Science.gov

Sample records for nm diamond nanocrystals

  1. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGESBeta

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  3. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  4. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  5. Formation mechanism of diamond nanocrystal from catalysed carbon black

    NASA Astrophysics Data System (ADS)

    Wen, Bin; Li, Tingju; Dong, Chuang; Zhang, Xingguo; Yao, Shan; Cao, Zhiqiang; Wang, Dehe; Ji, Shouhua; Jin, Junze

    2004-10-01

    Recently, our group has synthesized nanocrystal n-diamond and diamond-like carbon (DLC) from catalysed carbon black. Based on the results of XRD, TGA and DTA, a formation mechanism has been proposed to explain the phase transformation from carbon black to diamond nanocrystal. With the increase of temperature and hence the carbon diffusion in iron, the phase sequence is from Fe(OH)3 into Fe2O3, agr-Fe, ggr-Fe, then liquid iron. When the carbon in the liquid iron is saturated, DLC or graphite separates out of the liquid iron. With decrease of temperature, the carbon in ggr-Fe is separated out, and n-diamond nuclei form and grow.

  6. Photophysics of single nitrogen-vacancy centers in diamond nanocrystals

    NASA Astrophysics Data System (ADS)

    Berthel, Martin; Mollet, Oriane; Dantelle, Géraldine; Gacoin, Thierry; Huant, Serge; Drezet, Aurélien

    2015-01-01

    A study of the photophysical properties of nitrogen-vacancy (NV) color centers in diamond nanocrystals of size 50 nm or below is carried out by means of second-order time-intensity photon correlation and cross-correlation measurements as a function of the excitation power for both pure charge states, neutral and negatively charged, as well as for the photochromic state, where the center switches between both states at any power. A dedicated three-level model implying a shelving level is developed to extract the relevant photophysical parameters coupling all three levels. Our analysis confirms the very existence of the shelving level for the neutral NV center. It is found that it plays a negligible role on the photophysics of this center, whereas it is responsible for an increasing photon bunching behavior of the negative NV center with increasing power. From the photophysical parameters, we infer a quantum efficiency for both centers, showing that it remains close to unity for the neutral center over the entire power range, whereas it drops with increasing power from near unity to approximately 0.5 for the negative center. The photophysics of the photochromic center reveals a rich phenomenology that is to a large extent dominated by that of the negative state, in agreement with the excess charge release of the negative center being much slower than the photon emission process.

  7. Nucleation, growth, and graphitization of diamond nanocrystals during chlorination of carbides

    NASA Astrophysics Data System (ADS)

    Welz, Sascha; Gogotsi, Yury; McNallan, Michael J.

    2003-04-01

    Synthesis of nano- and microcrystalline sp3-bonded carbon (diamond) with cubic and hexagonal structure by extraction of silicon from silicon carbide in chlorine-containing gases has been reported recently. This process is attractive because it can produce diamond at ambient pressure and temperatures below 1000 °C. No plasma or other high-energy activation is required, thus providing an opportunity for large-scale synthesis. However, the mechanism of diamond formation has not been previously analyzed. This work reports on the formation mechanisms of diamond as well as the transformation of diamond to graphite and onionlike carbon upon heating. Study of SiC/carbon interfaces showed that direct epitaxial growth of diamond on SiC is possible, in agreement with previous molecular-dynamics simulation. However, random nucleation of diamond from amorphous sp3-bonded carbon produced as the result of extraction of Si from SiC has also been demonstrated. It has been shown that the presence of hydrogen in the environment is not required for diamond synthesis. However, hydrogen can stabilize the nanocrystals and lead to the growth of thick diamond layers. If no hydrogen is added, diamond nanocrystals transform to graphite, forming carbon onions and other curved graphitic nanostructures.

  8. The hemocompatibility of oxidized diamond nanocrystals for biomedical applications

    NASA Astrophysics Data System (ADS)

    Li, Hung-Cheng; Hsieh, Feng-Jen; Chen, Ching-Pin; Chang, Ming-Yao; Hsieh, Patrick C. H.; Chen, Chia-Chun; Hung, Shain-Un; Wu, Che-Chih; Chang, Huan-Cheng

    2013-10-01

    Low-dimensional carbon-based nanomaterials have recently received enormous attention for biomedical applications. However, increasing evidence indicates that they are cytotoxic and can cause inflammatory responses in the body. Here, we show that monocrystalline nanodiamonds (NDs) synthesized by high-pressure-high-temperature (HPHT) methods and purified by air oxidation and strong oxidative acid treatments have excellent hemocompatibility with negligible hemolytic and thrombogenic activities. Cell viability assays with human primary endothelial cells suggested that the oxidized HPHT-NDs (dimensions of 35-500 nm) are non-cytotoxic. No significant elevation of the inflammatory cytokine levels of IL-1β and IL-6 was detected in mice after intravenous injection of the nanocrystals in vivo. Using a hindlimb-ischemia mouse model, we demonstrated that 35-nm NDs after covalent conjugation with polyarginine are useful as a drug delivery vehicle of heparin for prolonged anticoagulation treatment. The present study lays a solid foundation for further therapeutic applications of NDs in biomedicine.

  9. Photoconductive response of type IIa diamond in the 222-353-nm range

    NASA Astrophysics Data System (ADS)

    Krishnan, Mahadevan; Lipatov, Evgenii E. I.; Parks, D.; Panchenko, Alexei N.; Schein, Jochen; Tarasenko, Victor F.; Thompson, J.

    2004-05-01

    Diamond radiation detectors (DRDs) operate on the principle of photoconductive response of the normally insulating, Type IIa diamond when dosed by electromagnetic radiation or high energy particles. As detectors, they offer fast response (~100 ps) and can handle high radiation doses (~1 GGy) without degradation. Diamond also offers significant advantages over semiconducting materials as a compact, bi-polar, high voltage switching medium because of its high dielectric strength and thermal conductivity. However, the wide band-gap of diamond and its normally insulating state impose stringent requirements on the trigger radiation that is used to make the diamond conductive. This paper describes a simple model for conduction in diamond, and compares this model with experimental conductivity as measured in a natural diamond Type IIa radiation detector that was irradiated by laser excitation at various wavelengths from 222-353 nm. The DRD geometry consisted of a 3x1x0.5 mm3 Type IIa diamond with metallization on the 3x0.5mm2 sides. The DRD was exposed to laser light in the orthogonal 3x1 mm2 plane. Agreement with the measured data is achieved by fitting a parameter (defined here as β) at the various irradiation wavelengths. This fitting parameter is itself a function of two physical quantities: α, the absorption coefficient of the diamond and ɛo, the ionization cost to produce a hole-pair. Using published values of α, we deduce values of ɛo and compare them with published values for Type IIa diamond in the deep UV to soft x-ray regions. This model also provides a basis for design of high voltage diamond switches that are triggered by near-bandgap (220-250 nm) UV radiation.

  10. Simulation of ultraviolet- and soft X-ray-pulse generation as a result of cooperative recombination of excitons in diamond nanocrystals embedded in a polymer film

    SciTech Connect

    Kukushkin, V. A.

    2013-11-15

    Using numerical simulation, it is shown that the recombination of free excitons photoexcited in diamond nanocrystals embedded in a polymer film can occur in the cooperative mode. It is found that this mode can be implemented despite the fact that diamond is an 'indirect' semiconductor. It is shown that the power of the generated radiation at the pulse peak during the cooperative recombination of free excitons can exceed that of the incoherent spontaneous emission of the same initial number of free excitons by more than an order of magnitude. Finally, it is shown that the process under consideration can be used to generate picosecond pulses of ultraviolet and soft X-ray electromagnetic field at a wavelength of 235 nm.

  11. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum.

    PubMed

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W; D'Urso, Brian

    2016-01-01

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K. PMID:27444654

  12. Cooling the Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum

    PubMed Central

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian

    2016-01-01

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. We demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K. PMID:27444654

  13. Novel optical signatures of sub-3 nm rare earth sesquioxide nanocrystals.

    NASA Astrophysics Data System (ADS)

    Dickerson, James; Mahajan, Sameer

    2008-03-01

    Europium and terbium based sesquioxide nanomaterials, known for their characteristic red and green luminescence, respectively, have recently garnered much research attention due to their size-dependent optical properties. Here, we present systematic investigation of the size-dependent optical properties Eu2O3, Tb2O3, and Gd2O3:Eu^3+ / Tb^3+ nanocrystals (NCs) in the size range of 1-3 nm in diameter. We observe a new luminescence peak at 620 nm in Eu2O3 and Gd2O3:Eu^3+ NCs, which represents modulation of the ^7F2 transition in Eu^3+ ion. Intensity modulation with respect to the 612 nm is observed as a function of nanocrystal size. For the Tb2O3 NCs, a new luminescence signature at 548 nm characterizes modulation of the ^7F5 transition in Tb^3+ ion. In addition, we probe the effect of NC size on the luminescence efficiencies of the doped and pure sesquioxide NCs. The concentration quenching effect, which leads to low luminescence efficiencies in bulk, pure sesquioxides, is explored in sub-3 nm sesquioxides.

  14. Cooling the motion of diamond nanocrystals in a magneto-gravitational trap in high vacuum

    DOE PAGESBeta

    Hsu, Jen -Feng; Ji, Peng; Lewandowski, Charles W.; D’Urso, Brian

    2016-07-22

    Levitated diamond nanocrystals with nitrogen-vacancy (NV) centres in high vacuum have been proposed as a unique system for experiments in fundamental quantum mechanics, including the generation of large quantum superposition states and tests of quantum gravity. This system promises extreme isolation from its environment while providing quantum control and sensing through the NV centre spin. While optical trapping has been the most explored method of levitation, recent results indicate that excessive optical heating of the nanodiamonds under vacuum may make the method impractical with currently available materials. Here, we study an alternative magneto-gravitational trap for diamagnetic particles, such as diamondmore » nanocrystals, with stable levitation from atmospheric pressure to high vacuum. Magnetic field gradients from permanent magnets confine the particle in two dimensions, while confinement in the third dimension is gravitational. Furthermore, we demonstrate that feedback cooling of the centre-of-mass motion of a trapped nanodiamond cluster results in cooling of one degree of freedom to less than 1 K.« less

  15. Charge state dynamics of the nitrogen vacancy center in diamond under 1064-nm laser excitation

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Dutt, M. V. Gurudev

    2016-07-01

    The photophysics and charge state dynamics of the nitrogen vacancy (NV) center in diamond has been extensively investigated, but is still not fully understood. In contrast to previous work, we find that NV0 converts to NV- under excitation with low power near-infrared (1064-nm) light, resulting in increased photoluminescence from the NV- state. We used a combination of spectral and time-resolved photoluminescence experiments and rate-equation modeling to conclude that NV0 converts to NV- via absorption of 1064-nm photons from the valence band of diamond. We report fast quenching and recovery of the photoluminescence from both charge states of the NV center under low power 1064-nm laser excitation, which has not been previously observed. We also find, using optically detected magnetic resonance experiments, that the charge transfer process mediated by the 1064-nm laser is spin dependent.

  16. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA-) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA- to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach.

  17. Cooling of the Mechanical Motion of Diamond Nanocrystals in a Magneto-Gravitational Trap in High Vacuum

    NASA Astrophysics Data System (ADS)

    Hsu, Jen-Feng; Ji, Peng; Lewandowski, Charles W.; D'Urso, Brian

    2016-05-01

    We present a magneto-gravitational trap for diamagnetic particles, such as diamond nanocrystals, with stable trapping from atmospheric pressure to high vacuum. Characterization and feedback cooling of the mechanical motion of the trapped particle are described. This static trap is achieved by permanent magnets and ferromagnetic pole pieces. The magnetic field confines the particle in two dimensions, while confinement in the third dimension relies on gravity. The weak trapping forces result in mechanical oscillation frequencies in the extremely low to super low frequency range and exceptionally high sensitivity to external forces. Particles can be trapped for an indefinite length of time without active cooling. With feedback, the mechanical motion can be cooled by several orders of magnitude. With trapped diamond nanocrystals containing nitrogen-vacancy centers, the system has potential as a platform for experiments in quantum nanomechanics. This material is based upon work supported by the National Science Foundation under Grant No. 1540879.

  18. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    PubMed Central

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-01-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm−2 under near neutral conditions. PMID:25998696

  19. Partially Oxidized Sub-10 nm MnO Nanocrystals with High Activity for Water Oxidation Catalysis

    NASA Astrophysics Data System (ADS)

    Jin, Kyoungsuk; Chu, Arim; Park, Jimin; Jeong, Donghyuk; Jerng, Sung Eun; Sim, Uk; Jeong, Hui-Yun; Lee, Chan Woo; Park, Yong-Sun; Yang, Ki Dong; Kumar Pradhan, Gajendra; Kim, Donghun; Sung, Nark-Eon; Hee Kim, Sun; Nam, Ki Tae

    2015-05-01

    The oxygen evolution reaction (OER) is considered a major bottleneck in the overall water electrolysis process. In this work, highly active manganese oxide nano-catalysts were synthesized via hot injection. Facile surface treatment generated Mn(III) species on monodisperse 10 nm MnO nanocrystals (NCs). Size dependency of MnO NCs on OER activity was also investigated. Surprisingly, the partially oxidized MnO NCs only required 530 mV @ 5 mA cm-2 under near neutral conditions.

  20. Photosensitivity of a diamond detector to laser radiation in the 220 - 355-nm region

    SciTech Connect

    Lipatov, E I; Panchenko, Aleksei N; Tarasenko, Viktor F; Shein, J; Krishnan, M

    2001-12-31

    The photosensitivity of detectors of laser radiation based on the natural type IIa diamond (Alameda Applied Sciences Corporation, USA) are studied at the wavelengths 222, 308, 337, and 353 nm. The limiting intensities (0.5 - 4 MW cm{sup -2}) of UV laser radiation are determined at which the detectors operate in a linear regime. (laser applications and other topics in quantum electronics)

  1. Nanocrystal structures

    SciTech Connect

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  2. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  3. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals

    PubMed Central

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M.; Piper, James A.; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA−) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA− to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom–up scalable approach. PMID:26743184

  4. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals.

    PubMed

    Liu, Deming; Xu, Xiaoxue; Du, Yi; Qin, Xian; Zhang, Yuhai; Ma, Chenshuo; Wen, Shihui; Ren, Wei; Goldys, Ewa M; Piper, James A; Dou, Shixue; Liu, Xiaogang; Jin, Dayong

    2016-01-01

    The ultimate frontier in nanomaterials engineering is to realize their composition control with atomic scale precision to enable fabrication of nanoparticles with desirable size, shape and surface properties. Such control becomes even more useful when growing hybrid nanocrystals designed to integrate multiple functionalities. Here we report achieving such degree of control in a family of rare-earth-doped nanomaterials. We experimentally verify the co-existence and different roles of oleate anions (OA(-)) and molecules (OAH) in the crystal formation. We identify that the control over the ratio of OA(-) to OAH can be used to directionally inhibit, promote or etch the crystallographic facets of the nanoparticles. This control enables selective grafting of shells with complex morphologies grown over nanocrystal cores, thus allowing the fabrication of a diverse library of monodisperse sub-50 nm nanoparticles. With such programmable additive and subtractive engineering a variety of three-dimensional shapes can be implemented using a bottom-up scalable approach. PMID:26743184

  5. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering

    SciTech Connect

    Liu Yongchun; Xiao Yunfeng; Li Beibei; Jiang Xuefeng; Li Yan; Gong Qihuang

    2011-07-15

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity-waveguide coupling system and find that it plays a significant role in the photon transportation. On the one hand, this study provides insight into future solid-state cavity quantum electrodynamics aimed at understanding strong-coupling physics. On the other hand, benefitting from this Rayleigh scattering, effects such as dipole-induced transparency and strong photon antibunching can occur simultaneously. As a potential application, this system can function as a high-efficiency photon turnstile. In contrast to B. Dayan et al. [Science 319, 1062 (2008)], the photon turnstiles proposed here are almost immune to the nanocrystal's azimuthal position.

  6. Designing Upconversion Nanocrystals Capable of 745 nm Sensitization and 803 nm Emission for Deep-Tissue Imaging.

    PubMed

    Liang, Liangliang; Xie, Xiaoji; Loong, Daniel Teh Boon; All, Angelo Homayoun; Huang, Ling; Liu, Xiaogang

    2016-07-25

    A crystal design strategy is described that generates hexagonal-phased NaYF4 :Nd/Yb@NaYF4 :Yb/Tm luminescent nanocrystals with the ability to emit light at 803 nm when illuminated at 745 nm. This is accomplished by taking advantage of the large absorption cross-section of Nd(3+) between 720 and 760 nm plus efficient spatial energy transfer and migration through Nd(3+) →Yb(3+) →Yb(3+) →Tm(3+) . Mechanistic investigations suggest that a cascaded two-photon energy transfer upconversion process underlies the emission mechanism. This protocol enables deep-tissue imaging to be achieved while mitigating the attenuation effect associated with the visible emission and the overheating constraint imposed by conventional 980 nm excitation. PMID:27245472

  7. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Chun; Xiao, Yun-Feng; Li, Bei-Bei; Jiang, Xue-Feng; Li, Yan; Gong, Qihuang

    2011-07-01

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity-waveguide coupling system and find that it plays a significant role in the photon transportation. On the one hand, this study provides insight into future solid-state cavity quantum electrodynamics aimed at understanding strong-coupling physics. On the other hand, benefitting from this Rayleigh scattering, effects such as dipole-induced transparency and strong photon antibunching can occur simultaneously. As a potential application, this system can function as a high-efficiency photon turnstile. In contrast to B. Dayan [ScienceSCIEAS0036-807510.1126/science.1152261 319, 1062 (2008)], the photon turnstiles proposed here are almost immune to the nanocrystal’s azimuthal position.

  8. Injection characterization of packaged bi-directional diamond shaped ring lasers at 1550 nm

    NASA Astrophysics Data System (ADS)

    Bussjager, Rebecca; Erdmann, Reinhard; Kovanis, Vassillios; McKeon, Brian; Fanto, Michael; Johns, Steve; Hayduk, Michael; Osman, Joseph; Morrow, Alan; Green, Malcolm; Stoffel, Nancy; Tan, Songsheng; Shick, Charles; Bacon, Wesley; Beaman, Bryan

    2006-05-01

    The Air Force Research Laboratory, Binoptics Corp., and Infotonics Technology Center worked collaboratively to package and characterize recently developed diode based ring lasers that operate at 1550 nm in a diamond shaped cavity. The laser modes propagate bi-directionally; however, uniaxial propagation may be induced by optical injection or by integrating a mirror. Round trip cavity length was 500 μm in 3.5 μm wide ridge waveguides, and four polarization-maintaining lensed fibers provided access to the input and output modes. A signal from a tunable diode laser, incident at one port, served to injection lock both of the counter-propagating circulating modes. When the input signal was time-encoded by an optical modulator, the encoding was transferred to both modes with an inverted time-intensity profile. Performance, in terms of fidelity and extinction ratio, is characterized for selected pulsed and monochromatic formats from low frequencies to those exceeding 12 GHz. A rate equation model is proposed to account for certain aspects of the observed behavior and analog and digital applications are discussed.

  9. External-cavity diamond Raman laser performance at 1240 nm and 1485 nm wavelengths with high pulse energy

    NASA Astrophysics Data System (ADS)

    Pashinin, V. P.; Ralchenko, V. G.; Bolshakov, A. P.; Ashkinazi, E. E.; Gorbashova, M. A.; Yurov, V. Yu; Konov, V. I.

    2016-06-01

    We report on an external-cavity diamond Raman laser (DRL) pumped with a Q-switched Nd:YAG and generating at 1st and 2nd Stokes (1240 nm and 1485 nm) with enhanced output energy. The slope efficiency of 54% and output energy as high as 1.2 mJ in single pulse at 1240 nm have been achieved with optimized cavity, while the pulse energy of 0.70 mJ was obtained in the eye-safe spectral region at 1485 nm. Calculations of thermal lensing effect indicate it as a possible reason for the observed decrease in conversion efficiency at the highest pump energies.

  10. Seedless Polyol Synthesis and CO Oxidation Activity of Monodisperse (111) and (100)-Oriented Rhodium Nanocrystals in Sub-10 nm Sizes

    SciTech Connect

    Zhang, Yawen; Grass, Michael E.; Huang, Wenyu; Somorjai, Gabor A.

    2010-03-15

    Monodisperse sub-10 nm (6.5 nm) sized Rh nanocrystals with (111) and (100) surface structures were synthesized by a seedless polyol reduction in ethylene glycol, with poly(vinylpyrrolidone) as a capping ligand. When using [Rh(Ac){sub 2}]{sub 2} as the metal precursor, (111)-oriented Rh nanopolyhedra containing 76% (111)-twined hexagons (in 2D projection) were obtained; whereas, when employing RhCl{sub 3} as the metal precursor in the presence of alkylammonium bromide, such as tetramethylammonium bromide and trimethyl(tetradecyl)ammonium bromide, (100)-oriented Rh nanocubes were obtained with 85% selectivity. The {l_brace}100{r_brace} faces of the Rh nanocrystals are stabilized by chemically adsorbed Br{sup -} ions from alkylammonium bromides, which led to (100)-oriented nanocubes. Monolayer films of the (111)-oriented Rh nanopolyhedra and (100)-oriented Rh nanocubes were deposited on silicon wafers in a Langmuir-Blodgett trough to make model 2D nanoarray catalysts. These nanocatalysts were active for CO oxidation by O{sub 2}, and the turnover frequency was independent of nanoparticle shape, consistent with that previously observed for Rh(111) and Rh(100) single crystals.

  11. Electrochemically Seed-Mediated Synthesis of Sub-10 nm Tetrahexahedral Pt Nanocrystals Supported on Graphene with Improved Catalytic Performance.

    PubMed

    Liu, Shuo; Tian, Na; Xie, Ai-Yun; Du, Jia-Huan; Xiao, Jing; Liu, Li; Sun, Hong-Yu; Cheng, Zhi-Ying; Zhou, Zhi-You; Sun, Shi-Gang

    2016-05-11

    Controlling the surface structure of Pt nanocrystals (NCs), especially creating high-index facets with abundant active step sites, is an effective approach to enhance catalytic performances. However, the available high-index faceted Pt NCs have large particle sizes, which severely impedes their practical applications. In this study, we reported a new electrochemically seed-mediated method, by which sub-10 nm tetrahexahedral Pt NCs (THH Pt NCs) enclosed with {210} high-index facets supported on graphene were synthesized. Pt nanoparticles of ∼3 nm in size as high-density crystal seeds play a key role in the small-sized control. The obtained THH Pt NCs exhibited a higher mass activity than commercial Pt/C catalyst for ethanol electrooxidation. We further demonstrated that this method is also valid for reshaping commercial Pt/C, to create high-index facets on surfaces and thus to improve both mass activity and stability. PMID:27063648

  12. Transparency of the strong shock-compressed diamond for 532 nm laser light

    NASA Astrophysics Data System (ADS)

    Zhang, Zhiyu; Zhao, Yang; Yang, Jiamin

    2016-04-01

    An optical reflectivity and transmissivity model for the shock-compressed diamond is established and used to calculate the optical reflectivity and transmissivity of the diamond under different shock compressions. The simulated results indicate that the reflection occurs at the shock front and does not depend on the thickness of the compressed diamond, but the transmissivity decreases with the thickness. The simulated reflectivity is consistent with the experimental results in the literature, which validates the model. It is shown that the diamond keeps transparent when the shock pressure is lower than 2.00 Mbar, and becomes opaque but does not reflect the probe laser as the shock pressure increases from 2.00 Mbar to 4.60 Mbar and reflects the probe laser markedly when the shock pressure is higher than 4.60 Mbar.

  13. Silicon nanocrystals at elevated temperatures: retention of photoluminescence and diamond silicon to β-silicon carbide phase transition.

    PubMed

    Rowland, Clare E; Hannah, Daniel C; Demortière, Arnaud; Yang, Jihua; Cook, Russell E; Prakapenka, Vitali B; Kortshagen, Uwe; Schaller, Richard D

    2014-09-23

    We report the photoluminescence (PL) properties of colloidal Si nanocrystals (NCs) up to 800 K and observe PL retention on par with core/shell structures of other compositions. These alkane-terminated Si NCs even emit at temperatures well above previously reported melting points for oxide-embedded particles. Using selected area electron diffraction (SAED), powder X-ray diffraction (XRD), liquid drop theory, and molecular dynamics (MD) simulations, we show that melting does not play a role at the temperatures explored experimentally in PL, and we observe a phase change to β-SiC in the presence of an electron beam. Loss of diffraction peaks (melting) with recovery of diamond-phase silicon upon cooling is observed under inert atmosphere by XRD. We further show that surface passivation by covalently bound ligands endures the experimental temperatures. These findings point to covalently bound organic ligands as a route to the development of NCs for use in high temperature applications, including concentrated solar cells and electrical lighting. PMID:25181589

  14. Sub-10 nm Platinum Nanocrystals with Size and Shape Control: Catalytic Study for Ethylene and Pyrrole Hydrogenation

    SciTech Connect

    Tsung, Chia-Kuang; Kuhn, John N.; Huang, Wenyu; Aliaga, Cesar; Hung, Ling-I; Somorjai, Gabor A.; Yang, Peidong

    2009-03-02

    Platinum nanocubes and nanopolyhedra with tunable size from 5 to 9 nm were synthesized by controlling the reducing rate of metal precursor ions in a one-pot polyol synthesis. A two-stage process is proposed for the simultaneous control of size and shape. In the first stage, the oxidation state of the metal ion precursors determined the nucleation rate and consequently the number of nuclei. The reaction temperature controlled the shape in the second stage by regulation of the growth kinetics. These well-defined nanocrystals were loaded into MCF-17 mesoporous silica for examination of catalytic properties. Pt loadings and dispersions of the supported catalysts were determined by elemental analysis (ICP-MS) and H2 chemisorption isotherms, respectively. Ethylene hydrogenation rates over the Pt nanocrystals were independent of both size and shape and comparable to Pt single crystals. For pyrrole hydrogenation, the nanocubes enhanced ring-opening ability and thus showed a higher selectivity to n-butylamine as compared to nanopolyhedra.

  15. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  16. Method to grow carbon thin films consisting entirely of diamond grains 3-5 nm in size and high-energy grain boundaries

    DOEpatents

    Carlisle, John A.; Auciello, Orlando; Birrell, James

    2006-10-31

    An ultrananocrystalline diamond (UNCD) having an average grain size between 3 and 5 nanometers (nm) with not more than about 8% by volume diamond having an average grain size larger than 10 nm. A method of manufacturing UNCD film is also disclosed in which a vapor of acetylene and hydrogen in an inert gas other than He wherein the volume ratio of acetylene to hydrogen is greater than 0.35 and less than 0.85, with the balance being an inert gas, is subjected to a suitable amount of energy to fragment at least some of the acetylene to form a UNCD film having an average grain size of 3 to 5 nm with not more than about 8% by volume diamond having an average grain size larger than 10 nm.

  17. Sub-10 nm lanthanide doped BaLuF{sub 5} nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence

    SciTech Connect

    Rao, Ling; Lu, Wei; Wang, Haibo; Yi, Zhigao; Zeng, Songjun; Li, Zheng

    2015-04-15

    Highlights: • Sub-10 nm cubic phase BaLuF{sub 5} nanocrystals were synthesized by a hydrothermal method for the first time. • Tunable multicolor from yellow to yellow-green was achieved by controlling Gd{sup 3+} content in BaLuF{sub 5}:Yb/Er system. • Intense near-infrared upconversion luminescence in BaLuF{sub 5}:Gd/Yb/Tm nanocrystal. • The enhancement near-infrared luminescence can be realized by adjusting the content of Gd{sup 3+} in BaLuF{sub 5}:Gd/Yb/Tm system. - Abstract: In this study, sub-10 nm BaLuF{sub 5} nanocrystals with cubic phase structure were synthesized by a solvothermal method using oleic acid as the stabilizing agent. The as-prepared BaLuF{sub 5} nanocrystals were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and analyzed by the upconversion (UC) spectra. The TEM results reveal that these samples present high uniformity. Compared with Gd-free samples, the size of BaLuF{sub 5}:Yb/Er doped with 10% Gd{sup 3+} decreased to 5.6 nm. In addition, BaLuF{sub 5}:Yb/Tm/Gd upconversion nanoparticles (UCNPs) presented efficient near-infrared (NIR)-NIR UC luminescence. Therefore, it is expected that these ultra-small BaLuF{sub 5} nanocrystals with well-controlled shape, size, and UC emission have potential applications in biomedical imaging fields.

  18. Sensitivity of Raman spectra excited at 325 nm to surface treatments of undoped polycrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Ghodbane, S.; Deneuville, A.; Tromson, D.; Bergonzo, P.; Bustarret, E.; Ballutaud, D.

    2006-08-01

    About 20 m thick films were deposited in the same run by MPCVD at 900 °C on Si substrates and then hydrogenated in situ during 30 min with a hydrogen plasma at the same temperature. Their surfaces were kept as prepared or more or less strongly oxidized by annealing at 600 °C under ambient atmosphere or by sulphochromic acid or aqua regia treatments. Raman spectra were excited at 325 and 632.8 nm. Spectra of the as-prepared sample exhibit structures around 2835 and 2895 cm-1 from monohydride carbon-hydrogen ascribed to the atomically flat (111) and (100) areas, respectively, on the facets of the sample surface crystallites. The decrease of these structures in the normalized spectra after the various oxidation treatments confirms these assignments. The decrease is smaller for the aqua regia treatment than for the two other treatments which give similar effects. Other Raman signals from sp2 C around 1589 cm-1 and CHx bonds around 2930, 2952, 3025 and 3050 cm-1 originate from species at the surface and within the films. Their variation with the oxidizing treatments indicates a significant contribution from the surface species.

  19. Preparation of freestanding germanium nanocrystals by ultrasonic aerosol pyrolysis

    NASA Astrophysics Data System (ADS)

    Stoldt, Conrad R.; Haag, Michael A.; Larsen, Brian A.

    2008-07-01

    This letter reports a synthetic route adaptable for the continuous, large-scale production of germanium (Ge) nanocrystals for emerging electronic and optoelectronic applications. Using an ultrasonic aerosol pyrolysis approach, diamond cubic Ge nanocrystals with dense, spherical morphologies and sizes ranging from 3to14nm are synthesized at 700°C from an ultrasonically generated aerosol of tetrapropylgermane (TPG) precursor and toluene solvent. The ultimate crystal size demonstrates a near linear relationship within the range of TPG concentrations investigated, while the shape of the measured size distributions predicts multiple particle formation mechanisms during aerosol decomposition and condensation.

  20. Highly stable sub-5 nm Sn6O4(OH)4 nanocrystals with ultrahigh activity as advanced photocatalytic materials for photodegradation of methyl orange

    NASA Astrophysics Data System (ADS)

    Xiao, J.; Wu, Q. L.; Liu, P.; Liang, Y.; Li, H. B.; Wu, M. M.; Yang, G. W.

    2014-04-01

    Among numerous active photocatalytic materials, Sn-based oxide nanomaterials are promising photocatalytic materials in environmental protection measures such as water remediation due to their excellent physicochemical property. Research on photocatalytic nanomaterials for photodegradation of methyl orange (MO) so far has focused on TiO2-based nanostructures; e.g., TiO2-P25 is recognized to be the best commercial photocatalyst to date, rather than Sn-based oxide nanomaterials, in spite of their impressive acid- and alkali-resistant properties and high stability. Here, we demonstrate very high photocatalytic activity of highly stable sub-5 nm hydromarchite (Sn6O4(OH)4) nanocrystals synthesized by a simple and environmentally friendly laser-based technique. These Sn6O4(OH)4 nanocrystals exhibit ultrahigh photocatalytic performance for photodegradation of MO and their degradation efficiency is far superior to that of TiO2-P25. The detailed investigations demonstrated that the great photocatalytic activity results from the ultrafine size and unique surface activity induced by the laser-based technique. Mass production of reactive species of hydroxyl radicals was detected in the experiments due to the appropriate bandgap of Sn6O4(OH)4 nanocrystals. These findings actually open a door to applications of Sn-based oxide nanomaterials as advanced photocatalytic materials.

  1. Diamond nanophotonics

    PubMed Central

    Beha, Katja; Wolfer, Marco; Becker, Merle C; Siyushev, Petr; Jamali, Mohammad; Batalov, Anton; Hinz, Christopher; Hees, Jakob; Kirste, Lutz; Obloh, Harald; Gheeraert, Etienne; Naydenov, Boris; Jakobi, Ingmar; Dolde, Florian; Pezzagna, Sébastien; Twittchen, Daniel; Markham, Matthew; Dregely, Daniel; Giessen, Harald; Meijer, Jan; Jelezko, Fedor; Nebel, Christoph E; Bratschitsch, Rudolf; Leitenstorfer, Alfred; Wrachtrup, Jörg

    2012-01-01

    Summary We demonstrate the coupling of single color centers in diamond to plasmonic and dielectric photonic structures to realize novel nanophotonic devices. Nanometer spatial control in the creation of single color centers in diamond is achieved by implantation of nitrogen atoms through high-aspect-ratio channels in a mica mask. Enhanced broadband single-photon emission is demonstrated by coupling nitrogen–vacancy centers to plasmonic resonators, such as metallic nanoantennas. Improved photon-collection efficiency and directed emission is demonstrated by solid immersion lenses and micropillar cavities. Thereafter, the coupling of diamond nanocrystals to the guided modes of micropillar resonators is discussed along with experimental results. Finally, we present a gas-phase-doping approach to incorporate color centers based on nickel and tungsten, in situ into diamond using microwave-plasma-enhanced chemical vapor deposition. The fabrication of silicon–vacancy centers in nanodiamonds by microwave-plasma-enhanced chemical vapor deposition is discussed in addition. PMID:23365803

  2. A conversion model of graphite to ultrananocrystalline diamond via laser processing at ambient temperature and normal pressure

    SciTech Connect

    Ren, X. D. Yang, H. M.; Zheng, L. M.; Tang, S. X.; Ren, N. F.; Xu, S. D.; Yuan, S. Q.

    2014-07-14

    The synthesis mechanism of ultrananocrystalline diamond via laser shock processing of graphite suspension was presented at room temperature and normal pressure, which yielded the ultrananocrystalline diamond in size of about 5 nm. X-ray diffraction, high-resolution transmission electron microscopy, and laser Raman spectroscopy were used to characterize the nano-crystals. The transformation model and growth restriction mechanism of high power density with short-pulsed laser shocking of graphite particles in liquid was put forward.

  3. Light emission from silicon with tin-containing nanocrystals

    SciTech Connect

    Roesgaard, Søren; Chevallier, Jacques; Hansen, John Lundsgaard; Jensen, Pia Bomholt; Larsen, Arne Nylandsted; Balling, Peter; Julsgaard, Brian; Gaiduk, Peter I.; Svane, Axel

    2015-07-15

    Tin-containing nanocrystals, embedded in silicon, have been fabricated by growing an epitaxial layer of Si{sub 1−x−y}Sn{sub x}C{sub y}, where x = 1.6 % and y = 0.04 % on a silicon substrate, followed by annealing at various temperatures ranging from 650 {sup ∘}C to 900 {sup ∘}C. The nanocrystal density and average diameters are determined by scanning transmission-electron microscopy to ≈10{sup 17} cm{sup −3} and ≈5 nm, respectively. Photoluminescence spectroscopy demonstrates that the light emission is very pronounced for samples annealed at 725 {sup ∘}C, and Rutherford back-scattering spectrometry shows that the nanocrystals are predominantly in the diamond-structured phase at this particular annealing temperature. The origin of the light emission is discussed.

  4. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    NASA Astrophysics Data System (ADS)

    Ren, X. D.; Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-01

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2-6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  5. Synthesis of 10 nm β-NaYF4:Yb,Er/NaYF4 Core/Shell Upconversion Nanocrystals with 5 nm Particle Cores.

    PubMed

    Rinkel, Thorben; Raj, Athira Naduviledathu; Dühnen, Simon; Haase, Markus

    2016-01-18

    A new method is presented for preparing gram amounts of very small core/shell upconversion nanocrystals without additional codoping of the particles. First, ca. 5 nm β-NaYF4:Yb,Er core particles are formed by the reaction of sodium oleate, rare-earth oleate, and ammonium fluoride, thereby making use of the fact that a high ratio of sodium to rare-earth ions promotes the nucleation of a large number of β-phase seeds. Thereafter, a 2 nm thick NaYF4 shell is formed by using 3-4 nm particles of α-NaYF4 as a single-source precursor for the β-phase shell material. In contrast to the core particles, however, these α-phase particles are prepared with a low ratio of sodium to rare-earth ions, which efficiently suppresses an undesired nucleation of β-NaYF4 particles during shell growth. PMID:26633748

  6. Grain boundaries and mechanical properties of nanocrystalline diamond films.

    SciTech Connect

    Busmann, H.-G.; Pageler, A.; Gruen, D. M.

    1999-08-06

    Phase-pure nanocrystalline diamond thin films grown from plasmas of a hydrogen-poor carbon argon gas mixture have been analyzed regarding their hardness and elastic moduli by means of a microindentor and a scanning acoustic microscope.The films are superhard and the moduli rival single crystal diamond. In addition, Raman spectroscopy with an excitation wavelength of 1064 nm shows a peak at 1438 l/cm and no peak above 1500 l/cm, and X-ray photoelectron spectroscopy a shake-up loss at 4.2 eV. This gives strong evidence for the existence of solitary double bonds in the films. The hardness and elasticity of the films then are explained by the assumption, that the solitary double bonds interconnect the nanocrystals in the films, leading to an intergrain boundary adhesion of similar strength as the intragrain diamond cohesion. The results are in good agreement with recent simulations of high-energy grain boundaries.

  7. Nanocrystal-Powered Nanomotor

    SciTech Connect

    Regan, B.C.; Aloni, S.; Jensen, K.; Ritchie, R.O.; Zettl, A.

    2005-07-05

    We have constructed and operated a nanoscale linear motorpowered by a single metal nanocrystal ram sandwiched between mechanicallever arms. Low-level electrical voltages applied to the carbon nanotubelever arms cause the nanocrystal to grow or shrink in a controlledmanner. The length of the ram is adjustable from 0 to more than 150 nm,with extension speeds exceeding 1900 nm/s. The thermodynamic principlesgoverning motor operation resemble those driving frost heave, a naturalsolid-state linear motor.

  8. Solvothermal synthesis and upconversion properties of about 10 nm orthorhombic LuF₃: Yb³⁺, Er³⁺ rectangular nanocrystals.

    PubMed

    Xiang, Guotao; Zhang, Jiahua; Hao, Zhendong; Zhang, Xia; Pan, Guo-Hui; Chen, Li; Luo, Yongshi; Lü, Shaozhe; Zhao, Haifeng

    2015-12-01

    The Yb(3+) and Er(3+) codoped orthorhombic LuF3 rectangular nanocrystals (NCs) with the size of about 10nm were synthesized by a facile and effective solvothermal process. X-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), upconversion (UC) luminescence spectra and decay curves were used to characterize the resulting samples. Compared with YF3 and α-NaYF4 NCs, owning the similar size and the same doping levels of Yb(3+) ions and Er(3+) ions as LuF3 NCs, the green UC emission of LuF3 NCs is 18.7 times and 5.1 times stronger than that of YF3 and α-NaYF4 NCs respectively; the red UC emission of LuF3 NCs is 13.2 times and 0.6 times stronger than that of YF3 and α-NaYF4 NCs respectively. Under 980 nm wavelength excitation, the decay curves of both (4)S3/2→(4)I15/2 transition and (4)F9/2→(4)I15/2 transition exhibit a single exponential function, resulting from the fast energy migrations among Yb(3+) ions caused by the high concentration of Yb(3+) ions (20 mol%). Meanwhile, at relatively low power density, the slopes of the linear plots between log(I) and log(P) for green UC and red UC are 1.7 and 1.9 respectively, which are less than 2 due to the quenching of the thermal effect, indicating a two-photon process for them. At high power density, the slopes are decreased caused by the saturation effect. In addition, we proved the existence of the thermal effect by the pump power dependence of the intensity ratio of (2)H11/2→(4)I15/2 transition to (4)S3/2→(4)I15/2 transition. PMID:26298284

  9. Natural occurrence of pure nano-polycrystalline diamond from impact crater.

    PubMed

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P; Pokhilenko, Nikolai P

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5-50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  10. Natural occurrence of pure nano-polycrystalline diamond from impact crater

    PubMed Central

    Ohfuji, Hiroaki; Irifune, Tetsuo; Litasov, Konstantin D.; Yamashita, Tomoharu; Isobe, Futoshi; Afanasiev, Valentin P.; Pokhilenko, Nikolai P.

    2015-01-01

    Consolidated bodies of polycrystalline diamond with grain sizes less than 100 nm, nano-polycrystalline diamond (NPD), has been experimentally produced by direct conversion of graphite at high pressure and high temperature. NPD has superior hardness, toughness and wear resistance to single-crystalline diamonds because of its peculiar nano-textures, and has been successfully used for industrial and scientific applications. Such sintered nanodiamonds have, however, not been found in natural mantle diamonds. Here we identified natural pure NPD, which was produced by a large meteoritic impact about 35 Ma ago in Russia. The impact diamonds consist of well-sintered equigranular nanocrystals (5–50 nm), similar to synthetic NPD, but with distinct [111] preferred orientation. They formed through the martensitic transformation from single-crystal graphite. Stress-induced local fragmentation of the source graphite and subsequent rapid transformation to diamond in the limited time scale result in multiple diamond nucleation and suppression of the overall grain growth, producing the unique nanocrystalline texture of natural NPD. A huge amount of natural NPD is expected to be present in the Popigai crater, which is potentially important for applications as novel ultra-hard material. PMID:26424384

  11. Simple Preparation and Stabilization of Nickel Nanocrystals on Cellulose Nanocrystal

    SciTech Connect

    Shin, Yongsoon; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2007-06-01

    Nickel nanocrystals were simply prepared on the carbon through a thermal reduction process at 400-500oC under N2 after Ni(II) ions were deposited and stabilized on cellulose nanocrystal (CNXL) surface. Hydroxyl groups on the CNXL anchor and stabilize Ni(II) ions. Well-dispersed Ni nanocrystals on the carbonized CNXL were about 5-12 nm in size. XRD, FESEM, and TEM were employed to characterize the products.

  12. Solution Sythesis Of Geranium Nanocrystals: Success And Open Challenges

    SciTech Connect

    Casula, M; Galli, G; Saw, C; Zaitseva, N; Gerion, D; van Buuren, T; Fakra, S

    2003-12-15

    We present a two-steps synthesis route that yields nanometer size crystalline germanium in the form of a black powder. It relies on high temperature decomposition of tetraethylgermane (TEG) in organic solvents. The presence of pure germanium with diamond structure is unambiguously attested by powder XRD measurements. Low resolution TEM indicates that the particles are between {approx}5 to 30 nm in size depending on the synthesis conditions. The as-synthesized Ge powders can be stored in air for months and no oxidation occurs. The Ge powders are sparingly soluble in conventional solvents because Ge nanocrystals are likely embedded in a matrix, composed mainly of C=C, C-C, and C-H bonds. The presence of residual organic by-products impedes probing of the optical properties of the dots. Also, we discuss drawbacks and open challenges in high temperature solution synthesis of Ge nanocrystals that could also be faced in the synthesis of Si nanocrystals. Overall, our results call for a cautious interpretation of reported optical properties of Ge and Si nanocrystals obtained by high temperature solution methods.

  13. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  14. Micrometer-scale cavities in fibrous and cloudy diamonds — A glance into diamond dissolution events

    NASA Astrophysics Data System (ADS)

    Klein-BenDavid, Ofra; Wirth, Richard; Navon, Oded

    2007-12-01

    Micrometer sized internal cavities in diamonds preserve evidence of diamond dissolution events. Combining the methods of focused ion beam (FIB) sample preparation and transmission electron microscopy (TEM) enables these features to be studied in detail. Micrometer-scale cavities are found in the inner parts of fibrous and cloudy kimberlitic diamonds. Their filling consists of amorphous matrix, secondary nano-crystals, volatiles and in some cases larger resorbed crystals. Trapped minerals include corundum, Kappa-alumina, quartz, olivine, moissanite-6H and Ca-Mg carbonates. This is the first observation of Kappa-alumina in nature. Secondary nano-minerals are observed within the amorphous matrix and include carbonates, Al-oxide, fluorite, ilmenite and secondary diamond crystals. The amorphous matrix is spongy and its composition is dominated by amorphous carbon, nitrogen, chlorine and also contains water. When no crystalline phases are observed, the matrix is also enriched in alumina, silica and in some cases calcium. We propose that micrometer scale cavities in diamonds form during dissolution events induced by the introduction of oxidizing hydrous fluids into the diamond growth area. Hydrous fluids are the main dissolving agents for most kimberlitic diamonds [Fedortchouk, Y., Canil, D., Semenets, E., 2007. Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am. Mineral. 92, 1200-1212]. At diamond forming conditions silica and alumina are enriched in hydrous fluids that are in equilibrium with eclogites [Kessel, R., Ulmer, P., Pettke, T., Schmidt, M.W., Thompson, A.B., 2005. The water-basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth Planet. Sci. Lett. 237, 873-892]; this is consistent with the increased solubility of alumina with increased pressure and temperature in the Na-Cl bearing fluids [Manning, C.E., 2006. Mobilizing aluminum in crustal and

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2001-01-01

    An overview of the industrial diamond industry is provided. More than 90 percent of the industrial diamond consumed in the U.S. and the rest of the world is manufactured diamond. Ireland, Japan, Russia, and the U.S. produce 75 percent of the global industrial diamond output. In 2000, the U.S. was the largest market for industrial diamond. Industrial diamond applications, prices for industrial diamonds, imports and exports of industrial diamonds, the National Defense Stockpile of industrial diamonds, and the outlook for the industrial diamond market are discussed.

  16. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  17. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale

    NASA Astrophysics Data System (ADS)

    Qi, Kun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-01

    Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH- to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media.Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH- to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07940c

  18. Transient photoresponse of nitrogen-doped ultrananocrystalline diamond electrodes in saline solution

    NASA Astrophysics Data System (ADS)

    Ahnood, Arman; Simonov, Alexandr N.; Laird, Jamie S.; Maturana, Matias I.; Ganesan, Kumaravelu; Stacey, Alastair; Ibbotson, Michael R.; Spiccia, Leone; Prawer, Steven

    2016-03-01

    Beyond conventional electrically-driven neuronal stimulation methods, there is a growing interest in optically-driven approaches. In recent years, nitrogen-doped ultrananocrystalline diamond (N-UNCD) has emerged as a strong material candidate for use in electrically-driven stimulation electrodes. This work investigates the electrochemical activity of N-UNCD in response to pulsed illumination, to assess its potential for use as an optically-driven stimulation electrode. Whilst N-UNCD in the as-grown state exhibits a weak photoresponse, the oxygen plasma treated film exhibits two orders of magnitude enhancement in its sub-bandgap open circuit photovoltage response. The enhancement is attributed to the formation of a dense network of oxygen-terminated diamond nanocrystals at the N-UNCD surface. Electrically connected to the N-UNCD bulk via sub-surface graphitic grain boundaries, these diamond nanocrystals introduce a semiconducting barrier between the sub-surface graphitic semimetal and the electrolyte solution, leading to a photovoltage under irradiation with wavelengths of λ = 450 nm and shorter. Within the safe optical exposure limit of 2 mW mm-2, charge injection capacity of 0.01 mC cm-2 is achieved using a 15 × 15 μm electrode, meeting the requirements for extracellular and intercellular stimulation. The nanoscale nature of processes presented here along with the diamond's biocompatibility and biostability open an avenue for the use of oxygen treated N-UNCD as optically driven stimulating electrodes.

  19. Supersaturation-controlled surface structure evolution of Pd@Pt core-shell nanocrystals: enhancement of the ORR activity at a sub-10 nm scale.

    PubMed

    Qi, Kun; Zheng, Weitao; Cui, Xiaoqiang

    2016-01-21

    Here, we designed and implemented a facile strategy for controlling the surface evolution of Pd@Pt core-shell nanostructures by simply adjusting the volume of OH(-) to control the reducing ability of ascorbic acid and finally manipulating the supersaturation in the reaction system. The surface structure of the obtained Pd@Pt bimetallic nanocrystals transformed from a Pt {111} facet-exposed island shell to a conformal Pt {100} facet-exposed shell by increasing the pH value. The as-prepared well aligned Pd@Pt core-island shell nanocubes present both significantly enhanced electrocatalytic activity and favorable long-term stability toward the oxygen reduction reaction in alkaline media. PMID:26693587

  20. Size dependence of cubic to trigonal structural distortion in silver micro- and nanocrystals under high pressure

    SciTech Connect

    Guo, Qixum; Zhao, Yusheng; Zin, Zhijun; Wang, Zhongwu; Skrabalak, Sara E; Xia, Younan

    2008-01-01

    Silver micro- and nanocrystals with sizes of {approx}2--3.5 {mu}m and {approx}50--100 nm were uniaxially compressed under nonhydrostatic pressures (strong deviatoric stress) up to {approx}30 GPa at room temperature in a symmetric diamond-anvil cell and studied in situ using angle-dispersive synchrotron X-ray diffraction. A cubic to trigonal structural distortion along a 3-fold rotational axis was discovered by careful and comprehensive analysis of the apparent lattice parameter and full width at half-maximum, which are strongly dependent upon the Miller index and crystal size.

  1. Microstructural evolution of diamond growth during HFCVD

    NASA Technical Reports Server (NTRS)

    Singh, J.

    1994-01-01

    High resolution transmission electron microscopy (HRTEM) was used to study the nucleation and growth mechanism of diamond by hot filament chemical vapor deposition (HFCVD) process. A novel technique has shown a direct evidence for the formation of the diamond-like carbon layer 8-14 nm thick in which small diamond micro-crystallites were embedded. These diamond micro-crystallites were formed as a result of transformation of diamond-like carbon into diamond. The diamond micro-crystallites present in the amorphous diamond-like carbon layer provided nucleation sites for diamond growth. Large diamond crystallites were observed to grow from these micro-crystallites. The mechanism of diamond growth will be presented based on experimental findings.

  2. Diamond Smoothing Tools

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    Diamond smoothing tools have been proposed for use in conjunction with diamond cutting tools that are used in many finish-machining operations. Diamond machining (including finishing) is often used, for example, in fabrication of precise metal mirrors. A diamond smoothing tool according to the proposal would have a smooth spherical surface. For a given finish machining operation, the smoothing tool would be mounted next to the cutting tool. The smoothing tool would slide on the machined surface left behind by the cutting tool, plastically deforming the surface material and thereby reducing the roughness of the surface, closing microcracks and otherwise generally reducing or eliminating microscopic surface and subsurface defects, and increasing the microhardness of the surface layer. It has been estimated that if smoothing tools of this type were used in conjunction with cutting tools on sufficiently precise lathes, it would be possible to reduce the roughness of machined surfaces to as little as 3 nm. A tool according to the proposal would consist of a smoothing insert in a metal holder. The smoothing insert would be made from a diamond/metal functionally graded composite rod preform, which, in turn, would be made by sintering together a bulk single-crystal or polycrystalline diamond, a diamond powder, and a metallic alloy at high pressure. To form the spherical smoothing tip, the diamond end of the preform would be subjected to flat grinding, conical grinding, spherical grinding using diamond wheels, and finally spherical polishing and/or buffing using diamond powders. If the diamond were a single crystal, then it would be crystallographically oriented, relative to the machining motion, to minimize its wear and maximize its hardness. Spherically polished diamonds could also be useful for purposes other than smoothing in finish machining: They would likely also be suitable for use as heat-resistant, wear-resistant, unlubricated sliding-fit bearing inserts.

  3. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2003-01-01

    Statistics on the production, consumption, cost, trade, and government stockpile of natural and synthetic industrial diamond are provided. The outlook for the industrial diamond market is also considered.

  4. Graphite to ultrafine nanocrystalline diamond phase transition model and growth restriction mechanism induced by nanosecond laser processing

    SciTech Connect

    Ren, X. D. Liu, R.; Zheng, L. M.; Ren, Y. P.; Hu, Z. Z.; He, H.

    2015-10-05

    To have a clear insight into nanocrystal growth from graphite to diamond upon high energy pulsed laser irradiation of graphite suspension, synthesis of ultrafine nanocrystalline diamonds with laser energy set up from 0.3 J to 12 J, repetition rate of 10 Hz has been studied. The method allows synthesizing ultrafine nanocrystalline particles continuously at the ambient temperature and normal pressure. The particle size is shown independent of laser energy, which is ultrafine and ranges in 2–6 nm. The theoretical grown size of nano-diamonds is found in well agreement with the experiment results. Four kinds of production were found: nano-diamond, spherical carbon nano-particles, flocculent amorphous carbon, and graphene nano-ribbon rolls. A solid-vapor-plasma-liquid coexistence model describing phase transition from graphite to diamond induced by nanosecond laser processing was proposed. Graphene nano-ribbon rolls might be the intermediate phase in the conversion from graphite to diamond.

  5. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  6. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-01

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications. PMID:21553924

  7. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  8. Diamond nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Taniguchi, Jun; Tokano, Yuji; Miyamoto, Iwao; Komuro, Masanori; Hiroshima, Hiroshi

    2002-10-01

    Electron beam (EB) lithography using polymethylmethacrylate (PMMA) and oxygen gas reactive ion etching (RIE) were used to fabricate fine patterns in a diamond mould. To prevent charge-up during EB lithography, thin conductive polymer was spin-coated over the PMMA resist, yielding dented line patterns 2 μ m wide and 270 nm deep. The diamond mould was pressed into PMMA on a silicon substrate heated to 130, 150 and 170ºC at 43.6, 65.4 and 87.2 MPa. All transferred PMMA convex line patterns were 2 μ m wide. Imprinted pattern depth increased with rising temperature and pressure. PMMA patterns on diamond were transferred by the diamond mould at 150ºC and 65.4 MPa, yielding convex line patterns 2 μ m wide and 200 nm high. Direct aluminium and copper patterns were obtained using the diamond mould at room temperature and 130.8 MPa. The diamond mould is thus useful for replicating patterns on PMMA and metals.

  9. Nanocrystalline diamond synthesized from C60

    SciTech Connect

    Dubrovinskaia, N.; Dubrovinsky, L.; Langehorst, F.; Jacobsen, S.; Liebske, C.

    2010-11-30

    A bulk sample of nanocrystalline cubic diamond with crystallite sizes of 5-12 nm was synthesized from fullerene C{sub 60} at 20(1) GPa and 2000 C using a multi-anvil apparatus. The new material is at least as hard as single crystal diamond. It was found that nanocrystalline diamond at high temperature and ambient pressure kinetically is more stable with respect to graphitization than usual diamonds.

  10. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2012-01-01

    Estimated 2011 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2011, natural industrial diamonds were produced in more than 20 countries, and synthetic industrial diamond was produced in at least 13 countries. About 98 percent of the combined natural and synthetic global output was produced in China, Ireland, Japan, Russia, South Africa and the United States. China is the world's leading producer of synthetic industrial diamond followed by Russia and the United States.

  11. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2011-01-01

    Estimated world production of natural and synthetic industrial diamond was about 4.44 billion carats in 2010. Natural industrial diamond deposits have been found in more than 35 countries, and synthetic industrial diamond is produced in at least 15 countries.

