Science.gov

Sample records for nmr binding constant

  1. {sup 13}C and {sup 17}O NMR binding constant studies of uranyl carbonate complexes in near-neutral aqueous solution. Yucca Mountain Project Milestone Report 3351

    SciTech Connect

    Clark, D.L.; Newton, T.W.; Palmer, P.D.; Zwick, B.D.

    1995-01-01

    Valuable structural information, much of it unavailable by other methods, can be obtained about complexes in solution through NMR spectroscopy. From chemical shift and intensity measurements of complexed species, NMR can serve as a species-specific structural probe for molecules in solution and can be used to validate thermodynamic constants used in geochemical modeling. Fourier-transform nuclear magnetic resonance (FT-NMR) spectroscopy has been employed to study the speciation of uranium(VI) ions in aqueous carbonate solutions as a function of pH, ionic strength, carbonate concentration, uranium concentration, and temperature. Carbon-13 and oxygen-17 NMR spectroscopy were used to monitor the fractions, and hence thermodynamic binding constants of two different uranyl species U0{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} and (UO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} in aqueous solution. Synthetic buffer solutions were prepared under the ionic strength conditions used in the NMR studies in order to obtain an accurate measure of the hydrogen ion concentration, and a discussion of pH = {minus}log(a{sub H}{sup +}) versus p[H] = {minus}log[H+] is provided. It is shown that for quantitative studies, the quantity p[H] needs to be used. Fourteen uranium(VI) binding constants recommended by the OECD NEA literature review were corrected to the ionic strengths employed in the NMR study using specific ion interaction theory (SIT), and the predicted species distributions were compared with the actual species observed by multinuclear NMR. Agreement between observed and predicted stability fields is excellent. This establishes the utility of multinuclear NMR as a species-specific tool for the study of the actinide carbonate complexation constants, and serves as a means for validating the recommendations provided by the OECD NEA.

  2. Theoretical calculation of the NMR spin-spin coupling constants and the NMR shifts allow distinguishability between the specific direct and the water-mediated binding of a divalent metal cation to guanine.

    PubMed

    Sychrovský, Vladimír; Sponer, Jirí; Hobza, Pavel

    2004-01-21

    The calculated intermolecular and intramolecular indirect NMR spin-spin coupling constants and NMR shifts were used for the discrimination between the inner-shell and the outer-shell binding motif of hydrated divalent cations Mg(2+) or Zn(2+) with a guanine base. The intermolecular coupling constants (1)J(X,O6) and (1)J(X,N7) (X = Mg(2+), Zn(2+)) can be unambiguously assigned to the specific inner-shell binding motif of the hydrated cation either with oxygen O6 or with nitrogen N7 of guanine. The calculated coupling constants (1)J(Mg,O6) and (1)J(Zn,O6) were 6.2 and -17.5 Hz, respectively, for the inner-shell complex of cation directly interacting with oxygen O6 of guanine. For the inner-shell coordination of the cation at nitrogen N7, the calculated coupling constants (1)J(Mg,N7) and (1)J(Zn,N7) were 5.6 and -36.5 Hz, respectively. When the binding of the cation is water-mediated, the coupling constant is zero. To obtain reliable shifts in NMR parameters, hydrated guanine was utilized as the reference state. The calculated change of NMR spin-spin coupling constants due to the hydration and coordination of the cation with guanine is caused mainly by the variation of Fermi-contact coupling contribution while the variation of diamagnetic spin-orbit, paramagnetic spin-orbit, and spin-dipolar coupling contributions is small. The change of s-character of guanine sigma bonding, sigma antibonding, and lone pair orbitals upon the hydration and cation coordination (calculated using the Natural Bond Orbital analysis) correlates with the variation of the Fermi-contact term. The calculated NMR shifts delta(N7) of -15.3 and -12.2 ppm upon the coordination of Mg(2+) and Zn(2+) ion are similar to the NMR shift of 19.6 ppm toward the high field measured by Tanaka for N7 of guanine upon the coordination of the Cd(2+) cation (Tanaka, Y.; Kojima, C.; Morita, E. H.; Kasai. Y.; Yamasaki, K.; Ono, A.; Kainosho, M.; Taira, K. J. Am. Chem. Soc. 2002, 124, 4595-4601). The present data

  3. A 1H NMR titration study on the binding constants for D- and L-tryptophan inclusion complexes with 6-O-α-D-glucosyl-β-cyclodextrin. Formation of 1:1 and 2:1 (host:guest) complexes

    NASA Astrophysics Data System (ADS)

    Akita, Tomoki; Matsui, Yoshihisa; Yamamoto, Tatsuyuki

    2014-02-01

    A 1H NMR titration study revealed that 6-O-α-D-glucosyl-β-cyclodextrin (G1-β-CD) forms 1:1 and 2:1 (host:guest) inclusion complexes with D- and L-tryptophan in alkaline D2O solutions (pD 11.0). The binding constants (K1's) for the 1:1 complexes of D-isomer at 298 K (59 mol-1 dm3) were virtually equal to that of L-isomer (54 mol-1 dm3). On the other hand, the K2 values for 2:1 complexes of D-isomer (42 mol-1 dm3) were larger than that of L-counterpart (12 mol-1 dm3). These facts suggest that the first CD molecule includes the indole ring moiety of tryptophan, followed by inclusion with the second CD molecule in the vicinity of chiral center, α-carbon of the guest, to result in the difference in K2's for two enantiomers. Two-dimensional NMR measurement (Rotating-frame nuclear Overhauser Effect SpectroscopY, ROESY) supported this interpretation.

  4. Thermodynamic binding constants for gallium transferrin

    SciTech Connect

    Harris, W.R.; Pecoraro, V.L.

    1983-01-18

    Gallium-67 is widely used as an imaging agent for tumors and inflammatory abscesses. It is well stablished that Ga/sup 3 +/ travels through the circulatory system bound to the serum iron transport protein transferrin and that this protein binding is an essential step in tumor localization. However, there have been conflicting reports on the magnitude of the gallium-transferrin binding constants. Therefore, thermodynamic binding constants for gallium complexation at the two specific metal binding sites of human serum transferrin at pH 7.4 and 5 mM NaHCO/sub 3/ have been determined by UV difference spectroscopy. The conditional constants calculated for 27 mM NaHCO/sub 3/ are log K/sub 1/* = 20.3 and log K/sub 2/* = 19.3. These results are discussed in relation to the thermodynamics of transferrin binding of Fe/sup 3 +/ and to previous reports on gallium binding. The strength of transferrin complexation is also compared to that of a series of low molecular weight ligands by using calculated pM values (pM = -log (Ga(H/sub 2/O)/sub 6/)) to express the effective binding strength at pH 7.4.

  5. NMR Study of Strontium Binding by a Micaceous Mineral

    SciTech Connect

    Bowers, Geoffrey M.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2006-04-13

    The nature of strontium binding by soil minerals directly affects the transport and sequestration/remediation of radioactive strontium species released from leaking high-level nuclear waste storage tanks. However, the molecular-level structure of strontium binding sites has seldom been explored in phyllosilicate minerals by direct spectroscopic means and is not well-understood. In this work, we use solid-state NMR to analyze strontium directly and indirectly in a fully strontium-exchanged synthetic mica of nominal composition Na4Mg6Al4Si4O20F4. Thermogravimetric analysis, X-ray diffraction analysis, and NMR evidence supports that heat treatment at 500 °C for 4 h fully dehydrates the mica, creating a hydrogen-free interlayer. Analysis of the strontium NMR spectrum of the heat-treated mica shows a single strontium environment with a quadrupolar coupling constant of 9.02 MHz and a quadrupolar asymmetry parameter of 1.0. These quadrupolar parameters are consistent with a highly distorted and asymmetric coordination environment that would be produced by strontium cations without water in the coordination sphere bound deep within the ditrigonal holes. Evidence for at least one additional strontium environment, where proton-strontium couplings may occur, was found via a 1H-87Sr transfer of populations by double resonance NMR experiment. We conclude that the strontium cations in the proton-free interlayer are observable by 87Sr NMR and bound through electrostatic interactions as nine coordinate inner-sphere complexes sitting in the ditrigonal holes. Partially hydrated strontium cations invisible to direct 87Sr NMR are also present and located on the external mica surfaces, which are known to hydrate upon exposure to atmospheric moisture. These results demonstrate that modern pulsed NMR techniques and high fields can be used effectively to provide structural details of strontium binding by phyllosilicate minerals.

  6. Spin-rotation and NMR shielding constants in HCl

    SciTech Connect

    Jaszuński, Michał; Repisky, Michal; Demissie, Taye B.; Komorovsky, Stanislav; Malkin, Elena; Ruud, Kenneth; Garbacz, Piotr; Jackowski, Karol; Makulski, Włodzimierz

    2013-12-21

    The spin-rotation and nuclear magnetic shielding constants are analysed for both nuclei in the HCl molecule. Nonrelativistic ab initio calculations at the CCSD(T) level of approximation show that it is essential to include relativistic effects to obtain spin-rotation constants consistent with accurate experimental data. Our best estimates for the spin-rotation constants of {sup 1}H{sup 35}Cl are C{sub Cl}  = −53.914 kHz and C{sub H}  = 42.672 kHz (for the lowest rovibrational level). For the chlorine shielding constant, the ab initio value computed including the relativistic corrections, σ(Cl) = 976.202 ppm, provides a new absolute shielding scale; for hydrogen we find σ(H) = 31.403 ppm (both at 300 K). Combining the theoretical results with our new gas-phase NMR experimental data allows us to improve the accuracy of the magnetic dipole moments of both chlorine isotopes. For the hydrogen shielding constant, including relativistic effects yields better agreement between experimental and computed values.

  7. Protein Dielectric Constants Determined from NMR Chemical Shift Perturbations

    PubMed Central

    Kukic, Predrag; Farrell, Damien; McIntosh, Lawrence P.; E., Bertrand García-Moreno; Jensen, Kristine Steen; Toleikis, Zigmantas; Teilum, Kaare; Nielsen, Jens Erik

    2015-01-01

    Understanding the connection between protein structure and function requires a quantitative understanding of electrostatic effects. Structure-based electrostatics calculations are essential for this purpose, but their use have been limited by a long-standing discussion on which value to use for the dielectric constants (εeff and εp) required in Coulombic models and Poisson-Boltzmann models. The currently used values for εeff and εp are essentially empirical parameters calibrated against thermodynamic properties that are indirect measurements of protein electric fields. We determine optimal values for εeff and εp by measuring protein electric fields in solution using direct detection of NMR chemical shift perturbations (CSPs). We measured CSPs in fourteen proteins to get a broad and general characterization of electric fields. Coulomb's law reproduces the measured CSPs optimally with a protein dielectric constant (εeff) from 3 to 13, with an optimal value across all proteins of 6.5. However, when the water-protein interface is treated with finite difference Poisson-Boltzmann calculations, the optimal protein dielectric constant (εp) rangedsfrom 2-5 with an optimum of 3. It is striking how similar this value is to the dielectric constant of 2-4 measured for protein powders, and how different it is from the εp of 6-20 used in models based on the Poisson-Boltzmann equation when calculating thermodynamic parameters. Because the value of εp = 3 is obtained by analysis of NMR chemical shift perturbations instead of thermodynamic parameters such as pKa values, it is likely to describe only the electric field and thus represent a more general, intrinsic, and transferable εp common to most folded proteins. PMID:24124752

  8. Alcohol binding to liposomes by 2H NMR and radiolabel binding assays: does partitioning describe binding?

    PubMed Central

    Dubey, A K; Eryomin, V A; Taraschi, T F; Janes, N

    1996-01-01

    Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes. PMID:9172754

  9. Estimating Protein-Ligand Binding Affinity using High-Throughput Screening by NMR

    PubMed Central

    Shortridge, Matthew D.; Hage, David S.; Harbison, Gerard S.; Powers, Robert

    2009-01-01

    Many of today’s drug discovery programs utilize high-throughput screening methods that rely on quick evaluations of protein activity to rank potential chemical leads. By monitoring biologically relevant protein-ligand interactions, NMR can provide a means to validate these discovery leads and to optimize the drug discovery process. NMR-based screens typically use a change in chemical shift or linewidth to detect a protein-ligand interaction. However, the relatively low throughput of current NMR screens and their high demand on sample requirements generally makes it impractical to collect complete binding curves to measure the affinity for each compound in a large and diverse chemical library. As a result, NMR ligand screens are typically limited to identifying candidates that bind to a protein and do not give any estimate of the binding affinity. To address this issue, a methodology has been developed to rank binding affinities for ligands based on NMR-based screens that use 1D 1H NMR line-broadening experiments. This method was demonstrated by using it to estimate the dissociation equilibrium constants for twelve ligands with the protein human serum albumin (HSA). The results were found to give good agreement with previous affinities that have been reported for these same ligands with HSA. PMID:18831571

  10. Cation Hydration Constants by Proton NMR: A Physical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; And Others

    1988-01-01

    Studies the polarization effect on water by cations and anions. Describes an experiment to illustrate the polarization effect of sodium, lithium, calcium, and strontium ions on the water molecule in the hydration spheres of the ions. Analysis is performed by proton NMR. (MVL)

  11. Binding of Sulfonamide Antibiotics to CTABr Micelles Characterized Using (1)H NMR Spectroscopy.

    PubMed

    Sarker, Ashish K; Cashin, Patrick J; Balakrishnan, Vimal K; Exall, Kirsten; Buncel, Erwin; Brown, R Stephen

    2016-08-01

    Interactions of nine sulfonamide antibiotics (sulfadoxine, sulfathiazole, sulfamethoxazole, sulfamerazine, sulfadiazine, sulfamethazine, sulfacetamide, sulfaguanidine, and sulfanilamide) with cetyltrimethylamonium bromide (CTABr) micelles were examined using (1)H NMR spectroscopy. Seven of the nine provided a significant change in the (1)H NMR chemical shift such that the magnitude and direction (upfield vs downfield) of the chemical shift could be used to propose a locus and orientation of the sulfonamide within the micelle structure. The magnitude of the chemical shift was used to estimate the binding constant for seven sulfonamides with CTABr micelles, providing values and an overall pattern consistent with previous studies of these sulfonamides. PMID:27391918

  12. Calcium binding of transglutaminases: a 43Ca NMR study combined with surface polarity analysis.

    PubMed

    Ambrus, A; Bányai, I; Weiss, M S; Hilgenfeld, R; Keresztessy, Z; Muszbek, L; Fésüs, L

    2001-08-01

    Transglutaminases (TGases) form cross-links between glutamine and lysine side-chains of polypeptides in a Ca2+-dependent reaction. The structural basis of the Ca2+-effect is poorly defined. 43Ca NMR, surface polarity analysis combined with multiple sequence alignment and the construction of a new homology model of human tissue transglutaminase (tTGase) were used to obtain structural information about Ca2+ binding properties of factor XIII-A2, tTGase and TGase 3 (each of human origin). 43Ca NMR provided higher average dissociation constants titrating on a wide Ca2+-concentration scale than previous studies with equilibrium dialysis performed in shorter ranges. These results suggest the existence of low affinity Ca2+ binding sites on both FXIII-A and tTGase in addition to high affinity ones in accordance with our surface polarity analysis identifying high numbers of negatively charged clusters. Upon increasing the salt concentration or activating with thrombin, FXIII-A2 partially lost its original Ca2+ affinity; the NMR data suggested different mechanisms for the two activation processes. The NMR provided structural evidence of GTP-induced conformational changes on the tTGase molecule diminishing all of its Ca2+ binding sites. NMR data on the Ca2+ binding properties of the TGase 3 are presented here; it binds Ca2+ the most tightly, which is weakened after its proteolytic activation. The investigated TGases seem to have very symmetric Ca2+ binding sites and no EF-hand motifs. PMID:11565852

  13. Analyzing and Interpreting NMR Spin-Spin Coupling Constants Using Molecular Orbital Calculations

    ERIC Educational Resources Information Center

    Autschbach, Jochen; Le Guennic, Boris

    2007-01-01

    Molecular orbital plots are used to analyze and interpret NMR spin-spin coupling constants, also known as J coupling constants. Students have accepted the concept of contributions to molecular properties from individual orbitals without the requirement to provide explicit equations.

  14. Binding mechanism of the tyrosine-kinase inhibitor nilotinib to human serum albumin determined by 1H STD NMR, 19F NMR, and molecular modeling.

    PubMed

    Yan, Jin; Wu, Di; Sun, Pingchuan; Ma, Xiaoli; Wang, Lili; Li, Shanshan; Xu, Kailin; Li, Hui

    2016-05-30

    Drug interaction with albumins significantly affects in vivo drug transport and biological metabolism. To gain insight into the binding mechanisms of tyrosine-kinase inhibitor nilotinib (NIL) to human serum albumin (HSA), an approach combining (1)H saturation-transfer difference (STD) nuclear magnetic resonance (NMR) spectroscopy, (19)F NMR spectroscopy, steady-state fluorescence quenching, and molecular modeling was adopted. (19)F NMR was used to determine the binding constant, and a value of 4.12 × 10(3)M(-1) was obtained. Fluorescence spectroscopy was also used to determine the binding constant, and the value obtained was within the same order of magnitude. The binding process was mainly driven by hydrogen bonds and van der Waals forces. Displacement experiments further showed that NIL mainly bound to the hydrophobic cavity of HSA's subdomain IIA, also called Sudlow's site I. Molecular docking simulation was also used to establish a molecular binding model, and findings were consistent with those of displacement and the (1)H STD NMR experiments. PMID:26922576

  15. NMR structural analysis of Sleeping Beauty transposase binding to DNA

    PubMed Central

    E Carpentier, Claire; Schreifels, Jeffrey M; Aronovich, Elena L; Carlson, Daniel F; Hackett, Perry B; Nesmelova, Irina V

    2014-01-01

    The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA-binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA-binding domain remains mostly unstructured but its N-terminal PAI subdomain forms a compact, three-helical structure with a helix-turn-helix motif at higher concentrations of NaCl. Furthermore, we show that the full-length SB DNA-binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA-binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA. PMID:24243759

  16. Semi-empirical proton binding constants for natural organic matter

    NASA Astrophysics Data System (ADS)

    Matynia, Anthony; Lenoir, Thomas; Causse, Benjamin; Spadini, Lorenzo; Jacquet, Thierry; Manceau, Alain

    2010-03-01

    Average proton binding constants ( KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values ( R2 ⩾ 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed

  17. Unraveling complex small-molecule binding mechanisms by using simple NMR spectroscopy.

    PubMed

    Quinternet, Marc; Starck, Jean-Philippe; Delsuc, Marc-André; Kieffer, Bruno

    2012-03-26

    Heteronuclear NMR spectroscopy provides a unique way to obtain site-specific information about protein-ligand interactions. Usually, such studies rely on the availability of isotopically labeled proteins, thereby allowing both editing of the spectra and ligand signals to be filtered out. Herein, we report that the use of the methyl SOFAST correlation experiment enables the determination of site-specific equilibrium binding constants by using unlabeled proteins. By using the binding of L- and D-tryptophan to serum albumin as a test case, we determined very accurate dissociation constants for both the high- and low-affinity sites present at the protein surface. The values of site-specific dissociation constants were closer to those obtained by isothermal titration calorimetry than those obtained from ligand-observed methods, such as saturation transfer difference. The possibility of measuring ligand binding to serum albumin at physiological concentrations with unlabeled proteins may open up new perspectives in the field of drug discovery. PMID:22336999

  18. Molecular docking and NMR binding studies to identify novel inhibitors of human phosphomevalonate kinase

    SciTech Connect

    Boonsri, Pornthip; Neumann, Terrence S.; Olson, Andrew L.; Cai, Sheng; Herdendorf, Timothy J.; Miziorko, Henry M.; Hannongbua, Supa; Sem, Daniel S.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Natural and synthetic inhibitors of human phosphomevalonate kinase identified. Black-Right-Pointing-Pointer Virtual screening yielded a hit rate of 15%, with inhibitor K{sub d}'s of 10-60 {mu}M. Black-Right-Pointing-Pointer NMR studies indicate significant protein conformational changes upon binding. -- Abstract: Phosphomevalonate kinase (PMK) phosphorylates mevalonate-5-phosphate (M5P) in the mevalonate pathway, which is the sole source of isoprenoids and steroids in humans. We have identified new PMK inhibitors with virtual screening, using autodock. Promising hits were verified and their affinity measured using NMR-based {sup 1}H-{sup 15}N heteronuclear single quantum coherence (HSQC) chemical shift perturbation and fluorescence titrations. Chemical shift changes were monitored, plotted, and fitted to obtain dissociation constants (K{sub d}). Tight binding compounds with K{sub d}'s ranging from 6-60 {mu}M were identified. These compounds tended to have significant polarity and negative charge, similar to the natural substrates (M5P and ATP). HSQC cross peak changes suggest that binding induces a global conformational change, such as domain closure. Compounds identified in this study serve as chemical genetic probes of human PMK, to explore pharmacology of the mevalonate pathway, as well as starting points for further drug development.

