941759

  8. A Study on the Tritium Behavior in the Rice Plant after a Short-Term Exposure of HTO

    SciTech Connect

    Yook, D-S.; Lee, K. J.; Choi, Y-H.

    2002-02-26

    In many Asian countries including Korea, rice is a very important food crop. Its grain is consumed by humans and its straw is used to feed animals. In Korea, there are four CANDU type reactors that release relatively large amounts of tritium into the environment. Since 1997, KAERI (Korea Atomic Energy Research Institute) has carried out the experimental studies to obtain domestic data on various parameters concerning the direct contamination of plant. In this study, the behavior of tritium in the rice plant is predicted and compared with the measurement performed at KAERI. Using the conceptual model of the soil-plant-atmosphere tritiated water transport system which was suggested by Charles E. Murphy, tritium concentrations in the soil and in leaves to time were derived. If the effect of tritium concentration in the soil is considered, the tritium concentration in leaves is described as a double exponential model. On the other hand if the tritium concentration in the soil is disregarded, the tritium concentration in leaves is described by a single exponential term as other models (e.g. Belot's or STAR-H3 model). Also concentration of organically bound tritium in the seed is predicted and compared with measurements. The results can be used to predict the tritium concentration in the rice plant at a field around the site and the ingestion dose following the release of tritium to the environment.

  9. Rice (Oryza sativa) Laccases Involved in Modification and Detoxification of Herbicides Atrazine and Isoproturon Residues in Plants.

    PubMed

    Huang, Meng Tian; Lu, Yi Chen; Zhang, Shuang; Luo, Fang; Yang, Hong

    2016-08-24

    Atrazine (ATR) and isoproturon (IPU) as herbicides have become serious environmental contaminants due to their overuse in crop production. Although ATR and IPU in soils are easily absorbed by many crops, the mechanisms for their degradation or detoxification in plants are poorly understood. This study identified a group of novel genes encoding laccases (EC 1.10.3.2) that are possibly involved in catabolism or detoxification of ATR and IPU residues in rice. Transcriptome profiling shows at least 22 differentially expressed laccase genes in ATR/IPU-exposed rice. Some of the laccase genes were validated by RT-PCR analysis. The biochemical properties of the laccases were analyzed, and their activities in rice were induced under ATR/IPU exposure. To investigate the roles of laccases in degrading or detoxifying ATR/IPU in rice, transgenic yeast cells (Pichia pastoris X-33) expressing two rice laccase genes (LOC_Os01g63180 and LOC_Os12g15680) were generated. Both transformants were found to accumulate less ATR/IPU compared to the control. The ATR/IPU-degraded products in the transformed yeast cells using UPLC-TOF-MS/MS were further characterized. Two metabolites, hydroxy-dehydrogenated atrazine (HDHA) and 2-OH-isopropyl-IPU, catalyzed by laccases were detected in the eukaryotic cells. These results indicate that the laccase-coding genes identified here could confer degradation or detoxification of the herbicides and suggest that the laccases could be one of the important enzymatic pathways responsible for ATR/IPU degradation/detoxification in rice. PMID:27499219

  10. Isolation and expression in transgenic tobacco and rice plants, of the cassava vein mosaic virus (CVMV) promoter.

    PubMed

    Verdaguer, B; de Kochko, A; Beachy, R N; Fauquet, C

    1996-09-01

    The cassava vein mosaic virus (CVMV) is a double stranded DNA virus which infects cassava plants (Manihot esculenta Crantz) and has been characterized as a plant pararetrovirus belonging to the caulimovirus subgroup. Two DNA fragments, CVP1 of 388 nucleotides from position -368 to +20 and CVP2 of 511 nucleotides from position -443 to +72, were isolated from the viral genome and fused to the uidA reporter gene to test promoter expression. The transcription start site of the viral promoter was determined using RNA isolated from transgenic plants containing the CVMV promoter:uidA fusion gene. Both promoter fragments were able to cause high levels of gene expression in protoplasts isolated from cassava and tobacco cell suspensions. The expression pattern of the CVMV promoters was analyzed in transgenic tobacco and rice plants, and revealed that the GUS staining pattern was similar for each construct and in both plants. The two promoter fragments were active in all plant organs tested and in a variety of cell types, suggesting a near constitutive pattern of expression. In both tobacco and rice plants, GUS activity was highest in vascular elements, in leaf mesophyll cells, and in root tips. PMID:8914529

  11. Rapid Growth and Apparent Total Nitrogen Increases in Rice and Corn Plants following Applications of Triacontanol 1

    PubMed Central

    Knowles, N. Richard; Ries, Stanley K.

    1981-01-01

    Triacontanol (TRIA) increased fresh and dry weight and total reducible nitrogen (total N) of rice (Oryza sativa L.) seedlings within 40 minutes. Increases in total N in the supernatants from homogenates of corn (Zea mays L.) and rice leaves treated with TRIA for one minute before grinding occurred within 30 and 80 minutes, respectively. The source for the increase was investigated utilizing atmospheric substitution and enrichment and depletion studies with 15N. The increase in total N in seedlings was shown to be independent of method of N analysis and the presence of nitrate in the plants. Automated Kjeldahl determinations showing apparent increases in N composition due to TRIA were shown to be correlated with hand Kjeldahl, elemental analysis, and chemiluminescent analysis in three independent laboratories. TRIA did not alter the nitrate uptake or endogenous levels of nitrate in corn and rice seedlings. Enrichment experiments revealed that the total N increases in rice seedlings, in vivo, and in supernatants of corn leaf homogenates, in vitro, are not due to atmospheric N2. TRIA increased the soluble N pools of the plants, specifically the free amino acid and soluble protein fractions. No differences in depletion or enrichment of 15N incorporated into soluble and insoluble N fractions of rice seedlings could be detected on an atom per cent 15N basis. The apparent short-term total N increases cannot be explained by current knowledge of major N assimilation pathways. TRIA may stimulate a change in the chemical composition of the seedlings, resulting in interference with standard methods of N analysis. PMID:16662092

  12. Effects of rapeseed residue on lead and cadmium availability and uptake by rice plants in heavy metal contaminated paddy soil.

    PubMed

    Ok, Yong Sik; Usman, Adel R A; Lee, Sang Soo; Abd El-Azeem, Samy A M; Choi, Bongsu; Hashimoto, Yohey; Yang, Jae E

    2011-10-01

    Rapeseed (Brassica napus L.) has been cultivated for biodiesel production worldwide. Winter rapeseed is commonly grown in the southern part of Korea under a rice-rapeseed double cropping system. In this study, a greenhouse pot experiment was conducted to assess the effects of rapeseed residue applied as a green manure alone or in combinations with mineral N fertilizer on Cd and Pb speciation in the contaminated paddy soil and their availability to rice plant (Oryza sativa L.). The changes in soil chemical and biological properties in response to the addition of rapeseed residue were also evaluated. Specifically, the following four treatments were evaluated: 100% mineral N fertilizer (N100) as a control, 70% mineral N fertilizer+rapeseed residue (N70+R), 30% mineral N fertilizer+rapeseed residue (N30+R) and rapeseed residue alone (R). The electrical conductivity and exchangeable cations of the rice paddy soil subjected to the R treatment or in combinations with mineral N fertilizer treatment, N70+R and N30+R, were higher than those in soils subjected to the N100 treatment. However, the soil pH value with the R treatment (pH 6.3) was lower than that with N100 treatment (pH 6.9). Use of rapeseed residue as a green manure led to an increase in soil organic matter (SOM) and enhanced the microbial populations in the soil. Sequential extraction also revealed that the addition of rapeseed residue decreased the easily accessible fraction of Cd by 5-14% and Pb by 30-39% through the transformation into less accessible fractions, thereby reducing metal availability to the rice plant. Overall, the incorporation of rapeseed residue into the metal contaminated rice paddy soils may sustain SOM, improve the soil chemical and biological properties, and decrease the heavy metal phytoavailability. PMID:21764102

  13. [Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China].

    PubMed

    Zhu, Xiang-cheng; Zhang, Zhen-ping; Zhang, Jun; Deng, Ai-xing; Zhang, Wei-jian

    2016-02-01

    The traditional rice growing practice has to change to save resource and protect environment, and it' s necessary to develop new technology in rice cultivation. Therefore, a two-year field experiment of Japonica rice (Liaoxing 1) was conducted in Northeast China in 2012 and 2013 to investigate the integrated effects of dense planting with less basal nitrogen (N) and unchanged top-dressing N (IR) on rice yield, N use efficiency (NUE) and greenhouse gas emissions. Compared with traditional practice (CK), we increased the rice seedling density by 33.3% and reduced the basal N rate by 20%. The results showed that the average N agronomy efficiency and partial factor productivity were improved by 49.6% (P<0.05) and 20.4% (P<0.05), respectively, while the area and yield-scaled greenhouse gas emissions were reduced by 9.9% and 12.7% (P<0.05), respectively. Although IR cropping mode decreased panicle number and biomass production, it significantly enhanced rice seed setting rate and harvest index, resulting in an unchanged or even highei yield. NH4+-N and NO3(-)-N concentrations in rice rhizosphere soil were reduced, resulting in an increment of N recovery efficiency. Generally, proper dense planting with less basal N applicatior could be a good approach for the trade-off between rice yield, NUE and greenhouse gas emission. PMID:27396117

  14. Recent advances in the dissection of drought-stress regulatory networks and strategies for development of drought-tolerant transgenic rice plants