  12. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2006-01-01

    In 2005, estimated world production of natural and synthetic industrial diamond was 630 million carats. Natural industrial diamond deposits were found in more than 35 countries. Synthetic industrial diamond is produced in at least 15 countries. More than 81% of the combined natural and synthetic global output was produced in Ireland, Japan, Russia, South Africa and the United States.

  13. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2013-01-01

    Estimated 2012 world production of natural and synthetic industrial diamond was about 4.45 billion carats. During 2012, natural industrial diamonds were produced in at least 20 countries, and synthetic industrial diamond was produced in at least 12 countries. About 99 percent of the combined natural and synthetic global output was produced in Belarus, China, Ireland, Japan, Russia, South Africa and the United States. During 2012, China was the world’s leading producer of synthetic industrial diamond followed by the United States and Russia. In 2012, the two U.S. synthetic producers, one in Pennsylvania and the other in Ohio, had an estimated output of 103 million carats, valued at about $70.6 million. This was an estimated 43.7 million carats of synthetic diamond bort, grit, and dust and powder with a value of $14.5 million combined with an estimated 59.7 million carats of synthetic diamond stone with a value of $56.1 million. Also in 2012, nine U.S. firms manufactured polycrystalline diamond (PCD) from synthetic diamond grit and powder. The United States government does not collect or maintain data for either domestic PCD producers or domestic chemical vapor deposition (CVD) diamond producers for quantity or value of annual production. Current trade and consumption quantity data are not available for PCD or for CVD diamond. For these reasons, PCD and CVD diamond are not included in the industrial diamond quantitative data reported here.

  14. Optical Properties of CdSe/ZnS Nanocrystals

    PubMed Central

    Gaigalas, Adolfas K; DeRose, Paul; Wang, Lili; Zhang, Yu-Zhong

    2014-01-01

    Measurements are presented of the absorbance, fluorescence emission, fluorescence quantum yield, and fluorescence lifetime of CdSe/ZnS nanocrystals, also known as quantum dots (QDs). The study included three groups of nanocrystals whose surfaces were either passivated with organic molecules, modified further with carboxyl groups, or conjugated with CD14 mouse anti-human antibodies. The surface modifications had observable effects on the optical properties of the nanocrystals. The oscillator strength (OS) of the band edge transition was about 1.0 for the nanocrystals emitting at 565 nm, 605 nm, and 655 nm. The OS could not be determined for QDs with emission at 700 nm and 800 nm. The fluorescence lifetimes varied from 26 ns for nanocrystals emitting near 600 nm to 150 ns for nanocrystals emitting near 800 nm. The quantum yield ranged between 0.4 and 0.9 for the nanocrystals in this study. A brightness index (BI) was used to evaluate the suitability of the nanocrystal labels for flow cytometer measurements. Most QD labels are at least as bright as fluorescein for applications in flow cytometer assays with 488 nm excitation. For optimal brightness the QDs should be excited with 405 nm light. We observed a strong dependence of the QD absorbance at 250 nm on the surface modification of the QD. PMID:26601047

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. A review of the state of the global industrial diamond industry in 1999 is presented. World consumption of industrial diamond has increased annually in recent years, with an estimated 500 million carats valued between $650 million and $800 million consumed in 1999. In 1999, the U.S. was the world's largest market for industrial diamond and was also one of the world's main producers; the others were Ireland, Russia, and South Africa. Uses of industrial diamonds are discussed, and prices of natural and synthetic industrial diamond are reported.

  16. Doped semiconductor nanocrystal junctions

    NASA Astrophysics Data System (ADS)

    Borowik, Ł.; Nguyen-Tran, T.; Roca i Cabarrocas, P.; Mélin, T.

    2013-11-01

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (ND≈1020-1021cm-3) silicon nanocrystals (NCs) in the 2-50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as ND-1/3, and depleted charge linearly increasing with the NC diameter and varying as ND1/3. We thus establish a "nanocrystal counterpart" of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  17. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  18. Nanocrystal-polymer solar cells

    NASA Astrophysics Data System (ADS)

    Huynh, Wendy Uyen

    The ability to structure materials on a nanometer dimension enables the processes of solar energy conversion to be optimized at their most fundamental length scale. In semiconducting nanocrystals, optical absorption and electrical transport can be tailored by changing their radius and length, respectively. The unique features of quantum confinement and shape manipulation characteristic for inorganic nanocrystals can be utilized to fabricate solar cells with properties not observed in organic or conventional inorganic solar cells. Furthermore, their solution processibility provides fabrication advantages in the production of low cost, large area, and flexible solar cells. By blending organic conjugated polymers with CdSe nanocrystals efficient thin film solar cells have been constructed. Intimate contact for efficient charge transfer between the polymer and nanocrystal components of the blend was achieved by removing the organic ligands on the surface of the nanocrystal and by using solvent mixtures. Control of the nanocrystal length and therefore the distance on which electrons are transported directly through a thin film device enabled the creation of direct pathways for the transport of electrons. In addition, tuning the band gap by altering the nanocrystal radius as well as using alternate materials such as CdTe the overlap between the absorption spectrum of the cell and the solar emission spectrum could be optimized. A photovoltaic device consisting of 7nm by 60nm CdSe nanorods and the conjugated polymer poly-3(hexylthiophene) was assembled from solution with an external quantum efficiency of over 54% and a monochromatic power conversion efficiency of up to 7% under illumination at low light intensity. Under AM 1.5 Global solar conditions, we obtained a power conversion efficiency of 1.7%.

  19. Tailorable, Visible Light Emission From Silicon Nanocrystals

    SciTech Connect

    Samara, G.A.; Wilcoxon, J.P.

    1999-07-20

    J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields

  20. Continuous Growth of Metal Oxide Nanocrystals: Enhanced Control of Nanocrystal Size and Radial Dopant Distribution.

    PubMed

    Jansons, Adam W; Hutchison, James E

    2016-07-26

    The ability to precisely control the composition of nanocrystals, similar to the way organic chemists control the structure of small molecules, remains an important challenge in nanoscience. Rather than dictating nanocrystal size through the nucleation event, growth of nanocrystals through continuous precursor addition would allow fine structural control. Herein, we present a method of growth for indium oxide nanocrystals that relies on the slow addition of an indium carboxylate precursor into hot oleyl alcohol. Nanocrystal size and structure can be governed at a subnanometer scale, and it is possible to precisely control core size over a range of three to at least 22 nm with dispersities as low as 7%. Growth can be stopped and restarted repeatedly without aggregation or passivation. We show that the volume of the nanocrystal core (and thus molecular weight) increases linearly with added monomer and the number of nanocrystals remains constant throughout the growth process, yielding an extremely predictable approach to size control. It is also possible to place metal oxide shells (e.g., Sn-doped In2O3 (ITO)) at various radial positions within the nanocrystal, and we use this approach to synthesize ITO/In2O3 core/shell nanocrystals as well as In2O3/ITO/In2O3 core/shell/shell nanocrystals. PMID:27328328

  1. Study of nanocrystals in the dynamic slip zone

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'skaya, A. I.; Vettegren, V. I.; Kulik, V. B.; Mamalimov, R. I.

    2012-09-01

    Mineral composition is studied and a search to detect nanocrystals is conducted in the surface layers of slickensides formed due to dynamic slip in arkose sandstone. The infrared and Raman spectroscopy show that the slickensided layer is composed of nanocrystals of montmorillonite and anatase measuring ≈15 nm and 3 nm, respectively. The crystalline lattice of the nanocrystals of montmorillonite is stretched by ≈2.5% while the lattice of the nanocrystals of anatase is compressed by ≈0.12%. Deeper than 3 mm below the slickenside surface, the sandstone contains nanocrystals of montmorillonite, beidellite and nontronite, quartz, plagioclase, and anatase. The nanocrystals of anatase have a linear size of ≈8 nm. Their crystalline lattice is compressed by ≈0.03%. It is supposed that montmorillonite in the slickensides was formed due to hydrolytic decomposition of silicates under friction of the fault planes sliding past each other.

  2. Diamond Electronic Devices

    NASA Astrophysics Data System (ADS)

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175° C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin (˜1 nm) doped layers in order to achieve high RT activation.

  3. Diamond Electronic Devices

    SciTech Connect

    Isberg, J.

    2010-11-01

    For high-power and high-voltage applications, silicon is by far the dominant semiconductor material. However, silicon has many limitations, e.g. a relatively low thermal conductivity, electric breakdown occurs at relatively low fields and the bandgap is 1.1 eV which effectively limits operation to temperatures below 175 deg.n C. Wide-bandgap materials, such as silicon carbide (SiC), gallium nitride (GaN) and diamond offer the potential to overcome both the temperature and power handling limitations of silicon. Diamond is the most extreme in this class of materials. By the fundamental material properties alone, diamond offers the largest benefits as a semiconductor material for power electronic applications. On the other hand, diamond has a problem with a large carrier activation energy of available dopants which necessitates specialised device concepts to allow room temperature (RT) operation. In addition, the role of common defects on the charge transport properties of diamond is poorly understood. Notwithstanding this, many proof-of-principle two-terminal and three-terminal devices have been made and tested. Two-terminal electronic diamond devices described in the literature include: p-n diodes, p-i-n diodes, various types of radiation detectors, Schottky diodes and photoconductive or electron beam triggered switches. Three terminal devices include e.g. MISFETs and JFETs. However, the development of diamond devices poses great challenges for the future. A particularly interesting way to overcome the doping problem, for which there has been some recent progress, is to make so-called delta doped (or pulse-doped) devices. Such devices utilise very thin ({approx}1 nm) doped layers in order to achieve high RT activation.

  4. Observation of Diamond Nitrogen-Vacancy Center Photoluminescence under High Vacuum in a Magneto-Gravitational Trap

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Hsu, Jen-Feng; Lewandowski, Charles W.; Dutt, M. V. Gurudev; D'Urso, Brian

    2016-05-01

    We report the observation of photoluminescence from nitrogen-vacancy (NV) centers in diamond nanocrystals levitated in a magneto-gravitational trap. The trap utilizes a combination of strong magnetic field gradients and gravity to confine diamagnetic particles in three dimensions. The well-characterized NV centers in trapped diamond nanocrystals provide an ideal built-in sensor to measure the trap magnetic field and the temperature of the trapped diamond nanocrystal. In the future, the NV center spin state could be coupled to the mechanical motion through magnetic field gradients, enabling in an ideal quantum interface between NV center spin and the mechanical motion. National Science Foundation, Grant No. 1540879.

  5. Ferrimagnetic nanocrystal assemblies as versatile magnetic particle hyperthermia mediators.

    PubMed

    Sakellari, D; Brintakis, K; Kostopoulou, A; Myrovali, E; Simeonidis, K; Lappas, A; Angelakeris, M

    2016-01-01

    Colloidal nanocrystal assemblies (nanoclusters), consisting of 13 nm iron oxide nanocrystals, were synthesized in various sizes (45-98 nm), and were investigated as heating mediators for magnetic particle hyperthermia. The colloidal nanocrystal clusters show enhanced heating efficiency in comparison with their constituent primary iron oxide nanocrystals due to collective magnetic features. The fine tuning of intra-cluster magnetic interactions results to the domination of the hysteresis losses mechanism over the relaxation loss heating contributions and eventually to a versatile magnetic particle hyperthermia mediator. PMID:26478302

  6. Superconducting nanowire single photon detector on diamond

    SciTech Connect

    Atikian, Haig A.; Burek, Michael J.; Choy, Jennifer T.; Lončar, Marko; Eftekharian, Amin; Jafari Salim, A.; Hamed Majedi, A.

    2014-03-24

    Superconducting nanowire single photon detectors are fabricated directly on diamond substrates and their optical and electrical properties are characterized. Dark count performance and photon count rates are measured at varying temperatures for 1310 nm and 632 nm photons. A multi-step diamond surface polishing procedure is reported, involving iterative reactive ion etching and mechanical polishing to create a suitable diamond surface for the deposition and patterning of thin film superconducting layers. Using this approach, diamond substrates with less than 300 pm Root Mean Square surface roughness are obtained.

  7. Analysis of Short and Long Range Atomic Order in Nanocrystalline Diamonds with Application of Powder Diffractometry

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Neuefiend, J.; Weber, H.-P.; Proffen, T.; VonDreele, R.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Fundamental limitations, with respect to nanocrystalline materials, of the traditional elaboration of powder diffraction data like the Rietveld method are discussed. A tentative method of the analysis of powder diffraction patterns of nanocrystals is introduced which is based on the examination of the variation of lattice parameters calculated from individual Bragg lines (named the "apparent lattice parameter", alp). We examine the application of our methodology using theoretical diffraction patterns computed for models of nanocrystals with a perfect crystal lattice and for grains with a two-phase, core-shell structure. We use the method for the analysis of X-ray and neutron experimental diffraction data of nanocrystalline diamond powders of 4, 6 and 12 nm in diameter. The effects of an internal pressure and strain at the grain surface is discussed. This is based on the dependence of the alp values oil the diffraction vector Q and on the PDF analysis. It is shown, that the experimental results support well the concept of the two-phase structure of nanocrystalline diamond.

  8. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  9. Magnetic relaxation of diluted and self-assembled cobalt nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, X. X.; Wen, G. H.; Xiao, Gang; Sun, Shouheng

    2003-04-01

    We have studied the magnetic relaxation of monodispersed 4 nm cubic ɛ-cobalt nanocrystals in both randomly oriented and pre-aligned assemblies. The blocking temperature TB, for the closely packed Co nanocrystal assemblies, is 30% higher than that of the highly diluted and well-dispersed Co nanocrystal-organic composites. This increase is attributed to the strong magnetic dipole interaction induced from the close packing of the nanocrystals. It is found that the frequency-dependent susceptibility data, obtained from the diluted samples, can be fitted to the half-circle Argand Diagrams, indicating a single barrier (or very narrow energy distribution) of the nanocrystals. This agrees well with the physical observation from TEM that the nanocrystals are monodispersed. The long time magnetic relaxation measurements reveal that energy barrier distribution in a pre-aligned nanocrystal assembly is significantly different from that in a randomly oriented one.

  10. Laser damage threshold of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Cropper, Andre D.; Watkins, Linwood C.; Byvik, Charles E.; Buoncristiani, A. Martin

    1989-01-01

    The possibility that diamond films may inhibit laser-induced damage to optical components in laser systems films was investigated by measuring laser damage thresholds of free-standing diamond film windows, diamond films deposited on silicon substrates, and bare silicon substrate. Polycrystalline diamond films were deposited using a dc plasma-enhanced CVD process. It was found that free-standing diamond films had the highest laser damage threshold at 1064 nm. For a diamond film of 630 nm, the damage threshold was found to be 7 J/sq cm, as compared to a damage threshold of 4.5 J/sq cm for bare silicon, and a low value of 1.5 J/sq cm for the film/substrate combination. The damage mechanism is considered to involve melting or dielectric breakdown induced by laser radiation. The low value of the film/substrate combination is attributed to film stress and conditions of film deposition.

  11. Laser damage threshold of diamond films

    NASA Astrophysics Data System (ADS)

    Albin, Sacharia; Cropper, Andre D.; Watkins, Linwood C.; Byvik, Charles E.; Buoncristiani, A. Martin

    1989-03-01

    The possibility that diamond films may inhibit laser-induced damage to optical components in laser systems films was investigated by measuring laser damage thresholds of free-standing diamond film windows, diamond films deposited on silicon substrates, and bare silicon substrate. Polycrystalline diamond films were deposited using a dc plasma-enhanced CVD process. It was found that free-standing diamond films had the highest laser damage threshold at 1064 nm. For a diamond film of 630 nm, the damage threshold was found to be 7 J/sq cm, as compared to a damage threshold of 4.5 J/sq cm for bare silicon, and a low value of 1.5 J/sq cm for the film/substrate combination. The damage mechanism is considered to involve melting or dielectric breakdown induced by laser radiation. The low value of the film/substrate combination is attributed to film stress and conditions of film deposition.

  12. Diamond Coatings

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Advances in materials technology have demonstrated that it is possible to get the advantages of diamond in a number of applications without the cost penalty, by coating and chemically bonding an inexpensive substrate with a thin film of diamond-like carbon (DLC). Diamond films offer tremendous technical and economic potential in such advances as chemically inert protective coatings; machine tools and parts capable of resisting wear 10 times longer; ball bearings and metal cutting tools; a broad variety of optical instruments and systems; and consumer products. Among the American companies engaged in DLC commercialization is Diamonex, Inc., a diamond coating spinoff of Air Products and Chemicals, Inc. Along with its own proprietary technology for both polycrystalline diamond and DLC coatings, Diamonex is using, under an exclusive license, NASA technology for depositing DLC on a substrate. Diamonex is developing, and offering commercially, under the trade name Diamond Aegis, a line of polycrystalline diamond-coated products that can be custom tailored for optical, electronic and engineering applications. Diamonex's initial focus is on optical products and the first commercial product is expected in late 1990. Other target applications include electronic heat sink substrates, x-ray lithography masks, metal cutting tools and bearings.

  13. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  14. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2007-01-01

    World production of natural and synthetic industrial diamond was about 648 million carats in 2006, with 79 percent of the production coming from Ireland, Japan, Russia, South Africa, and the U.S. U.S. consumption was was an estimated 602 million carats, imports were over 391 million carats, and exports were about 83 million carats. About 87 percent of the industrial diamonds market uses synthetic diamonds, which are expected to become less expensive as technology improves and competition from low-cost producers increases.

  15. Industrial diamond

    USGS Publications Warehouse

    Olson, D.W.

    2004-01-01

    Part of the 2003 industrial minerals review. Supply and demand data for industrial diamond are provided. Topics discussed are consumption, prices, imports and exports, government stockpiles, and the outlook for 2004.

  16. Diamond-modified AFM probes: from diamond nanowires to atomic force microscopy-integrated boron-doped diamond electrodes.

    PubMed

    Smirnov, Waldemar; Kriele, Armin; Hoffmann, René; Sillero, Eugenio; Hees, Jakob; Williams, Oliver A; Yang, Nianjun; Kranz, Christine; Nebel, Christoph E

    2011-06-15

    In atomic force microscopy (AFM), sharp and wear-resistant tips are a critical issue. Regarding scanning electrochemical microscopy (SECM), electrodes are required to be mechanically and chemically stable. Diamond is the perfect candidate for both AFM probes as well as for electrode materials if doped, due to diamond's unrivaled mechanical, chemical, and electrochemical properties. In this study, standard AFM tips were overgrown with typically 300 nm thick nanocrystalline diamond (NCD) layers and modified to obtain ultra sharp diamond nanowire-based AFM probes and probes that were used for combined AFM-SECM measurements based on integrated boron-doped conductive diamond electrodes. Analysis of the resonance properties of the diamond overgrown AFM cantilevers showed increasing resonance frequencies with increasing diamond coating thicknesses (i.e., from 160 to 260 kHz). The measured data were compared to performed simulations and show excellent correlation. A strong enhancement of the quality factor upon overgrowth was also observed (120 to 710). AFM tips with integrated diamond nanowires are shown to have apex radii as small as 5 nm and where fabricated by selectively etching diamond in a plasma etching process using self-organized metal nanomasks. These scanning tips showed superior imaging performance as compared to standard Si-tips or commercially available diamond-coated tips. The high imaging resolution and low tip wear are demonstrated using tapping and contact mode AFM measurements by imaging ultra hard substrates and DNA. Furthermore, AFM probes were coated with conductive boron-doped and insulating diamond layers to achieve bifunctional AFM-SECM probes. For this, focused ion beam (FIB) technology was used to expose the boron-doped diamond as a recessed electrode near the apex of the scanning tip. Such a modified probe was used to perform proof-of-concept AFM-SECM measurements. The results show that high-quality diamond probes can be fabricated, which are

  17. Charge state dynamics of the nitrogen vacancy center in diamond under near-infrared excitation

    NASA Astrophysics Data System (ADS)

    Ji, Peng; Dutt, M. V. Gurudev

    2016-05-01

    The negatively charged NV defect center (NV-) in diamond has become prominent for applications in quantum information, nanoscale magnetic and electric field sensing, and fluorescent biological markers. Switching between NV- and neutral charge states (NV0) have been extensively studied and modeled using exciting laser wavelengths that are shorter than the NV- zero-phonon line (ZPL), and typically result in decreased fluorescence from the NV- state. In this work, we report on the experimental observation that NV0 converts to NV- under excitation with near-infrared (1064 nm) light, resulting in increased fluorescence from the NV- state. We have observed this effect in both ensembles of NVs in bulk diamond, and in diamond nanocrystals, and find that it is robust both at room and low temperature. We carried out microwave and two-color excitation combined with spectral and time-resolved experimental studies. We used rate-equation modeling and find evidence for competition between one-photon and two-photon processes for hole and electron ionization. This finding may help elucidate the study of the NV energy level structure, and impact recently emerging research in single-shot measurement of the NV- spin state via spin-to-charge conversion.

  18. Nanotwinned diamond with unprecedented hardness and stability

    NASA Astrophysics Data System (ADS)

    Huang, Quan; Yu, Dongli; Xu, Bo; Hu, Wentao; Ma, Yanming; Wang, Yanbin; Zhao, Zhisheng; Wen, Bin; He, Julong; Liu, Zhongyuan; Tian, Yongjun

    2014-06-01

    Although diamond is the hardest material for cutting tools, poor thermal stability has limited its applications, especially at high temperatures. Simultaneous improvement of the hardness and thermal stability of diamond has long been desirable. According to the Hall-Petch effect, the hardness of diamond can be enhanced by nanostructuring (by means of nanograined and nanotwinned microstructures), as shown in previous studies. However, for well-sintered nanograined diamonds, the grain sizes are technically limited to 10-30 nm (ref. 3), with degraded thermal stability compared with that of natural diamond. Recent success in synthesizing nanotwinned cubic boron nitride (nt-cBN) with a twin thickness down to ~3.8 nm makes it feasible to simultaneously achieve smaller nanosize, ultrahardness and superior thermal stability. At present, nanotwinned diamond (nt-diamond) has not been fabricated successfully through direct conversions of various carbon precursors (such as graphite, amorphous carbon, glassy carbon and C60). Here we report the direct synthesis of nt-diamond with an average twin thickness of ~5 nm, using a precursor of onion carbon nanoparticles at high pressure and high temperature, and the observation of a new monoclinic crystalline form of diamond coexisting with nt-diamond. The pure synthetic bulk nt-diamond material shows unprecedented hardness and thermal stability, with Vickers hardness up to ~200 GPa and an in-air oxidization temperature more than 200 °C higher than that of natural diamond. The creation of nanotwinned microstructures offers a general pathway for manufacturing new advanced carbon-based materials with exceptional thermal stability and mechanical properties.

  19. Diamond fiber field emitters

    DOEpatents

    Blanchet-Fincher, Graciela B.; Coates, Don M.; Devlin, David J.; Eaton, David F.; Silzars, Aris K.; Valone, Steven M.

    1996-01-01

    A field emission electron emitter comprising an electrode formed of at least one diamond, diamond-like carbon or glassy carbon composite fiber, said composite fiber having a non-diamond core and a diamond, diamond-like carbon or glassy carbon coating on said non-diamond core, and electronic devices employing such a field emission electron emitter.

  20. Advanced Diamond Anvil Techniques (Customized Diamond Anvils)

    SciTech Connect

    Weir, S

    2009-02-11

    A complete set of diamond-based fabrication tools now exists for making a wide range of different types of diamond anvils which are tailored for various high-P applications. Current tools include: CVD diamond deposition (making diamond); Diamond polishing, laser drilling, plasma etching (removal of diamond); and Lithography, 3D laser pantography (patterning features onto diamond); - Metal deposition (putting electrical circuits and metal masks onto diamond). Current applications include the following: Electrical Conductivity; Magnetic Susceptibility; and High-P/High-T. Future applications may include: NMR; Hall Effect; de Haas - Shubnikov (Fermi surface topology); Calorimetry; and thermal conductivity.

  1. Controlling PbS nanocrystal aggregation in conducting polymers.

    PubMed

    Warner, Jamie H; Watt, Andrew A R; Tilley, Richard D

    2005-10-01

    PbS nanocrystals were synthesized directly in the conducting polymer, poly(3-hexylthiophene-2,5-diyl). Transmission electron microscopy shows that the PbS nanocrystals are faceted and relatively uniform in size with a mean size of 10 nm. FFT analysis of the atomic lattice planes observed in TEM and selected area electron diffraction confirm that the nanocrystals have the PbS rock salt structure. The synthesis conditions are explored to show control over the aggregation of PbS nanocrystals in the thiophene conducting polymer. PMID:20818021

  2. Nanostructure TEM analysis of diamond cold cathode field emitters

    SciTech Connect

    Wade, Travis S.; Ghosh, Nikkon; Wittig, James Edward; Kang, Weng; Allard Jr, Lawrence Frederick; Unocic, Kinga A; Davidson, James; Tolk, Norman H.

    2012-01-01

    Diamond cold cathode devices have demonstrated significant potential as electron field emitters. Ultra-sharp diamond pyramidal tips (~5nm tip radius) have been fabricated and show improvement in emission when compared to conventional field emitters. However, the emission mechanisms in these complex diamond nanostructures are not well understood. Transmission electron microscopy performed in this study provides new insight into tip structure and composition with implications for field emission and diamond growth.

  3. Doped semiconductor nanocrystal junctions

    SciTech Connect

    Borowik, Ł.; Mélin, T.; Nguyen-Tran, T.; Roca i Cabarrocas, P.

    2013-11-28

    Semiconductor junctions are the basis of electronic and photovoltaic devices. Here, we investigate junctions formed from highly doped (N{sub D}≈10{sup 20}−10{sup 21}cm{sup −3}) silicon nanocrystals (NCs) in the 2–50 nm size range, using Kelvin probe force microscopy experiments with single charge sensitivity. We show that the charge transfer from doped NCs towards a two-dimensional layer experimentally follows a simple phenomenological law, corresponding to formation of an interface dipole linearly increasing with the NC diameter. This feature leads to analytically predictable junction properties down to quantum size regimes: NC depletion width independent of the NC size and varying as N{sub D}{sup −1/3}, and depleted charge linearly increasing with the NC diameter and varying as N{sub D}{sup 1/3}. We thus establish a “nanocrystal counterpart” of conventional semiconductor planar junctions, here however valid in regimes of strong electrostatic and quantum confinements.

  4. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  5. Beyond entropy: magnetic forces induce formation of quasicrystalline structure in binary nanocrystal superlattices.

    PubMed

    Yang, Zhijie; Wei, Jingjing; Bonville, Pierre; Pileni, Marie-Paule

    2015-04-01

    Here, it is shown that binary superlattices of Co/Ag nanocrystals with the same size, surface coating, differing by their type of crystallinity are governed by Co-Co magnetic interactions. By using 9 nm amorphous-phase Co nanocrystals and 4 nm polycrystalline Ag nanocrystals at 25 °C, triangle-shaped NaCl-type binary nanocrystal superlattices are produced driven by the entropic force, maximizing the packing density. By contrast, using ferromagnetic 9 nm single domain (hcp) Co nanocrystals instead of amorphous-phase Co, dodecagonal quasicrystalline order is obtained, together with less-packed phases such as the CoAg13 (NaZn13-type), CoAg (AuCu-type), and CoAg3 (AuCu3-type) structures. On increasing temperature to 65 °C, 9 nm hcp Co nanocrystals become superparamagnetic, and the system yields the CoAg3 (AuCu3-type) and CoAg2 (AlB2-type) structures, as observed with 9 nm amorphous Co nanocrystals. Furthermore, by decreasing the Co nanocrystal size from 9 to 7 nm, stable AlB2-type binary nanocrystal superlattices are produced, which remain independent of the crystallinity of Co nanocrystals with the superparamagnetic state. PMID:25785302

  6. Mixed semiconductor nanocrystal compositions

    DOEpatents

    Maskaly, Garry R.; Schaller, Richard D.; Klimov, Victor I.

    2011-02-15

    Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.

  7. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  8. Application of Powder Diffraction Methods to the Analysis of the Atomic Structure of Nanocrystals: The Concept of the Apparent Lattice Parameter (ALP)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The applicability of standard methods of elaboration of powder diffraction data for determination of the structure of nano-size crystallites is analysed. Based on our theoretical calculations of powder diffraction data we show, that the assumption of the infinite crystal lattice for nanocrystals smaller than 20 nm in size is not justified. Application of conventional tools developed for elaboration of powder diffraction data, like the Rietveld method, may lead to erroneous interpretation of the experimental results. An alternate evaluation of diffraction data of nanoparticles, based on the so-called 'apparent lattice parameter' (alp) is introduced. We assume a model of nanocrystal having a grain core with well-defined crystal structure, surrounded by a surface shell with the atomic structure similar to that of the core but being under a strain (compressive or tensile). The two structural components, the core and the shell, form essentially a composite crystal with interfering, inseparable diffraction properties. Because the structure of such a nanocrystal is not uniform, it defies the basic definitions of an unambiguous crystallographic phase. Consequently, a set of lattice parameters used for characterization of simple crystal phases is insufficient for a proper description of the complex structure of nanocrystals. We developed a method of evaluation of powder diffraction data of nanocrystals, which refers to a core-shell model and is based on the 'apparent lattice parameter' methodology. For a given diffraction pattem, the alp values are calculated for every individual Bragg reflection. For nanocrystals the alp values depend on the diffraction vector Q. By modeling different a0tomic structures of nanocrystals and calculating theoretically corresponding diffraction patterns using the Debye functions we showed, that alp-Q plots show characteristic shapes which can be used for evaluation of the atomic structure of the core-shell system. We show, that using a simple

  9. Application of Powder Diffraction Methods to the Analysis of Short- and Long-Range Atomic Order in Nanocrystalline Diamond and SiC: The Concept of the Apparent Lattice Parameter (alp)

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Gierlotka, S.; Stelmakh, S.; Pielaszek, R.; Bismayer, U.; Weber, H.-P.; Palosz, W.

    2003-01-01

    Two methods of the analysis of powder diffraction patterns of diamond and SiC nanocrystals are presented: (a) examination of changes of the lattice parameters with diffraction vector Q ('apparent lattice parameter', alp) which refers to Bragg scattering, and (b), examination of changes of inter-atomic distances based on the analysis of the atomic Pair Distribution Function, PDF. Application of these methods was studied based on the theoretical diffraction patterns computed for models of nanocrystals having (i) a perfect crystal lattice, and (ii), a core-shell structure, i.e. constituting a two-phase system. The models are defined by the lattice parameter of the grain core, thickness of the surface shell, and the magnitude and distribution of the strain field in the shell. X-ray and neutron experimental diffraction data of nanocrystalline SiC and diamond powders of the grain diameter from 4 nm up to micrometers were used. The effects of the internal pressure and strain at the grain surface on the structure are discussed based on the experimentally determined dependence of the alp values on the Q-vector, and changes of the interatomic distances with the grain size determined experimentally by the atomic Pair Distribution Function (PDF) analysis. The experimental results lend a strong support to the concept of a two-phase, core and the surface shell structure of nanocrystalline diamond and SiC.

  10. Thick-shell nanocrystal quantum dots

    SciTech Connect

    Hollingsworth, Jennifer A.; Chen, Yongfen; Klimov, Victor I.; Htoon, Han; Vela, Javier

    2011-05-03

    Colloidal nanocrystal quantum dots comprising an inner core having an average diameter of at least 1.5 nm and an outer shell, where said outer shell comprises multiple monolayers, wherein at least 30% of the quantum dots have an on-time fraction of 0.80 or greater under continuous excitation conditions for a period of time of at least 10 minutes.

  11. Macroscopic Crystallization of Nanocrystals into Supercrystals

    NASA Astrophysics Data System (ADS)

    Nakajima, Toshio; Nagasawa, Hiroshi; Maruyama, Minoru; Komatsu, Teruo; Isoda, Seiji; Nelson, Jon

    2004-03-01

    We report here the crystallization of spherical, 4.7-nm-diameter Ag nanocrystals, passivated with a fatty-acid surface coating, into well-facetted supercrystals up to 500-μm across and about 1-μm thick.

  12. Charge transport in semiconductor nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Mentzel, Tamar Shoshana

    In this thesis, we study charge transport in arrays of semiconductor nanocrystal quantum dots. Nanocrystals are synthesized in solution, and an organic ligand on the surface of the nanocrystal creates a potential barrier that confines charges in the nanocrystal. Optical absorption measurements reveal discrete electronic energy levels in the nanocrystals resulting from quantum confinement. When nanocrystals are deposited on a surface, they self-assemble into a close-packed array forming a nanocrystal solid. We report electrical transport measurements of a PbSe nanocrystal solid that serves as the channel of an inverted field-effect transistor. We measure the conductance as a function of temperature, source-drain bias and. gate voltage. The data indicates that holes are the majority carriers; the Fermi energy lies in impurity states in the bandgap of the nanocrystal; and charges hop between the highest occupied valence state in the nanocrystals (the 1S h states). At low source-drain voltages, the activation energy for hopping is given by the energy required to generate holes in the 1Sh state plus activation over barriers resulting from site disorder. The barriers from site disorder are eliminated with a sufficiently high source-drain bias. From the gate effect, we extract the Thomas-Fermi screening length and a density of states that is consistent with the estimated value. We consider variable-range hopping as an alternative model, and find no self-consistent evidence for it. Next, we employ charge sensing as an alternative to current measurements for studying transport in materials with localized sites. A narrow-channel MOSFET serves as a charge sensor because its conductance is sensitive to potential fluctuations in the nearby environment caused by the motion of charge. In particular, it is sensitive to the fluctuation of single electrons at the silicon-oxide interface within the MOSFET. We pattern a strip of amorphous germanium within 100 nm of the transistor. The

  13. Diamond Tours

    NASA Technical Reports Server (NTRS)

    2007-01-01

    On April 24, a group traveling with Diamond Tours visited StenniSphere, the visitor center at NASA John C. Stennis Space Center in South Mississippi. The trip marked Diamond Tours' return to StenniSphere since Hurricane Katrina struck the Gulf Coast on Aug. 29, 2005. About 25 business professionals from Georgia enjoyed the day's tour of America's largest rocket engine test complex, along with the many displays and exhibits at the museum. Before Hurricane Katrina, the nationwide company brought more than 1,000 visitors to StenniSphere each month. That contributed to more than 100,000 visitors from around the world touring the space center each year. In past years StenniSphere's visitor relations specialists booked Diamond Tours two or three times a week, averaging 40 to 50 people per visit. SSC was established in the 1960s to test the huge engines for the Saturn V moon rockets. Now 40 years later, the center tests every main engine for the space shuttle. SSC will soon begin testing the rocket engines that will power spacecraft carrying Americans back to the moon and on to Mars. For more information or to book a tour, visit http://www.nasa.gov/centers/stennis/home/index.html and click on the StenniSphere logo; or call 800-237-1821 or 228-688-2370.

  14. Growth and characterization of GE nanocrystals

    SciTech Connect

    Guha, S., Naval Research Laboratory

    1998-05-01

    We have synthesized Ge nanocrystals of sizes 4, 8, and 12 nm by ion-implanting Ge+ ions into thermally grown Si0{sub 2} films and subsequent annealing of the films at 8300 C for 30 min in nitrogen. These films were characterized by x-ray, transmission electron microscopy (TEM), and Raman spectroscopy. A distribution of particle size was identified by TEM in a 1 00 nm band below the surface. Particle sizes were estimated by these 3 techniques.

  15. Diamond Molecules Found in Petroleum

    NASA Astrophysics Data System (ADS)

    Carlson, R. M. K.; Dahl, J. E. P.; Liu, S. G.; Olmstead, M. M.; Buerki, P. R.; Gat, R.

    We recently reported [1,2] the discovery and isolation of new members of the hydrogen-terminated diamond series, ˜1 to ˜2 nm sized higher diamondoids from petroleum. Crystallographic studies [1,2] revealed a wealth of diamond molecules that are nanometer-sized rods, helices, discs, pyramids, etc. Highly rigid, well-defined, readily derivatizable structures make them valuable molecular building blocks for nanotechnology. We now produce certain higher diamondoids in gram quantities. Although more stable than graphite particles of comparable size, higher diamondoids are extraordinarily difficult to synthesize. Attempts to synthesize them were abandoned in the 1980's. We examined extracts of diamond-containing materials synthesized by CO2 laser-induced gas-phase synthesis [3] and commercial CVD in an attempt to detect diamantane to undecamantane. However, high-sensitivity GCMS detected no diamondoids in these materials.

  16. Deep ultraviolet diamond Raman laser.

    PubMed

    Granados, Eduardo; Spence, David J; Mildren, Richard P

    2011-05-23

    We present a synchronously pumped diamond Raman laser operating at 275.7 nm pumped by the 4th harmonic of a mode locked Nd:YVO4 laser. The laser had a threshold pump pulse energy of 5.8 nJ and generated up to 0.96 nJ pulses at 10.3% conversion efficiency. The results agree well with a numerical model that includes two-photon absorption of the pump and Stokes beams and uses a Raman gain coefficient of diamond of 100 cm/GW. We also report on the observation of nanometer scale two-photon assisted etching of the diamond crystal surfaces. PMID:21643343

  17. Superconductivity in colloidal lead nanocrystals

    NASA Astrophysics Data System (ADS)

    Zolotavin, Pavlo

    Monodisperse colloidal lead nanoparticles with diameters ranging from 4.4 to 20 nm were prepared by a self-limiting growth method. The nanoparticles are protected from oxidation by an amorphous lead-tin oxide shell of 1.5-2 nm thickness. The magnetic susceptibility of the particles was measured as a function of size, temperature and magnetic field. The Meissner effect was observed indicating the superconducting transition. For the 20 and 16 nm particles, the critical temperature is suppressed to 6.9 K from the bulk value of 7.2 K and is further reduced for smaller particles. Depending on the size of the particles, the critical field is enhanced by 60 to 140 times. The coupling between particles was in situ controlled through the conversion of the oxides present on the surface of the nanoparticles to chalcogenides. This transformation allows for a 109-fold increase in the conductivity. The temperature of the onset of the superconductivity was found to depend upon the degree of coupling of the nanoparticles in the vicinity of the insulator - superconductor transition. The critical current density of the best sample of Pb/PbSe nanocrystals at zero magnetic field was determined to be 4 x 103 A/cm 2. In turn, the critical field of the sample shows 50-fold enhancement compared to bulk Pb. A method to convert the original Pb/PbO nanocrystals into colloidal Pb/PbS (Se, Te) particle was developed. This alleviates the necessity of chemical post processing and provides a truly colloidal superconductor. Paramagnetic Meissner effect of abnormally large amplitude is observed for Pb/PbTe nanocrystal assemblies. The material described in this manuscript is the first nanostructured superconductor prepared by the bottom-up approach starting from colloidal nanoparticles.

  18. Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste.

    PubMed

    Chen, D; Lawton, D; Thompson, M R; Liu, Q

    2012-09-01

    This study investigated the effectiveness of cellulose nanocrystals derived from potato peel waste as a reinforcement and vapor barrier additive. The nanocrystals were derived from cellulosic material in the potato peel by alkali treatment and subsequently acid hydrolysis. TEM images revealed the average fiber length of the nanocrystals was 410 nm with an aspect ratio of 41; its aspect ratio being considerably larger than cotton-derived nanocrystals prepared using similar reaction conditions. Cellulose nanocrystals (CNC)-filled polyvinyl alcohol (PVA) and thermoplastic starch (TPS) films were prepared by solution casting method to maintain uniform dispersion of the 1-2% (w/w) filler content. An increase of 19% and 33% (starch composite) and 38% and 49% (PVA composite) in tensile modulus was observed for the 1% and 2% CNC-reinforced composites, respectively. Water vapor transmission measurements showed a marginal reduction of water permeability for the PVA composite, whereas no effect was observed for the thermoplastic starch composite. PMID:24751097

  19. Nanocrystal doped matrixes

    DOEpatents

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  20. Synthesis and characterization of luminescent oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Seo, Sooyeon

    stable at room temperature after four months. The non-hydrolytic hot solution synthesis technique was used to grow monodispersed ternary oxide nanospheres (˜5nm) of ZnGa2O 4: Eu3+ from a variety of metal precursors. Using Gd acetate dehydrate, large (˜20nm) complex shaped (triangle and rectangle) ZnGa2O4: Eu3+ nanocrystals were obtained. Based on X-ray diffraction data, the nanocrystals had a cubic spinel structure with no impurity phases. The size of the ZnGa2O4: Eu 3+ nanospheres could be varied by changing the molar ratio of Zn to surfactants, with higher concentrations of surfactant resulting in smaller nanocrystals. Analysis of the PL emission suggests that the Eu3+ ions were incorporated into the ZnGa2O4 host.

  1. Ion-beam-assisted etching of diamond

    NASA Technical Reports Server (NTRS)

    Efremow, N. N.; Geis, M. W.; Flanders, D. C.; Lincoln, G. A.; Economou, N. P.

    1985-01-01

    The high thermal conductivity, low RF loss, and inertness of diamond make it useful in traveling wave tubes operating in excess of 500 GHz. Such use requires the controlled etching of type IIA diamond to produce grating like structures tens of micrometers deep. Previous work on reactive ion etching with O2 gave etching rates on the order of 20 nm/min and poor etch selectivity between the masking material (Ni or Cr) and the diamond. An alternative approach which uses a Xe(+) beam and a reactive gas flux of NO2 in an ion-beam-assisted etching system is reported. An etching rate of 200 nm/min was obtained with an etching rate ratio of 20 between the diamond and an aluminum mask.

  2. Diamonds in an Archean greenstone belt: Diamond suites in unconventional rocks of Wawa, Northern Ontario (Canada)

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Ryder, John

    2010-05-01

    population. Diamonds from the conglomerate have nitrogen contents below 400 ppm N, with 47% of the suite being Type IaA stones. Approximately one third of the conglomerate and breccia diamonds belongs to Type II having no measurable N. The two suites of Wawa diamonds, according to the morphology and nitrogen studies, are deemed to be different. The conglomerate diamonds are significantly less resorbed and contain less aggregated N. The diamonds that occur in the Wawa breccia and conglomerate have different primary volcanic sources. We suggest that the primary volcanic rock of the conglomerate diamonds may be a kimberlite, as kimberlitic indicator minerals are found in the matrix of the conglomerate. These indicator minerals garnet, Cr diopside and ilmenite are absent from the diamoniferous lamprophyric breccias. The hypothetical kimberlites may have occured in proximity to the conglomerates as suggested by low mechanical abrasion of the conglomerate diamonds and indicator minerals, and the preservation of garnet kelyphitic rims and Cr-diopside. Our study infers an episode of the Archean, pre-2.7 Ga kimberlite magmatism in MGB, which also experienced multiple emplacement episodes of the 2.7 Ga syn-orogenic diamondiferous calc-alkaline lamprophyres. Despite the distinct origins of the breccia and conglomerate diamonds, they all have similar red-orange-green cathodoluminescence colours controlled by the CL emission mainly at 520 nm. This contrasts with the prevalent CL emission at 415-440 nm commonly observed in kimberlitic and detrital diamonds. We ascribe the red-orange-green CL colours of the two diamond suites of Wawa to the late imprint of metamorphism.

  3. Electrochromic nanocrystal quantum dots.

    PubMed

    Wang, C; Shim, M; Guyot-Sionnest, P

    2001-03-23

    Incorporating nanocrystals into future electronic or optoelectronic devices will require a means of controlling charge-injection processes and an understanding of how the injected charges affect the properties of nanocrystals. We show that the optical properties of colloidal semiconductor nanocrystal quantum dots can be tuned by an electrochemical potential. The injection of electrons into the quantum-confined states of the nanocrystal leads to an electrochromic response, including a strong, size-tunable, midinfrared absorption corresponding to an intraband transition, a bleach of the visible interband exciton transitions, and a quench of the narrow band-edge photoluminescence. PMID:11264530

  4. Self-Organized Ultrathin Oxide Nanocrystals

    SciTech Connect

    Huo, Ziyang; Tsung, Chia-kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Li, Yadong; Yang, Piedong; Zhang, Xiaofeng

    2009-01-08

    Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO2, ZnO, Nb2O5) and rare earth oxide (Eu2O3, Sm2O3, Er2O3, Y2O3, Tb2O3, and Yb2O3) systems.

  5. Photoinduced laser etching of a diamond surface

    SciTech Connect

    Kononenko, V V; Komlenok, M S; Pimenov, S M; Konov, V I

    2007-11-30

    Nongraphitising ablation of the surface of a natural diamond single crystal irradiated by nanosecond UV laser pulses is studied experimentally. For laser fluences below the diamond graphitisation threshold, extremely low diamond etching rates (less than 1nm/1000 pulses) are obtained and the term nanoablation is used just for this process. The dependence of the nanoablation rate on the laser fluence is studied for samples irradiated both in air and in oxygen-free atmosphere. The effect of external heating on the nanoablation rate is analysed and a photochemical mechanism is proposed for describing it. (interaction of laser radiation with matter. laser plasma)

  6. DNA attachment to nanocrystalline diamond films

    NASA Astrophysics Data System (ADS)

    Wenmackers, S.; Christiaens, P.; Daenen, M.; Haenen, K.; Nesládek, M.; van Deven, M.; Vermeeren, V.; Michiels, L.; Ameloot, M.; Wagner, P.

    2005-09-01

    A biochemical method to immobilize DNA on synthetic diamond for biosensor applications is developed. Nanocrystalline diamond is grown using microwave plasma-enhanced chemical vapour deposition. On the hydrogen-terminated surface 10-undecenoic acid is tethered photochemically under 254 nm illumination, followed by 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide crosslinker-mediated attachment of amino modified DNA. The attachment is functionally confirmed by comparison of supernatant fluorescence and gel electrophoresis. The linking procedure allowed for 35 denaturation and rehybridisation steps.

  7. Open-tubular electrochromatographic chiral separation of amino acids using an organic nanocrystals immobilized capillary.

    PubMed

    Kitagawa, Fumihiko; Sudaki, Hiroshi; Sueyoshi, Kenji; Otsuka, Koji

    2013-01-01

    The preparation of cinchonidine (CCND) nanocrystals and their immobilization onto the inner surface of a fused silica capillary was investigated for use in the enantioseparation by capillary electrochromatography. The CCND nanocrystals were prepared by an emulsion method that utilizes crystal growth in an oil-in-water emulsion without a stabilizer. As a result, white-colored aqueous dispersions of organic nanoparticles were obtained. SEM images showed that the prepared CCND nanocrystals were from 300 to 700 nm in size. When the obtained dispersion was introduced into a poly(diallyldimethylammonium chloride) (PDDAC) coated capillary, the nanocrystals were strongly adsorbed onto the inner surface due to an electrostatic interaction between cationic PDDAC and the negatively charged organic nanocrystals. In CCND nanocrystals coated capillary, CEC enantioseparations of racemic amino acids were successfully achieved. The reproducibilities of the detection times were acceptable with a relative standard deviation of less than 7%, indicating that stable nanocrystal coating could be obtained by our proposed method. PMID:23303094

  8. Silicon nanocrystal growth under irradiation of electron beam

    PubMed Central

    Huang, Wei-Qi; Liu, Shi-Rong; Huang, Zhong-Mei; Dong, Tai-Ge; Wang, Gang; Qin, Cao-Jian

    2015-01-01

    In our experiment, it was observed that silicon nanocrystal rapidly grows with irradiation of electron beam on amorphous silicon film prepared by pulsed laser deposition, and shape of silicon nanocrystal is usually sphere in smaller nanoscale with less exposure time under electron beam, in which the quantum dots are prepared in nanoscale near 3 nm. In the electron interaction process, it was investigated that the various crystals structures in different orientations occur in the same time and the condensed structures of silicon nanocrystal are changed with different impurity atoms in silicon film. PMID:26608069

  9. Biomineralization: Nanocrystals by design

    NASA Astrophysics Data System (ADS)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  10. Doping semiconductor nanocrystals.

    PubMed

    Erwin, Steven C; Zu, Lijun; Haftel, Michael I; Efros, Alexander L; Kennedy, Thomas A; Norris, David J

    2005-07-01

    Doping--the intentional introduction of impurities into a material--is fundamental to controlling the properties of bulk semiconductors. This has stimulated similar efforts to dope semiconductor nanocrystals. Despite some successes, many of these efforts have failed, for reasons that remain unclear. For example, Mn can be incorporated into nanocrystals of CdS and ZnSe (refs 7-9), but not into CdSe (ref. 12)--despite comparable bulk solubilities of near 50 per cent. These difficulties, which have hindered development of new nanocrystalline materials, are often attributed to 'self-purification', an allegedly intrinsic mechanism whereby impurities are expelled. Here we show instead that the underlying mechanism that controls doping is the initial adsorption of impurities on the nanocrystal surface during growth. We find that adsorption--and therefore doping efficiency--is determined by three main factors: surface morphology, nanocrystal shape, and surfactants in the growth solution. Calculated Mn adsorption energies and equilibrium shapes for several nanocrystals lead to specific doping predictions. These are confirmed by measuring how the Mn concentration in ZnSe varies with nanocrystal size and shape. Finally, we use our predictions to incorporate Mn into previously undopable CdSe nanocrystals. This success establishes that earlier difficulties with doping are not intrinsic, and suggests that a variety of doped nanocrystals--for applications from solar cells to spintronics--can be anticipated. PMID:16001066

  11. Diamond cutters' grinders

    NASA Astrophysics Data System (ADS)

    Romanov, B. F.

    1985-03-01

    The development of diamond tool designs is determined by the development of the technology for the synthesis of artificial diamonds. The technology of syntehsizing artificial diamonds involves the production of mono and polycrystalline diamonds and composition diamond-containing materials. High strength and thermally stable monocrystalline diamonds brands AS30 to AS80 in a size of up to 800 micrometers, and polycrystalline diamonds: black diamonds, ballas (Synthetic Fiber) in a size up to 10mm, are manufactured. Production of single-layer and double-layer diamond plates used in cutting tools is organized. The raw materials base with the constant decrease in the use of natural diamonds is the basis for the development of the manufacture of a wide array of diamond tools. New areas of applications for tools using natural diamonds, such as diamond cutters for turning high-precision parts, straightening tools, hardness gages are outlined. Diamond cutters with natural diamonds are used to grind surfaces which have exceptionally high requirements with respect to the reflecting capacity and roughness.

  12. Nanocrystal targeting in vivo

    NASA Astrophysics Data System (ADS)

    Åkerman, Maria E.; Chan, Warren C. W.; Laakkonen, Pirjo; Bhatia, Sangeeta N.; Ruoslahti, Erkki

    2002-10-01

    Inorganic nanostructures that interface with biological systems have recently attracted widespread interest in biology and medicine. Nanoparticles are thought to have potential as novel intravascular probes for both diagnostic (e.g., imaging) and therapeutic purposes (e.g., drug delivery). Critical issues for successful nanoparticle delivery include the ability to target specific tissues and cell types and escape from the biological particulate filter known as the reticuloendothelial system. We set out to explore the feasibility of in vivo targeting by using semiconductor quantum dots (qdots). Qdots are small (<10 nm) inorganic nanocrystals that possess unique luminescent properties; their fluorescence emission is stable and tuned by varying the particle size or composition. We show that ZnS-capped CdSe qdots coated with a lung-targeting peptide accumulate in the lungs of mice after i.v. injection, whereas two other peptides specifically direct qdots to blood vessels or lymphatic vessels in tumors. We also show that adding polyethylene glycol to the qdot coating prevents nonselective accumulation of qdots in reticuloendothelial tissues. These results encourage the construction of more complex nanostructures with capabilities such as disease sensing and drug delivery.

  13. Twinning of cubic diamond explains reported nanodiamond polymorphs

    NASA Astrophysics Data System (ADS)

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-12-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications.

  14. Twinning of cubic diamond explains reported nanodiamond polymorphs.

    PubMed

    Németh, Péter; Garvie, Laurence A J; Buseck, Peter R

    2015-01-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<121> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications. PMID:26671288

  15. Twinning of cubic diamond explains reported nanodiamond polymorphs

    PubMed Central

    Németh, Péter; Garvie, Laurence A. J.; Buseck, Peter R.

    2015-01-01

    The unusual physical properties and formation conditions attributed to h-, i-, m-, and n-nanodiamond polymorphs has resulted in their receiving much attention in the materials and planetary science literature. Their identification is based on diffraction features that are absent in ordinary cubic (c-) diamond (space group: Fd-3m). We show, using ultra-high-resolution transmission electron microscope (HRTEM) images of natural and synthetic nanodiamonds, that the diffraction features attributed to the reported polymorphs are consistent with c-diamond containing abundant defects. Combinations of {113} reflection and <011> rotation twins produce HRTEM images and d-spacings that match those attributed to h-, i-, and m-diamond. The diagnostic features of n-diamond in TEM images can arise from thickness effects of c-diamonds. Our data and interpretations strongly suggest that the reported nanodiamond polymorphs are in fact twinned c-diamond. We also report a new type of twin (<11> rotational), which can give rise to grains with dodecagonal symmetry. Our results show that twins are widespread in diamond nanocrystals. A high density of twins could strongly influence their applications. PMID:26671288

  16. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  17. Size dependence of the pressure-induced gamma to alpha structuraltransition in iron oxide nanocrystals

    SciTech Connect

    Clark, S.M.; Prilliman, S.G.; Erdonmez, C.K.; Rockenberger, J.; Zaziski, D.J.; Kwong, J.; Alivisatos, A.P.

    2005-09-01

    The size trend for the pressure-induced gamma-Fe2O3(maghemite) to alpha-Fe2O3 (hematite) structural phase transition in nanocrystals has been observed. The transition pressure was found to increase with decreasing nanocrystal size: 7 nm nanocrystals transformed at 272GPa, 5 nm at 343GPa and 3 nm at 372GPa. Annealing of a bulk sample of gamma-Fe2O3 was found to reduce the transition pressure from 352 to242GPa. The bulk modulus was determined to be 2626GPa for 7 nm nanocrystals of gamma-Fe2O3, which is significantly higher than for the value of 1906 GPa that we measured for bulk samples. For alpha-Fe2O3, the bulk moduli for 7 nm nanocrystals (3365) and bulk (30030) were found to be almost the same within error. The bulk modulus for the gamma phase was found to decrease with decreasing particle size between 10 and 3.2 nm particle size. Values for the ambient pressure molar volume were found within 1 percent to be: 33.0 cm3/mol for bulk gamma-Fe2O3, 32.8 cm3/mol for 7 nm diameter gamma-Fe2O3 nanocrystals, 30.7 cm3/mol for bulk alpha-Fe2O3 and 30.6 cm3/mol for alpha-Fe2O3 nanocrystals.

  18. Diamond MEMS: wafer scale processing, devices, and technology insertion

    NASA Astrophysics Data System (ADS)

    Carlisle, J. A.