  19. Sensitive NMR Approach for Determining the Binding Mode of Tightly Binding Ligand Molecules to Protein Targets.

    PubMed

    Chen, Wan-Na; Nitsche, Christoph; Pilla, Kala Bharath; Graham, Bim; Huber, Thomas; Klein, Christian D; Otting, Gottfried

    2016-04-01

    Structure-guided drug design relies on detailed structural knowledge of protein-ligand complexes, but crystallization of cocomplexes is not always possible. Here we present a sensitive nuclear magnetic resonance (NMR) approach to determine the binding mode of tightly binding lead compounds in complex with difficult target proteins. In contrast to established NMR methods, it does not depend on rapid exchange between bound and free ligand or on stable isotope labeling, relying instead on a tert-butyl group as a chemical label. tert-Butyl groups are found in numerous protein ligands and deliver an exceptionally narrow and tall (1)H NMR signal. We show that a tert-butyl group also produces outstandingly intense intra- and intermolecular NOESY cross-peaks. These enable measurements of pseudocontact shifts generated by lanthanide tags attached to the protein, which in turn allows positioning of the ligand on the protein. Once the ligand has been located, assignments of intermolecular NOEs become possible even without prior resonance assignments of protein side chains. The approach is demonstrated with the dengue virus NS2B-NS3 protease in complex with a high-affinity ligand containing a tert-butyl group. PMID:26974502

  20. Determination of protein-ligand binding affinity by NMR: observations from serum albumin model systems.

    PubMed

    Fielding, Lee; Rutherford, Samantha; Fletcher, Dan

    2005-06-01

    The usefulness of bovine serum albumin (BSA) as a model protein for testing NMR methods for the study of protein-ligand interactions is discussed. Isothermal titration calorimetry established the binding affinity and stoichiometry of the specific binding site for L-tryptophan, D-tryptophan, naproxen, ibuprofen, salicylic acid and warfarin. The binding affinities of the same ligands determined by NMR methods are universally weaker (larger KD). This is because the NMR methods are susceptible to interference from additional non-specific binding. The L-tryptophan-BSA and naproxen-BSA systems were the best behaved model systems. PMID:15816062

  1. Microsolvation of methylmercury: structures, energies, bonding and NMR constants ((199)Hg, (13)C and (17)O).

    PubMed

    Flórez, Edison; Maldonado, Alejandro F; Aucar, Gustavo A; David, Jorge; Restrepo, Albeiro

    2016-01-21

    Hartree-Fock (HF) and second order perturbation theory (MP2) calculations within the scalar and full relativistic frames were carried out in order to determine the equilibrium geometries and interaction energies between cationic methylmercury (CH3Hg(+)) and up to three water molecules. A total of nine structures were obtained. Bonding properties were analyzed using the Quantum Theory of Atoms In Molecules (QTAIM). The analyses of the topology of electron densities reveal that all structures exhibit a partially covalent HgO interaction between methylmercury and one water molecule. Consideration of additional water molecules suggests that they solvate the (CH3HgOH2)(+) unit. Nuclear magnetic shielding constants σ((199)Hg), σ((13)C) and σ((17)O), as well as indirect spin-spin coupling constants J((199)Hg-(13)C), J((199)Hg-(17)O) and J((13)C-(17)O), were calculated for each one of the geometries. Thermodynamic stability and the values of NMR constants correlate with the ability of the system to directly coordinate oxygen atoms of water molecules to the mercury atom in methylmercury and with the formation of hydrogen bonds among solvating water molecules. Relativistic effects account for 11% on σ((13)C) and 14% on σ((17)O), which is due to the presence of Hg (heavy atom on light atom, HALA effect), while the relativistic effects on σ((199)Hg) are close to 50% (heavy atom on heavy atom itself, HAHA effect). J-coupling constants are highly influenced by relativity when mercury is involved as in J((199)Hg-(13)C) and J((199)Hg-(17)O). On the other hand, our results show that the values of NMR constants for carbon and oxygen, atoms which are connected through mercury (C-HgO), are highly correlated and are greatly influenced by the presence of water molecules. Water molecules introduce additional electronic effects to the relativistic effects due to the mercury atom. PMID:26670708

  2. Relativistic force field: parametric computations of proton-proton coupling constants in (1)H NMR spectra.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2014-09-01

    Spin-spin coupling constants in (1)H NMR carry a wealth of structural information and offer a powerful tool for deciphering molecular structures. However, accurate ab initio or DFT calculations of spin-spin coupling constants have been very challenging and expensive. Scaling of (easy) Fermi contacts, fc, especially in the context of recent findings by Bally and Rablen (Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818), offers a framework for achieving practical evaluation of spin-spin coupling constants. We report a faster and more precise parametrization approach utilizing a new basis set for hydrogen atoms optimized in conjunction with (i) inexpensive B3LYP/6-31G(d) molecular geometries, (ii) inexpensive 4-31G basis set for carbon atoms in fc calculations, and (iii) individual parametrization for different atom types/hybridizations, not unlike a force field in molecular mechanics, but designed for the fc's. With the training set of 608 experimental constants we achieved rmsd <0.19 Hz. The methodology performs very well as we illustrate with a set of complex organic natural products, including strychnine (rmsd 0.19 Hz), morphine (rmsd 0.24 Hz), etc. This precision is achieved with much shorter computational times: accurate spin-spin coupling constants for the two conformers of strychnine were computed in parallel on two 16-core nodes of a Linux cluster within 10 min. PMID:25158224

  3. NMR Solution Structure and DNA Binding Model of the DNA Binding Domain of Competence Protein A

    PubMed Central

    Hobbs, Carey A.; Bobay, Benjamin G.; Thompson, Richele J.; Perego, Marta; Cavanagh, John

    2010-01-01

    Competence protein A (ComA) is a response regulator protein involved in the development of genetic competence in the Gram-positive spore forming bacterium Bacillus subtilis, as well as the regulation of the production of degradative enzymes and antibiotic synthesis. ComA belongs to the NarL family of proteins which are characterized by a C-terminal transcriptional activator domain that consists of a bundle of four helices, where the second and third helices (α8 and α9) form a helix-turn-helix DNA binding domain. Using NMR spectroscopy, the high resolution three-dimensional solution structure of the C-terminal DNA-binding domain of ComA (ComAC) has been determined. In addition, surface plasmon resonance and NMR protein-DNA titration experiments allowed for the analysis of the interaction of ComAC with its target DNA sequences. Combining the solution structure and biochemical data, a model of ComAC bound to the ComA recognition sequences on the srfA promoter has been developed. The model shows that for DNA binding, ComA uses the conserved helix-turn-helix motif present in other NarL family members. However, the model also reveals that ComA may use a slightly different part of the helix-turn-helix motif and there appears to be some associated domain re-orientation. These observations suggest a basis for DNA binding specificity within the NarL family. PMID:20302877

  4. Detection and characterization of xenon-binding sites in proteins by 129Xe NMR spectroscopy.

    PubMed

    Rubin, Seth M; Lee, Seok-Yong; Ruiz, E Janette; Pines, Alexander; Wemmer, David E

    2002-09-13

    Xenon-binding sites in proteins have led to a number of applications of xenon in biochemical and structural studies. Here we further develop the utility of 129Xe NMR in characterizing specific xenon-protein interactions. The sensitivity of the 129Xe chemical shift to its local environment and the intense signals attainable by optical pumping make xenon a useful NMR reporter of its own interactions with proteins. A method for detecting specific xenon-binding interactions by analysis of 129Xe chemical shift data is illustrated using the maltose binding protein (MBP) from Escherichia coli as an example. The crystal structure of MBP in the presence of 8atm of xenon confirms the binding site determined from NMR data. Changes in the structure of the xenon-binding cavity upon the binding of maltose by the protein can account for the sensitivity of the 129Xe chemical shift to MBP conformation. 129Xe NMR data for xenon in solution with a number of cavity containing phage T4 lysozyme mutants show that xenon can report on cavity structure. In particular, a correlation exists between cavity size and the binding-induced 129Xe chemical shift. Further applications of 129Xe NMR to biochemical assays, including the screening of proteins for xenon binding for crystallography are considered. PMID:12217701

  5. O-tert-Butyltyrosine, an NMR tag for high-molecular-weight systems and measurements of submicromolar ligand binding affinities.

    PubMed

    Chen, Wan-Na; Kuppan, Kekini Vahini; Lee, Michael David; Jaudzems, Kristaps; Huber, Thomas; Otting, Gottfried

    2015-04-01

    O-tert-Butyltyrosine (Tby) is an unnatural amino acid that can be site-specifically incorporated into proteins using established orthogonal aminoacyl-tRNA synthetase/tRNA systems. Here we show that the tert-butyl group presents an outstanding NMR tag that can readily be observed in one-dimensional (1)H NMR spectra without any isotope labeling. Owing to rapid bond rotations and the chemical equivalence of the protons of a solvent-exposed tert-butyl group from Tby, the singlet resonance from the tert-butyl group generates an easily detectable narrow signal in a spectral region with limited overlap with other methyl resonances. The potential of the tert-butyl (1)H NMR signal in protein research is illustrated by the observation and assignment of two resonances in the Bacillus stearothermophilus DnaB hexamer (320 kDa), demonstrating that this protein preferentially assumes a 3-fold rather than 6-fold symmetry in solution, and by the quantitative measurement of the submicromolar dissociation constant Kd (0.2 μM) of the complex between glutamate and the Escherichia coli aspartate/glutamate binding protein (DEBP, 32 kDa). The outstanding signal height of the (1)H NMR signal of the Tby tert-butyl group allows Kd measurements using less concentrated protein solutions than usual, providing access to Kd values 1 order of magnitude lower than established NMR methods that employ direct protein detection for Kd measurements. PMID:25789794

  6. NMR shielding constants for hydrogen guest molecules in structure II clathrates.

    PubMed

    Alavi, Saman; Ripmeester, J A; Klug, D D

    2005-08-01

    Proton NMR shielding constants and chemical shifts for hydrogen guests in small and large cages of structure II clathrates are calculated using density-functional theory and the gauge-invariant atomic-orbital method. Shielding constants are calculated at the B3LYP level with the 6-311++G(d,p) basis set. The calculated chemical shifts are corrected with a linear regression to reproduce the experimental chemical shifts of a set of standard molecules. The calculated chemical shifts of single hydrogen molecules in the small and large structure II cages are 4.94 and 4.84 ppm, respectively, which show that within the error range of the method the H2 guest molecules in the small and large cages cannot be distinguished. Chemical shifts are also calculated for double occupancy of the hydrogen guests in small cages, and double, triple, and quadruple occupancy in large cages. Multiple occupancy changes the chemical shift of the hydrogen guests by approximately 0.2 ppm. The relative effects of other guest molecules and the cage on the chemical shift are studied for the cages with multiple occupancies. PMID:16108623

  7. NMR J-coupling constants in cisplatin derivatives studied by molecular dynamics and relativistic DFT.

    PubMed

    Sutter, Kiplangat; Truflandier, Lionel A; Autschbach, Jochen

    2011-06-01

    Solvent effects on J((195)Pt-(15)N) one-bond nuclear spin-spin coupling constants (J(PtN)) of cisplatin [cis-diamminedichloroplatinum(II)] and three cisplatin derivatives are investigated using a combination of density functional theory (DFT) based ab initio molecular dynamics (aiMD) and all-electron relativistic DFT NMR calculations employing the two-component relativistic zeroth-order regular approximation (ZORA). Good agreement with experiment is obtained when explicit solvent molecules are considered and when the computations are performed with a hybrid functional. Spin-orbit coupling causes only small effects on J(PtN) . Key factors contributing to the magnitude of coupling constants are elucidated, with the most significant being the presence of solvent as well as the quality of the density functional and basis set combination. The solvent effects are of the same magnitude as J(PtN) calculated for gas-phase geometries. However, the trends of J(PtN) among the complexes are already present in the gas phase. Results obtained with a continuum solvent model agree quite well with the aiMD results, provided that the Pt solvent-accessible radius is carefully chosen. The aiMD results support the existence of a partial hydrogen-bond-like inverse-hydration-type interaction affording a weak (1)J(Pt⋅⋅⋅H(w)) coupling between the complexes and the coordinating water molecule. PMID:21381179

  8. Revisiting NMR through-space J(FF) spin-spin coupling constants for getting insight into proximate F---F interactions.

    PubMed

    Contreras, Rubén H; Llorente, Tomás; Ducati, Lucas Colucci; Tormena, Cláudio Francisco

    2014-07-10

    At present times it is usual practice to mark biological compounds replacing an H for an F atom to study, by means of (19)F NMR spectroscopy, aspects such as binding sites and molecular folding features. This interesting methodology could nicely be improved if it is known how proximity interactions on the F atom affect its electronic structure as gauged through high-resolution (19)F NMR spectroscopy. This is the main aim of the present work and, to this end, differently substituted peri-difluoronaphthalenes are chosen as model systems. In such compounds are rationalized some interesting aspects of the diamagnetic and paramagnetic parts of the (19)F nuclear magnetic shielding tensor as well as the transmission mechanisms for the PSO and FC contributions to (4)JF1F8 indirect nuclear spin-spin coupling constants. PMID:24935717

  9. Chloramphenicol binding to human serum albumin: Determination of binding constants and binding sites by steady-state fluorescence

    NASA Astrophysics Data System (ADS)

    Ding, Fei; Zhao, Guangyu; Chen, Shoucong; Liu, Feng; Sun, Ying; Zhang, Li

    2009-07-01

    The interaction between chloramphenicol and human serum albumin (HSA) was studied by fluorescence, UV/vis, circular dichroism (CD) and three-dimensional fluorescence spectroscopy. Fluorescence data revealed that the fluorescence quenching of HSA by chloramphenicol was the result of the formation of drug-HSA complex, and the effective quenching constants ( Ka) were 2.852 × 10 4, 2.765 × 10 4, 2.638 × 10 4 and 2.542 × 10 4 M -1 at 287, 295, 303 and 311 K, respectively. The thermodynamic parameters, enthalpy change (Δ H) and entropy change (Δ S) for the reaction were calculated to be -3.634 kJ mol -1 and 72.66 J mol -1 K -1 according to van't Hoff equation. The results indicated that the hydrophobic and electrostatic interactions played a major role in the binding of drug to HSA. The distance r between donor and acceptor was obtained to be 3.63 nm according to Förster's theory. Site marker competitive experiments indicated that the binding of drug to HSA primarily took place in subdomain IIA. The alterations of HSA secondary structure in the presence of chloramphenicol were confirmed by the evidences from synchronous fluorescence, CD and three-dimensional fluorescence spectra. In addition, the effect of common ions on the binding constants of drug-HSA complex was also discussed.

  10. Heparin binding to platelet factor-4. An NMR and site-directed mutagenesis study: arginine residues are crucial for binding.

    PubMed Central

    Mayo, K H; Ilyina, E; Roongta, V; Dundas, M; Joseph, J; Lai, C K; Maione, T; Daly, T J

    1995-01-01

    Native platelet factor-4 (PF4) is an asymmetrically associated, homo-tetrameric protein (70 residues/subunit) known for binding polysulphated glycosaminoglycans like heparin. PF4 N-terminal chimeric mutant M2 (PF4-M2), on the other hand, forms symmetric tetramers [Mayo, Roongta, Ilyina, Milius, Barker, Quinlan, La Rosa and Daly (1995) Biochemistry 34, 11399-11409] making NMR studies with this 32 kDa protein tractable. PF4-M2, moreover, binds heparin with a similar affinity to that of native PF4. NMR data presented here indicate that heparin (9000 Da cut-off) binding to PF4-M2, while not perturbing the overall structure of the protein, does perturb specific side-chain proton resonances which map to spatially related residues within a ring of positively charged side chains on the surface of tetrameric PF4-M2. Contrary to PF4-heparin binding models which centre around C-terminal alpha-helix lysines, this study indicates that a loop containing Arg-20, Arg-22, His-23 and Thr-25, as well as Lys-46 and Arg-49, are even more affected by heparin binding. Site-directed mutagenesis and heparin binding data support these NMR findings by indicating that arginines more than C-terminal lysines, are crucial to the heparin binding process. Images Figure 4 PMID:8526843

  11. Dynamics and intramolecular ligand binding of DtxR studied by MD simulations and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Yi, Myunggi; Bhattacharya, Nilakshee; Zhou, Huan-Xiang

    2005-11-01

    Diphtheria toxin repressor (DtxR) regulates the expression of the diphtheria toxin gene through intramolecular ligand binding (Wylie et al., Biochemistry 2005, 44:40-51). Protein dynamics is essential to the binding process of the Pro-rich (Pr) ligand to the C-terminal SH3 domain. We present MD and NMR results on the dynamics and ligand interactions of a Pr-SH3 construct of DtxR. NMR relaxation data (T1, T2, and NOE) showed that the Pr ligand is very flexible, suggesting that it undergoes binding/unbinding transitions. A 50-ns MD trajectory of the protein was used to calculate T1, T2, and NOE, reproducing the NMR results for the SH3 domain but not for the Pr segment. During the MD simulation, the ligand stayed bound to the SH3 domain; thus the simulation represented the bound state. The NMR data for the Pr-segment could be explained by assuming that they represented the average behavior of a fast binding/unbinding exchange. Though unbinding was not observed in the MD simulation, the simulation did show large fluctuations of a loop which forms part of the wall of the binding pocket. The fluctuations led to opening up of the binding pocket, thus weakening the interaction with the Pr segment and perhaps ultimately leading to ligand unbinding.

  12. Tight-binding theory of NMR shifts in topological insulators

    NASA Astrophysics Data System (ADS)

    Garate, Ion; Boutin, Samuel; Ramirez Ruiz, Jorge

    To date, most experiments in topological insulators have focused on probing the surface states of these materials and suppressing the often inevitable contribution from bulk states. However, the latter are of interest on their own and contain useful information that can be extracted with a local probe like nuclear magnetic resonance (NMR). Recently, 77Se NMR experiments on Bi2Se3 single crystals have reported unusual field-independent linewidths and short spin-echo decays. It is likely that an unexpectedly strong indirect internuclear coupling, characteristic of some inverted band structures, is the cause of these peculiar results. Motivated by this hypothesis, we report on a microscopic theory of NMR shifts and linewidths in Bi2Se3 and Bi2Te3. Our theory provides quantitative estimates for the Knight shift, the orbital shift, the Ruderman-Kittel-Kasuya-Yoshida coupling and the Bloembergen-Rowland coupling. We will compare our findings with the available experimental data Funded by the National Science and Engineering Research Council of Canada, Fonds de Recherche Québécois Nature et Technologies, and Mitacs-Globalink.

  13. Quantitative analysis of multisite protein ligand interactions by NMR: binding of intrinsically disordered p53 transactivation subdomains with the TAZ2 domain of CBP

    PubMed Central

    Arai, Munehito; Ferreon, Josephine C.; Wright, Peter E.

    2012-01-01

    Determination of affinities and binding sites involved in protein-ligand interactions is essential for understanding molecular mechanisms in biological systems. Here we combine singular value decomposition, and global analysis of NMR chemical shift perturbations caused by protein-protein interactions to determine the number and location of binding sites on the protein surface and to measure the binding affinities. Using this method we show that the isolated AD1 and AD2 binding motifs, derived from the intrinsically disordered N-terminal transactivation domain of the tumor suppressor p53, both interact with the TAZ2 domain of the transcriptional coactivator CBP at two binding sites. Simulations of titration curves and lineshapes show that a primary dissociation constant as small as 1~10 nM can be accurately estimated by NMR titration methods, provided that the primary and secondary binding processes are coupled. Unexpectedly, the site of binding of AD2 on the hydrophobic surface of TAZ2 overlaps with the binding site for AD1, but AD2 binds TAZ2 more tightly. The results highlight the complexity of interactions between intrinsically disordered proteins and their targets. Furthermore, the association rate of AD2 to TAZ2 is estimated to be 1.7 × 1010 M−1 s−1, approaching the diffusion-controlled limit and indicating that intrinsic disorder plus complementary electrostatics can significantly accelerate protein binding interactions. PMID:22280219

  14. REDOR NMR of stable-isotope-labeled protein binding sites

    SciTech Connect

    Schaefer, J.