    PubMed Central

    Todaka, Daisuke; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2015-01-01

    Advances have been made in the development of drought-tolerant transgenic plants, including cereals. Rice, one of the most important cereals, is considered to be a critical target for improving drought tolerance, as present-day rice cultivation requires large quantities of water and as drought-tolerant rice plants should be able to grow in small amounts of water. Numerous transgenic rice plants showing enhanced drought tolerance have been developed to date. Such genetically engineered plants have generally been developed using genes encoding proteins that control drought regulatory networks. These proteins include transcription factors, protein kinases, receptor-like kinases, enzymes related to osmoprotectant or plant hormone synthesis, and other regulatory or functional proteins. Of the drought-tolerant transgenic rice plants described in this review, approximately one-third show decreased plant height under non-stressed conditions or in response to abscisic acid treatment. In cereal crops, plant height is a very important agronomic trait directly affecting yield, although the improvement of lodging resistance should also be taken into consideration. Understanding the regulatory mechanisms of plant growth reduction under drought stress conditions holds promise for developing transgenic plants that produce high yields under drought stress conditions. Plant growth rates are reduced more rapidly than photosynthetic activity under drought conditions, implying that plants actively reduce growth in response to drought stress. In this review, we summarize studies on molecular regulatory networks involved in response to drought stress. In a separate section, we highlight progress in the development of transgenic drought-tolerant rice plants, with special attention paid to field trial investigations. PMID:25741357

  15. Mapping paddy rice planting area in cold temperate climate region through analysis of time series Landsat 8 (OLI), Landsat 7 (ETM+) and MODIS imagery

    NASA Astrophysics Data System (ADS)

    Qin, Yuanwei; Xiao, Xiangming; Dong, Jinwei; Zhou, Yuting; Zhu, Zhe; Zhang, Geli; Du, Guoming; Jin, Cui; Kou, Weili; Wang, Jie; Li, Xiangping

    2015-07-01

    Accurate and timely rice paddy field maps with a fine spatial resolution would greatly improve our understanding of the effects of paddy rice agriculture on greenhouse gases emissions, food and water security, and human health. Rice paddy field maps were developed using optical images with high temporal resolution and coarse spatial resolution (e.g., Moderate Resolution Imaging Spectroradiometer (MODIS)) or low temporal resolution and high spatial resolution (e.g., Landsat TM/ETM+). In the past, the accuracy and efficiency for rice paddy field mapping at fine spatial resolutions were limited by the poor data availability and image-based algorithms. In this paper, time series MODIS and Landsat ETM+/OLI images, and the pixel- and phenology-based algorithm are used to map paddy rice planting area. The unique physical features of rice paddy fields during the flooding/open-canopy period are captured with the dynamics of vegetation indices, which are then used to identify rice paddy fields. The algorithm is tested in the Sanjiang Plain (path/row 114/27) in China in 2013. The overall accuracy of the resulted map of paddy rice planting area generated by both Landsat ETM+ and OLI is 97.3%, when evaluated with areas of interest (AOIs) derived from geo-referenced field photos. The paddy rice planting area map also agrees reasonably well with the official statistics at the level of state farms (R2 = 0.94). These results demonstrate that the combination of fine spatial resolution images and the phenology-based algorithm can provide a simple, robust, and automated approach to map the distribution of paddy rice agriculture in a year.

  16. Contrasting effects of ethylene biosynthesis on induced plant resistance against a chewing and a piercing-sucking herbivore in rice.

    PubMed

    Lu, Jing; Li, Jiancai; Ju, Hongping; Liu, Xiaoli; Erb, Matthias; Wang, Xia; Lou, Yonggen

    2014-11-01

    Ethylene is a stress hormone with contrasting effects on herbivore resistance. However, it remains unknown whether these differences are plant- or herbivore-specific. We cloned a rice 1-aminocyclopropane-1-carboxylic acid (ACC) synthase gene, OsACS2, whose transcripts were rapidly up-regulated in response to mechanical wounding and infestation by two important pests: the striped stem borer (SSB) Chilo suppressalis and the brown planthopper (BPH) Nilaparvata lugens. Antisense expression of OsACS2 (as-acs) reduced elicited ethylene emission, SSB-elicited trypsin protease inhibitor (TrypPI) activity, SSB-induced volatile release, and SSB resistance. Exogenous application of ACC restored TrypPI activity and SSB resistance. In contrast to SSB, BPH infestation increased volatile emission in as-acs lines. Accordingly, BPH preferred to feed and oviposit on wild-type (WT) plants--an effect that could be attributed to two repellent volatiles, 2-heptanone and 2-heptanol, that were emitted in higher amounts by as-acs plants. BPH honeydew excretion was reduced and natural enemy attraction was enhanced in as-acs lines, resulting in higher overall resistance to BPH. These results demonstrate that ethylene signaling has contrasting, herbivore-specific effects on rice defense responses and resistance against a chewing and a piercing-sucking insect, and may mediate resistance trade-offs between herbivores of different feeding guilds in rice. PMID:25064847

  17. Virus-Mediated Chemical Changes in Rice Plants Impact the Relationship between Non-Vector Planthopper Nilaparvata lugens Stål and Its Egg Parasitoid Anagrus nilaparvatae Pang et Wang

    PubMed Central

    Gao, Guanchun; Zhou, Xiaojun; Zheng, Xusong; Sun, Yujian; Yang, Yajun; Tian, Junce; Lu, Zhongxian

    2014-01-01

    In order to clarify the impacts of southern rice black-streaked dwarf virus (SRBSDV) infection on rice plants, rice planthoppers and natural enemies, differences in nutrients and volatile secondary metabolites between infected and healthy rice plants were examined. Furthermore, the impacts of virus-mediated changes in plants on the population growth of non-vector brown planthopper (BPH), Nilaparvata lugens, and the selectivity and parasitic capability of planthopper egg parasitoid Anagrus nilaparvatae were studied. The results showed that rice plants had no significant changes in amino acid and soluble sugar contents after SRBSDV infection, and SRBSDV-infected plants had no significant effect on population growth of non-vector BPH. A. nilaparvatae preferred BPH eggs both in infected and healthy rice plants, and tended to parasitize eggs on infected plants, but it had no significant preference for infected plants or healthy plants. GC-MS analysis showed that tridecylic aldehyde occurred only in rice plants infected with SRBSDV, whereas octanal, undecane, methyl salicylate and hexadecane occurred only in healthy rice plants. However, in tests of behavioral responses to these five volatile substances using a Y-tube olfactometer, A. nilaparvatae did not show obvious selectivity between single volatile substances at different concentrations and liquid paraffin in the control group. The parasitic capability of A. nilaparvatae did not differ between SRBSDV-infected plants and healthy plant seedlings. The results suggested that SRBSDV-infected plants have no significant impacts on the non-vector planthopper and its egg parasitoid, A. nilaparvatae. PMID:25141278

  18. Regulatory interplay of the Sub1A and CIPK15 pathways in the regulation of α-amylase production in flooded rice plants.

    PubMed

    Kudahettige, N P; Pucciariello, C; Parlanti, S; Alpi, A; Perata, P

    2011-07-01

    Rice (Oryza sativa L.) can successfully germinate and grow even when flooded. Rice varieties possessing the submergence 1A (Sub1A) gene display a distinct flooding-tolerant phenotype, associated with lower carbohydrate consumption and restriction of the fast-elongation phenotype typical of flooding-intolerant rice varieties. Calcineurin B-like interacting protein kinase 15 (CIPK15) was recently indicated as a key regulator of α-amylases under oxygen deprivation, linked to both rice germination and flooding tolerance in adult plants. It is still unknown whether the Sub1A- and CIPK15-mediated pathways act as complementary processes for rice survival under O(2) deprivation. In adult plants Sub1A and CIPK15 may perhaps play an antagonistic role in terms of carbohydrate consumption, with Sub1A acting as a starch degradation repressor and CIPK15 as an activator. In this study, we analysed sugar metabolism in the stem of rice plants under water submergence by selecting cultivars with different traits associated with flooding survival. The relation between the Sub1A and the CIPK15 pathways was investigated. The results show that under O(2) deprivation, the CIPK15 pathway is repressed in the tolerant, Sub1A-containing, FR13A variety. CIPK15 is likely to play a role in the up-regulation of Ramy3D in flooding-intolerant rice varieties that display fast elongation under flooding and that do not possess Sub1A. PMID:21668602

  19. Alternate crop and weed host plant oviposition preferences by the Mexican rice borer (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Mexican rice borer, Eoreuma loftini (Dyar), is the key pest of sugarcane, Saccharum hybrids, in south Texas, having largely displaced the sugarcane borer, Diatraea saccharalis (F.), and it is moving into rice- and sugarcane-growing areas of east Texas and Louisiana. While a number of alternativ...

  20. PREDICTING RICE YIELD RESPONSE TO MIDSEASON NITROGEN WITH PLANT AREA MEASURMENTS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A simple method is needed to aid farmers with midseason N decisions in dry-seeded, delayed flood rice (Oryza sativa L.). This study was conducted to develop thresholds using visual and digital image measurements for predicting rice yield response to N topdressing. 'Francis' and 'Cheniere' (cv) ric...

  1. Translocation and biotransformation of CuO nanoparticles in rice (Oryza sativa L.) plants.

    PubMed

    Peng, Cheng; Duan, Dechao; Xu, Chen; Chen, Yongsheng; Sun, Lijuan; Zhang, Hai; Yuan, Xiaofeng; Zheng, Lirong; Yang, Yuanqiang; Yang, Jianjun; Zhen, Xiangjun; Chen, Yingxu; Shi, Jiyan

    2015-02-01

    Metal-based nanoparticles (MNPs) may be translocated and biochemically modified in vivo, which may influence the fate of MNPs in the environment. Here, synchrotron-based techniques were used to investigate the behavior of CuO NPs in rice plants exposed to 100 mg/L CuO NPs for 14 days. Micro X-ray fluorescence (μ-XRF) and micro X-ray absorption near edge structure (μ-XANES) analysis revealed that CuO NPs moved into the root epidermis, exodermis, and cortex, and they ultimately reached the endodermis but could not easily pass the Casparian strip; however, the formation of lateral roots provided a potential pathway for MNPs to enter the stele. Moreover, bulk-XANES data showed that CuO NPs were transported from the roots to the leaves, and that Cu (II) combined with cysteine, citrate, and phosphate ligands and was even reduced to Cu (I). CuO NPs and Cu-citrate were observed in the root cells using soft X-ray scanning transmission microscopy (STXM). PMID:25521412

  2. Microbial community analysis of anodes from sediment microbial fuel cells powered by rhizodeposits of living rice plants.