    2009-05-01

    Diamond has long held the promise of revolutionary new devices: impervious chemical barriers, smooth and reliable microscopic machines, and tough mechanical tools. Yet it's been an outsider. Laboratories have been effectively growing diamond crystals for at least 25 years, but the jump to market viability has always been blocked by the expense of diamond production and inability to integrate with other materials. Advances in chemical vapor deposition (CVD) processes have given rise to a hierarchy of carbon films ranging from diamond-like carbon (DLC) to vapor-deposited diamond coatings, however. All have pros and cons based on structure and cost, but they all share some of diamond's heralded attributes. The best performer, in theory, is the purest form of diamond film possible, one absent of graphitic phases. Such a material would capture the extreme hardness, high Young's modulus and chemical inertness of natural diamond. Advanced Diamond Technologies Inc., Romeoville, Ill., is the first company to develop a distinct chemical process to create a marketable phase-pure diamond film. The material, called UNCD® (for ultrananocrystalline diamond), features grain sizes from 3 to 300 nm in size, and layers just 1 to 2 microns thick. With significant advantages over other thin films, UNCD is designed to be inexpensive enough for use in atomic force microscopy (AFM) probes, microelectromechanical machines (MEMS), cell phone circuitry, radio frequency devices, and even biosensors.

  19. Ultrahigh throughput plasma processing of free standing silicon nanocrystals with lognormal size distribution

    SciTech Connect

    Dogan, Ilker; Kramer, Nicolaas J.; Westermann, Rene H. J.; Verheijen, Marcel A.; Dohnalova, Katerina; Gregorkiewicz, Tom; Smets, Arno H. M.; Sanden, Mauritius C. M. van de

    2013-04-07

    We demonstrate a method for synthesizing free standing silicon nanocrystals in an argon/silane gas mixture by using a remote expanding thermal plasma. Transmission electron microscopy and Raman spectroscopy measurements reveal that the distribution has a bimodal shape consisting of two distinct groups of small and large silicon nanocrystals with sizes in the range 2-10 nm and 50-120 nm, respectively. We also observe that both size distributions are lognormal which is linked with the growth time and transport of nanocrystals in the plasma. Average size control is achieved by tuning the silane flow injected into the vessel. Analyses on morphological features show that nanocrystals are monocrystalline and spherically shaped. These results imply that formation of silicon nanocrystals is based on nucleation, i.e., these large nanocrystals are not the result of coalescence of small nanocrystals. Photoluminescence measurements show that silicon nanocrystals exhibit a broad emission in the visible region peaked at 725 nm. Nanocrystals are produced with ultrahigh throughput of about 100 mg/min and have state of the art properties, such as controlled size distribution, easy handling, and room temperature visible photoluminescence.

  20. Nanocrystalline diamond nanoelectrode arrays and ensembles.

    PubMed

    Hees, Jakob; Hoffmann, René; Kriele, Armin; Smirnov, Waldemar; Obloh, Harald; Glorer, Karlheinz; Raynor, Brian; Driad, Rachid; Yang, Nianjun; Williams, Oliver A; Nebel, Christoph E

    2011-04-26

    In this report, the fabrication of all-nanocrystalline diamond (NCD) nanoelectrode arrays (NEAs) by e-beam lithography as well as of all-diamond nanoelectrode ensembles (NEEs) using nanosphere lithography is presented. In this way, nanostructuring techniques are combined with the excellent properties of diamond that are desirable for electrochemical sensor devices. Arrays and ensembles of recessed disk electrodes with radii ranging from 150 to 250 nm and a spacing of 10 μm have been fabricated. Electrochemical impedance spectroscopy as well as cyclic voltammetry was conducted to characterize arrays and ensembles with respect to different diffusion regimes. One outstanding advantage of diamond as an electrode material is the stability of specific surface terminations influencing the electron transfer kinetics. On changing the termination from hydrogen- to oxygen-terminated diamond electrode surface, we observe a dependence of the electron transfer rate constant on the charge of the analyte molecule. Ru(NH(3))(6)(+2/+3) shows faster electron transfer on oxygen than on hydrogen-terminated surfaces, while the anion IrCl(6)(-2/-3) exhibits faster electron transfer on hydrogen-terminated surfaces correlating with the surface dipole layer. This effect cannot be observed on macroscopic planar diamond electrodes and emphasizes the sensitivity of the all-diamond NEAs and NEEs. Thus, the NEAs and NEEs in combination with the efficiency and suitability of the selective electrochemical surface termination offer a new versatile system for electrochemical sensing. PMID:21413786

  1. Saturation of CVD Diamond Detectors

    SciTech Connect

    Lucile S. Dauffy; Richard A. Lerche; Greg J. Schmid; Jeffrey A. Koch; Christopher Silbernagel

    2005-01-01

    A 5 x 0.25 mm Chemical Vapor Deposited (CVD) diamond detector, with a voltage bias of + 250V, was excited by a 400 nm laser (3.1 eV photons) in order to study the saturation of the wafer and its surrounding electronics. In a first experiment, the laser beam energy was increased from a few tens of a pJ to about 100 µJ, and the signal from the diamond was recorded until full saturation of the detection system was achieved. Clear saturation of the detection system was observed at about 40 V, which corresponds with the expected saturation at 10% of the applied bias (250V). The results indicate that the interaction mechanism of the 3.1 eV photons in the diamond (Ebandgap = 5.45 eV) is not a multi-photon process but is linked to the impurities and defects of the crystal. In a second experiment, the detector was irradiated by a saturating first laser pulse and then by a delayed laser pulse of equal or smaller amplitude with delays of 5, 10, and 20 ns. The results suggest that the diamond and associated electronics recover within 10 to 20 ns after a strong saturating pulse.

  2. Diamond Sheet: A new diamond tool material

    NASA Technical Reports Server (NTRS)

    Mackey, C. R.

    1982-01-01

    Diamond sheet is termed a diamond tool material because it is not a cutting tool, but rather a new material from which a variety of different tools may be fabricated. In appearance and properties, it resembles a sheet of copper alloy with diamond abrasive dispersed throughout it. It is capable of being cut, formed, and joined by conventional methods, and subsequently used for cutting as a metal bonded diamond tool. Diamond sheet is normally made with industrial diamond as the abrasive material. The metal matrix in diamond sheet is a medium hard copper alloy which has performed well in most applications. This alloy has the capability of being made harder or softer if specific cutting conditions require it. Other alloys have also been used including a precipitation hardened aluminum alloy with very free cutting characteristics. The material is suitable for use in a variety of cutting, surfacing, and ring type tools, as well as in such mundane items as files and sandpaper. It can also be used as a bearing surface (diamond to diamond) and in wear resistant surfaces.

  3. Diamond coated silicon field emitter array

    SciTech Connect

    S. Albin; W. Fu; A. Varghese; A. C. Lavarias; G. R. Myneni

    1999-07-01

    Diamond coated silicon tip arrays, with and without a self-aligned gate, were fabricated, and current-voltage characteristics of 400 tips were measured. Diamond films were grown uniformly on Si tips using microwave plasma after nucleation with 10 nm diamond suspension and substrate bias. An emission current of 57 ?A was obtained at 5 V from the ungated array tips separated from an anode at 2 ?m. In the case of the gated arrays with 1.5 ?m aperture, an emission current of 3.4 ?A was measured at a gate voltage of 80 V for an anode separation of 200 ?m. The turn-on voltages for these two types of devices were 0.2 and 40 V, respectively. Diamond coated Si tip arrays have potential applications in field emission based low voltage vacuum electronic devices and microsensors.

  4. Toward deep blue nano hope diamonds: heavily boron-doped diamond nanoparticles.

    PubMed

    Heyer, Steffen; Janssen, Wiebke; Turner, Stuart; Lu, Ying-Gang; Yeap, Weng Siang; Verbeeck, Jo; Haenen, Ken; Krueger, Anke

    2014-06-24

    The production of boron-doped diamond nanoparticles enables the application of this material for a broad range of fields, such as electrochemistry, thermal management, and fundamental superconductivity research. Here we present the production of highly boron-doped diamond nanoparticles using boron-doped CVD diamond films as a starting material. In a multistep milling process followed by purification and surface oxidation we obtained diamond nanoparticles of 10-60 nm with a boron content of approximately 2.3 × 10(21) cm(-3). Aberration-corrected HRTEM reveals the presence of defects within individual diamond grains, as well as a very thin nondiamond carbon layer at the particle surface. The boron K-edge electron energy-loss near-edge fine structure demonstrates that the B atoms are tetrahedrally embedded into the diamond lattice. The boron-doped diamond nanoparticles have been used to nucleate growth of a boron-doped diamond film by CVD that does not contain an insulating seeding layer. PMID:24738731

  5. Enhanced oral bioavailability of glycyrrhetinic acid via nanocrystal formulation.

    PubMed

    Lei, Yaya; Kong, Yindi; Sui, Hong; Feng, Jun; Zhu, Rongyue; Wang, Wenping

    2016-10-01

    The purpose of this study was to prepare solid nanocrystals of glycyrrhetinic acid (GA) for improved oral bioavailability. The anti-solvent precipitation-ultrasonication method followed by freeze-drying was adopted for the preparation of GA nanocrystals. The physicochemical properties, drug dissolution and pharmacokinetic of the obtained nanocrystals were investigated. GA nanocrystals showed a mean particle size of 220 nm and shaped like short rods. The analysis results from differential scanning calorimetry and X-ray powder diffraction indicated that GA remained in crystalline state despite a huge size reduction. The equilibrium solubility and dissolution rate of GA nanocrystal were significantly improved in comparison with those of the coarse GA or the physical mixture. The bioavailability of GA nanocrystals in rats was 4.3-fold higher than that of the coarse GA after oral administration. With its rapid dissolution and absorption performance, the solid nanocrystal might be a more preferable formulation for oral administration of poorly soluble GA. PMID:27206446

  6. Formulation and pharmacokinetics evaluation of puerarin nanocrystals for intravenous delivery.

    PubMed

    Wang, Yancai; Ma, Yi; Ma, Yingying; Du, Yongli; Liu, Zhaoping; Zhang, Dianrui; Zhang, Qiang

    2012-08-01

    Puerarin is a very widely used drug for treating coronary heart disease. Owing to its poor water solubility and the adverse drug reactions caused by cosolvents having been confirmed by SFDA, the aim of present study was to construction and evaluation the puerarin nanocrystals in vitro and in vivo. The nanocrystals prepared were characterized using PCS, AFM, TEM, SEM and DSC. For the assessment of the pharmacokinetic parameters the developed formulations have been intravenous administered to beagle dogs. Results revealed that a narrow size distributed nanocrystals composed of crystallized spherical particles with a mean particle size of 423.6 +/- 17.3 nm, a poly-dispersity index of 0.13 +/- 0.07 and a negative charges around -30 mV was obtained. Puerarin dissolution velocity and saturation solubility were enhanced by the nanocrystals. DSC analysis revealed that the crystallinity of the puerarin was preserved during the high pressure homogenization and freeze-drying processes. Administration of the nanocrystals led to a mean plasma profile with almost similarly low variations in comparison to the reference solution, however with no initial blood peak as observed with the solution formulation. The puerarin nanocrystals exhibited a significantly (P < 0.05) reduced Cmax and clearance, and a significantly (P < 0.05) greater MRT, clearance and elimination half-life compared to the puerarin solution. These results revealed the opportunity to formulate puerarin in nanocrystals for intravenous delivery with higher safety. PMID:22962724

  7. Charge transport in silicon nanocrystal superlattices in the terahertz regime

    NASA Astrophysics Data System (ADS)

    Němec, H.; Zajac, V.; Kužel, P.; Malý, P.; Gutsch, S.; Hiller, D.; Zacharias, M.

    2015-05-01

    Silicon nanocrystals prepared by thermal decomposition of silicon-rich 2-5-nm-thick SiOx layers (0.64 ≤x ≤1 ) are investigated using time-resolved terahertz spectroscopy. The samples consist of a superlattice of isolated monolayers composed of Si nanocrystals with controlled variable size and filling fraction. Experiments with variable optical pump fluence over almost two orders of magnitude allow us to determine the depolarization fields in the structure. Careful consideration of the local fields along with Monte Carlo calculations of the microscopic conductivity of Si nanocrystals supported by structural characterization of the samples provide detailed information about the electrical connectivity of nanocrystals and about the charge transport among them. Well below the percolation threshold, nanocrystals grow mostly isolated from each other. In thicker or in more Si-enriched layers, nanocrystals merge during their growth and form tens-of-nanometer-sized photoconducting Si structures with a good electrical connection. In addition, in thick SiOx layers, imperfectly connected clusters of Si nanocrystals are observed which develop probably at the end of the growth process and allow only limited charge transport due to energy barriers.

  8. Physical and Tribological Characteristics of Ion-Implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Heidger, S.; Korenyi-Both, A. L.; Jayne, D. T.; Herrera-Fierro, P.; Shogrin, B.; Wilbur, P. J.; Wu, R. L. C.; Garscadden, A.; Barnes, P. N.

    1994-01-01

    Unidirectional sliding friction experiments were conducted with a natural, polished diamond pin in contact with both as-deposited and carbon-ion-implanted diamond films in ultrahigh vacuum. Diamond films were deposited on silicon, silicon carbide, and silicon nitride by microwave-plasma-assisted chemical vapor deposition. The as-deposited diamond films were impacted with carbon ions at an accelerating energy of 60 keV and a current density of 50 micron A/cm(exp 2) for approximately 6 min, resulting in a dose of 1.2 x 10(exp 17) carbon ions/cm(exp 2). The results indicate that the carbon ion implantation produced a thin surface layer of amorphous, nondiamond carbon. The nondiamond carbon greatly decreased both friction and wear of the diamond films. The coefficients of friction for the carbon-ion-implanted, fine-grain diamond films were less than 0.1, factors of 20 to 30 lower than those for the as-deposited, fine-grain diamond films. The coefficients of friction for the carbon-ion-implanted, coarse-grain diamond films were approximately 0.35, a factor of five lower than those for the as-deposited, coarse-grain diamond films. The wear rates for the carbon-ion-implanted, diamond films were on the order of 10(exp -6) mm(exp 3)/Nm, factors of 30 to 80 lower than that for the as-deposited diamond films, regardless of grain size. The friction of the carbon-ion-implanted diamond films was greatly reduced because the amorphous, nondiamond carbon, which had a low shear strength, was restricted to the surface layers (less than 0.1 micron thick) and because the underlying diamond materials retained their high hardness. In conclusion, the carbon-ion-implanted, fine-grain diamond films can be used effectively as wear resistant, self-lubricating coatings for ceramics, such as silicon nitride and silicon carbide, in ultrahigh vacuum.

  9. Ultradispersity of diamond at the nanoscale.

    PubMed

    Raty, Jean-Yves; Galli, Giulia

    2003-12-01

    Nanometre-sized diamond has been found in meteorites, protoplanetary nebulae and interstellar dusts, as well as in residues of detonation and in diamond films. Remarkably, the size distribution of diamond nanoparticles seems to be peaked around 2-5 nm, and to be largely independent of preparation conditions. We have carried out ab initio calculations of the stability of nanodiamond as a function of surface hydrogen coverage and of size. We have found that at about 3 nm, and for a broad range of pressures and temperatures, particles with bare, reconstructed surfaces become thermodynamically more stable than those with hydrogenated surfaces, thus preventing the formation of larger grains. Our findings provide an explanation of the size distribution of extraterrestrial and of terrestrial nanodiamond found in ultradispersed and ultracrystalline diamond films. They also provide an atomistic structural model of these films, based on the topology and structure of 2-3-nm dimond clusters consisting of a diamond core surrounded by a fullerene-like carbon network. PMID:14634641

  10. Dependence of the stimulated luminescence threshold in ZnO nanocrystals on their geometric shape

    SciTech Connect

    Gruzintsev, A. N. Redkin, A. N.; Barthou, C.

    2010-05-15

    The effect of the shape and dimensions of zinc oxide nanocrystals on the spontaneous luminescence decay times and the thresholds of stimulated luminescence in the ultraviolet spectral region is studied. It is shown that the columnar nanocrystals with hexagonal faceting exhibit the lowest threshold power of optical excitation for the diameters of the nanocavities are 100-200 nm, comparable to the absorption length for the excitation light. Different mechanisms of lasing are established for nanocrystals shaped as prisms and pyramids with a hexagonal base. Variations in the decay times and lasing thresholds can be attributed to different local densities of photon states in regularly shaped nanocrystals.

  11. Efficient Carrier Multiplication in Colloidal CuInSe2 Nanocrystals.

    PubMed

    Stolle, C Jackson; Schaller, Richard D; Korgel, Brian A

    2014-09-18

    Transient absorption spectroscopy (TAS) was used to study carrier multiplication (CM) (also called multiexciton generation (MEG)) in solvent-dispersed colloidal CuInSe2 nanocrystals with diameters as small as 4.5 nm. Size-dependent carrier cooling rates, absorption cross sections, and Auger lifetimes were also determined. The energy threshold for CM in the CuInSe2 nanocrystals was found to be 2.4 ± 0.2 times the nanocrystal energy gap (Eg) and the CM efficiency was 36 ± 6% per unit Eg. This is similar to other types of nanocrystal quantum dot materials. PMID:26276328

  12. [Preliminary Study on the Unique Spectroscopic Characteristics of Natural and Synthetic Diamonds].

    PubMed

    Yan, Jun; Wang, Xiao-xiang; Tao, Jin-bo; Zhang, Jian; Hu, Xian-chao

    2015-10-01

    A systematic comparative study on the natural diamond, the natural diamond treated by heat or irradiation and synthetic diamond prepared by chemical vapor deposition (CVD) or High temperature and high pressure (HTHP) were carried out by UV-Vis-NIR absorption and FTIR spectra. The results showed that: natural diamond, treated natural samples such as irradiated or annealed ones under high temperature and the HTHP synthetic diamond, the reflection coefficient is obviously variation between 200 nm and 1100 nm in UV-Vis-NIR spectra of above samples. In contrast, the reflection coefficient of CVD synthetic diamond is relatively smaller than the former. Infrared spectra showed that synthetic diamonds, especially for CVD synthetic diamonds have no obvious absorption peak between 800 and 1 600 cm(-1). In additional, the results of DiamondView detection are different for different kinds of diamonds. Generally speaking, some CVD synthetic diamonds treated by HTHP appears some parallel dislocation lines, and show light-blue fluorescence. HPHT synthetic diamonds exhibit strong blocky geometrical shapes whereas some natural diamonds exhibit more tree-ring type fluorescence patterns, the color of diamonds' fluorescence image may change after treated by HTHP or irradiation. In a word, in view of the diversity and innovation of the synthesis technologies for diamond, the natural and synthetic diamonds have some similar spectra characteristic in term of UV-Vis-NIR and FTIR spectra, some special natural diamonds without typical spectra characteristic of natural ones need to be further supplemented with DiamondView, photoluminescence spectra and other instruments. PMID:26904807

  13. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  14. Radiative decay rates of impurity states in semiconductor nanocrystals

    SciTech Connect

    Turkov, Vadim K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.

    2015-10-15

    Doped semiconductor nanocrystals is a versatile material base for contemporary photonics and optoelectronics devices. Here, for the first time to the best of our knowledge, we theoretically calculate the radiative decay rates of the lowest-energy states of donor impurity in spherical nanocrystals made of four widely used semiconductors: ZnS, CdSe, Ge, and GaAs. The decay rates were shown to vary significantly with the nanocrystal radius, increasing by almost three orders of magnitude when the radius is reduced from 15 to 5 nm. Our results suggest that spontaneous emission may dominate the decay of impurity states at low temperatures, and should be taken into account in the design of advanced materials and devices based on doped semiconductor nanocrystals.

  15. Controlled crystalline structure and surface stability of cobalt nanocrystals.

    PubMed

    Bao, Yuping; Beerman, Michael; Pakhomov, Alexandre B; Krishnan, Kannan M

    2005-04-21

    The synthesis of monodispersed 10 nm cobalt nanocrystals with controlled crystal morphology and investigation of the surface stability of these nanocrystals are described. Depending on the surfactants used, single crystalline or multiple grain nanocrystals can be reproducibly produced. The relative surface stability of these nanocrystals is analyzed using the temperature dependences of the dc magnetic susceptibility. The novel method, which allows sensitive monitoring of the surface stability, is based on the observation that, with particle oxidation, an anomalous peak appears at 8 K in zero-field-cooled magnetization measurements. It is found that the surfactant protective layer is more important for long-term stability at room temperature, while the high-temperature oxidation rate is controlled by the crystal morphology of the nanoparticles. PMID:16851825

  16. Electrically conductive diamond electrodes

    DOEpatents

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  17. Cathodoluminescence of diamond as an indicator of its metamorphic history

    NASA Astrophysics Data System (ADS)

    Kopylova, Maya; Bruce, Loryn; Longo, Micaela; Ryder, John; Dobrzhinetskaya, Larissa

    2010-05-01

    Diamond displays a supreme resistance to chemical and mechanical weathering, ensuring its survival through complex and prolonged crustal processes, including metamorphism and exhumation. For these reasons, volcanic sources and secondary and tertiary collectors for detrital placer diamonds, like Ural or Bingara diamonds, may be difficult to determine. If metamorphic processes leave their marks on diamond, they can be used to reconstruct crustal geologic processes and ages of primary diamondiferous volcanics. Four diamond suites extracted from metamorphic rocks have been characterized using optical CL, infrared and CL spectroscopy, and photoluminescence at the liquid nitrogen temperature. The studied diamonds are from the ~2.7 Ga sedimentary conglomerate and lamprophyric breccia metamorphosed in the greenschist facies (Wawa, Northern Ontario, Canada) during the 2.67 Ga Kenoran orogeny, and from the ultra-high pressure (UHP) terranes of Kokchetav (Kazakhstan) and Erzgebirge (Germany) exhumated in the Paleozoic. Wawa diamonds (Type IaAB and Type II) displayed green, yellow, orange, and red CL colours controlled by the CL emittance at 520, 576 nm, and between 586 and 664 nm. The UHP terranes diamonds show much weaker CL; few luminescent stones display CL peaks at 395, 498, 528 nm and a broad band at 580-668 nm. In contrast, most common diamonds found in unmetamorphosed rocks, i.e. octahedrally grown Type IaAB stones, luminescence blue emitting light at ~415-440 nm and 480-490 nm. There is a noticeable difference between cathodoluminescence of these diamonds and diamonds in metamorphic rocks. The studied diamonds that experienced metamorphism show a shift of CL emission to longer wavelengths (above 520 nm) and to green, yellow and red CL colours. Photoluminescence has the high resolution necessary to assign luminescence to specific optical centers of diamond. Diamonds in metamorphic rocks contain H3 (pairs of substitutional nitrogen atoms separated by a vacancy) and NVo

  18. Friction and wear of plasma-deposited diamond films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Wu, Richard L. C.; Garscadden, Alan; Barnes, Paul N.; Jackson, Howard E.

    1993-01-01

    Reciprocating sliding friction experiments in humid air and in dry nitrogen and unidirectional sliding friction experiments in ultrahigh vacuum were conducted with a natural diamond pin in contact with microwave-plasma-deposited diamond films. Diamond films with a surface roughness (R rms) ranging from 15 to 160 nm were produced by microwave-plasma-assisted chemical vapor deposition. In humid air and in dry nitrogen, abrasion occurred when the diamond pin made grooves in the surfaces of diamond films, and thus the initial coefficients of friction increased with increasing initial surface roughness. The equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. In vacuum the friction for diamond films contacting a diamond pin arose primarily from adhesion between the sliding surfaces. In these cases, the initial and equilibrium coefficients of friction were independent of the initial surface roughness of the diamond films. The equilibrium coefficients of friction were 0.02 to 0.04 in humid air and in dry nitrogen, but 1.5 to 1.8 in vacuum. The wear factor of the diamond films depended on the initial surface roughness, regardless of environment; it increased with increasing initial surface roughness. The wear factors were considerably higher in vacuum than in humid air and in dry nitrogen.

  19. Polycrystalline Diamond Schottky Diodes and Their Applications.

    NASA Astrophysics Data System (ADS)

    Zhao, Ganming

    In this work, four-hot-filament CVD techniques for in situ boron doped diamond synthesis on silicon substrates were extensively studied. A novel tungsten filament shape and arrangement used to obtain large-area, uniform, boron doped polycrystalline diamond thin films. Both the experimental results and radiative heat transfer analysis showed that this technique improved the uniformity of the substrate temperature. XRD, Raman and SEM studies indicate that large area, uniform, high quality polycrystalline diamond films were obtained. Schottky diodes were fabricated by either sputter deposition of silver or thermal evaporation of aluminum or gold, on boron doped diamond thin films. High forward current density and a high forward-to-reverse current ratio were exhibited by silver on diamond Schottky diodes. Schottky barrier heights and the majority carrier concentrations of both aluminum and gold contacted diodes were determined from the C-V measurements. Furthermore, a novel theoretical C-V-f analysis of deep level boron doped diamond Schottky diodes was performed. The analytical results agree well with the experimental results. Compressive stress was found to have a large effect on the forward biased I-V characteristics of the diamond Schottky diodes, whereas the effect on the reverse biased characteristics was relatively small. The stress effect on the forward biased diamond Schottky diode was attributed to piezojunction and piezoresistance effects. The measured force sensitivity of the diode was as high as 0.75 V/N at 1 mA forward bias. This result shows that CVD diamond device has potential for mechanical transducer applications. The quantitative photoresponse characteristics of the diodes were studied in the spectral range of 300 -1050 nm. Semi-transparent gold contacts were used for better photoresponse. Quantum efficiency as high as 50% was obtained at 500 nm, when a reverse bias of over 1 volt was applied. The Schottky barrier heights between either gold or

  20. Frequency upconverted lasing of nanocrystal quantum dots in microbeads

    NASA Astrophysics Data System (ADS)

    Zhang, Chunfeng; Zhang, Fan; Cheng, An; Kimball, Brian; Wang, Andrew Y.; Xu, Jian

    2009-11-01

    Stable, frequency upconverted lasing of semiconductor nanocrystal quantum dots was demonstrated in silica microbeads under two-photon pumping conditions. Upon infrared excitation, the stimulated emission of the nanocrystal-doped microbeads exhibits sharp peaks at λ ˜610 nm with narrow line widths of ≤1 nm. The lasing action has been attributed to the biexciton gain coupled to the whispering gallery modes in spherical cavities, as confirmed by time-resolved photoluminescence spectra. The lasing lifetime characterized in term of pulse numbers (˜106 pulses) was two orders of magnitude longer than that of the dye salt-based two-photon lasers.

  1. Chains, Sheets and Droplets: Assemblies of Hydrophobic Gold Nanocrystals with Saturated Phosphatidylcholine Lipid and Squalene

    PubMed Central

    Rasch, Michael R.; Bosoy, Christian; Yu, Yixuan; Korgel, Brian A.

    2012-01-01

    Assemblies of saturated 1,2-diacyl-phosphatidylcholine lipid and hydrophobic dodecanethiol-capped 1.8 nm diameter gold nanocrystals were studied as a function of lipid chain length and the addition of the naturally-occurring oil, squalene. The gold nanocrystals formed various lipid-stabilized agglomerates, sometimes fusing with lipid vesicle bilayers. The nanocrystal assembly structure depended on the hydrocarbon chain length of the lipid fatty acids. Lipid with the shortest fatty acid length studied, dilauroyl-phosphatidylcholine, created extended chains of gold nanocrystals. Lipid with slightly longer fatty acid chains created planar sheets of nanocrystals. Further increases of the fatty acid chain length led to spherical agglomerates. The inclusion of squalene led to lipid- and nanocrystal-coated oil droplets. PMID:23033891

  2. Optical properties of an indium doped CdSe nanocrystal: A density functional approach

    NASA Astrophysics Data System (ADS)

    Salini, K.; Mathew, Thomas; Mathew, Vincent

    2016-05-01

    We have studied the electronic and optical properties of a CdSe nanocrystal doped with n-type impurity atom. First principle calculations of the CdSe nanocrystal based on the density functional theory (DFT), as implemented in the Vienna Ab Initio Simulation Package (VASP) was used in the calculations. We have introduced a single Indium impurity atom into CdSe nanocrystal with 1.3 nm diameter. Nanocrystal surface dangling bonds are passivated with hydrogen atom. The band-structure, density of states and absorption spectra of the doped and undopted nanocrystals were discussed. Inclusion of the n-type impurity atom introduces an additional electron in conduction band, and significantly alters the electronic and optical properties of undoped CdSe nanocrystal. Indium doped CdSe nannocrystal have potential applications in optoelectronic devices.

  3. Enhancement of cellular uptake, transport and oral absorption of protease inhibitor saquinavir by nanocrystal formulation

    PubMed Central

    He, Yuan; Xia, Deng-ning; Li, Qiu-xia; Tao, Jin-song; Gan, Yong; Wang, Chi

    2015-01-01

    Aim: Saquinavir (SQV) is the first protease inhibitor for the treatment of HIV infection, but with poor solubility. The aim of this study was to prepare a colloidal nanocrystal suspension for improving the oral absorption of SQV. Methods: SQV nanocrystals were prepared using anti-solvent precipitation–high pressure homogenization method. The nanocrystals were characterized by a Zetasizer and transmission electron microscopy (TEM). Their dissolution, cellular uptake and transport across the human colorectal adenocarcinoma cell line (Caco-2) monolayer were investigated. Bioimaging of ex vivo intestinal sections of rats was conducted with confocal laser scanning microscopy. Pharmacokinetic analysis was performed in rats administered nanocrystal SQV suspension (50 mg/kg, ig), and the plasma SQV concentrations were measured with HPLC. Results: The SQV nanocrystals were approximately 200 nm in diameter, with a uniform size distribution. The nanocrystals had a rod-like shape under TEM. The dissolution, cellular uptake, and transport across a Caco-2 monolayer of the nanocrystal formulation were significantly improved compared to those of the coarse crystals. The ex vivo intestinal section study revealed that the fluorescently labeled nanocrystals were located in the lamina propria and the epithelium of the duodenum and jejunum. Pharmacokinetic study showed that the maximal plasma concentration (Cmax) was 2.16-fold of that for coarse crystalline SQV suspension, whereas the area under the curve (AUC) of nanocrystal SQV suspension was 1.95-fold of that for coarse crystalline SQV suspension. Conclusion: The nanocrystal drug delivery system significantly improves the oral absorption of saquinavir. PMID:26256404

  4. Size-dependent structural transition from multiple-twinned particles to epitaxial fcc nanocrystals and nanocrystal decay

    NASA Astrophysics Data System (ADS)

    Sato, K.; Huang, W. J.; Bohra, F.; Sivaramakrishnan, S.; Tedjasaputra, A. P.; Zuo, J. M.

    2007-10-01

    The size dependence of structural transition from multiple-twinned particles (MTP) to epitaxial face centered cubic nanocrystals was investigated for Ag nanoparticles formed on Si(001) surfaces by in situ reflection high-energy electron diffraction and ex situ transmission electron microscopy. The transition from MTP to nanocrystals was promoted by postdeposition annealing. Clear particle size dependence is found in the epitaxial formation temperatures (TE) , which is about 2/3 of the calculated, size-dependent, melting temperature (TM) using the value of surface energy γS=1.2J/m2 for larger particles (>2nm) . Once nanocrystals are formed, they decay and disappear in a narrow temperature range between 795 and 850K . No evidence of nanocrystal melting was detected from the reflection high-energy electron diffraction observations.

  5. Diamond heteroepitaxial lateral overgrowth

    NASA Astrophysics Data System (ADS)

    Tang, Yung-Hsiu

    This dissertation describes improvements in the growth of single crystal diamond by microwave plasma-assisted chemical vapor deposition (CVD). Heteroepitaxial (001) diamond was grown on 1 cm. 2 a-plane sapphiresubstrates using an epitaxial (001) Ir thin-film as a buffer layer. Low-energy ion bombardment of the Ir layer, a process known as bias-enhanced nucleation, is a key step in achieving a high density of diamond nuclei. Bias conditions were optimized to form uniformly-high nucleation densities across the substrates, which led to well-coalesced diamond thin films after short growth times. Epitaxial lateral overgrowth (ELO) was used as a means of decreasing diamond internal stress by impeding the propagation of threading dislocations into the growing material. Its use in diamond growth requires adaptation to the aggressive chemical and thermal environment of the hydrogen plasma in a CVD reactor. Three ELO variants were developed. The most successful utilized a gold (Au) mask prepared by vacuum evaporation onto the surface of a thin heteroepitaxial diamond layer. The Au mask pattern, a series of parallel stripes on the micrometer scale, was produced by standard lift-off photolithography. When diamond overgrows the mask, dislocations are largely confined to the substrate. Differing degrees of confinement were studied by varying the stripe geometry and orientation. Significant improvement in diamond quality was found in the overgrown regions, as evidenced by reduction of the Raman scattering linewidth. The Au layer was found to remain intact during diamond overgrowth and did not chemically bond with the diamond surface. Besides impeding the propagation of threading dislocations, it was discovered that the thermally-induced stress in the CVD diamond was significantly reduced as a result of the ductile Au layer. Cracking and delamination of the diamond from the substrate was mostly eliminated. When diamond was grown to thicknesses above 0.1 mm it was found that

  6. Diamond bio electronics.

    PubMed

    Linares, Robert; Doering, Patrick; Linares, Bryant

    2009-01-01

    The use of diamond for advanced applications has been the dream of mankind for centuries. Until recently this dream has been realized only in the use of diamond for gemstones and abrasive applications where tons of diamonds are used on an annual basis. Diamond is the material system of choice for many applications, but its use has historically been limited due to the small size, high cost, and inconsistent (and typically poor) quality of available diamond materials until recently. The recent development of high quality, single crystal diamond crystal growth via the Chemical Vapor Deposition (CVD) process has allowed physcists and increasingly scientists in the life science area to think beyond these limitations and envision how diamond may be used in advanced applications ranging from quantum computing, to power generation and molecular imaging, and eventually even diamond nano-bots. Because of diamond's unique properties as a bio-compatible material, better understanding of diamond's quantum effects and a convergence of mass production, semiconductor-like fabrication process, diamond now promises a unique and powerful key to the realization of the bio-electronic devices being envisioned for the new era of medical science. The combination of robust in-the-body diamond based sensors, coupled with smart bio-functionalized diamond devices may lead to diamond being the platform of choice for bio-electronics. This generation of diamond based bio-electronic devices would contribute substantially to ushering in a paradigm shift for medical science, leading to vastly improved patient diagnosis, decrease of drug development costs and risks, and improved effectiveness of drug delivery and gene therapy programs through better timed and more customized solutions. PMID:19745488

  7. Diamond Synthesis Employing Nanoparticle Seeds

    NASA Technical Reports Server (NTRS)

    Uppireddi, Kishore (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor)

    2014-01-01

    Iron nanoparticles were employed to induce the synthesis of diamond on molybdenum, silicon, and quartz substrates. Diamond films were grown using conventional conditions for diamond synthesis by hot filament chemical vapor deposition, except that dispersed iron oxide nanoparticles replaced the seeding. This approach to diamond induction can be combined with dip pen nanolithography for the selective deposition of diamond and diamond patterning while avoiding surface damage associated to diamond-seeding methods.

  8. Diamonds for beam instrumentation

    SciTech Connect

    Griesmayer, Erich

    2013-04-19

    Diamond is perhaps the most versatile, efficient and radiation tolerant material available for use in beam detectors with a correspondingly wide range of applications in beam instrumentation. Numerous practical applications have demonstrated and exploited the sensitivity of diamond to charged particles, photons and neutrons. In this paper, a brief description of a generic diamond detector is given and the interaction of the CVD diamond detector material with protons, electrons, photons and neutrons is presented. Latest results of the interaction of sCVD diamond with 14 MeV mono-energetic neutrons are shown.

  9. Diamond stabilization of ice multilayers at human body temperature

    NASA Astrophysics Data System (ADS)

    Wissner-Gross, Alexander D.; Kaxiras, Efthimios

    2007-08-01

    Diamond is a promising material for wear-resistant medical coatings. Here we report a remarkable increase in the melting point of ice resting on a diamond (111) surface modified with a submonolayer of Na+ . Our molecular dynamics simulations show that the interfacial ice bilayer melts at a temperature 130K higher than in free ice, and relatively thick ice films ( 2.6nm at 298K and 2.2nm at 310K ) are stabilized by dipole interactions with the substrate. This unique physical effect may enable biocompatibility-enhancing ice overcoatings for diamond at human body temperature.

  10. Thermally stable diamond brazing

    DOEpatents

    Radtke, Robert P.

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  11. The Nanocrystal Superlattice Pressure Cell: A Novel Approach To Study Molecular Bundles under Uniaxial Compression

    PubMed Central

    2015-01-01

    Ordered assemblies of inorganic nanocrystals coated with organic linkers present interesting scientific challenges in hard and soft matter physics. We demonstrate that a nanocrystal superlattice under compression serves as a nanoscopic pressure cell to enable studies of molecular linkers under uniaxial compression. We developed a method to uniaxially compress the bifunctional organic linker by attaching both ends of aliphatic chains to neighboring PbS nanocrystals in a superlattice. Pressurizing the nanocrystal superlattice in a diamond anvil cell thus results in compression of the molecular linkers along their chain direction. Small-angle and wide-angle X-ray scattering during the compression provide insights into the structure of the superlattice and nanocrystal cores under compression, respectively. We compare density functional theory calculations of the molecular linkers as basic Hookean springs to the experimental force–distance relationship. We determine the density of linkers on the nanocrystal surfaces. We demonstrate our method to probe the elastic force of single molecule as a function of chain length. The methodology introduced in this paper opens doors to investigate molecular interactions within organic molecules compressed within a nanocrystal superlattice. PMID:25046038

  12. The nanocrystal superlattice pressure cell: a novel approach to study molecular bundles under uniaxial compression.

    PubMed

    Bian, Kaifu; Singh, Arunima K; Hennig, Richard G; Wang, Zhongwu; Hanrath, Tobias

    2014-08-13

    Ordered assemblies of inorganic nanocrystals coated with organic linkers present interesting scientific challenges in hard and soft matter physics. We demonstrate that a nanocrystal superlattice under compression serves as a nanoscopic pressure cell to enable studies of molecular linkers under uniaxial compression. We developed a method to uniaxially compress the bifunctional organic linker by attaching both ends of aliphatic chains to neighboring PbS nanocrystals in a superlattice. Pressurizing the nanocrystal superlattice in a diamond anvil cell thus results in compression of the molecular linkers along their chain direction. Small-angle and wide-angle X-ray scattering during the compression provide insights into the structure of the superlattice and nanocrystal cores under compression, respectively. We compare density functional theory calculations of the molecular linkers as basic Hookean springs to the experimental force-distance relationship. We determine the density of linkers on the nanocrystal surfaces. We demonstrate our method to probe the elastic force of single molecule as a function of chain length. The methodology introduced in this paper opens doors to investigate molecular interactions within organic molecules compressed within a nanocrystal superlattice. PMID:25046038

  13. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging.

    PubMed

    Monteforte, Marianne; Estandarte, Ana K; Chen, Bo; Harder, Ross; Huang, Michael H; Robinson, Ian K

    2016-07-01

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100 nm size regimes - a size routinely achievable by chemical synthesis - despite the spatial resolution of the BCDI technique being 20-30 nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20 nm and AuPd nanocrystals in the size range 60-65 nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development. PMID:27359144

  14. Effects of high pressure and temperature on the properties of nanocrystals in rocks: Evidences from Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sobolev, G. A.; Genshaft, Yu. S.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'Skaya, A. I.; Vettegren', V. I.; Kulik, V. B.

    2011-06-01

    A search is conducted to detect nanocrystals in a sample of apogranitic pseudotachylite, which is a product of extremely strong crushing of granite in a seismogenic fault. Raman spectroscopy revealed nanocrystals of quartz measuring approximately 17 to 25 nm and low-temperature albite ranging from 8 to 30 nm. The crystallographic cell in the nanocrystals is deformed. The internal stresses which might have been responsible for these deformations vary from approximately -300 (compression) to +480 (tension) MPa. It is found that after having been exposed to high pressure (1 GPa) and temperature (470-500°C for 10 minutes and 550-600°C for 16 minutes), the nanocrystals of quartz reduced in size to ≈10 nm, and the nanocrystals of albite, to 13 nm. At the same time, the level of tension in the lattice spacing of quartz increased.

  15. Patterning of nanocrystalline diamond films for diamond microstructures useful in MEMS and other devices

    DOEpatents

    Gruen, Dieter M.; Busmann, Hans-Gerd; Meyer, Eva-Maria; Auciello, Orlando; Krauss, Alan R.; Krauss, Julie R.

    2004-11-02

    MEMS structure and a method of fabricating them from ultrananocrystalline diamond films having average grain sizes of less than about 10 nm and feature resolution of less than about one micron . The MEMS structures are made by contacting carbon dimer species with an oxide substrate forming a carbide layer on the surface onto which ultrananocrystalline diamond having average grain sizes of less than about 10 nm is deposited. Thereafter, microfabrication process are used to form a structure of predetermined shape having a feature resolution of less than about one micron.

  16. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-12-15

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  17. Size control and quantum confinement in Cu2ZnSnS4 nanocrystals.

    PubMed

    Khare, Ankur; Wills, Andrew W; Ammerman, Lauren M; Norris, David J; Aydil, Eray S

    2011-11-14

    Starting with metal dithiocarbamate complexes, we synthesize colloidal Cu(2)ZnSnS(4) (CZTS) nanocrystals with diameters ranging from 2 to 7 nm. Structural and Raman scattering data confirm that CZTS is obtained rather than other possible material phases. The optical absorption spectra of nanocrystals with diameters less than 3 nm show a shift to higher energy due to quantum confinement. PMID:21952415

  18. Nonlinear optical properties of lead sulfide nanocrystals in polymeric coatings

    NASA Astrophysics Data System (ADS)

    Lu, S. W.; Sohling, U.; Mennig, M.; Schmidt, H.

    2002-10-01

    Lead sulfide (PbS) nanocrystals with a particle size of 3.3 +/- 0.7 nm have been synthesized in a poly vinyl alcohol (PVA) coating on fused silica glass substrates. The coating was dip-coated from a PVA aqueous solution, in which PbS nanocrystals were precipitated and stabilized in the polymer matrix. Third-order nonlinear optical susceptibility of PbS nanocrystals is dependent on the wavelength with its maximum located near the first excitonic absorption peak resulting from the quantum confinement effect, according to the results of degenerate four wave-mixing. This suggests an enhancement of the nonlinear optical property by excitonic resonance. The maximum figure of merit, χ(3) /α, is as high as 2.91 × 10-12 esu m as measured at 595 nm.

  19. Nano-inclusions in diamond: Evidence of diamond genesis

    NASA Astrophysics Data System (ADS)

    Wirth, R.

    2015-12-01

    The use of Focused Ion Beam technology (FIB) for TEM sample preparation introduced approximately 15 years ago revolutionized the application of TEM in Geosciences. For the first time, FIB enabled cutting samples for TEM use from exactly the location we are interested in. Applied to diamond investigation, this technique revealed the presence of nanometre-sized inclusions in diamond that have been simply unknown before. Nanoinclusions in diamond from different location and origin such as diamonds from the Lower and Upper Mantle, metamorphic diamonds (Kazakhstan, Erzgebirge, Bohemia), diamonds from ophiolites (Tibet, Mongolia, Xinjiang, Ural Mountains), diamonds from igneous rocks (Hawaii, Kamchatka) and impact diamonds (Popigai Crater, Siberia) have been investigated during the last 15 years. The major conclusion of all these TEM studies is, that the nanoinclusions, their phases and phase composition together with the micro- and nanostructure evidence the origin of diamond and genesis of diamond. We can discriminate Five different mechanisms of diamond genesis in nature are observed: Diamond crystallized from a high-density fluid (Upper mantle and metamorphic diamond). Diamond crystallized from carbonatitic melt (Lower mantle diamond). Diamond precipitates from a metal alloy melt (Diamond from ophiolites). Diamond crystallized by gas phase condensation or chemical vapour condensation (CVD) (Lavas from Kamchatka, xenoliths in Hawaiian lavas). Direct transformation of graphite into diamond.

  20. Solution-processable white-light-emitting germanium nanocrystals

    SciTech Connect

    Shirahata, Naoto

    2014-06-01

    This paper describes an efficient chemical route for the synthesis of visible light emitting nanocrystals of germanium (ncGe). The synthesis started by heating Ge(II) iodide at 300 °C in argon atmosphere. Spectroscopic characterizations confirmed the formation of diamond cubic lattice structures of ncGe. By grafting hydrophobic chains on the ncGe surface, the dispersions in nonpolar solvents of the ncGe became very stable. The as-synthesized ncGe showed the bluish white photoluminescence (PL) feature, but it was found that the PL spectrum is composed of many different emission spectra. Therefore, the color-tuning of white light emission is demonstrated through the witting removal of extra ncGe with unfavorable emission feature by making full use of column chromatographic techniques. - Highlights: • Visible light emitting nanocrystals of germanium was synthesized by chemical reduction of germanium iodide. • White light emission was achieved by control over size distribution of germanium nanocrystals. • Tuning the color of white light was achieved by separation of nanocrystals by emission.

  1. Diamond thin film temperature and heat-flux sensors

    NASA Technical Reports Server (NTRS)

    Aslam, M.; Yang, G. S.; Masood, A.; Fredricks, R.

    1995-01-01

    Diamond film temperature and heat-flux sensors are developed using a technology compatible with silicon integrated circuit processing. The technology involves diamond nucleation, patterning, doping, and metallization. Multi-sensor test chips were designed and fabricated to study the thermistor behavior. The minimum feature size (device width) for 1st and 2nd generation chips are 160 and 5 micron, respectively. The p-type diamond thermistors on the 1st generation test chip show temperature and response time ranges of 80-1270 K and 0.29-25 microseconds, respectively. An array of diamond thermistors, acting as heat flux sensors, was successfully fabricated on an oxidized Si rod with a diameter of 1 cm. Some problems were encountered in the patterning of the Pt/Ti ohmic contacts on the rod, due mainly to the surface roughness of the diamond film. The use of thermistors with a minimum width of 5 micron (to improve the spatial resolution of measurement) resulted in lithographic problems related to surface roughness of diamond films. We improved the mean surface roughness from 124 nm to 30 nm by using an ultra high nucleation density of 10(exp 11)/sq cm. To deposit thermistors with such small dimensions on a curved surface, a new 3-D diamond patterning technique is currently under development. This involves writing a diamond seed pattern directly on the curved surface by a computer-controlled nozzle.

  2. Enhanced photothermal effect of surface oxidized silicon nanocrystals anchored to reduced graphene oxide nanosheets

    NASA Astrophysics Data System (ADS)

    Afshani, Parichehr; Moussa, Sherif; Atkinson, Garrett; Kisurin, Vitaly Y.; Samy El-Shall, M.

    2016-04-01

    We demonstrate the coupling of the photothermal effects of silicon nanocrystals and graphene oxide (GO) dispersed in water. Using laser irradiation (532 nm or 355 nm) of suspended Si nanocrystals in an aqueous solution of GO, the synthesis of surface oxidized Si-reduced GO nanocomposites (SiOx/Si-RGO) is reported. The laser reduction of GO is accompanied by surface oxidation of the Si nanocrystals resulting in the formation of the SiOx/Si-RGO nanocomposites. The SiOx/Si-RGO nanocomposites are proposed as promising materials for photothermal therapy and for the efficient conversion of solar energy into usable heat for a variety of thermal and thermomechanical applications.

  3. Infrared photoluminescence from GeSi nanocrystals embedded in a germanium–silicate matrix

    SciTech Connect

    Volodin, V. A. Gambaryan, M. P.; Cherkov, A. G.; Vdovin, V. I.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2015-12-15

    We investigate the structural and optical properties of GeO/SiO{sub 2} multilayers obtained by evaporation of GeO{sub 2} and SiO{sub 2} powders under ultrahigh vacuum conditions on Si(001) substrates. Both Raman and infrared absorption spectroscopy measurements indicate the formation of GeSi nanocrystals after postgrowth annealing at 800°C. High-resolution transmission electron microscopy characterizations show that the average size of the nanocrystals is about 5 nm. For samples containing GeSi nanocrystals, photoluminescence is observed at 14 K in the spectral range 1500–1600 nm. The temperature dependence of the photoluminescence is studied.

  4. Effects of PEGylated paclitaxel nanocrystals on breast cancer and its lung metastasis

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Hu, Hongxiang; Zhang, Haoran; Dai, Wenbing; Wang, Xinglin; Wang, Xueqing; Zhang, Qiang

    2015-06-01

    As an attractive strategy developed rapidly in recent years, nanocrystals are used to deliver insoluble drugs. PEGylation may further prolong the circulation time of nanoparticles and improve the therapeutic outcome of drugs. In this study, paclitaxel (PTX) nanocrystals (PTX-NCs) and PEGylated PTX nanocrystals (PEG-PTX-NCs) were prepared using antisolvent precipitation augmented by probe sonication. The characteristics and antitumor efficacy of nanocrystals were investigated. The results indicated that the nanocrystals showed rod-like morphology, and the average particle size was 240 nm and 330 nm for PTX-NCs and PEG-PTX-NCs, respectively. The PEG molecules covered the surface of nanocrystals with an 11.54 nm fixed aqueous layer thickness (FALT), much higher than that of PTX-NCs (0.2 nm). PEG-PTX-NCs showed higher stability than PTX-NCs under both storage and physiological conditions. In breast cancer xenografted mice, PEG-PTX-NCs showed significantly better tumor inhibition compared to saline (p < 0.001) and PTX-NC groups (p < 0.05) after intravenous administration. In a model of lung tumor metastasis quantified by the luciferase activity, the PEG-PTX-NCs group showed higher anticancer efficacy not only than saline and PTX-NCs groups, but also than Taxol®, achieving an 82% reduction at the end of the experiment. These studies suggested the potential advantages of PEGylated PTX nanocrystals as alternative drug delivery systems for anticancer therapy.

  5. Tailoring nanocrystalline diamond coated on titanium for osteoblast adhesion.

    PubMed

    Pareta, Rajesh; Yang, Lei; Kothari, Abhishek; Sirinrath, Sirivisoot; Xiao, Xingcheng; Sheldon, Brian W; Webster, Thomas J

    2010-10-01

    Diamond coatings with superior chemical stability, antiwear, and cytocompatibility properties have been considered for lengthening the lifetime of metallic orthopedic implants for over a decade. In this study, an attempt to tailor the surface properties of diamond films on titanium to promote osteoblast (bone forming cell) adhesion was reported. The surface properties investigated here included the size of diamond surface features, topography, wettability, and surface chemistry, all of which were controlled during microwave plasma enhanced chemical-vapor-deposition (MPCVD) processes using CH4-Ar-H2 gas mixtures. The hardness and elastic modulus of the diamond films were also determined. H2 concentration in the plasma was altered to control the crystallinity, grain size, and topography of the diamond coatings, and specific plasma gases (O2 and NH3) were introduced to change the surface chemistry of the diamond coatings. To understand the impact of the altered surface properties on osteoblast responses, cell adhesion tests were performed on the various diamond-coated titanium. The results revealed that nanocrystalline diamond (grain sizes <100 nm) coated titanium dramatically increased surface hardness, and the introduction of O2 and NH3 during the MPCVD process promoted osteoblast adhesion on diamond and, thus, should be further studied for improving orthopedic applications. PMID:20540097

  6. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, Ralph L.; Stewart, Delbert D.; Evans, Christopher J.

    1992-01-01

    Apparatus for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond.

  7. Diamond tool machining of materials which react with diamond

    DOEpatents

    Lundin, R.L.; Stewart, D.D.; Evans, C.J.

    1992-04-14

    An apparatus is described for the diamond machining of materials which detrimentally react with diamond cutting tools in which the cutting tool and the workpiece are chilled to very low temperatures. This chilling halts or retards the chemical reaction between the workpiece and the diamond cutting tool so that wear rates of the diamond tool on previously detrimental materials are comparable with the diamond turning of materials which do not react with diamond. 1 figs.

  8. Biomedical Nanocrystal Agents: Design, Synthesis, and Applications

    NASA Astrophysics Data System (ADS)

    Cho, Minjung

    In these days, nanomaterials are applied in a variety of biomedical applications including magnetic resonance imaging (MRI), cell imaging, drug delivery, and cell separation. Most MRI contrast agents affect the longitudinal relaxation time (T1) and transverse relaxation time (T2 ) of water protons in the tissue and result in increased positive or negative contrast. Here, we report the optimization of r1 (1/T 1) or r2 (1/T2) relaxivity dynamics with diameter controlled gadolinium oxide nanocrystals (2˜22 nm) and iron based magnetic nanocrystals (4 ˜33 nm). The r1 and r2 MR relaxivity values of hydrated nanocrystals were optimized and examined depending on their core diameter, surface coating, and compositions; the high r1 value of gadolinium oxide was 40-60 S-1mM-1, which is 10-15 fold higher than that of commercial Gd (III) chelates (4.3˜4.6 S-1mM-1). Moreover, in vitro toxicological studies revealed that polymer coated nanocrystals suspensions had no significant effect on human dermal fibroblast (HDF) cells even at high concentration. Towards multimodal imaging or multifunctional ability, we developed the iron oxide/QDs complexes, which consist of cores of iron oxide that act as nucleation sites for fluorescent QDs. The choice of variable QDs helped to visualize and remove large iron oxide materials in a magnetic separation. Additionally, diluted materials concentrated on the magnet could be fluorescently detected even at very low concentration. The designed MRI or multifunctional nanomaterials will give great and powerful uses in biomedical applications.

  9. Temperature-induced phase transition in quartz nanocrystals dispersed in pseudotachylite

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Mamalimov, R. I.; Sobolev, G. A.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'skaya, A. I.

    2013-05-01

    The size and concentration of α-quartz nanocrystals dispersed in samples of pseudotachylite and the internal stresses in these nanocrystals have been determined using infrared spectroscopy in the temperature range 300-800 K. Pseudotachylite is a product of intense crushing of granite that undergoes in the Earth's crust faults. It has been found that the size of the nanocrystals is ˜20 nm and does not depend on temperature. As the temperature increases, their concentration decreases monotonically and tends to zero at ˜650 K. This process is paralleled by a growth of the concentration of β-quartz nanocrystals. The α-quartz nanocrystal concentration regains its initial level with decreasing temperature. Thus, the α → β phase transition in quartz nanocrystals in pseudotachylite starts at temperatures lower by ˜500 K than that in the bulk of the macrocrystal (846 K), and is stretched by ˜350 K. At room temperature, the unit cell of nanocrystals is compressed by surface tension forces. These forces retard the α → β phase transition. The thermal expansion coefficient of nanocrystals is larger than that of macrocrystals, which entails a decrease of compression and a monotonic decrease of the concentration of α-quartz nanocrystals with increasing temperature.

  10. One-step DNA-programmed growth of luminescent and biofunctionalized nanocrystals

    NASA Astrophysics Data System (ADS)

    Ma, Nan; Sargent, Edward H.; Kelley, Shana O.

    2009-02-01

    Colloidal semiconductor nanocrystals are widely used as lumiphores in biological imaging because their luminescence is both strong and stable, and because they can be biofunctionalized. During synthesis, nanocrystals are typically passivated with hydrophobic organic ligands, so it is then necessary either to replace these ligands or encapsulate the nanocrystals with hydrophilic moieties to make the lumiphores soluble in water. Finally, biological labels must be added to allow the detection of nucleic acids, proteins and specific cell types. This multistep process is time- and labour-intensive and thus out of reach of many researchers who want to use luminescent nanocrystals as customized lumiphores. Here, we show that a single designer ligand-a chimeric DNA molecule-can controllably program both the growth and the biofunctionalization of the nanocrystals. One part of the DNA sequence controls the nanocrystal passivation and serves as a ligand, while another part controls the biorecognition. The synthetic protocol reported here is straightforward and produces a homogeneous dispersion of nanocrystal lumiphores functionalized with a single biomolecular receptor. The nanocrystals exhibit strong optical emission in the visible region, minimal toxicity and have hydrodynamic diameters of ~6 nm, which makes them suitable for bioimaging. We show that the nanocrystals can specifically bind DNA, proteins or cells that have unique surface recognition markers.