    1994-12-01

    Rotational-echo, double resonance (REDOR) NMR, a new analytical spectroscopic technique for solids spinning at the magic angle, has been developed over the last 5 years. REDOR provides a direct measure of heteronuclear dipolar coupling between isolated pairs of labeled nuclei. In a solid with a {sup 13}C-{sup 15}N labeled pair, for example, the {sup 13}C rotational echoes that form each rotor period following a{sup 1}H-{sup 13}C cross-polarization transfer can be prevented from reaching full intensity by insertion of a {sup 15}N {pi} pulse each half rotor period. The REDOR difference (the difference between a {sup 13}C NMR spectrum obtained under these conditions and one obtained with no {sup 15}N {pi} pulses) has a strong dependence on the {sup 13}C-{sup 15}N dipolar coupling, and hence, the {sup 13}C-{sup 15}N internuclear distance. REDOR is described as double-resonance even though three radio frequencies (typically {sup 1}H, {sup 13}C, and {sup 15}N) are used because the protons are removed from the important evolution part of the experiment by resonant decoupling. The dephasing of magnetization in REDOR arises from a local dipolar {sup 13}C-{sup 15}N field gradient and involves no polarization transfer. REDOR has no dependence on {sup 13}C or {sup 15}N chemical-shift tensors and does not require resolution of a {sup 13}C-{sup 15}N coupling in the chemical-shift dimension.

  15. NMR assignment of the amylase-binding protein A from Streptococcus parasanguinis.

    PubMed

    Liu, Bing; Zhu, Fan; Wu, Hui; Matthews, Stephen

    2015-04-01

    Streptococcus parasanguinis is a primary colonizer of tooth surfaces in the oral cavity. Amylase-binding protein A (AbpA) from S. parasanguinis is responsible for the recruitment of salivary amylase to bacterial surface, which plays an important role in the development of oral biofilms. Here, we describe the essentially complete NMR assignments for AbpA. PMID:25016927

  16. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.

    PubMed

    Pedò, Massimo; Löhr, Frank; D'Onofrio, Mariapina; Assfalg, Michael; Dötsch, Volker; Molinari, Henriette

    2009-12-18

    Bile acid molecules are transferred vectorially between basolateral and apical membranes of hepatocytes and enterocytes in the context of the enterohepatic circulation, a process regulating whole body lipid homeostasis. This work addresses the role of the cytosolic lipid binding proteins in the intracellular transfer of bile acids between different membrane compartments. We present nuclear magnetic resonance (NMR) data describing the ternary system composed of the bile acid binding protein, bile acids, and membrane mimetic systems, such as anionic liposomes. This work provides evidence that the investigated liver bile acid binding protein undergoes association with the anionic membrane and binding-induced partial unfolding. The addition of the physiological ligand to the protein-liposome mixture is capable of modulating this interaction, shifting the equilibrium towards the free folded holo protein. An ensemble of NMR titration experiments, based on nitrogen-15 protein and ligand observation, confirm that the membrane and the ligand establish competing binding equilibria, modulating the cytoplasmic permeability of bile acids. These results support a mechanism of ligand binding and release controlled by the onset of a bile salt concentration gradient within the polarized cell. The location of a specific protein region interacting with liposomes is highlighted. PMID:19836400

  17. Mechanism and rate constants of the Cdc42 GTPase binding with intrinsically disordered effectors.

    PubMed

    Pang, Xiaodong; Zhou, Huan-Xiang

    2016-05-01

    Intrinsically disordered proteins (IDPs) are often involved in signaling and regulatory functions, through binding to cellular targets. Many IDPs undergo disorder-to-order transitions upon binding. Both the binding mechanisms and the magnitudes of the binding rate constants can have functional importance. Previously we have found that the coupled binding and folding of any IDP generally follows a sequential mechanism that we term dock-and-coalesce, whereby one segment of the IDP first docks to its subsite on the target surface and the remaining segments subsequently coalesce around their respective subsites. Here we applied our TransComp method within the framework of the dock-and-coalesce mechanism to dissect the binding kinetics of two Rho-family GTPases, Cdc42 and TC10, with two intrinsically disordered effectors, WASP and Pak1. TransComp calculations identified the basic regions preceding the GTPase binding domains (GBDs) of the effectors as the docking segment. For Cdc42 binding with both WASP and Pak1, the calculated docking rate constants are close to the observed overall binding rate constants, suggesting that basic-region docking is the rate-limiting step and subsequent conformational coalescence of the GBDs on the Cdc42 surface is fast. The possibility that conformational coalescence of the WASP GBD on the TC10 surface is slow warrants further experimental investigation. The account for the differences in binding rate constants among the three GTPase-effector systems and mutational effects therein yields deep physical and mechanistic insight into the binding processes. Our approach may guide the selection of mutations that lead to redesigned binding pathways. Proteins 2016; 84:674-685. © 2016 Wiley Periodicals, Inc. PMID:26879470

  18. Heteronuclear NMR of DNA with the heteronucleus in natural abundance: facilitated assignment and extraction of coupling constants.

    PubMed Central

    Schmieder, P; Ippel, J H; van den Elst, H; van der Marel, G A; van Boom, J H; Altona, C; Kessler, H

    1992-01-01

    Two heteronuclear proton-carbon NMR experiments are applied to the DNA-octamer d(TTGGCCAA)2 with carbon in natural abundance. They lead to a complete assignment of the carbon resonances of the sugars and bases. In addition, several heteronuclear coupling constants, proton-carbon as well as proton-phosphorous and phosphorous-carbon, were determined. The information can be obtained in a reasonable measuring time and offers valuable information for a detailed picture of DNA structure. PMID:1408787

  19. Evaluation of three neutral capillary coatings for the determination of analyte-cyclodextrin binding constants by affinity capillary electrophoresis. Application to N,N'-disubstituted piperazine derivatives.

    PubMed

    Danel, Cécile; Melnyk, Patricia; Azaroual, Nathalie; Larchanché, Paul-Emmanuel; Goossens, Jean-François; Vaccher, Claude

    2016-07-15

    The performances of three neutral static coatings (hydroxypropyl cellulose, polyethylene oxide and poly(N,N-dimethylacrylamide) have been evaluated in order to determine the binding constants of the complexes formed between four polycationic compounds (piperazine derivatives) and four cyclodextrins of pharmaceutical interest (β-CD, HP-β-CD, Me-β-CD and sulfobutyl ether-β-CD) by affinity capillary electrophoresis. The physically-adsorbed poly(N,N-dimethylacrylamide) coating proves to be the more efficient to mask the silanol groups of the capillary wall since the lowest electroosmotic flow was measured for this coating. Moreover, it drastically reduces the adsorption of the compounds since it allows a correct repeatability of their migration time, higher efficiencies of the peaks and no baseline shift. Then, it was verified for four complexes that this coating allows a correct determination of the binding constants avoiding the CD adsorption which is responsible of an undervaluation of binding constants. The highest binding constants are obtained using the anionic sulfobutyl ether-β-CD (SBE-β-CD). The structure of the complex formed between the tacrine derivative and the SBE-β-CD was further investigated through 2D ROESY NMR experiments and structure-binding constant relationships. Results suggest that the inclusion in the SBE-β-CD cavity occurs through the aliphatic ring portion of the tacrine moiety. PMID:27286645

  20. Binding constant determination of uranyl-citrate complex by ACE using a multi-injection method.

    PubMed

    Zhang, Yiding; Li, Linnan; Huang, Hexiang; Xu, Linnan; Li, Ze; Bai, Yu; Liu, Huwei

    2015-04-01

    The binding constant determination of uranyl with small-molecule ligands such as citric acid could provide fundamental knowledge for a better understanding of the study of uranyl complexation, which is of considerable importance for multiple purposes. In this work, the binding constant of uranyl-citrate complex was determined by ACE. Besides the common single-injection method, a multi-injection method to measure the electrophoretic mobility was also applied. The BGEs used contained HClO4 and NaClO4 , with a pH of 1.98 ± 0.02 and ionic strength of 0.050 mol/L, then citric acid was added to reach different concentrations. The electrophoretic mobilities of the uranyl-citrate complex measured by both of the two methods were consistent, and then the binding constant was calculated by nonlinear fitting assuming that the reaction had a 1:1 stoichiometry and the complex was [(UO2 )(Cit)](-) . The binding constant obtained by the multi-injection method was log K = 9.68 ± 0.07, and that obtained by the single-injection method was log K = 9.73 ± 0.02. The results provided additional knowledge of the uranyl-citrate system, and they demonstrated that compared with other methods, ACE using the multi-injection method could be an efficient, fast, and simple way to determine electrophoretic mobilities and to calculate binding constants. PMID:25598434

  1. Mapping Inhibitor Binding Modes on an Active Cysteine Protease via NMR Spectroscopy

    PubMed Central

    Lee, Gregory M.; Balouch, Eaman; Goetz, David H.; Lazic, Ana; McKerrow, James H.; Craik, Charles S.

    2013-01-01

    Cruzain is a member of the papain/cathepsin-L family of cysteine proteases, and the major cysteine protease of the protozoan Trypanosoma cruzi, the causative agent of Chagas’ disease. We report an auto-induction methodology that provides soluble-cruzain at high yields (> 30 mg per liter in minimal media). These increased yields provide sufficient quantities of active enzyme for use in NMR-based ligand mapping. Using CD and NMR spectroscopy, we also examined the solution-state structural dynamics of the enzyme in complex with a covalently bound vinyl sulfone inhibitor (K777). We report the backbone amide and side chain carbon chemical shift assignments of cruzain in complex with K777. These resonance assignments were used to identify and map residues located in the substrate binding pocket, including the catalytic Cys25 and His162. Selective 15N-Cys, 15N-His, and 13C-Met labeling was performed to quickly assess cruzain-ligand interactions for a set of eight low molecular weight compounds exhibiting micromolar binding or inhibition. Chemical shift perturbation mapping verifies that six of the eight compounds bind to cruzain at the active site. Three different binding modes were delineated for the compounds, namely covalent, non-covalent, and non-interacting. These results provide examples of how NMR spectroscopy can be used to screen compounds for fast evaluation of enzyme-inhibitor interactions in order to facilitate lead compound identification and subsequent structural studies. PMID:23181936

  2. Molecular Details of Acetate Binding to a New Diamine Receptor by NMR and FT-IR Analyses.

    PubMed

    Banerji, Biswadip; Chatterjee, Moumita; Pal, Uttam; Maiti, Nakul Chandra

    2016-04-21

    Acetate anion plays an important role in several biochemical functions such as enzyme reaction, antibody response, and action of receptor molecules. This investigation reports the synthesis and molecular details of a unique receptor, 2-amino-N-(2-amino-benzyl)-benzamide (R) that senses selectively acetate via simultaneous involvement of one aromatic amine group and an amide proton of the receptor molecule. Solution-state NMR, steady-state fluorescence, and FT-IR examinations established that the acetate anion binds to the receptor with 1:1 ratio with high specificity. The binding was stabilized by two H-bond formations between the oxygen atoms of acetate anion and two H atoms, one from amide group and the other from the amine group of the receptor. The binding interaction caused significant changes in the chemical shift of the receptor protons, and the evaluated affinity constant, from the NMR measurements, was found to be 1.87 × 10(4) M(-1). Density functional theory (DFT) analysis further showed a significant rotation of one of the two aromatic rings leading to formation of a 10-member ring involving the acetate anion, amide proton, and the one amine group attached to aromatic ring. The H-bond patterns observed in the crystal structure were significantly changed due to complex formation. However, the changes in the geometrical arrangement in the complex caused a small but significant increase of the fluorescence emission. Acetate geometry and unique positioning of the amide and amine groups of the receptor render the recognition feasible, and DFT analysis estimated ∼30 kJ M(-1) stabilization due to 1:1 complexation. Such positioning and geometrical arrangement may make the receptor very specific to bind acetate anion, and as such R became a very relevant molecule in detection and function of the acetate anion present in complex biochemical systems. PMID:27029209

  3. Surface Binding of TOTAPOL Assists Structural Investigations of Amyloid Fibrils by Dynamic Nuclear Polarization NMR Spectroscopy.

    PubMed

    Nagaraj, Madhu; Franks, Trent W; Saeidpour, Siavash; Schubeis, Tobias; Oschkinat, Hartmut; Ritter, Christiane; van Rossum, Barth-Jan

    2016-07-15

    Dynamic nuclear polarization (DNP) NMR can enhance sensitivity but often comes at the price of a substantial loss of resolution. Two major factors affect spectral quality: low-temperature heterogeneous line broadening and paramagnetic relaxation enhancement (PRE) effects. Investigations by NMR spectroscopy, isothermal titration calorimetry (ITC), and EPR revealed a new substantial affinity of TOTAPOL to amyloid surfaces, very similar to that shown by the fluorescent dye thioflavin-T (ThT). As a consequence, DNP spectra with remarkably good resolution and still reasonable enhancement could be obtained at very low TOTAPOL concentrations, typically 400 times lower than commonly employed. These spectra yielded several long-range constraints that were difficult to obtain without DNP. Our findings open up new strategies for structural studies with DNP NMR spectroscopy on amyloids that can bind the biradical with affinity similar to that shown towards ThT. PMID:27147408

  4. Conformational dynamics and thermodynamics of protein-ligand binding studied by NMR relaxation.

    PubMed

    Akke, Mikael

    2012-04-01

    Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein-ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions. PMID:22435823

  5. Effects of ion binding on the backbone dynamics of calbindin D9k determined by 15N NMR relaxation.

    PubMed

    Akke, M; Skelton, N J; Kördel, J; Palmer, A G; Chazin, W J

    1993-09-21

    The backbone dynamics of apo- and (Cd2+)1-calbindin D9k have been characterized by 15N nuclear magnetic resonance spectroscopy. Spin-lattice and spin-spin relaxation rate constants and steady-state [1H]-15N nuclear Overhauser effects were measured at a magnetic field strength of 11.74 T by two-dimensional, proton-detected heteronuclear NMR experiments using 15N-enriched samples. The relaxation parameters were analyzed using a model-free formalism that characterizes the dynamics of the N-H bond vectors in terms of generalized order parameters and effective correlation times. The data for the apo and (Cd2+)1 states were compared to those for the (Ca2+)2 state [Kördel, J., Skelton, N. J., Akke, M., Palmer, A. G., & Chazin, W. J. (1992) Biochemistry 31, 4856-4866] to ascertain the effects on ion ligation on the backbone dynamics of calbindin D9k. The two binding loops respond differently to ligation by metal ions: high-frequency (10(9)-10(12) s-1) fluctuations of the N-terminal ion-binding loop are not affected by ion binding, whereas residues G57, D58, G59, and E60 in the C-terminal ion-binding loop have significantly lower order parameters in the apo state than in the metal-bound states. The dynamical responses of the four helices to binding of ions are much smaller than that for the C-terminal binding loop, with the strongest effect on helix III, which is located between the linker loop and binding site II. Significant fluctuations on slower time scales also were detected in the unoccupied N-terminal ion-binding loop of the apo and (Cd2+)1 states; the apparent rates were greater for the (Cd2+)1 state. These results on the dynamical response to ion binding in calbindin D9k provide insights into the molecular details of the binding process and qualitative evidence for entropic contributions to the cooperative phenomenon of calcium binding for the pathway in which the ion binds first in the C-terminal site. PMID:8373781

  6. Anomalously slow cyanide binding to Glycera dibranchiata monomer methemoglobin component II: Implication for the equilibrium constant

    SciTech Connect

    Mintorovitch, J.; Satterlee, J.D. )

    1988-10-18

    In comparison to sperm whale metmyoglobin, metleghemoglobin {alpha}, methemoglobins, and heme peroxidases, the purified Glycera dibranchiata monomer methemoglobin component II exhibits anomalously slow cyanide ligation kinetics. For the component II monomer methemoglobin this reaction has been studied under pseudo-first-order conditions at pH 6.0, 7.0, 8.0, and 9.0, employing 100-250-fold mole excesses of potassium cyanide at each pH. The analysis shows that the concentration-independent bimolecular rate constant is small in comparison to those of the other heme proteins. Furthermore, the results show that the dissociation rate is extremely slow. Separation of the bimolecular rate constant into contributions from k{sub CN{sup {minus}}} (the rate constant for CN{sup {minus}} binding) and from k{sub HCN} (the rate constant for HCN binding) shows that the former is approximately 90 times greater. These results indicate that cyanide ligation reactions are not instantaneous for this protein, which is important for those attempting to study the ligand-binding equilibria. From the results presented here the authors estimate that the actual equilibrium dissociation constant (K{sub D}) for cyanide binding to this G. dibranchiata monomer methemoglobin has a numerical upper limit that is at least 2 orders of magnitude smaller than the value reported before the kinetic results were known.

  7. Equilibrium binding constants for Tl+ with gramicidins A, B and C in a lysophosphatidylcholine environment determined by 205Tl nuclear magnetic resonance spectroscopy.

    PubMed Central

    Hinton, J F; Koeppe, R E; Shungu, D; Whaley, W L; Paczkowski, J A; Millett, F S

    1986-01-01

    Nuclear Magnetic Resonance (NMR) 205Tl spectroscopy has been used to monitor the binding of Tl+ to gramicidins A, B, and C packaged in aqueous dispersions of lysophosphatidylcholine. For 5 mM gramicidin dimer in the presence of 100 mM lysophosphatidylcholine, only approximately 50% or less of the gramicidin appears to be accessible to Tl+. Analysis of the 205Tl chemical shift as a function of Tl+ concentration over the 0.65-50 mM range indicates that only one Tl+ ion can be bound by gramicidin A, B, or C under these experimental conditions. In this system, the Tl+ equilibrium binding constant is 582 +/- 20 M-1 for gramicidin 1949 +/- 100 M-1 for gramicidin B, and 390 +/- 20 M-1 for gramicidin C. Gramicidin B not only binds Tl+ more strongly but it is also in a different conformational state than that of A and C, as shown by Circular Dichroism spectroscopy. The 205Tl NMR technique can now be extended to determinations of binding constants of other cations to gramicidin by competition studies using a 205Tl probe. PMID:2420383

  8. Studying metal ion binding properties of a three-way junction RNA by heteronuclear NMR.

    PubMed

    Bartova, Simona; Pechlaner, Maria; Donghi, Daniela; Sigel, Roland K O

    2016-06-01

    Self-splicing group II introns are highly structured RNA molecules, containing a characteristic secondary and catalytically active tertiary structure, which is formed only in the presence of Mg(II). Mg(II) initiates the first folding step governed by the κζ element within domain 1 (D1κζ). We recently solved the NMR structure of D1κζ derived from the mitochondrial group II intron ribozyme Sc.ai5γ and demonstrated that Mg(II) is essential for its stabilization. Here, we performed a detailed multinuclear NMR study of metal ion interactions with D1κζ, using Cd(II) and cobalt(III)hexammine to probe inner- and outer-sphere coordination of Mg(II) and thus to better characterize its binding sites. Accordingly, we mapped (1)H, (15)N, (13)C, and (31)P spectral changes upon addition of different amounts of the metal ions. Our NMR data reveal a Cd(II)-assisted macrochelate formation at the 5'-end triphosphate, a preferential Cd(II) binding to guanines in a helical context, an electrostatic interaction in the ζ tetraloop receptor and various metal ion interactions in the GAAA tetraloop and κ element. These results together with our recently published data on Mg(II) interaction provide a much better understanding of Mg(II) binding to D1κζ, and reveal how intricate and complex metal ion interactions can be. PMID:26880094

  9. NMR shielding and spin–rotation constants of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules

    SciTech Connect

    Demissie, Taye B.

    2015-12-31

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of {sup 175}LuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  10. NMR shielding and spin-rotation constants of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.

    2015-12-01

    This presentation demonstrates the relativistic effects on the spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants and shielding spans of 175LuX (X = 19F, 35Cl, 79Br, 127I) molecules. The results are obtained from calculations performed using density functional theory (non-relativistic and four-component relativistic) and coupled-cluster calculations. The spin-rotation constants are compared with available experimental values. In most of the molecules studied, relativistic effects make an order of magnitude difference on the NMR absolute shielding constants.

  11. CONSTANTS FOR MERCURY BINDING BY DISSOLVED ORGANIC MATTER ISOLATES FROM THE FLORIDA EVERGLADES. (R827653)

    EPA Science Inventory

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand appro...