    PubMed

    De Schamphelaire, Liesje; Cabezas, Angela; Marzorati, Massimo; Friedrich, Michael W; Boon, Nico; Verstraete, Willy

    2010-03-01

    By placing the anode of a sediment microbial fuel cell (SMFC) in the rhizosphere of a rice plant, root-excreted rhizodeposits can be microbially oxidized with concomitant current generation. Here, various molecular techniques were used to characterize the composition of bacterial and archaeal communities on such anodes, as influenced by electrical circuitry, sediment matrix, and the presence of plants. Closed-circuit anodes in potting soil were enriched with Desulfobulbus-like species, members of the family Geobacteraceae, and as yet uncultured representatives of the domain Archaea. PMID:20097806

  3. Improved plant growth and Zn accumulation in grains of rice (Oryza sativa L.) by inoculation of endophytic microbes isolated from a Zn Hyperaccumulator, Sedum alfredii H.

    PubMed

    Wang, Yuyan; Yang, Xiaoe; Zhang, Xincheng; Dong, Lanxue; Zhang, Jie; Wei, Yanyan; Feng, Ying; Lu, Lingli

    2014-02-26

    This study is to investigate the possibility of zinc (Zn) biofortification in the grains of rice (Oryza sativa L.) by inoculation of endophytic strains isolated from a Zn hyperaccumulator, Sedum alfredii Hance. Five endophytic strains, Burkholderia sp. SaZR4, Burkholderia sp. SaMR10, Sphingomonas sp. SaMR12, Variovorax sp. SaNR1, and Enterobacter sp. SaCS20, isolated from S. alfredii, were inoculated in the roots of Japonica rice Nipponbare under hydroponic condition. Fluorescence images showed that endophytic strains successfully colonized rice roots after 72 h. Improved root morphology and plant growth of rice was observed after inoculation with endophytic strains especially SaMR12 and SaCS20. Under hydroponic conditions, endophytic inoculation with SaMR12 and SaCS20 increased Zn concentration by 44.4% and 51.1% in shoots, and by 73.6% and 83.4% in roots, respectively. Under soil conditions, endophytic inoculation with SaMR12 and SaCS20 resulted in an increase of grain yields and elevated Zn concentrations by 20.3% and 21.9% in brown rice and by 13.7% and 11.2% in polished rice, respectively. After inoculation of SaMR12 and SaCS20, rhizosphere soils of rice plants contained higher concentration of DTPA-Zn by 10.4% and 20.6%, respectively. In situ micro-X-ray fluorescence mapping of Zn confirmed the elevated Zn content in the rhizosphere zone of rice treated with SaMR12 as compared with the control. The above results suggested that endophytic microbes isolated from S. alfredii could successfully colonize rice roots, resulting in improved root morphology and plant growth, increased Zn bioavailability in rhizosphere soils, and elevated grain yields and Zn densities in grains. PMID:24447030

  4. Over-expression of Arabidopsis thaliana SFD1/GLY1, the gene encoding plastid localized glycerol-3-phosphate dehydrogenase, increases plastidic lipid content in transgenic rice plants.

    PubMed

    Singh, Vijayata; Singh, Praveen Kumar; Siddiqui, Adnan; Singh, Subaran; Banday, Zeeshan Zahoor; Nandi, Ashis Kumar

    2016-03-01

    Lipids are the major constituents of all membranous structures in plants. Plants possess two pathways for lipid biosynthesis: the prokaryotic pathway (i.e., plastidic pathway) and the eukaryotic pathway (i.e., endoplasmic-reticulum (ER) pathway). Whereas some plants synthesize galactolipids from diacylglycerol assembled in the plastid, others, including rice, derive their galactolipids from diacylglycerols assembled by the eukaryotic pathway. Arabidopsis thaliana glycerol-3-phosphate dehydrogenase (G3pDH), coded by SUPPRESSOR OF FATTY ACID DESATURASE 1 (SFD1; alias GLY1) gene, catalyzes the formation of glycerol 3-phosphate (G3p), the backbone of many membrane lipids. Here SFD1 was introduced to rice as a transgene. Arabidopsis SFD1 localizes in rice plastids and its over-expression increases plastidic membrane lipid content in transgenic rice plants without any major impact on ER lipids. The results suggest that over-expression of plastidic G3pDH enhances biosynthesis of plastid-localized lipids in rice. Lipid composition in the transgenic plants is consistent with increased phosphatidylglycerol synthesis in the plastid and increased galactolipid synthesis from diacylglycerol produced via the ER pathway. The transgenic plants show a higher photosynthetic assimilation rate, suggesting a possible application of this finding in crop improvement. PMID:26747130

  5. Draft Genome Sequence of Pantoea ananatis Strain AMG521, a Rice Plant Growth-Promoting Bacterial Endophyte Isolated from the Guadalquivir Marshes in Southern Spain.

    PubMed

    Megías, Esaú; Megías, Manuel; Ollero, Francisco Javier; Hungria, Mariangela

    2016-01-01

    The rice endophyte Pantoea ananatis AMG521 shows several plant growth-promoting properties and promotes rice yield increases. Its draft genome was estimated at 4,891,568 bp with 4,704 coding sequences (CDS). The genome encodes genes for N-acylhomoserine lactone (AHL) synthases, AHL hydrolases, hyperadherence (yidQ, yidP, and yidR), fusaric acid resistance, and oxidation of lignin, highlighting its biotechnological potential. PMID:26893418

  6. Draft Genome Sequence of Pantoea ananatis Strain AMG521, a Rice Plant Growth-Promoting Bacterial Endophyte Isolated from the Guadalquivir Marshes in Southern Spain

    PubMed Central

    Megías, Esaú; Megías, Manuel; Ollero, Francisco Javier

    2016-01-01

    The rice endophyte Pantoea ananatis AMG521 shows several plant growth-promoting properties and promotes rice yield increases. Its draft genome was estimated at 4,891,568 bp with 4,704 coding sequences (CDS). The genome encodes genes for N-acylhomoserine lactone (AHL) synthases, AHL hydrolases, hyperadherence (yidQ, yidP, and yidR), fusaric acid resistance, and oxidation of lignin, highlighting its biotechnological potential. PMID:26893418

  7. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision.

    PubMed

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  8. Generation of poly-β-hydroxybutyrate from acetate in higher plants: Detection of acetoacetyl CoA reductase- and PHB synthase- activities in rice.

    PubMed

    Tsuda, Hirohisa; Shiraki, Mari; Inoue, Eri; Saito, Terumi

    2016-08-20

    It has been reported that Poly-β-hydroxybutyrate (PHB) is generated from acetate in the rice root. However, no information is available about the biosynthetic pathway of PHB from acetate in plant cells. In the bacterium Ralstonia eutropha H16 (R. eutropha), PHB is synthesized from acetyl CoA by the consecutive reaction of three enzymes: β-ketothiolase (EC: 2.3.1.9), acetoacetyl CoA reductase (EC: 1.1.1.36) and PHB synthase (EC: 2.3.1.-). Thus, in this study, we examined whether the above three enzymatic activities were also detected in rice seedlings. The results clearly showed that the activities of the above three enzymes were all detected in rice. In particular, the PHB synthase activity was detected specifically in the sonicated particulate fractions (2000g 10min precipitate (ppt) and the 8000g 30min ppt) of rice roots and leaves. In addition to these enzyme activities, several new experimental results were obtained on PHB synthesis in higher plants: (a) (14)C-PHB generated from 2-(14)C-acetate was mainly localized in the 2000g 10min ppt and the 8000g 30min ppt of rice root. (b) Addition of acetate (0.1-10mM) to culture medium of rice seedlings did not increase the content of PHB in the rice root or leaf. (c) In addition to C3 plants, PHB was generated from acetate in a C4 plant (corn) and in a CAM plant (Bryophyllum pinnatum). d) Washing with ethylenediaminetetraacetic acid (EDTA) strongly suggested that the PHB synthesized from acetate was of plant origin and was not bacterial contamination. PMID:27372278

  9. Development of Selectable Marker-Free Transgenic Rice Plants with Enhanced Seed Tocopherol Content through FLP/FRT-Mediated Spontaneous Auto-Excision

    PubMed Central

    Woo, Hee-Jong; Qin, Yang; Park, Soo-Yun; Park, Soon Ki; Cho, Yong-Gu; Shin, Kong-Sik; Lim, Myung-Ho; Cho, Hyun-Suk

    2015-01-01

    Development of marker-free transgenic plants is a technical alternative for avoiding concerns about the safety of selectable marker genes used in genetically modified (GM) crops. Here, we describe the construction of a spontaneous self-excision binary vector using an oxidative stress-inducible modified FLP/FRT system and its successful application to produce marker-free transgenic rice plants with enhanced seed tocopherol content. To generate selectable marker-free transgenic rice plants, we constructed a binary vector using the hpt selectable marker gene and the rice codon-optimized FLP (mFLP) gene under the control of an oxidative stress-inducible promoter between two FRT sites, along with multiple cloning sites for convenient cloning of genes of interest. Using this pCMF binary vector with the NtTC gene, marker-free T1 transgenic rice plants expressing NtTC were produced by Agrobacterium-mediated stable transformation using hygromycin as a selective agent, followed by segregation of selectable marker genes. Furthermore, α-, γ-, and total tocopherol levels were significantly increased in seeds of the marker-free transgenic TC line compared with those of wild-type plants. Thus, this spontaneous auto-excision system, incorporating an oxidative stress-inducible mFLP/FRT system to eliminate the selectable marker gene, can be easily adopted and used to efficiently generate marker-free transgenic rice plants. Moreover, nutritional enhancement of rice seeds through elevation of tocopherol content coupled with this marker-free strategy may improve human health and public acceptance of GM rice. PMID:26172549

  10. Response of leaf endophytic bacterial community to elevated CO2 at different growth stages of rice plant

    PubMed Central

    Ren, Gaidi; Zhang, Huayong; Lin, Xiangui; Zhu, Jianguo; Jia, Zhongjun

    2015-01-01

    Plant endophytic bacteria play an important role in plant growth and health. In the context of climate change, the response of plant endophytic bacterial communities to elevated CO2 at different rice growing stages is poorly understood. Using 454 pyrosequencing, we investigated the response of leaf endophytic bacterial communities to elevated CO2 (eCO2) at the tillering, filling, and maturity stages of the rice plant under different nitrogen fertilization conditions [low nitrogen fertilization (LN) and high nitrogen fertilization (HN)]. The results revealed that the leaf endophytic bacterial community was dominated by Gammaproteobacteria-affiliated families, such as Enterobacteriaceae and Xanthomonadaceae, which represent 28.7–86.8% and 2.14–42.6% of the total sequence reads, respectively, at all tested growth stages. The difference in the bacterial community structure between the different growth stages was greater than the difference resulting from the CO2 and nitrogen fertilization treatments. The eCO2 effect on the bacterial communities differed greatly under different nitrogen application conditions and at different growth stages. Specifically, eCO2 revealed a significant effect on the community structure under both LN and HN levels at the tillering stage; however, the significant effect of eCO2 was only observed under HN, rather than under the LN condition at the filling stage; no significant effect of eCO2 on the community structure at both the LN and HN fertilization levels was found at the maturity stage. These results provide useful insights into the response of leaf endophytic bacterial communities to elevated CO2 across rice growth stages. PMID:26379635

  11. Whole-genome expression analysis of Rice black-streaked dwarf virus in different plant hosts and small brown planthopper.