  11. Influence of Eu doping on the microstructure and photoluminescence of CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Zhang, Kexin; Yu, Yaxin; Sun, Shuqing

    2012-07-01

    The CdS:Eu nanocrystals with a strong white emission have been synthesized by solvothemal method using ethylene glycol as solvents. From X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM) analysis it was observed that the average diameter of the CdS:Eu nanocrystals is about 5 nm. The traces of groups adsorbed on CdS:Eu nanocrystals were confirmed via FT-IR spectra. UV-visible spectroscopy study was carried out to determine the band gap of the nanocrystals and the absorbance peaks showed blue shift with respect to the bulk CdS. From photoluminescence (PL) studies at λex = 398 nm, the PL emission intensity of CdS:Eu nanocrystals enhanced by doping Eu3+ ions. In addition, the synthesis parameters including the concentration of doped Eu3+ ions, the reaction time, and the reaction temperature have influence on the optical properties of CdS:Eu nanocrystals. The charge compensation agent is a decisive factor for PL emission intensity of CdS:Eu nanocrystals. Furthermore, the storage time and condition on the fluorescence of CdS:Eu nanocrystals were also investigated.

  12. Latent laser-induced graphitization of diamond

    NASA Astrophysics Data System (ADS)

    Kononenko, V. V.; Gololobov, V. M.; Konov, V. I.

    2016-03-01

    Basic features and mechanism of femtosecond laser graphitization of diamond surface were studied in the two regimes of irradiation: (1) by an intensive (>10 J/cm2) single shot and (2) by a train of pulses with near-threshold intensity (~1-10 J/cm2). Special attention was paid to the so-called accumulative regime, when multipulse laser treatment results in prolonged delay of an appearance of crystal modification of the crystal. The light absorption mechanisms dominating in each regime are discussed. The experiments with fundamental (800 nm), second (400 nm) and third (266 nm) harmonics of Ti-sapphire laser (100 fs) have revealed that thermally stimulated processes play an essential role in latent diamond graphitization.

  13. Synthesis of nanocrystals and nanocrystal self-assembly

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (<20 nm in diameter) in diameter. Essential to our approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO 3 nanocrystalline films with grain sizes in the range of 10--30 nm. Dielectric measurements of the films show dielectic constants in the range of 85--90 over the 1 kHz--100 kHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit uniform nanostructured morphologies and grain sizes. In the second part of this chapter, a nonhydrolytic alcoholysis route to study the preparation of well-crystallized size-tunable BaTiO3

  14. Multilayer diamond coated WC tools

    SciTech Connect

    Fan, W.D.; Jagannaham, K.; Narayan, J.

    1995-12-31

    To increase adhesion of diamond coatings, a multilayer structure was developed. The multilayer diamond coating consisted of a first discontinuous diamond layer, an interposing layer, and a top continuous diamond layer. The diamond layer was grown on WC substrates by hot filament chemical vapor deposition and the interposing layer was grown by pulsed laser deposition. Machining tests were used to characterize adhesion properties of the multilayer diamond coatings on WC(Co) substrates. Results indicate that diamond coatings exhibit good adhesion on the WC tool substrates. The wear resistance of the WC tool is improved significantly by the diamond coatings.

  15. Nanoscale topography of nanocrystalline diamonds promotes differentiation of osteoblasts.

    PubMed

    Kalbacova, M; Rezek, B; Baresova, V; Wolf-Brandstetter, C; Kromka, A

    2009-10-01

    The excellent mechanical, tribological and biochemical properties of diamond coatings are promising for improving orthopedic or stomatology implants. A crucial prerequisite for such applications is an understanding and control of the biological response of the diamond coatings. This study concentrates on the correlation of diamond surface properties with osteoblast behavior. Nanocrystalline diamond (NCD) films (grain size up to 200 nm, surface roughness 20 nm) were deposited on silicon substrates of varying roughnesses (1, 270 and 500 nm) and treated by oxygen plasma to generate a hydrophilic surface. Atomic force microscopy was used for topographical characterization of the films. As a reference surface, tissue culture polystyrene (PS) was used. Scanning electron microscopy and immunofluorescence staining was used to visualize cell morphological features as a function of culture time. Metabolic activity, alkaline phosphatase activity, and calcium and phosphate deposition was also monitored. The results show an enhanced osteoblast adhesion as well as increased differentiation (raised alkaline phosphatase activity and mineral deposition) on NCD surfaces (most significantly on RMS 20 nm) compared to PS. This is attributed mainly to the specific surface topography as well as to the biocompatible properties of diamond. Hence the controlled (topographically structured) diamond coating of various substrates is promising for preparation of better implants, which offer faster colonization by specific cells as well as longer-term stability. PMID:19433140

  16. Germanium Nanocrystal Solar Cells

    NASA Astrophysics Data System (ADS)

    Holman, Zachary Charles

    Greenhouse gas concentrations in the atmosphere are approaching historically unprecedented levels from burning fossil fuels to meet the ever-increasing world energy demand. A rapid transition to clean energy sources is necessary to avoid the potentially catastrophic consequences of global warming. The sun provides more than enough energy to power the world, and solar cells that convert sunlight to electricity are commercially available. However, the high cost and low efficiency of current solar cells prevent their widespread implementation, and grid parity is not anticipated to be reached for at least 15 years without breakthrough technologies. Semiconductor nanocrystals (NCs) show promise for cheap multi-junction photovoltaic devices. To compete with photovoltaic materials that are currently commercially available, NCs need to be inexpensively cast into dense thin films with bulk-like electrical mobilities and absorption spectra that can be tuned by altering the NC size. The Group II-VI and IV-VI NC communities have had some success in achieving this goal by drying and then chemically treating colloidal particles, but the more abundant and less toxic Group IV NCs have proven more challenging. This thesis reports thin films of plasma-synthesized Ge NCs deposited using three different techniques, and preliminary solar cells based on these films. Germanium tetrachloride is dissociated in the presence of hydrogen in a nonthermal plasma to nucleate Ge NCs. Transmission electron microscopy and X-ray diffraction indicate that the particles are nearly monodisperse (standard deviations of 10-15% the mean particle diameter) and the mean diameter can be tuned from 4-15 nm by changing the residence time of the Ge NCs in the plasma. In the first deposition scheme, a Ge NC colloid is formed by reacting nanocrystalline powder with 1-dodecene and dispersing the functionalized NCs in a solvent. Films are then formed on substrates by drop-casting the colloid and allowing it to dry

  17. Switching-on quantum size effects in silicon nanocrystals.

    PubMed

    Sun, Wei; Qian, Chenxi; Wang, Liwei; Wei, Muan; Mastronardi, Melanie L; Casillas, Gilberto; Breu, Josef; Ozin, Geoffrey A

    2015-01-27

    The size-dependence of the absolute luminescence quantum yield of size-separated silicon nanocrystals reveals a "volcano" behavior, which switches on around 5 nm, peaks at near 3.7-3.9 nm, and decreases thereafter. These three regions respectively define: i) the transition from bulk to strongly quantum confined emissive silicon, ii) increasing confinement enhancing radiative recombination, and iii) increasing contributions favoring non-radiative recombination. PMID:25472530

  18. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    PubMed Central

    2012-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death ‘apoptosis’ is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer’s disease and Parkinson’s disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter. PMID:22863139

  19. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90

    NASA Astrophysics Data System (ADS)

    Baba, Koichi; Nishida, Kohji

    2012-08-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death `apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter.

  20. Calpain inhibitor nanocrystals prepared using Nano Spray Dryer B-90.

    PubMed

    Baba, Koichi; Nishida, Kohji

    2012-01-01

    The Nano Spray Dryer B-90 offers a new, simple, and alternative approach for the production of drug nanocrystals. Among attractive drugs, calpain inhibitor that inhibits programmed cell death 'apoptosis' is a candidate for curing apoptosis-mediated intractable diseases such as Alzheimer's disease and Parkinson's disease. In this study, the preparation of calpain inhibitor nanocrystals using Nano Spray Dryer B-90 was demonstrated. The particle sizes were controlled by means of selecting mesh aperture sizes. The obtained average particle sizes were in the range of around 300 nm to submicron meter. PMID:22863139

  1. Color Centers in Silic On-Doped Diamond Films

    NASA Astrophysics Data System (ADS)

    Sedov, V. S.; Krivobok, V. S.; Khomich, A. V.; Ralchenko, V. G.; Khomich, A. A.; Martyanov, A. K.; Nikolaev, S. N.; Poklonskaya, O. N.; Konov, V. I.

    2016-05-01

    Silicon-doped microcrystalline diamond films of 1 μm thickness were grown by chemical vapor deposition in microwave plasma from mixtures of methane-hydrogen-silane on substrates of aluminum nitride, tungsten, and silicon. The diamond films were found to contain optically active silicon vacancy (SiV) centers giving rise to the 737-nm band in the photoluminescence spectra. The spectral features of a newly discovered narrow band of comparable intensity at 720-722 nm were studied. It is shown that the band at 720-722 nm occurs in the photoluminescence spectra only in the presence of silica in the diamond, regardless of the substrate material. The temperature dynamics of the photoluminescence spectra in the range of 5-294 K were investigated. The possible nature and mechanisms of formation of the color centers responsible for the 720-722 nm band are discussed.

  2. Characterization of fluoride nanocrystals for optical refrigeration

    NASA Astrophysics Data System (ADS)

    Soares de Lima Filho, Elton; Quintanilla, Marta; Vetrone, Fiorenzo; Nemova, Galina; Kummara, Venkata Krishaniah; Kashyap, Raman

    2015-03-01

    This paper reports on the characterization of nanocrystalline powders of ytterbium doped YLiF4 for applications in optical refrigeration. Here we used powders with nanocrystals of Yb 3+ concentrations of (10, 15, 20) mol % and lengths (70, 66, 96) nm. Our preliminary spectroscopic measurements did not show an enhancement in the absorption at the long-wavelength tail of the spectra of the nanocrystalline powder when compared with bulk Yb:YLiF4, indicating that the increase of the phonon-assisted excitation is not large enough to play a significant role in cooling in the present conditions. One advantage of nanocrystalline powders over bulk crystals is the possibility of enhancing the absorption by the realization of cavity-less pump recycling through photon localization [1]. While photon localization also increases the reabsorption of the fluorescence depending on the quantum efficiency of the material and can mitigate cooling, it allows the use of crystals of low enough concentrations to avoid deleterious effects such as ion-ion energy transfer followed by quenching. The pump intensity enhancement favors upconversion luminescence to visible wavelengths, which can be used for optical refrigeration and extends the scope of the application for the material. We observed both green and blue emission from the samples and investigate the processes which lead to it. We present the experimental investigation of the nanocrystals' absorption and emission spectra and the first excited state lifetime measurements, which are used to estimate the nanocrystal's photoluminescence quantum efficiency.

  3. Diamond nucleation using polyethene

    DOEpatents

    Morell, Gerardo; Makarov, Vladimir; Varshney, Deepak; Weiner, Brad

    2013-07-23

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  4. Diamond Nucleation Using Polyethene

    NASA Technical Reports Server (NTRS)

    Morell, Gerardo (Inventor); Makarov, Vladimir (Inventor); Varshney, Deepak (Inventor); Weiner, Brad (Inventor)

    2013-01-01

    The invention presents a simple, non-destructive and non-abrasive method of diamond nucleation using polyethene. It particularly describes the nucleation of diamond on an electrically viable substrate surface using polyethene via chemical vapor deposition (CVD) technique in a gaseous environment.

  5. Diamond films: Historical perspective

    SciTech Connect

    Messier, R.

    1993-01-01

    This section is a compilation of notes and published international articles about the development of methods of depositing diamond films. Vapor deposition articles are included from American, Russian, and Japanese publications. The international competition to develop new deposition methodologies is stressed. The current status of chemical vapor deposition of diamond is assessed.

  6. Infrared absorption of fs-laser textured CVD diamond

    NASA Astrophysics Data System (ADS)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Polini, R.; Mezzetti, A.; Di Fonzo, F.; Trucchi, D. M.

    2016-03-01

    Nanoscale periodic texturing on polycrystalline CVD diamond surface was performed to obtain a significant increase in optical absorptance to visible and near-infrared radiation. Surface texturing, obtained by the use of fs-laser ultrashort pulses, has been demonstrated to induce a controlled periodicity of ripples of about 170 nm and length of several µm, able to drastically increase the diamond capability of interacting with solar radiation from its intrinsic visible blindness. Ultraviolet and visible Raman spectroscopy has been used to confirm the absence of non-diamond phases resulting from the process for the fs-laser-textured sample. Moreover, here we investigate the optical properties in the range 200 nm-25 µm. Absorbance of fs-laser-textured CVD diamond is considerably higher than the untreated one at every wavelength, resulting in a remarkable increase in the emittance: It points out the need for an optimization of process parameters to enhance the selective absorption capability.

  7. Kinetic peculiarities of diamond crystallization in K-Na-Mg-Ca-Carbonate-Carbon melt-solution

    NASA Astrophysics Data System (ADS)

    Solopova, N. A.; Spivak, A. V.; Litvin, Yu. A.; Shiryaev, A. A.; Tsel'movich, V. A.; Nekrasov, A. N.

    2013-02-01

    The kinetic peculiarities of diamond crystallization in multicomponent K-Na-Mg-Ca-carbonate-carbon system have been studied in conditions of diamond stability at 1500-1800°C and 7.5-8.5 GPa. It has been established that the diamond phase nucleation density at a fixed temperature of 1600°C decreases from 1.3 × 105 nuclei/mm3 at 8.5 GPa to 3.7 × 103 nuclei/mm3 at 7.5 GPa. The fluorescence spectra of obtained diamond crystals contain peaks at 504 nm ( H3-defect), 575 nm (NV-center), and 638 nm (NV-defect), caused by the presence of nitrogen impurity. In the cathodoluminescence spectra, an A-band with the maximum at 470 nm is present. The obtained data make it possible to assign the synthesized diamonds in the carbonate-carbon system to the mixed Ia + Ib type.

  8. Nanocrystal Inks without Ligands: Stable Colloids of Bare Germanium Nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2011-05-11

    Colloidal semiconductor nanocrystals typically have ligands attached to their surfaces that afford solubility in common solvents but hinder charge transport in nanocrystal films. Here, an alternative route is explored in which bare germanium nanocrystals are solubilized by select solvents to form stable colloids without the use of ligands. A survey of candidate solvents shows that germanium nanocrystals are completely solubilized by benzonitrile, likely because of electrostatic stabilization. Films cast from these dispersions are uniform, dense, and smooth, making them suitable for device applications without postdeposition treatment.

  9. Thermal and mechanical properties of bio-nanocomposites reinforced by Luffa cylindrica cellulose nanocrystals.

    PubMed

    Siqueira, Gilberto; Bras, Julien; Follain, Nadège; Belbekhouche, Sabrina; Marais, Stéphane; Dufresne, Alain

    2013-01-16

    Cellulose nanocrystals have been prepared by acid hydrolysis of Luffa cylindrica fibers. The acid-resistant residue consisted of rod-like nanoparticles with an average length an diameter around 242 and 5.2nm, respectively (aspect ratio around 46). These cellulose nanocrystals have been used as a reinforcing phase for the processing of bio-nanocomposites using polycaprolactone (PCL) as matrix. To promote interfacial filler/matrix interactions the surface of cellulose nanocrystals was chemically modified with n-octadecyl isocyanate (C(18)H(37)NCO). Evidence of the grafting was supported by infrared spectroscopy and elemental analysis. X-ray diffraction analysis was used to confirm the integrity of cellulose nanocrystals after chemical modification. Both unmodified and chemically modified nanocrystals were used to prepare nanocomposites. The thermal properties of these materials were determined from differential scanning calorimetry and their mechanical behavior was evaluated in both the linear and non-linear range. PMID:23121968

  10. Growth and stability of oxidation resistant Si nanocrystals formed by decomposition of alkyl silanes

    SciTech Connect

    Zaitseva, N; Hamel, S; Dai, Z R; Saw, C; Williamson, A J; Galli, G

    2007-01-12

    The synthesis and characterization of 1-10 nm Si nanocrystals highly resistant to oxidation is described. The nanocrystals were prepared by thermal decomposition of tetramethylsilane at 680 C, or in a gold- induced catalytic process at lower temperatures down to 400-450 C using trioctylamine as an initial solvent. Transmission electron microscopic analysis of samples obtained in the presence of gold show that the nanocrystals form via solid-phase epitaxial attachment of Si to the gold crystal lattice. The results of computational modeling performed using first principles density functional theory (DFT) calculations predict that the enhanced stability of nanocrystals to oxidation is due to the presence of N or N-containing groups on the surface of nanocrystals.

  11. Nanofocusing optics for synchrotron radiation made from polycrystalline diamond.

    PubMed

    Fox, O J L; Alianelli, L; Malik, A M; Pape, I; May, P W; Sawhney, K J S

    2014-04-01

    Diamond possesses many extreme properties that make it an ideal material for fabricating nanofocusing x-ray optics. Refractive lenses made from diamond are able to focus x-ray radiation with high efficiency but without compromising the brilliance of the beam. Electron-beam lithography and deep reactive-ion etching of silicon substrates have been used in a transfer-molding technique to fabricate diamond optics with vertical and smooth sidewalls. Latest generation compound refractive lenses have seen an improvement in the quality and uniformity of the optical structures, resulting in an increase in their focusing ability. Synchrotron beamline tests of two recent lens arrays, corresponding to two different diamond morphologies, are described. Focal line-widths down to 210 nm, using a nanocrystalline diamond lens array and a beam energy of E = 11 keV, and 230 nm, using a microcrystalline diamond lens at E = 15 keV, have been measured using the Diamond Light Source Ltd. B16 beamline. This focusing prowess is combined with relatively high transmission through the lenses compared with silicon refractive designs and other diffractive optics. PMID:24718141

  12. Ion-Implanted Diamond Films and Their Tribological Properties

    NASA Technical Reports Server (NTRS)

    Wu, Richard L. C.; Miyoshi, Kazuhisa; Korenyi-Both, Andras L.; Garscadden, Alan; Barnes, Paul N.

    1993-01-01

    This paper reports the physical characterization and tribological evaluation of ion-implanted diamond films. Diamond films were produced by microwave plasma, chemical vapor deposition technique. Diamond films with various grain sizes (0.3 and 3 microns) and roughness (9.1 and 92.1 nm r.m.s. respectively) were implanted with C(+) (m/e = 12) at an ion energy of 160 eV and a fluence of 6.72 x 10(exp 17) ions/sq cm. Unidirectional sliding friction experiments were conducted in ultrahigh vacuum (6.6 x 10(exp -7)Pa), dry nitrogen and humid air (40% RH) environments. The effects of C(+) ion bombardment on fine and coarse-grained diamond films are as follows: the surface morphology of the diamond films did not change; the surface roughness increased (16.3 and 135.3 nm r.m.s.); the diamond structures were damaged and formed a thin layer of amorphous non-diamond carbon; the friction coefficients dramatically decreased in the ultrahigh vacuum (0.1 and 0.4); the friction coefficients decreased slightly in the dry nitrogen and humid air environments.

  13. Analyzing the performance of diamond-coated micro end mills.

    SciTech Connect

    Torres, C. D.; Heaney, P. J.; Sumant, A. V.; Hamilton, M. A.; Carpick, R. W.; Pfefferkorn, F. E.; Univ. of Wisconsin at Madison; Univ. of Pennsylvania

    2009-06-01

    A method is presented to improve the tool life and cutting performance of 300 {micro}m diameter tungsten carbide (WC) micro end mills by applying thin (<300 nm) fine-grained diamond (FGD) and nanocrystalline diamond (NCD) coatings using the hot-filament chemical vapor deposition (HF-CVD) process. The performance of the diamond-coated tools has been evaluated by comparing their performance in dry slot milling of 6061-T6 aluminum against uncoated WC micro end mills. Tool wear, coating integrity, and chip morphology were characterized using SEM and white light interferometry. The initial test results show a dramatic improvement in the tool integrity (i.e., corners not breaking off), a lower wear rate, no observable adhesion of aluminum to the diamond-coated tool, and a significant reduction in the cutting forces (>50%). Reduction of the cutting forces is attributed to the low friction and adhesion of the diamond coating. However, approximately 80% of the tools coated with the larger FGD coatings failed during testing due to delamination. Additional machining benefits were attained for the NCD films, which was obtained by using a higher nucleation density seeding process for diamond growth. This process allowed for thinner, smaller grained diamond coatings to be deposited on the micro end mills, and enabled continued operation of the tool even after the integrity of the diamond coating had been compromised. As opposed to the FGD-coated end mills, only 40% of the NCD-tools experienced delamination issues.

  14. Brown diamonds from an eclogite xenolith from Udachnaya kimberlite, Yakutia, Russia.

    PubMed

    Stepanov, Aleksandr S; Korsakov, Andrey V; Yuryeva, Olga P; Nadolinniy, Vladimir A; Perraki, Maria; De Gussem, Kris; Vandenabeele, Peter

    2011-10-01

    We have performed petrographic and spectroscopic studies of brown diamonds from an eclogite xenolith from the Udachnaya pipe (Yakutia, Russia). Brown diamonds are randomly intermixed with colorless ones in the rock and often located at the grain boundaries of clinopyroxene and garnet. Brown diamonds can be characterized by a set of defects (H4, N2D and a line at 490.7 nm) which are absent in colorless diamonds. This set of defects is typical for plastically deformed diamonds and indicates that diamonds were likely annealed for a relatively short period after deformation had occurred. Excitation of brown colored zones with a 632.8 nm He-Ne laser produced the typical diamond band plus two additional bands at 1730 cm(-1) and 3350 cm(-1). These spectral features are not genuine Raman bands, and can be attributed to photoluminescence at ∼710 nm (1.75 eV) and ∼802 nm (1.54 eV). No Raman peak corresponding to graphite was observed in regions of brown coloration. Comparison with previous reports of brown diamonds from eclogites showed our eclogitic sample to have a typical structure without signs of apparent deformation. Two mechanisms with regard to diamond deformation are proposed: deformation of eclogite by external forces followed by subsequent recrystallization of silicates or, alternatively, deformation by local stress arising due to decompression and expansion of silicates during ascent of the xenolith to surface conditions. PMID:21324732

  15. Diamond turning of lithium niobate for optical applications

    SciTech Connect

    Fuchs, B.A.; Syn, C.; Velsko, S.P. )

    1992-09-20

    We have investigated the surfae finishing of lithium niobate by using the single-point diamond turning technique. Surface finishes of better than 5 nm rms on {ital z}-oriented samples have been achieved. However, tool wear and spalling are much more significant with lithium niobate than with materials such as the crystals KDP and LAP. We present preliminary results comparing the optical damage thresholds of polished and diamond-turned samples.

  16. Colloidal Nanocrystals: A Model System for the Study of Phase Transformations Since 1950

    NASA Astrophysics Data System (ADS)

    Wittenberg, Joshua

    2011-06-01

    Shock waves provide a means of rapidly compressing a condensed phase sample and studying the resulting structural changes. However, shock studies to date have focused on bulk materials, in which multiple uncorrelated nucleation events lead to complex transformation kinetics. An individual nanocrystal, by comparison, can transform completely with ~10ps following nucleation of the daughter phase, reducing the likelihood that a second nucleation event will occur during the transformation time. In a diamond anvil cell, the wurtzite to rocksalt phase transformation in CdSe nanocrystals, for example, has been shown to follow simple first-order kinetics. The slow, ensemble kinetics observed in those experiments, however, obscured the dynamics within each nanocrystal. Rapidly compressing a nanocrystalline sample using a laser-driven shock wave, the pressure around each nanocrystal can rise on a timescale comparable to that for a sound wave to traverse the crystal. Shock experiments on nanoscale materials therefore have the potential to elucidate aspects of the transformation mechanism inaccessible to further quasi-static diamond anvil cell measurements behavior of CdSe nanocrystals under shock stresses of 2--3.75 GPa has been studied. Above 3 GPa a near-complete disappearance of the first excitonic feature and broadening of the low-energy absorption edge were observed, consistent with a wurtzite to rocksalt structural transformation. The transformation pressure was reduced relative to hydrostatic compression in a diamond anvil cell, and the rate increased, attributed to shock induced shear stress along the reaction coordinate. The especially rapid rate observed for a 3.75 GPa shock suggests multiple nucleation events occurring in each particle.

  17. Room-temperature single-photon sources based on nanocrystal fluorescence in photonic/plasmonic nanostructures

    NASA Astrophysics Data System (ADS)

    Lukishova, S. G.; Winkler, J. M.; Bissell, L. J.; Mihaylova, D.; Liapis, Andreas C.; Shi, Z.; Goldberg, D.; Menon, V. M.; Boyd, R. W.; Chen, G.; Prasad, P.

    2014-10-01

    Results are presented here towards robust room-temperature SPSs based on fluorescence in nanocrystals: colloidal quantum dots, color-center diamonds and doped with trivalent rare-earth ions (TR3+). We used cholesteric chiral photonic bandgap and Bragg-reflector microcavities for single emitter fluorescence enhancement. We also developed plasmonic bowtie nanoantennas and 2D-Si-photonic bandgap microcavities. The paper also provides short outlines of other technologies for room-temperature single-photon sources.

  18. Electronic states in spherical GaN nanocrystals embedded in various dielectric matrices: The k ṡ p-calculations

    NASA Astrophysics Data System (ADS)

    Konakov, A. A.; Filatov, D. O.; Korolev, D. S.; Belov, A. I.; Mikhaylov, A. N.; Tetelbaum, D. I.; Kumar, Mahesh

    2016-01-01

    Using the envelope-function approximation, the single-particle states of electrons and holes in spherical GaN nanocrystals embedded in different amorphous dielectric matrices (SiO2, Al2O3, HfO2 and Si3N4) have been calculated. Ground state energies of electrons and holes in GaN nanocrystals are determined using the isotropic approximation of the k ṡ p -Hamiltonian. All the ground state energies are found to increase with lowering the nanocrystal size and are proportional to the R-n, where R is the nanocrystal radius, n =1.5-1.9 for electrons and 1.7-2.0 for holes. The optical gap of GaN nanocrystals changes from 3.8 to 5 eV for the nanocrystal radius ranging from 3 to 1 nm.

  19. Synthesis and characterisation of magnetic iron sulfide nanocrystals

    SciTech Connect

    Beal, John H.L.; Etchegoin, Pablo G.; Tilley, Richard D.

    2012-05-15

    Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals with a variety of morphologies and average sizes were synthesised by the reaction of iron(II) acetylacetonate (Fe(acac){sub 2}) and elemental sulfur in oleylamine. Reaction at 200 Degree-Sign C for 240 min produced extremely thin Fe{sub 3}S{sub 4} sheets, which displayed low coercivities (14 kA m{sup -1}) suggestive of pseudosingle-domain or multidomain particles. Reaction temperatures {>=}300 Degree-Sign C for 30 min produced 70 nm Fe{sub 1-x}S nanocrystals with hexagonal plate and hexagonal prism morphologies, which displayed high magnetic coercivities (110 kA m{sup -1}) characteristic of single magnetic domain particles. Rapid injection of sulfur solution at 280 Degree-Sign C followed by immediate cooling produced a mixture of Fe{sub 1-x}S nanocrystals and spherical, polydisperse {approx}5 nm Fe{sub 3}S{sub 4} nanocrystals, which displayed superparamagnetism above an average blocking temperature of 55 K. - Graphical abstract: Reaction of Fe(acac){sub 2} and sulfur in oleylamine produces Fe{sub 3}S{sub 4} nanocrystals at 200 Degree-Sign C and Fe{sub 1-x}S nanocrystals at 310 Degree-Sign C. Highlights: Black-Right-Pointing-Pointer Synthesis of Fe{sub 1-x}S and Fe{sub 3}S{sub 4} nanocrystals from Fe(acac){sub 2} and sulfur. Black-Right-Pointing-Pointer Fe{sub 3}S{sub 4} sheets formed after 4 h at 200 Degree-Sign C. Black-Right-Pointing-Pointer Fe{sub 1-x}S nanocrystals formed above 200 Degree-Sign C. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} formed by rapid injection. Black-Right-Pointing-Pointer Five nanometre Fe{sub 3}S{sub 4} nanocrystals superparamagnetic above blocking temperature of 55 K.

  20. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal.

    PubMed

    Islam, Aminul; Teo, Siow Hwa; Rahman, M Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33-41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  1. Seeded Growth Route to Noble Calcium Carbonate Nanocrystal

    PubMed Central

    Islam, Aminul; Teo, Siow Hwa; Rahman, M. Aminur; Taufiq-Yap, Yun Hin

    2015-01-01

    A solution-phase route has been considered as the most promising route to synthesize noble nanostructures. A majority of their synthesis approaches of calcium carbonate (CaCO3) are based on either using fungi or the CO2 bubbling methods. Here, we approached the preparation of nano-precipitated calcium carbonate single crystal from salmacis sphaeroides in the presence of zwitterionic or cationic biosurfactants without external source of CO2. The calcium carbonate crystals were rhombohedron structure and regularly shaped with side dimension ranging from 33–41 nm. The high degree of morphological control of CaCO3 nanocrystals suggested that surfactants are capable of strongly interacting with the CaCO3 surface and control the nucleation and growth direction of calcium carbonate nanocrystals. Finally, the mechanism of formation of nanocrystals in light of proposed routes was also discussed. PMID:26700479

  2. Nanocrystal formation via yttrium ion implantation into sapphire

    SciTech Connect

    Hunt, E.M.; Hampikian, J.M.; Poker, D.B.

    1995-12-31

    Ion implantation has been used to form nanocrystals in the near surface of single crystal {alpha}-Al{sub 2}O{sub 3}. The ion fluence was 5 x 10{sup 16} Y{sup +}/cm{sup 2}, and the implant energies investigated were 100, 150, and 170 keV. The morphology of the implanted region was investigated using transmission electron microscopy, x-ray energy dispersive spectroscopy, Rutherford backscattering spectroscopy and ion channeling. The implantation causes the formation of an amorphous surface layer which contains spherical nanosized crystals with a diameter of {approximately}13 nm. The nanocrystals are randomly oriented and exhibit a face-centered cubic structure with a lattice parameter of {approximately}4.1 A {+-} .02 A. Preliminary chemical analysis shows that these nanocrystals are rich in aluminum and yttrium and poor in oxygen relative to the amorphous matrix.

  3. Synthesis and characterization of luminescent aluminium selenide nanocrystals

    SciTech Connect

    Balitskii, O.A.; Demchenko, P.Yu.; Mijowska, E.; Cendrowski, K.

    2013-02-15

    Highlights: ► Synthesis procedure of size and sharp controlled Al{sub 2}Se{sub 3} nanocrystals is introduced. ► Obtained nanoparticles are highly crystalline of hexagonal wurtzite type. ► Colloidal Al{sub 2}Se{sub 3} nanocrystals are highly luminescent in the near UV spectral region. ► They can be implemented in light emitters/collectors, concurring with II–VI nanodots. -- Abstract: We propose the synthesis and characterization of colloidal aluminium selenide nanocrystals using trioctylphosphine as a solvent. The nanoparticles have several absorption bands in the spectral region 330–410 nm and are bright UV-blue luminescent, which is well demanded in light collecting and emitting devices, e.g. for tuning their spectral characteristics to higher energy solar photons.

  4. Alkyl Passivation and Amphiphilic Polymer Coating of Silicon Nanocrystals for Diagnostic Imaging

    PubMed Central

    Hessel, Colin M.; Rasch, Michael R.; Hueso, Jose L.; Goodfellow, Brian W.; Akhavan, Vahid A.; Puvanakrishnan, Priyaveena; Tunnell, James W.

    2011-01-01

    We show a method to produce biocompatible polymer-coated silicon (Si) nanocrystals for medical imaging. Silica-embedded Si nanocrystals are formed by HSQ thermolysis. The nanocrystals are then liberated from the oxide and terminated with Si-H bonds by HF etching, followed by alkyl monolayer passivation by thermal hydrosilylation. The Si nanocrystals have an average diameter of 2.1 ± 0.6 nm and photoluminesce (PL) with a peak emission wavelength of 650 nm, which lies within the transmission window of 650–900 nm that is useful for biological imaging. The hydrophobic Si nanocrystals are then coated with an amphiphilic polymer for dispersion in aqueous media with pH ranging between 7 and 10 and ionic strength between 30 mM and 2 M, while maintaining a bright and stable PL and a hydrodynamic radius of only 20 nm. Fluorescence imaging of polymer-coated Si nanocrystals in a biological tissue host is demonstrated, showing the potential for in vivo imaging. PMID:20818646

  5. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  6. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    SciTech Connect

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.

    2010-10-12

    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone

  7. Ln(3+)-doped hydroxyapatite nanocrystals: controllable synthesis and cell imaging.

    PubMed

    Zheng, Xiaoyan; Liu, Meiying; Hui, Junfeng; Fan, Daidi; Ma, Haixia; Zhang, Xiaoyong; Wang, Yaoyu; Wei, Yen

    2015-08-21

    In this paper we report two different doping strategies to prepare a series of novel HAp:Ln(3+) (Ln = Eu or Tb) nanocrystals with tunable aspect ratios via facile hydrothermal synthetic routes. Adopting a one-pot synthetic strategy, with increasing rare-earth doping dosage, the as-prepared nanocrystals have relatively weak fluorescence intensity, and change from nanorods with lengths of about 150 nm into nanowires with lengths of about 2 μm. Using the synthetic pure HAp nanorods as matrices, they are endowed with bright green or red luminescent properties by doping Tb(3+) or Eu(3+) ions via a second hydrothermal process, and simultaneously retain their original morphologies (diameter 8 nm, length 150 nm). The hydrophobic HAp:Ln(3+) nanorods with strong optical properties are converted into hydrophilic particles with a surfactant (Pluronic F127) and successfully applied to live cell imaging. PMID:26190155

  8. Hyperoside nanocrystals for HBV treatment: process optimization, in vitro and in vivo evaluation.

    PubMed

    Shen, Baode; Wu, Na; Shen, Chengying; Zhang, Fucheng; Wu, Yan; Xu, Pinghua; Zhang, Lihong; Wu, Wei; Lu, Yi; Han, Jin; Wang, Yonggang; Yuan, Hailong

    2016-11-01

    The aim of this study was to develop hyperoside (Hyp) nanocrystals to enhance its dissolution rate, oral bioavailability and anti-HBV activity. Hyp nanocrystals were prepared using high pressure homogenization technique followed by lyophilization. A Box-Behnken design approach was employed for process optimization. The physicochemical properties, pharmacokinetics and anti-HBV activity in vivo of Hyp nanocrystal prepared with the optimized formulation were systematically investigated. Hyp nanocrystals prepared with the optimized formulation was found to be rod shaped with particle size of 384 ± 21 nm and PDI of 0.172 ± 0.027. XRPD studies suggested slight crystalline change in drug. Dissolution rate obtained from Hyp nanocrystals were markedly higher than pure Hyp. The nanocrystals exhibited enhanced Cmax (7.42 ± 0.73 versus 3.80 ± 0.66 mg/L) and AUC0 - t (193.61 ± 16.30 versus 91.92 ± 17.95 mg·h/L) with a 210.63% increase in relative bioavailability. Hyp nanocrystals exhibited significantly greater anti-HBV activity than Hyp. These results suggested that the developed nanocrystals formulation had a great potential as a viable approach to enhance the bioavailability of Hyp. PMID:27032257

  9. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    NASA Astrophysics Data System (ADS)

    Liu, Minglu; Wang, Robert Y.

    2015-11-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing.

  10. Size-Dependent Melting Behavior of Colloidal In, Sn, and Bi Nanocrystals

    PubMed Central

    Liu, Minglu; Wang, Robert Y.

    2015-01-01

    Colloidal nanocrystals are a technologically important class of nanostructures whose phase change properties have been largely unexplored. Here we report on the melting behavior of In, Sn, and Bi nanocrystals dispersed in a polymer matrix. This polymer matrix prevents the nanocrystals from coalescing with one another and enables previously unaccessed observations on the melting behavior of colloidal nanocrystals. We measure the melting temperature, melting enthalpy, and melting entropy of colloidal nanocrystals with diameters of approximately 10 to 20 nm. All of these properties decrease as nanocrystal size decreases, although the depression rate for melting temperature is comparatively slower than that of melting enthalpy and melting entropy. We also observe an elevated melting temperature during the initial melt-freeze cycle that we attribute to surface stabilization from the organic ligands on the nanocrystal surface. Broad endothermic melting valleys and very large supercoolings in our calorimetry data suggest that colloidal nanocrystals exhibit a significant amount of surface pre-melting and low heterogeneous nucleation probabilities during freezing. PMID:26573146

  11. Synthesis of discrete aluminophosphate -CLO nanocrystals in a eutectic mixture.

    PubMed

    Tao, Shuo; Xu, Renshun; Li, Xiaolei; Li, Dawei; Ma, Huaijun; Wang, Donge; Xu, Yunpeng; Tian, Zhijian

    2015-08-01

    Extra-large-pore aluminophosphate -CLO (i.e., DNL-1) nanocrystals were synthesized in a eutectic mixture composed of diethylamine hydrochloride (DEAC) and ethylene glycol (EG) with 1-methylimidazole (1-MIm) as an additional amine using both conventional and microwave heating. The effects of the synthesis parameters, such as the amount of 1-MIm and the P/Al ratio, on the formation of DNL-1 nanocrystals were studied. The products were characterized using a variety of techniques. XRD, DLS, SEM and TEM results indicate that the as-synthesized DNL-1 nanocrystals have good crystallinity and narrow particle size distributions, and their average particle size was controlled in the 100-220nm range by simply adjusting the amount of 1-MIm. TG-DSC and N2 adsorption analyses reveal that the as-synthesized DNL-1 nanocrystals exhibit good thermal stability and the calcined samples possess high BET surface areas and large pore volumes. In addition, the cooperative structure-directing effects of 1-MIm and the eutectic mixture cation (DEA(+)) in the formation of DNL-1 nanocrystals were discussed. PMID:25897847

  12. Diamond nanowires and the insulator-metal transition in ultrananocrystalline diamond films.

    SciTech Connect

    Arenal, R.; Bruno, P.; Miller, D. J.; Bleuel, M.; Lai, J.; Gruen, D. M.

    2007-05-01

    Further progress in the development of the remarkable electrochemical, electron field emission, high-temperature diode, and optical properties of n-type ultrananocrystalline diamond films requires a better understanding of electron transport in this material. Of particular interest is the origin of the transition to the metallic regime observed when about 10% by volume of nitrogen has been added to the synthesis gas. Here, we present data showing that the transition to the metallic state is due to the formation of partially oriented diamond nanowires surrounded by an sp{sup 2}-bonded carbon sheath. These have been characterized by scanning electron microscopy, transmission electron microscopy techniques (high-resolution mode, selected area electron diffraction, and electron-energy-loss spectroscopy), Raman spectroscopy, and small-angle neutron scattering. The nanowires are 80-100 nm in length and consist of {approx}5 nm wide and 6-10 nm long segments of diamond crystallites exhibiting atomically sharp interfaces. Each nanowire is enveloped in a sheath of sp{sup 2}-bonded carbon that provides the conductive path for electrons. Raman spectroscopy on the films coupled with a consideration of plasma chemical and physical processes reveals that the sheath is likely composed of a nanocarbon material resembling in some respects a polymer-like mixture of polyacetylene and polynitrile. The complex interactions governing the simultaneous growth of the diamond core and the sp{sup 2} sheath responsible for electrical conductivity are discussed as are attempts at a better theoretical understanding of the transport mechanism.

  13. Magnetic and upconverted luminescent properties of multifunctional lanthanide doped cubic KGdF4 nanocrystals.

    PubMed

    Yang, L W; Zhang, Y Y; Li, J J; Li, Y; Zhong, J X; Chu, Paul K

    2010-12-01

    Lanthanide (Ln3+) doped KGdF4 (Ln=Yb3+, Er3+, Ho3+, Tm3+) nanocrystals with a mean diameter of approximately 12 nm were synthesized by a hydrothermal method using oleic acid as a stabilizing agent at 180 °C. The nanocrystals crystallize in the cubic phase as α-NaGdF4. When excited by a 980 nm laser, these Ln3+ doped nanocrystals exhibit multicolor up-conversion (UC) emissions in red, yellow, blue and white. The calculated color coordinates demonstrate that white UC emission (CIE-X=0.352, CIE-Y=0.347) can be obtained by varying the dopant concentrations in the Yb3+/Ho3+/Tm3+ triply-doped nanocrystals to yield different RGB emission intensities. The measured field dependence of magnetization (M-H curves) of the KGdF4 nanocrystals shows their paramagnetic characteristics that can be ascribed to the non-interacting localized nature of the magnetic moment of Gd3+ ions. Moreover, low temperature thermal treatment can enhance UC properties, magnetization and magnetic mass susceptibility of Ln3+ doped KGdF4 nanocrystals. The multifunctional Ln3+ doped KGdF4 nanocrystals have potential applications in color displays, bioseparation, and optical-magnetic dual modal nanoprobes in biomedical imaging. PMID:20877853

  14. Nanocrystals of medium soluble actives--novel concept for improved dermal delivery and production strategy.

    PubMed

    Zhai, Xuezhen; Lademann, Jürgen; Keck, Cornelia M; Müller, Rainer H

    2014-08-15

    After use in oral pharmaceutical products, nanocrystals are meanwhile applied to improve the dermal penetration of cosmetic actives (e.g. rutin, hesperidin) and of drugs. By now, nanocrystals are only dermally applied made from poorly soluble actives. The novel concept is to formulate nanocrystals also from medium soluble actives, and to apply a dermal formulation containing additionally nanocrystals. The nanocrystals should act as fast dissolving depot, increase saturation solubility and especially accumulate in the hair follicles, to further increase skin penetration. Caffeine was used as model compound with relevance to market products, and a particular process was developed for the production of caffeine nanocrystals to overcome the supersaturation related effect of crystal growth and fiber formation - typical with medium soluble compounds. It is based on low energy milling (pearl milling) in combination with low dielectric constant dispersion media (water-ethanol or ethanol-propylene glycol mixtures) and optimal stabilizers. Most successful was Carbopol(®) 981 (e.g. 20% caffeine in ethanol-propylene glycol 3:7 with 2% Carbopol, w/w). Nanocrystals with varied sizes can now be produced in a controlled process e.g. 660 nm (optimal for hair follicle accumulation) to 250 nm (optimal for fast dissolution). The short term test proved stability over 2 months of the present formulation being sufficient to perform in vivo testing of the novel concept. PMID:24813782

  15. Accessible and green manufacturing of magnetite (ferrous ferric oxide) nanocrystals and their use in magnetic separations

    NASA Astrophysics Data System (ADS)

    Yavuz, Cafer Tayyar

    This work describes the first size dependent magnetic separation in nanoscale. Magnetite (Fe3O4) nanocrystals of high quality and uniform size were synthesized with monodispersity below 10%. Magnetite nanocrystals of 4 nm to 33 nm (average diameter) were produced. Batch synthesis was shown to go up to 20 grams which is more than 10 times of a standard nanocrystal synthesis, without loosing the quality and monodispersity. Reactor design for mass (1 gram per hour) production of magnetite nanocrystals is reported for the first time. The cost of a kg of lab purity magnetite nanocrystals was shown to be 2600. A green synthesis that utilizes rust and edible oils was developed. The cost of a kg was brought down to 22. Size dependency of magnetism was shown in nanoscale for the first time. Reversible aggregation theory was developed to explain the low field magnetic separation and solution behavior of magnetite nanocrystals. Arsenic was removed from drinking water with magnetite nanocrystals 200 times better than commercial adsorbents. Silica coating was successfully applied to enable the known silica related biotechnologies. Magnetite-silica nanoshells were functionalized with amino groups. For the first time, silver was coated on the magnetite-silica nanoshells to produce triple multishells. Anti-microbial activity of multishells is anticipated.

  16. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  17. Phase control in the synthesis of magnetic iron sulfide nanocrystals from a cubane-type Fe-S cluster.

    PubMed

    Vanitha, P V; O'Brien, Paul

    2008-12-24

    Phase control has been achieved in the synthesis of magnetic iron sulfide nanocrystals by the use of a single source precursor, a cubane type Fe-S cluster, bis(tetra-n-butylammonium) tetrakis[benezenethiolato-mu3-sulfido-iron]. This cluster cleanly decomposes in alkylamines to yield nanocrystals whose composition, structure, and dimensions are dependent on the temperature employed. At low temperatures, pyrrhotite type Fe7S8 nanocrystals with an average diameter of 5.6 nm are obtained. Higher temperatures yield griegite-Fe3S4 nanocrystals whose dimensions are tunable in the range 2.5-4.5 nm. All the obtained nanocrystals are superparamagnetic at room temperature. PMID:19035629

  18. Nanocrystal growth of single-phase Si1-xGex alloys

    NASA Astrophysics Data System (ADS)

    Giang, Nguyen Truong; Cong, Le Thanh; Dung, Nguyen Duc; Quang, Tran Van; Ha, Ngo Ngoc

    2016-06-01

    We present the formation of single-phase Si1-xGex (x=0.2, 0.4, 0.6, and 0.8) alloy nanocrystals dispersed in a SiO2 matrix. The studied samples were prepared by co-sputtering with excess Si1-xGex in SiO2 of approximately 33 at%. Upon heat treatment, crystallization of Si1-xGex alloys was examined by using X-ray diffraction and high-resolution transmission electron microscopy measurements. Single structure of face-centered cubic nanocrystals in a space group Fd-3m was concluded. The average nanocrystal size (from 2 nm to 10 nm) and the lattice constant a of the single-phase Si1-xGex nanocrystals were found to increase with the Ge composition parameter x. Density functional theory-generalized gradient approximation calculation showed the replacement of Ge into the Si sites and vice versa.

  19. Processing of functionally graded tungsten carbide-cobalt-diamond composites

    NASA Astrophysics Data System (ADS)

    Jain, Mohit

    Polycrystalline diamond compacts (PDCs) are widely used as drill bit cutters in rock drilling and as tool bits in machining non-ferrous materials. A typical PDC comprises a thin layer of sintered polycrystalline diamond bonded to a tungsten carbide-cobalt substrate. A well recognized failure mechanism is delamination at the interface between diamond and cemented carbide. High stresses at the diamond/carbide interface, due to thermal expansion and modulus mismatch, are the primary cause of in-service failure under impact loading conditions. This work was undertaken to develop a tungsten carbide-cobalt-diamond composite, which has a continuously graded interface between the diamond and tungsten carbide. The process developed comprised the following steps: (i) generation of a pore size gradient by electrochemical etching of cobalt from the surface of a partially sintered tungsten carbide-cobalt preform; (ii) chemical vapor infiltration of the porous preform with carbon by catalytic decomposition of a methane/hydrogen mixture, resulting in a graded carbon concentration; and (iii) consolidation of the carbon infiltrated preforms at 8GPa/1500°C to complete densification and to transform the carbon into diamond. Thus, the final product consists of a functionally graded WC-Co-diamond composite, with controlled distribution of the constituent phases. Tungsten carbide-cobalt powders with mean tungsten carbide particle size of 0.8mum(micro-grain) and 100 nm(nano-grain) were used as starting materials. Processing conditions were adjusted to obtain an optimal distribution of carbon in porous preforms. After high pressure/high temperature consolidation, both micro- and nano-composites showed a diffused interface between inner and outer regions of the fully dense materials. A micro-composite showed columnar-like tungsten carbide grains and faceted diamond grains in the outer region of the sintered material. The grain size of the diamond in this region was ˜2mum, and the

  20. Cadmium sulfide nanocrystals via two-step hydrothermal process in microemulsions: synthesis and characterization.

    PubMed

    Zhang, Peng; Gao, Lian

    2003-10-15

    CdS nanocrystals with an average diameter of 16 nm were synthesized in the CTAB/n-C(5)H(11)OH/n-C(6)H(14)/water quaternary microemulsions by a two-step hydrothermal process at 90 and 130 degrees C. The reaction of carbamide and carbon disulfide was employed as the sulfur source for the preparation of CdS nanocrystals. The resulting crystals were characterized with powder X-ray diffraction, transmission electron microscopy, UV-vis absorption spectroscopy, and photoluminescence spectroscopy. A unique core/shell structure of CdS nanocrystals was suggested for the explanation of the interesting phenomenon. PMID:14527472

  1. Evidence of reaction rate influencing cubic and hexagonal phase formation process in CdS nanocrystals

    NASA Astrophysics Data System (ADS)

    Deka, Kuldeep; Kalita, M. P. C.

    2016-05-01

    CdS nanocrystals are synthesized by co-precipitation method using 2-mercaptoethanol (ME) as capping agent. Cubic, hexagonal and their mixture are obtained by varying the ME concentration. Lower (higher) ME concentration results in cubic (hexagonal) phase. The crystallite sizes are in the range 3-7 nm. Increase in ME concentration lead to lower reaction rate between Cd2+ and S2- of the precursors, and slower reaction rate is found to favor hexagonal phase formation over the cubic one in CdS nanocrystals. Role of reaction rate in the phase formation process provides a way to synthesize CdS nanocrystals in desired crystal phase.

  2. Femtosecond transient absorption dynamics of close-packed gold nanocrystal monolayer arrays.

    SciTech Connect

    Eah, S.-K.; Jaeger, H. M.; Scherer, N. F.; Lin, X.-M.; Weiderrecht, G. P.; Univ. of Chicago

    2004-03-11

    Femtosecond transient absorption spectroscopy is used to investigate hot electron dynamics of close-packed 6 nm gold nanocrystal monolayers. Morphology changes of the monolayer caused by the laser pump pulse are monitored by transmission electron microscopy. At low pump power, the monolayer maintains its structural integrity. Hot electrons induced by the pump pulse decay through electron-phonon (e-ph) coupling inside the nanocrystals with a decay constant that is similar to the value for bulk films. At high pump power, irreversible particle aggregation and sintering occur in the nanocrystal monolayer, which cause damping and peak shifting of the transient bleach signal.

  3. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  4. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  5. Method of synthesizing pyrite nanocrystals

    DOEpatents

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  6. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  7. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  8. Examination of Short- and Long-Range Atomic Order Nanocrystalline SiC and Diamond by Powder Diffraction Methods

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Grzanka, E.; Stelmakh, S.; Gierlotka, S.; Weber, H.-P.; Proffen, T.; Palosz, W.

    2002-01-01

    The real atomic structure of nanocrystals determines unique, key properties of the materials. Determination of the structure presents a challenge due to inherent limitations of standard powder diffraction techniques when applied to nanocrystals. Alternate methodology of the structural analysis of nanocrystals (several nanometers in size) based on Bragg-like scattering and called the "apparent lattice parameter" (alp) is proposed. Application of the alp methodology to examination of the core-shell model of nanocrystals will be presented. The results of application of the alp method to structural analysis of several nanopowders were complemented by those obtained by determination of the Atomic Pair Distribution Function, PDF. Based on synchrotron and neutron diffraction data measured in a large diffraction vector of up to Q = 25 Angstroms(exp -1), the surface stresses in nanocrystalline diamond and SiC were evaluated.

  9. Diamond Ranch High School.

    ERIC Educational Resources Information Center

    Betsky, Aaron

    2000-01-01

    Highlights award-winning Diamond Ranch High School (California) that was designed and built on a steep site around Los Angeles considered unsatisfactory for building due to its unstable soils. Building organization is discussed, and photos are provided. (GR)

  10. Amorphous diamond films

    DOEpatents

    Falabella, S.

    1998-06-09

    Amorphous diamond films having a significant reduction in intrinsic stress are prepared by biasing a substrate to be coated and depositing carbon ions thereon under controlled temperature conditions. 1 fig.

  11. PROCESS FOR COLORING DIAMONDS

    DOEpatents

    Dugdale, R.A.

    1960-07-19

    A process is given for coloring substantially colorless diamonds in the blue to blue-green range and comprises the steps of irradiating the colorless diamonds with electrons having an energy within the range 0.5 to 2 Mev to obtain an integrated electron flux of between 1 and 2 x 10/sup 18/ thc diamonds may be irradiated 1 hr when they take on a blue color with a slight green tint: After being heated at about 500 deg C for half an hour they become pure blue. Electrons within this energy range contam sufficient energy to displace the diamond atoms from their normal lattice sites into interstitial sites, thereby causing the color changes.

  12. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  13. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  14. Germanium Nanocrystals Embedded in Sapphire

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Liao, C.Y.; Yi, D.O.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Chrzan, D.C.; Haller, E.E.

    2005-04-15

    {sup 74}Ge nanocrystals are formed in a sapphire matrix by ion implantation followed by damage. Embedded nanocrystals experience large compressive stress relative to bulk, as embedded in sapphire melt very close to the bulk melting point (Tm = 936 C) whereas experience considerably lower stresses. Also, in situ TEM reveals that nanocrystals ion-beam-synthesized nanocrystals embedded in silica are observed to be spherical and measured by Raman spectroscopy of the zone center optical phonon. In contrast, reveals that the nanocrystals are faceted and have a bi-modal size distribution. Notably, the matrix remains crystalline despite the large implantation dose and corresponding thermal annealing. Transmission electron microscopy (TEM) of as-grown samples those embedded in silica exhibit a significant melting point hysteresis around T{sub m}.

  15. How many electrons make a semiconductor nanocrystal film metallic

    NASA Astrophysics Data System (ADS)

    Reich, Konstantin; Chen, Ting; Kramer, Nicolaas; Fu, Han; Kortshagen, Uwe; Shklovskii, Boris

    For films of semiconductor nanocrystals to achieve their potential as novel, low-cost electronic materials, a better understanding of their doping to tune their conductivity is required. So far, it not known how many dopants will turn a nanocrystal film from semiconducting to metallic. In bulk semiconductors, the critical concentration nM of electrons at the metal-insulator transition is described by the famous Mott criterion: nMaB3 ~= 0 . 02 , where aB is the effective Bohr radius. We show theoretically that in a dense NC film, where NCs touch each other by small facets, the concentration of electrons nc >>nM at the metal-insulator transition satisfies the condition: ncρ3 ~= 0 . 3 , where ρ is a radius of contact facets. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. This work was supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award No. DMR-1420013.

  16. Photoluminescence of Eu{sup 3+}-doped LaPO{sub 4} nanocrystals synthesized by combustion method

    SciTech Connect

    Xiu Zhiliang; Liu Suwen; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Zhang Haiping; Zhou Guangjun

    2006-03-09

    Eu{sup 3+}-doped LaPO{sub 4} nanocrystals were synthesized for the first time by a combustion method with urea as a fuel calcined at 700 deg. C. The diffraction profile of the obtained sample was indexed as a monoclinic monazite-structure by X-ray diffraction (XRD) data. The obtained nanocrystals appeared to be short rod-like with diameters of 5-10 nm and lengths of 20-70 nm. The luminescence intensities of Eu{sup 3+}-doped LaPO{sub 4} nanocrystals were found to be strongly dependent on the quantities of urea added and the concentration of Eu{sup 3+}.