  12. Solid-State NMR Characterization of Mixed Phosphonic Acid Ligand Binding and Organization on Silica Nanoparticles.

    PubMed

    Davidowski, Stephen K; Holland, Gregory P

    2016-04-01

    As ligand functionalization of nanomaterials becomes more complex, methods to characterize the organization of multiple ligands on surfaces is required. In an effort to further the understanding of ligand-surface interactions, a combination of multinuclear ((1)H, (29)Si, (31)P) and multidimensional solid-state nuclear magnetic resonance (NMR) techniques was utilized to characterize the phosphonic acid functionalization of fumed silica nanoparticles using methylphosphonic acid (MPA) and phenylphosphonic acid (PPA). (1)H → (29)Si cross-polarization (CP)-magic angle spinning (MAS) solid-state NMR was used to selectively detect silicon atoms near hydrogen atoms (primarily surface species); these results indicate that geminal silanols are preferentially depleted during the functionalization with phosphonic acids. (1)H → (31)P CP-MAS solid-state NMR measurements on the functionalized silica nanoparticles show three distinct resonances shifted upfield (lower ppm) and broadened compared to the resonances of the crystalline ligands. Quantitative (31)P MAS solid-state NMR measurements indicate that ligands favor a monodentate binding mode. When fumed silica nanoparticles were functionalized with an equal molar ratio of MPA and PPA, the MPA bound the nanoparticle surface preferentially. Cross-peaks apparent in the 2D (1)H exchange spectroscopy (EXSY) NMR measurements of the multiligand sample at short mixing times indicate that the MPA and PPA are spatially close (≤5 Å) on the surface of the nanostructure. Furthermore, (1)H-(1)H double quantum-single quantum (DQ-SQ) back-to-back (BABA) 2D NMR spectra further confirmed that MPA and PPA are strongly dipolar coupled with observation of DQ intermolecular contacts between the ligands. DQ experimental buildup curves and simulations indicate that the average distance between MPA and PPA is no further than 4.2 ± 0.2 Å. PMID:26914738

  13. Quantitative effects of antihydrophobic agents on binding constants and solubilities in water.

    PubMed Central

    Breslow, R; Halfon, S

    1992-01-01

    The effects of urea and of guanidinium chloride on binding constants in water for 6-(4-tert-butylanilino)-naphthalene-2-sulfonate and of bis(p-tert-butylphenyl) phosphate binding to beta-cyclodextrin and to N,N'-bis(6-beta-cyclo-dextrinyl)imidazolium ion have been determined. Their effects on the water solubility of p-tert-butylbenzyl alcohol and p-methylbenzyl alcohol have also been examined. Quantitative correlations show that the effects of these additives, which diminish hydrophobic effects, are similar for release of a tert-butylphenyl group from a cyclodextrin cavity into water or for solubilizing such a group from a second phase. The effects of these agents on the binding constants for double-ended substrates binding to the bis(cyclodextrin) host are much larger than for a simple substrate binding to monomeric cyclodextrin, consistent with additivity of free-energy perturbations. Ethanol also decreases binding in these systems, and increases solubilities, but the quantitative correlations are less straightforward. Images PMID:1495980

  14. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    SciTech Connect

    Fagan, P A

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I{center_dot}C base pairs are functional analogs of A{center_dot}T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1 ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.

  15. Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations.

    PubMed

    Unione, Luca; Ortega, Gabriel; Mallagaray, Alvaro; Corzana, Francisco; Pérez-Castells, Javier; Canales, Angeles; Jiménez-Barbero, Jesús; Millet, Oscar

    2016-08-19

    Protein dynamics related to function can nowadays be structurally well characterized (i.e., instances obtained by high resolution structures), but they are still ill-defined energetically, and the energy landscapes are only accessible computationally. This is the case for glucose-galactose binding protein (GGBP), where the crystal structures of the apo and holo states provide structural information for the domain rearrangement upon ligand binding, while the time scale and the energetic determinants for such concerted dynamics have been so far elusive. Here, we use GGBP as a paradigm to define a functional conformational landscape, both structurally and energetically, by using an innovative combination of paramagnetic NMR experiments and MD simulations. Anisotropic NMR parameters induced by self-alignment of paramagnetic metal ions was used to characterize the ensemble of conformations adopted by the protein in solution while the rate of interconversion between conformations was elucidated by long molecular dynamics simulation on two states of GGBP, the closed-liganded (holo_cl) and open-unloaded (apo_op) states. Our results demonstrate that, in its apo state, the protein coexists between open-like (68%) and closed-like (32%) conformations, with an exchange rate around 25 ns. Despite such conformational heterogeneity, the presence of the ligand is the ultimate driving force to unbalance the equilibrium toward the holo_cl form, in a mechanism largely governed by a conformational selection mechanism. PMID:27219646

  16. A combined NMR and computational approach to investigate peptide binding to a designed Armadillo repeat protein.

    PubMed

    Ewald, Christina; Christen, Martin T; Watson, Randall P; Mihajlovic, Maja; Zhou, Ting; Honegger, Annemarie; Plückthun, Andreas; Caflisch, Amedeo; Zerbe, Oliver

    2015-05-22

    The specific recognition of peptide sequences by proteins plays an important role both in biology and in diagnostic applications. Here we characterize the relatively weak binding of the peptide neurotensin (NT) to the previously developed Armadillo repeat protein VG_328 by a multidisciplinary approach based on solution NMR spectroscopy, mutational studies, and molecular dynamics (MD) simulations, totaling 20μs for all MD runs. We describe assignment challenges arising from the repetitive nature of the protein sequence, and we present novel approaches to address them. Partial assignments obtained for VG_328 in combination with chemical shift perturbations allowed us to identify the repeats not involved in binding. Their subsequent elimination resulted in a reduced-size binder with very similar affinity for NT, for which near-complete backbone assignments were achieved. A binding mode suggested by automatic docking and further validated by explicit solvent MD simulations is consistent with paramagnetic relaxation enhancement data collected using spin-labeled NT. Favorable intermolecular interactions are observed in the MD simulations for the residues that were previously shown to contribute to binding in an Ala scan of NT. We further characterized the role of residues within the N-cap for protein stability and peptide binding. Our multidisciplinary approach demonstrates that an initial low-resolution picture for a low-micromolar-peptide binder can be refined through the combination of NMR, protein design, docking, and MD simulations to establish its binding mode, even in the absence of crystallographic data, thereby providing valuable information for further design. PMID:25816772

  17. BcL-xL Conformational Changes upon Fragment Binding Revealed by NMR

    PubMed Central

    Aguirre, Clémentine; ten Brink, Tim; Walker, Olivier; Guillière, Florence; Davesne, Dany; Krimm, Isabelle

    2013-01-01

    Protein-protein interactions represent difficult but increasingly important targets for the design of therapeutic compounds able to interfere with biological processes. Recently, fragment-based strategies have been proposed as attractive approaches for the elaboration of protein-protein surface inhibitors from fragment-like molecules. One major challenge in targeting protein-protein interactions is related to the structural adaptation of the protein surface upon molecular recognition. Methods capable of identifying subtle conformational changes of proteins upon fragment binding are therefore required at the early steps of the drug design process. In this report we present a fast NMR method able to probe subtle conformational changes upon fragment binding. The approach relies on the comparison of experimental fragment-induced Chemical Shift Perturbation (CSP) of amine protons to CSP simulated for a set of docked fragment poses, considering the ring-current effect from fragment binding. We illustrate the method by the retrospective analysis of the complex between the anti-apoptotic Bcl-xL protein and the fragment 4′-fluoro-[1,1′-biphenyl]-4-carboxylic acid that was previously shown to bind one of the Bcl-xL hot spots. The CSP-based approach shows that the protein undergoes a subtle conformational rearrangement upon interaction, for residues located in helices 2, 3 and the very beginning of 5. Our observations are corroborated by residual dipolar coupling measurements performed on the free and fragment-bound forms of the Bcl-xL protein. These NMR-based results are in total agreement with previous molecular dynamic calculations that evidenced a high flexibility of Bcl-xL around the binding site. Here we show that CSP of protein amine protons are useful and reliable structural probes. Therefore, we propose to use CSP simulation to assess protein conformational changes upon ligand binding in the fragment-based drug design approach. PMID:23717610

  18. Uptake of metal ions by a new chelating ion exchange resin. Part 3: Protonation constants via potentiometric titration and solid state [sup 31]P NMR spectroscopy

    SciTech Connect

    Nash, K.L.; Rickert, P.G.; Muntean, J.V.; Alexandratos, S.D.

    1994-01-01

    A new chelating ion exchange resin which incorporates methylenediphosphonate, carboxylate, and sulfonate functional groups in a polystyrene-divinylbenzene matrix has been prepared. This resin exhibits exceptionally high affinity for polyvalent cations even from moderately acidic aqueous media. Metal ion coordination occurs primarily at the diphosphonate group with the secondary binding sites contributing to charge neutralization when necessary and possible, and to increasing hydrophilicity of the resin pores. In the present investigation, the protonation equilibria of the phosphonate groups in the resin are investigated via potentiometric titration and solid-state [sup 31]P NMR spectroscopy of the resin. Intrinsic equilibrium constants for the first two diphosphonate protonation reactions are pK[sub 4] = 10.47 and pK[sub 3] = 7.24. The last two protons added to the diphosphonate group are acidic having pK[sub a] values less than 2.5. These protonation constants are consistent with those reported previously for monomer analog 1,1-diphosphonic acids. This result implies that thermodynamic data available in the literature can be used to predict the relative affinity of the resin for polyvalent cations. 17 refs., 2 figs., 3 tabs.

  19. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    SciTech Connect

    Roberts, Arthur G.; Diaz, Maria D.; Lampe, Jed N.; Shireman, Laura; Grinstead, Jeffrey S.; Dabrowski, Michael J.; Pearson, Josh T.; Bowman, Michael K.; Atkins, William M.; Campbell, Ann P.

    2006-02-14

    Cytochrome P450’s (P450’s) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450’s demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS ) 4 and 200 íM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hillequation- derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands “contact” the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the lowaffinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is presented that combines the energetics and structural aspects of 9-AP and TST binding derived from these observations.

  20. NMR Studies of Ligand Binding to P450eryF Provides Insight into the Mechanism of Cooperativity

    SciTech Connect

    Roberts, Arthur G.; Diaz, M. Delores; Lampe, Jed N.; Shireman, Laura M.; Grinstead, Jeffrey S.; Dabrowski, Michael J.; Pearson, Josh T.; Bowman, Michael K.; Atkins, William M.; Campbell, A. Patricia

    2006-02-01

    Cytochrome P450's (P450's) catalyze the oxidative metabolism of most drugs and toxins. Although extensive studies have proven that some P450's demonstrate both homotropic and heterotropic cooperativity toward a number of substrates, the mechanistic and molecular details of P450 allostery are still not well-established. Here, we use UV/vis and heteronuclear nuclear magnetic resonance (NMR) spectroscopic techniques to study the mechanism and thermodynamics of the binding of two 9-aminophenanthrene (9-AP) and testosterone (TST) molecules to the erythromycin-metabolizing bacterial P450eryF. UV/vis absorbance spectra of P450eryF demonstrated that binding occurs with apparent negative homotropic cooperativity for TST and positive homotropic cooperativity for 9-AP with Hill-equation-derived dissociation constants of KS = 4 and 200 μM, respectively. The broadening and shifting observed in the 2D-{1H,15N}-HSQC-monitored titrations of 15N-Phe-labeled P450eryF with 9-AP and TST indicated binding on intermediate and fast chemical exhange time scales, respectively, which was consistent with the Hill-equation-derived KS values for these two ligands. Regardless of the type of spectral perturbation observed (broadening for 9-AP and shifting for TST), the 15N-Phe NMR resonances most affected were the same in each titration, suggesting that the two ligands ''contact'' the same phenylalanines within the active site of P450eryF. This finding is in agreement with X-ray crystal structures of bound P450eryF showing different ligands occupying similar active-site niches. Complex spectral behavior was additionally observed for a small collection of resonances in the TST titration, interpreted as multiple binding modes for the low-affinity TST molecule or multiple TST-bound P450eryF conformational substates. A structural and energetic model is presented that combines the energetics

  1. Lipid binding protein response to a bile acid library: a combined NMR and statistical approach.

    PubMed

    Tomaselli, Simona; Pagano, Katiuscia; Boulton, Stephen; Zanzoni, Serena; Melacini, Giuseppe; Molinari, Henriette; Ragona, Laura

    2015-11-01

    Primary bile acids, differing in hydroxylation pattern, are synthesized from cholesterol in the liver and, once formed, can undergo extensive enzyme-catalysed glycine/taurine conjugation, giving rise to a complex mixture, the bile acid pool. Composition and concentration of the bile acid pool may be altered in diseases, posing a general question on the response of the carrier (bile acid binding protein) to the binding of ligands with different hydrophobic and steric profiles. A collection of NMR experiments (H/D exchange, HET-SOFAST, ePHOGSY NOESY/ROESY and (15) N relaxation measurements) was thus performed on apo and five different holo proteins, to monitor the binding pocket accessibility and dynamics. The ensemble of obtained data could be rationalized by a statistical approach, based on chemical shift covariance analysis, in terms of residue-specific correlations and collective protein response to ligand binding. The results indicate that the same residues are influenced by diverse chemical stresses: ligand binding always induces silencing of motions at the protein portal with a concomitant conformational rearrangement of a network of residues, located at the protein anti-portal region. This network of amino acids, which do not belong to the binding site, forms a contiguous surface, sensing the presence of the bound lipids, with a signalling role in switching protein-membrane interactions on and off. PMID:26260520

  2. Determination of RNA polymerase binding surfaces of transcription factors by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Jurk, Marcel; Rösch, Paul; Knauer, Stefan H.

    2015-01-01

    In bacteria, RNA polymerase (RNAP), the central enzyme of transcription, is regulated by N-utilization substance (Nus) transcription factors. Several of these factors interact directly, and only transiently, with RNAP to modulate its function. As details of these interactions are largely unknown, we probed the RNAP binding surfaces of Escherichia coli (E. coli) Nus factors by nuclear magnetic resonance (NMR) spectroscopy. Perdeuterated factors with [1H,13C]-labeled methyl groups of Val, Leu, and Ile residues were titrated with protonated RNAP. After verification of this approach with the N-terminal domain (NTD) of NusG and RNAP we determined the RNAP binding site of NusE. It overlaps with the NusE interaction surface for the NusG C-terminal domain, indicating that RNAP and NusG compete for NusE and suggesting possible roles for the NusE:RNAP interaction, e.g. in antitermination and direct transcription:translation coupling. We solved the solution structure of NusA-NTD by NMR spectroscopy, identified its RNAP binding site with the same approach we used for NusG-NTD, and here present a detailed model of the NusA-NTD:RNAP:RNA complex. PMID:26560741

  3. Determination of binding constants by affinity capillary electrophoresis, electrospray ionization mass spectrometry and phase-distribution methods

    PubMed Central

    Chen, Zhi; Weber, Stephen G.

    2008-01-01

    Many methods for determining intermolecular interactions have been described in the literature in the past several decades. Chief among them are methods based on spectroscopic changes, particularly those based on absorption or nuclear magnetic resonance (NMR) [especially proton NMR (1H NMR)]. Recently, there have been put forward several new methods that are particularly adaptable, use very small quantities of material, and do not place severe requirements on the spectroscopic properties of the binding partners. This review covers new developments in affinity capillary electrophoresis, electrospray ionization mass spectrometry (ESI-MS) and phasetransfer methods. PMID:19802330

  4. The role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis; A NMR study†

    PubMed Central

    Peng, Dungeng; Ma, Li-Hua; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2012-01-01

    Heme oxygenase, HO, cleaves hemin into biliverdin, iron and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses a crystallographically undetected C-terminal fragment that by solution 1H NMR is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 hours at a rate dependent on substituent size. 2D 1H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR NOESY cross peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate but a dramatic change in the 7-propionate carboxylate 13C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, “liberating” one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed. PMID:22913621

  5. Systematic Study of Locally Dense Basis Sets for NMR Shielding Constants.

    PubMed

    Reid, David M; Kobayashi, Rika; Collins, Michael A

    2014-01-14

    This paper presents a systematic study of partitioning schemes for locally dense basis sets in the context of NMR shielding calculations. The partitionings explored were based exclusively on connectivity and utilized the basis sets from the pcS-n series. Deviations from pcS-4 shieldings were calculated for a set of 28 organic molecules at the HF, B3LYP, and KT3 levels of theory, with the primary goal being the determination of an efficient scheme that achieves maximal deviations of 0.1 ppm for (1)H and 1 ppm for (13)C. Both atom based and group based divisions of basis sets were examined, with the latter providing the most promising results. It is demonstrated that for the systems studied, at least pcS-1 is required for all parts of the molecule. This, coupled with pcS-3 on the group of interest and pcS-2 on the adjacent groups, is sufficient to achieve the desired level of accuracy at a minimal computational expense. In addition, the suitability of the pcS-n basis sets for post-SCF methods was confirmed through a comparison with other standard basis sets at the MP2 level. PMID:26579898

  6. Modulation of the antioxidant activity of HO* scavengers by albumin binding: a 19F-NMR study.

    PubMed

    Aime, Silvio; Digilio, Giuseppe; Bruno, Erik; Mainero, Valentina; Baroni, Simona; Fasano, Mauro

    2003-08-01

    The interaction between different HO(z.rad;) radical scavengers in a three-component antioxidant system has been investigated by means of 19F-NMR spectroscopy. This system is composed of bovine serum albumin (BSA), trolox, and N-(4-hydroxyphenyl)-trifluoroacetamide (CF(3)PAF). The antioxidant capacity of BSA and trolox has been assessed by measuring the amount of trifluoroacetamide (TFAM) arising from the radical mediated decomposition of CF(3)PAF. When assayed separately, both trolox and BSA behaved as antioxidants, as they were effective to protect CF(3)PAF from HO* radical-mediated decomposition. By contrast, trolox enhanced the production of TFAM in the presence of BSA, thus behaving as a pro-oxidant. Urate, carnosine, glucose, and propylgallate showed antioxidant properties both with or without BSA. CF(3)PAF and trolox were found to bind to BSA with association constants in the order of 5 x 10(3)M(-1) and to compete for the same binding sites. These results have been discussed in terms of BSA-catalysed cross-reactions between trolox-derived secondary radicals and CF(3)PAF. PMID:12878205

  7. Direct detection of ligand binding to Sepharose-immobilised protein using saturation transfer double difference (STDD) NMR spectroscopy

    SciTech Connect

    Haselhorst, Thomas; Muenster-Kuehnel, Anja K.; Oschlies, Melanie; Tiralongo, Joe; Gerardy-Schahn, Rita; Itzstein, Mark von . E-mail: m.vonitzstein@griffith.edu.au

    2007-08-10

    We report an easy and direct application of 'Saturation Transfer Double Difference' (STDD) NMR spectroscopy to identify ligands that bind to a Sepharose-immobilised target protein. The model protein, cytidine 5'-monophosphate sialic acid (CMP-Sia) synthetase, was expressed as a Strep-Tag II fusion protein and immobilised on Strep-Tactin Sepharose. STD NMR experiments of the protein-enriched Sepharose matrix in the presence of a binding ligand (cytidine 5'-triphosphate, CTP) and a non-binding ligand ({alpha}/{beta}-glucose) clearly show that CTP binds to the immobilised enzyme, whereas glucose has no affinity. This approach has three major advantages: (a) only low quantities of protein are required, (b) no specialised NMR technology or the application of additional data analysis by non-routine methods is required, and (c) easy multiple use of the immobilised protein is available.

  8. A rigorous multiple independent binding site model for determining cell-based equilibrium dissociation constants.

    PubMed

    Drake, Andrew W; Klakamp, Scott L

    2007-01-10

    A new 4-parameter nonlinear equation based on the standard multiple independent binding site model (MIBS) is presented for fitting cell-based ligand titration data in order to calculate the ligand/cell receptor equilibrium dissociation constant and the number of receptors/cell. The most commonly used linear (Scatchard Plot) or nonlinear 2-parameter model (a single binding site model found in commercial programs like Prism(R)) used for analysis of ligand/receptor binding data assumes only the K(D) influences the shape of the titration curve. We demonstrate using simulated data sets that, depending upon the cell surface receptor expression level, the number of cells titrated, and the magnitude of the K(D) being measured, this assumption of always being under K(D)-controlled conditions can be erroneous and can lead to unreliable estimates for the binding parameters. We also compare and contrast the fitting of simulated data sets to the commonly used cell-based binding equation versus our more rigorous 4-parameter nonlinear MIBS model. It is shown through these simulations that the new 4-parameter MIBS model, when used for cell-based titrations under optimal conditions, yields highly accurate estimates of all binding parameters and hence should be the preferred model to fit cell-based experimental nonlinear titration data. PMID:17141800

  9. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay

    PubMed Central

    Win, Maung Nyan; Klein, Joshua S.; Smolke, Christina D.