    PubMed

    Xu, Qiufang; Ni, Haiping; Zhang, Jinfeng; Lan, Ying; Ren, Chunmei; Zhou, Yijun

    2015-11-10

    Rice black-streaked dwarf virus (RBSDV) can infect a number of gramineous plants and cause severe crop yield losses in southeast Asian countries. The virus is transmitted by small brown planthopper (SBPH) in a persistent circulative manner. The interactions between RBSDV and its different hosts remain unknown. Besides, how the virus adjusts itself to infect different hosts is unclear. In the present study, the relative RNA levels of the thirteen RBSDV genes in rice, maize, wheat, and SBPH were measured by real-time quantitative PCR. P7-1 and P10 genes were predominantly expressed whereas P8 and P7-2 genes were expressed at low levels in plant hosts. Similar to the expression in rice, P7-1 was the most abundantly expressed gene and P8 was expressed at the lowest level in SBPH, indicating that RBSDV adopts the same strategy to infect distinct hosts. The high expression levels of the P7-1 gene in both plants and insect suggest that it can be used as the target gene for disease diagnostics. However, the expression levels of some genes varied from host to host. P5-1, P6 and P9-1, the components of the RBSDV viroplasm, are differentially expressed in different hosts. Moreover, western blot analysis showed that the quantity of the P9-1 protein was more abundant in SBPH than in plant hosts. These data indicate that the virus may adjust its own gene expression to replicate in different hosts. Analysis of time course of gene expression revealed that P7-1 stands out as the only gene highly expressed at the earliest time point and its expression precedes all others throughout infection from 8 to 24days post-inoculation. The high expression levels of the P7-1 gene suggest that it plays a significant role in RBSDV-host interactions. PMID:26149652

  12. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    PubMed

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  13. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    PubMed Central

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials. PMID:25977938

  14. Constitutive expression of DaCBF7, an Antarctic vascular plant Deschampsia antarctica CBF homolog, resulted in improved cold tolerance in transgenic rice plants.

    PubMed

    Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek

    2015-07-01

    Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. PMID:26025521

  15. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field.

    PubMed

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95-97% and 13-35%, respectively. PMID:27347533

  16. High frequency plant regeneration from mature seed of elite, recalcitrant Malaysian indica rice ( Oryza sativa L.) CV. MR 219.

    PubMed

    Sivakumar, P; Law, Y S; Ho, C-L; Harikrishna, Jennifer Ann

    2010-09-01

    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement. PMID:20724277

  17. Contribution of Ebullition to Methane and Carbon Dioxide Emission from Water between Plant Rows in a Tropical Rice Paddy Field

    PubMed Central

    Komiya, Shujiro; Noborio, Kosuke; Katano, Kentaro; Pakoktom, Tiwa; Siangliw, Meechai; Toojinda, Theerayut

    2015-01-01

    Although bubble ebullition through water in rice paddy fields dominates direct methane (CH4) emissions from paddy soil to the atmosphere in tropical regions, the temporal changes and regulating factors of this ebullition are poorly understood. Bubbles in a submerged paddy soil also contain high concentrations of carbon dioxide (CO2), implying that CO2 ebullition may occur in addition to CH4 ebullition. We investigated the dynamics of CH4 and CO2 ebullition in tropical rice paddy fields using an automated closed chamber installed between rice plants. Abrupt increases in CH4 concentrations occurred by bubble ebullition. The CO2 concentration in the chamber air suddenly increased at the same time, which indicated that CO2 ebullition was also occurring. The CH4 and CO2 emissions by bubble ebullition were correlated with falling atmospheric pressure and increasing soil surface temperature. The relative contribution of CH4 and CO2 ebullitions to the daily total emissions was 95–97% and 13–35%, respectively. PMID:27347533

  18. Silicon cycle in rice paddy fields: insights provided by relations between silicon forms in topsoils and plant silicon uptake

    NASA Astrophysics Data System (ADS)

    Klotzbücher, Thimo; Marxen, Anika; Jahn, Reinhold; Vetterlein, Doris

    2016-04-01

    Silicon (Si) enhances the resistance of plants against abiotic and biotic stresses. The amounts of Si taken up by rice plants typically exceed those of major essential nutrients such as nitrogen and phosphorous. Silicon cycling in paddy fields is, however, still poorly studied. We examined relationships between Si forms in topsoil and plant Si uptake for 4 Vietnamese regions with low, and 3 Philippine regions with high Si availability (10 fields per region). Mean rice straw Si concentrations within regions ranged from 3.0 to 8.4%. For most of the Vietnamese fields they were lower than the critical value of 5.0%, suggesting a Si limitation of plant growth. For fields with low Si availability, straw Si concentrations were positively related to acetate-extractable Si in topsoil (i.e., dissolved and adsorbed Si), while such a relationship was not found for fields with high Si availability, where straw Si concentrations were on a similar level, suggesting a maximum Si uptake capacity was reached. Mean annual Si uptake by rice within regions ranged from 0.31 to 1.40 Mg Si ha-1 year-1, i.e., values that are much larger than published values for other ecosystems. They are determined by the continuous supply of plant-available Si during the cropping season, biomass production, and number of crops per year. Weatherable silicate minerals mainly cause spatial differences in supply of plant-available Si. Regional means of concentrations of carbonate-extractable Si (i.e., amorphous Si oxides) ranged from 2.2 to 16.7 g Si kg-1. Input of phytoliths (amorphous Si bodies in straw) is presumed to be an important factor for storage of carbonate-extractable Si in topsoil. Laboratory incubation experiments showed positive relationships between concentrations of carbonate-extractable Si and the release of dissolved Si from soil, suggesting amorphous Si oxides are among the most soluble Si-containing solids in soil. Estimates suggest that up to ~20% of Si taken up by plants might derive

  19. Dual RNA-seq reveals Meloidogyne graminicola transcriptome and candidate effectors during the interaction with rice plants.

    PubMed

    Petitot, Anne-Sophie; Dereeper, Alexis; Agbessi, Mawusse; Da Silva, Corinne; Guy, Julie; Ardisson, Morgane; Fernandez, Diana

    2016-08-01

    Root-knot nematodes secrete proteinaceous effectors into plant tissues to facilitate infection by suppressing host defences and reprogramming the host metabolism to their benefit. Meloidogyne graminicola is a major pest of rice (Oryza sativa) in Asia and Latin America, causing important crop losses. The goal of this study was to identify M. graminicola pathogenicity genes expressed during the plant-nematode interaction. Using the dual RNA-sequencing (RNA-seq) strategy, we generated transcriptomic data of M. graminicola samples covering the pre-parasitic J2 stage and five parasitic stages in rice plants, from the parasitic J2 to the adult female. In the absence of a reference genome, a de novo M. graminicola transcriptome of 66 396 contigs was obtained from those reads that were not mapped on the rice genome. Gene expression profiling across the M. graminicola life cycle revealed key genes involved in nematode development and provided insights into the genes putatively associated with parasitism. The development of a 'secreted protein prediction' pipeline revealed a typical set of proteins secreted by nematodes, as well as a large number of cysteine-rich proteins and putative nuclear proteins. Combined with expression data, this pipeline enabled the identification of 15 putative effector genes, including two homologues of well-characterized effectors from cyst nematodes (CLE-like and VAP1) and a metallothionein. The localization of gene expression was assessed by in situ hybridization for a subset of candidates. All of these data represent important molecular resources for the elucidation of M. graminicola biology and for the selection of potential targets for the development of novel control strategies for this nematode species. PMID:26610268

  20. Effect of plant spacing on the population of mosquito immatures in rice fields in Madurai, south India.

    PubMed

    Victor, T J; Reuben, R

    2000-01-01

    A study was conducted during 'Kuruvai' crop season from December 1992 to January 1993 in the rice fields of the Agricultural College and Research Institute, Madurai, Tamil Nadu to determine the influence of plant spacing and plant canopy on the populations of mosquito immatures. Three paddy varieties (ADT36, IR50 and IR20) were selected with two types of plant spacing, one with normal spacing (15 x 10 cm) and another wider (20 x 15 cm) than the normal spacing. Results showed that the field planted with normal spacing of paddy had significantly higher populations of culicine and anopheline immatures than the fields planted with wider spacing of paddy. The paddy varieties did not have any significant effect on the population of mosquito immatures. Light intensity, measured at the water surface using an illuminometer, was inversely related to the development of plant canopy and the results suggested that plant canopy does not inhibit oviposition by mosquitoes in the early stages of paddy growth, but it was responsible for the decline in the populations in the later stages of paddy growth. The plant spacing had a significant effect on the populations of chironomids and libellulids and other insects were not affected significantly. PMID:11820078

  1. Backbone cyclised peptides from plants show molluscicidal activity against the rice pest Pomacea canaliculata (golden apple snail).