  17. Triphasic Tooling with Small Oriented Diamond Tip for Turning and Smoothing Lightweight Mirrors

    NASA Technical Reports Server (NTRS)

    Voronov, O. A.; Tompa, G. S.; Kear, B. H.; Veress, V.

    2004-01-01

    We are developing a new method for the growth of small diamond crystals at very high temperatures and pressures directly from a carbon melt. A prototype "Supercell" has been developed for this purpose. This system is capable of high rate crystal growth in relatively large working volumes. The resulting high quality diamond crystals will be incorporated into a triphasic diamond/titanium carbide/titanium composite tool, with an oriented diamond crystal at its tip. High pressure is needed to prevent degradation of diamond at high temperature, and to ensure the formation of a crack & composite structure. After grinding and polishing, the composite material will be joined to a steel holder, thus forming a diamond-tipped tool for turning and smoothing of a mirror surface. A properly oriented single-crystal diamond cuts and smoothes much better than a conventional polycrystalline diamond crystal. This is because the hardness depends on crystallographic orientation-the difference corresponds to 60-100 GPa on the Knoop scale. Our goal is to achieve surface roughness of about 1 nm, which will be accomplished by precision cutting and smoothing. The hardness of the functionally-graded diamond/titanium carbide/titanium composite tool varies from 100 GPa at its tip to 15 GPa at its base. Previous work has shown that the mass of machined material using an oriented-diamond tool is much larger than that for a standard diamond-metal composite tool.

  18. Hybrid white light sources based on layer-by-layer assembly of nanocrystals on near-UV emitting diodes

    NASA Astrophysics Data System (ADS)

    Nizamoglu, Sedat; Demir, Hilmi Volkan

    2007-10-01

    We present the design, growth, fabrication, integration and characterization of alternative hybrid white light sources based on the controlled layer-by-layer assembly of nanocrystals on UV-emitting nitride diodes for adjustable white light parameters. We hybridize CdSe/ZnS core-shell nanocrystals of different sizes (1.9-3.2-5.2 nm) on InGaN/GaN LEDs as a near-UV excitation source at 383 nm for efficient pumping. The first device includes layer-by-layer assembly of dichromatic cyan- and red-emitting nanocrystals (λPL = 504-615 nm) leading to the tristimulus coordinates (x = 0.37,y = 0.46); the second device uses the trichromatic combination of layer-by-layer hybridized cyan-, yellow- and red-emitting nanocrystals (λPL = 504-580-615 nm), yielding (x = 0.38,y = 0.48). Such layer-by-layer hybridization offers the advantages of precisely controlling individual nanocrystal film thicknesses and order in addition to concentrations. By utilizing such multiple combinations of nanocrystals in the assembly, the light parameters are well controlled and adjusted. Leveraging rapidly advancing UV technology into efficient lighting with nanocrystal based color conversion, it is critical to develop and demonstrate hybrid light sources on UV pumping platforms.

  19. Size-controlled synthesis of highly water-soluble silver nanocrystals

    SciTech Connect

    Hu Yongxing; Ge Jianping; Lim, Donna; Zhang Tierui; Yin Yadong

    2008-07-15

    We describe a modified polyol process for the synthesis of silver nanocrystals with uniform sizes ranging from several nanometers to {approx}20 nm. The use of polyacrylic acid, in place of polyvinylpyrrolidone in the conventional polyol process, significantly limits the growth of silver nanocrystals, prevents the interparticle aggregation and fusion, and leads to a uniform population of samples with high water solubility. The size of nanocrystals can be conveniently tuned by controlling the reaction time, the concentration and chain length of the polymeric surfactants, and the reaction temperature. Uniform silver nanocrystals within sizes below 20 nm are preferred candidates over larger particles for applications where high density of optical absorption is required, for example, for photothermal conversion in cancer therapy. - Graphical abstract: Silver nanocrystals with uniform and controllable sizes (<20 nm) have been synthesized using a modified polyol process. The use of polyacrylic acid as the surfactant significantly limits the nanocrystal growth, prevents the interparticle aggregation and fusion, and leads to a uniform population of samples with high water solubility.

  20. High-mobility diamond

    NASA Astrophysics Data System (ADS)

    Landstrass, Maurice I.

    1994-04-01

    Recent improvements in the CVD diamond deposition process have made possible the fabrication of diamond photoconductive diodes with carrier mobility and lifetime exceeding the values typical of natural gemstones. One of the more surprising recent results is that the best room-temperature carrier properties have been measured on polycrystalline diamond films. The combined electron- hole mobility, as measured by transient photoconductivity at low carrier densities, is 4000 square centimeters per volt per second at electric field of 200 volts per centimeter and is comparable to that of the best single-crystal IIa natural diamonds. Carrier lifetimes measured under the same conditions are 150 picoseconds for the CVD diamond films. The collection distance within the diamond films, at the highest applied fields, is comparable to the average film grain size, indicative of little or no carrier scattering at grain boundaries. A comparison of SIMS measurements with electrical results suggest that impurity incorporation in the near grain boundary regions are responsible for controlling the carrier mobility.

  1. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    SciTech Connect

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  2. In situ capping for size control of monochalcogenide (ZnS, CdS and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Gug Jang, Gyoung; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, Harry M., III; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji-Won

    2015-08-01

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. The capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  3. Silicon nanocrystal inks, films, and methods

    DOEpatents

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  4. Atomic-scale modeling of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Xiawa

    Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to

  5. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays.

    PubMed

    Varney, Michael W; Aslam, Dean M; Janoudi, Abed; Chan, Ho-Yin; Wang, Donna H

    2011-01-01

    Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors. PMID:25586924

  6. Polycrystalline-Diamond MEMS Biosensors Including Neural Microelectrode-Arrays

    PubMed Central

    Varney, Michael W.; Aslam, Dean M.; Janoudi, Abed; Chan, Ho-Yin; Wang, Donna H.

    2011-01-01

    Diamond is a material of interest due to its unique combination of properties, including its chemical inertness and biocompatibility. Polycrystalline diamond (poly-C) has been used in experimental biosensors that utilize electrochemical methods and antigen-antibody binding for the detection of biological molecules. Boron-doped poly-C electrodes have been found to be very advantageous for electrochemical applications due to their large potential window, low background current and noise, and low detection limits (as low as 500 fM). The biocompatibility of poly-C is found to be comparable, or superior to, other materials commonly used for implants, such as titanium and 316 stainless steel. We have developed a diamond-based, neural microelectrode-array (MEA), due to the desirability of poly-C as a biosensor. These diamond probes have been used for in vivo electrical recording and in vitro electrochemical detection. Poly-C electrodes have been used for electrical recording of neural activity. In vitro studies indicate that the diamond probe can detect norepinephrine at a 5 nM level. We propose a combination of diamond micro-machining and surface functionalization for manufacturing diamond pathogen-microsensors. PMID:25586924

  7. Formation of oriented nanostructures in diamond using metallic nanoparticles.

    PubMed

    Mehedi, H-A; Hebert, C; Ruffinatto, S; Eon, D; Omnes, F; Gheeraert, E

    2012-11-16

    A simple, fast and cost-effective etching technique to create oriented nanostructures such as pyramidal and cylindrical shaped nanopores in diamond membranes by self-assembled metallic nanoparticles is proposed. In this process, a diamond film is annealed with thin metallic layers in a hydrogen atmosphere. Carbon from the diamond surface is dissolved into nanoparticles generated from the metal film, then evacuated in the form of hydrocarbons and, consequently, the nanoparticles enter the crystal volume. In order to understand and optimize the etching process, the role of different parameters such as type of catalyst (Ni, Co, Pt, and Au), hydrogen gas, temperature and time of annealing, and microstructure of diamond (polycrystalline and nanocrystalline) were investigated. With this technique, nanopores with lateral sizes in the range of 10-100 nm, and as deep as about 600 nm, in diamond membranes were produced without any need for a lithography process, which opens the opportunities for fabricating porous diamond membranes for chemical sensing applications. PMID:23090452

  8. Dissolution enhancement and in vitro performance of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization method.

    PubMed

    Morakul, Boontida; Suksiriworapong, Jiraphong; Chomnawang, Mullika Traidej; Langguth, Peter; Junyaprasert, Varaporn Burapacheep

    2014-11-01

    The gastroduodenal diseases caused by Helicobacter pylori were commonly treated with antibiotic clarithromycin as a standard regimen. According to the poorly water-soluble of clarithromycin, the nanocrystal formulation was prepared. The aim of this study was to investigate an enhancement effect of clarithromycin nanocrystals produced by precipitation-lyophilization-homogenization (PLH) method on the saturation solubility, dissolution velocity, antibiotic activity, permeability through the gastric mucus and cellular permeability. Poloxamer 407 and sodium lauryl sulfate (SLS) were chosen as combined stabilizers in the nanocrystal system. The obtained clarithromycin nanocrystals were identified as cubic particles by SEM with a bulk population of approximately 400nm existed in crystalline and/or partial amorphous form as investigated by DSC and XRPD. The saturation solubility of the clarithromycin nanocrystals was increased by 1.5- and 6-folds higher than clarithromycin powder in buffer pH 5.0 and 6.8, respectively. The dissolution profiles of clarithromycin nanocrystals at pH 5.0 and 6.8 were significantly different from clarithromycin powder and the marketed product (f1 value >15 and f2 value <50). All dissolution parameters (relative dissolution rate, percent dissolution efficiency and mean dissolution time) showed that clarithromycin nanocrystals had higher dissolution rate when compared with the clarithromycin powder, the lyophilized coarse suspension and the marketed product. The bioassay study by diffusion agar method showed a maintained antibiotic activity of clarithromycin nanocrystals solubilized in buffer solution which was greater potency than the lyophilized coarse suspension and the clarithromycin powder. Additionally, the nanocrystals possessed higher permeability through gastric mucus and cellular monolayer of Caco-2 and NCI-N87 cells as compared to the lyophilized coarse suspension and the clarithromycin powder. The results indicated that, the

  9. Growth and characterization of cubic and non-cubic Ge nanocrystals

    NASA Astrophysics Data System (ADS)

    Mukherjee, S.; Pradhan, A.; Mukherjee, S.; Maitra, T.; Nayak, A.; Bhunia, S.

    2016-05-01

    Germanium nanocrystals with tetragonal (ST-12) and diamond like cubic (Ge-I) phases have been selectively grown by controlling the ionization and electrostatic potential of Ge clusters in an ion cluster beam deposition system. Predominantly tetragonal nanocrystals were obtained when grown using neutral clusters. The percentage of cubic phase increased when grown by ionizing the clusters and accelerating them towards substrates by applying electrostatic bias in the range of 1.5 -2.5 kV. Raman spectroscopic measurement showed strong peak at 275 cm-1 and 300 cm-1 for tetragonal and cubic Ge nanocrystals, respectively. TEM measurements showed crystalline lattice fringes of both type of the nanocrystals. The selected area electron diffraction patterns showed (111) and (210) as the dominating lattice planes for tetragonal nanocrystals while the cubic phases had (111), (311) and (331) as the prominent lattice planes. The optical absorption edge redshifted from 1.75 to 1.55 eV as the percentage of the cubic phases increased in the NC composition in the composite film.

  10. Luminescent ZnS:Mn/thioglycerol and ZnS:Mn/ZnS core/shell nanocrystals: Synthesis and characterization

    NASA Astrophysics Data System (ADS)

    Hoa, Tran Thi Quynh; Binh, Le Thi Thanh; Vu, Le Van; Long, Nguyen Ngoc; Hanh, Vu Thi Hong; Chinh, Vu Duc; Nga, Pham Thu

    2012-12-01

    The synthesis and photoluminescent properties of Mn2+-doped ZnS nanocrystals coated with an organic shell of thioglycerol and an inorganic shell of ZnS are reported in this paper. The photoluminescence spectra of bare ZnS:Mn nanocrystals exhibited a dominant ultraviolet-violet emission peaked at the wavelength range of 395-450 nm and an weak orange emission peaked at the wavelength range of 580-600 nm. The ultraviolet-violet emission was attributed to the surface defect states. The orange emission was assigned to the 4T1-6A1 transition of Mn2+ ions. These two channels of radiative recombination compete with each other. The coating ZnS:Mn nanocrystals with the thioglycerol shells or the ZnS shells reduced the surface defects and led to the enhancement of the emission of Mn2+ ions. On the other hand, the overcoating ZnS:Mn nanocrystals by thioglycerol shell restricted the growth of the nanocrystals, while the overcoating ZnS:Mn nanocrystals by ZnS shells made the band edge of the ZnS:Mn/ZnS core/shell nanocrystals shift to the lower energy side (the red shift) compared with the bare ZnS:Mn nanocrystals as observed in both the absorption and the photoluminescence excitation spectra.

  11. Fabrication of planarised conductively patterned diamond for bio-applications.

    PubMed

    Tong, Wei; Fox, Kate; Ganesan, Kumaravelu; Turnley, Ann M; Shimoni, Olga; Tran, Phong A; Lohrmann, Alexander; McFarlane, Thomas; Ahnood, Arman; Garrett, David J; Meffin, Hamish; O'Brien-Simpson, Neil M; Reynolds, Eric C; Prawer, Steven

    2014-10-01

    The development of smooth, featureless surfaces for biomedical microelectronics is a challenging feat. Other than the traditional electronic materials like silicon, few microelectronic circuits can be produced with conductive features without compromising the surface topography and/or biocompatibility. Diamond is fast becoming a highly sought after biomaterial for electrical stimulation, however, its inherent surface roughness introduced by the growth process limits its applications in electronic circuitry. In this study, we introduce a fabrication method for developing conductive features in an insulating diamond substrate whilst maintaining a planar topography. Using a combination of microwave plasma enhanced chemical vapour deposition, inductively coupled plasma reactive ion etching, secondary diamond growth and silicon wet-etching, we have produced a patterned substrate in which the surface roughness at the interface between the conducting and insulating diamond is approximately 3 nm. We also show that the patterned smooth topography is capable of neuronal cell adhesion and growth whilst restricting bacterial adhesion. PMID:25175198

  12. Laser annealing of neutron irradiated boron-10 isotope doped diamond

    SciTech Connect

    Jagannadham, K.; Butler, J. E.

    2011-01-01

    10B isotope doped p-type diamond epilayer grown by chemical vapor deposition on (110) oriented type IIa diamond single crystal substrate was subjected to neutron transmutation at a fluence of 2.4 9 1020 thermal and 2.4 9 1020 fast neutrons. After neutron irradiation, the epilayer and the diamond substrate were laser annealed using Nd YAG laser irradiation with wave length, 266 nm and energy, 150 mJ per pulse. The neutron irradiated diamond epilayer and the substrate were characterized before and after laser annealing using different techniques. The characterization techniques include optical microscopy, secondary ion mass spectrometry, X-ray diffraction, Raman, photoluminescence and Fourier Transform Infrared spectroscopy, and electrical sheet conductance measurement. The results indicate that the structure of the irradiation induced amorphous epilayer changes to disordered graphite upon laser annealing. The irradiated substrate retains the (110) crystalline structure with neutron irradiation induced defects.

  13. Temperature enhancement of secondary electron emission from hydrogenated diamond films

    SciTech Connect

    Stacey, A.; Prawer, S.; Rubanov, S.; Akhvlediani, R.; Michaelson, Sh.; Hoffman, A.

    2009-09-15

    The effect of temperature on the stability of the secondary electron emission (SEE) yield from approx100-nm-thick continuous diamond films is reported. At room temperature, the SEE yield was found to decay as a function of electron irradiation dose. The SEE yield is observed to increase significantly upon heating of the diamond surface. Furthermore, by employing moderate temperatures, the decay of the SEE yield observed at room temperature is inhibited, showing a nearly constant yield with electron dose at 200 deg. C. The results are explained in terms of the temperature dependence of the electron beam-induced hydrogen desorption from the diamond surface and surface band bending. These findings demonstrate that the longevity of diamond films in practical applications of SEE can be increased by moderate heating.

  14. Cryotribology of diamond and graphite

    SciTech Connect

    Iwasa, Yukikazu; Ashaboglu, A.F.; Rabinowicz, E.R.

    1996-12-31

    An experimental study was carried out on the tribological behavior of materials of interest in cryogenic applications, focusing on diamond and graphite. Both natural diamond (referred in the text as diamond) and chemical-vapor-deposition (CVD) diamond (CVD-diamond) were used. The experiment was carried out using a pin-on-disk tribometer capable of operating at cryogenic temperatures, from 4.2 to 293 K. Two basic scenarios of testing were used: (1) frictional coefficient ({mu}) vs velocity (v) characteristics at constant temperatures; (2) {mu} vs temperature (T) behavior at fixed sliding speeds. For diamond/CVD-diamond, graphite/CVD-diamond, stainless steel/CVD-diamond pairs, {mu}`s are virtually velocity independent. For each of diamond/graphite, alumina/graphite, and graphite/graphite pairs, the {partial_derivative}{mu}/{partial_derivative}v characteristic is favorable, i.e., positive. For diamond/CVD-diamond and graphite/CVD-diamond pairs, {mu}`s are nearly temperature independent between in the range 77 - 293 K. Each {mu} vs T plot for pin materials sliding on graphite disks has a peak at a temperature in the range 100 - 200 K.

  15. Characterization of CdSe-nanocrystals used in semiconductors for aerospace applications: Production and optical properties

    NASA Astrophysics Data System (ADS)

    Hegazy, Maroof A.; Abd El-Hameed, Afaf M.

    2014-06-01

    Semiconductor nanocrystals (NC’s) are the materials with dimensions less than 10 nm. When the dimensions of nanocrystals are reduced the bulk bohr diameter, the photo generated electron-hole pair becomes confined and nanocrystal exhibits size dependent upon optical properties. This work is focused on the studying of CdSe semiconductor nanocrystals. These nanocrystals are considered as one of the most widely studies semiconductors because of their size - tunable optical properties from the visible spectrum. CdSe-nanocrystals are produced and obtained throughout the experimental setup initiated at Nano-NRIAG Unit (NNU), which has been constructed and assembled at NRIAG institute. This unit has a specific characterization for preparing chemical compositions, which may be used for solar cell fabrications and space science technology. The materials prepared included cadmium oxide and selinid have sizes ranging between 2.27 nm and 3.75 nm. CdSe-nanocrystals are synthesized in “TOP/TOPO (tri-octyl phosphine/tri-octyl phosphine oxide). Diagnostic tools, include UV analysis, TEM microscope, and X-ray diffraction, which are considered for the analytical studies of the obtained materials. The results show that, in this size regime, the generated particles have unique optical properties, which is achieved from the UV analysis. Also, the TEM image analysis shows the size and shape of the produced particles. These studies are carried out to optimize the photoluminescent efficiency of these nanoparticles. Moreover, the data revealed that, the grain size of nanocrystals is dependent upon the growth time in turn, it leads to a change in the energy gap. Some applications of this class of materials are outlined.

  16. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  17. Optical Properties of Co2+ Doped ZnS Nanocrystals

    NASA Astrophysics Data System (ADS)

    Sarkar, R.; Kumbhakar, P.; Mitra, A. K.

    2010-10-01

    ZnS nanocrystals with Co2+ doping have been prepared through a soft chemical route. The undoped ZnS and Co2+ doped ZnS:Co nanocrystals have been analyzed using X-ray diffraction (XRD), high resolution transmission electron microscope (HRTEM), and ultraviolet-visible (UV-VIS) spectrophotometer. Undoped sample exhibits room-temperature photoluminescence (PL) emission in the blue region with a broad spectral band peaked at ˜397 nm under UV excitation. But from the 1.5% Co2+ doped samples, a strong blue emission peaked at ˜470 nm is observed and further increase in doping leads to considerable blue shift and enhancement in intensity of the PL spectrum.

  18. [Studies on nano-diamond prepared by explosive detonation by Raman and infrared spectroscopy].

    PubMed

    Wen, Chao; Jin, Zhi-Hao; Liu, Xiao-Xin; Li, Xun; Guan, Jin-Qing; Sun, De-Yu; Lin, Ying-Rui; Tang, Shi-Ying; Zhou, Gang; Lin, Jun-De

    2005-05-01

    Nano-diamond was synthesized by TNT/RDX explosives detonation in a steel chamber and characterized by X-ray diffraction (XRD), laser Raman spectroscopy, and infrared spectroscopy. XRD results indicate that nano-diamond has cubic diamond structure. The parameter of unit cell of nano-diamond is 0.359 23 nm and is 0.72% larger than that of the bulk diamond. The high-density defects and other impurity atoms in the nano-diamond structure may lead to the large lattice constant. The examination results of Raman spectra show that the Raman band is broader and shifts to l ow frequency by 3 cm(-1), because the size of nano-diamond reaches nanometer order. There is little graphite in the nano-diamond. There are two peaks in FTIR of the nano-diamond, which are characteristic peaks of diamond at 1 262 and 1 134 cm(-1). Besides these two peaks, there are six peaks at 3 422, 1 643, 2 971, 2 930, 2 857 and 1 788 cm(-1) respectively. The FTIR bands at 2 930 and 2 857 cm(-1) are the antisymmetrical and symmetrical stretch vibration absorption spectra of CH2 respectively. The 3 422 cm(-1) is the stretch vibration absorption peak of O-H. The 1 634 cm(-1) confirms that there are H2O in the nano-diamond. The 2 971 cm(-1) is the antisymmetrical stretch vibration absorption peak of CH3. The 1 788 cm(-1) is the stretch vibration absorption peak of C=O. These indicate that there are H and O elements in the nano-diamond. From the mechanism of the nano-diamond, the authors discuss the reason for the vibration absorption peaks of O-H, CH2, CH3, and C=O, existing in the FTIR of the nano-diamond. PMID:16128062

  19. Wear-Resistant, Self-Lubricating Surfaces of Diamond Coatings

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1995-01-01

    In humid air and dry nitrogen, as-deposited, fine-grain diamond films and polished, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m). In an ultrahigh vacuum (10(exp -7) Pa), however, they have high steady-state coefficients of friction (greater than 0.6) and high wear rates (greater than or equal to 10(exp -4) mm(exp 3)/N-m). Therefore, the use of as-deposited, fine-grain and polished, coarse-grain diamond films as wear-resistant, self-lubricating coatings must be limited to normal air or gaseous environments such as dry nitrogen. On the other hand, carbon-ion-implanted, fine-grain diamond films and nitrogen-ion-implanted, coarse-grain diamond films have low steady-state coefficients of friction (less than 0.1) and low wear rates (less than or equal to 10(exp -6) mm(exp 3)/N-m) in all three environments. These films can be effectively used as wear-resistant, self-lubricating coatings in an ultrahigh vacuum as well as in normal air and dry nitrogen.

  20. The Diamond Makers

    NASA Astrophysics Data System (ADS)

    Hazen, Robert M.

    1999-08-01

    Since time immemorial, we have treasured diamonds for their exquisite beauty and unrivaled hardness. Yet, most of the earth's diamonds lie deep underground and totally unaccessible to us--if only we knew how to fabricate them! In The Diamond Makers Robert Hazen vividly recounts the very human desire to exceed nature and create a synthetic diamond. Spanning centuries of ground-breaking science, instances of bitter rivalry, cases of outright fraud and self-delusion, Hazen blends drama and science to reveal the extraordinary technological advances and devastating failures of the diamond industry. Along the way, readers will be introduced to the brilliant, often eccentric and controversial, pioneers of high-pressure research who have harnessed crushing pressures and scorching temperatures to transform almost any carbon-rich material, from road tar to peanut butter, into the most prized of all gems. Robert M. Hazen is the author of fifteen books, including the bestseller, Science Matters: Achieving Scientific Literacy, which he wrote with James Trefil. Dr. Hazen has won numerous awards for his research and scientific writing.

  1. Unusual Cathodoluminescence in Diamonds: Evidence for Metamorphism or a Source Characteristic

    NASA Astrophysics Data System (ADS)

    Bruce, L. F.; Longo, M.; Kopylova, M.; Ryder, J.

    2009-05-01

    Cathodoluminescence (CL) is a useful means of diamond "fingerprinting". CL-active cratonic macrodiamonds usually cathodoluminesce blue or yellow, and always exhibit prominent wide CL emittance peaks at 430-450 nm and 480-490 nm. Exceptions to this norm are diamond suites recently discovered in the Archean rocks metamorphosed in the greenschist facies. These macrodiamonds cathodoluminesce red, orange and yellow, and invariably exhibit the most prominent CL peak at 520 nm. The diamond suites with the unusual CL are derived from two different locations within the Michipicoten Greenstone Belt (Southern Superior craton), near the town of Wawa (Ontario). One suite is extracted from the 2.68-2.74 Ga polymict volcanic breccias and lamprophyres and the other suite - from the 2.68 Ga sedimentary conglomerates grading into overlying sandstones of the Dore assemblage. The diamondiferous conglomerates are found in an area 8 km south of the breccias and 12 km northeast of Wawa. CL emittance of macrodiamonds (> 0.5 mm) extracted from the breccias consists of a broad band at 520 nm, a sharp peak at 575.5 nm, and several lines at 550-670 nm. The conglomerate macrodiamonds mostly show a dominant peak at 520 nm, whereas corresponding microdiamonds exhibit two peaks at about 576 and 600 nm. None of the diamonds show a maximum peak at 420 nm. Polycrystalline stones from conglomerates show distinct CL spectra and colours for all intergrown crystals in the same diamond. The relative abundances of the CL colors of the conglomerate diamonds are orange-red (46%), yellow (28%), orange-green (10%), green (6%), and non-uniform colors (10%). These colours are more diverse than mostly orange CL colours in the breccia diamonds; this results from a larger variety of positions and intensity of CL peaks in the conglomerate diamonds. We propose two models for explaining the presence of the 520 nm CL peak in the breccia and conglomerate diamonds in Wawa. The first model suggests metamorphism as the

  2. Formulation of 20(S)-protopanaxadiol nanocrystals to improve oral bioavailability and brain delivery.

    PubMed

    Chen, Chen; Wang, Lisha; Cao, Fangrui; Miao, Xiaoqing; Chen, Tongkai; Chang, Qi; Zheng, Ying

    2016-01-30

    The aim of this study was to fabricate 20(S)-protopanaxadiol (PPD) nanocrystals to improve PPD's oral bioavailability and brain delivery. PPD nanocrystals were fabricated using an anti-solvent precipitation approach where d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) was optimized as the stabilizer. The fabricated nanocrystals were nearly spherical with a particle size and drug loading of 90.44 ± 1.45 nm and 76.92%, respectively. They are in the crystalline state and stable at 4°C for at least 1 month. More than 90% of the PPD could be rapidly released from the nanocrystals, which was much faster than the physical mixture and PPD powder. PPD nanocrystals demonstrated comparable permeability to solution at 2.52 ± 0.44×10(-5)cm/s on MDCK monolayers. After oral administration of PPD nanocrystals to rats, PPD was absorbed quickly into the plasma and brain with significantly higher Cmax and AUC0-t compared to those of the physical mixture. However, no brain targeting was observed, as the ratios of the plasma AUC0-t to brain AUC0-t for the two groups were similar. In summary, PPD nanocrystals are a potential oral delivery system to improve PPD's poor bioavailability and its delivery into the brain for neurodegenerative disease and intracranial tumor therapies in the future. PMID:26680316

  3. Special Features of the Electrical Conductivity in Doped {alpha}-Si:H Films with Silicon Nanocrystals

    SciTech Connect

    Arzhannikova, S.A.; Efremov, M.D.; Kamaev, G.N.; Vishnyakov, A.V.; Volodin, V.A.

    2005-04-01

    The electrical properties of undoped and phosphorus-doped {alpha}-Si:H films with Si nanocrystals are studied. The silicon nanocrystals are formed by a solid-solid phase transition resulting from the nanosecond effect of a XeCl excimer laser on an amorphous film. The formation of the nanocrystals in the undoped films is accompanied by an increase in the electrical conductivity by two to three orders of magnitude and a simultaneous decrease in the effective activation energy of the conductivity from 0.7 to 0.14 eV. The nanocrystal sizes range from 2 to 10 nm for various laser treatment modes and are determined from Raman scattering data and high-resolution electron microscopy. The temperature dependence of the Fermi level is obtained by calculating the energies of the localized states of electrons and holes in the nanocrystals. It is shown that, as the temperature decreases, the Fermi level tends to the energy of the states in the Si nanocrystals for a wide concentration range of the dopant. The Fermi level's location close to the states in the nanocrystals is a consequence of the fact that these states are multicharged. It is found that phosphorus effectively transforms into an electrically active state during laser treatment of the doped amorphous Si films, which is an important consideration in the fabrication of shallow p-n junctions and contacts for amorphous Si films.

  4. Nonlinear Absorption and Low-Threshold Multiphoton Pumped Stimulated Emission from All-Inorganic Perovskite Nanocrystals.

    PubMed

    Wang, Yue; Li, Xiaoming; Zhao, Xin; Xiao, Lian; Zeng, Haibo; Sun, Handong

    2016-01-13

    Halide perovskite materials have attracted intense research interest due to the striking performance in photoharvesting photovoltaics as well as photoemitting applications. Very recently, the emerging CsPbX3 (X = Cl, Br, I) perovskite nanocrystals have been demonstrated to be efficient emitters with photoluminescence quantum yield as high as ∼90%, room temperature single photon sources, and favorable lasing materials. Herein, the nonlinear optical properties, in particular, the multiphoton absorption and resultant photoluminescence of the CsPbBr3 nanocrystals, were investigated. Notably, a large two-photon absorption cross-section of up to ∼1.2 × 10(5) GM is determined for 9 nm sized CsPbBr3 nanocrystals. Moreover, low-threshold frequency-upconverted stimulated emission by two-photon absorption was observed from the thin film of close-packed CsPbBr3 nanocrystals. The stimulated emission is found to be photostable and wavelength-tunable. We further realize the three-photon pumped stimulated emission in green spectra range from colloidal nanocrystals for the first time. Our results reveal the strong nonlinear absorption in the emerging CsPbX3 perovskite nanocrystals and suggest these nanocrystals as attractive multiphoton pumped optical gain media, which would offer new opportunities in nonlinear photonics and revive the nonlinear optical devices. PMID:26652773

  5. Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries.

    PubMed

    Su, Dawei; Wang, Chengyin; Ahn, Hyojun; Wang, Guoxiu

    2013-08-14

    Single crystalline SnO2 nanocrystals (~60 nm in size) with a uniform octahedral shape were synthesised using a hydrothermal method. Their phase and morphology were characterized by XRD and FESEM observation. TEM and HRTEM analyses identified that SnO2 octahedral nanocrystals grow along the [001] direction, consisting of dominantly exposed {221} high energy facets. When applied as anode materials for Na-ion batteries, SnO2 nanocrystals exhibited high reversible sodium storage capacity and excellent cyclability (432 mA h g(-1) after 100 cycles). In particular, SnO2 nanocrystals also demonstrated a good high rate performance. Ex situ TEM analysis revealed the reaction mechanism of SnO2 nanocrystals for reversible Na ion storage. It was found that Na ions first insert into SnO2 crystals at the high voltage plateau (from 3 V to ~0.8 V), and that the exposed (1 × 1) tunnel-structure could facilitate the initial insertion of Na ions. Subsequently, Na ions react with SnO2 to form NaxSn alloys and Na2O in the low voltage range (from ~0.8 V to 0.01 V). The superior cyclability of SnO2 nanocrystals could be mainly ascribed to the reversible Na-Sn alloying and de-alloying reactions. Furthermore, the reduced Na2O "matrix" may help retard the aggregation of tin nanocrystals, leading to an enhanced electrochemical performance. PMID:23793542

  6. Nanofabrication of sharp diamond tips by e-beam lithography and inductively coupled plasma reactive ion etching.

    SciTech Connect

    Moldovan, N.; Divan, R.; Zeng, H.; Carlisle, J. A.; Advanced Diamond Tech.

    2009-12-07

    Ultrasharp diamond tips make excellent atomic force microscopy probes, field emitters, and abrasive articles due to diamond's outstanding physical properties, i.e., hardness, low friction coefficient, low work function, and toughness. Sharp diamond tips are currently fabricated as individual tips or arrays by three principal methods: (1) focused ion beam milling and gluing onto a cantilever of individual diamond tips, (2) coating silicon tips with diamond films, or (3) molding diamond into grooves etched in a sacrificial substrate, bonding the sacrificial substrate to another substrate or electrodepositing of a handling chip, followed by dissolution of the sacrificial substrate. The first method is tedious and serial in nature but does produce very sharp tips, the second method results in tips whose radius is limited by the thickness of the diamond coating, while the third method involves a costly bonding and release process and difficulties in thoroughly filling the high aspect ratio apex of molding grooves with diamond at the nanoscale. To overcome the difficulties with these existing methods, this article reports on the feasibility of the fabrication of sharp diamond tips by direct etching of ultrananocrystalline diamond (UNCD{reg_sign}) as a starting and structural material. The UNCD is reactive ion etched using a cap-precursor-mask scheme. An optimized etching recipe demonstrates the formation of ultrasharp diamond tips ({approx} 10 nm tip radius) with etch rates of 650 nm/min.

  7. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A.P.; Goldstein, A.N.

    1993-11-16

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000 K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure. 9 figures.

  8. Low temperature thin films formed from nanocrystal precursors

    DOEpatents

    Alivisatos, A. Paul; Goldstein, Avery N.

    1993-01-01

    Nanocrystals of semiconductor compounds are produced. When they are applied as a contiguous layer onto a substrate and heated they fuse into a continuous layer at temperatures as much as 250, 500, 750 or even 1000.degree. K below their bulk melting point. This allows continuous semiconductor films in the 0.25 to 25 nm thickness range to be formed with minimal thermal exposure.

  9. Autofluorescence-free in vivo multicolor imaging using upconversion fluoride nanocrystals.

    PubMed

    Tian, Zhen; Chen, Guanying; Li, Xiang; Liang, Huijuan; Li, Yuanshi; Zhang, Zhiguo; Tian, Ye

    2010-07-01

    Non-invasive fluorescence imaging is an important technique in biology. However, detection of traditional biomarker emissions is accompanied by a high background signal. In this study we examined whether upconversion sodium yttrium fluoride (NaYF(4)) nanocrystals were suitable for autofluorescence-free multicolor fluorescence imaging in a living animal. Tissue autofluorescence was induced with a 405 nm light source, then rats were subjected to injection of fluorescein isothiocyanate (FITC), cadmium selenide/zinc sulfide (CdSe/ZnS) quantum dots (QDs), or NaYF(4):ytterbium/thulium (Yb(3+)/Tm(3+)), NaYF(4):Yb(3+)/holmium (Ho(3+)), and NaYF(4):Yb(3+)/Ho(3+)/cerium (Ce(3+)) nanocrystals. Imaging with NaYF(4) nanocrystals (974 nm laser) completely removed the high tissue autofluorescence, in marked contrast to imaging with FITC and QDs (405 nm light). Optical imaging experiments demonstrated that multiple biological targets and organs could be imaged at the same time using multicolor NaYF(4) upconversion nanocrystals under a single excitation wavelength (974 nm). These data demonstrated the proof-of-principle that autofluorescence-free multicolor imaging using near-infrared to visible upconversion of NaYF(4) nanocrystals excited by laser can be performed in a living animal. PMID:19322625

  10. Making Diamond in the Laboratory

    ERIC Educational Resources Information Center

    Strong, Herbert

    1975-01-01

    Discusses the graphite to diamond transformation and a phase diagram for carbon. Describes high temperature-higher pressure experimental apparatus and growth of diamonds from seed crystals. Reviews properties of the diamond which suggest uses for the synthetic product. Illustrations with text. (GH)

  11. Diamond collecting in northern Colorado.

    USGS Publications Warehouse

    Collins, D.S.

    1982-01-01

    The discovery of numerous diamond-bearing kimberlite diatremes in the N Front Range of Colorado and Wyoming is of both scientific and economic interest. Species recovered from heavy-mineral concentrates include Cr-diopside, spinel, Mg-ilmenite, pyrope and diamond. A nodule tentatively identified as a graphite-diamond eclogite was also found. -G.W.R.

  12. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    SciTech Connect

    Hu, Michael Z.; Easterly, Clay E

    2009-01-01

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.

  13. Nanocrystal solids: Order and progress

    NASA Astrophysics Data System (ADS)

    Delerue, Christophe

    2016-05-01

    Quantification of structural disorder and electron localization in superlattices of colloidal nanocrystals shows that minimizing variations in size and epitaxial connections is key to enhance the electronic properties of these materials.

  14. Transmission-mode diamond white-beam position monitor at NSLS

    SciTech Connect

    Muller E. M.; Heroux A.; Smedley, J.; Bohon, J.; Yang, X.; Gaowei, M.; Skinner, J.; De Geronimo, G.; Sullivan, M.; Allaire, M.; Keister, J. W.; Berman, L.

    2012-05-01

    Two transmission-mode diamond X-ray beam position monitors installed at National Synchrotron Light Source (NSLS) beamline X25 are described. Each diamond beam position monitor is constructed around two horizontally tiled electronic-grade (p.p.b. nitrogen impurity) single-crystal (001) CVD synthetic diamonds. The position, angle and flux of the white X-ray beam can be monitored in real time with a position resolution of 500 nm in the horizontal direction and 100 nm in the vertical direction for a 3 mm x 1 mm beam. The first diamond beam position monitor has been in operation in the white beam for more than one year without any observable degradation in performance. The installation of a second, more compact, diamond beam position monitor followed about six months later, adding the ability to measure the angular trajectory of the photon beam.

  15. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  16. Diamond Measuring Machine

    SciTech Connect

    Krstulic, J.F.

    2000-01-27

    The fundamental goal of this project was to develop additional capabilities to the diamond measuring prototype, work out technical difficulties associated with the original device, and perform automated measurements which are accurate and repeatable. For this project, FM and T was responsible for the overall system design, edge extraction, and defect extraction and identification. AccuGem provided a lab and computer equipment in Lawrence, 3D modeling, industry expertise, and sets of diamonds for testing. The system executive software which controls stone positioning, lighting, focusing, report generation, and data acquisition was written in Microsoft Visual Basic 6, while data analysis and modeling were compiled in C/C++ DLLs. All scanning parameters and extracted data are stored in a central database and available for automated analysis and reporting. The Phase 1 study showed that data can be extracted and measured from diamond scans, but most of the information had to be manually extracted. In this Phase 2 project, all data required for geometric modeling and defect identification were automatically extracted and passed to a 3D modeling module for analysis. Algorithms were developed which automatically adjusted both light levels and stone focus positioning for each diamond-under-test. After a diamond is analyzed and measurements are completed, a report is printed for the customer which shows carat weight, summarizes stone geometry information, lists defects and their size, displays a picture of the diamond, and shows a plot of defects on a top view drawing of the stone. Initial emphasis of defect extraction was on identification of feathers, pinpoints, and crystals. Defects were plotted color-coded by industry standards for inclusions (red), blemishes (green), and unknown defects (blue). Diamonds with a wide variety of cut quality, size, and number of defects were tested in the machine. Edge extraction, defect extraction, and modeling code were tested for

  17. Process for making diamonds

    NASA Technical Reports Server (NTRS)

    Rasquin, J. R.; Estes, M. F. (Inventor)

    1973-01-01

    A description is given of a device and process for making industrial diamonds. The device is composed of an exponential horn tapering from a large end to a small end, with a copper plate against the large end. A magnetic hammer abuts the copper plate. The copper plate and magnetic hammer function together to create a shock wave at the large end of the horn. As the wave propagates to the small end, the extreme pressure and temperature caused by the wave transforms the graphite, present in an anvil pocket at the small end, into diamonds.

  18. Dosimetry with diamond detectors

    NASA Astrophysics Data System (ADS)

    Gervino, G.; Marino, C.; Silvestri, F.; Lavagno, A.; Truc, F.

    2010-05-01

    In this paper we present the dosimetry analysis in terms of stability and repeatability of the signal and dose rate dependence of a synthetic single crystal diamond grown by Chemical Vapor Deposition (CVD) technique. The measurements carried out by 5 MeV X-ray photons beam show very promising results, even if the dose rate detector response points out that the charge trapping centers distribution is not uniform inside the crystal volume. This handicap that affects the detectors performances, must be ascribed to the growing process. Synthetic single crystal diamonds could be a valuable alternative to air ionization chambers for quality beam control and for intensity modulated radiation therapy beams dosimetry.

  19. A facile and green preparation of high-quality CdTe semiconductor nanocrystals at room temperature

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Shen, Qihui; Yu, Dongdong; Shi, Weiguang; Li, Jixue; Zhou, Jianguang; Liu, Xiaoyang

    2008-06-01

    One chemical reagent, hydrazine hydrate, was discovered to accelerate the growth of semiconductor nanocrystals (cadmium telluride) instead of additional energy, which was applied to the synthesis of high-quality CdTe nanocrystals at room temperature and ambient conditions within several hours. Under this mild condition the mercapto stabilizers were not destroyed, and they guaranteed CdTe nanocrystal particle sizes with narrow and uniform distribution over the largest possible range. The CdTe nanocrystals (photoluminescence emission range of 530-660 nm) synthesized in this way had very good spectral properties; for instance, they showed high photoluminescence quantum yield of up to 60%. Furthermore, we have succeeded in detecting the living Borrelia burgdorferi of Lyme disease by its photoluminescence image using CdTe nanocrystals.

  20. The solvothermal synthesis of magnetic iron oxide nanocrystals and the preparation of hybrid poly(L-lactide)-polyethyleneimine magnetic particles.

    PubMed

    Stojanović, Zoran; Otoničar, Mojca; Lee, Jongwook; Stevanović, Magdalena M; Hwang, Mintai P; Lee, Kwan Hyi; Choi, Jonghoon; Uskoković, Dragan

    2013-09-01

    We report a simple and green procedure for the preparation of magnetic iron oxide nanocrystals via solvothermal synthesis. The nanocrystal synthesis was carried out under mild conditions in the water-ethanol-oleic acid solvent system with the use of the oleate anion as a surface modifier of nanocrystals and glucose as a reducing agent. Specific conditions for homogenous precipitation achieved in such a reaction system lead to the formation of uniform high-quality nanocrystals down to 5 nm in diameter. The obtained hydrophobic nanocrystals can easily be converted to hydrophilic magnetic nanoparticles by being immobilized in a poly(L-lactide)-polyethyleneimine polymeric matrix. These hybrid nano-constructs may find various biomedical applications, such as magnetic separation, gene transfection and/or magnetic resonance imaging. PMID:23660309

  1. Synthesis and Optical Properties of GaN/ZnO Solid Solution Nanocrystals

    SciTech Connect

    Han, W.; Liu, Z; Yu, H

    2010-01-01

    We devised a synthesis route to prepare narrow band gap GaN/ZnO solid solution nanocrystals via nitriding a homogeneous Ga-Zn-O nanoprecursor. The nanocrystals were characterized by several following methods: x-ray diffractometer, transmission electron microscopy, ultraviolet-visible diffuse reflection, and Raman spectroscopy. Here, we can control the composition of nanocrystals by the nitridation temperature. From 550 to 850 C, the corresponding crystalline size varies from 6.1 to 27 nm. It has been demonstrated that the sample prepared at 650 C had the narrowest band gap of 2.21 eV. Microstructural investigations show that the (101) surface is the predominantly exposed one for the GaN/ZnO solid solution nanocrystals. We also discuss the influence of chemical disorder based on the Raman spectra acquired.

  2. Nickel and nickel oxide nanocrystals selectively grafting on multiwalled carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Prabhu, Yendrapati Taraka; Rao, Kalagadda Venkateswara; Kumari, Bandla Siva; Sai, Vemula Sesha; Pavani, Tambur

    2015-01-01

    Nickel and nickel oxide nanocrystals in their pure phase are carefully embellished by a facial method on oxygen-functionalized multi-walled carbon nanotubes (O-MWCNTs) using nickel nitrate (NN) was effectively accomplished for the first time by calcining them in hydrogen, nitrogen and air, respectively, at suitable temperatures. Nickel and nickel oxide nanocrystals impregnated O-MWCNTs were examined for its structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy and field emission scanning electron microscopy. The nanocrystals on the O-MWCNTs were determined of 15-20 nm size. Decorated nanocrystals on CNT's have potential applications in semiconductor industries.

  3. Preparation of ZnSe Nanocrystals Using Water-in-Oil Microemulsions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Kim, Jong Sung; Park, Sang Joon

    2010-06-01

    ZnSe nanocrystals were prepared using a safe and simple synthetic method by employing a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/oil microemulsion system with aqueous ZnSO4 and Se2- solutions, and characterized by X-ray diffraction (XRD) analysis, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). To control the diameter of nanocrystals in the quantum confinement region, the synthesis was performed with different oil phases (heptane and cyclohexane) and various water-to-surfactant ratios, W ([H2O]/[surfactant]). Cubic zinc blende ZnSe nanocrystals were synthesized and their size was controlled in the range from 2.5 to 17 nm. The maximum PL efficiency was 14% for the smallest ZnSe nanocrystal.

  4. Synthesis of highly luminescent mercaptosuccinic acid-coated CdSe nanocrystals under atmospheric conditions.

    PubMed

    Dong, Meiting; Xu, Jingyi; Liu, Shuxian; Zhou, Ying; Huang, Chaobiao

    2014-11-01

    Here we report a facile one-pot method for the preparation of high-quality CdSe nanocrystals (NCs) in aqueous solution under an air atmosphere. Compared with the traditional use of NaHSe or H2 Se, the more stable sodium selenite is utilized as the Se source for preparing highly luminescent CdSe nanocrystals. By using mercaptosuccinic acid (MSA) as the capping agent and borate-citrate acid as the buffering solution, CdSe nanocrystals with high quantum yield (up to 70%) have been synthesized conveniently. The influence of different experimental parameters, such as the pH of the precursor solution, the molar ratio of Cd(2+) to Na2 SeO3 and Cd(2+) to MSA on the CdSe nanocrystals, has been systematically investigated. The prepared CdSe NCs were spherical with a size of ~ 5 nm. PMID:24639040

  5. White light emission and optical gains from a Si nanocrystal thin film.

    PubMed

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-27

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting. PMID:26538479

  6. White light emission and optical gains from a Si nanocrystal thin film

    NASA Astrophysics Data System (ADS)

    Wang, Dong-Chen; Hao, Hong-Chen; Chen, Jia-Rong; Zhang, Chi; Zhou, Jing; Sun, Jian; Lu, Ming

    2015-11-01

    We report a Si nanocrystal thin film consisting of free-standing Si nanocrystals, which can emit white light and show positive optical gains for its red, green and blue (RGB) components under ultraviolet excitation. Si nanocrystals with ϕ = 2.31 ± 0.35 nm were prepared by chemical etching of Si powder, followed by filtering. After being mixed with SiO2 sol-gel and thermally annealed, a broadband photoluminescence (PL) from the thin film was observed. The RGB ratio of the PL can be tuned by changing the annealing temperature or atmosphere, which is 1.00/3.26/4.59 for the pure white light emission. The origins of the PL components could be due to differences in oxygen-passivation degree for Si nanocrystals. The results may find applications in white-light Si lasing and Si lighting.

  7. Nonvolatile memory characteristics of WSi2 nanocrystals embedded in SiO2 dielectrics.

    PubMed

    Seo, Ki Bong; Lee, Dong Uk; Han, Seung Jong; Kim, Seon Pil; Kim, Eun Kyu

    2011-01-01

    A nano-floating gate capacitor with WSi2 nanocrystals embedded in SiO2 dielectrics was fabricated. The WSi2 nanocrystals were created from ultrathin WSi2 film during rapid thermal annealing process and their average size and density were about 2.5 nm and 3.59 x 10(12) cm(-2), respectively. The flat-band voltage shift due to the carrier charging effect of WSi2 nanocrystals were measured up to 5.9 V when the gate voltage sweep in the range of +/- 9 V. The memory window was decreased from 3.7 V to 1.9 V after 1 h and remained about 3.7 V after 10(5) programming/erasing cycles. These results show that there is a possibility for the WSi2 nanocrystals to be applied to nonvolatile memory devices. PMID:21446472

  8. Magnetite Nanocrystals as Anode Electrode Materials for Rechargeable Li-Ion Batteries.

    PubMed

    Ma, Xiaoling; Zeng, Guoping; Chen, Gongxuan; Huang, Yuanqiao; Wu, Tian

    2015-09-01

    Monodispersed magnetite (Fe3O4) nanocrystals were synthesized and their electrochemical properties as anode electrode materials for rechargeable lithium ion batteries were measured. The magnetite anodes, in the form of monodispersed nanospheres with average diameters (< 10 nm), show particle size effects. Specifically, the first discharge curves show that the nanocrystals can hold much more Li+ per formula unit than their counterparts in bulk before the reduction begins. The electrolyte decomposition takes place before the reduction reaction is completed. The cycling performance of the Fe3O4 nanocrystals after being heated at 300 degrees C for different lengths of time show that heating can improve the integration of the nanocrystals and increase their capacity retention in consequence. PMID:26716309

  9. Morphology evolution of single-crystalline hematite nanocrystals: magnetically recoverable nanocatalysts for enhanced facet-driven photoredox activity

    NASA Astrophysics Data System (ADS)

    Patra, Astam K.; Kundu, Sudipta K.; Bhaumik, Asim; Kim, Dukjoon

    2015-12-01

    We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of each nanocrystal and its exposed facets. PXRD and HRTEM techniques revealed that the nanocrystals are single crystalline in nature; twins and stacking faults were not detected in these nanocrystals. The structural, vibrational, and electronic spectra of these nanocrystals were highly dependent on their shape. Different shaped hematite nanocrystals with distinct crystallographic planes have been synthesized under similar reaction conditions, which can be desired as a model for the purpose of properties comparison with the nanocrystals prepared under different reaction conditions. Here we investigated the photocatalytic performance of these different shaped-nanocrystals for methyl orange degradation in the presence of white light (λ > 420 nm). In this study, we found that the density of surface Fe3+ ions in particular facets was the key factor for the photocatalytic activity and was higher on the bitruncated-dodecahedron shape nanocrystals by coexposed {104}, {100} and {001} facets, attributing to higher catalytic activity. The catalytic activity of different exposed facet nanocrystals were as follows: {104} + {100} + {001} (bitruncated-dodecahedron) > {101} + {001} (bitruncated-octahedron) > {001} + {110} (nanorods) > {012} (nanocuboid) which provided the direct evidence of exposed facet-driven photocatalytic activity. The nanocrystals were easily recoverable using an external magnet and reused at least six times without significant loss of its catalytic activity.We have developed a new green chemical approach for the shape-controlled synthesis of single-crystalline hematite nanocrystals in aqueous medium. FESEM, HRTEM and SAED techniques were used to determine the morphology and crystallographic orientations of

  10. Fluidized bed deposition of diamond

    DOEpatents

    Laia, Jr., Joseph R.; Carroll, David W.; Trkula, Mitchell; Anderson, Wallace E.; Valone, Steven M.

    1998-01-01

    A process for coating a substrate with diamond or diamond-like material including maintaining a substrate within a bed of particles capable of being fluidized, the particles having substantially uniform dimensions and the substrate characterized as having different dimensions than the bed particles, fluidizing the bed of particles, and depositing a coating of diamond or diamond-like material upon the substrate by chemical vapor deposition of a carbon-containing precursor gas mixture, the precursor gas mixture introduced into the fluidized bed under conditions resulting in excitation mechanisms sufficient to form the diamond coating.

  11. Deposition and characterization of diamond thin films by HF-CVD method

    SciTech Connect

    Mishra, S. C. Choudhary, R. K.; Mishra, P.; Abraham, G. J.

    2015-06-24

    Effect of reactor pressure and methane gas concentration on the growth of diamond films on Si (100) substrate by hot filament chemical vapor deposition (HFCVD) method has been studied in this work. Raman spectroscopy measurements of the obtained film confirmed the formation of a mixture of micro and nanocrystalline diamond by showing peaks at 1140 and 1334 cm{sup −1} wave shifts. Scanning electron microscopy results showed formation of well defined faceted diamond grains of 100–500 nm size. Average roughness of the films measured by a surface profilometer was in the range of 40–60 nm.

  12. Research Update: Direct conversion of amorphous carbon into diamond at ambient pressures and temperatures in air

    SciTech Connect

    Narayan, Jagdish Bhaumik, Anagh

    2015-10-01

    We report on fundamental discovery of conversion of amorphous carbon into diamond by irradiating amorphous carbon films with nanosecond lasers at room-temperature in air at atmospheric pressure. We can create diamond in the form of nanodiamond (size range <100 nm) and microdiamond (>100 nm). Nanosecond laser pulses are used to melt amorphous diamondlike carbon and create a highly undercooled state, from which various forms of diamond can be formed upon cooling. The quenching from the super undercooled state results in nucleation of nanodiamond. It is found that microdiamonds grow out of highly undercooled state of carbon, with nanodiamond acting as seed crystals.

  13. Polycrystalline Diamonds from the Erzgebirge Ultrahigh-Pressure Metamorphic Terrane, Germany

    NASA Astrophysics Data System (ADS)

    Dobrzhinetskaya, L.; Wirth, R.; Green, H. W.

    2010-12-01

    Previous studies showed that microdiamonds from Erzgebirge terrane of Germany are crystallized from a C-O-H fluid (Stoeckhert et al., 2001, 2009; Dobrzhinetskaya et al., 2003, 2007) due to course of the UHPM. Usually metamorphic diamonds are presented by single crystals of 5 to 80 micron size, which are caracterized by a complicated morphology suggesting that their crystallization took place in a media rich in impurities. Within the microdiamonds population ocurred in the Erzgebirge quartz-feldspathic gneisses, we have recently found polycrystalline diamonds which extend our knowledge related to mechanisms of their formation. These polycrystalline diamonds occur as inclusions in zircons. Several focused ion beam foils were prepared from polished slide containing zircon with diamond inclusions, and studied with transmission electron microscopy. Bright Field images revealed that single diamond inclusions in zircon consist of 5 to 15 microcrystals which are characterized by ’zig-zag’ boundaries. The series of triangle fluid-pockets are situated at the interface diamond-zircon, and ’glue’ together microcrystals. The octahedral voids accountered by (111) crystal faces are observed within polycrystalline sectors of diamond. The octahedral voids are characterized by low density contrast what suggests that the void is a negative nanocrystal of diamond filled by fluid/gas. In many cases the fluid was evaporated during the foil preparation by high energy Ga-ions beam. The fluid consisted of Ti, Cl, S, K, Cr, Ba, Pb, Mo, Co, Al. The presence of the negative crystals of diamonds filled with a fluid, suggest that such a fluid was in equilibrium with the diamond, and represents the diamond-forming media. Triangle pockets of the former fluid situated at the zircon-diamond interface are also penetrated by FIB, the residual fluid composition is characterized by presence of Al, Ti, Ca, F, V, Zn, Si, Cl, and S, or Ca, Al, K, Cl, Fe and Mg, or Al, Co, F, V, Zn, Si, Cl, or

  14. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  15. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  16. A facile arrested precipitation method for synthesis of pure wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals using thiourea as a sulfur source

    SciTech Connect

    Li, Chunya; Ha, Enna; Wong, Wing-Leung; Li, Cuiling; Ho, Kam-Piu; Wong, Kwok-Yin

    2012-11-15

    Graphical abstract: High-resolution TEM image of wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals. Highlights: ► Wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals was developed by an arrested precipitation method at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.