    2006-01-01

    RNA aptamers that bind the opium alkaloid codeine were generated using an iterative in vitro selection process. The binding properties of these aptamers, including equilibrium and kinetic rate constants, were determined through a rapid, high-throughput approach using surface plasmon resonance (SPR) analysis to measure real-time binding. The approach involves direct coupling of the target small molecule onto a sensor chip without utilization of a carrier protein. Two highest binding aptamer sequences, FC5 and FC45 with Kd values of 2.50 and 4.00 μM, respectively, were extensively studied. Corresponding mini-aptamers for FC5 and FC45 were subsequently identified through the described direct coupling Biacore assays. These assays were also employed to confirm the proposed secondary structures of the mini-aptamers. Both aptamers exhibit high specificity to codeine over morphine, which differs from codeine by a methyl group. Finally, the direct coupling method was demonstrated to eliminate potential non-specific interactions that may be associated with indirect coupling methods in which protein linkers are commonly employed. Therefore, in addition to presenting the first RNA aptamers to a subclass of benzylisoquinoline alkaloid molecules, this work highlights a method for characterizing small molecule aptamers that is more robust, precise, rapid and high-throughput than other commonly employed techniques. PMID:17038331

  10. Determining the binding mode and binding affinity constant of tyrosine kinase inhibitor PD153035 to DNA using optical tweezers

    SciTech Connect

    Cheng, Chih-Ming; Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30043, Taiwan ; Lee, Yuarn-Jang; Wang, Wei-Ting; Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan; Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan ; Hsu, Chien-Ting; Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan ; Tsai, Jing-Shin; Institute of Biomedical Materials and Engineering, Taipei Medical University, Taipei 110, Taiwan; Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan ; Wu, Chien-Ming; Ou, Keng-Liang; Research Center for Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei 110, Taiwan ; and others

    2011-01-07

    Research highlights: {yields} PD153035 is a DNA intercalator and intercalation occurs only under very low salt concentration. {yields} The minimum distance between adjacent bound PD153035 {approx} 11 bp. {yields} Binding affinity constant for PD153035 is 1.18({+-}0.09) x 10{sup 4} (1/M). {yields} The change of binding free energy of PD153035-DNA interaction is -5.49 kcal mol{sup -1} at 23 {+-} 0.5 {sup o}C. -- Abstract: Accurately predicting binding affinity constant (K{sub A}) is highly required to determine the binding energetics of the driving forces in drug-DNA interactions. Recently, PD153035, brominated anilinoquinazoline, has been reported to be not only a highly selective inhibitor of epidermal growth factor receptor but also a DNA intercalator. Here, we use a dual-trap optical tweezers to determining K{sub A} for PD153035, where K{sub A} is determined from the changes in B-form contour length (L) of PD153035-DNA complex. Here, L is fitted using a modified wormlike chain model. We found that a noticeable increment in L in 1 mM sodium cacodylate was exhibited. Furthermore, our results showed that K{sub A} = 1.18({+-}0.09) x 10{sup 4} (1/M) at 23 {+-} 0.5 {sup o}C and the minimum distance between adjacent bound PD153035 {approx} 11 bp. We anticipate that by using this approach we can determine the complete thermodynamic profiles due to the presence of DNA intercalators.

  11. Conformation analysis of d-glucaric acid in deuterium oxide by NMR based on its JHH and JCH coupling constants.

    PubMed

    Enomoto-Rogers, Yukiko; Masaki, Hisaharu; Ito, Tetsuya; Furihata, Kazuo; Iwata, Tadahisa

    2016-07-01

    d-Glucaric acid (GA) is an aldaric acid and consists of an asymmetric acyclic sugar backbone with a carboxyl group positioned at either end of its structure (i.e., the C1 and C6 positions). The purpose of this study was to conduct a conformation analysis of flexible GA as a solution in deuterium oxide by NMR spectroscopy, based on J-resolved conformation analysis using proton-proton ((3) JHH ) and proton-carbon ((2) JCH and (3) JCH ) coupling constants, as well as nuclear overhauser effect spectroscopy (NOESY). The (2) JCH and (3) JCH coupling constants were measured using the J-resolved heteronuclear multiple bond correlation (HMBC) NMR technique. NOESY correlation experiments indicated that H2 and H5 were in close proximity, despite the fact that these protons were separated by too large distance in the fully extended form of the chain structure to provide a NOESY correlation. The validities of the three possible conformers along the three different bonds (i.e., C2C3, C3C4, and C4C5) were evaluated sequentially based on the J-coupling values and the NOESY correlations. The results of these analyses suggested that there were three dominant conformers of GA, including conformer 1, which was H2H3:gauche, H3H4:anti, and H4H5:gauche; conformer 2, which was H2H3:gauche, H3H4:anti, and H4H5:anti; and conformer 3, which was H2H3:gauche, H3H4: gauche, and H4H5:anti. These results also suggested that all three of these conformers exist in equilibrium with each other. Lastly, the results of the current study suggested that the conformational structures of GA in solution were 'bent' rather than being fully extended. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26749401

  12. A functional NMR for membrane proteins: dynamics, ligand binding, and allosteric modulation.

    PubMed

    Oxenoid, Kirill; Chou, James J

    2016-05-01

    By nature of conducting ions, transporting substrates and transducing signals, membrane channels, transporters and receptors are expected to exhibit intrinsic conformational dynamics. It is therefore of great interest and importance to understand the various properties of conformational dynamics acquired by these proteins, for example, the relative population of states, exchange rate, conformations of multiple states, and how small molecule ligands modulate the conformational exchange. Because small molecule binding to membrane proteins can be weak and/or dynamic, structural characterization of these effects is very challenging. This review describes several NMR studies of membrane protein dynamics, ligand-induced conformational rearrangements, and the effect of ligand binding on the equilibrium of conformational exchange. The functional significance of the observed phenomena is discussed. PMID:26928605

  13. NMR reveals anomalous copper(II) binding to the amyloid Abeta peptide of Alzheimer's disease.

    PubMed

    Hou, Liming; Zagorski, Michael G

    2006-07-26

    The Abeta peptide is the major protein component of amyloid deposits in Alzheimer's disease (AD). Age-related microenvironmental changes in the AD brain promote amyloid formation that leads to cell injury and death. Altered levels of metals (such as Cu and Zn) exist in the AD brain, and because Cu and Zn can be bound to the Abeta in the amyloid plaques, it is thought that these binding events in vivo may trigger or prevent Abeta amyloid formation in the AD brain. Although several structural models have been proposed, all of these are undefined due to the lack of definitive structural data. The present NMR studies utilized uniformly 15N-labeled Abeta(1-40) peptide and 1H-15N HSQC experiments and demonstrate for the first time that the Abeta binds Cu and Zn in a distinct manner. The binding promotes NH signal disappearance of E3-V18, which was not due to the paramagnetic effect of Cu2+, as identical NMR studies were seen with Zn2+, which is diamagnetic. NMR titration experiments showed that the amide NH peak intensities of R5-L17 showed the most pronounced intensity reduction, and that the 1H signals for the side chain aromatic signals of the three histidines shift upfield (H6, H13, and H14). We propose that initially Cu2+ is anchored to the Abeta monomer (fast exchange rate) and is followed by deprotonation and/or severe line broadening of the backbone amide NH for E3-V18 (intermediate exchange rate). By contrast, Cu2+ binding to soluble Abeta aggregates leads to rapid aggregation and nonfibrillar amorphous structures, and without metal, the Abeta can undergo the normal time-dependent aggregation, eventually producing more ordered, late-stage parallel beta-sheet structures. These anomalous (rare) binding events may account for some of the unique properties associated with the Abeta, such as its proposed "dual role", where sequestration of metal ions by the monomer is neuroprotective, while that by beta-aggregates generates oxygen radicals and causes neuronal death

  14. Proton zero-quantum 2D NMR of 2-propenenitrile aligned by an electric field. Determination of the 2H and 14N quadrupole coupling constants

    NASA Astrophysics Data System (ADS)

    Ruessink, B. H.; De Kanter, F. J. J.; MaClean, C.

    Zero-quantum NMR, selectively detected by 2D NMR, is applied to observe small 1H- 1H dipolar couplings in a polar liquid partially oriented by a strong electric field. The normal (single-quantum) 1H spectrum is severely broadened, which prevents the observation of small couplings. The results from the zero-quantum proton spectrum are used to calculate the 2H and 14N quadrupole coupling constants of 2-deutero-2-propenenitrile from the 2H and 14N NMR spectra.

  15. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    SciTech Connect

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-31

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  16. SOPPA and CCSD vibrational corrections to NMR indirect spin-spin coupling constants of small hydrocarbons

    NASA Astrophysics Data System (ADS)

    Faber, Rasmus; Sauer, Stephan P. A.

    2015-12-01

    We present zero-point vibrational corrections to the indirect nuclear spin-spin coupling constants in ethyne, ethene, cyclopropene and allene. The calculations have been carried out both at the level of the second order polarization propagator approximation (SOPPA) employing a new implementation in the DALTON program, at the density functional theory level with the B3LYP functional employing also the Dalton program and at the level of coupled cluster singles and doubles (CCSD) theory employing the implementation in the CFOUR program. Specialized coupling constant basis sets, aug-cc-pVTZ-J, have been employed in the calculations. We find that on average the SOPPA results for both the equilibrium geometry values and the zero-point vibrational corrections are in better agreement with the CCSD results than the corresponding B3LYP results. Furthermore we observed that the vibrational corrections are in the order of 5 Hz for the one-bond carbon-hydrogen couplings and about 1 Hz or smaller for the other couplings apart from the one-bond carbon-carbon coupling (11 Hz) and the two-bond carbon-hydrogen coupling (4 Hz) in ethyne. However, not for all couplings lead the inclusion of zero-point vibrational corrections to better agreement with experiment.

  17. Two-dimensional /sup 1/H NMR studies on cyclophilin, a cytosolic cyclosporin A binding protein

    SciTech Connect

    Dalgarno, D.C.; Harding, M.W.; Lazarides, A.; Handschumacher, R.E.; Armitage, I.M.

    1986-05-01

    Cyclophilin (CyP) is a specific cytosolic cyclosporin A (CsA) binding protein (163 residues) that has been implicated in the pharmacological action of this potent immunosuppressant. One and two-dimensional /sup 1/H NMR methods are being employed to elucidate the solution structural properties of CyP particularly as they relate to the binding site of CsA. The focal point for these studies is the single Trp (residue number120) in CyP which, in the 1:1 CyP:CsA complex (K/sub d/approx.2 x 10/sup -7/M), shows a 2 fold enhancement in its intrinsic fluorescence. Using 2D /sup 1/H NMR methods, a low resolution structure has been derived for a very hydrophobic domain containing the Trp residue using interresidue n.O.e. data between assigned spin systems and a distance geometry algorithm. The structure of this hydrophobic domain will be discussed in relation to the predicted ..cap alpha../..beta.. secondary structure of this protein and comparisons made between its structure in the drug free and complexed form of the protein.

  18. Constants for mercury binding by organic matter isolates from the Florida Everglades

    USGS Publications Warehouse

    Benoit, J.M.; Mason, R.P.; Gilmour, C.C.; Aiken, G.R.

    2001-01-01

    Dissolved organic matter (DOM) has been implicated as an important complexing agent for Hg that can affect its mobility and bioavailability in aquatic ecosystems. However, binding constants for natural Hg-DOM complexes are not well known. We employed a competitive ligand approach to estimate conditional stability constants for Hg complexes with DOM isolates collected from Florida Everglades surface waters. The isolates examined were the hydrophobic fraction of DOM from a eutrophic, sulfidic site (F1-HPoA) and the hydrophilic fraction from an oligotrophic, low-sulfide site (2BS-HPiA). Our experimental determinations utilized overall octanol-water partitioning coefficients (Dow) for 203Hg at 0.01 M chloride and across pH and DOM concentration gradients. Use of this radioisotope allowed rapid determinations of Hg concentrations in both water and octanol phases without problems of matrix interference. Conditional stability constants (1 = 0.06, 23??C) were log K??? = 11.8 for F1-HPoA and log K' = 10.6 for 2BS-HPiA. These are similar to previously published stability constants for Hg binding to low-molecular-weight thiols. Further, F1-HPoA showed a pH-dependent decline in Dow that was consistent with models of Hg complexation with thiol groups as the dominant Hg binding sites in DOM. These experiments demonstrate that the DOM isolates are stronger ligands for Hg than chloride ion or ethylenediamine-tetraacetic acid. Speciation calculations indicate that at the DOM concentrations frequently measured in Everglades, 20 to 40 ??M, significant complexation of Hg by DOM would be expected in aerobic (sulfide-free) surface waters. Copyright ?? 2001 Elsevier Science Ltd.

  19. A method for measuring binding constants using unpurified in vivo biotinylated ligands.

    PubMed

    Pogoutse, Anastassia K; Lai, Christine Chieh-Lin; Ostan, Nicholas; Yu, Rong-hua; Schryvers, Anthony B; Moraes, Trevor F

    2016-05-15

    Obtaining accurate kinetics and steady-state binding constants for biomolecular interactions normally requires pure and homogeneous protein preparations. Furthermore, in many cases, one of the ligands must be labeled. Over the past decade, several technologies have been introduced that allow for the measurement of kinetics constants for multiple different interactions in parallel. One such technology is bio-layer interferometry (BLI), which has been used to develop systems that can measure up to 96 biomolecular interactions simultaneously. However, despite the ever-increasing throughput of the tools available for measuring protein-protein interactions, the preparation of pure protein still remains a bottleneck in the process of producing high-quality kinetics data. Here, we show that high-quality binding data can be obtained using soluble lysate fractions containing protein that has been biotinylated in vivo using BirA and then applied to BLI sensors without further purification. Furthermore, we show that BirA ligase does not necessarily need to be co-overexpressed with the protein of interest for biotinylation of the biotin acceptor peptide to occur, suggesting that the activity of endogenous BirA in Escherichia coli is sufficient for producing enough biotinylated protein for a binding experiment. PMID:26898305

  20. Characterization of the Lipid-Binding Site of Equinatoxin II by NMR and Molecular Dynamics Simulation

    PubMed Central

    Weber, Daniel K.; Yao, Shenggen; Rojko, Nejc; Anderluh, Gregor; Lybrand, Terry P.; Downton, Matthew T.; Wagner, John; Separovic, Frances

    2015-01-01

    Equinatoxin II (EqtII) is a soluble, 20 kDa pore-forming protein toxin isolated from the sea anemone Actinia equina. Although pore formation has long been known to occur in distinct stages, including monomeric attachment to phospholipid membranes followed by detachment of the N-terminal helical domain and oligomerization into the final pore assembly, atomistic-level detail of the protein-lipid interactions underlying these events remains elusive. Using high-resolution solution state NMR of uniformly-15N-labeled EqtII at the critical micelle concentration of dodecylphosphocholine, we have mapped the lipid-binding site through chemical shift perturbations. Subsequent docking of an EqtII monomer onto a dodecylphosphocholine micelle, followed by 400 ns of all-atom molecular dynamics simulation, saw several high-occupancy lipid-binding pockets stabilized by cation-π, hydrogen bonding, and hydrophobic interactions; and stabilization of the loop housing the conserved arginine-glycine-aspartate motif. Additional simulation of EqtII with an N-acetyl sphingomyelin micelle, for which high-resolution NMR data cannot be obtained due to aggregate formation, revealed that sphingomyelin specificity might occur via hydrogen bonding to the 3-OH and 2-NH groups unique to the ceramide backbone by side chains of D109 and Y113; and main chains of P81 and W112. Furthermore, a binding pocket formed by K30, K77, and P81, proximate to the hinge region of the N-terminal helix, was identified and may be implicated in triggering pore formation. PMID:25902438

  1. Polypharmacotherapy in rheumatology: 1H NMR analysis of binding of phenylbutazone and methotrexate to serum albumin

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Równicka-Zubik, J.; Bojko, B.; Szkudlarek-Haśnik, A.; Knopik, M.; Sułkowski, W. W.

    2011-05-01

    The influence of phenylbutazone (Phe) and methotrexate (MTX) on binding of MTX and Phe to human (HSA) and bovine (BSA) serum albumin in the low-affinity binding sites is investigated. The strength and kind of interactions between serum albumin (SA) and drugs used in combination therapy were found using 1H NMR spectroscopy. A stoichiometric molar ratios for Phe-SA and MTX-SA complexes are 36:1 and 31:1, respectively. It appeared these molar ratios are higher for the ternary systems than it were in the binary ones. The presence of the additional drug (MTX or Phe) causes the increase of an affinity of albumin towards Phe and MTX. It was found that the aliphatic groups of MTX are more resistant to the influence of Phe on the MTX-SA complex than the aromatic rings. The results showed the important impact of another drug (MTX or Phe) on the affinity of SA towards Phe and MTX in the low-affinity binding sites. This work is a subsequent part of the spectroscopic study on Phe-MTX-SA interactions (Maciążek-Jurczyk, 2009 [1]).

  2. Allosteric Sensing of Fatty Acid Binding by NMR: Application to Human Serum Albumin.

    PubMed

    Jafari, Naeimeh; Ahmed, Rashik; Gloyd, Melanie; Bloomfield, Jonathon; Britz-McKibbin, Philip; Melacini, Giuseppe

    2016-08-25

    Human serum albumin (HSA) serves not only as a physiological oncotic pressure regulator and a ligand carrier but also as a biomarker for pathologies ranging from ischemia to diabetes. Moreover, HSA is a biopharmaceutical with a growing repertoire of putative clinical applications from hypovolemia to Alzheimer's disease. A key determinant of the physiological, diagnostic, and therapeutic functions of HSA is the amount of long chain fatty acids (LCFAs) bound to HSA. Here, we propose to utilize (13)C-oleic acid for the NMR-based assessment of albumin-bound LCFA concentration (CONFA). (13)C-Oleic acid primes HSA for a LCFA-dependent allosteric transition that modulates the frequency separation between the two main (13)C NMR peaks of HSA-bound oleic acid (ΔνAB). On the basis of ΔνAB, the overall [(12)C-LCFA]Tot/[HSA]Tot ratio is reproducibly estimated in a manner that is only minimally sensitive to glycation, albumin concentration, or redox potential, unlike other methods to quantify HSA-bound LCFAs such as the albumin-cobalt binding assay. PMID:27429126

  3. Quantum electrodynamics effects on NMR magnetic shielding constants of He-like and Be-like atomic systems

    NASA Astrophysics Data System (ADS)

    Gimenez, Carlos A.; Kozioł, Karol; Aucar, Gustavo A.

    2016-03-01

    NMR shielding constants for He- and Be-like atomic systems of Ne, Ar, Kr, Xe, and Rn have been calculated at the random-phase-approximation level of approach, including an estimation of QED corrections within the polarization propagator formalism. We show that QED effects enhance electron correlation when Z becomes heavier, which happens with relativistic effects, and also that QED effects become smaller when going from more to less ionized systems. We studied two- and four-electron systems. Then such studies could easily be generalized to other many-electron systems. Results of calculations with our relatively simple model, which includes QED and electron correlation effects on the same theoretical grounds, have a summarized error in the range from 10% (for Ne) up to 24% (for Rn), so that our accuracy is a little lower than for calculations on H-like systems. Our findings should stimulate the development and/or the application of more rigorous formalisms to get more accurate QED corrections to response properties in many-electron systems.

  4. sup 19 F NMR studies of the D-galactose chemosensory receptor. (1) Sugar binding yields a global structural change

    SciTech Connect

    Luck, L.A.; Falke, J.J. )

    1991-04-30

    The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enable docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, the authors have used {sup 19}F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting {sup 19}F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylaline. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via {sup 19}F NMR frequency shifts at 10 of the 12 labeled sites. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.

  5. (1)H, (13)C and (15)N NMR assignments of a calcium-binding protein from Entamoeba histolytica.