    PubMed

    Plan, Manuel Rey R; Saska, Ivana; Cagauan, Arsenia G; Craik, David J

    2008-07-01

    Golden apple snails ( Pomacea canaliculata) are serious pests of rice in South East Asia. Cyclotides are backbone cyclized peptides produced by plants from Rubiaceae and Violaceae. In this study, we investigated the molluscicidal activity of cyclotides against golden apple snails. Crude cyclotide extracts from both Oldenlandia affinis and Viola odorata plants showed molluscicidal activity comparable to the synthetic molluscicide metaldehyde. Individual cyclotides from each extract demonstrated a range of molluscicidal activities. The cyclotides cycloviolacin O1, kalata B1, and kalata B2 were more toxic to golden apple snails than metaldehyde, while kalata B7 and kalata B8 did not cause significant mortality. The toxicity of the cyclotide kalata B2 on a nontarget species, the Nile tilapia ( Oreochromis niloticus), was three times lower than the common piscicide rotenone. Our findings suggest that the existing diversity of cyclotides in plants could be used to develop natural molluscicides. PMID:18557620

  2. Overexpression of a CYP94 family gene CYP94C2b increases internode length and plant height in rice

    PubMed Central

    Kurotani, Ken-Ich; Hattori, Tsukaho; Takeda, Shin

    2015-01-01

    Plant growth is controlled by intrinsic developmental programmes and environmental cues. Jasmonate (JA) has important roles in both processes, by regulating cell division and differentiation, as well as in defense responses and senescence. We report an increase in rice plant height caused by overexpression of a gene encoding a cytochrome P450 enzyme, CYP94C2b, which promoted deactivation of JA-Ile. The height increase occurred through enhanced elongation of internodes in the absence of concomitant cell elongation, unlike previous findings with coi1 knock-down plants. Thus, modulating JA metabolism can increase the number of elongated cells in an internode. Based on these and previous findings, we discuss the difference in the effects of CYP94C2b overexpression vs. coi1 knock-down. PMID:26251886

  3. Characterization of IRE1 ribonuclease-mediated mRNA decay in plants using transient expression analyses in rice protoplasts.

    PubMed

    Hayashi, Shimpei; Wakasa, Yuhya; Ozawa, Kenjirou; Takaiwa, Fumio

    2016-06-01

    In some eukaryotes, endoplasmic reticulum (ER) stress induces regulated inositol-requiring enzyme 1 (IRE1)-dependent decay (RIDD) of mRNAs. Recently, the expression levels of the mRNAs encoding some secretory proteins were reported to be downregulated by RIDD in the vegetative tissues of plants. However, the characteristics of plant RIDD have been insufficiently investigated due to difficulty of in planta analyses. Here, the RIDD susceptibilities of various mRNAs that are difficult to analyze in planta were examined using transient expression analyses of rice protoplasts. In this system, the mRNAs encoding three rice seed storage proteins (SSPs) - namely α-globulin, 16-kDa prolamin and 10-kDa prolamin - were downregulated in response to ER stress. The rapid ER stress-induced degradation of these mRNAs was repressed in cells in which the ribonuclease activity of IRE1 was specifically abolished by genome editing, suggesting that the mRNAs encoding certain SSPs are strong targets of RIDD. Furthermore, we investigated whether these RIDD targets are substrates of the IRE1 ribonuclease using a recombinant IRE1 protein, and identified candidate IRE1-mediated cleavage sites. Overall, the results demonstrate the existence of a post-transcriptional mechanism of regulation of SSPs, and illustrate the basic and multifaceted characteristics of RIDD in higher plants. PMID:26831622

  4. Combined effects of plant extracts in inhibiting the growth of Bacillus cereus in reconstituted infant rice cereal.

    PubMed

    Jun, Hyejung; Kim, Jinsol; Bang, Jihyun; Kim, Hoikyung; Beuchat, Larry R; Ryu, Jee-Hoon

    2013-01-01

    A study was done to determine the potential use of plant extracts to inhibit the growth of Bacillus cereus in reconstituted infant rice cereal. A total of 2116 extracts were screened for inhibitory activity against B. cereus using an agar well diffusion assay. The minimal inhibitory concentrations (MIC) and minimal lethal concentrations (MLC) of 14 promising extracts in tryptic soy broth (TSB) were determined. Dryopteris erythrosora (autumn fern) root extract showed the lowest MIC (0.0156 mg/ml), followed by Siegesbeckia glabrescens (Siegesbeckia herb) leaf (0.0313 mg/ml), Morus alba (white mulberry) cortex (0.0313 mg/ml), Carex pumila (sand sedge) root (0.0625 mg/ml), and Citrus paradisi (grapefruit) seed (0.0625 mg/ml) extracts. The order of MLCs of extracts was D. erythrosora root (0.0156 mg/ml)plant extracts against B. cereus in reconstituted infant rice cereal were investigated. The MICs of S. glabrescens, M. alba, D. erythrosora, and C. pumila extracts against B. cereus were 1.0, 2.0, 2.0, and 8.0mg/ml, respectively. A combination of D. erythrosora (1.00 mg/ml) and C. pumila (1.00 mg/ml) extracts showed a partial synergistic effect (FICI 0.63) in inhibiting the growth of B. cereus. Results indicate that by combining extracts, the amounts of D. erythrosora and C. pumila extracts can be reduced by 50% and 87.5%, respectively, compared with individual extracts, and give similar inhibitory activity in reconstituted infant rice cereal. Sensory evaluation showed that supplementing reconstituted

  5. ZINC-INDUCED FACILITATOR-LIKE family in plants: lineage-specific expansion in monocotyledons and conserved genomic and expression features among rice (Oryza sativa) paralogs

    PubMed Central

    2011-01-01

    Background Duplications are very common in the evolution of plant genomes, explaining the high number of members in plant gene families. New genes born after duplication can undergo pseudogenization, neofunctionalization or subfunctionalization. Rice is a model for functional genomics research, an important crop for human nutrition and a target for biofortification. Increased zinc and iron content in the rice grain could be achieved by manipulation of metal transporters. Here, we describe the ZINC-INDUCED FACILITATOR-LIKE (ZIFL) gene family in plants, and characterize the genomic structure and expression of rice paralogs, which are highly affected by segmental duplication. Results Sequences of sixty-eight ZIFL genes, from nine plant species, were comparatively analyzed. Although related to MSF_1 proteins, ZIFL protein sequences consistently grouped separately. Specific ZIFL sequence signatures were identified. Monocots harbor a larger number of ZIFL genes in their genomes than dicots, probably a result of a lineage-specific expansion. The rice ZIFL paralogs were named OsZIFL1 to OsZIFL13 and characterized. The genomic organization of the rice ZIFL genes seems to be highly influenced by segmental and tandem duplications and concerted evolution, as rice genome contains five highly similar ZIFL gene pairs. Most rice ZIFL promoters are enriched for the core sequence of the Fe-deficiency-related box IDE1. Gene expression analyses of different plant organs, growth stages and treatments, both from our qPCR data and from microarray databases, revealed that the duplicated ZIFL gene pairs are mostly co-expressed. Transcripts of OsZIFL4, OsZIFL5, OsZIFL7, and OsZIFL12 accumulate in response to Zn-excess and Fe-deficiency in roots, two stresses with partially overlapping responses. Conclusions We suggest that ZIFL genes have different evolutionary histories in monocot and dicot lineages. In rice, concerted evolution affected ZIFL duplicated genes, possibly maintaining similar

  6. Sites of infection by pythium species in rice seedlings and effects of plant age and water depth on disease development.

    PubMed

    Chun, S C; Schneider, R W

    1998-12-01

    ABSTRACT Seedling disease, caused primarily by several species of Pythium, is one of the major constraints to water-seeded rice production in Louisiana. The disease, also known as water-mold disease, seed rot, and seedling damping-off, causes stand reductions and growth abnormalities. In severe cases, fields must be replanted, which may result in delayed harvests and reduced yields. To develop more effective disease management tactics including biological control, this study was conducted primarily to determine sites of infection in seeds and seedlings; effect of plant age on susceptibility to P. arrhenomanes, P. myriotylum, and P. dissotocum; and minimum exposure times required for infection and seedling death. In addition, the effect of water depth on seedling disease was investigated. Infection rates of seed embryos were significantly higher than those of endosperms for all three Pythium spp. The development of roots from dry-seeded seedlings was significantly reduced by P. arrhenomanes and P. myriotylum at 5 days after planting compared with that of roots from noninoculated controls. Susceptibility of rice to all three species was sharply reduced within 2 to 6 days after planting, and seedlings were completely resistant at 8 days after planting. There was a steep reduction in emergence through the flood water, relative to the noninoculated control, following 2 to 3 days of exposure to inoculum of P. arrhenomanes and P. myriotylum. In contrast, P. dissotocum was much less virulent and required longer exposure times to cause irreversible seedling damage. Disease incidence was higher when seeds were planted into deeper water, implying that seedlings become resistant after they emerge through the flood water. These results suggest that disease control tactics including flood water management need to be employed for a very short period of time after planting. Also, given that the embryo is the primary site of infection and it is susceptible for only a few days, the

  7. A Sulfonylurea Herbicide Resistance Gene from Arabidopsis thaliana as a New Selectable Marker for Production of Fertile Transgenic Rice Plants 1

    PubMed Central

    Li, Zhijian; Hayashimoto, Akio; Murai, Norimoto

    1992-01-01

    A mutant acetolactate synthase (ALS) gene, csr1-1, isolated from sulfonylurea herbicide-resistant Arabidopsis thaliana, was placed under control of a cauliflower mosaic virus 35S promoter (35S). Rice protoplasts were transformed with the 35S/ALS chimeric gene and regenerated into fertile transgenic rice (Oryza sativa) plants. The 35S/ALS gene was expressed effectively as demonstrated by northern blot hybridization analysis, and conferred to transformed calli at least 200-fold greater chlorsulfuron resistance than nontransformed control calli. Effective selection of 35S/ALS-transformed protoplasts was achieved at extremely low chlorsulfuron concentrations of 10 nm. The results demonstrated that the 35S/ALS gene is an alternative selectable marker for rice protoplast transformation and fertile transgenic rice production. The results also suggest that the mutant form of Arabidopsis ALS enzyme operates normally in rice cells. Thus, the mechanism of protein transport to chloroplast and ALS inhibition by chlorsulfuron is apparently conserved among plant species as diverse as Arabidopsis (dicotyledon) and rice (monocotyledon). Images Figure 2 Figure 3 PMID:16653044