  17. Nanocrystals for dermal penetration enhancement - Effect of concentration and underlying mechanisms using curcumin as model.

    PubMed

    Vidlářová, Lucie; Romero, Gregori B; Hanuš, Jaroslav; Štěpánek, František; Müller, Rainer H

    2016-07-01

    Nanocrystals have received considerable attention in dermal application due to their ability to enhance delivery to the skin and overcome bioavailability issues caused by poor water and oil drug solubility. The objective of this study was to investigate the effect of nanocrystals on the mechanism of penetration behavior of curcumin as a model drug. Curcumin nanocrystals were produced by the smartCrystals® process, i.e. bead milling followed by high pressure homogenization. The mean particle size of the curcumin crystals was about 200nm. Stabilization was performed with alkyl polyglycoside surfactants. The distribution of curcumin within the skin was determined in vitro on cross-sections of porcine skin and visualized by fluorescent microscopy. The skin penetration profile was analyzed for the curcumin nanosuspension with decreasing concentrations (2%, 0.2%, 0.02% and 0.002% by weight) and compared to nanocrystals in a viscous hydroxypropylcellulose (HPC) gel. This study demonstrated there was minor difference between low viscous nanosuspension and the gel, but low viscosity seemed to favor skin penetration. Localization of curcumin was observed in the hair follicles, also contributing to skin uptake. Looking at the penetration of curcumin from formulations with decreasing nanocrystal concentration, formulations with 2%, 0.2% and 0.02% showed a similar penetration profile, whereas a significantly weaker fluorescence was observed in the case of a formulation containing 0.002% of curcumin nanocrystals. In this study we have shown that curcumin nanocrystals prepared by the smartCrystal® process are promising carriers in dermal application and furthermore, we identified the ideal concentration of 0.02% nanocrystals in dermal formulations. The comprehensive study of decreasing curcumin concentration in formulations revealed that the saturation solubility (Cs) is not the only determining factor for the penetration. A new mechanism based also on the concentration of the

  18. Preparation of 1,4-bis(4-methylstyryl)benzene nanocrystals by a wet process and evaluation of their optical properties

    PubMed Central

    2014-01-01

    Single-crystal 1,4-bis(4-methylstyryl)benzene is a promising material for optoelectronic device applications. We demonstrate the preparation of 1,4-bis(4-methylstyryl)benzene nanocrystals by a wet process using a bottom-up reprecipitation technique. Scanning electron microscopy revealed the morphology of the nanocrystals to be sphere-like with an average particle size of about 60 nm. An aqueous dispersion of the nanocrystals was monodisperse and stable with a ζ-potential of -41 mV. The peak wavelengths of the absorption and emission spectra of the nanocrystal dispersion were blue and red shifted, respectively, compared with those of tetrahydrofuran solution. Powder X-ray diffraction analysis confirmed the crystallinity of the nanocrystals. The presented 1,4-bis(4-methylstyryl)benzene nanocrystals are expected to be a candidate for a new class of optoelectronic material. PMID:24418402

  19. Elucidating the in vivo fate of nanocrystals using a physiologically based pharmacokinetic model: a case study with the anticancer agent SNX-2112

    PubMed Central

    Dong, Dong; Wang, Xiao; Wang, Huailing; Zhang, Xingwang; Wang, Yifei; Wu, Baojian

    2015-01-01

    Introduction SNX-2112 is a promising anticancer agent but has poor solubility in both water and oil. In the study reported here, we aimed to develop a nanocrystal formulation for SNX-2112 and to determine the pharmacokinetic behaviors of the prepared nanocrystals. Methods Nanocrystals of SNX-2112 were prepared using the wet-media milling technique and characterized by particle size, differential scanning calorimetry, drug release, etc. Physiologically based pharmacokinetic (PBPK) modeling was undertaken to evaluate the drug’s disposition in rats following administration of drug cosolvent or nanocrystals. Results The optimized SNX-2112 nanocrystals (with poloxamer 188 as the stabilizer) were 203 nm in size with a zeta potential of −11.6 mV. In addition, the nanocrystals showed a comparable release profile to the control (drug cosolvent). Further, the rat PBPK model incorporating the parameters of particulate uptake (into the liver and spleen) and of in vivo drug release was well fitted to the experimental data following administration of the drug nanocrystals. The results reveal that the nanocrystals rapidly released drug molecules in vivo, accounting for their cosolvent-like pharmacokinetic behaviors. Due to particulate uptake, drug accumulation in the liver and spleen was significant at the initial time points (within 1 hour). Conclusion The nanocrystals should be a good choice for the systemic delivery of the poorly soluble drug SNX-2112. Also, our study contributes to an improved understanding of the in vivo fate of nanocrystals. PMID:25848269

  20. Synthesis and thermal stability of W-doped VO{sub 2} nanocrystals

    SciTech Connect

    Kong, F.Y.; Li, M.; Pan, S.S.; Zhang, Y.X.; Li, G.H.

    2011-11-15

    Highlights: {yields} The VO{sub 2} nanocrystals with a nearly spherical morphology with size ranging from 50 to 100 nm were synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. {yields} The W dopant is in the W{sup 6+} form, and there is a small amount of V{sup 3+} in the VO{sub 2} nanocrystals. VO{sub 2} (R) nanocrystals with phase transition temperature at room temperature were obtained with 2.5 at% W-doing. {yields} A high stability upon heating-cooling cycles was observed with respect to MIT temperature, peak temperature and latent heat of the phase transition due to both the size effect and the existence of V{sup 3+} in the VO{sub 2} nanocrystals. -- Abstract: Pure and W-doped vanadium dioxide nanocrystals have been synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. The VO{sub 2} nanocrystals have a nearly spherical morphology with size ranging from 50 to 100 nm. The metal-insulator transition (MIT) temperature of the nanocrystals decreases with increasing W-doping content. The successive heat-induced fatigue character of the MIT in W-doped VO{sub 2} nanocrystals was investigated by DSC analysis together with structural study, and a high stability upon heating-cooling cycles was found with respect to MIT temperature, peak temperature and latent heat of the phase transition.

  1. Fabrication and Optical Properties of Water Soluble CdSeS Nanocrystals Using Glycerin as Stabilizing Agent

    PubMed Central

    Jiang, Fengrui; Tan, Guolong

    2013-01-01

    Herein we present an unusual phosphine-free method to fabricate water soluble CdSeS nanocrystals in cubic structure. In this method, glycerin was used as a stabilizing agent replacing tri-n-octylphosphine oxide (TOPO). Water solution of Na2SeO3 in polyethylene glycol was utilized as Se source. 3-Mercaptopropionic acid (MPA) provides S source. The phosphine-free Se and S sources were found to be highly reactive and suitable for the synthesis of CdSeS nanocrystals. XRD and HRTEM images confirm the formation of CdSeS nanocrystals in zinc blende structure. The absorption peaks on UV-vis spectra of as-prepared CdSeS nanocrystals are tunable from 330 nm to 440 nm, which blue shifts to shorter wavelength side in comparison with that of pure CdSe nanocrystals. The cubic CdSeS nanocrystals demonstrate narrow PL emissions spectra between 464 and 615 nm. Transmission electron microscopy images show the uniformity for the size distribution of the ternary QDs. Series water soluble CdSe1–xSx (x = 0∼1) nanocrystals have also been synthesized using Na2SeO3 and Na2S solution as the Se-S co-sources. Tunable band gap energies of CdSe1–xSx (x = 0∼1) nanocrystals upon chemical composition x have been achieved, the gap ranges from 290 nm to 558 nm. PMID:24204781

  2. CVD diamond layers for electrochemistry

    NASA Astrophysics Data System (ADS)

    Kowalska, M.; Fabisiak, K.; Wrzyszczyński, A.; Banaszak, A.; Szybowicz, M.; Paprocki, K.; Bała, W.; Bylicki, F.

    2014-09-01

    Diamond electrodes of different morphologies and qualities were manufactured by hot filament chemical deposition (HF CVD) techniques by changing the parameters of diamond growth process. The estimation of diamond quality and identification of different carbon phases was performed by Raman spectroscopy measurements. The effect of diamond quality and amorphous carbon phase content on the electrochemical response of an obtained diamond electrode in 0.5 M H2SO4 as supporting electrolyte was investigated by cyclic voltammetry with [Fe(CN)6]4-/3- as a redox probe. The kinetic parameters such as catalytic reaction rate constant k0 and electron transfer coefficient α were determined. The obtained results show that the analytical performance of undoped diamond electrodes can be implemented just by the change of diamond layers quality.

  3. Characterization of Silicon-On-Diamond chip with ionizing radiation

    NASA Astrophysics Data System (ADS)

    Servoli, L.; Brandi, F.; Carzino, R.; Citroni, M.; Fanetti, S.; Lagomarsino, S.; Parrini, G.; Passeri, D.; Sciortino, S.; Scorzoni, A.

    2014-04-01

    In this work we report on the characterization with ionizing radiation sources of a CMOS active pixel radiation sensor (RAPS03) thinned down to 40um and bonded to a slice of diamond to form a rugged Silicon-On-Diamond structure. The bonding process is based on an innovative laser technique which scans the silicon-diamond interface with a 20 ps pulsed 355 nm laser beam. The goal of the work is to demonstrate that the bonding procedure does not damage the CMOS devices, paving the way for a possible alternative to bump bonding procedures between diamond substrates and readout chips. To this purpose, the Silicon-On-Diamond device and a standard (e.g. un-thinned) RAPS03 sensor have been tested in parallel with and without ionizing radiation sources (photons, electrons) to compare their characteristics and to study their differences. The Silicon-On-Diamond device has shown to be fully functional and no differences have been found between the responses of the two sensors, within the statistical variations due to the CMOS fabrication process.

  4. Carbonado: natural polycrystalline diamond.

    PubMed

    Trueb, L F; De Wys, E C

    1969-08-22

    Carbonados are porous aggregates of mostly xenomorphic diamond crystallites ranging in diameter from a fraction of a micron to over 20 microns. Crystalline inclusions (up to 3 percent) occur in the pores of the crystallites and consist mainly of orthoclase and small amounts of other igneous, metamorphic, and secondary minerals. PMID:17742270

  5. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  6. Diamond is on budget

    NASA Astrophysics Data System (ADS)

    Materlik, Gerhard

    2008-02-01

    Your editorial last month, entitled "The £80m black hole" (January p15), was accompanied by a picture of the Diamond Light Source, which some readers may have interpreted as being responsible for the current shortfall in funding for the Science and Technology Facilities Council (STFC). This implication is totally inaccurate and misleading.

  7. ELECTRON AMPLIFICATION IN DIAMOND.

    SciTech Connect

    SMEDLEY, J.; BEN-ZVI, I.; BURRILL, A.; CHANG, X.; GRIMES, J.; RAO, T.; SEGALOV, Z.; WU, Q.

    2006-07-10

    We report on recent progress toward development of secondary emission ''amplifiers'' for photocathodes. Secondary emission gain of over 300 has been achieved in transmission mode and emission mode for a variety of diamond samples. Techniques of sample preparation, including hydrogenation to achieve negative electron affinity (NEA), have been adapted to this application.

  8. DIAMOND AMPLIFIED PHOTOCATHODES.

    SciTech Connect

    SMEDLEY,J.; BEN-ZVI, I.; BOHON, J.; CHANG, X.; GROVER, R.; ISAKOVIC, A.; RAO, T.; WU, Q.

    2007-11-26

    High-average-current linear electron accelerators require photoinjectors capable of delivering tens to hundreds of mA average current, with peak currents of hundreds of amps. Standard photocathodes face significant challenges in meeting these requirements, and often have short operational lifetimes in an accelerator environment. We report on recent progress toward development of secondary emission amplifiers for photocathodes, which are intended to increase the achievable average current while protecting the cathode from the accelerator. The amplifier is a thin diamond wafer which converts energetic (few keV) primary electrons into hundreds of electron-hole pairs via secondary electron emission. The electrons drift through the diamond under an external bias and are emitted into vacuum via a hydrogen-terminated surface with negative electron affinity (NEA). Secondary emission gain of over 200 has been achieved. Two methods of patterning diamond, laser ablation and reactive-ion etching (RIE), are being developed to produce the required geometry. A variety of diagnostic techniques, including FTIR, SEM and AFM, have been used to characterize the diamonds.

  9. CVD diamond - fundamental phenomena

    SciTech Connect

    Yarbrough, W.A.

    1993-01-01

    This compilation of figures and diagrams addresses the basic physical processes involved in the chemical vapor deposition of diamond. Different methods of deposition are illustrated. For each method, observations are made of the prominent advantages and disadvantages of the technique. Chemical mechanisms of nucleation are introduced.

  10. Multiplying Electrons With Diamond

    NASA Technical Reports Server (NTRS)

    2003-01-01

    As researchers in the Space Communications Division of NASA s Glenn Research Center in 1992, Dr. Gerald Mearini, Dr. Isay Krainsky, and Dr. James Dayton made a secondary electron emission discovery that became the foundation for Mearini s company, GENVAC AeroSpace Corporation. Even after Mearini departed Glenn, then known as Lewis Research Center, his contact with NASA remained strong as he was awarded Small Business Innovation Research (SBIR) contracts to further develop his work. Mearini s work for NASA began with the investigation of diamond as a material for the suppression of secondary electron emissions. The results of his research were the opposite of what was expected diamond proved to be an excellent emitter rather than absorber. Mearini, Krainsky, and Dayton discovered that laboratory-grown diamond films can produce up to 45 electrons from a single incident electron. Having built an electron multiplier prototype at NASA, Mearini decided to start his own company to develop diamond structures usable in electron beam devices.

  11. Fabrication of Fully Solution Processed Inorganic Nanocrystal Photovoltaic Devices.

    PubMed

    Townsend, Troy K; Durastanti, Dario; Heuer, William B; Foos, Edward E; Yoon, Woojun; Tischler, Joseph G

    2016-01-01

    We demonstrate a method for the preparation of fully solution processed inorganic solar cells from a spin and spray coating deposition of nanocrystal inks. For the photoactive absorber layer, colloidal CdTe and CdSe nanocrystals (3-5 nm) are synthesized using an inert hot injection technique and cleaned with precipitations to remove excess starting reagents. Similarly, gold nanocrystals (3-5 nm) are synthesized under ambient conditions and dissolved in organic solvents. In addition, precursor solutions for transparent conductive indium tin oxide (ITO) films are prepared from solutions of indium and tin salts paired with a reactive oxidizer. Layer-by-layer, these solutions are deposited onto a glass substrate following annealing (200-400 °C) to build the nanocrystal solar cell (glass/ITO/CdSe/CdTe/Au). Pre-annealing ligand exchange is required for CdSe and CdTe nanocrystals where films are dipped in NH4Cl:methanol to replace long-chain native ligands with small inorganic Cl(-) anions. NH4Cl(s) was found to act as a catalyst for the sintering reaction (as a non-toxic alternative to the conventional CdCl2(s) treatment) leading to grain growth (136±39 nm) during heating. The thickness and roughness of the prepared films are characterized with SEM and optical profilometry. FTIR is used to determine the degree of ligand exchange prior to sintering, and XRD is used to verify the crystallinity and phase of each material. UV/Vis spectra show high visible light transmission through the ITO layer and a red shift in the absorbance of the cadmium chalcogenide nanocrystals after thermal annealing. Current-voltage curves of completed devices are measured under simulated one sun illumination. Small differences in deposition techniques and reagents employed during ligand exchange have been shown to have a profound influence on the device properties. Here, we examine the effects of chemical (sintering and ligand exchange agents) and physical treatments (solution concentration

  12. Charge separation in type II tunneling structures of close-packed CdTe and CdSe nanocrystals.

    PubMed

    Gross, Dieter; Susha, Andrei S; Klar, Thomas A; Da Como, Enrico; Rogach, Andrey L; Feldmann, Jochen

    2008-05-01

    We report on charge separation between type II aligned CdTe and CdSe nanocrystals. Two types of electrostatically bound nanocrystal structures have been studied: first, clusters of nanocrystals hold together by Ca(II) ions in aqueous solution and, second, thin film structures of nanocrystals created with layer-by-layer deposition in combination with polyelectrolytes. In both types of structures, short interparticle distances of less than 1 nm have been achieved, whereby the isolating organic ligands on the nanocrystal surfaces and/or the polymer monolayers act as tunneling barriers between nanocrystals. We have observed an efficient quenching of photoluminescence and a reduced emission lifetime for CdTe nanocrystals in both types of type II heterostructures. This result is explained by a spatial charge separation of the photoexcited electron-hole pairs due to tunneling of charge carriers through the thin organic layer between CdTe and CdSe nanocrystals. Type II heterostructures demonstrated here may find future applications in photovoltaics. PMID:18410153

  13. [Fluorescence spectra and quantum yield of TiO2 nanocrystals synthesized by alcohothermal method].

    PubMed

    Song, Cui-Hong; Li, Yan-Ting; Li, Jing; Wei, Yong-Ju; Hu, Yu-Zhu; Wei, Yu

    2008-01-01

    Fluorescence spectra and fluorescence quantum yield of TiO2 nanocrystals were studied. Using tetra n-butyl titanate as a starting material, a facile alcohothermal technique was used to synthesize TiO2 nanocrystals. As can be seen from the transmittance electron microscopy (TEM) image, TiO2 nanocrystals with a relatively uniform particle size distribution of < 10 nm are present in the transparent sol. The transparent sol presents a strong stable fluorescence emission with a maximum at 450 nm, which is greatly dependent on the size quantization effects, defect energy level and the surface state of TiO2 nanocrystals. The quantum yield (gamma) of TiO2 was determined by the relative comparison procedure, using freshly prepared analytical purity quinine sulfate in 0.05 mol x L(-1) H2SO4 as a relative quantum yield standard. The emission quantum yield of TiO2 nanocrystals prepared in alcoholic media was calculated to be about 0.20 at wavelengths ranging from 330 to 370 nm, which was much higher than the values reported in previous works. So, it is supposed that nano-TiO2 will be applied as a potential quantum dots fluorescence probe in biological analysis. PMID:18422145

  14. Chitin nanocrystal-xyloglucan multilayer thin films.

    PubMed

    Villares, Ana; Moreau, Céline; Capron, Isabelle; Cathala, Bernard

    2014-01-13

    For the first time, the adsorption of xyloglucan (XG) on chitin nanocrystals (ChiNC) surface was proved using quartz crystal microbalance with dissipation (QCM-D) and by successfully building up spin-coated assisted layer-by-layer (LbL) structures on solid substrates. Several parameters in the adsorption process, such as ChiNC concentrations (0.5-3.0 g L(-1)), number of layers, or the outmost layer material (ChiNC or XG), were investigated to better understand the fabrication process of multilayer films. The thickness of the homogeneous film increased linearly with the number of bilayers, with an average thickness per bilayer of 12.3 nm. Additionally surface morphology was studied by atomic force microscopy (AFM), which revealed an almost completely covered surface after the adsorption of ChiNC. The final structures were found to have semireflective properties capable of being tuned by adjusting the ChiNC dispersion parameters. PMID:24328307

  15. Lower pressure synthesis of diamond material

    DOEpatents

    Lueking, Angela; Gutierrez, Humberto; Narayanan, Deepa; Burgess Clifford, Caroline E.; Jain, Puja

    2010-07-13

    Methods of synthesizing a diamond material, particularly nanocrystalline diamond, diamond-like carbon and bucky diamond are provided. In particular embodiments, a composition including a carbon source, such as coal, is subjected to addition of energy, such as high energy reactive milling, producing a milling product enriched in hydrogenated tetrahedral amorphous diamond-like carbon compared to the coal. A milling product is treated with heat, acid and/or base to produce nanocrystalline diamond and/or crystalline diamond-like carbon. Energy is added to produced crystalline diamond-like carbon in particular embodiments to produce bucky diamonds.

  16. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  17. A first principles study of noble metal-doped silicon nanocrystals Sin-1M (n = 75 and 150 and M = Cu, Ag, Au)

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric; Huda, Muhammad

    2010-10-01

    Silicon nano-structures can have important roles in many useful applications, such as in nano-scale energy conversion materials, as nano-detectors of gas particles or as thermoelectric materials. To achieve efficient performance of these nano-devices, electronically tailored nano-materials are needed. For this a thorough understanding of both doped and undoped nano-structures is essential. Here we will present results of our first principles spin polarized electronic structure calculations of noble metal atom doped silicon nanocrystals using a hybrid density functional theory method (B3LYP-DFT) and a LanL2DZ basis set. The nanocrystals are used here as a test group, and are based on three different isomers of bulk silicon: diamond, wurtzite, and BC8. Geometry optimizations of the pure Sin nanocrystals were performed for spin magnetic moments of s=0 μB and s=2 μB for each isomer. Then the substitutional doping of M atom was done separately at the inside and at the surface of the nanocrystals. The doped nanocrystals' geometries were also optimized for spin magnetic moments s=1 μB and s=3 μB. For the bigger nanocrystals, the energy differences between the two spin states are very small. Binding energies and HOMO-LUMO gaps were calculated and a comparative analysis of the pure and doped silicon nanocrystals will be presented.

  18. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    NASA Astrophysics Data System (ADS)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  19. Optically induced dynamic nuclear spin polarisation in diamond

    NASA Astrophysics Data System (ADS)

    Scheuer, Jochen; Schwartz, Ilai; Chen, Qiong; Schulze-Sünninghausen, David; Carl, Patrick; Höfer, Peter; Retzker, Alexander; Sumiya, Hitoshi; Isoya, Junichi; Luy, Burkhard; Plenio, Martin B.; Naydenov, Boris; Jelezko, Fedor

    2016-01-01

    The sensitivity of magnetic resonance imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz et al 2011 Neoplasia 13 81). Nuclear spins associated with the 13C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt and High 2011 Prog. Nucl. Magn. Reson. Spectrosc. 38 37). If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a nitrogen-vacancy centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.

  20. Effect of four different size reduction methods on the particle size, solubility enhancement and physical stability of nicergoline nanocrystals.

    PubMed

    Martena, Valentina; Shegokar, Ranjita; Di Martino, Piera; Müller, Rainer H

    2014-09-01

    Nicergoline, a poorly soluble active pharmaceutical ingredient, possesses vaso-active properties which causes peripheral and central vasodilatation. In this study, nanocrystals of nicergoline were prepared in an aqueous solution of polysorbate 80 (nanosuspension) by using four different laboratory scale size reduction techniques: high pressure homogenization (HPH), bead milling (BM) and combination techniques (high pressure homogenization followed by bead milling HPH + BM, and bead milling followed by high pressure homogenization BM + HPH). Nanocrystals were investigated regarding to their mean particles size, zeta potential and particle dissolution. A short term physical stability study on nanocrystals stored at three different temperatures (4, 20 and 40 °C) was performed to evaluate the tendency to change in particle size, aggregation and zeta potential. The size reduction technique and the process parameters like milling time, number of homogenization cycles and pressure greatly affected the size of nanocrystals. Among the techniques used, the combination techniques showed superior and consistent particle size reduction compared to the other two methods, HPH + BM and BM + HPH giving nanocrystals of a mean particle size of 260 and 353 nm, respectively. The particle dissolution was increased for any nanocrystals samples, but it was particularly increased by HPH and combination techniques. Independently to the production method, nicergoline nanocrystals showed slight increase in particle size over the time, but remained below 500 nm at 20 °C and refrigeration conditions. PMID:23815299

  1. Fluid/melt inclusions in alluvial Northeast Siberian diamonds: new approach on diamond formation.

    NASA Astrophysics Data System (ADS)

    Logvinova, Alla M.; Wirth, Richard; Sobolev, Nikolai V.

    2010-05-01

    The origin of alluvial Northeast Siberian diamonds is still a subject of controversy. Fluid/melt inclusions in diamonds are the deepest available samples of mantle fluids and provide the unique information on the medium in which diamonds have grown. These inclusions carry high-density fluids (HDFs), the compositional variability is in the range of hydrous-silicic, carbonatitic (high-Mg and low-Mg) and saline end-members. Previous studies of the bulk composition and internal morphology of microinclusions in alluvial Northeast Siberian diamonds suggested that they contain fluids, but distribution and structure of their constitutional phases could not be determined. We investigated two populations of diamonds from Northeast Siberian Platform placers (Ebelyakh area) using TEM, FTIR, EPMA methods: (I) rounded single-crystals (dodecahedrons, octahedrons and irregular stones with a black central zone rich in microinclusions. Some of them frequently exhibit growth twinning; (II) rounded dark crystals, related to variety V according to the classification by Orlov (1977). This group of stones has their own typical features: dark color due to abundant black microinclusions and high dislocation density; mosaic-block internal structure; very light carbon isotopic composition; the high degree of nitrogen aggregation and nearly total absence of mineral inclusions. Diamonds of the first population are characterized by two types of fluid/melt nanoinclusions:1) multi-phase high- Mg assemblages, which include solid phases (magnesite, dolomite, clinohumite, Fe-spinel, graphite) and fluid bubbles; 2) oriented sulfide melt nanoinclusions in association with halides (KCl, NaCl), high-Si mica and fluid bubbles. All of them ranging between 5 and 200 nm in diameter are reflecting the diamond habit. Sulfides are homogeneous in composition. The Ni/(Ni+Fe) ratio of the inclusions is 0.037±0.04. Still closed fluid bubbles were identified in TEM studies as changing absorption contrast due to

  2. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  3. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  4. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  5. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Rough diamond. 592.310 Section 592.310... ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply sawn,...

  6. 31 CFR 592.310 - Rough diamond.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 3 2010-07-01 2010-07-01 false Rough diamond. 592.310 Section 592... FOREIGN ASSETS CONTROL, DEPARTMENT OF THE TREASURY ROUGH DIAMONDS CONTROL REGULATIONS General Definitions § 592.310 Rough diamond. The term rough diamond means any diamond that is unworked or simply...

  7. Resonant enhancement of third-order nonlinear optical susceptibilities of Cd-free chalcopyrite nanocrystals within quantum confinement regime

    NASA Astrophysics Data System (ADS)

    Hamanaka, Yasushi; Ogawa, Tetsuya; Tsuzuki, Masakazu; Kuzuya, Toshihiro; Sumiyama, Kenji

    2013-07-01

    Third-order nonlinear optical susceptibilities (χ(3)) have been investigated for chalcopyrite CuInS2 and AgInS2 nanocrystals within a strong confinement regime. The imaginary part of χ(3) (Imχ(3)) of 2.0- and 4.9-nm-sized CuInS2 nanocrystals and 2.6- and 4.3-nm-sized AgInS2 nanocrystals are negative and exhibit resonant enhancement around the absorption between the highest quantized levels of valence band and the lowest conduction band due to the state-filling effect. Figure of merit of |Imχ(3)| ranges 10-20-10-19 m3/V2, which is comparable to those of CdSSe nanocrystals.

  8. Tailoring of crystal phase and Néel temperature of cobalt monoxides nanocrystals with synthetic approach conditions

    NASA Astrophysics Data System (ADS)

    Ravindra, A. V.; Behera, B. C.; Padhan, P.; Lebedev, O. I.; Prellier, W.

    2014-07-01

    Cobalt monoxide (CoO) nanocrystals were synthesized by thermal decomposition of cobalt oleate precursor in a high boiling point organic solvent 1-octadecene. The X-ray diffraction pattern and transmission electron microscopy studies suggest that pure face-centered-cubic (fcc) phase of CoO can be synthesized in the temperature range of 569-575 K. Thermolysis product at higher synthesis temperature 585 K is a mixture of fcc and hexagonal-closed-packed (hcp) phases. These nanocrystals are single crystals of CoO and exhibit mixture of two types of morphologies; one is nearly spherical with 5-25 nm diameter, and other one is 5-10 nm thick flake. The pure fcc-CoO nanocrystals show enhanced, and mixture of fcc- and hcp-CoO nanocrystals show reduced antiferromagnetic ordering temperature. Such results provide new opportunities for optimizing and enhancing the properties and performance of cobalt oxide nanomaterials.

  9. Electrochemically grafted polypyrrole changes photoluminescence of electronic states inside nanocrystalline diamond

    SciTech Connect

    Galář, P. Malý, P.; Čermák, J.; Kromka, A.; Rezek, B.

    2014-12-14

    Hybrid diamond-organic interfaces are considered attractive for diverse applications ranging from electronics and energy conversion to medicine. Here we use time-resolved and time-integrated photoluminescence spectroscopy in visible spectral range (380–700 nm) to study electronic processes in H-terminated nanocrystalline diamond films (NCD) with 150 nm thin, electrochemically deposited polypyrrole (PPy) layer. We observe changes in dynamics of NCD photoluminescence as well as in its time-integrated spectra after polymer deposition. The effect is reversible. We propose a model where the PPy layer on the NCD surface promotes spatial separation of photo-generated charge carriers both in non-diamond carbon phase and in bulk diamond. By comparing different NCD thicknesses we show that the effect goes as much as 200 nm deep inside the NCD film.

  10. Friction and Wear Properties of As-deposited and Carbon Ion-implanted Diamond Films

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1994-01-01

    Recent work on the friction and wear properties of as-deposited and carbon ion-implanted diamond films was reviewed. Diamond films were produced by the microwave plasma chemical vapor deposition (CVD) technique. Diamond films with various grain sizes and surface roughnesses were implanted with carbon ions at 60 ke V ion energy, resulting in a dose of 1.2310(exp 17) carbon ions/cm(exp 2). Various analytical techniques, including Raman spectroscopy, proton recoil analysis, Rutherford backscattering, transmission and scanning electron microscopy, x-ray photoelectron spectroscopy, and x-ray diffraction, were utilized to characterize the diamond films. Sliding friction experiments were conducted with a polished natural diamond pin in contact with diamond films in the three environments: humid air (40 percent relative humidity), dry nitrogen (less than 1 percent relative humidity), and ultrahigh vacuum (10(exp -7) Pa). The CVD diamond films indeed have friction and were properties similar to those of natural diamond in the three environments. The as-deposited, fine-grain diamond films can be effectively used as self-lubricating, wear-resistant coatings that have low coefficients of friction (0.02 to 0.04) and low wear rates (10(exp -7) to 10(exp -8)mm(exp 3)/N-m) in both humid air and dry nitrogen. However, they have high coefficients of friction (1.5 to 1.7) and a high wear rate (10(exp -4)mm(exp 3/N-m) in ultrahigh vacuum. The carbon ion implanation produced a thin surficial layer (less than 0.1 micron thick) of amorphous, nondiamond carbon on the diamond films. In humid air and dry nitrogen, the ion-implanted, fine- and coarse-grain diamond films have a low coefficient of friction (around 0.1) and a low wear rate (10(exp -7)mm(exp 3/N-m). Even in ultrahigh vacuum, the presence of the nondiamond carbon layer reduced the coefficient of friction of fine-grain diamond films to 0.1 or lower and the wear rate to 10(exp -6)mm(exp 3)/N-m. Thus, the carbon ion-implanted, fine

  11. Low Temperature Growth of Nanostructured Diamond Films on Metals

    NASA Technical Reports Server (NTRS)

    Baker, Paul A.; Catledge, Shane A.; Vohra, Yogesh K.

    2001-01-01

    The field of nanocrystalline diamond and tetrahedral amorphous carbon films has been the focus of intense experimental activity in the last few years for applications in field emission display devices, optical windows, and tribological coatings, The choice of substrate used in most studies has typically been silicon. For metals, however, the thermal expansion mismatch between the diamond film and substrate gives rise to thermal stress that often results in delamination of the film. To avoid this problem in conventional CVD deposition low substrate temperatures (less than 700 C) have been used, often with the incorporation of oxygen or carbon monoxide to the feedgas mixture. Conventionally grown CVD diamond films are also rough and would require post-deposition polishing for most applications. Therefore, there is an obvious need to develop techniques for deposition of well-adhered, smooth nano-structured diamond films on metals for various tribological applications. In our work, nanostructured diamond films are grown on a titanium alloy substrate using a two-step deposition process. The first step is performed at elevated temperature (820 C) for 30 minutes using a H2/CH4/N2 gas mixture in order to grow a thin (approx. 600 nm) nanostructured diamond layer and improve film adhesion. The remainder of the deposition involves growth at low temperature (less than 600 C) in a H2/CH4/O2 gas mixture. Laser reflectance Interferometry (LRI) pattern during growth of a nanostructured diamond film on Ti-6Al-4V alloy. The first 30 minutes are at a high temperature of 820 C and the rest of the film is grown at a low temperature of 580 T. The fringe pattern is observed till the very end due to extremely low surface roughness of 40 nm. The continuation of the smooth nanostructured diamond film growth during low temperature deposition is confirmed by in-situ laser reflectance interferometry and by post-deposition micro-Raman spectroscopy and surface profilometry. Similar experiments

  12. Quantum Confinement Regimes in CdTe Nanocrystals Probed by Single Dot Spectroscopy: From Strong Confinement to the Bulk Limit.

    PubMed

    Tilchin, Jenya; Rabouw, Freddy T; Isarov, Maya; Vaxenburg, Roman; Van Dijk-Moes, Relinde J A; Lifshitz, Efrat; Vanmaekelbergh, Daniel

    2015-08-25

    Sufficiently large semiconductor nanocrystals are a useful model system to characterize bulk-like excitons, with the electron and hole bound predominantly by Coulomb interaction. We present optical characterization of excitons in individual giant CdTe nanocrystals with diameters up to 25.5 nm at 4.2 K under varying excitation power and magnetic field strength. We determine values for the biexciton binding energy, diamagnetic shift constant, and Landé g-factor, which approach the bulk values with increasing nanocrystal size. PMID:26181051

  13. Efficient CdSe nanocrystal diffraction gratings prepared by microcontact molding.

    PubMed

    Shallcross, R Clayton; Chawla, Gulraj S; Marikkar, F Saneeha; Tolbert, Stephanie; Pyun, Jeffrey; Armstrong, Neal R

    2009-11-24

    We describe the formation of efficient transmission diffraction gratings created from patterned high quality ligand-capped CdSe nanocrystals (NCs), using a facile microcontact molding procedure. Soft polymer replicas of commercially available master gratings were "inked" with solvated NCs and the resulting pattern transferred to a variety of substrates after drying. Large-area (>0.5 cm(2)), defect free diffraction gratings were prepared with a variety of submicrometer line spacings and feature sizes down to ca. 160 nm. The morphology of the resulting pattern was tuned by controlling the concentration of the NC-based ink. Optimized gratings (1200 g/mm) showed an increase in transmission diffraction efficiency (DE) with increasing nanocrystal diameter. DE = ca. 15% (488 nm) for 2.5 nm diameter NCs versus DE = ca. 25-30% (488 nm) for 7.3 nm nanocrystals. These increases in DE are ascribed to changes in both the real (n) and imaginary (k) components of the complex index of refraction as NC diameter increases. We demonstrate the ability to in- and out-couple incident laser radiation into internal reflection elements using these stamped NC gratings, including single-mode waveguides, offering a novel application of ordered nanocrystal thin films. PMID:19803496

  14. Most diamonds were created equal

    NASA Astrophysics Data System (ADS)

    Jablon, Brooke Matat; Navon, Oded

    2016-06-01

    Diamonds crystallize deep in the mantle (>150 km), leaving their carbon sources and the mechanism of their crystallization debatable. They can form from elemental carbon, by oxidation of reduced species (e.g. methane) or reduction of oxidized ones (e.g. carbonate-bearing minerals or melts), in response to decreasing carbon solubility in melts or fluids or due to changes in pH. The mechanism of formation is clear for fibrous diamonds that grew from the carbonate-bearing fluids trapped in their microinclusions. However, these diamonds look different and, based on their lower level of nitrogen aggregation, are much younger than most monocrystalline (MC) diamonds. In the first systematic search for microinclusions in MC diamonds we examined twinned crystals (macles), assuming that during their growth, microinclusions were trapped along the twinning plane. Visible mineral inclusions (>10 μm) and nitrogen aggregation levels in these clear macles are similar to other MC diamonds. We found 32 microinclusions along the twinning planes in eight out of 30 diamonds. Eight inclusions are orthopyroxene; four contain >50% K2O (probably as K2(Mg, Ca)(CO3)2); but the major element compositions of the remaining 20 are similar to those of carbonate-bearing high-density fluids (HDFs) found in fibrous diamonds. We conclude that the source of carbon for these macles and for most diamonds is carbonate-bearing HDFs similar to those found here and in fibrous diamonds. Combined with the old ages of MC diamonds (up to 3.5 Ga), our new findings suggest that carbonates have been introduced into the reduced lithospheric mantle since the Archaean and that the mechanism of diamond formation is the same for most diamonds.

  15. Raman investigation of diamond films

    SciTech Connect

    Feng, Li-Ming

    1993-12-31

    Extensive Raman investigations were conducted on a wide range of diamond films whose structures were dilineated by optical and confocal microscopy. The Raman Spectra from one extreme of this range indicates a very intense 1331 cm{sup {minus}1} line diagnostic of bulk crystalline diamond. Microscopy of the corresponding film shows the presence of many large true diamond crystallite. The 1331 cm{sup {minus}1} Raman line at the other extreme of the range, however, is virtually absent. It is replaced, at this extreme, by a very broad Raman contour whose maxima occur near 1355 cm{sup {minus}1} and 1575 cm{sup {minus}1}. Optical microscopy now reveals a complete lack of diamond crystallites. The ratio of the integrated Raman intensity of the 1331 cm{sup {minus}1} diamond line to the integral of the entire broad contour extending from {approx}1200 cm{sup {minus}1} to 1800 cm{sup {minus}1}, with maxima near 1355 cm{sup {minus}1} and 1575 cm{sup {minus}1}, was determined. This ratio rises with increasing diamond crystallite size, and it decreases as true diamond crystallites are replaced by diamond-like, but amorphous, hard carbon, which produces the broad Raman contour. The measured intensity ratio was analyzed in terms of a differential equation related to phonon coupling. The increase of the intensity ratio of the 1331 cm{sup {minus}1} diagnostic diamond peak is due to phono-phonon coupling between the diamond crystallites, as the concentration of the amorphous diamond-like carbon decreases. Confocal microscopy indicates many amorphous-like regions interspersed between diamond crystallites which account for the intensity loss, and agree with the Raman intensity measurements. These Raman measurements crystallinity versus amorphous hard-carbon character of thin diamond film.

  16. Evolution of the morphology of diamond particles and mechanism of their growth during the synthesis by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Feoktistov, N. A.; Grudinkin, S. A.; Golubev, V. G.; Baranov, M. A.; Bogdanov, K. V.; Kukushkin, S. A.

    2015-11-01

    The evolution of the surface morphology of diamond particles synthesized by chemical vapor deposition (CVD) on silicon substrates has been investigated. It has been found that, when the diamond particles reach a critical size of less than 800 nm, the surface of the diamond faces is transformed. Particles with sizes of no more than 100-300 nm have a well-faceted surface covered by the {100} and {111} faces. An increase in the size of diamond particles leads to a change in the structure of their surface. The surface is covered by the {100} faces surrounded by a disordered phase. With a further increase in the particle size (up to ˜2000 nm), the {100} faces disappear and the diamond particles are covered by high-index faces. A model explaining the evolution of the surface morphology of diamond particles has been proposed. According to this model, during the evolution of diamond particles with an increase in their size, the mechanism of layer-bylayer growth changes to normal growth, which leads to a significant transformation of the entire surface of the diamond particles. The critical size of a two-dimensional nucleus formed on the {100} and {111} faces, at which the change in the growth mechanism begins to occur, has been calculated. A method has been proposed for controlling the morphology of diamond particles during their synthesis.

  17. Effects of disorder state and interfacial layer on thermal transport in copper/diamond system

    SciTech Connect

    Sinha, V.; Gengler, J. J.; Muratore, C.; Spowart, J. E.

    2015-02-21

    The characterization of Cu/diamond interface thermal conductance (h{sub c}) along with an improved understanding of factors affecting it are becoming increasingly important, as Cu-diamond composites are being considered for electronic packaging applications. In this study, ∼90 nm thick Cu layers were deposited on synthetic and natural single crystal diamond substrates. In several specimens, a Ti-interface layer of thickness ≤3.5 nm was sputtered between the diamond substrate and the Cu top layer. The h{sub c} across Cu/diamond interfaces for specimens with and without a Ti-interface layer was determined using time-domain thermoreflectance. The h{sub c} is ∼2× higher for similar interfacial layers on synthetic versus natural diamond substrate. The nitrogen concentration of synthetic diamond substrate is four orders of magnitude lower than natural diamond. The difference in nitrogen concentration can lead to variations in disorder state, with a higher nitrogen content resulting in a higher level of disorder. This difference in disorder state potentially can explain the variations in h{sub c}. Furthermore, h{sub c} was observed to increase with an increase of Ti-interface layer thickness. This was attributed to an increased adhesion of Cu top layer with increasing Ti-interface layer thickness, as observed qualitatively in the current study.

  18. Ferritin-based nanocrystals for solar energy harvesting

    NASA Astrophysics Data System (ADS)

    Colton, John; Erickson, Stephen; Olsen, Cameron; Embley, Jacob; Smith, Trevor; Watt, Richard

    2015-03-01

    Ferritin is a 12 nm diameter hollow protein with an 8 nm cavity that can be filled with a variety of nanocrystals (ferrihydrite being native). We report on several experiments with ferritin-based nanocrystals designed to utilize ferritin for solar energy harvesting. First, we have shown that the native band gap can be altered by controlling nanocrystal size, by replacing the native iron oxide core with other metal oxides, and by depositing halides and oxo-anions with the iron oxide core. This gives available band gaps of 1.6 to 2.3 eV. Theoretical efficiency calculations based on these band gaps show that the efficiency of a multi-junction solar cell based on layered structures of ferritin can be as high as 44.9 %, and up to 63.1 % if a ferritin-based material with band gap of 1.1 eV can be developed. For the latter case, the efficiencies remain quite high even in a current-matched configuration, namely 50.0 %. We have also demonstrated that photo-excitation of these materials can produce charge separation and give rise to usable electrons; we have used photo-excited electrons to reduce gold in solution and thereby produce gold nanoparticles on the surface of the ferritin. This technique can potentially be extended to platinum, whose nanoparticles catalyze water splitting. This research was partially supported by the Utah Office of Energy Development, Governor's Energy Leadership Scholars Program.

  19. A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Ostrowski, Andrzej; Malinowska, Karolina; Herbich, Jerzy; Golec, Barbara; Wielgus, Ireneusz; Pron, Adam

    2014-05-19

    A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core. PMID:24786548

  20. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  1. Differing morphologies of textured diamond films with electrical properties made with microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lai, Wen Chi; Wu, Yu-Shiang; Chang, Hou-Cheng; Lee, Yuan-Haun

    2010-12-01

    This study investigates the orientation of textured diamond films produced through microwave plasma chemical vapor deposition (MPCVD) at 1200 W, 110 Torr, CH 4/H 2 = 1/20, with depositions times of 0.5-4.0 h. After a growth period of 2.0-4.0 h, this particular morphology revealed a rectangular structure stacked regularly on the diamond film. The orientation on {1 1 1}-textured diamond films grew a preferred orientation of {1 1 0} on the surface, as measured by XRD. The formation of the diamond epitaxial film formed textured octahedrons in ball shaped (or cauliflower-like) diamonds in the early stages (0.5 h), and the surface of the diamond film extended to pile the rectangular structure at 4.0 h. The width of the tier was approximately 200 nm at the 3.0 h point of deposition, according to TEM images. The results revealed that the textured diamond films showed two different morphological structures (typical ball shaped and rectangular diamonds), at different stages of the deposition period. The I- V characteristics of the oriented diamond films after 4.0 h of deposition time showed good conformity with the ohmic contact.

  2. Fractal dimension and surface topography on the diamond deposition of seeded WC-Co substrates

    NASA Astrophysics Data System (ADS)

    Chou, C.-C.; Lin, H.-H.

    2010-04-01

    Diamond thin films were deposited on WC-Co substrates by hot filament chemical vapor deposition to improve the tribological performance. The influence of the substrate surface topography was found to play an important role during the nucleation stage and the later growth rate as well. In this study, we systematically investigated the relation between substrate surface irregularity, which was evaluated by fractal dimension as well as statistical roughness parameters and the quality of the later deposited diamond film. Preseeding processes, in diamond acetone suspensions with two particle diameters, by supersonic vibrator were also implemented to investigate the effect of particular size on diamond nucleation. The original surfaces were measured with a stylus profiler and contact-mode atomic force microscopy. The diamond deposited substrates were examined by scanning electron microscopy, x-ray diffractometry, Raman spectroscopy, and Rockwell-C indentation to study substrate topography, crystalline structure of the coating, the composition of diamond films, and adhesion between deposited layers and substrates, respectively. The synergetic influence of the substrate's fractal dimension and the particular size of pre-seeding diamond suspension were studied and addressed. The deposited film of a WC-Co substrate with higher surface fractal dimension (>2.50), preseeded by fine diamond suspension (4-12 nm particle size) in advance, has a high diamond-rich composition and adhesion strength.

  3. Application of precision diamond machining to the manufacture of microphotonics components

    NASA Astrophysics Data System (ADS)

    Davies, Matthew A.; Evans, Christopher J.; Vohra, Rashmi R.; Bergner, Brent C.; Patterson, Steven R.

    2003-11-01

    The use of diamonds to generate precision patterns and precision surfaces on a micrometer or nanometer scale has a history that dates back centuries. Uses of diamond in semi-automated machinery can be traced to ruling machines, pantographs, and ornamental turning with "diamond turning" dating back about a century. Poor behavior in machining more common materials (e.g. ferrous alloys) has limited diamond use in traditional industrial machining. The niche of the single crystal diamond is its edge sharpness and the ability to produce near-optical finish in materials such as aluminum, copper and their alloys; however, due to machine limitations, diamond machining remained a novelty until relatively recently. A convergence of machine technologies developed for both weapons and commercial applications led to modern diamond turning. Current turnkey machines can produce contoured surfaces with surface finish in the range of 5 nm Ra and long range accuracy of micrometers or less. Macroscopic scale, three axis, diamond machining is a well-developed technology; machining of features on a micrometer and submicrometer scale is a new and rapidly developing application of single crystal diamond machining. The role of this technology in micro-optics replication has yet to be fully defined.

  4. Luminescent Eu2O3 nanocrystals by Aspalathus linearis' extract: structural and optical properties

    NASA Astrophysics Data System (ADS)

    Diallo, Abdoulaye; Mothudi, Bakang M.; Manikandan, Elayaperumal; Maaza, Malik

    2016-04-01

    This contribution reports on the synthesis and the main physical properties of europium oxide nanocrystals synthesized for the first time by a completely green physical-chemistry process using Aspalathus linearis' leaves natural extract as an effective chelating agent. The structural and optical properties of such biosynthesized nanocrystals were investigated by electron microscopy, selective electron diffraction, energy dispersive spectroscopy, x-rays diffraction, Raman and x-rays photoelectron spectroscopies, as well as room-temperature photoluminescence. The luminescence properties of such cubic nanocrystals with a 16.5 nm average size were characterized by an intense red emission centered at 614.8 nm (D05-F37) with an average time decay of 7.808 μs.

  5. Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals.

    PubMed

    Cohn, Alicia W; Rinehart, Jeffrey D; Schimpf, Alina M; Weaver, Amanda L; Gamelin, Daniel R

    2014-01-01

    We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3). PMID:24328385

  6. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  7. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb(3+)/Er(3+) Nanocrystals.

    PubMed

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang Ken

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb(3+)/Er(3+) nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  8. Synthesis and Optical Properties of Water Soluble ZnSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Murase, N.; Gao, M. Y.; Gaponik, N.; Yazawa, T.; Feldmann, J.

    2001-08-01

    ZnSe nanocrystals are prepared in water by a wet chemistry method. By selecting an appropriate pH value and surface-capping agents, a whitish blue fluorescence peaking at 470 nm is observed under UV irradiation. The intensity of this fluorescence increases dramatically under reflux and saturates after ~40 hrs. The final mean size of the ZnSe nanocrystals measured by transmission electron microscopy is about 2 nm in diameter. The quantum efficiency of the fluorescence from the final solution is estimated to be ~1%, although the preparation conditions have not yet been completely optimized. These properties are discussed in comparison with those of similarly prepared CdTe and differently prepared ZnSe nanocrystals.

  9. Synthesis and Optical Properties of Water Soluble ZnSe Nanocrystals

    NASA Astrophysics Data System (ADS)

    Murase, N.; Gao, M. Y.; Gaponik, N.; Yazawa, T.; Feldmann, J.

    ZnSe nanocrystals are prepared in water by a wet chemistry method. By selecting an appropriate pH value and surface-capping agents, a whitish blue fluorescence peaking at 470 nm is observed under ZV irradiation. The intensity of this fluorescence increases dramatically under reflux and saturates after ~ 40 hrs. The final mean size of the ZnSe nanocrystals measured by transmission electron microscopy is aboyt 2 nm in diameter. The quantum efficiency of the fluorescence form the final solution is estimated to be ~1%, although the preparation conditions have not yet been completely optimized. These properties are discussed in comparison with those of similarly prepared CdTe and differently prepared ZnSe nanocrystals.

  10. Structure and properties of diamond and diamond-like films

    SciTech Connect

    Clausing, R.E.

    1993-01-01

    This section is broken into four parts: (1) introduction, (2) natural IIa diamond, (3) importance of structure and composition, and (4) control of structure and properties. Conclusions of this discussion are that properties of chemical vapor deposited diamond films can compare favorably with natural diamond, that properties are anisotropic and are a strong function of structure and crystal perfection, that crystal perfection and morphology are functions of growth conditions and can be controlled, and that the manipulation of texture and thereby surface morphology and internal crystal perfection is an important step in optimizing chemically deposited diamond films for applications.

  11. High performance hydrogen-terminated diamond field effect transistors

    NASA Astrophysics Data System (ADS)

    Russell, Stephen A. O.

    Diamond provides extreme properties which make it suitable as a new substrate material for high performance electronics. It has the potential to provide both high frequency and high power performance while operating in extreme environments such as elevated temperature or exposed to corrosive chemicals or radiation. Research to date has shown the potential of diamond for this purpose with hydrogen-terminated diamond surface channel transistors already showing promise in terms of high frequency operation. The inherent instability of using atmospheric molecules to induce a p-type doping at this hydrogen-terminated diamond surface has so far limited power performance and robustness of operation. This work reports upon the scaling of surface channel hydrogen-terminated transistors with FET gate lengths of 250 nm and 120 nm showing performance comparable to other devices published to date. The gate length was then scaled for the first time to sub-100 nm dimensions with a 50 nm gate length FET fabricated giving record high-frequency performance with a fT of 53 GHz. An adapted fabrication procedure was developed for this project with special attention paid to the volatility of the particles upon the diamond surface. Equivalent RF circuit models were extracted for each gate length and analysed in detail. Work was then undertaken to investigate a more stable alternative to the atmospheric induced doping effect with alternative electron accepting materials being deposited upon the hydrogen-terminated diamond surface. The as yet untested organic material F16CuPc was deposited on to hydrogen-terminated diamond and demonstrated its ability to encapsulate and preserve the atmospheric induced sub-surface conductivity at room temperature. For the first time an inorganic material was also investigated as a potential encapsulation for the hydrogen-terminated diamond surface, MoO3 was chosen due to its high electron affinity and like F16CuPc also showed the ability to preserve and

  12. Smooth diamond films as low friction, long wear surfaces

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Erdemir, Ali; Bindal, Cuma; Zuiker, Christopher D.

    1999-01-01

    An article and method of manufacture of a nanocrystalline diamond film. The nanocrystalline film is prepared by forming a carbonaceous vapor, providing an inert gas containing gas stream and combining the gas stream with the carbonaceous containing vapor. A plasma of the combined vapor and gas stream is formed in a chamber and fragmented carbon species are deposited onto a substrate to form the nanocrystalline diamond film having a root mean square flatness of about 50 nm deviation from flatness in the as deposited state.

  13. Structure and infrared photoluminescence of GeSi nanocrystals formed by high temperature annealing of GeOx/SiO2 multilayers

    NASA Astrophysics Data System (ADS)

    Volodin, V. A.; Gambaryan, M. P.; Cherkov, A. G.; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2016-08-01

    Germanium and GeSi nanocrystals were synthesized in SiGeO2 glass by high temperature annealings of GeOx(5 nm)/SiO2(5 nm) multilayers. According to electron microscopy data, the size distribution and stoichiometry of the nanocrystals depend on the annealing temperature (700, 800, or 900 °C). Spatial redistribution of Ge with the formation of large faceted nanocrystals located near the Si substrate and GeSi intermixing at the substrate/film interface were observed. In the case of the 900 °C annealed sample, we note that some nanocrystals have a pyramid-like shape. Infrared absorption spectroscopy demonstrates that intermixing takes place between the GeOx and SiO2 layers leading to the formation of SiGeO2 glass. Raman spectroscopy confirms the formation of Ge nanocrystals after annealing at 700 °C and GeSi nanocrystals after annealing at 800 and 900 °C. For all annealed samples, we report the observation of infrared photoluminescence (PL) at low temperatures in the spectral range 1300–2100 nm. The observation of PL at wavelengths close to 2000 nm may be due to defect-induced radiative transitions in the nanocrystals.

  14. Single-Crystal Diamond Nanowire Tips for Ultrasensitive Force Microscopy.

    PubMed

    Tao, Y; Degen, C L

    2015-12-01

    We report the fabrication, integration, and assessment of sharp diamond tips for ultrasensitive force microscopy experiments. Two types of tips, corresponding to the upper and lower halves of a diamond nanowire, were fabricated by top-down plasma etching from a single-crystalline substrate. The lower, surface-attached halves can be directly integrated into lithographically defined nanostructures, like cantilevers. The upper, detachable halves result in diamond nanowires with a tunable diameter (50-500 nm) and lengths of a few microns. Tip radii were around 10 nm and tip apex angles around 15°. We demonstrate the integration of diamond nanowires for use as scanning tips onto ultrasensitive pendulum-style silicon cantilevers. We find the noncontact friction and frequency jitter to be exceptionally low, with no degradation in the intrinsic mechanical quality factor (Q ≈ 130,000) down to tip-to-surface distances of about 10 nm. Our results are an encouraging step toward further improvement of the sensitivity and resolution of force-detected magnetic resonance imaging. PMID:26517172

  15. Genetics Home Reference: Diamond-Blackfan anemia

    MedlinePlus

    ... Home Health Conditions Diamond-Blackfan anemia Diamond-Blackfan anemia Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description Diamond-Blackfan anemia is a disorder of the bone marrow . The ...

  16. Nanocrystal powered nanomotor

    DOEpatents

    Regan, Brian C.; Zettl, Alexander K.; Aloni, Shaul

    2011-01-04

    A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.

  17. Mid-IR band gap engineering of CdxPb1-xS nanocrystals by mechanochemical reaction

    NASA Astrophysics Data System (ADS)

    Tan, Guo-Long; Liu, Limin; Wu, Weibing

    2014-06-01

    Composition-tunable ternary CdxPb1-xS nanocrystals (NCs) are very important materials for remote sensing and detecting in the infrared (IR) wavelength region. They are, however, almost exclusively prepared by wet chemical routes which lead to surface-capped nanoparticles. The surface capping molecules could move their absorption peaks from mid-IR to near IR wavelength region. However, surface clean CdxPb1-xS nanocrystals (NCs) would demonstrate intrinsic optical spectrum in the mid-IR region. Herein, we present a physical mechanical alloying (MA) process being applied to prepare tens of grams of surface clean CdxPb1-xS nanocrystals within the composition range of x = 0.0 to 0.4. The average particle size is smaller than 9 nm. The as-milled nanocrystals are chemically homogenous. The CdxPb1-xS nanocrystals show a continuous lattice contraction with Cd content. There is an exponential indirect band gap-composition relationship. This MA method shows the ability to continuously and precisely tune the band gap energies of ternary CdxPb1-xS semiconductor nanocrystals from mid-IR region (2638 nm) to NIR wavelength region (1240 nm) through chemical composition.