    PubMed

    Verma, Deepshikha; Bhattacharya, Alok; Chary, Kandala V R

    2016-04-01

    We report almost complete sequence specific (1)H, (13)C and (15)N NMR assignments of a 150-residue long calmodulin-like calcium-binding protein from Entamoeba histolytica (EhCaBP6), as a prelude to its structural and functional characterization. PMID:26377206

  6. Molecular analysis of sialoside binding to sialoadhesin by NMR and site-directed mutagenesis.

    PubMed Central

    Crocker, P R; Vinson, M; Kelm, S; Drickamer, K

    1999-01-01

    The molecular interactions between sialoadhesin and sialylated ligands have been investigated by using proton NMR. Addition of ligands to the 12 kDa N-terminal immunoglobulin-like domain of sialoadhesin result in resonance shifts in the protein spectrum that have been used to determine the affinities of sialoadhesin for several sialosides. The results indicate that alpha2, 3-sialyl-lactose and alpha2,6-sialyl-lactose bind respectively 2- and 1.5-fold more strongly than does alpha-methyl-N-acetylneuraminic acid (alpha-Me-NeuAc). The resonances corresponding to the methyl protons within the N-acetyl moiety of sialic acid undergo upfield shifting and broadening during titrations, reflecting an interaction of this group with Trp2 in sialoadhesin as observed in co-crystals of the terminal domain with bound ligand. This resonance shift was used to measure the affinities of mutant and wild-type forms of sialoadhesin in which the first three domains are fused to the Fc region of human IgG1. Substitution of Arg97 by alanine completely abrogated measurable interaction with alpha-Me-NeuAc, whereas a conservative substitution with lysine resulted in a 10-fold decrease in affinity. These results provide the first direct measurement of the affinity of sialoadhesin for sialosides and confirm the critical importance of the conserved arginine in interactions between sialosides and members of the siglec family of sialic acid-binding, immunoglobulin-like lectins. PMID:10393093

  7. Covalent binding of aniline to humic substances. 2. 15N NMR studies of nucleophilic addition reactions

    USGS Publications Warehouse

    Thorn, K.A.; Pettigrew, P.J.; Goldenberg, W.S.; Weber, E.J.

    1996-01-01

    Aromatic amines are known to undergo covalent binding with humic substances in the environment. Although previous studies have examined reaction conditions and proposed mechanisms, there has been no direct spectroscopic evidence for the covalent binding of the amines to the functional groups in humic substances. In order to further elucidate the reaction mechanisms, the Suwannee River and IHSS soil fulvic and humic acids were reacted with 15N-labeled aniline at pH 6 and analyzed using 15N NMR spectrometry. Aniline underwent nucleophilic addition reactions with the quinone and other carbonyl groups in the samples and became incorporated in the form of anilinohydroquinone, anilinoquinone, anilide, imine, and heterocyclic nitrogen, the latter comprising 50% or more of the bound amine. The anilide and anilinohydroquinone nitrogens were determined to be susceptible to chemical exchange by ammonia. In the case of Suwannee River fulvic acid, reaction under anoxic conditions and pretreatment with sodium borohydride or hydroxylamine prior to reaction under oxic conditions resulted in a decrease in the proportion of anilinohydroquinone nitrogen incorporated. The relative decrease in the incorporation of anilinohydroquinone nitrogen with respect to anilinoquinone nitrogen under anoxic conditions suggested that inter- or intramolecular redox reactions accompanied the nucleophilic addition reactions.

  8. Escherichia coli Topoisomerase IV E Subunit and an Inhibitor Binding Mode Revealed by NMR Spectroscopy.

    PubMed

    Li, Yan; Wong, Ying Lei; Ng, Fui Mee; Liu, Boping; Wong, Yun Xuan; Poh, Zhi Ying; Liu, Shuang; Then, Siew Wen; Lee, Michelle Yueqi; Ng, Hui Qi; Huang, Qiwei; Hung, Alvin W; Cherian, Joseph; Hill, Jeffrey; Keller, Thomas H; Kang, CongBao

    2016-08-19

    Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of β1-α2 and residues in the loop of β3-β4 might improve the inhibitor potency. PMID:27365392

  9. A non-Karplus effect: evidence from phosphorus heterocycles and DFT calculations of the dependence of vicinal phosphorus-hydrogen NMR coupling constants on lone-pair conformation.

    PubMed

    Hersh, William H; Lam, Sherrell T; Moskovic, Daniel J; Panagiotakis, Antonios J

    2012-06-01

    In contrast to literature reports of a Karplus-type curve that correlates (3)J(PH) with phosphorus-hydrogen dihedral angle, a recently reported glycine-derived 1,3,2-oxazaphospholidine (7c) has two hydrogen atoms on the ring with identical PNCH dihedral angles but measured coupling constants of ∼6 and 1.5 Hz. DFT calculations were in accord with these values and suggested that the smaller coupling constant is negative. Experimental evidence of the opposite signs of these coupling constants was obtained by analysis of the ABX NMR spectrum of the new glycine-derived N-p-toluenesulfonyl phosphorus heterocycle 6c. DFT calculations on 6c and on Me(2)NPCl(2) and t-BuPCl(2) were also in accord with NMR data and allowed confirmation of unusual features including a lone pair effect on (3)J(PH), the negative coupling constant, temperature-dependent chemical shifts due to rotation about the sulfonamide S-N bond, and vicinal phosphorus-hydrogen coupling constants over 40 Hz. Calculation of phosphorus-hydrogen coupling constants both as a function of PYCH dihedral angle θ (Y = O, N, C) and lone pair-PYC dihedral angle ω shows similar θ,ω surfaces for (3)J(PH) with a range of (3)J(PH) from -4.4 to +51 Hz and demonstrates the large non-Karplus effect of lone-pair conformation on vicinal phosphorus-hydrogen coupling constants. PMID:22612503

  10. A Non–Karplus Effect: Evidence from Phosphorus Heterocycles and DFT Calculations of the Dependence of Vicinal Phosphorus-Hydrogen NMR Coupling Constants on Lone-Pair Conformation

    PubMed Central

    Lam, Sherrell T.; Moskovic, Daniel J.; Panagiotakis, Antonios J.

    2012-01-01

    In contrast to literature reports of a Karplus-type curve that correlates 3JPH with phosphorus-hydrogen dihedral angle, a recently-reported glycine-derived 1,3,2-oxazaphospholidine (7c) has two hydrogen atoms on the ring with identical PNCH dihedral angles but measured coupling constants of ~6 Hz and 1.5 Hz. DFT calculations were in accord with these values, and suggested that the smaller coupling constant is negative. Experimental evidence of the opposite signs of these coupling constants was obtained by analysis of the ABX NMR spectrum of the new glycine-derived N-p-toluenesulfonyl phosphorus heterocycle 6c. DFT calculations on 6c and on Me2NPCl2 and t-BuPCl2 were also in accord with NMR data, and allowed confirmation of unusual features including a lone pair effect on 3JPH, the negative coupling constant, temperature-dependent chemical shifts due to rotation about the sulfonamide S-N bond, and vicinal phosphorus-hydrogen coupling constants over 40 Hz. Calculation of phosphorus-hydrogen coupling constants both as a function of PYCH dihedral angle θ(Y = O, N, C) and lone pair-PYC dihedral angle ω showed similar θ,ω surfaces for 3JPH with a range of 3JPH from −4.4 Hz to +51 Hz, and demonstrates the large non–Karplus effect of lone-pair conformation on vicinal phosphorus-hydrogen coupling constants. PMID:22612503

  11. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions.

    PubMed

    Aachmann, Finn L; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav

    2012-11-13

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu(2+) (K(d) = 55 nM; from isothermal titration calorimetry) and higher preference for Cu(1+) (K(d) ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu(2+) of 275 mV using a thermodynamic cycle). Strong binding of Cu(1+) was also reflected in a reduction in the pK(a) values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a (2)H/(1)H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  12. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

    PubMed Central

    Aachmann, Finn L.; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2012-01-01

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu2+ (Kd = 55 nM; from isothermal titration calorimetry) and higher preference for Cu1+ (Kd ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu1+ was also reflected in a reduction in the pKa values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2H/1H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  13. Diffusion coefficients and dissociation constants of enhanced green fluorescent protein binding to free standing membranes.

    PubMed

    Thomas, Franziska A; Visco, Ilaria; Petrášek, Zdeněk; Heinemann, Fabian; Schwille, Petra

    2015-12-01

    Recently, a new and versatile assay to determine the partitioning coefficient [Formula: see text] as a measure for the affinity of peripheral membrane proteins for lipid bilayers was presented in the research article entitled, "Introducing a fluorescence-based standard to quantify protein partitioning into membranes" [1]. Here, the well-characterized binding of hexahistidine-tag (His6) to NTA(Ni) was utilized. Complementarily, this data article reports the average diffusion coefficient [Formula: see text] of His6-tagged enhanced green fluorescent protein (eGFP-His6) and the fluorescent lipid analog ATTO-647N-DOPE in giant unilamellar vesicles (GUVs) containing different amounts of NTA(Ni) lipids. In addition, dissociation constants [Formula: see text] of the NTA(Ni)/eGFP-His6 system are reported. Further, a conversion between [Formula: see text] and [Formula: see text] is provided. PMID:26587560

  14. Functional manipulation of a calcium-binding protein from Entamoeba histolytica guided by paramagnetic NMR.

    PubMed

    Rout, Ashok K; Patel, Sunita; Somlata; Shukla, Manish; Saraswathi, Deepa; Bhattacharya, Alok; Chary, Kandala V R

    2013-08-01

    EhCaBP1, one of the calcium-binding proteins from Entamoeba histolytica, is a two-domain EF-hand protein. The two domains of EhCaBP1 are structurally and functionally different from each other. However, both domains are required for structural stability and a full range of functional diversity. Analysis of sequence and structure of EhCaBP1 and other CaBPs indicates that the C-terminal domain of EhCaBP1 possesses a unique structure compared with other family members. This had been attributed to the absence of a Phe-Phe interaction between highly conserved Phe residues at the -4 position in EF-hand III (F[-4]; Tyr(81)) and at the 13th position in EF-hand IV (F[+13]; Phe(129)) of the C-terminal domain. Against this backdrop, we mutated the Tyr residue at the -4th position of EF III to the Phe residue (Y81F), to bring in the Phe-Phe interaction and understand the nature of structural and functional changes in the protein by NMR spectroscopy, molecular dynamics (MD) simulation, isothermal titration calorimetry (ITC), and biological assays, such as imaging and actin binding. The Y81F mutation in EhCaBP1 resulted in a more compact structure for the C-terminal domain of the mutant as in the case of calmodulin and troponin C. The compact structure is favored by the presence of a π-π interaction between Phe(81) and Phe(129) along with several hydrophobic interactions of Phe(81), which are not seen in the wild-type protein. Furthermore, the biological assays reveal preferential membrane localization of the mutant, loss of its colocalization with actin in the phagocytic cups, whereas retaining its ability to bind G- and F-actin. PMID:23782698

  15. 1H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution.

    PubMed

    Ramesh, V; Bradbury, J H

    1987-10-01

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in 2H2O by 1H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn2+) and the addition of Zn2+ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn2+ or not bound to Zn2+. The pK' values of the B5 and B10 histidines were determined in 60% 2H2O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for 1H NMR (approximately 1 mM) at 37 degrees C in 2H2O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni2+ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn2+. Addition of Co2+ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd2+ and of Cd2+ and Ca2+ produced changes that were similar to each other but were different from those observed on addition of Zn2+, probably due to the binding of Cd2+ and Ca2+ at glutamate B13. PMID:3310894

  16. /sup 1/H NMR studies of insulin: histidine residues, metal binding, and dissociation in alkaline solution

    SciTech Connect

    Ramesh, V.; Bradbury, J.H.

    1987-10-01

    The shifts of the H2 histidine B5 and B10 resonances of 2-Zn insulin hexamer were followed in /sup 2/H/sub 2/O by /sup 1/H NMR spectroscopy at 270 MHz from pH 9.85 to 7. The two resonances present at high pH, previously assigned to H2 histidine B5 and B10 residues, moved slightly downfield and split into four resonances at pH 8.95 and also at pH 7. By use of a paramagnetic broadening probe (Mn/sup 2 +/) and the addition of Zn/sup 2 +/ to metal-free insulin, it was deduced that the four resonances arose from histidines B10 and B5 in two different magnetic environments, probably either bound to Zn/sup 2 +/ or not bound to Zn/sup 2 +/. The pK' values of the B5 and B10 histidines were determined in 60% /sup 2/H/sub 2/O-40% dioxan, in which insulin was soluble throughout the pH range, to be 7.1 and 6.8, respectively at 37 degrees C. Studies at higher pH indicated that at a concentration level suitable for /sup 1/H NMR (approximately 1 mM) at 37 degrees C in /sup 2/H/sub 2/O the 2-Zn hexamer was largely dissociated to dimer at pH 10.3 and to monomer at pH 10.8. Addition of paramagnetic shift probe Ni/sup 2 +/ to metal-free insulin caused changes to the spectrum similar to those produced on addition of diamagnetic Zn/sup 2 +/. Addition of Co/sup 2 +/ gave a different result, but there was no paramagnetic shift of the H2 histidine B10 resonance, probably because of rapid exchange at the binding site. Addition of Cd/sup 2 +/ and of Cd/sup 2 +/ and Ca/sup 2 +/ produced changes that were similar to each other but were different from those observed on addition of Zn/sup 2 +/, probably due to the binding of Cd/sup 2 +/ and Ca/sup 2 +/ at glutamate B13.

  17. DFT calculations of 15N NMR shielding constants, chemical shifts and complexation shifts in complexes of rhodium(II) tetraformate with some nitrogenous organic ligands

    NASA Astrophysics Data System (ADS)

    Leniak, Arkadiusz; Jaźwiński, Jarosław

    2015-03-01

    Benchmark calculations of 15N NMR shielding constants for a set of model complexes of rhodium(II) tetraformate with nine organic ligands using the Density Functional Theory (DFT) methods have been carried out. The calculations were performed by means of several methods: the non-relativistic, relativistic scalar ZORA, and spin-orbit ZORA approaches at the CGA-PBE/QZ4P theory level, and the GIAO NMR method using the B3PW91 functional with the 6-311++G(2d,p) basis set for C, H, N, O atoms and the Stuttgart basis set for the Rh atom. The geometry of compounds was optimised either by the same basis set as for the NMR calculations or applying the B3LYP functional with the 6-31G(2d) basis set for C, H, N, O atoms and LANL2DZ for the Rh atom. Computed 15N NMR shielding constants σ were compatible with experimental 15N chemical shifts δ of complexes exhibiting similar structure and fulfil the linear equation δ = aσ + b. The a and b parameters for all data sets have been estimated by means of linear regression analysis. In contrast to the correlation method giving "scaled" chemical shifts, the conversion of shielding constants to chemical shifts with respect to the reference shielding of CH3NO2 provided very inaccurate "raw" δ values. The application of the former to the calculation of complexation shifts Δδ (Δδ = δcompl - δlig) reproduced experimental values qualitatively or semi-quantitatively. The non-relativistic B3PW91/[6-311++G(2d,p), Stuttgart] theory level reproduced the NMR parameters as good as the more expensive relativistic CGA-PBE//QZ4P ZORA approaches.

  18. Protocols Utilizing Constant pH Molecular Dynamics to Compute pH-Dependent Binding Free Energies

    PubMed Central

    2015-01-01

    In protein–ligand binding, the electrostatic environments of the two binding partners may vary significantly in bound and unbound states, which may lead to protonation changes upon binding. In cases where ligand binding results in a net uptake or release of protons, the free energy of binding is pH-dependent. Nevertheless, conventional free energy calculations and molecular docking protocols typically do not rigorously account for changes in protonation that may occur upon ligand binding. To address these shortcomings, we present a simple methodology based on Wyman’s binding polynomial formalism to account for the pH dependence of binding free energies and demonstrate its use on cucurbit[7]uril (CB[7]) host–guest systems. Using constant pH molecular dynamics and a reference binding free energy that is taken either from experiment or from thermodynamic integration computations, the pH-dependent binding free energy is determined. This computational protocol accurately captures the large pKa shifts observed experimentally upon CB[7]:guest association and reproduces experimental binding free energies at different levels of pH. We show that incorrect assignment of fixed protonation states in free energy computations can give errors of >2 kcal/mol in these host–guest systems. Use of the methods presented here avoids such errors, thus suggesting their utility in computing proton-linked binding free energies for protein–ligand complexes. PMID:25134690

  19. An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR

    SciTech Connect

    Paterson, Y.; Englander, S.W.; Roder, H. )

    1990-08-17

    The interaction of a protein antigen, horse cytochrome c (cyt c), with a monoclonal antibody has been studied by hydrogen-deuterium (H-D) exchange labeling and two-dimensional nuclear magnetic resonance (2D NMR) methods. The H-exchange rate of residues in three discontiguous regions of the cyt c polypeptide backbone was slowed by factors up to 340-fold in the antibody-antigen complex compared with free cyt c. The protected residues, 36 to 38, 59, 60, 64 to 67, 100, and 101, and their hydrogen-bond acceptors, are brought together in the three-dimensional structure to form a contiguous, largely exposed protein surface with an area of about 750 square angstroms. The interaction site determined in this way is consistent with prior epitope mapping studies and includes several residues that were not previously identified. The hydrogen exchange labeling approach can be used to map binding sites on small proteins in antibody-antigen complexes and may be applicable to protein-protein and protein-ligand interactions in general.

  20. Binding Modes of Thioflavin T on the Surface of Amyloid Fibrils Studied by NMR.

    PubMed

    Ivancic, Valerie A; Ekanayake, Oshini; Lazo, Noel D

    2016-08-18

    The mechanism for the interaction of thioflavin T (ThT) with amyloid fibrils at the molecular level is not known. Here, we used (1) H NMR spectroscopy to determine the binding mode of ThT on the surface of fibrils from lysozyme and insulin. Relayed rotating-frame Overhauser enhancements in ThT were observed, indicating that the orientation of ThT is orthogonal to the fibril surface. Importantly, the assembly state of ThT on both surfaces is different. On the surface of insulin fibrils, ThT is oligomeric, as indicated by rapid (1) H spin-lattice relaxation rate in the rotating frame (R1ρ ), presumably due to intermolecular dipole-dipole interactions between ThT molecules. In contrast, ThT on the surface of lysozyme fibrils is a monomer, as indicated by slower (1) H R1ρ . These results shed new light into the mechanism for the enhancement of ThT fluorescence and may lead to more efficient detectors of amyloid assemblies, which have escaped detection by ThT in monomer form. PMID:27165642

  1. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions.