  8. Retention of OsNMD3 in the cytoplasm disturbs protein synthesis efficiency and affects plant development in rice.

    PubMed

    Shi, Yanyun; Liu, Xiangling; Li, Rui; Gao, Yaping; Xu, Zuopeng; Zhang, Baocai; Zhou, Yihua

    2014-07-01

    The ribosome is the basic machinery for translation, and biogenesis of ribosomes involves many coordinated events. However, knowledge about ribosomal dynamics in higher plants is very limited. This study chose a highly conserved trans-factor, the 60S ribosomal subunit nuclear export adaptor NMD3, to characterize the mechanism of ribosome biogenesis in the monocot plant Oryza sativa (rice). O. sativa NMD3 (OsNMD3) shares all the common motifs and shuttles between the nucleus and cytoplasm via CRM1/XPO1. A dominant negative form of OsNMD3 with a truncated nuclear localization sequence (OsNMD3(ΔNLS)) was retained in the cytoplasm, consequently interfering with the release of OsNMD3 from pre-60S particles and disturbing the assembly of ribosome subunits. Analyses of the transactivation activity and cellulose biosynthesis level revealed low protein synthesis efficiency in the transgenic plants compared with the wild-type plants. Pharmaceutical treatments demonstrated structural alterations in ribosomes in the transgenic plants. Moreover, global expression profiles of the wild-type and transgenic plants were investigated using the Illumina RNA sequencing approach. These expression profiles suggested that overexpression of OsNMD3(ΔNLS) affected ribosome biogenesis and certain basic pathways, leading to pleiotropic abnormalities in plant growth. Taken together, these results strongly suggest that OsNMD3 is important for ribosome assembly and the maintenance of normal protein synthesis efficiency. PMID:24723395

  9. Differences Between Rice and Wheat in Temperature Responses of Photosynthesis and Plant Growth

    PubMed Central

    Nagai, Takeshi; Makino, Amane

    2009-01-01

    The temperature responses of photosynthesis (A) and growth were examined in rice and wheat grown hydroponically under day/night temperature regimes of 13/10, 19/16, 25/19, 30/24 and 37/31°C. Irrespective of growth temperature, the maximal rates of A were found to be at 30–35°C in rice and at 25–30°C in wheat. Below 25°C the rates were higher in wheat, while above 30°C they were higher in rice. However, in both species, A measured at the growth temperature remained almost constant irrespective of temperature. Biomass production and relative growth rate (RGR) were greatest in rice grown at 30/24°C and in wheat grown at 25/19°C. Although there was no difference between the species in the optimal temperature of the leaf area ratios (LARs), the net assimilation rate (NAR) in rice decreased at low temperature (19/16°C) while the NAR in wheat decreased at high temperature (37/31°C). For both species, the N-use efficiency (NUE) for growth rate (GR), estimated by dividing the NAR by leaf-N content, correlated with GR and with biomass production. Similarly, when NUE for A at growth temperature was estimated, the temperature response of NUE for A was similar to that of NUE for GR in both species. The results suggest that the difference between rice and wheat in the temperature response of biomass production depends on the difference in temperature dependence of NUE for A. PMID:19251744

  10. Long-term fate of the herbicide cinosulfuron in lysimeters planted with rice over four consecutive years.

    PubMed

    Lee, Jae Koo; Führ, Fritz; Kwon, Jeong Wook; Ahn, Ki Chang

    2002-10-01

    In order to elucidate the long-term fate of the sulfonylurea herbicide cinosulfuron, the 14C-labelled chemical was applied to a clay loam soil, encased in two lysimeters, 22 days after rice (Oryza sativa L.) transplanting, and rice plants were grown for four consecutive years. Throughout the experimental period, leaching through soil profiles, absorption and translocation by rice plants, and distribution of 14C by downward movement in the soil layers were clarified. The total volume of leachates collected through the lysimeter soil over the four years amounted to 168 and 146 L in lysimeters I and II, respectively. The leachates contained 2.43% and 2.99% of the originally applied 14C-radioactivity, corresponding to an average concentration of 0.29 and 0.41 microg/L as the cinosulfuron equivalent in lysimeters I and II, respectively. The total 14C-radioactivity translocated to rice plants in the third and fourth year was 0.69% and 0.60% (lysimeter I), and 1.02% and 0.84% (lysimeter II) of the 14C applied, respectively. Larger amounts of cinosulfuron equivalents (0.54-0.75%) remained in the straw in the fourth year than in any other parts. The 14C-radioactivities distributed down to a depth of 70 cm after four years were 56.71-57.52% of the 14C applied, indicating the continuous downward movement and degradation of cinosulfuron in soil. The non-extractable residues were more than 88% of the soil radioactivity and some 45-48% of them was incorporated into the humin fraction. The 14C-radioactivity partitioned into the aqueous phase was nearly 30% of the extractable 14C, suggesting strongly that cinosulfuron was degraded into some polar products during the experimental period. It was found out in a supplemental investigation that flooding and constant higher temperature enhanced mineralization of [14C]cinosulfuron to 14CO2 in soil, indicating the possibility of chemical hydrolysis and microbial degradation of the compound in the flooded lysimeter soil. PMID:12375864

  11. Constitutive expression of transgenes encoding derivatives of the synthetic antimicrobial peptide BP100: impact on rice host plant fitness

    PubMed Central

    2012-01-01

    Background The Biopeptide BP100 is a synthetic and strongly cationic α-helical undecapeptide with high, specific antibacterial activity against economically important plant-pathogenic bacteria, and very low toxicity. It was selected from a library of synthetic peptides, along with other peptides with activities against relevant bacterial and fungal species. Expression of the BP100 series of peptides in plants is of major interest to establish disease-resistant plants and facilitate molecular farming. Specific challenges were the small length, peptide degradation by plant proteases and toxicity to the host plant. Here we approached the expression of the BP100 peptide series in plants using BP100 as a proof-of-concept. Results Our design considered up to three tandemly arranged BP100 units and peptide accumulation in the endoplasmic reticulum (ER), analyzing five BP100 derivatives. The ER retention sequence did not reduce the antimicrobial activity of chemically synthesized BP100 derivatives, making this strategy possible. Transformation with sequences encoding BP100 derivatives (bp100der) was over ten-fold less efficient than that of the hygromycin phosphotransferase (hptII) transgene. The BP100 direct tandems did not show higher antimicrobial activity than BP100, and genetically modified (GM) plants constitutively expressing them were not viable. In contrast, inverted repeats of BP100, whether or not elongated with a portion of a natural antimicrobial peptide (AMP), had higher antimicrobial activity, and fertile GM rice lines constitutively expressing bp100der were produced. These GM lines had increased resistance to the pathogens Dickeya chrysanthemi and Fusarium verticillioides, and tolerance to oxidative stress, with agronomic performance comparable to untransformed lines. Conclusions Constitutive expression of transgenes encoding short cationic α-helical synthetic peptides can have a strong negative impact on rice fitness. However, GM plants expressing, for

  12. Influence of nitrogen loading and plant nitrogen assimilation on nitrogen leaching and N₂O emission in forage rice paddy fields fertilized with liquid cattle waste.

    PubMed

    Riya, Shohei; Zhou, Sheng; Kobara, Yuso; Sagehashi, Masaki; Terada, Akihiko; Hosomi, Masaaki

    2015-04-01

    Livestock wastewater disposal onto rice paddy fields is a cost- and labor-effective way to treat wastewater and cultivate rice crops. We evaluated the influence of nitrogen loading rates on nitrogen assimilation by rice plants and on nitrogen losses (leaching and N2O emission) in forage rice fields receiving liquid cattle waste (LCW). Four forage rice fields were subjected to nitrogen loads of 107, 258, 522, and 786 kg N ha(-1) (N100, N250, N500, and N750, respectively) using basal fertilizer (chemical fertilizer) (50 kg N ha(-1)) and three LCW topdressings (each 57-284 kg N ha(-1)). Nitrogen assimilated by rice plants increased over time. However, after the third topdressing, the nitrogen content of the biomass did not increase in any treatment. Harvested aboveground biomass contained 93, 60, 33, and 31 % of applied nitrogen in N100, N250, N500, and N750, respectively. The NH4 (+) concentration in the pore water at a depth of 20 cm was less than 1 mg N L(-1) in N100, N250, and N500 throughout the cultivation period, while the NH4 (+) concentration in N750 increased to 3 mg N L(-1) after the third topdressing. Cumulative N2O emissions ranged from -0.042 to 2.39 kg N ha(-1); the highest value was observed in N750, followed by N500. In N750, N2O emitted during the final drainage accounted for 80 % of cumulative N2O emissions. This study suggested that 100-258 kg N ha(-1) is a recommended nitrogen loading rate for nitrogen recovery by rice plants without negative environmental impacts such as groundwater pollution and N2O emission. PMID:25388561

  13. Cloning of the Arabidopsis and Rice Formaldehyde Dehydrogenase Genes: Implications for the Origin of Plant Adh Enzymes

    PubMed Central

    Dolferus, R.; Osterman, J. C.; Peacock, W. J.; Dennis, E. S.

    1997-01-01

    This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-active Adh genes (class P). These data provide further evidence that plant class P genes have evolved from class III genes by gene duplication and acquisition of new substrate specificities. The position of introns and similarities in the nucleic acid and amino acid sequences of the different classes of ADH enzymes in plants and humans suggest that plant and animal class III enzymes diverged before they duplicated to give rise to plant and animal ethanol-active ADH enzymes. Plant class P ADH enzymes have gained substrate specificities and evolved promoters with different expression properties, in keeping with their metabolic function as part of the alcohol fermentation pathway. PMID:9215914

  14. Gasified rice hull biochar is a source of phosphorus and potassium for container-grown plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biochar materials have been reported to improve the chemical, physical, and biological properties of mineral soils and soilless substrates. The objective of this research was to determine the effect of gasified rice hull biochar (GRHB) on available nutrients in a container substrate. Two experimen...