  18. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    PubMed Central

    2011-01-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals. PMID:21762496

  19. Design and evaluation of injectable niclosamide nanocrystals prepared by wet media milling technique.

    PubMed

    Ye, Yanghuan; Zhang, Xingwang; Zhang, Tianpeng; Wang, Huan; Wu, Baojian

    2015-01-01

    Niclosamide is an anthelmintic drug that also demonstrates great potential in fighting against cancers. However, parenteral delivery of niclosamide is challenged due to its insoluble property. This study aimed to develop an injectable formulation for niclosamide using nanocrystals. Niclosamide nanocrystals were prepared by wet media milling technique and characterized by electronic microscopes, differential scanning calorimetry, powder X-ray diffractometry and drug release, etc. The resulting nanocrystals using Tween 80 as the stabilizer were approximately 235 nm in particle size and showed a satisfactory stability. Pharmacokinetic studies revealed that there was no significant difference in plasma concentration-time profiles between nanocrystals and the control formulation (i.e. drug solution). By contrast, a significant difference in tissue distribution was observed at 2 h. Further, niclosamide nanocrystals presented a comparable antitumor effect to the drug solution against EC9076 cell line. We concluded that the nanocrystal formulation with solution-like behaviors should be a promising choice for intravenous delivery of niclosamide. PMID:25204767

  20. Photoluminescent and electroluminescent properties of Mn-doped ZnS nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Heesun; Holloway, Paul H.; Ratna, Banahalli B.

    2003-01-01

    ZnS:Mn nanocrystals with sizes between 3 and 4 nm were synthesized via a competitive reaction chemistry method, where the surface capping organic species (p-thiocresol) is used as an inhibitor of the crystal growth. The x-ray diffraction and photoluminescent (PL) properties of ZnS:Mn bulk and nanocrystals were compared. A direct current electroluminescent (EL) device having a hybrid organic/inorganic multilayer structure, indium tin oxide/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT-PSS)/PVK/ZnS:Mn NC/Al, was tested. In this multilayer EL device structure, the PEDOT-PSS leads to enhanced hole injection, while the poly(N-vinylcarbazole) (PVK) serves as a passivation layer between the PEDOT-PSS and nanocrystal layers. Electron-hole recombination was not confined to the ZnS:Mn nanocrystal layer, but also occurred in the PVK layer. The result was emission from both the blue-emitting PVK and yellow-emitting ZnS:Mn nanocrystals. The EL emission spectrum was dependent upon the voltage, showing an increasing ratio of PVK emission to nanocrystal emission with increased voltage. The dependence of PL and EL emissions on Mn concentration (0.40 to 2.14 mol %) is also reported.

  1. Surface charges and optical characteristic of colloidal cubic SiC nanocrystals

    NASA Astrophysics Data System (ADS)

    Li, Yong; Chen, Changxin; Li, Jiang-Tao; Yang, Yun; Lin, Zhi-Ming

    2011-07-01

    Colloidal cubic silicon carbide (SiC) nanocrystals with an average diameter of 4.4 nm have been fabricated by anisotropic wet chemical etching of microsized cubic SiC powder. Fourier transform infrared spectra show that these cubic SiC nanocrystals contain carboxylic acid, SiH, CH, and CHx groups. UV/Vis absorption and photoluminescence (PL) spectroscopy clearly indicate that water and ethanol colloidal suspensions of the as-fabricated colloidal samples exhibit strong and above band gap blue and blue-green emissions. The cubic SiC nanocrystals show different surface charges in water and ethanol solutions due to the interaction of water molecules with polar Si-terminated surfaces of cubic SiC nanocrystals. The results explain the distinctive optical characteristics of colloidal cubic SiC nanocrystals in water and ethanol, and reveal that quantum confinement and surface charges play a great role in determining the optical characteristics of colloidal cubic SiC nanocrystals.

  2. Nanocrystalline diamond for medicine

    NASA Astrophysics Data System (ADS)

    Mitura, Stanislaw

    1997-06-01

    The unique properties of thin amorphous diamond layers make them perspective candidates for producing advanced micro- electronic devices, coatings for cutting tools and optics. Moreover, due to the highest bicompatibility of carbon resulting from the presence of this element in human body, it appears to be a potential biomaterial. Until present the amorphous diamond has found industrial applications in some areas. One of the applications of the carbon layers are coatings for medical implants. The studies of carbon films as coatings for implants in surgery were aimed on the investigations of biological resistance of implants, histopathological investigations on laboratory animals, tests of corrosion resistance, measurements of mechanical properties and a breakdown test in Tyrod solution. The current state of published work in the subject is reviewed in the paper together with a discussion concerning classification of this material.

  3. Optical Properties of Semiconductor Nanocrystals

    NASA Astrophysics Data System (ADS)

    Gaponenko, S. V.

    1998-10-01

    Low-dimensional semiconductor structures, often referred to as nanocrystals or quantum dots, exhibit fascinating behavior and have a multitude of potential applications, especially in the field of communications. This book examines in detail the optical properties of these structures, gives full coverage of theoretical and experimental results, and discusses their technological applications. The author begins by setting out the basic physics of electron states in crystals (adopting a "cluster-to-crystal" approach), and goes on to discuss the growth of nanocrystals, absorption and emission of light by nanocrystals, optical nonlinearities, interface effects, and photonic crystals. He illustrates the physical principles with references to actual devices such as novel light-emitters and optical switches. The book covers a rapidly developing, interdisciplinary field. It will be of great interest to graduate students of photonics or microelectronics, and to researchers in electrical engineering, physics, chemistry, and materials science.

  4. KY3F10:Er3+/Yb3+ nanocrystals doped laser-induced self-written waveguide for optical amplification in the C-band

    NASA Astrophysics Data System (ADS)

    Xue, Xiaojie; Cheng, Tonglei; Suzuki, Takenobu; Ohishi, Yasutake

    2016-02-01

    We successfully synthesized Er3+/Yb3+ co-doped KY3F10 nanocrystals by a facile hydrothermal method. The average size of the as-prepared nanocrystals was about 60 nm based on the observation of scanning electron microscope. Under the excitation of a 976 nm laser, the Er3+/Yb3+ doped KY3F10 nanocrystals showed intense near-infrared emission band centered at 1539 nm. The optimal concentrations of Er3+ were carefully selected according to the quantum yield measurement for a stronger emission in the C-band. The as-prepared nanocrystals were dispersed into a monomer, bisphenol A ethoxylate diacrylates, in which self-written waveguides can be fabricated under the irradiation of an induced laser at 450 nm. The KY3F10: Er3+/Yb3+ nanocrystals embedded polymer waveguide were fabricated by laser-induced self-written technique. Two pieces of single mode fiber were well connected with the waveguide in the fabrication procedure. Under a 976 nm laser pumping, amplified spontaneous emission at 1539 nm was observed in the KY3F10: Er3+/Yb3+ nanocrystals doped waveguide.

  5. Near-infrared emitting AgInTe2 and Zn-Ag-In-Te colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Langevin, Marc-Antoine; Pons, Thomas; Ritcey, Anna M.; Nì. Allen, Claudine

    2015-06-01

    The synthesis of AgInTe2 nanocrystals emitting between 1095 nm and 1160 nm is presented. Evolution of the Ag:In:Te ratio shows progressive incorporation of In3+ in Ag2Te, leading to the formation of orthorhombic AgInTe2. When zinc is added to the synthesis, the photoluminescence quantum yield reaches 3.4 %.

  6. Hexagonal diamonds in meteorites: implications.

    PubMed

    Hanneman, R E; Strong, H M; Bundy, F P

    1967-02-24

    A new polymorph of carbon, hexagonal diamond, has been discovered in the Canyon Diablo and Goalpara meteorites. This phase had been synthesized recently under specific high-pressure conditions in the laboratory. Our results: provide strong evidence that diamonds found in these meteorites were produced by intense shock pressures acting on crystalline graphite inclusions present within the meteorite before impact, rather than by disintegration of larger, statically grown diamonds, as some theories propose. PMID:17830485

  7. Diamond films for laser hardening

    NASA Technical Reports Server (NTRS)

    Albin, S.; Watkins, L.; Ravi, K.; Yokota, S.

    1989-01-01

    Laser-damage experiments were performed on free-standing polycrystalline diamond films prepared by plasma-enhanced CVD. The high laser-induced stress resistance found for this material makes it useful for thin-film coatings for laser optics. Results for diamond-coated silicon substrates demonstrate the enhanced damage threshold imparted by diamond thin-film coatings to materials susceptible to laser damage.

  8. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1993-01-01

    A method of forming synthetic diamond on a substrate is disclosed. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond thickness on the substrate.

  9. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic diamond on a substrate. The method involves providing a substrate surface covered with a fullerene or diamond coating, positioning a fullerene in an ionization source, creating a fullerene vapor, ionizing fullerene molecules, accelerating the fullerene ions to energies above 250 eV to form a fullerene ion beam, impinging the fullerene ion beam on the substrate surface and continuing these steps to obtain a diamond film thickness on the substrate.

  10. Luminescent small-diameter 3C-SiC nanocrystals fabricated via a simple chemical etching method

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Liu, Z.; Wu, X. L.; Xu, L. L.; Zhang, W. C.; Chu, Paul K.

    2007-09-01

    Up to now, it is still a great challenge to obtain bulk quantities of luminescent 3C-SiC nanocrystals with sizes smaller than 10 nm, which have quantum confinement effect. We report in this paper on the fabrication of 3C-SiC nanocrystals via a chemical etching of microscale 3C-SiC grains and ultrasonic vibration. The sizes of the as-prepared 3C-SiC nanocrystals are smaller than 6.5 nm and have a centric distribution with the maximal probability of 3.6 nm. Due to the quantum confinement effect, the suspension of the 3C-SiC nanocrystals exhibits a tunable photoluminescence (PL), which is visible with the naked eye. As the excitation line increases from 260 to 480 nm, the PL peak position changes from 420 to 512 nm. Spectral analysis and microstructural observations show that the chemical etching leads to the formation of a weakly interconnected nanostructure network in the large 3C-SiC grains and subsequent ultrasonic vibration crumbles the interconnected network, forming small-size 3C-SiC nanocrystals.

  11. Diamond turning of glass

    SciTech Connect

    Blackley, W.S.; Scattergood, R.O.

    1988-12-01

    A new research initiative will be undertaken to investigate the critical cutting depth concepts for single point diamond turning of brittle, amorphous materials. Inorganic glasses and a brittle, thermoset polymer (organic glass) are the principal candidate materials. Interrupted cutting tests similar to those done in earlier research are Ge and Si crystals will be made to obtain critical depth values as a function of machining parameters. The results will provide systematic data with which to assess machining performance on glasses and amorphous materials

  12. DIAMOND SECONDARY EMITTER

    SciTech Connect

    BEN-ZVI, I.; RAO, T.; BURRILL, A.; CHANG, X.; GRIMES, J.; RANK, J.; SEGALOV, Z.; SMEDLEY, J.

    2005-10-09

    We present the design and experimental progress on the diamond secondary emitter as an electron source for high average power injectors. The design criteria for average currents up to 1 A and charge up to 20 nC are established. Secondary Electron Yield (SEY) exceeding 200 in transmission mode and 50 in emission mode have been measured. Preliminary results on the design and fabrication of the self contained capsule with primary electron source and secondary electron emitter will also be presented.

  13. DIAMOND PEAK WILDERNESS, OREGON.

    USGS Publications Warehouse

    Sherrod, David R.; Moyle, Phillip R.

    1984-01-01

    No metallic mineral resources were identified during a mineral survey of the Diamond Peak Wilderness in Oregon. Cinder cones within the wilderness contain substantial cinder resources, but similar deposits that are more accessible occur outside the wilderness. The area could have geothermal resources, but available data are insufficient to evaluate their potential. Several deep holes could be drilled in areas of the High Cascades outside the wilderness, from which extrapolations of the geothermal potential of the several Cascade wilderness could be made.

  14. DIAMOND AMPLIFIER FOR PHOTOCATHODES.

    SciTech Connect

    RAO,T.; BEN-ZVI,I.; BURRILL,A.; CHANG,X.; HULBERT,S.; JOHNSON,P.D.; KEWISCH,J.

    2004-06-21

    We report a new approach to the generation of high-current, high-brightness electron beams. Primary electrons are produced by a photocathode (or other means) and are accelerated to a few thousand electron-volts, then strike a specially prepared diamond window. The large Secondary Electron Yield (SEY) provides a multiplication of the number of electrons by about two orders of magnitude. The secondary electrons drift through the diamond under an electric field and emerge into the accelerating proper of the ''gun'' through a Negative Electron Affinity surface of the diamond. The advantages of the new approach include the following: (1) Reduction of the number of primary electrons by the large SEY, i.e. a very low laser power in a photocathode producing the primaries. (2) Low thermal emittance due to the NEA surface and the rapid thermalization of the electrons. (3) Protection of the cathode from possible contamination from the gun, allowing the use of large quantum efficiency but sensitive cathodes. (4) Protection of the gun from possible contamination by the cathode, allowing the use of superconducting gun cavities. (5) Production of high average currents, up to ampere class. (6) Encapsulated design, making the ''load-lock'' systems unnecessary. This paper presents the criteria that need to be taken into account in designing the amplifier.

  15. Raman barometry of diamond formation

    NASA Astrophysics Data System (ADS)

    Izraeli, E. S.; Harris, J. W.; Navon, O.

    1999-11-01

    Pressures and temperatures of the diamond source region are commonly estimated using chemical equilibria between coexisting mineral inclusions. Here we present another type of geobarometer, based on determination of the internal pressure in olivine inclusions and the stresses in the surrounding diamond. Using Raman spectroscopy, pressures of 0.13 to 0.65 GPa were measured inside olivine inclusions in three diamonds from the Udachnaya mine in Siberia. Stresses in the diamond surrounding the inclusions indicated similar pressures (0.11-0.41 GPa). Nitrogen concentration and aggregation state in two of the diamonds yielded mantle residence temperatures of ˜1200°C. Using this temperature and the bulk moduli and thermal expansion of olivine and diamond, we calculated source pressures of 4.4-5.2 GPa. We also derived a linear approximation for the general dependence of the source pressure ( P0, GPa) on source temperature ( T0, °C) and the measured internal pressure in the inclusion ( Pi): P0=(3.259×10 -4Pi+3.285×10 -3) T0+0.9246 Pi+0.319. Raman barometry may be applied to other inclusions in diamonds or other inclusion-host systems. If combined with IR determination of the mantle residence temperature of the diamond, it allows estimation of the pressure at the source based on a non-destructive examination of a single diamond containing a single inclusion.

  16. Conversion of fullerenes to diamonds

    DOEpatents

    Gruen, Dieter M.

    1995-01-01

    A method of forming synthetic diamond or diamond-like films on a substrate surface. The method involves the steps of providing a vapor selected from the group of fullerene molecules or an inert gas/fullerene molecule mixture, providing energy to the fullerene molecules consisting of carbon-carbon bonds, the energized fullerene molecules breaking down to form fragments of fullerene molecules including C.sub.2 molecules and depositing the energized fullerene molecules with C.sub.2 fragments onto the substrate with farther fragmentation occurring and forming a thickness of diamond or diamond-like films on the substrate surface.

  17. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  18. Diamonds in ophiolites: Contamination or a new diamond growth environment?

    NASA Astrophysics Data System (ADS)

    Howell, D.; Griffin, W. L.; Yang, J.; Gain, S.; Stern, R. A.; Huang, J.-X.; Jacob, D. E.; Xu, X.; Stokes, A. J.; O'Reilly, S. Y.; Pearson, N. J.

    2015-11-01

    For more than 20 years, the reported occurrence of diamonds in the chromites and peridotites of the Luobusa massif in Tibet (a complex described as an ophiolite) has been widely ignored by the diamond research community. This skepticism has persisted because the diamonds are similar in many respects to high-pressure high-temperature (HPHT) synthetic/industrial diamonds (grown from metal solvents), and the finding previously has not been independently replicated. We present a detailed examination of the Luobusa diamonds (recovered from both peridotites and chromitites), including morphology, size, color, impurity characteristics (by infrared spectroscopy), internal growth structures, trace-element patterns, and C and N isotopes. A detailed comparison with synthetic industrial diamonds shows many similarities. Cubo-octahedral morphology, yellow color due to unaggregated nitrogen (C centres only, Type Ib), metal-alloy inclusions and highly negative δ13C values are present in both sets of diamonds. The Tibetan diamonds (n = 3) show an exceptionally large range in δ15N (-5.6 to + 28.7 ‰) within individual crystals, and inconsistent fractionation between {111} and {100} growth sectors. This in contrast to large synthetic HPHT diamonds grown by the temperature gradient method, which have with δ15N = 0 ‰ in {111} sectors and + 30 ‰ in {100} sectors, as reported in the literature. This comparison is limited by the small sample set combined with the fact the diamonds probably grew by different processes. However, the Tibetan diamonds do have generally higher concentrations and different ratios of trace elements; most inclusions are a NiMnCo alloy, but there are also some small REE-rich phases never seen in HPHT synthetics. These characteristics indicate that the Tibetan diamonds grew in contact with a C-saturated Ni-Mn-Co-rich melt in a highly reduced environment. The stable isotopes indicate a major subduction-related contribution to the chemical environment. The

  19. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  20. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.

    PubMed

    de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam; de Bettignies, Rémi; Malaman, Bernard; Reiss, Peter

    2012-07-18

    Narrow band gap tin(II) chalcogenide (SnS, SnSe, SnTe) nanocrystals are of high interest for optoelectronic applications such as thin film solar cells or photodetectors. However, charge transfer and charge transport processes strongly depend on nanocrystals' surface quality. Using (119)Sn-Mössbauer spectroscopy, which is the most sensitive tool for probing the Sn oxidation state, we show that SnS nanocrystals exhibit a Sn((IV))/Sn((II)) ratio of around 20:80 before and 40:60 after five minutes exposure to air. Regardless of the tin or sulfur precursors used, similar results are obtained using six different synthesis protocols. The Sn((IV)) content before air exposure arises from surface related SnS(2) and Sn(2)S(3) species as well as from surface Sn atoms bound to oleic acid ligands. The increase of the Sn((IV)) content upon air exposure results from surface oxidation. Full oxidation of the SnS nanocrystals without size change is achieved by annealing at 500 °C in air. With the goal to prevent surface oxidation, SnS nanocrystals are capped with a cadmium-phosphonate complex. A broad photoluminescence signal centered at 600 nm indicates successful capping, which however does not reduce the air sensitivity. Finally we demonstrate that SnSe nanocrystals exhibit a very similar behavior with a Sn((IV))/Sn((II)) ratio of 43:57 after air exposure. In the case of SnTe nanocrystals, the ratio of 55:45 is evidence of a more pronounced tendency for oxidation. These results demonstrate that prior to their use in optoelectronics further surface engineering of tin chalcogenide nanocrystals is required, which otherwise have to be stored and processed under inert atmosphere. PMID:22691030

  1. Simple low-cost miniaturization approach for pharmaceutical nanocrystals production.

    PubMed

    Romero, Gregori B; Keck, Cornelia M; Müller, Rainer H

    2016-03-30

    Systematic screening for optimal formulation composition and production parameters for nanosuspensions consumes a lot of time and also drug material when performed at lab scale. Therefore, a cost-effective miniaturized scale top down approach for nanocrystals production by wet bead milling was developed. The final set-up consisted of 3 magnetic stirring bars placed vertically one over the other in a 2 mL glass vial and agitated by a common magnetic stirring plate. All of the tested actives (cyclosporin A, resveratrol, hesperitin, ascorbyl palmitate, apigenin and hesperidin) could be converted to nanosuspensions. For 4 of them, the particles sizes achieved were smaller than previously reported on the literature (around 90 nm for cyclosporin A; 50 nm for hesperitin; 160 nm for ascorbyl palmitate and 80 nm for apigenin). The "transferability" of the data collect by the miniaturized method was evaluated comparing the production at larger scale using both wet bead milling and high pressure homogenization. Transferable information obtained from the miniaturized scale is minimum achievable size, improvements in size reduction by reduction of beads size, diminution kinetics and potentially occurring instabilities during processing. The small scale batches also allow identification of optimal stabilizer types and concentrations. The batch size is 0.5 mL, requiring approximately 50 mg or 5 mg of drug (5% and 1% suspension, respectively). Thus, a simple, accessible, low-cost miniaturized scale method for the production of pharmaceutical nanocrystals was established. PMID:26642945

  2. Optoelectronic switching in diamond and optical surface breakdown

    SciTech Connect

    Lipatov, E I; Tarasenko, V F

    2008-03-31

    The optoelectronic switching in two natural diamond samples of type 2-A is studied at voltages up to 1000 V and the energy density of control 60-ns, 308-nm laser pulses up to 0.6 J cm{sup -2}. It is shown that the design of a diamond switch affects the switching efficiency. When the energy density exceeds 0.2 J cm{sup -2} and the interelectrode surface is completely illuminated, the surface breakdown is initiated by UV radiation, which shunts the current flow through the diamond crystal. When the illumination of the interelectrode surface is excluded, the surface breakdown does not occur. The threshold radiation densities sufficient for initiating the surface breakdown are determined for electric field strengths up to 10 kV cm{sup -1}. (laser applications and other topics in quantum electronics)

  3. Germanium-Vacancy Single Color Centers in Diamond

    PubMed Central

    Iwasaki, Takayuki; Ishibashi, Fumitaka; Miyamoto, Yoshiyuki; Doi, Yuki; Kobayashi, Satoshi; Miyazaki, Takehide; Tahara, Kosuke; Jahnke, Kay D.; Rogers, Lachlan J.; Naydenov, Boris; Jelezko, Fedor; Yamasaki, Satoshi; Nagamachi, Shinji; Inubushi, Toshiro; Mizuochi, Norikazu; Hatano, Mutsuko

    2015-01-01

    Atomic-sized fluorescent defects in diamond are widely recognized as a promising solid state platform for quantum cryptography and quantum information processing. For these applications, single photon sources with a high intensity and reproducible fabrication methods are required. In this study, we report a novel color center in diamond, composed of a germanium (Ge) and a vacancy (V) and named the GeV center, which has a sharp and strong photoluminescence band with a zero-phonon line at 602 nm at room temperature. We demonstrate this new color center works as a single photon source. Both ion implantation and chemical vapor deposition techniques enabled fabrication of GeV centers in diamond. A first-principles calculation revealed the atomic crystal structure and energy levels of the GeV center. PMID:26250337

  4. Onion-like carbon from ultra-disperse diamond

    NASA Astrophysics Data System (ADS)

    Kuznetsov, Vladimir L.; Chuvilin, Andrey L.; Butenko, Yuri V.; Mal'kov, Igor Yu.; Titov, Vladimir M.

    1994-05-01

    A new material containing macroscopic quantities of onion-like carbon (OLC) particles is produced by heat treatment of ultra-disperse diamond (UDD) powder (2-6 nm). Annealing products (characterized by high-resolution electron microscopy) are presented by; (a) quasi-spherical particles with closed concentric graphite shells, (b) polyhedron particles with closed shells, (c) elongated particles with linked external graphite-like layers and closed quasi-spherical internal shells. The intermediates of UDD transformation have been registered. The structural transformation of UDD begins from the surface of the diamond particles towards a crystal bulk. The transformation rate of (111) diamond planes to graphite-like sheets is higher than that of other planes.

  5. Germanium-Vacancy Single Color Centers in Diamond.

    PubMed

    Iwasaki, Takayuki; Ishibashi, Fumitaka; Miyamoto, Yoshiyuki; Doi, Yuki; Kobayashi, Satoshi; Miyazaki, Takehide; Tahara, Kosuke; Jahnke, Kay D; Rogers, Lachlan J; Naydenov, Boris; Jelezko, Fedor; Yamasaki, Satoshi; Nagamachi, Shinji; Inubushi, Toshiro; Mizuochi, Norikazu; Hatano, Mutsuko

    2015-01-01

    Atomic-sized fluorescent defects in diamond are widely recognized as a promising solid state platform for quantum cryptography and quantum information processing. For these applications, single photon sources with a high intensity and reproducible fabrication methods are required. In this study, we report a novel color center in diamond, composed of a germanium (Ge) and a vacancy (V) and named the GeV center, which has a sharp and strong photoluminescence band with a zero-phonon line at 602 nm at room temperature. We demonstrate this new color center works as a single photon source. Both ion implantation and chemical vapor deposition techniques enabled fabrication of GeV centers in diamond. A first-principles calculation revealed the atomic crystal structure and energy levels of the GeV center. PMID:26250337

  6. Regioselective placement of alkanethiolate domains on tetrahedral and octahedral gold nanocrystals.

    PubMed

    Wang, Yifeng; Zeiri, Offer; Meshi, Louisa; Stellacci, Francesco; Weinstock, Ira A

    2012-10-01

    Electrostatically stabilized monolayer shells of metal-oxide cluster anions (polyoxometalates, or POMs) on the surfaces of ca. 8 nm tetrahedral and octahedral gold nanocrystals regioselectively direct water-soluble alkanethiolate ligands to the corners and edges of the gold polyhedra. PMID:22918232

  7. White luminescence from CdS nanocrystals under the blue light excitation

    SciTech Connect

    Li, Bo; Zhang, Xiaosong Li, Lan; Li, Mengzhen; Xu, Jianping; Hong, Yuan

    2014-06-01

    Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer model was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.

  8. Design and investigation of properties of nanocrystalline diamond optical planar waveguides.

    PubMed

    Prajzler, Vaclav; Varga, Marian; Nekvindova, Pavla; Remes, Zdenek; Kromka, Alexander

    2013-04-01

    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond. PMID:23571931

  9. Single-crystal diamond pyramids: synthesis and application for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Tuyakova, Feruza T.; Obraztsova, Ekaterina A.; Ismagilov, Rinat R.

    2016-03-01

    Here we present the results of investigations aimed at the development and testing of robust, chemically inert single-crystal diamond probes for atomic force microscopy (AFM). The probes were prepared by assembling common silicon probes with micrometer-sized pyramid-shaped single-crystal diamonds (SCD). The SCD were obtained by the selective thermal oxidation of the polycrystalline films grown by chemical vapor deposition. Electrostatic spray of adhesive coating onto silicon probes was used to attach individual SCD. Geometrical parameters of produced AFM SCD probes were revealed with transmission electron microscopy: the apex angle of the pyramidal diamond crystallite was ˜10 deg, and the curvature radius at the apex was ˜2 to 10 nm. The diamond AFM probes were used for surface imaging of deoxyribonucleic acid deposited on graphite substrate. Obtained results demonstrate high efficiency of the diamond AFM probes, allowing improvement of the image quality compared to standard silicon probes.

  10. Carbon K edge spectroscopy of internal interface and defect states of chemical vapor deposited diamond films

    SciTech Connect

    Nithianandam, J.; Rife, J.C. ); Windischmann, H. )

    1992-01-06

    We have made carbon {ital K} edge reflectivity and absorption measurements using synchrotron radiation on diamond crystals and chemical vapor deposited diamond films to determine their electronic structures. Our spectra of diamond films show that both {ital sp}{sup 2} and {ital sp}{sup 3} bonded carbon atoms are formed during initial nucleation and growth. Transmission spectra of a diamond film with 30 nm diameter cystallites show striking features below the carbon {ital sp}{sup 3} {ital K} edge due to internal interface states and/or defects. We compare these absorption features to x-ray absorption spectra of clean diamond (111) surface, graphite, and hydrocarbon gases to understand surface chemistry involved in the deposition process.

  11. White electroluminescence of n-ZnO:Al/p-diamond heterostructure devices

    NASA Astrophysics Data System (ADS)

    Yang, Can; Wang, Xiao-Ping; Wang, Li-Jun; Pan, Xiu-Fang; Li, Song-Kun; Jing, Long-Wei

    2013-08-01

    An n-ZnO:Al/p-boron-doped diamond heterostructure electroluminescent device is produced, and a rectifying behavior can be observed. The electroluminescence spectrum at room temperature exhibits two visible bands centred at 450 nm-485 nm (blue emission) and 570 nm-640 nm (yellow emission). Light emission with a luminance of 15 cd/m2 is observed from the electroluminescent device at a forward applied voltage of 85 V, which is distinguished from white light by the naked eye.

  12. Flexible and fragmentable tandem photosensitive nanocrystal skins

    NASA Astrophysics Data System (ADS)

    Akhavan, S.; Uran, C.; Bozok, B.; Gungor, K.; Kelestemur, Y.; Lesnyak, V.; Gaponik, N.; Eychmüller, A.; Demir, H. V.

    2016-02-01

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm-2 at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion.We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of

  13. Update on diamond and diamond-like carbon coatings

    NASA Astrophysics Data System (ADS)

    Lettington, Alan H.

    1990-10-01

    This paper reviewed the infrared uses of diamond-like carbon thin films and the potential uses of synthetic diamond layers. Diamond-like carbon is used widely as a protective anti-reflection coating for exposed germanium infrared windows and lenses and as thin protective coatings for front surface aluminium mirrors. This material is also used in protective anti-reflective coatings for zinc sulphide as the outer thin film in multi-layer designs incorporating variable index intermediate layers of germanium carbide. The maximum thickness of diamond-like carbon that can be used is often limited by the stress induced in the layer through the method of deposition and by the absorption present in the basic material. This stress and absorption can be far lower in synthetic diamond layers but there are now problems associated with the high substrate temperatures, difficulties in coating large areas uniformly and problems arising from surface scattering and low deposition rates.

  14. Single Point Diamond Turning of Glass

    NASA Astrophysics Data System (ADS)

    Blough, Christian Gary

    1992-01-01

    The feasibility of single point diamond turning optical quality glass surfaces has been experimentally studied. The main objective of the research is to study the ductile removal process of glass and identify the important parameters. By investigating several optical glasses and varying different machining variables, a matrix of the important parameters has been generated. A precision lathe capable of ductile machining glass has been assembled by adding a nano-positioning toolholder to an existing machine. The toolholder enables the structural loop between the tool and workpiece to be effectively closed. Using a proximity sensor and analog electronics, a feedback loop has been constructed that increases the rigidity, thermal stability, and tool positioning accuracy of the existing machine. With the closed loop system, the tool positioning resolution is 15 nm and the effective structural loop stiffness is 1.75 times 10^3 N/mum. The closed loop system has been verified by machining a circular grating in germanium to within 3 nm of its theoretical form. The ductile machining of glass was limited by one key variable, tool edge wear. For every glass investigated, except FCD1, there was nearly instantaneous catastrophic loss of the cutting edge due to oxidation and/or graphitization of the diamond.

  15. Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers

    SciTech Connect

    Buijnsters, J. G.; Vazquez, L.; Celis, J. P.

    2010-11-15

    A method for the nucleation enhancement of nanocrystalline diamond (NCD) films on silicon substrates at low temperature is discussed. A sputter deposition of a Mo seed layer with thickness 50 nm on Si substrates was applied followed by an ultrasonic seeding step with nanosized detonation diamond powders. Hot-filament chemical vapor deposition (HF-CVD) was used to nucleate and grow NCD films on substrates heated up at 550 deg. C. The nucleation of diamond and the early stages of NCD film formation were investigated at different methane percentages in methane/hydrogen gas mixtures by atomic force microscopy, micro-Raman spectroscopy, scanning electron microscopy, and grazing incidence x-ray analyses in order to gain specific insight in the nucleation process of NCD films. The nucleation kinetics of diamond on the Mo-coated Si substrates was found to be up to ten times higher than on blank Si substrates. The enhancement of the nucleation of diamond on thin Mo interlayers results from two effects, namely, (a) the nanometer rough Mo surface shows an improved embedding of ultrasonically introduced nanosized diamond seeds that act as starting points for the diamond nucleation during HF-CVD and (b) the rapid carbonization of the Mo surface causes the formation of Mo{sub 2}C onto which diamond easily nucleates. The diamond nucleation density progressively increases at increasing methane percentages and is about 5x10{sup 10} cm{sup -2} at 4.0% methane. The improved nucleation kinetics of diamond on Mo interlayers facilitates the rapid formation of NCD films possessing a very low surface roughness down to {approx}6 nm, and allows a submicron thickness control.

  16. Engineering shallow spins in diamond with nitrogen delta-doping

    SciTech Connect

    Ohno, Kenichi; Joseph Heremans, F.; Bassett, Lee C.; Myers, Bryan A.; Toyli, David M.; Bleszynski Jayich, Ania C.; Palmstrom, Christopher J.; Awschalom, David D.

    2012-08-20

    We demonstrate nanometer-precision depth control of nitrogen-vacancy (NV) center creation near the surface of synthetic diamond using an in situ nitrogen delta-doping technique during plasma-enhanced chemical vapor deposition. Despite their proximity to the surface, doped NV centers with depths (d) ranging from 5 to 100 nm display long spin coherence times, T{sub 2} > 100 {mu}s at d = 5 nm and T{sub 2} > 600 {mu}s at d {>=} 50 nm. The consistently long spin coherence observed in such shallow NV centers enables applications such as atomic-scale external spin sensing and hybrid quantum architectures.

  17. Flexible and fragmentable tandem photosensitive nanocrystal skins.

    PubMed

    Akhavan, S; Uran, C; Bozok, B; Gungor, K; Kelestemur, Y; Lesnyak, V; Gaponik, N; Eychmüller, A; Demir, H V

    2016-02-18

    We proposed and demonstrated the first account of large-area, semi-transparent, tandem photosensitive nanocrystal skins (PNSs) constructed on flexible substrates operating on the principle of photogenerated potential buildup, which avoid the need for applying an external bias and circumvent the current-matching limitation between junctions. We successfully fabricated and operated the tandem PNSs composed of single monolayers of colloidal water-soluble CdTe and CdHgTe nanocrystals (NCs) in adjacent junctions on a Kapton polymer tape. Owing to the usage of a single NC layer in each junction, noise generation was significantly reduced while keeping the resulting PNS films considerably transparent. In each junction, photogenerated excitons are dissociated at the interface of the semi-transparent Al electrode and the NC layer, with holes migrating to the contact electrode and electrons trapped in the NCs. As a result, the tandem PNSs lead to an open-circuit photovoltage buildup equal to the sum of those of the two single junctions, exhibiting a total voltage buildup of 128.4 mV at an excitation intensity of 75.8 μW cm(-2) at 350 nm. Furthermore, we showed that these flexible PNSs could be bent over 3.5 mm radius of curvature and cut out in arbitrary shapes without damaging the operation of individual parts and without introducing any significant loss in the total sensitivity. These findings indicate that the NC skins are promising as building blocks to make low-cost, flexible, large-area UV/visible sensing platforms with highly efficient full-spectrum conversion. PMID:26498487

  18. Site selective growth of heteroepitaxial diamond nanoislands containing single SiV centers

    NASA Astrophysics Data System (ADS)

    Arend, Carsten; Appel, Patrick; Becker, Jonas Nils; Schmidt, Marcel; Fischer, Martin; Gsell, Stefan; Schreck, Matthias; Becher, Christoph; Maletinsky, Patrick; Neu, Elke

    2016-02-01

    We demonstrate the controlled preparation of heteroepitaxial diamond nano- and microstructures on silicon wafer based iridium films as hosts for single color centers. Our approach uses electron beam lithography followed by reactive ion etching to pattern the carbon layer formed by bias enhanced nucleation on the iridium surface. In the subsequent chemical vapor deposition process, the patterned areas evolve into regular arrays of (001) oriented diamond nano-islands with diameters of <500 nm and a height of ≈60 nm. In the islands, we identify single SiV color centers with narrow zero phonon lines down to 1 nm at room temperature.

  19. Molecular Limits to the Quantum Confinement Model in Diamond Clusters

    SciTech Connect

    Willey, T M; Bostedt, C; van Buuren, T; Dahl, J E; Liu, S E; Carlson, R K; Terminello, L J; Moller, T

    2005-04-07

    The electronic structure of monodisperse, hydrogen-passivated diamond clusters in the gas phase has been studied with x-ray absorption spectroscopy. The data show that the bulk-related unoccupied states do not exhibit any quantum confinement. Additionally, density of states below the bulk absorption edge appears, consisting of features correlated to CH and CH{sub 2} hydrogen surface termination, resulting in an effective red shift of the lowest unoccupied states. The results contradict the commonly used and very successful quantum confinement model for semiconductors which predicts increasing band edge blue shifts with decreasing particle size. Our findings indicate that in the ultimate size limit for nanocrystals a more molecular description is necessary.

  20. Facile Synthesis of Curcumin Nanocrystals and Validation of Its Antioxidant Activity Against Circulatory Toxicity in Wistar Rats.

    PubMed

    Rajasekar, A; Devasena, T

    2015-06-01

    Our investigation was carried out in two phases. First we synthesized curcumin nanocrystals using a simple precipitation method and characterized their absorbance, crystallinity, size, and morphology by UV-visible spectroscopy, X-ray diffraction (XRD) spectroscopy, High Resolution Transmission Electron Microscopy (HRTEM) and Particle size Analyzer (PSA), in comparison with bulk curcumin. Characterization studies revealed that the protocol we standardized resulted in Curcumin nanocrystals with 10-200 nm size which was fairly soluble in water in contrast to bulk curcumin. Due to its crystallinity, nanocurcumin that we synthesized was also referred as Curcumin Nanocrystals. In Phase 2, we have assessed the comparative antioxidant efficacy of Curcumin nanocrystals and bulk Curcumin in the circulation of 1,2-dimethyl hydrazine-treated rats by investigating lipid peroxidation, antioxidant enzymes (superoxide dismutase, catalase), GSH and GSH-dependent detoxification enzymes (glutathione peroxidase, gIutathione-S-transferase). Curcumin nanocrystals exerted its antioxidant effect by decreasing lipid peroxidation, and by enhancing the activities of antioxidant and detoxification enzymes studied. Curcumin nanocrystals exhibited its antioxidant action at 40 mg dose whereas the bulk curcumin exerted its effect at 80 mg dose. This may be due to enhanced solubility, dispersibility, and crystallinity of the nanocrystals, which might have enhanced its bioavailability when compared to poorly soluble bulk curcumin. PMID:26369020

  1. Large-scale cubic InN nanocrystals by a combined solution- and vapor-phase method under silica confinement.

    PubMed

    Chen, Zhuo; Li, Yanan; Cao, Chuanbao; Zhao, Songrui; Fathololoumi, Saeed; Mi, Zetian; Xu, Xingyan

    2012-01-18

    Large-scale cubic InN nanocrystals were synthesized by a combined solution- and vapor-phase method under silica confinement. Nearly monodisperse cubic InN nanocrystals with uniform spherical shape were dispersed stably in various organic solvents after removal of the silica shells. The average size of InN nanocrystals is 5.7 ± 0.6 nm. Powder X-ray diffraction results indicate that the InN nanocrystals are of high crystallinity with a cubic phase. X-ray photoelectron spectroscopy and energy-dispersive spectroscopy confirm that the nanocrystals are composed of In and N elements. The InN nanocrystals exhibit infrared photoluminescence at room temperature, with a peak energy of ~0.62 eV, which is smaller than that of high-quality wurtzite InN (~0.65-0.7 eV) and is in agreement with theoretical calculations. The small emission peak energy of InN nanocrystals, as compared to other low-cost solution or vapor methods, reveals the superior crystalline quality of our samples, with low or negligible defect density. This work will significantly promote InN-based applications in IR optoelectronic device and biology. PMID:22224725

  2. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    SciTech Connect

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  3. Heterogeneous core/shell fluoride nanocrystals with enhanced upconversion photoluminescence for in vivo bioimaging

    NASA Astrophysics Data System (ADS)

    Hao, Shuwei; Yang, Liming; Qiu, Hailong; Fan, Rongwei; Yang, Chunhui; Chen, Guanying

    2015-06-01

    We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background.We report on heterogeneous core/shell CaF2:Yb3+/Ho3+@NaGdF4 nanocrystals of 17 nm with efficient upconversion (UC) photoluminescence (PL) for in vivo bioimaging. Monodisperse core/shell nanostructures were synthesized using a seed-mediated growth process involving two quite different approaches of liquid-solid-solution and thermal decomposition. They exhibit green emission with a sharp band around 540 nm when excited at ~980 nm, which is about 39 times brighter than the core CaF2:Yb3+/Ho3+ nanoparticles. PL decays at 540 nm revealed that such an enhancement arises from efficient suppression of surface-related deactivation from the core nanocrystals. In vivo bioimaging employing water-dispersed core/shell nanoparticles displayed high contrast against the background. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02287h

  4. Thermal diffusivity of diamond films

    NASA Technical Reports Server (NTRS)

    Albin, Sacharia; Winfree, William P.; Crews, B. Scott

    1990-01-01

    A laser pulse technique to measure the thermal diffusivity of diamond films deposited on a silicon substrate is developed. The effective thermal diffusivity of diamond film on silicon was measured by observing the phase and amplitude of the cyclic thermal waves generated by the laser pulses. An analytical model is developed to calculate the effective in-plane (face-parallel) diffusivity of a two layer system. The model is used to reduce the effective thermal diffusivity of the diamond/silicon sample to a value for the thermal diffusivity and conductivity of the diamond film. Phase and amplitude measurements give similar results. The thermal conductivity of the films is found to be better than that of type 1a natural diamond.

  5. Electronic properties of CVD diamond

    NASA Astrophysics Data System (ADS)

    Nebel, C. E.

    2003-03-01

    The electronic properties of chemical vapour deposited (CVD) diamond are reviewed based on data measured by transient and spectrally resolved photoconductivity experiments, photo-thermal deflection spectroscopy (PDS) and electron paramagnetic resonance (EPR) where substitutional nitrogen (P1-centre) and carbon defects (H1-centre) are detected. The results show that nominally undoped high quality polycrystalline CVD diamond is a n-type semiconductor due to the presence of substitutional nitrogen. The sub-band-gap optical absorption is governed by amorphous graphite present at grain boundaries. Spectrally resolved photoconductivity experiments measured in the same regime are partially dominated by diamond bulk properties which are comparable to single crystalline Ib and IIa diamond and partially by grain boundaries. Mobilities and drift length of carriers are discussed and compared to properties of single crystalline diamond.

  6. High efficiency diamond solar cells

    DOEpatents

    Gruen, Dieter M.

    2008-05-06

    A photovoltaic device and method of making same. A layer of p-doped microcrystalline diamond is deposited on a layer of n-doped ultrananocrystalline diamond such as by providing a substrate in a chamber, providing a first atmosphere containing about 1% by volume CH.sub.4 and about 99% by volume H.sub.2 with dopant quantities of a boron compound, subjecting the atmosphere to microwave energy to deposit a p-doped microcrystalline diamond layer on the substrate, providing a second atmosphere of about 1% by volume CH.sub.4 and about 89% by volume Ar and about 10% by volume N.sub.2, subjecting the second atmosphere to microwave energy to deposit a n-doped ultrananocrystalline diamond layer on the p-doped microcrystalline diamond layer. Electrodes and leads are added to conduct electrical energy when the layers are irradiated.

  7. Electrospinnability of bionanocomposites with high nanocrystal loadings: The effect of nanocrystal surface characteristics.

    PubMed

    Naseri, Narges; Mathew, Aji P; Oksman, Kristiina

    2016-08-20

    This paper deals with the effect of solution properties and nanoparticle surface chemistry on the spinnability of a chitosan/polyethylene oxide (PEO) with high concentration (50wt%) of chitin and cellulose nanocrystals and the properties of the resultant nanocomposite fibers/fiber mats. Electrospinning dispersions with cellulose nanocrystals having sulphate surface groups showed poor spinnability compared to chitin nanocrystals with amide and amino groups. Chitin nanocrystal based dispersions showed good spinnability and continuous fiber formation whereas cellulose nanocrystal system showed discontinuous fibers and branching. The viscosity and surface tension are shown to impact this behavior, but conductivity did not. Poor spinnability observed for cellulose nanocrystal based fibers was attributed to the coagulation of negatively charged cellulose nanocrystals and positively charged chitosan. The study showed that the nanocrystal surface charge and interactions with the chitosan/PEO matrix have a significant impact on the spinnability of bionanocomposites. PMID:27178953

  8. High fraction of substitutional phosphorus in a (100) diamond epilayer with low surface roughness

    NASA Astrophysics Data System (ADS)

    Pinault-Thaury, M.-A.; Berini, B.; Stenger, I.; Chikoidze, E.; Lusson, A.; Jomard, F.; Chevallier, J.; Barjon, J.

    2012-05-01

    For high power electronics, diamond is a promising semiconductor with phosphorus being the current substitutional donor. However, up to now, in (100) oriented grown diamond, only a small fraction of phosphorus atoms is incorporated in substitutional sites (<30%) and the epilayer surface exhibits macrosteps. In this work, we present a (100) phosphorus-doped diamond epilayer where ˜100% of the phosphorus atoms are incorporated in substitutional sites. The film exhibits a low surface roughness (RMS = 0.5 nm). Our epilayer is conductive (ρ = 5.0 × 106 Ω . cm at 300 K) and neutral phosphorus are detected in infrared absorption.

  9. Laser Patterning of Diamond. Part II. Surface Nondiamond Carbon Formation and its Removal

    SciTech Connect

    Smedley, J.; Jaye, C; Bohon, J; Rao, T; Fischer, D

    2009-01-01

    As diamond becomes more prevalent for electronic and research applications, methods of patterning diamond will be required. One such method, laser ablation, has been investigated in a related work. We report on the formation of surface nondiamond carbon during laser ablation of both polycrystalline and single-crystal synthetic diamonds. Near edge x-ray absorption fine structure spectroscopy was used to confirm that the nondiamond carbon layer formed during the ablation was amorphous, and Fourier transform infrared absorption spectroscopy (FTIR) was used to estimate the thickness of this layer to be {approx} 60 nm. Ozone cleaning was used to remove the nondiamond carbon layer.

  10. Increasing the creation yield of shallow single defects in diamond by surface plasma treatment

    SciTech Connect

    Osterkamp, Christian; Scharpf, Jochen; Naydenov, Boris; Jelezko, Fedor; Pezzagna, Sebastien; Meijer, Jan; Diemant, Thomas; Jürgen Behm, Rolf

    2013-11-04

    Single Nitrogen-Vacancy (NV) centers in diamond close to the crystal surface are very promising magnetic field sensors with very high sensitivity. Here, we report the enhanced creation of very shallow (less than 3 nm below the diamond surface) NV centers by using fluorine and oxygen plasma treatment. We observe a four fold increase—from 0.11% to about 0.45% in the production yield when the sample surface is terminated with fluorine or oxygen atoms. This effect is explained by the stabilization of the NV's negative charge state which is influenced by the various defects present on the diamond surface.

  11. Nanocrystalline diamond thin films on titanium-6 aluminum-4 vanadium alloy temporomandibular joint prosthesis simulants by microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fries, Marc Douglas

    A course of research has been performed to assess the suitability of nanocrystal-line diamond (NCD) films on Ti-6Al-4V alloy as wear-resistant coatings in biomedical implant use. A series of temporomandibular (TMJ) joint condyle simulants were polished and acid-passivated as per ASTM F86 standard for surface preparation of implants. A 3-mum-thick coating of NCD film was deposited by microwave plasma chemical vapor deposition (MPCVD) over the hemispherical articulation surfaces of the simulants. Plasma chemistry conditions were measured and monitored by optical emission spectroscopy (OES), using hydrogen as a relative standard. The films consist of diamond grains around 20 nm in diameter embedded in an amorphous carbon matrix, free of any detectable film stress gradient. Hardness averages 65 GPa and modulus measures 600 GPa at a depth of 250 nm into the film surface. A diffuse film/substrate boundary produces a minimal film adhesion toughness (GammaC) of 158 J/m2. The mean RMS roughness is 14.6 +/- 4.2 nm, with an average peak roughness of 82.6 +/- 65.9 nm. Examination of the surface morphology reveals a porous, dendritic surface. Wear testing resulted in two failed condylar coatings out of three tests. No macroscopic delamination was found on any sample, but micron-scale film pieces broke away, exposing the substrate. Electrochemical corrosion testing shows a seven-fold reduction in corrosion rate with the application of an NCD coating as opposed to polished, passivated Ti-6Al-4V, producing a corrosion rate comparable to wrought Co-Cr-Mo. In vivo biocompatibility testing indicates that implanted NCD films did not elicit an immune response in the rabbit model, and osteointegration was apparent for both compact and trabecular bone on both NCD film and bare Ti-6Al-4V. Overall, NCD thin film material is reasonably smooth, biocompatible, and very well adhered. Wear testing indicates that this material is unacceptable for use in demanding TMJ applications without

  12. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1998-01-01

    When the main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) mm(exp 3)/N-m, respectively, carbon- and nitrogen-ion-implanted, fine-grain CVD diamond and DLC ion beam deposited on fine-grain CVD diamond met the requirements regardless of environment (vacuum, nitrogen, and air).

  13. CVD Diamond, DLC, and c-BN Coatings for Solid Film Lubrication

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa; Murakawa, Masao; Watanabe, Shuichi; Takeuchi, Sadao; Miyake, Shojiro; Wu, Richard L. C.

    1998-01-01

    The main criteria for judging coating performance were coefficient of friction and wear rate, which had to be less than 0.1 and 10(exp -6) cubic MM /(N*m), respectively. Carbon- and nitrogen-ion-implanted, fine-grain, chemical-vapor-deposited (CVD) diamond and diamondlike carbon (DLC) ion beam deposited on fine-grain CVD diamond met the criteria regardless of environment (vacuum, nitrogen, and air).

  14. Preparation of PbS and PbSe nanocrystals by a new solvothermal route

    SciTech Connect

    Gautam, Ujjal K.; Seshadri, Ram

    2004-04-02

    A new solvothermal route for the preparation of nanocrystals of PbS and PbSe, involving the reaction of lead stearate with sulfur or selenium and tetralin (tetrahydronaphthalene) in toluene solvent is described. Tetralin in the presence of S/Se gives H{sub 2}S/H{sub 2}Se and gets aromatized to naphthalene. The nanocrystals have been characterized by powder X-ray diffraction and electron microscopy. Use of surfactant Triton X-100 (polyoxyethylene(10)isooctylphenyl ether) resulted in both nanorods and nanoparticles of PbSe. Capping by citric acid and malonic acid reduce the particle sizes to less than 10 nm.

  15. Characterization of PTCDA nanocrystals on Ge(0 0 1):H-(2 × 1) surfaces

    NASA Astrophysics Data System (ADS)

    Ahmad Zebari, Amir A.; Kolmer, Marek; Prauzner-Bechcicki, Jakub S.

    2015-03-01

    We analyze self-assembled nanocrystals of 3,4,9,10-perylene tetracarboxylic dianhydride (PTCDA) molecules on hydrogen passivated Ge(0 0 1) surfaces with use of scanning tunneling microscopy (STM) and spectroscopy (STS). At 0.7ML coverage, 2.1 nm high, elongated, hexagonal islands inclined at 37° with respect to the substrate row are mostly observed. By measuring the differential tunneling conductance, we observe an effect of electronic decoupling of the nanocrystals due to the introduced passivating layer. Finally, we shortly discuss the stability of the islands and their interaction with the scanning probe in the ultra-high vacuum environment.

  16. Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam

    2016-06-01

    It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface. PMID:27197089

  17. Synthesis and characterization of LiNbO3 nanocrystals prepared by the aerosol assisted chemical vapor deposition method

    NASA Astrophysics Data System (ADS)

    Ocón, J. A.; Murillo, J. G.; Miki-Yoshida, M.; Cardoza, M. N.; Contreras-López, O. E.

    2014-12-01

    This work reports the synthesis of LiNbO3 nanocrystals by an aerosol assisted chemical vapor deposition method, onto silicon (0 0 1) substrates. Some of the nanocrystals showed a hexagonal morphology and characteristic sizes ranging from a few tens to a few hundreds of nanometers. The nanocrystals with hexagonal structure were obtained at 773 K using a carrier gas flow of 6 L/min and a deposition time of 90 min. Structural, morphological, photoluminescence and cathodoluminescence properties were studied by grazing incidence X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy, fluorospectrometry, and cathodoluminescence, respectively. An extraordinary violet luminescence at 396 nm with excitation in UV region (280 nm) was observed in one of the samples. Cathodoluminescence (CL) imaging and spectroscopy studies of the nanocrystals exhibit stimulated emission of light in the near ultraviolet-violet-green spectral region. The emission peaks in CL spectra varied according to the nature of nanoparticles. A red-shift in the CL spectra with a decrease in the particle size was observed. Apparently the size of LiNbO3 typical nanocrystals investigated in this work has tuned the photoluminescence emission. This result encourages the use and integration of LiNbO3 nanocrystals into nanophotonics applications.

  18. Silicon monoxide--a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals.

    PubMed

    Sun, Wei; Qian, Chenxi; Cui, Xiao Sherri; Wang, Liwei; Wei, Muan; Casillas, Gilberto; Helmy, Amr S; Ozin, Geoffrey A

    2016-02-14

    While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy. PMID:26812126

  19. Radiation damage and nanocrystal formation in uranium-niobium titanates

    NASA Astrophysics Data System (ADS)

    Lian, J.; Wang, S. X.; Wang, L. M.; Ewing, R. C.

    2001-07-01

    Two uranium-niobium titanates, U 2.25Nb 1.90Ti 0.32O 9.8 and Nb 2.75U 1.20Ti 0.36O 10, formed during the synthesis of brannnerite (UTi 2O 6), a minor phase in titanate-based ceramics investigated for plutonium immobilization. These uranium titanates were subjected to 800 keV Kr 2+ irradiation from 30 to 973 K. The critical amorphization dose of the U-rich and Nb-rich titanates at room temperature were 4.72×10 17 and 5×10 17 ions/ m2, respectively. At elevated temperature, the critical amorphization dose increases due to dynamic thermal annealing. The critical amorphization temperature for both Nb-rich and U-rich titanates is ˜933 K under a 800 keV Kr 2+ irradiation. Above the critical amorphization temperature, nanocrystals with an average size of ˜15 nm were observed. The formation of nanocrystals is due to epitaxial recrystallization. At higher temperatures, an ion irradiation-induced nucleation-growth mechanism also contributes to the formation of nanocrystals.

  20. Effect of silver doping on ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Gawai, U. P.; Khawal, H. A.; Bodke, M. R.; Dole, B. N.

    2016-05-01

    Ag doped ZnO nanocrystals were synthesized by co-precipitation method with the nominal compositions (x=0.00, 0.02, 0.04, 0.06). The as-synthesized Ag doped ZnO nanocrystals were characterized by X-ray diffraction (XRD), FTIR and UV-Vis. From XRD patterns samples shows hexagonal structure. The average crystallite size is in the range of 41-47 nm. All as synthesized Zn1-xAgxO nanocrystals are highly textured, with wurtzite structure along the (101) growth direction. The energy band gap of pure and Ag doped ZnO were calculated from UV-Vis spectra. FTIR spectra were confirmed that Ag substituted into ZnO. Chemical species of the samples were detected using FTIR spectra An increase in the hexagonal lattice parameters of ZnO is observed on increasing the Ag concentration. An optical absorption study shows an increment in the band gap with increasing Ag content. From optical study the samples determines blue shift. Atomic packing fraction (APF) and c/a ratio were calculated using XRD data. It confirms the formation of ZnO with the stretching vibrational mode around at 506 to 510 cm-1.