    PubMed

    Joseph, Prem Raj B; Mosier, Philip D; Desai, Umesh R; Rajarathnam, Krishna

    2015-11-15

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8-GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer-GAG interactions and function. PMID:26371375

  2. Solution NMR characterization of chemokine CXCL8/IL-8 monomer and dimer binding to glycosaminoglycans: structural plasticity mediates differential binding interactions

    PubMed Central

    Joseph, Prem Raj B.; Mosier, Philip D.; Desai, Umesh R.; Rajarathnam, Krishna

    2015-01-01

    Chemokine CXCL8/interleukin-8 (IL-8) plays a crucial role in directing neutrophils and oligodendrocytes to combat infection/injury and tumour cells in metastasis development. CXCL8 exists as monomers and dimers and interaction of both forms with glycosaminoglycans (GAGs) mediate these diverse cellular processes. However, very little is known regarding the structural basis underlying CXCL8–GAG interactions. There are conflicting reports on the affinities, geometry and whether the monomer or dimer is the high-affinity GAG ligand. To resolve these issues, we characterized the binding of a series of heparin-derived oligosaccharides [heparin disaccharide (dp2), heparin tetrasaccharide (dp4), heparin octasaccharide (dp8) and heparin 14-mer (dp14)] to the wild-type (WT) dimer and a designed monomer using solution NMR spectroscopy. The pattern and extent of binding-induced chemical shift perturbation (CSP) varied between dimer and monomer and between longer and shorter oligosaccharides. NMR-based structural models show that different interaction modes coexist and that the nature of interactions varied between monomer and dimer and oligosaccharide length. MD simulations indicate that the binding interface is structurally plastic and provided residue-specific details of the dynamic nature of the binding interface. Binding studies carried out under conditions at which WT CXCL8 exists as monomers and dimers provide unambiguous evidence that the dimer is the high-affinity GAG ligand. Together, our data indicate that a set of core residues function as the major recognition/binding site, a set of peripheral residues define the various binding geometries and that the structural plasticity of the binding interface allows multiplicity of binding interactions. We conclude that structural plasticity most probably regulates in vivo CXCL8 monomer/dimer–GAG interactions and function. PMID:26371375

  3. NMR Mapping of the IFNAR1-EC binding site on IFNα2 reveals allosteric changes in the IFNAR2-EC binding site

    PubMed Central

    Akabayov, Sabine Ruth; Biron, Zohar; Lamken, Peter; Piehler, Jacob; Anglister, Jacob

    2010-01-01

    All type I interferons (IFNs) bind to a common cell-surface receptor consisting of two subunits. IFNs initiate intracellular signal transduction cascades by simultaneous interaction with the extracellular domains of its receptor subunits IFNAR1 and IFNAR2. In this study we mapped the surface of IFNα2 interacting with the extracellular domain of IFNAR1 (IFNAR1-EC) by following changes in or the disappearance of the [1H,15N]-TROSY-HSQC cross peaks of IFNα2 caused by the binding of the extracellular domain of IFNAR1 (IFNAR1-EC) to the binary complex of IFNα2 with IFNAR2-EC. The NMR study on the 89 kDa complex was conducted at pH 8 and 308 K using an 800 MHz spectrometer. IFNAR1 binding affected a total of 47 out of 165 IFNα2 residues contained in two large patches on the face of the protein opposing the binding site for IFNAR2 and in a third patch located on the face containing the IFNAR2 binding site. The first two patches form the IFNAR1 binding site and one of these matches the IFNAR1 binding site previously identified by site-directed mutagenesis. The third patch partially matches the IFNα2 binding site for IFNAR2-EC indicating allosteric communication between the binding sites for the two receptor subunits. PMID:20047337

  4. Direct measurement of agonist binding to genetically engineered peptides of the acetylcholine receptor by selective T sub 1 NMR relaxation

    SciTech Connect

    Fraenkel, Y.; Navon, G. ); Aronheim, A.; Gershoni, J.M. )

    1990-03-13

    Interactions of four ligands of the nicotinic acetylcholine receptor with genetically engineered peptides have been studied by NMR. A recombinant cholinergic binding site was prepared as a fusion protein between a truncated form of the bacterial protein trpE and a peptide corresponding to the sequence {alpha}184-200 from the Torpedo californica receptor. This construct binds {alpha}-bungarotoxin while the trpE protein alone does not, and thus serves as a negative control. In this study agonist binding to {alpha}184-200 is demonstrated by monitoring the T{sub 1} relaxation of the ligand's protons in the presence and absence of the recombinant binding site. This binding is specific as it can be competed with {alpha}-bungarotoxin. Quantitative analyses of such competitions yielded the concentration of binding sites, which corresponded to 3.3% and 16.5% of the total protein, for partially purified and affinity-purified {alpha}184-200 constructs, respectively. The K{sub D} values for the binding of acetylcholine, nicotine, d-tubocurarine, and gallamine to the affinity-purified construct were 1.4, 1.4, 0.20, and 0.21 mM, respectively, while K{sub D}'s with the nontoxin binding protein were all above 10 mM. Thus, this is a direct demonstration that the toxin binding domain {alpha}184-200 may comprise a major component of the cholinergic agonist site.

  5. Dimer self-association via hydrogen bonding: Measurement and comparison of binding constants with 2-amidopyrimidine derivatives

    NASA Astrophysics Data System (ADS)

    Bednar, Victor; Elliott, K. Wade; Byrd, Emily; Woodford, Jeffrey N.

    2012-09-01

    A method based on 1H NMR was used to measure the self-assembly equilibrium constants for three acylated derivatives of 2-aminopyrimidine: 2-acetamidopyrimidine (1), 2-isopropylamidopyrimidine (2), and 2-neopentylamidopyrimidine (3). The synthesis of the latter two compounds is described. The self-association constant decreases from 1 to 2 to 3, which is attributed to the syn/anti conformational preference of the amide bond. For 1, complexation with chloroform must be included in order to explain the observed chemical shift values. Complementary density functional theory calculations (MP2/cc-pVTZ//B3LYP-D/cc-pVDZ) suggest a direct relationship between conformational preference of the amide bond and the self-assembly constant.

  6. Cyclodextrins in pharmaceutical formulations II: solubilization, binding constant, and complexation efficiency.

    PubMed

    Jambhekar, Sunil S; Breen, Philip

    2016-02-01

    Cyclodextrins are cyclic oligosaccharides that have been recognized as pharmaceutical adjuvants for the past 20 years. The molecular structure of these glucose derivatives, which approximates a truncated cone, bucket, or torus, generates a hydrophilic exterior surface and a nonpolar interior cavity. Cyclodextrins can interact with appropriately sized drug molecules to yield an inclusion complex. These noncovalent inclusion complexes offer a variety of advantages over noncomplexed forms of a drug. Cyclodextrins are carbohydrates that are primarily used to enhance the aqueous solubility, physical chemical stability, and bioavailability of drugs. Their other applications include preventing drug-drug interactions, converting liquid drugs into microcrystalline powders, minimizing gastrointestinal and ocular irritation, and reducing or eliminating unpleasant taste and smell. Here, we focus on the solubilization of drugs by complexation, and discuss the determination and significance of binding constants for cyclodextrin complexes, and the determination of complexation efficiency and factors that influence it. We also make some general observations on cyclodextrin complexation and the use of cyclodextrins in solid, as well as parenteral, dosage forms. PMID:26687191

  7. Counter-ion binding and mobility in the presence of hydrophobic polyions – combining molecular dynamics simulations and NMR

    NASA Astrophysics Data System (ADS)

    Druchok, Maksym; Malikova, Natalie; Rollet, Anne-Laure; Vlachy, Vojko

    2016-06-01

    Counter-ion binding and mobility in aqueous solutions of partially hydrophobic ionene oligoions is studied here by a combination of all-atomic molecular dynamics (MD) simulations and NMR (19F and 81Br nuclei) measurements. We present results for 12, 12-ionenes in the presence of different halide ions (F-, Cl-, Br- and I-), as well as their mixtures; the latter allowing us to probe counter-ion selectivity of these oligoions. We consolidate both structural and dynamic information, in particular simulated radial distribution functions and average residence times of counter-ions in the vicinity of ionenes and NMR data in the form of counter-ion chemical shift and self-diffusion coefficients. On one hand, previously reported enthalpy of dilution and mixing measurements show a reverse counter-ion sequence for 12, 12-ionenes with respect to their less hydrophobic 3, 3- and 6, 6- analogues. On the other hand, the current MD and NMR data, reflecting the counter-ion binding tendencies to the ionene chain, give evidence for the same ordering as that observed by MD for 3, 3-ionenes. This is not seen as a contradiction and can be rationalized on the basis of increasing chain hydrophobicity, which has different consequences for enthalpy and ion-binding. The latter is reflecting free energy changes and as such includes both enthalpic and entropic contributions.

  8. Characterization of binding between 17β-estradiol and estriol with humic acid via NMR and biochemical analysis.

    PubMed

    Bedard, Mary; Giffear, Kelly A; Ponton, Lisa; Sienerth, Karl D; Del Gaizo Moore, Victoria

    2014-05-01

    Endocrine disruptors, such as 17β-estradiol (E2) and estriol (E3), are ubiquitously found in the environment and their presence has gained recognition as a significant health risk. Sorption of estrogens by dissolved organic matter (DOM) influences their concentration and effects. Although there is some experimental evidence suggesting that sorption occurs through hydrophobic interactions, there is not a complete understanding of this association. Therefore, we sought to more extensively characterize binding between humic acid (HA), a major component of DOM, with E2 and E3 using nuclear magnetic resonance spectroscopy (NMR). Our results indicate that binding between these estrogens and HA occurs primarily at the aromatic ring, and takes place even at relatively low HA concentration. Specific interactions between E2 and HA were confirmed by assessing binding via ELISA assay, and the effect of binding on estrogenic activity was studied via a yeast bioassay. Together, these studies build upon previously theorized interactions, yielding a more comprehensive model of binding between estrogens and HA, as well as demonstrate the value of the confluence of biochemical assay methods with analytical NMR techniques. PMID:24583968

  9. Comparing Binding Modes of Analogous Fragments Using NMR in Fragment-Based Drug Design: Application to PRDX5

    PubMed Central

    Guichou, Jean-François; Cala, Olivier; Krimm, Isabelle

    2014-01-01

    Fragment-based drug design is one of the most promising approaches for discovering novel and potent inhibitors against therapeutic targets. The first step of the process consists of identifying fragments that bind the protein target. The determination of the fragment binding mode plays a major role in the selection of the fragment hits that will be processed into drug-like compounds. Comparing the binding modes of analogous fragments is a critical task, not only to identify specific interactions between the protein target and the fragment, but also to verify whether the binding mode is conserved or differs according to the fragment modification. While X-ray crystallography is the technique of choice, NMR methods are helpful when this fails. We show here how the ligand-observed saturation transfer difference (STD) experiment and the protein-observed 15N-HSQC experiment, two popular NMR screening experiments, can be used to compare the binding modes of analogous fragments. We discuss the application and limitations of these approaches based on STD-epitope mapping, chemical shift perturbation (CSP) calculation and comparative CSP sign analysis, using the human peroxiredoxin 5 as a protein model. PMID:25025339

  10. Theoretical analysis of NMR shieldings in XSe and XTe (X = Si, Ge, Sn and Pb): the spin-rotation constant saga.

    PubMed

    Demissie, Taye Beyene

    2016-01-28

    The nuclear spin-rotation (NSR) and absolute nuclear magnetic resonance (NMR) shielding tensors of the nuclei in the series of X(77)Se and X(125)Te (X = (29)Si, (73)Ge, (119)Sn and (207)Pb) are calculated using four-component relativistic density functional theory (DFT) and coupled-cluster singles-doubles with a perturbative triples correction (CCSD(T)). The results for the NSR constants are compared to available experimental data. The best theoretical estimates are obtained when relativistic corrections from DFT are added to the accurate non-relativistic CCSD(T) results. All the calculated NSR constants are in excellent agreement with the corresponding experimental values. Even though there are previously estimated absolute shielding constants and spans from experimental NSR tensors, new accurate values are reported following the same approach used to calculate the NSR constants in this study. The main reasons for the discrepancy between the previously reported NMR properties and the accurate results obtained in this study are also discussed. PMID:26741559

  11. NMR-based modeling and binding studies of a ternary complex between chicken liver bile acid binding protein and bile acids.

    PubMed

    Tomaselli, Simona; Ragona, Laura; Zetta, Lucia; Assfalg, Michael; Ferranti, Pasquale; Longhi, Renato; Bonvin, Alexandre M J J; Molinari, Henriette

    2007-10-01

    Chicken liver bile acid binding protein (cL-BABP) is involved in bile acid transport in the liver cytosol. A detailed study of the mechanism of binding and selectivity of bile acids binding proteins towards the physiological pool of bile salts is a key issue for the complete understanding of the role of these proteins and their involvement in cholesterol homeostasis. In the present study, we modeled the ternary complex of cL-BABP with two molecules of bile salts using the data driven docking program HADDOCK on the basis of NMR and mass spectrometry data. Docking resulted in good 3D models, satisfying the majority of experimental restraints. The docking procedure represents a necessary step to help in the structure determination and in functional analysis of such systems, in view of the high complexity of the 3D structure determination of a ternary complex with two identical ligands. HADDOCK models show that residues involved in binding are mainly located in the C-terminal end of the protein, with two loops, CD and EF, playing a major role in ligand binding. A spine, comprising polarresidues pointing toward the protein interior and involved in motion communication, has a prominent role in ligand interaction. The modeling approach has been complemented with NMR interaction and competition studies of cL-BABP with chenodeoxycholic and cholic acids. A higher affinity for chenodeoxycholic acid was observed and a Kd upper limit estimate was obtained. The binding is highly cooperative and no site selectivity was detected for the different bile salts, thus indicating that site selectivity and cooperativity are not correlated. Differences in physiological pathways and bile salt pools in different species is discussed in light of the binding results thus enlarging the body of knowledge of BABPs biological functions. PMID:17607743

  12. Spin-coated and PECVD low dielectric constant porous organosilicate films studied by 1D and 2D solid-state NMR.

    PubMed

    Gerbaud, Guillaume; Hediger, Sabine; Bardet, Michel; Favennec, Laurent; Zenasni, Aziz; Beynet, Julien; Gourhant, Olivier; Jousseaume, Vincent

    2009-11-14

    In the research field of the sub-65 nm semiconductor industry, organosilicate SiOCH films with low dielectric constant (k < 2.4) need to be developed in order to improve the performance of integrated circuits [International Roadmap for Semiconductors (ITRS), San Jose, CA, 2004]. One way to produce SiOCH films of low dielectric constant is to introduce pores into the film. This is usually obtained in two steps. Firstly, co-deposition of a matrix precursor, with a sacrificial organic porogen, either by plasma enhanced chemical vapor deposition (PECVD) or spin-coating. Secondly, application of a specific thermal treatment to remove the porogen and create the porosity. This last step can be improved by adding to the thermal process a super-critical CO(2) treatment, an UV irradiation or an electronic bombardment (e-beam). In this study, the two deposition processes as well as the various treatments applied to eliminate the porogens were evaluated and compared using high-resolution solid-state NMR. For this purpose, hybrid (containing porogens) and porous films were extensively characterized on the basis of their (1)H, (13)C and (29)Si high-resolution NMR spectra. Information was obtained concerning the crosslinking of the Si skeleton. Spectral features could be correlated to the processes used. Isotropic chemical shift analyses and 2D correlation NMR experiments were used to show the existence and nature of the interactions between the matrix precursor and the organic porogen. PMID:19851550

  13. A Novel MHC-I Surface Targeted for Binding by the MCMV m06 Immunoevasin Revealed by Solution NMR.

    PubMed

    Sgourakis, Nikolaos G; May, Nathan A; Boyd, Lisa F; Ying, Jinfa; Bax, Ad; Margulies, David H

    2015-11-27

    As part of its strategy to evade detection by the host immune system, murine cytomegalovirus (MCMV) encodes three proteins that modulate cell surface expression of major histocompatibility complex class I (MHC-I) molecules: the MHC-I homolog m152/gp40 as well as the m02-m16 family members m04/gp34 and m06/gp48. Previous studies of the m04 protein revealed a divergent Ig-like fold that is unique to immunoevasins of the m02-m16 family. Here, we engineer and characterize recombinant m06 and investigate its interactions with full-length and truncated forms of the MHC-I molecule H2-L(d) by several techniques. Furthermore, we employ solution NMR to map the interaction footprint of the m06 protein on MHC-I, taking advantage of a truncated H2-L(d), "mini-H2-L(d)," consisting of only the α1α2 platform domain. Mini-H2-L(d) refolded in vitro with a high affinity peptide yields a molecule that shows outstanding NMR spectral features, permitting complete backbone assignments. These NMR-based studies reveal that m06 binds tightly to a discrete site located under the peptide-binding platform that partially overlaps with the β2-microglobulin interface on the MHC-I heavy chain, consistent with in vitro binding experiments showing significantly reduced complex formation between m06 and β2-microglobulin-associated MHC-I. Moreover, we carry out NMR relaxation experiments to characterize the picosecond-nanosecond dynamics of the free mini-H2-L(d) MHC-I molecule, revealing that the site of interaction is highly ordered. This study provides insight into the mechanism of the interaction of m06 with MHC-I, suggesting a structural manipulation of the target MHC-I molecule at an early stage of the peptide-loading pathway. PMID:26463211

  14. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy

    PubMed Central

    Simard, J. R.; Zunszain, P. A.; Ha, C.-E.; Yang, J. S.; Bhagavan, N. V.; Petitpas, I.; Curry, S.; Hamilton, J. A.

    2005-01-01

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [13C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA–HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [13C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [13C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  15. Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy.

    PubMed

    Simard, J R; Zunszain, P A; Ha, C-E; Yang, J S; Bhagavan, N V; Petitpas, I; Curry, S; Hamilton, J A

    2005-12-13

    Human serum albumin (HSA) is a versatile transport protein for endogenous compounds and drugs. To evaluate physiologically relevant interactions between ligands for the protein, it is necessary to determine the locations and relative affinities of different ligands for their binding site(s). We present a site-specific investigation of the relative affinities of binding sites on HSA for fatty acids (FA), the primary physiological ligand for the protein. Titration of HSA with [(13)C]carboxyl-labeled FA was used initially to identify three NMR chemical shifts that are associated with high-affinity binding pockets on the protein. To correlate these peaks with FA-binding sites identified from the crystal structures of FA-HSA complexes, HSA mutants were engineered with substitutions of amino acids involved in coordination of the bound FA carboxyl. Titration of [(13)C]palmitate into solutions of HSA mutants for either FA site four (R410A/Y411A) or site five (K525A) within domain III of HSA each revealed loss of a specific NMR peak that was present in spectra of wild-type protein. Because these peaks are among the first three to be observed on titration of HSA with palmitate, sites four and five represent two of the three high-affinity long-chain FA-binding sites on HSA. These assignments were confirmed by titration of [(13)C]palmitate into recombinant domain III of HSA, which contains only sites four and five. These results establish a protocol for direct probing of the relative affinities of FA-binding sites, one that may be extended to examine competition between FA and other ligands for specific binding sites. PMID:16330771

  16. Constraining binding hot spots: NMR and MD simulations provide a structural explanation for enthalpy-entropy compensation in SH2-ligand binding

    PubMed Central

    Ward, Joshua M.; Gorenstein, Nina M.; Tian, Jianhua; Martin, Stephen F.; Post, Carol Beth

    2010-01-01

    NMR spectroscopy and molecular dynamics (MD) simulations were used to probe the structure and dynamics of complexes of three phosphotyrosine-derived peptides with the Src SH2 domain in an effort to uncover a structural explanation for enthalpy-entropy compensation observed in the binding thermodynamics. The series of phosphotyrosine peptide derivatives comprises the natural pYEEI Src SH2 ligand, a constrained mimic, in which the phosphotyrosine (pY) residue is preorganized in the bound conformation for the purpose of gaining an entropic advantage to binding, and a flexible analog of the constrained mimic. The expected gain in binding entropy of the constrained mimic was realized; however, a balancing loss in binding enthalpy was also observed that could not be rationalized from the crystallographic structures. We examined protein dynamics to evaluate whether the observed enthalpic penalty might be the result of effects arising from altered motions in the complex. 15N-relaxation studies and positional fluctuations from molecular dynamics indicate that the main-chain dynamics of the protein show little variation among the three complexes. Root mean squared (RMS) coordinate deviations vary by less than 1.5 Å for all non-hydrogen atoms for the crystal structures and in the ensemble average structures calculated from the simulations. In contrast to this striking similarity in the structures and dynamics, there are a number of large chemical shift differences from residues across the binding interface, but particularly from key Src SH2 residues that interact with pY, the ‘hot spot’ residue, which contributes about half of the binding free energy. Rank order correlations between chemical shifts and ligand binding enthalpy for several pY-binding residues, coupled with available mutagenesis and calorimetric data, suggest that subtle structural perturbations (< 1 Å) from the conformational constraint of the pY residue sufficiently alter the geometry of enthalpically

  17. 15N NMR investigation of the reduction and binding of TNT in an aerobic bench scale reactor simulating windrow composting

    USGS Publications Warehouse

    Thorn, K.A.; Pennington, J.C.; Hayes, C.A.

    2002-01-01

    T15NT was added to a soil of low organic carbon content and composted for 20 days in an aerobic bench scale reactor. The finished whole compost and fulvic acid, humic acid, humin, and lignocellulose fractions extracted from the compost were analyzed by solid-state CP/MAS and DP/MAS 15N NMR. 15N NMR spectra provided direct spectroscopic evidence for reduction of TNT followed by covalent binding of the reduced metabolites to organic matter of the composted soil, with the majority of metabolite found in the lignocellulose fraction, by mass also the major fraction of the compost. In general, the types of bonds formed between soil organic matter and reduced TNT amines in controlled laboratory reactions were observed in the spectra of the whole compost and fractions, confirming that during composting TNT is reduced to amines that form covalent bonds with organic matter through aminohydroquinone, aminoquinone, heterocyclic, and imine linkages, among others. Concentrations of imine nitrogens in the compost spectra suggestthat covalent binding bythe diamines 2,4DANT and 2,6DANT is a significant process in the transformation of TNT into bound residues. Liquid-phase 15N NMR spectra of the fulvic acid and humin fractions provided possible evidence for involvement of phenoloxidase enzymes in covalent bond formation.