  15. Distribution of arsenic and other minerals in rice plants affected by natural straighthead

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In 2006, an outbreak of naturally-occurring (non-chemically-induced) straighthead occurred in some rice (Oryza sativa L.) yield tests in Stuttgart, Arkansas. This straighthead occurrence provided an opportunity to examine the role of minerals in the disorder. Arsenical herbicides are often used to...

  16. Crystal Structure of Rice Importin-α and Structural Basis of Its Interaction with Plant-Specific Nuclear Localization Signals[W

    PubMed Central

    Chang, Chiung-Wen; Couñago, Rafael Lemos Miguez; Williams, Simon J.; Bodén, Mikael; Kobe, Boštjan

    2012-01-01

    In the classical nucleocytoplasmic import pathway, nuclear localization signals (NLSs) in cargo proteins are recognized by the import receptor importin-α. Importin-α has two separate NLS binding sites (the major and the minor site), both of which recognize positively charged amino acid clusters in NLSs. Little is known about the molecular basis of the unique features of the classical nuclear import pathway in plants. We determined the crystal structure of rice (Oryza sativa) importin-α1a at 2-Å resolution. The structure reveals that the autoinhibitory mechanism mediated by the importin-β binding domain of importin-α operates in plants, with NLS-mimicking sequences binding to both minor and major NLS binding sites. Consistent with yeast and mammalian proteins, rice importin-α binds the prototypical NLS from simian virus 40 large T-antigen preferentially at the major NLS binding site. We show that two NLSs, previously described as plant specific, bind to and are functional with plant, mammalian, and yeast importin-α proteins but interact with rice importin-α more strongly. The crystal structures of their complexes with rice importin-α show that they bind to the minor NLS binding site. By contrast, the crystal structures of their complexes with mouse (Mus musculus) importin-α show preferential binding to the major NLS binding site. Our results reveal the molecular basis of a number of features of the classical nuclear transport pathway specific to plants. PMID:23250448

  17. Heavy metal contaminations in soil-rice system: source identification in relation to a sulfur-rich coal burning power plant in Northern Guangdong Province, China.

    PubMed

    Wang, Xiangqin; Zeng, Xiaoduo; Chuanping, Liu; Li, Fangbai; Xu, Xianghua; Lv, Yahui

    2016-08-01

    Heavy metal contents (As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) in 99 pairs of soil-rice plant samples were evaluated from the downwind directions of a large thermal power plant in Shaoguan City, Guangdong Province, China. Results indicate that there is a substantial buildup of As, Cd, Cu, Pb, and Zn in the predominant wind direction of the power plant. The significant correlations between S and heavy metals in paddy soil suggest that the power plant represents a source of topsoil heavy metals in Shaoguan City due to sulfur-rich coal burning emissions. Elevated Cd concentrations were also found in rice plant tissues. Average Cd (0.69 mg kg(-1)) and Pb (0.39 mg kg(-1)) contents in rice grain had exceeded their maximum permissible limits (both were 0.2 mg kg(-1)) in foods of China (GB2762-2005). The enrichment of Cd and Pb in rice grain might pose a potential health risk to the local residents. PMID:27395361

  18. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures

    PubMed Central

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  19. Responses of Rapid Viscoanalyzer Profile and Other Rice Grain Qualities to Exogenously Applied Plant Growth Regulators under High Day and High Night Temperatures.

    PubMed

    Fahad, Shah; Hussain, Saddam; Saud, Shah; Hassan, Shah; Chauhan, Bhagirath Singh; Khan, Fahad; Ihsan, Muhammad Zahid; Ullah, Abid; Wu, Chao; Bajwa, Ali Ahsan; Alharby, Hesham; Amanullah; Nasim, Wajid; Shahzad, Babar; Tanveer, Mohsin; Huang, Jianliang

    2016-01-01

    High-temperature stress degrades the grain quality of rice; nevertheless, the exogenous application of plant growth regulators (PGRs) might alleviate the negative effects of high temperatures. In the present study, we investigated the responses of rice grain quality to exogenously applied PGRs under high day temperatures (HDT) and high night temperatures (HNT) under controlled conditions. Four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA) and triazoles (Tr) were exogenously applied to two rice cultivars (IR-64 and Huanghuazhan) prior to the high-temperature treatment. A Nothing applied Control (NAC) was included for comparison. The results demonstrated that high-temperature stress was detrimental for grain appearance and milling qualities and that both HDT and HNT reduced the grain length, grain width, grain area, head rice percentage and milled rice percentage but increased the chalkiness percentage and percent area of endosperm chalkiness in both cultivars compared with ambient temperature (AT). Significantly higher grain breakdown, set back, consistence viscosity and gelatinization temperature, and significantly lower peak, trough and final viscosities were observed under high-temperature stress compared with AT. Thus, HNT was more devastating for grain quality than HDT. The exogenous application of PGRs ameliorated the adverse effects of high temperature in both rice cultivars, and Vc+Ve+MejA+Br was the best combination for both cultivars under high temperature stress. PMID:27472200

  20. Possible connection between imidacloprid-induced changes in rice gene transcription profiles and susceptibility to the brown plant hopper Nilaparvatalugens Stål (Hemiptera: Delphacidae)

    PubMed Central

    Cheng, Yao; Shi, Zhao-Peng; Jiang, Li-Ben; Ge, Lin-Quan; Wu, Jin-Cai; Jahn, Gary C.

    2012-01-01

    The chemical pesticide, imidacloprid (IMI) has long-lasting effectiveness against Hemiptera. IMI is commonly used to control the brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae). Some chemical pesticides, however, can induce the susceptibility of rice to BPH, which has indirectly led to the resurgence of BPH. The mechanism of the chemical induction of the susceptibility of rice to BPH was not previously understood. Here, a 44 K Agilent Rice Expression Microarray was used to identify changes in gene expression that accompany IMI-induced rice susceptibility to BPH. The results showed that 225 genes were differentially expressed, of which 117 were upregulated, and 108 were downregulated. Gene ontology annotation and pathway analysis revealed that differentially expressed genes were mainly classified into the eight functional groups: oxidation reduction, regulation of cellular process, response to stress, electron carrier activity, metabolic process, transport, signal transducer, and organismal development. The genes encoding plant lipid transfer protein, lignin peroxidase, and flavonol-3-O-methyltransferenase may be important responses to the IMI-induced susceptibility of rice to BPH. The reliability of the microarray data was verified by performing quantitative real-time PCR and the data provide valuable information for further study of the molecular mechanism of IMI-induced susceptibility of rice. PMID:22544984

  1. Screening of a broad range of rice (Oryza sativa L.) germplasm for in vitro rapid plant regeneration and development of an early prediction system

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rice has emerged as a model monocot for studies in agriculture and biotechnology, due to its relatively small genome and ready access to plant material. Tissue culture is one of the tools required for genetic transformation, for some breeding programs, and selection of high frequency regenerator ty...

  2. Genome-scale computational analysis of DNA curvature and repeats in Arabidopsis and rice uncovers plant-specific genomic properties

    PubMed Central

    2011-01-01

    Background Due to its overarching role in genome function, sequence-dependent DNA curvature continues to attract great attention. The DNA double helix is not a rigid cylinder, but presents both curvature and flexibility in different regions, depending on the sequence. More in depth knowledge of the various orders of complexity of genomic DNA structure has allowed the design of sophisticated bioinformatics tools for its analysis and manipulation, which, in turn, have yielded a better understanding of the genome itself. Curved DNA is involved in many biologically important processes, such as transcription initiation and termination, recombination, DNA replication, and nucleosome positioning. CpG islands and tandem repeats also play significant roles in the dynamics and evolution of genomes. Results In this study, we analyzed the relationship between these three structural features within rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) genomes. A genome-scale prediction of curvature distribution in rice and Arabidopsis indicated that most of the chromosomes of both genomes have maximal chromosomal DNA curvature adjacent to the centromeric region. By analyzing tandem repeats across the genome, we found that frequencies of repeats are higher in regions adjacent to those with high curvature value. Further analysis of CpG islands shows a clear interdependence between curvature value, repeat frequencies and CpG islands. Each CpG island appears in a local minimal curvature region, and CpG islands usually do not appear in the centromere or regions with high repeat frequency. A statistical evaluation demonstrates the significance and non-randomness of these features. Conclusions This study represents the first systematic genome-scale analysis of DNA curvature, CpG islands and tandem repeats at the DNA sequence level in plant genomes, and finds that not all of the chromosomes in plants follow the same rules common to other eukaryote organisms, suggesting that some

  3. Plant stress biomarkers from biosimulations: the Transcriptome-To-Metabolome (TTM) technology - effects of drought stress on rice.

    PubMed

    Phelix, C F; Feltus, F A

    2015-01-01

    Measuring biomarkers from plant tissue samples is challenging and expensive when the desire is to integrate transcriptomics, fluxomics, metabolomics, lipidomics, proteomics, physiomics and phenomics. We present a computational biology method where only the transcriptome needs to be measured and is used to derive a set of parameters for deterministic kinetic models of metabolic pathways. The technology is called Transcriptome-To-Metabolome (TTM) biosimulations, currently under commercial development, but available for non-commercial use by researchers. The simulated results on metabolites of 30 primary and secondary metabolic pathways in rice (Oryza sativa) were used as the biomarkers to predict whether the transcriptome was from a plant that had been under drought conditions. The rice transcriptomes were accessed from public archives and each individual plant was simulated. This unique quality of the TTM technology allows standard analyses on biomarker assessments, i.e. sensitivity, specificity, positive and negative predictive values, accuracy, receiver operator characteristics (ROC) curve and area under the ROC curve (AUC). Two validation methods were also used, the holdout and 10-fold cross validations. Initially 17 metabolites were identified as candidate biomarkers based on either statistical significance on binary phenotype when compared with control samples or recognition from the literature. The top three biomarkers based on AUC were gibberellic acid 12 (0.89), trehalose (0.80) and sn1-palmitate-sn2-oleic-phosphatidylglycerol (0.70). Neither heat map analyses of transcriptomes nor all 300 metabolites clustered the stressed and control groups effectively. The TTM technology allows the emergent properties of the integrated system to generate unique and useful 'Omics' information. PMID:24985701

  4. Transfer of herbicide-resistant gene to weedy rice populations and its implications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Red rice diversity in terms of phenology, sexual compatibility with cultivated rice, and the wide window of rice planting time can affect the rate of herbicide-resistant gene transfer from rice to RR. Experiments were conducted to a) determine the effect of red rice, rice cultivar, and planting date...