  1. Magnetization dynamics in arrays of strongly interacting magnetic nanocrystals

    NASA Astrophysics Data System (ADS)

    Telem-Shafir, Tamar; Markovich, Gil

    2005-11-01

    Arrays of 6.6nm iron oxide nanocrystals coated with fatty acid molecules were produced using the Langmuir-Blodgett technique. The arrays had a varying number of layers stacked together, going from two dimensional to three dimensional and two different in-plane interparticle separations. While temperature-dependent ac susceptibility measurements of the isolated nanocrystals obeyed the Néel-Brown relaxation law, the array relaxation deviated significantly from this simple law. This deviation together with the observed dc field influence on the susceptibility-temperature curves, the large shifts in blocking temperatures and reduction in susceptibility-temperature curve widths on going from isolated particles to the arrays indicated collective magnetization dynamics during magnetization freezing. A scaling law analysis of this freezing dynamics yielded different powers for the two different interparticle separations with no dependence on dimensionality. In spite of the spin-glass-like behavior, it is possible that small, magnetically ordered domains of nanocrystals form at low temperature.

  2. Toxicity of nanocrystal quantum dots: the relevance of surface modifications.

    PubMed

    Hoshino, Akiyoshi; Hanada, Sanshiro; Yamamoto, Kenji

    2011-07-01

    With the development of nanotechnology, nanometer-sized products smaller than several 100 nm have been applied for all areas of science and technology. The nanometer-sized products, including carbon nanotubes, fullerene derivatives, and nanocrystals made of various materials, are widely employed as novel tools in various fields, not only in material engineering, electronics, plastics, automobile, aviation, and aerospace industries, but also even in cellular biology, molecular biology, and basic and clinical medical fields. In particular, nanocrystal quantum dots (QDs) have been widely used in biological and medical studies because of their far brighter photoemission and photostability. The physical and chemical properties of QDs have been circumstantially investigated, but little is known about the potential harmful effects of QDs on human health. In addition to the physical and chemical properties of the QDs, their toxicity and biological behavior are generally regulated by three other conditions: (1) the QD core material itself, (2) the surface modifications of the QD, and (3) the external environmental condition of the QDs. We herein report on the in vitro and in vivo toxicity and biological behavior of nanocrystals such as QDs. Accumulating evidence suggests that the QD-capping material, rather than the core metalloid complex, is responsible for the majority of their toxicity and biological activity. For example, molecules covered with a toxic agent showed cytotoxicity, whereas QDs conjugated with biomolecules retained the biological effects of the conjugate. PMID:21445587

  3. The Toucan's Diamond

    NASA Astrophysics Data System (ADS)

    2006-06-01

    The Southern constellation Tucana (the Toucan) is probably best known as the home of the Small Magellanic Cloud, one of the satellite galaxies of the Milky Way. But Tucana also hosts another famous object that shines thousands of lights, like a magnificent, oversized diamond in the sky: the globular cluster 47 Tucanae. More popularly known as 47 Tuc, it is surpassed in size and brightness by only one other globular cluster, Omega Centauri. Globular clusters are gigantic families of stars, comprising several tens of thousands of stars, all thought to be born at the same time from the same cloud of gas [1]. As such, they constitute unique laboratories for the study of how stars evolve and interact. This is even more so because they are located at the same distance, so the brightness of different types of stars, at different stages in their evolution can be directly compared. The stars in globular clusters are held together by their mutual gravity which gives them their spherical shape, hence their name. Globular clusters are thought to be among the oldest objects in our Milky Way galaxy, and contain therefore mostly old, low-mass stars. ESO PR Photo 20/06 ESO PR Photo 20/06 Globular Cluster 47 Tuc 47 Tucanae is an impressive globular cluster that is visible with the unaided eye from the southern hemisphere. It was discovered in 1751 by the French astronomer Nicholas Louis de Lacaille who cataloged it in his list of southern nebulous objects. Located about 16 000 light years away, it has a total mass of about 1 million times the mass of the Sun and is 120 light years across, making it appear on the sky as big as the full moon. The colour image of 47 Tucanae presented here was taken with FORS1 on ESO's Very Large Telescope in 2001. The image covers only the densest, very central part of the cluster. The globular cluster extends in reality four times further away! As can be seen however, the density of stars rapidly drops off when moving away from the centre. The red

  4. Generation of 30-50 nm structures using easily fabricated, composite PDMS masks.

    PubMed

    Odom, Teri W; Thalladi, Venkat R; Love, J Christopher; Whitesides, George M

    2002-10-16

    This communication demonstrates an approach to generate simple nanostructures with critical dimensions down to 30 nm over cm2-sized areas using composite PDMS masks. These masks were patterned with feature sizes down to 100 nm. When used in phase-shifting lithography, these masks generated arrays of structures in photoresist with line widths as small as 30 nm, slots in metal with features down to 40 nm, and wells in epoxy with diameters as small as 100 nm. The wells were used to prepare arrays of uniformly sized nanocrystals of salts. PMID:12371848

  5. Processing of Diamond for Integrated Optic Devices Using Q-Switched Nd:YAG Laser at Different Wavelengths

    NASA Astrophysics Data System (ADS)

    Sudheer, S. K.; Pillai, V. P. Mahadevan; Nayar, V. U.

    In the present investigation, a Q-switched Nd:YAG laser is used to study the various aspects of diamond processing for fabricating integrated optic and UV optoelectronic devices. Diamond is a better choice of substrate compared to silicon and gallium arsenide for the fabrication of waveguides to perform operations such as modulation, switching, multiplexing, and filtering, particularly in the ultraviolet spectrum. The experimental setup of the present investigation consists of two Q-Switched Nd:YAG lasers capable of operating at wavelengths of 1064 nm and 532 nm. The diamond cutting is performed using these two wavelengths by making the "V"-shaped groove with various opening angle. The variation of material loss of diamond during cutting is noted for the two wavelengths. The cut surface morphology and elemental and structural analysis of graphite formed during processing in both cases are compared using scanning electron microscopy (SEM) and laser Raman spectroscopy. Both the Q-Switched Nd:YAG laser systems (at 1064 nm and 532 nm) show very good performance in terms of peak-to-peak output stability, minimal spot diameter, smaller divergence angle, higher peak power in Q-switched mode, and good fundamental TEM00 mode quality for processing natural diamond stones. Less material loss and minimal micro cracks are achieved with wavelength 532 nm whereas a better diamond cut surface is achieved with processing at 1064 nm with minimum roughness.

  6. Hydrothermal synthesis of Mo-doped VO2/TiO2 composite nanocrystals with enhanced thermochromic performance.

    PubMed

    Li, Dengbing; Li, Ming; Pan, Jing; Luo, Yuanyuan; Wu, Hao; Zhang, Yunxia; Li, Guanghai

    2014-05-14

    This paper reports a one-step TiO2 seed-assistant hydrothermal synthesis of Mo-doped VO2(M)/TiO2 composite nanocrystals. It was found that excess Mo doping can promote formation of the VO2(M) phase, and rutile TiO2 seed is beneficial to morphology control, size reduction, and infrared modulation of Mo-doped VO2(M) nanocrystals. The Mo-doped VO2 nanocrystals epitaxially grow on TiO2 seeds and have a quasi-spherical shape with size down to 20 nm and a nearly 35% infrared modulation near room temperature. The findings of this work demonstrate important progress in the near-room-temperature thermochromic performance of VO2(M) nanomaterials, which will find potential application in constructing VO2(M) nanocrystal-based smart window coatings. PMID:24734771

  7. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  8. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  9. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  10. Electron energy loss spectrometry of interstellar diamonds

    NASA Technical Reports Server (NTRS)

    Bernatowicz, Thomas J.; Gibbons, Patrick C.; Lewis, Roy S.

    1990-01-01

    The results are reported of electron energy loss spectra (EELS) measurements on diamond residues from carbonaceous meteorites designed to elucidate the structure and composition of interstellar diamonds. Dynamic effective medium theory is used to model the dielectric properties of the diamonds and in particular to synthesize the observed spectra as mixtures of diamond and various pi-bonded carbons. The results are shown to be quantitatively consistent with the idea that diamonds and their surfaces are the only contributors to the electron energy loss spectra of the diamond residues and that these peculiar spectra are the result of the exceptionally small grain size and large specific surface area of the interstellar diamonds.

  11. Diamonds in the Sky

    NASA Astrophysics Data System (ADS)

    Brotherton, M.

    2004-12-01

    My first science fiction novel, Star Dragon, just recently available in paperback from Tor, features a voyage to the cataclysmic variable star system SS Cygni. My second novel, Spider Star, to appear early in 2006, takes place in and around a dark matter ``planet'' orbiting a neutron star. Both novels are ``hard'' science fiction, relying on accurate physics to inform the tales. It's possible to bring to life abstract concepts like special relativity, and alien environments like accretion disks, by using science fiction. Novels are difficult to use in a science class, but short stories offer intriguing possibilities. I'm planning to edit an anthology of hard science fiction stories that contain accurate science and emphasize fundamental ideas in modern astronomy. The working title is Diamonds in the Sky. The collection will be a mix of original stories and reprints, highlighting challenging concepts covered in a typical introductory astronomy course. Larry Niven's classic story, ``Neutron Star," is an excellent demonstration of extreme tidal forces in an astronomical context. Diamonds in the Sky will include forewards and afterwards to the stories, including discussion questions and mathematical formulas/examples as appropriate. I envision this project will be published electronically or through a print-on-demand publisher, providing long-term availabilty and keeping low cost. I encourage interested parties to suggest previously published stories, or to suggest which topics must be included.

  12. Photoactivation of luminescence in CdS nanocrystals

    PubMed Central

    Smyntyna, Valentyn; Skobeeva, Valentyna; Malushin, Nikolay

    2014-01-01

    Summary This paper presents the results of the research on the luminescence of cadmium sulfide nanocrystals (NCs) synthesized by colloid chemistry in a gelatinous matrix. The photostimulation of the short-wavelength emission band with λmax = 480 nm has been detected. It is shown that the determining factor of the photostimulation effect is the adsorption of the water molecules on the surface of NC. The observed effect is explained by the recombination mechanism that is responsible for the short-wavelength emission band. PMID:24778959

  13. Low temperature ferromagnetism in chemically ordered FeRh nanocrystals.

    PubMed

    Hillion, A; Cavallin, A; Vlaic, S; Tamion, A; Tournus, F; Khadra, G; Dreiser, J; Piamonteze, C; Nolting, F; Rusponi, S; Sato, K; Konno, T J; Proux, O; Dupuis, V; Brune, H

    2013-02-22

    In sharp contrast to previous studies on FeRh bulk, thin films, and nanoparticles, we report the persistence of ferromagnetic order down to 3 K for size-selected 3.3 nm diameter nanocrystals embedded into an amorphous carbon matrix. The annealed nanoparticles have a B2 structure with alternating atomic Fe and Rh layers. X-ray magnetic dichroism and superconducting quantum interference device measurements demonstrate ferromagnetic alignment of the Fe and Rh magnetic moments of 3 and 1μ(B), respectively. The ferromagnetic order is ascribed to the finite-size induced structural relaxation observed in extended x-ray absorption spectroscopy. PMID:23473198

  14. Low Temperature Ferromagnetism in Chemically Ordered FeRh Nanocrystals

    NASA Astrophysics Data System (ADS)

    Hillion, A.; Cavallin, A.; Vlaic, S.; Tamion, A.; Tournus, F.; Khadra, G.; Dreiser, J.; Piamonteze, C.; Nolting, F.; Rusponi, S.; Sato, K.; Konno, T. J.; Proux, O.; Dupuis, V.; Brune, H.

    2013-02-01

    In sharp contrast to previous studies on FeRh bulk, thin films, and nanoparticles, we report the persistence of ferromagnetic order down to 3 K for size-selected 3.3 nm diameter nanocrystals embedded into an amorphous carbon matrix. The annealed nanoparticles have a B2 structure with alternating atomic Fe and Rh layers. X-ray magnetic dichroism and superconducting quantum interference device measurements demonstrate ferromagnetic alignment of the Fe and Rh magnetic moments of 3 and 1μB, respectively. The ferromagnetic order is ascribed to the finite-size induced structural relaxation observed in extended x-ray absorption spectroscopy.

  15. Energy band diagram of device-grade silicon nanocrystals.

    PubMed

    Macias-Montero, M; Askari, S; Mitra, S; Rocks, C; Ni, C; Svrcek, V; Connor, P A; Maguire, P; Irvine, J T S; Mariotti, D

    2016-03-17

    Device grade silicon nanocrystals (NCs) are synthesized using an atmospheric-pressure plasma technique. The Si NCs have a small and well defined size of about 2.3 nm. The synthesis system allows for the direct creation of thin films, enabling a range of measurements to be performed and easy implementation of this material in different devices. The chemical stability of the Si NCs is evaluated, showing relatively long-term durability thanks to hydrogen surface terminations. Optical and electrical characterization techniques, including Kelvin probe, ultraviolet photoemission spectroscopy and Mott-Schottky analysis, are employed to determine the energy band diagram of the Si NCs. PMID:26939617

  16. Synthesis and stabilization of selenium nanoparticles on cellulose nanocrystal

    SciTech Connect

    Shin, Yongsoon; Blackwood, Jade M.; Bae, In-Tae; Arey, Bruce W.; Exarhos, Gregory J.

    2007-08-01

    Selenium nanoparticles of 10-20 nm in diameter have been prepared using cellulose nanocrystal (CNXL) as a reducing and structure-directing agent under hydrothermal conditions. Na2SeO3 was reduced to form elemental selenium nanoparticles under hydrothermal conditions. During the hydrothermal process (120-160 oC), CNXL rods were mainly maintained and selenium nanoparticles were interfacially bound to CNXL surface. The reaction temperature affects the sizes of interfacially bound selenium nanoparticles. X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), and transmission electron microscope (TEM) were employed to characterize interfacially bound selenium nanoparticles on CNXL surface.

  17. Discrete plasticity in sub-10-nm-sized gold crystals.

    PubMed

    Zheng, He; Cao, Ajing; Weinberger, Christopher R; Huang, Jian Yu; Du, Kui; Wang, Jianbo; Ma, Yanyun; Xia, Younan; Mao, Scott X

    2010-01-01

    Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years. PMID:21266994

  18. Discrete plasticity in sub-10-nm-sized gold crystals

    PubMed Central

    Zheng, He; Cao, Ajing; Weinberger, Christopher R.; Huang, Jian Yu; Du, Kui; Wang, Jianbo; Ma, Yanyun; Xia, Younan; Mao, Scott X.

    2010-01-01

    Although deformation processes in submicron-sized metallic crystals are well documented, the direct observation of deformation mechanisms in crystals with dimensions below the sub-10-nm range is currently lacking. Here, through in situ high-resolution transmission electron microscopy (HRTEM) observations, we show that (1) in sharp contrast to what happens in bulk materials, in which plasticity is mediated by dislocation emission from Frank-Read sources and multiplication, partial dislocations emitted from free surfaces dominate the deformation of gold (Au) nanocrystals; (2) the crystallographic orientation (Schmid factor) is not the only factor in determining the deformation mechanism of nanometre-sized Au; and (3) the Au nanocrystal exhibits a phase transformation from a face-centered cubic to a body-centered tetragonal structure after failure. These findings provide direct experimental evidence for the vast amount of theoretical modelling on the deformation mechanisms of nanomaterials that have appeared in recent years. PMID:21266994

  19. Improving nanocrystalline diamond coatings for micro end mills

    NASA Astrophysics Data System (ADS)

    Heaney, Patrick J.

    A new method is presented for coating 300 mum diameter tungsten carbide (WC) micro end mills with diamond using a hot filament chemical vapor deposition (HF-CVD) method. This method has been developed to create uniform, conformal and continuous diamond coatings. Initial work is shown to prove the feasibility and concept of the project. This was the first work known to coat and evaluate the machining performance WC micro end mills. The performance of uncoated and coated micro end mills was evaluated by dry machining channels in 6061-T6 aluminum. The test results showed a 75% and 90% decrease in both cutting and trust forces for machining, respectfully. The coated tools produced a more predictable surface finish with no burring. These improved results are due to the superior tribological properties of diamond against aluminum. Initial results indicated severe problems with coating delamination causing complete tool failure. After proving the initial concept, new methods for optimizing the coating and improving performance were studied. Each optimization step is monitored through surface analysis techniques to monitor changes in coating morphology and diamond quality. Nucleation density was increased by improving the seed method, using ultra dispersed diamond (UDD) seed. The increase in nucleation density allowed the synthesis of coatings as thin as 60 nm. The adhesion of the coating to the tool was improved through carbon ion implantation (CII). CII is a different surface preparation technique that deactivates the effect of Co, while not weakening the tool. CII also creates a great nucleation layer which diamond can directly grow from, allowing the diamond coating to chemically bond to the substrate improving adhesion and eliminating the need for a seed layer. These thin coatings were shown to be of high quality sp3 trigonaly bonded diamond that resulted in lower machining forces with less delamination. The 90% reduction in machining forces that thin conformal

  20. Inorganic colloidal nanocrystals: Synthesis and bioapplications

    NASA Astrophysics Data System (ADS)

    Wu, Huimeng

    Nanocrystals (NCs) are very small particles, which contain from a few hundred to thousands of atoms depending on the size of NCs. Because of their special properties compared with the bulk materials, NCs have found many promising applications in areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents studies on the syntheses of metal oxide NCs and hybrid NCs, the surface functionalization of NCs by dual-interaction ligands, and gold-NC-based assay for the detection of beta-galactosidase. Monodisperse colloidal uranium dioxide NCs (UO2 NCs) were synthesized by decomposition of uranyl acetylacetonate. By changing the amount of added surfactant, the sizes of the NCs could vary from 2 ˜ 8 nm. Mechanistic studies of the formation of UO2 NCs showed that the condensation product (amide) of oleic acid and oleylamine plays an important role in controlling the particle size. Normally, high-quality NCs are synthesized in organic phase, but most of NC-based bio-applications require water-soluble NCs. To convert these hydrophobic NCs to hydrophilic particles, surface modification is employed. Here dual interaction ligands based on the Tween-derivatives (TDs) were synthesized. Stability tests on TD-capped NCs showed that these dual interaction ligands can significantly increase the stability of NCs compared to single interaction ligands. Further, These TD-capped QDs were further tested as fluorescent labels to detect virusprotein expression in cells. To exploit bio-applications of nanocrystals, gold nanocrystal-based assay to detect enzyme activity was designed. The optical properties of Au-NCs are not only dependent on the particle sizes and shapes, but also the distances between the particles. Here, Lipoic acid-tyramine-beta-galactopyranosyl (LTbeta-gal) was synthesized, as ligands, to cap Au-NCs; and the resultant LTbeta-gal-capped Au-NCs could disperse in water. After the hydrolysis of the

  1. Preparation and nonlinear optical properties of indium nanocrystals in sodium borosilicate glass by the sol–gel route

    SciTech Connect

    Zhong, Jiasong; Xiang, Weidong; Zhao, Haijun; Chen, Zhaoping; Liang, Xiaojuan; Zhao, Wenguang; Chen, Guoxin

    2012-11-15

    Graphical abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel methods. And the indium nanocrystals in tetragonal crystal system have formed uniformly in the glass, and the average diameter of indium nanocrystals is about 30 nm. The third-order optical nonlinear refractive index γ, absorption coefficient β, and susceptibility χ{sup (3)} of the glass are determined to be −4.77 × 10{sup −16} m{sup 2}/W, 2.67 × 10{sup −9} m/W, and 2.81 × 10{sup −10} esu, respectively. Highlights: ► Indium nanocrystals embedded in glass matrix have been prepared by sol–gel route. ► The crystal structure and composition are investigated by XRD and XPS. ► Size and distribution of indium nanocrystals is determined by TEM. ► The third-order optical nonlinearity is investigated by using Z-scan technique. -- Abstract: The sodium borosilicate glass doped with indium nanocrystals have been successfully prepared by sol–gel route. The thermal stability behavior of the stiff gel is investigated by thermogravimetric (TG) and differential thermal (DTA) analysis. The crystal structure of the glass is characterized by X-ray powder diffraction (XRD). Particle composition is determined by X-ray photoelectron spectroscopy (XPS). Size and distribution of the nanocrystals are characterized by transmission electron microscopy (TEM) as well as high-resolution transmission electron microscopy (HRTEM). Results show that the indium nanocrystals in tetragonal crystal structure have formed in glass, and the average diameter is about 30 nm. Further, the glass is measured by Z-scan technique to investigate the nonlinear optical (NLO) properties. The third-order NLO coefficient χ{sup (3)} of the glass is determined to be 2.81 × 10{sup −10} esu. The glass with large third-order NLO coefficient is promising materials for applications in optical devices.

  2. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  3. Al-doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Kadam, Pratibha; Agashe, Chitra; Mahamuni, Shailaja

    2008-11-01

    Al3+-doped ZnO nanocrystals were differently obtained by wet chemical and an electrochemical route. An increase in forbidden gap due to change in crystal size and also due to Al3+ doping in ZnO is critically analyzed. The Moss-Burstein type shift in Al3+-doped ZnO nanocrystals provides an evidence of successful Al3+ doping in ZnO nanocrystals. The possibility of varying the carrier concentration in ZnO nanocrystals is the indirect implication of the present investigations.

  4. Electronic structure of cobalt nanocrystals suspended inliquid

    SciTech Connect

    Liu, Hongjian; Guo, Jinghua; Yin, Yadong; Augustsson, Andreas; Dong, Chungli; Nordgren, Joseph; Chang, Chinglin; Alivisatos, Paul; Thornton, Geoff; Ogletree, D. Frank; Requejo, Felix G.; de Groot, Frank; Salmeron, Miquel

    2007-07-16

    The electronic structure of cobalt nanocrystals suspended in liquid as a function of size has been investigated using in-situ x-ray absorption and emission spectroscopy. A sharp absorption peak associated with the ligand molecules is found that increases in intensity upon reducing the nanocrystal size. X-ray Raman features due to d-d and to charge-transfer excitations of ligand molecules are identified. The study reveals the local symmetry of the surface of {var_epsilon}-Co phase nanocrystals, which originates from a dynamic interaction between Co nanocrystals and surfactant + solvent molecules.

  5. Chemical-Vapor-Deposited Diamond Film

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1999-01-01

    This chapter describes the nature of clean and contaminated diamond surfaces, Chemical-vapor-deposited (CVD) diamond film deposition technology, analytical techniques and the results of research on CVD diamond films, and the general properties of CVD diamond films. Further, it describes the friction and wear properties of CVD diamond films in the atmosphere, in a controlled nitrogen environment, and in an ultra-high-vacuum environment.

  6. The dependence of lead-salt nanocrystal properties on morphology and dielectric environment

    NASA Astrophysics Data System (ADS)

    Bartnik, Adam Christopher

    The IV-VI semiconductors, and specifically the lead-salts (PbS, PbSe, and PbTe), are a natural choice for nanocrystal science. In nanocrystals, because of their narrow band gap, small effective masses, and large dielectric constants, they offer a unique combination of both strong confinement and strong dielectric contrast with their environment. Studying how these two effects modify optical and electrical properties of nanocrystals will be the topic of this dissertation. We begin with a summary of the synthesis of high-quality PbS and PbSe nanocrystals. Special care is taken to explain the chemical procedures in detail to an audience not expected to have significant prior chemistry knowledge. The synthesized nanocrystals have bright and tunable emission that spans the edge of the visible to the near-IR spectrum (700--1800 nm), and they are capped with organic ligands making them easily adaptable to different substrates or hosts. This combination of high optical quality and flexible device engineering make them extremely desirable for application. Moving beyond single-material nanocrystals, we next explore nanocrystal heterostructures, specifically materials with a spherical core of one semiconductor and a shell of another. Core-shell structures are commonly used in nanocrystals as a method to separate the core material, where the electrons and holes are expected to stay, from interfering effects at the surface. This typically results in improvements in stability and fluorescence quantum efficiency. To that end, we develop a model to explain how confinement plays out across abrupt changes in material, focusing on the optical and electrical properties of recently synthesized PbSe/PbS core-shell quantum dots. We show that for typical sizes of these nanocrystals, a novel type of nanocrystal heterostructure is created, where electrons and holes extend uniformly across the abrupt material boundary, and the shell does not act as a protecting layer. For very large sizes

  7. Cubic to tetragonal phase transition of Tm3+ doped nanocrystals in oxyfluoride glass ceramics

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Zhao, Lijuan; Fu, Yuting; Shi, Yahui; Zhang, Xiaoyu; Yu, Hua

    2016-02-01

    Tm3+ ions doped β-PbF2 nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm3+ doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an Oh to D4h site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm3+ doped nanocrystals at 800 nm was modulated by the phase transition of the surrounding crystal field.

  8. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  9. Differential oxidative stress of octahedral and cubic Cu2O micro/nanocrystals to Daphnia magna.

    PubMed

    Fan, Wenhong; Wang, Xiaolong; Cui, Minming; Zhang, Dongfeng; Zhang, Yuan; Yu, Tao; Guo, Lin

    2012-09-18

    This study attempts to understand the impact of different shapes of an individual micro/nanomaterial on their biotoxicities to aquatic organisms. Two differently shaped Cu(2)O micro/nanocrystals (cubes and octahedrons with side lengths of 900 nm) were exposed to Daphnia magna for 72 h, afterward several antioxidant biomarkers such as reactive oxygen species (ROS), catalase (CAT), total antioxidant capacity (T-AOC), and malondialdehyde (MDA) in D. magna were measured. We demonstrated the differential influences of two crystallographic Cu(2)O nanocrystals on the antioxidant process. Specifically, octahedral Cu(2)O nanocrystals showed a higher level of oxidative stress, possibly because of its larger surface area and higher reaction activity of the octahedron. The biomarker results further showed that the oxidative stress and antioxidant mechanism process involved three stages-antioxidant response, oxidation inhibition, and antioxidant inactivation. Furthermore, the accumulation of MDA was mainly responsible for the ROS-induced toxicity. PMID:22894800

  10. Non-Volatile Flash Memory Characteristics of Tetralayer Nickel-Germanide Nanocrystals Embedded Structure.

    PubMed

    Panda, D; Panda, M

    2016-01-01

    Formation of tetralayer memory structure having nickel-germanide nanocrystals using a Ge/Ni multilayers is proposed. X-ray diffraction study shows the NiGe (002) phase formation after proper annealing. Cross sectional HRTEM clearly shows the sharpness and the size (~4-6 nm) of the stacked nanocrystals embedded in the oxide matrix. A large anti-clockwise hysteresis memory win- dow of 13.4 Volt at ± 15 Volt is observed for the optimized samples. This large memory window indicates for the MLC applications. Frequency independent C-V curve confirms about the charge storage in the nanocrystals. A good charge retention and endurance characteristics are exhibited upto 125 °C for the nonvolatile memory application. PMID:27398590

  11. Structural, magnetic and dielectric properties of NiZnFe2O4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Datt, Gopal; Abhyankar, A. C.

    2016-04-01

    In this paper we report the structural, magnetic and dielectric properties of hydrothermally synthesised NiZnFe2O4 nanocrystals. The Rietveld refinement of XRD data reveals that nanoparticles are crystallized in spinel structure with Fd-3m space group and the lattice parameter is found to be 8.413 (2) Ȧ. The FESEM microstructures reveal that the particles are in the spherical shape with a size lying between 20-25 nm. The magnetic data analysis shows that the coercivity of the nanoparticles is almost zero at room temperature and the magnetization value is Ms = 45 emu/g. The dielectric relaxation of the NiZnFe2O4 nanocrystals obeys the modified Debye model which considers the more than one ion contributing to the relaxation. The ac-conductivity of these nanocrystals is governed by the universal dielectric response (UDR) model, where the variable-range hopping of localized polarons is responsible for conduction.

  12. Direct Observation of Room-Temperature Polar Ordering in Colloidal GeTe Nanocrystals

    SciTech Connect

    Polking, Mark J.; Zheng, Haimei; Urban, Jeffrey J.; Milliron, Delia J.; Chan, Emory; Caldwell, Marissa A.; Raoux, Simone; Kisielowski, Christian F.; Ager III, Joel W.; Ramesh, Ramamoorthy; Alivisatos, A.P.

    2009-12-07

    Ferroelectrics and other materials that exhibit spontaneous polar ordering have demonstrated immense promise for applications ranging from non-volatile memories to microelectromechanical systems. However, experimental evidence of polar ordering and effective synthetic strategies for accessing these materials are lacking for low-dimensional nanomaterials. Here, we demonstrate the synthesis of size-controlled nanocrystals of the polar material germanium telluride (GeTe) using colloidal chemistry and provide the first direct evidence of room-temperature polar ordering in nanocrystals less than 5 nm in size using aberration-corrected transmission electron microscopy. Synchrotron x-ray diffraction and Raman studies demonstrate a sizeable polar distortion and a reversible size-dependent polar phase transition in these nanocrystals. The stability of polar ordering in solution-processible nanomaterials suggests an economical avenue to Tbit/in2-density non-volatile memory devices and other applications.

  13. Formation of Organic Molecular Nanocrystals under Rigid Confinement with Analysis by Solid State NMR

    PubMed Central

    Yang, X.; Ong, T. C.; Michaelis, V. K.; Heng, S.; Huang, J.; Griffin, R. G.; Myerson, A. S.

    2014-01-01

    Crystallization in rigid confinement is a promising method to obtain organic molecular nanocrystals. However, the crystallization behavior and the related characterization methods are not well studied. Here we present a systematic study of the nucleation of organic molecular nanocrystals in rigid pores. Four different compounds were studied, ibuprofen, fenofibrate, griseofulvin, and indomethacin, which range from simple to complex molecules. Solid-state Nuclear Magnetic Resonance (NMR) was employed to analyse the structure of these compounds inside pores which are difficult to characterize by other analytical methods. We successfully demonstrated the production of nano-crystalline ibuprofen, fenofibrate and griseofulvin in porous silica particles with ~ 40 nm pores. These nanocrystals showed significant enhancement in dissolution rates. These results help advance the fundamental understanding of nucleation under rigid confinement and may lead to potential applications in developing new formulations in the pharmaceutical industry. PMID:25258590

  14. IR spectroscopy of quartz nanocrystals formed during intense crushing of a heterogeneous material (granite)

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Mamalimov, R. I.; Sobolev, G. A.; Kireenkova, S. M.; Morozov, Yu. A.; Smul'Skaya, A. I.

    2011-12-01

    The spectra of the imaginary part ɛ″(ν) of the permittivity of quartz single crystals and a heterogeneous material, i.e., pseudotachylite, formed during intense crushing of granite in the region of the seismogenic Earth's crust fault have been calculated from IR reflection spectra. It has been found that all strong bands in the pseudotachylite spectrum ɛ″(ν) correspond to lattice vibrations in quartz nanocrystals. Bands are asymmetrically broadened due to dielectric and phonon confinements. Linear sizes of quartz nanocrystals have been estimated from the broadening as ˜70 nm. The frequency of nanocrystal lattice vibrations is higher than that of the macrocrystal, which is caused by lattice compression. The internal stresses which could cause the observed change in the frequency are ˜200 MPa.

  15. Silicon monoxide - a convenient precursor for large scale synthesis of near infrared emitting monodisperse silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Qian, Chenxi; Cui, Xiao Sherri; Wang, Liwei; Wei, Muan; Casillas, Gilberto; Helmy, Amr S.; Ozin, Geoffrey A.

    2016-02-01

    While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature range 850-1100 °C. Quantum confinement effects and structural changes of the material related to the size of the silicon nanocrystals nucleated and grown in this way were established by Photoluminescence (PL), Raman, FTIR and UV-Visible spectroscopy, PXRD and STEM, pinpointing that the most significant disproportionation transformations happened in the temperature range between 900 and 950 °C. With this know-how a high yield synthesis was developed that produced polydispersions of decyl-capped, hexane-soluble silicon nanocrystals predominantly with near infrared (NIR) PL. Using size-selective precipitation, these polydispersions were separated into monodisperse fractions, which allowed their PL absolute quantum yield (AQY) to be studied as a function of silicon nanocrystal size. This investigation yielded volcano-shaped plots for the AQY confirming the most efficient PL wavelength for ncSi to be located at around 820-830 nm, which corresponded to a size of 3.5-4.0 nm. This work provides opportunities for applications of size-selected near infrared emitting silicon nanocrystals in biomedical imaging and photothermal therapy.While silicon nanocrystals (ncSi) embedded in silicon dioxide thin films have been intensively studied in physics, the potential of batch synthesis of silicon nanocrystals from the solid-state disproportionation of SiO powder has not drawn much attention in chemistry. Herein we describe some remarkable effects observed in the diffraction, microscopy and spectroscopy of SiO powder upon thermal processing in the temperature

  16. Luminescence enhancement of nanocrystal quantum wells by bandgap and strain engineering

    NASA Astrophysics Data System (ADS)

    Cao, Xian-An; Lu, Yifei

    2015-01-01

    CdSe-based nanocrystal quantum wells (QWs) were synthesized around CdS nanocrystal quantum dots and were bandgap- and strain-engineered to achieve high-efficiency short-wavelength luminescence. Tuning the CdSe QW width in the range of 1.05 to 1.58 nm has led to blue-green light emission, whose quantum yield was improved up to 48% through strain compensation by an optimized ZnS outer shell. The luminescence spectrum can be modified by adding a ZnS inner barrier layer to block charge and exciton transfer between the QW and CdS core. Strain management by adjusting the well and barrier thickness has proven critical in such a complex multilayer quantum system for obtaining high-quality nanocrystals and light emission.

  17. Growth of nanocrystals and thin films at the water-oil interface.

    PubMed

    Stansfield, G L; Vanitha, P V; Johnston, H M; Fan, D; AlQahtani, H; Hague, L; Grell, M; Thomas, P John

    2010-09-28

    The use of the water-oil interface provides significant advantages in the synthesis of inorganic nanostructures. Employing the water-toluene interface, luminescent CdS nanocrystals have been obtained at a relatively modest temperature of 35 degrees C. The diameters of the particulates can be varied between 1.0 and 5.0 nm. In addition, we have devised a new method for transferring thin films at the water-toluene interface onto solid substrates. Using this method, thin films consisting of Au and Ag nanocrystals spread over very large areas (square centimetres) are obtained in a single step. These films are directly usable as ingredients of functional devices. We show this by constructing a working amine sensor based on films of Au nanocrystals. The materials obtained have been characterized by X-ray diffraction, scanning and transmission electron microscopy, absorption and emission spectroscopy and charge transport measurements. PMID:20732889

  18. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    NASA Astrophysics Data System (ADS)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8–40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  19. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes.

    PubMed

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H; Fortner, John D

    2016-08-12

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8-40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s). PMID:27354334

  20. A simple and generic approach for synthesizing colloidal metal and metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Cloud, Jacqueline E.; Yoder, Tara S.; Harvey, Nathan K.; Snow, Kyle; Yang, Yongan

    2013-07-01

    A simple and generic approach--alternating voltage induced electrochemical synthesis (AVIES)--has been reported for synthesizing highly dispersed colloidal metal (Au, Pt, Sn, and Pt-Pd) and metal oxide (ZnO and TiO2) nanocrystals. The respective nanocrystals are produced when a zero-offset alternating voltage at 60 Hz is applied to a pair of identical metal wires, which are inserted in an electrolyte solution containing capping ligands. In the case of Au, the obtained nanocrystals are highly crystalline nano-icosahedra of 14 +/- 2 nm in diameter, the smallest Au icosahedra synthesized in aqueous solutions via green chemistry. Their catalytic activity has been demonstrated through facilitating the reduction of 4-nitrophenol to 4-aminophenol by sodium borohydride. This AVIES approach is an environmentally benign process and can be adopted by any research lab.

  1. Faceting of Nanocrystals during Chemical Transformation: FromSolid Silver Spheres to Hollow Gold Octahedra

    SciTech Connect

    Yin, Yadong; Erdonmez, Can; Alivisatos, A. Paul

    2006-06-23

    Sustained progress in nanocrystal synthesis has enabled recent use of these materials as inorganic, macromolecular precursors that can be chemically transformed into new nanostructures. The literature now contains several cases with chemical transformations being accompanied by varying degrees of modification of properties, including crystal structure and particle shape. As a recent example, we demonstrated that as-synthesized metallic nanocrystals yield, upon oxidation, nanostructures with modified morphologies such as hollow particles. This morphological change derives from directional material flows due to differing diffusivities for the reacting atomic species, in a nanoscale version of the well-known Kirkendall Effect. This general methodology has since been extended by other groups to produce nanostructures with various compositions and shapes. We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of {approx}10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about one order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.

  2. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    SciTech Connect

    Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D.; Ding, Xiaoyue

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

  3. Aqueous Synthesis of Zinc Blende CdTe/CdS Magic-Core/Thick-Shell Tetrahedral-Shaped Nanocrystals with Emission Tunable to Near-Infrared

    SciTech Connect

    Deng, Zhengtao; Schulz, Olaf; Lin, Su; Ding, Baoquan; Liu, Xiaowei; Wei, XiXi; Ros, Robert; Yan, Hao; Liu, Yan

    2010-04-05

    We demonstrate the synthesis of near-IR-emitting zinc blende CdTe/CdS tetrahedral-shaped nanocrystals with a magic-sized (~0.8 nm radius) CdTe core and a thick CdS shell (up to 5 nm). These high-quality water-soluble nanocrystals were obtained by a simple but reliable aqueous method at low temperature. During the growth of the shell over the magic core, the core/shell nanocrystals change from type I to type II, as revealed by their enormous photoluminescence (PL) emission peak shift (from 480 to 820 nm) and significant increase in PL lifetime (from ~1 to ~245 ns). These thick-shell nanocrystals have a high PL quantum yield, high photostability, compact size (hydrodynamic diameter less than 11.0 nm), and reduced blinking behavior. The magic-core/thick-shell nanocrystals may represent an important step toward the synthesis and application of next-generation colloidal nanocrystals from solar cell conversion to intracellular imaging.

  4. Long-wavelength-emitting nanocrystals for bioassay applications

    NASA Astrophysics Data System (ADS)

    Leppert, Valerie J.; Harvey, Ashley S.; McCool, Geoff D.; Quinlan, Forest T.; Feng, Jun; Shan, Guomin; Stroeve, Pieter; Risbud, Subhash H.; Hammock, Bruce D.; Kennedy, Ian M.

    2002-11-01

    New fluorophores that can be excited using visible or near-infrared radiation are of considerable interest for application in environmental and complex bioassays, where background fluorescence is exacerbated by ultra-violet or blue excitation. Useful labels for biomolecules include infrared emitting semiconductor nanoparticles that can be blue-shifted into the near-infrared and visible through quantum confinement effects, oxides of iron, and rare earth oxides. In this work, the synthesis of 6 nm average diameter lead selenide nanocrystals (well below the Bohr exciton diameter of 92 nm) through a reverse micelle technique; and the synthesis of iron and europium oxides with particles less than 5 nm in diameter by pulsed laser ablation is reported. The europium oxide nanoparticles' emission showed a large Stokes shift (144 nm or 216 nm, depending on excitation wavelength); a narrow, symmetric emission line at 610 nm (FWHM of 8 nm); and long lifetime (300 μs). The Eu2O3 nanoparticles, which were coated with silica for functionalization, displayed a greatly enhanced sensitivity over a conventional ELISA (0.025 ng ml-1 vs. 0.1 ng ml-1) when run in an atrazine immunoassay.

  5. CVD Diamond Dielectric Accelerating Structures

    SciTech Connect

    Schoessow, P.; Kanareykin, A.; Gat, R.

    2009-01-22

    The electrical and mechanical properties of diamond make it an ideal candidate material for use in dielectric accelerating structures: high RF breakdown field, extremely low dielectric losses and the highest available thermoconductive coefficient. Using chemical vapor deposition (CVD) cylindrical diamond structures have been manufactured with dimensions corresponding to fundamental TM{sub 01} mode frequencies in the GHz to THz range. Surface treatments are being developed to reduce the secondary electron emission (SEE) coefficient below unity to reduce the possibility of multipactor. The diamond CVD cylindrical waveguide technology developed here can be applied to a variety of other high frequency, large-signal applications.

  6. Conversion of fullerenes to diamond

    DOEpatents

    Gruen, Dieter M.

    1994-01-01

    A method of forming synthetic hydrogen defect free diamond or diamond like films on a substrate. The method involves providing vapor containing fullerene molecules with or without an inert gas, providing a device to impart energy to the fullerene molecules, fragmenting at least in part some of the fullerene molecules in the vapor or energizing the molecules to incipient fragmentation, ionizing the fullerene molecules, impinging ionized fullerene molecules on the substrate to assist in causing fullerene fragmentation to obtain a thickness of diamond on the substrate.

  7. Tailoring nanocrystalline diamond film properties

    DOEpatents

    Gruen, Dieter M.; McCauley, Thomas G.; Zhou, Dan; Krauss, Alan R.

    2003-07-15

    A method for controlling the crystallite size and growth rate of plasma-deposited diamond films. A plasma is established at a pressure in excess of about 55 Torr with controlled concentrations of hydrogen up to about 98% by volume, of unsubstituted hydrocarbons up to about 3% by volume and an inert gas of one or more of the noble gases and nitrogen up to about 98% by volume. The volume ratio of inert gas to hydrogen is preferably maintained at greater than about 4, to deposit a diamond film on a suitable substrate. The diamond film is deposited with a predetermined crystallite size and at a predetermined growth rate.

  8. Diamond and Diamond-Like Materials as Hydrogen Isotope Barriers

    SciTech Connect

    Foreman, L.R.; Barbero, R.S.; Carroll, D.W.; Archuleta, T.; Baker, J.; Devlin, D.; Duke, J.; Loemier, D.; Trukla, M.

    1999-07-10

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The purpose of this project was to develop diamond and diamond-like thin-films as hydrogen isotope permeation barriers. Hydrogen embrittlement limits the life of boost systems which otherwise might be increased to 25 years with a successful non-reactive barrier. Applications in tritium processing such as bottle filling processes, tritium recovery processes, and target filling processes could benefit from an effective barrier. Diamond-like films used for low permeability shells for ICF and HEDP targets were also investigated. Unacceptable high permeabilities for hydrogen were obtained for plasma-CVD diamond-like-carbon films.

  9. Colloidal synthesis of metastable zinc-blende IV-VI SnS nanocrystals with tunable sizes

    NASA Astrophysics Data System (ADS)

    Deng, Zhengtao; Han, Dongran; Liu, Yan

    2011-10-01

    Here we report the colloidal synthesis of size-tunable SnS nanocrystals that have an unusual meta-stable cubic zinc-blende phase instead of the more stable layered orthorhombic phase. The single-crystalline zinc-blende SnS nanocrystals with sizes of 8 nm, 60 nm, and 700 nm were achieved by injecting the sulfur-oleylamine precursor into tin-oleylamine solution in the presence of hexamethyldisilazane (HMDS) at different temperatures. The morphology and structure of the SnS nanocrystals were studied by high-resolution electron microscopy techniques. The small SnS nanoparticles (~8 nm and ~60 nm) are nearly spherical and have the polyhedral shape. The large (~700 nm) crystals display a unique crystal morphology that have Td symmetry with a truncated tetrahedron configuration, and the four truncated surfaces each outgrow to form a convex triangular pyramid corner. Careful structural analysis revealed that each of the crystal is enclosed by 4 low-index {111} hexangular facets and 12 high-index {220} triangular facets using a lift-out technique with a focused ion beam (FIB) and followed by high resolution electron microscope imaging. The direct band gaps of the different sized SnS nanocrystals range from 1.63 eV to 1.68 eV. These heavy-metal-free and low cost nanocrystals are highly efficient absorptive materials in the whole UV-visible range, suitable for applications in photovoltaic cells.Here we report the colloidal synthesis of size-tunable SnS nanocrystals that have an unusual meta-stable cubic zinc-blende phase instead of the more stable layered orthorhombic phase. The single-crystalline zinc-blende SnS nanocrystals with sizes of 8 nm, 60 nm, and 700 nm were achieved by injecting the sulfur-oleylamine precursor into tin-oleylamine solution in the presence of hexamethyldisilazane (HMDS) at different temperatures. The morphology and structure of the SnS nanocrystals were studied by high-resolution electron microscopy techniques. The small SnS nanoparticles (~8 nm and

  10. Lead sulphide nanocrystal photodetector technologies

    NASA Astrophysics Data System (ADS)

    Saran, Rinku; Curry, Richard J.

    2016-02-01

    Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

  11. Quantitative tunneling spectroscopy of nanocrystals

    SciTech Connect

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  12. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  13. Independent Composition and Size Control for Highly Luminescent Indium-Rich Silver Indium Selenide Nanocrystals.

    PubMed

    Yarema, Olesya; Yarema, Maksym; Bozyigit, Deniz; Lin, Weyde M M; Wood, Vanessa

    2015-11-24

    Ternary I-III-VI nanocrystals, such as silver indium selenide (AISe), are candidates to replace cadmium- and lead-based chalcogenide nanocrystals as efficient emitters in the visible and near IR, but, due to challenges in controlling the reactivities of the group I and III cations during synthesis, full compositional and size-dependent behavior of I-III-VI nanocrystals is not yet explored. We report an amide-promoted synthesis of AISe nanocrystals that enables independent control over nanocrystal size and composition. By systematically varying reaction time, amide concentration, and Ag- and In-precursor concentrations, we develop a predictive model for the synthesis and show that AISe sizes can be tuned from 2.4 to 6.8 nm across a broad range of indium-rich compositions from AgIn11Se17 to AgInSe2. We perform structural and optical characterization for representative AISe compositions (Ag0.85In1.05Se2, Ag3In5Se9, AgIn3Se5, and AgIn11Se17) and relate the peaks in quantum yield to stoichiometries exhibiting defect ordering in the bulk. We optimize luminescence properties to achieve a record quantum yield of 73%. Finally, time-resolved photoluminescence measurements enable us to better understand the physics of donor-acceptor emission and the role of structure and composition in luminescence. PMID:26370776

  14. Role of Halides in the Ordered Structure Transitions of Heated Gold Nanocrystal Superlattices

    PubMed Central

    2015-01-01

    Dodecanethiol-capped gold (Au) nanocrystal superlattices can undergo a surprisingly diverse series of ordered structure transitions when heated (Goodfellow, B. W.; Rasch, M. R.; Hessel, C. M.; Patel, R. N.; Smilgies, D.-M.; Korgel, B. A. Nano Lett.2013, 13, 5710–5714). These are the result of highly uniform changes in nanocrystal size, which subsequently force a spontaneous rearrangement of superlattice structure. Here, we show that halide-containing surfactants play an essential role in these transitions. In the absence of any halide-containing surfactant, superlattices of dodecanethiol-capped (1.9-nm-diameter) Au nanocrystals do not change size until reaching about 190–205 °C, at which point the gold cores coalesce. In the presence of halide-containing surfactant, such as tetraoctylphosphonium bromide (TOPB) or tetraoctylammounium bromide (TOAB), the nanocrystals ripen at much lower temperature and superlattices undergo various ordered structure transitions upon heating. Chloride- and iodide-containing surfactants induce similar behavior, destabilizing the Au–thiol bond and reducing the thermal stability of the nanocrystals. PMID:26013597

  15. Synergistic effect of titanium dioxide nanocrystal/reduced graphene oxide hybrid on enhancement of microbial electrocatalysis

    NASA Astrophysics Data System (ADS)

    Zou, Long; Qiao, Yan; Wu, Xiao-Shuai; Ma, Cai-Xia; Li, Xin; Li, Chang Ming

    2015-02-01

    A small sized TiO2 nanocrystal (∼10 nm)/reduced graphene oxide (TiO2/rGO) hybrid is synthesized through a sol-gel process for hybrid TiO2/GO followed by solvothermal reduction of GO to rGO and is further used as a microbial fuel cell (MFC) anode. The strong synergistic effect from a large surface area produced by uniformly deposited TiO2 nanocrystals, good hydrophilicity of TiO2 nanocrystals and superior conductivity of rGO leads to significantly improved electrocatalysis. In particular, a direct electrochemistry is realized by generating endogenous flavins from a large amount of microbes grown on the highly biocompatible TiO2 nanocrystals to mediate fast electron transfer between microbes and conductive rGO for a high performance anode. The TiO2/rGO hybrid anode delivers a maximum power density of 3169 mW m-2 in Shewanella putrefaciens CN32 MFC, which is much large than that of the conventional carbon cloth anode and reported TiO2/carbon hybrid anode, thus offering great potential for practical applications of MFC. This work is for the first time to report that the synergistic effect from tailoring the physical structure to achieve small sized TiO2 nanocrystals while rationally designing chemistry to introduce highly conductive rGO and superior biocompatible TiO2 is able to significantly boost the MFC performance.

  16. Nanocrystal-mediated charge screening effects in nanowire field-effect transistors

    NASA Astrophysics Data System (ADS)

    Yoon, C. J.; Yeom, D. H.; Jeong, D. Y.; Lee, M. G.; Moon, B. M.; Kim, S. S.; Choi, C. Y.; Koo, S. M.

    2009-03-01

    ZnO nanowire field-effect transistors having an omega-shaped floating gate (OSFG) have been successfully fabricated by directly coating CdTe nanocrystals (˜6±2.5 nm) at room temperature, and compared to simultaneously prepared control devices without nanocrystals. Herein, we demonstrate that channel punchthrough may occur when the depletion from the OSFG takes place due to the trapped charges in the nanocrystals. Electrical measurements on the OSFG nanowire devices showed static-induction transistorlike behavior in the drain output IDS-VDS characteristics and a hysteresis window as large as ˜3.1 V in the gate transfer IDS-VGS characteristics. This behavior is ascribed to the presence of the CdTe nanocrystals, and is indicative of the trapping and emission of electrons in the nanocrystals. The numerical simulations clearly show qualitatively the same characteristics as the experimental data and confirm the effect, showing that the change in the potential distribution across the channel, induced by both the wrapping-around gate and the drain, affects the transport characteristics of the device. The cross-sectional energy band and potential profile of the OSFG channel corresponding to the "programed (noncharged)" and "erased (charged)" operations for the device are also discussed on the basis of the numerical capacitance-voltage simulations.

  17. A dual-colored bio-marker made of doped ZnO nanocrystals

    NASA Astrophysics Data System (ADS)

    Wu, Y. L.; Fu, S.; Tok, A. I. Y.; Zeng, X. T.; Lim, C. S.; Kwek, L. C.; Boey, F. C. Y.

    2008-08-01

    Bio-compatible ZnO nanocrystals doped with Co, Cu and Ni cations, surface capped with two types of aminosilanes and titania are synthesized by a soft chemical process. Due to the small particle size (2-5 nm), surface functional groups and the high photoluminescence emissions at the UV and blue-violet wavelength ranges, bio-imaging on human osteosarcoma (Mg-63) cells and histiocytic lymphoma U-937 monocyte cells showed blue emission at the nucleus and bright turquoise emission at the cytoplasm simultaneously. This is the first report on dual-color bio-images labeled by one semiconductor nanocrystal colloidal solution. Bright green emission was detected on mung bean seedlings labeled by all the synthesized ZnO nanocrystals. Cytotoxicity tests showed that the aminosilanes capped nanoparticles are non-toxic. Quantum yields of the nanocrystals varied from 79% to 95%. The results showed the potential of the pure ZnO and Co-doped ZnO nanocrystals for live imaging of both human cells and plant systems.

  18. Chemical and thermodynamic control of the surface of semiconductor nanocrystals for designer white light emitters.

    PubMed

    Krause, Michael M; Mooney, Jonathan; Kambhampati, Patanjali

    2013-07-23

    Small CdSe semiconductor nanocrystals with diameters below 2 nm are thought to emit white light due to random surface defects which result in a broad distribution of midgap emitting states, thereby preventing rational design of small nanocrystal white light emitters. We perform temperature dependent photoluminescence experiments before and after ligand exchange and electron transfer simulations to reveal a very simple microscopic picture of the origin of the white light. These experiments and simulations reveal that these small nanocrystals can be physically modeled in precisely the same way as normal-sized semiconductor nanocrystals; differences in their emission spectra arise from their surface thermodynamics. The white light emission is thus a consequence of the thermodynamic relationship between a core excitonic state and an optically bright surface state with good quantum yield. By virtue of this understanding of the surface and the manner in which it is coupled to the core excitonic states of these nanocrystals, we show both chemical and thermodynamic control of the photoluminescence spectra. We find that using both temperature and appropriate choice in ligands, one can rationally control the spectra so as to engineer the surface to target color rendering coordinates for displays and white light emitters. PMID:23802709

  19. Monodisperse, air-stable PbS nanocrystals via precursor stoichiometry control.

    PubMed

    Weidman, Mark C; Beck, Megan E; Hoffman, Rachel S; Prins, Ferry; Tisdale, William A

    2014-06-24

    Despite their technological importance, lead sulfide (PbS) nanocrystals have lagged behind nanocrystals of cadmium selenide (CdSe) and lead selenide (PbSe) in terms of size and energy homogeneity. Here, we show that the ratio of lead to sulfur precursor available during nucleation is a critical parameter affecting subsequent growth and monodispersity of PbS nanocrystal ensembles. Applying this knowledge, we synthesize highly monodisperse (size dispersity <5%) PbS nanocrystals over a wide range of sizes (exciton energies from 0.70 to 1.25 eV, or 1000-1800 nm) without the use of size-selective precipitations. This degree of monodispersity results in absorption peak half width at half max (HWHM) values as small as 20 meV, indicating an ensemble that is close to the homogeneous limit. Photoluminescence emission is correspondingly narrow and exhibits small Stokes shifts and quantum efficiencies of 30-60%. The nanocrystals readily self-assemble into ordered superlattices and exhibit exceptional air stability over several months. PMID:24840645

  20. Alternative synthesis of CuFeSe2 nanocrystals with magnetic and photoelectric properties.

    PubMed

    Wang, Wenliang; Jiang, Jun; Ding, Tao; Wang, Chunde; Zuo, Jian; Yang, Qing

    2015-02-01

    Monodisperse CuFeSe2 nanocrystals of high quality have been successfully synthesized for the first time using a hot-solution injection method from the reaction of metallic acetylacetonates with diphenyl diselenide (Ph2Se2) in oleylamine with addition of oleic acid at 255 °C for 90 min. The characterizations of X-ray diffraction, electron microscopy, and compositional analysis reveal that the resulting CuFeSe2 nanocrystals are of tetragonal phase with a stoichiometric composition. The CuFeSe2 nanocrystals exhibit well-defined quasi-cubic shape with an average size of ∼18 nm, and their shape can be tuned from quasi-cubes to quasi-spheres by adjusting the reaction parameters. Magnetic measurement reveals that the as-synthesized CuFeSe2 nanocrystals are ferromagnetic and paramagnetic at 4 and 300 K, respectively. Additionally, the current-voltage (I-V) behavior of the CuFeSe2 nanocrystals suggests that they are promising candidates for application in optoelectronics and solar energy conversion. PMID:25562289