  5. Rhizobium oryzicola sp. nov., potential plant-growth-promoting endophytic bacteria isolated from rice roots.

    PubMed

    Zhang, Xiao-Xia; Gao, Ju-Sheng; Cao, Yan-Hua; Sheirdil, Rizwan Ali; Wang, Xiu-Cheng; Zhang, Lei

    2015-09-01

    Bacterial strains ZYY136(T) and ZYY9 were isolated from surface-sterilized rice roots from a long-term experiment of rice-rice--Astragalus sinicus rotation. The 16S rRNA gene sequences of strains ZYY136(T) and ZYY9 showed the highest similarity, of 97.0%, to Rhizobium tarimense PL-41(T). Sequence analysis of the housekeeping genes recA, thrC and atpD clearly differentiated the isolates from currently described species of the genus Rhizobium. The DNA-DNA relatedness value between ZYY136(T) and ZYY9 was 82.3%, and ZYY136(T) showed 34.0% DNA-DNA relatedness with the most closely related type strain, R. tarimense PL-41(T). The DNA G+C content of strain ZYY136(T) was 58.1 mol%. The major cellular fatty acids were summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c), C16 : 0 and C16 : 0 3-OH. Strains ZYY136(T) and ZYY9 could be differentiated from the previously defined species of the genus Rhizobium by several phenotypic characteristics. Therefore, we conclude that strains ZYY136(T) and ZYY9 represent a novel species of the genus Rhizobium, for which the name Rhizobium oryzicola sp. nov. is proposed (type strain ZYY136(T) = ACCC 05753(T) = KCTC 32088(T)). PMID:26016492

  6. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( Oryza sativa L.).

    PubMed

    Seyfferth, Angelia L; Fendorf, Scott

    2012-12-18

    Arsenic-contaminated rice grain may threaten human health globally. Since H₃AsO₃⁰ is the predominant As species found in paddy pore-waters, and H₄SiO₄⁰ and H₃AsO₃⁰ share an uptake pathway, silica amendments have been proposed to decrease As uptake and consequent As concentrations in grains. Here, we evaluated the impact of two silicate mineral additions differing in solubility (+Si(L), diatomaceous earth, 0.29 mM Si; +Si(H), Si-gel, 1.1 mM Si) to soils differing in mineralogy on arsenic concentration in rice. The +Si(L) addition either did not change or decreased As concentration in pore-water but did not change or increased grain-As levels relative to the (+As--Si) control. The +Si(H) addition increased As in pore-water, but it significantly decreased grain-As relative to the (+As--Si) control. Only the +Si(H) addition resulted in significant increases in straw- and husk-Si. Total grain- and straw-As was negatively correlated with pore-water Si, and the relationship differed between two soils exhibiting different mineralogy. These differing results are a consequence of competition between H₄SiO₄⁰ and H₃AsO₃⁰ for adsorption sites on soil solids and subsequent plant-uptake, and illustrate the importance of Si mineralogy on arsenic uptake. PMID:23153302

  7. Catalytic thermal treatment (catalytic thermolysis) of a rice grain-based biodigester effluent of an alcohol distillery plant.

    PubMed

    Prajapati, Abhinesh Kumar; Chaudhari, Parmesh Kumar; Mazumdar, Bidyut; Choudhary, Rumi

    2015-01-01

    The catalytic thermolysis (CT) process is an effective and novel approach to treat rice grain-based biodigester effluent (BDE) of the distillery plant. CT treatment of rice grain-based distillery wastewater was carried out in a 0.5 dm(3) thermolytic batch reactor using different catalysts such as CuO, copper sulphate and ferrous sulphate. With the CuO catalyst, a temperature of 95°C, catalyst loading of 4 g/dm(3) and pH 5 were found to be optimal, obtaining a maximum chemical oxygen demand (COD) and colour removal of 80.4% and 72%, respectively. The initial pH (pHi) was an important parameter to remove COD and colour from BDE. At higher pHi (pH 9.5), less COD and colour reduction were observed. The settling characteristics of CT-treated sludge were also analysed at different temperatures. It was noted that the treated slurry at a temperature of 80°C gave best settling characteristics. Characteristics of residues are also analysed at different pH. PMID:25833556

  8. Integrating flood depth and plant resistance with chlorantraniliprole seed treatments for management of rice water weevil, Lissorhoptrus oryzophilus (Coleoptera: Curculionidae).

    PubMed

    Lanka, Srinivas K; Blouin, David C; Stout, Michael J

    2015-10-01

    Chlorantraniliprole seed treatments in rice provide effective suppression of rice water weevil populations in the United States; however, heavy reliance on prophylactic insecticide treatments as a sole strategy could destabilize management programs for this insect. The present research evaluated the compatibility of seed treatments with two other potential management tactics-plant resistance and shallow flooding-by conducting two split-plot experiments in 2009 and 2011. In both experiments, no substantial antagonism was found among the 3 different tactics. Statistical interactions in these experiments arose from the strong and persistent effects of chlorantraniliprole on larval densities rather than incompatibility of tactics. In 2009, weevil densities differed among varieties and were significantly lower on the cultivar "Jefferson." In 2011, weevil densities were reduced significantly in shallow-flooded plots compared to deep-flooded plots. Significant reductions in weevil numbers by chlorantraniliprole seed treatments, even at application rates 5 fold lower than commercially recommended rates, demonstrated the potential to reduce application rates of this highly potent larvicide. These latter results suggest that future studies on the relationship between chlorantraniliprole seed treatment rate and weevil fitness are warranted. PMID:25176158

  9. Biochar increases plant-available water in a sandy loam soil under an aerobic rice crop system

    NASA Astrophysics Data System (ADS)

    de Melo Carvalho, M. T.; de Holanda Nunes Maia, A.; Madari, B. E.; Bastiaans, L.; van Oort, P. A. J.; Heinemann, A. B.; Soler da Silva, M. A.; Petter, F. A.; Marimon, B. H., Jr.; Meinke, H.

    2014-09-01

    The main objective of this study was to assess the impact of biochar rate (0, 8, 16 and 32 Mg ha-1) on the water retention capacity (WRC) of a sandy loam Dystric Plinthosol. The applied biochar was a by-product of slow pyrolysis (∼450 °C) of eucalyptus wood, milled to pass through a 2000 μm sieve that resulted in a material with an intrinsic porosity ≤10 μm and a specific surface area of ∼3.2 m2 g-1. The biochar was incorporated into the top 15 cm of the soil under an aerobic rice system. Our study focused on both the effects on WRC and rice yields 2 and 3 years after its application. Undisturbed soil samples were collected from 16 plots in two soil layers (5-10 and 15-20 cm). Soil water retention curves were modelled using a nonlinear mixed model which appropriately accounts for uncertainties inherent of spatial variability and repeated measurements taken within a specific soil sample. We found an increase in plant-available water in the upper soil layer proportional to the rate of biochar, with about 0.8% for each Mg ha-1 biochar amendment 2 and 3 years after its application. The impact of biochar on soil WRC was most likely related to an effect in overall porosity of the sandy loam soil, which was evident from an increase in saturated soil moisture and macro porosity with 0.5 and 1.6% for each Mg ha-1 of biochar applied, respectively. The increment in soil WRC did not translate into an increase in rice yield, essentially because in both seasons the amount of rainfall during the critical period for rice production exceeded 650 mm. The use of biochar as a soil amendment can be a worthy strategy to guarantee yield stability under short-term water-limited conditions. Our findings raise the importance of assessing the feasibility of very high application rates of biochar and the inclusion of a detailed analysis of its physical and chemical properties as part of future investigations.

  10. VLN2 Regulates Plant Architecture by Affecting Microfilament Dynamics and Polar Auxin Transport in Rice[OPEN

    PubMed Central

    Wu, Shengyang; Xie, Yurong; Guo, Xiuping; Sheng, Peike; Wang, Juan; Wu, Chuanyin; Wang, Haiyang; Wan, Jianmin

    2015-01-01

    As a fundamental and dynamic cytoskeleton network, microfilaments (MFs) are regulated by diverse actin binding proteins (ABPs). Villins are one type of ABPs belonging to the villin/gelsolin superfamily, and their function is poorly understood in monocotyledonous plants. Here, we report the isolation and characterization of a rice (Oryza sativa) mutant defective in VILLIN2 (VLN2), which exhibits malformed organs, including twisted roots and shoots at the seedling stage. Cellular examination revealed that the twisted phenotype of the vln2 mutant is mainly caused by asymmetrical expansion of cells on the opposite sides of an organ. VLN2 is preferentially expressed in growing tissues, consistent with a role in regulating cell expansion in developing organs. Biochemically, VLN2 exhibits conserved actin filament bundling, severing and capping activities in vitro, with bundling and stabilizing activity being confirmed in vivo. In line with these findings, the vln2 mutant plants exhibit a more dynamic actin cytoskeleton network than the wild type. We show that vln2 mutant plants exhibit a hypersensitive gravitropic response, faster recycling of PIN2 (an auxin efflux carrier), and altered auxin distribution. Together, our results demonstrate that VLN2 plays an important role in regulating plant architecture by modulating MF dynamics, recycling of PIN2, and polar auxin transport. PMID:26486445