  18. Benchmarking density-functional theory calculations of NMR shielding constants and spin-rotation constants using accurate coupled-cluster calculations

    NASA Astrophysics Data System (ADS)

    Teale, Andrew M.; Lutnæs, Ola B.; Helgaker, Trygve; Tozer, David J.; Gauss, Jürgen

    2013-01-01

    Accurate sets of benchmark nuclear-magnetic-resonance shielding constants and spin-rotation constants are calculated using coupled-cluster singles-doubles (CCSD) theory and coupled-cluster singles-doubles-perturbative-triples [CCSD(T)] theory, in a variety of basis sets consisting of (rotational) London atomic orbitals. The accuracy of the calculated coupled-cluster constants is established by a careful comparison with experimental data, taking into account zero-point vibrational corrections. Coupled-cluster basis-set convergence is analyzed and extrapolation techniques are employed to estimate basis-set-limit quantities, thereby establishing an accurate benchmark data set. Together with the set provided for rotational g-tensors and magnetizabilities in our previous work [O. B. Lutnæs, A. M. Teale, T. Helgaker, D. J. Tozer, K. Ruud, and J. Gauss, J. Chem. Phys. 131, 144104 (2009)], 10.1063/1.3242081, it provides a substantial source of consistently calculated high-accuracy data on second-order magnetic response properties. The utility of this benchmark data set is demonstrated by examining a wide variety of Kohn-Sham exchange-correlation functionals for the calculation of these properties. None of the existing approximate functionals provide an accuracy competitive with that provided by CCSD or CCSD(T) theory. The need for a careful consideration of vibrational effects is clearly illustrated. Finally, the pure coupled-cluster results are compared with the results of Kohn-Sham calculations constrained to give the same electronic density. Routes to future improvements are discussed in light of this comparison.

  19. Structural Requirements for Bisphosphonate Binding on Hydroxyapatite: NMR Study of Bisphosphonate Partial Esters

    PubMed Central

    2015-01-01

    Eighteen different bisphosphonates, including four clinically used bisphosphonate acids and their phosphoesters, were studied to evaluate how the bisphosphonate structure affects binding to bone. Bisphosphonates with weak bone affinity, such as clodronate, could not bind to hydroxyapatite after the addition of one ester group. Medronate retained its ability to bind after the addition of one ester group, and hydroxy-bisphosphonates could bind even after the addition of two ester groups. Thus, several bisphosphonate esters are clearly bone binding compounds. The following conclusions about bisphosphonate binding emerge: (1) a hydroxyl group in the geminal carbon takes part in the binding process and increases the bisphosphonate’s ability to bind to bone; (2) the bisphosphonate’s ability to bind decreases when the amount of ester groups increases; and (3) the location of the ester groups affects the bisphosphonate’s binding ability. PMID:25893039

  20. Thermodynamic and solution state NMR characterization of the binding of secondary and conjugated bile acids to STARD5.

    PubMed

    Létourneau, Danny; Lorin, Aurélien; Lefebvre, Andrée; Cabana, Jérôme; Lavigne, Pierre; LeHoux, Jean-Guy

    2013-11-01

    STARD5 is a member of the STARD4 sub-family of START domain containing proteins specialized in the non-vesicular transport of lipids and sterols. We recently reported that STARD5 binds primary bile acids. Herein, we report on the biophysical and structural characterization of the binding of secondary and conjugated bile acids by STARD5 at physiological concentrations. We found that the absence of the 7α-OH group and its epimerization increase the affinity of secondary bile acids for STARD5. According to NMR titration and molecular modeling, the affinity depends mainly on the number and positions of the steroid ring hydroxyl groups and to a lesser extent on the presence or type of bile acid side-chain conjugation. Primary and secondary bile acids have different binding modes and display different positioning within the STARD5 binding pocket. The relative STARD5 affinity for the different bile acids studied is: DCA>LCA>CDCA>GDCA>TDCA>CA>UDCA. TCA and GCA do not bind significantly to STARD5. The impact of the ligand chemical structure on the thermodynamics of binding is discussed. The discovery of these new ligands suggests that STARD5 is involved in the cellular response elicited by bile acids and offers many entry points to decipher its physiological role. PMID:23872533

  1. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose.

    PubMed

    Thorn, K A; Kennedy, K R

    2002-09-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined. PMID:12322752

  2. 15N NMR investigation of the covalent binding of reduced TNT amines to soil humic acid, model compounds, and lignocellulose

    USGS Publications Warehouse

    Thorn, K.A.; Kennedy, K.R.

    2002-01-01

    The five major reductive degradation products of TNT-4ADNT (4-amino-2,6-dinitrotoluene), 2ADNT (2-amino-4,6-dinitrotoluene), 2,4DANT (2,4-diamino-6-nitrotoluene), 2,6DANT (2,6-diamino-4-nitrotoluene), and TAT (2,4,6-triaminotoluene)-labeled with 15N in the amine positions, were reacted with the IHSS soil humic acid and analyzed by 15N NMR spectrometry. In the absence of catalysts, all five amines underwent nucleophilic addition reactions with quinone and other carbonyl groups in the soil humic acid to form both heterocyclic and nonheterocyclic condensation products. Imine formation via 1,2-addition of the amines to quinone groups in the soil humic acid was significant with the diamines and TAT but not the monoamines. Horseradish peroxidase (HRP) catalyzed an increase in the incorporation of all five amines into the humic acid. In the case of the diamines and TAT, HRP also shifted the binding away from heterocyclic condensation product toward imine formation. A comparison of quantitative liquid phase with solid-state CP/MAS 15N NMR indicated that the CP experiment underestimated imine and heterocyclic nitrogens in humic acid, even with contact times optimal for observation of these nitrogens. Covalent binding of the mono- and diamines to 4-methylcatechol, the HRP catalyzed condensation of 4ADNT and 2,4DANT to coniferyl alcohol, and the binding of 2,4DANT to lignocellulose with and without birnessite were also examined.

  3. Solution NMR structure of yeast succinate dehydrogenase flavinylation factor Sdh5 reveals a putative Sdh1 binding site.

    PubMed

    Eletsky, Alexander; Jeong, Mi-Young; Kim, Hyung; Lee, Hsiau-Wei; Xiao, Rong; Pagliarini, David J; Prestegard, James H; Winge, Dennis R; Montelione, Gaetano T; Szyperski, Thomas

    2012-10-30

    The yeast mitochondrial protein Sdh5 is required for the covalent attachment of flavin adenine dinucleotide (FAD) to protein Sdh1, a subunit of the heterotetrameric enzyme succinate dehydrogenase. The NMR structure of Sdh5 represents the first eukaryotic structure of Pfam family PF03937 and reveals a conserved surface region, which likely represents a putative Sdh1-Sdh5 interaction interface. Point mutations in this region result in the loss of covalent flavinylation of Sdh1. Moreover, chemical shift perturbation measurements showed that Sdh5 does not bind FAD in vitro, indicating that it is not a simple cofactor transporter in vivo. PMID:23062074

  4. NMR investigations of protein-carbohydrate interactions binding studies and refined three-dimensional solution structure of the complex between the B domain of wheat germ agglutinin and N,N', N"-triacetylchitotriose.

    PubMed

    Espinosa, J F; Asensio, J L; García, J L; Laynez, J; Bruix, M; Wright, C; Siebert, H C; Gabius, H J; Cañada, F J; Jiménez-Barbero, J

    2000-07-01

    The specific interaction of the isolated B domain of wheat germ agglutinin (WGA-B) with N,N',N"-triacetylchitotriose has been analyzed by 1H-NMR spectroscopy. The association constants for the binding of WGA-B to this trisaccharide have been determined from both 1H-NMR titration experiments and microcalorimetry methods. Entropy and enthalpy of binding have been obtained. The driving force for the binding process is provided by a negative DeltaH which is partially compensated by negative DeltaS. These negative signs indicate that hydrogen bonding and van der Waals forces are the major interactions stabilizing the complex. NOESY NMR experiments in water solution provided 327 protein proton-proton distance constraints. All the experimental constraints were used in a refinement protocol including restrained molecular dynamics in order to determine the refined solution conformation of this protein/carbohydrate complex. With regard to the NMR structure of the free protein, no important changes in the protein NOEs were observed, indicating that carbohydrate-induced conformational changes are small. The average backbone rmsd of the 35 refined structures was 1.05 A, while the heavy atom rmsd was 2.10 A. Focusing on the bound ligand, two different orientations of the trisaccharide within WGA-B binding site are possible. It can be deduced that both hydrogen bonds and van der Waals contacts confer stability to both complexes. A comparison of the three-dimensional structure of WGA-B in solution to that reported in the solid state and to those deduced for hevein and pseudohevein in solution has also been performed. PMID:10866795

  5. Competitive counterion complexation allows the true host : guest binding constants from a single titration by ionic receptors.

    PubMed

    Pessêgo, Márcia; Basílio, Nuno; Muñiz, M Carmen; García-Río, Luis

    2016-07-01

    Counterion competitive complexation is a background process currently ignored by using ionic hosts. Consequently, guest binding constants are strongly affected by the design of the titration experiments in such a way that the results are dependent on the guest concentration and on the presence of added salts, usually buffers. In the present manuscript we show that these experimental difficulties can be overcome by just considering the counterion competitive complexation. Moreover a single titration allows us to obtain not only the true binding constants but also the stoichiometry of the complex showing the formation of 1 : 1 : 1 (host : guest : counterion) complexes. The detection of high stoichiometry complexes is not restricted to a single titration experiment but also to a displacement assay where both competitive and competitive-cooperative complexation models are taken into consideration. PMID:27278457

  6. Binding constants of membrane-anchored receptors and ligands: A general theory corroborated by Monte Carlo simulations.

    PubMed

    Xu, Guang-Kui; Hu, Jinglei; Lipowsky, Reinhard; Weikl, Thomas R

    2015-12-28

    Adhesion processes of biological membranes that enclose cells and cellular organelles are essential for immune responses, tissue formation, and signaling. These processes depend sensitively on the binding constant K2D of the membrane-anchored receptor and ligand proteins that mediate adhesion, which is difficult to measure in the "two-dimensional" (2D) membrane environment of the proteins. An important problem therefore is to relate K2D to the binding constant K3D of soluble variants of the receptors and ligands that lack the membrane anchors and are free to diffuse in three dimensions (3D). In this article, we present a general theory for the binding constants K2D and K3D of rather stiff proteins whose main degrees of freedom are translation and rotation, along membranes and around anchor points "in 2D," or unconstrained "in 3D." The theory generalizes previous results by describing how K2D depends both on the average separation and thermal nanoscale roughness of the apposing membranes, and on the length and anchoring flexibility of the receptors and ligands. Our theoretical results for the ratio K2D/K3D of the binding constants agree with detailed results from Monte Carlo simulations without any data fitting, which indicates that the theory captures the essential features of the "dimensionality reduction" due to membrane anchoring. In our Monte Carlo simulations, we consider a novel coarse-grained model of biomembrane adhesion in which the membranes are represented as discretized elastic surfaces, and the receptors and ligands as anchored molecules that diffuse continuously along the membranes and rotate at their anchor points. PMID:26723621

  7. Tb3+ and Ca2+ binding to phosphatidylcholine. A study comparing data from optical, NMR, and infrared spectroscopies.

    PubMed Central

    Petersheim, M; Halladay, H N; Blodnieks, J

    1989-01-01

    The paramagnetic and luminescent lanthanides are unique probes of cation-phospholipid interactions. Their spectroscopic properties provide the means to characterize and monitor complexes formed with lipids in ways not possible with biochemically more interesting cations, such as Ca2+. In this work, Tb3+-phosphatidylcholine complexes are described using the luminescence properties of Tb3+, the effect of its paramagnetism on the 31P NMR and 13C NMR spectra of the lipid, and changes in the infrared spectrum of the lipid induced by the cation. There are two Tb3+-phosphatidylcholine complexes with very different coordination environments, as evidenced by changes in the optical excitation spectrum of the lanthanide. The NMR experiments indicate that the two complexes differ in the number of phosphate groups directly coordinating Tb3+. Tb3+ binding induces changes in the phosphodiester infrared bands that are most consistent with bidentate chelation of Tb3+ by each phosphate, whereas Ca2+-induced changes are more consistent with monodentate coordination. The significance of this discrepancy is discussed. PMID:2790138

  8. Modeling data from titration, amide H/D exchange, and mass spectrometry to obtain protein-ligand binding constants.

    PubMed

    Zhu, Mei M; Rempel, Don L; Gross, Michael L

    2004-03-01

    We recently reported a new method for quantification of protein-ligand interaction by mass spectrometry, titration and H/D exchange (PLIMSTEX) for determining the binding stoichiometry and affinity of a wide range of protein-ligand interactions. Here we describe the method for analyzing the PLIMSTEX titration curves and evaluate the effect of various models on the precision and accuracy for determining binding constants using H/D exchange and a titration. The titration data were fitted using a 1:n protein:ligand sequential binding model, where n is the number of binding sites for the same ligand. An ordinary differential equation was used for the first time in calculating the free ligand concentration from the total ligand concentration. A nonlinear least squares regression method was applied to minimize the error between the calculated and the experimentally measured deuterium shift by varying the unknown parameters. A resampling method and second-order statistics were used to evaluate the uncertainties of the fitting parameters. The interaction of intestinal fatty-acid-binding protein (IFABP) with a fatty-acid carboxylate and that of calmodulin with Ca(2+) are used as two tests. The modeling process described here not only is a new tool for analyzing H/D exchange data acquired by ESI-MS, but also possesses novel aspects in modeling experimental titration data to determine the affinity of ligand binding. PMID:14998541

  9. The Binding Constant of Estradiol to Bovine Serum Albumin: An Upper-Level Experiment Utilizing Tritium-Labeled Estradiol and Liquid Scintillation Counting

    ERIC Educational Resources Information Center

    Peihong Liang; Adhyaru, Bhavin; Pearson, Wright L.; Williams, Kathryn R.

    2006-01-01

    The experiment used [to the third power]H-labeled estradiol to determine the binding constant of estradiol to bovine serum albumin. Estradiol must complex with serum proteins for the transport in the blood stream because of its low solubility in aqueous systems and estradiol-protein binding constant, where K[subscript B] is important to understand…

  10. Screening Mixtures of Small Molecules for Binding to Multiple Sites on the Surface Tetanus Toxin C Fragment by Bioaffinity NMR

    SciTech Connect

    Cosman, M; Zeller, L; Lightstone, F C; Krishnan, V V; Balhorn, R

    2002-01-01

    The clostridial neurotoxins include the closely related tetanus (TeNT) and botulinum (BoNT) toxins. Botulinum toxin is used to treat severe muscle disorders and as a cosmetic wrinkle reducer. Large quantities of botulinum toxin have also been produced by terrorists for use as a biological weapon. Because there are no known antidotes for these toxins, they thus pose a potential threat to human health whether by an accidental overdose or by a hostile deployment. Thus, the discovery of high specificity and affinity compounds that can inhibit their binding to neural cells can be used as antidotes or in the design of chemical detectors. Using the crystal structure of the C fragment of the tetanus toxin (TetC), which is the cell recognition and cell surface binding domain, and the computational program DOCK, sets of small molecules have been predicted to bind to two different sites located on the surface of this protein. While Site-1 is common to the TeNT and BoNTs, Site-2 is unique to TeNT. Pairs of these molecules from each site can then be linked together synthetically to thereby increase the specificity and affinity for this toxin. Electrospray ionization mass spectroscopy was used to experimentally screen each compound for binding. Mixtures containing binders were further screened for activity under biologically relevant conditions using nuclear magnetic resonance (NMR) methods. The screening of mixtures of compounds offers increased efficiency and throughput as compared to testing single compounds and can also evaluate how possible structural changes induced by the binding of one ligand can influence the binding of the second ligand. In addition, competitive binding experiments with mixtures containing ligands predicted to bind the same site could identify the best binder for that site. NMR transfer nuclear Overhauser effect (trNOE) confirm that TetC binds doxorubicin but that this molecule is displaced by N-acetylneuraminic acid (sialic acid) in a mixture that

  11. Distortional binding of transition state analogs to human purine nucleoside phosphorylase probed by magic angle spinning solid-state NMR.

    PubMed

    Vetticatt, Mathew J; Itin, Boris; Evans, Gary B; Schramm, Vern L

    2013-10-01

    Transition state analogs mimic the geometry and electronics of the transition state of enzymatic reactions. These molecules bind to the active site of the enzyme much tighter than substrate and are powerful noncovalent inhibitors. Immucillin-H (ImmH) and 4'-deaza-1'-aza-2'-deoxy-9-methylene Immucillin-H (DADMe-ImmH) are picomolar inhibitors of human purine nucleoside phosphorylase (hPNP). Although both molecules are electronically similar to the oxocarbenium-like dissociative hPNP transition state, DADMe-ImmH is more potent than ImmH. DADMe-ImmH captures more of the transition state binding energy by virtue of being a closer geometric match to the hPNP transition state than ImmH. A consequence of these similarities is that the active site of hPNP exerts greater distortional forces on ImmH than on DADMe-ImmH to "achieve" the hPNP transition state geometry. By using magic angle spinning solid-state NMR to investigate stable isotope-labeled ImmH and DADMe-ImmH, we have explored the difference in distortional binding of these two inhibitors to hPNP. High-precision determinations of internuclear distances from NMR recoupling techniques, rotational echo double resonance, and rotational resonance, have provided unprecedented atomistic insight into the geometric changes that occur upon binding of transition state analogs. We conclude that hPNP stabilizes conformations of these chemically distinct analogs having distances between the cation and leaving groups resembling those of the known transition state. PMID:24043827

  12. Electrostatic interactions in the binding pathway of a transient protein complex studied by NMR and isothermal titration calorimetry.

    PubMed

    Meneses, Erick; Mittermaier, Anthony

    2014-10-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr-Purcell-Meiboom-Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  13. The energetic cost of domain reorientation in maltose-binding protein as studied by NMR and fluorescence spectroscopy.

    PubMed

    Millet, Oscar; Hudson, Rhea P; Kay, Lewis E

    2003-10-28

    Maltose-binding protein (MBP) is a two-domain protein that undergoes a ligand-mediated conformational rearrangement from an "open" to a "closed" structure on binding to maltooligosaccharides. To characterize the energy landscape associated with this transition, we have generated five variants of MBP with mutations located in the hinge region of the molecule. Residual dipolar couplings, measured in the presence of a weak alignment medium, have been used to establish that the average structures of the mutant proteins are related to each other by domain rotation about an invariant axis, with the rotation angle varying from 5 degrees to 28 degrees. Additionally, the domain orientations observed in the wild-type apo and ligand-bound (maltose, maltotriose, etc.) structures are related through a rotation of 35 degrees about the same axis. Remarkably, the free energy of unfolding, measured by equilibrium denaturation experiments and monitored by fluorescence spectroscopy, shows a linear correlation with the rotation angle, with the stability of the (apo)protein decreasing with domain closure by 212 +/- 16 cal mol-1 per degree of rotation. The apparent binding energy for maltose also shows a similar correlation with the interdomain angle, suggesting that the mutations, as they relate to binding, affect predominantly the ligand-free structure. The linearity of the energy change is interpreted in terms of an increase in the extent of hydrophobic surface that becomes solvent accessible on closure. The combination of structural, stability, and binding data allows separation of the energetics of domain reorientation from ligand binding. This work presents a near quantitative structure-energy-binding relationship for a series of mutants of MBP, illustrating the power of combined studies involving protein engineering and solution NMR spectroscopy. PMID:14530390

  14. Electrostatic Interactions in the Binding Pathway of a Transient Protein Complex Studied by NMR and Isothermal Titration Calorimetry*

    PubMed Central

    Meneses, Erick; Mittermaier, Anthony

    2014-01-01

    Much of our knowledge of protein binding pathways is derived from extremely stable complexes that interact very tightly, with lifetimes of hours to days. Much less is known about weaker interactions and transient complexes because these are challenging to characterize experimentally. Nevertheless, these types of interactions are ubiquitous in living systems. The combination of NMR relaxation dispersion Carr–Purcell–Meiboom–Gill (CPMG) experiments and isothermal titration calorimetry allows the quantification of rapid binding kinetics for complexes with submillisecond lifetimes that are difficult to study using conventional techniques. We have used this approach to investigate the binding pathway of the Src homology 3 (SH3) domain from the Fyn tyrosine kinase, which forms complexes with peptide targets whose lifetimes are on the order of about a millisecond. Long range electrostatic interactions have been shown to play a critical role in the binding pathways of tightly binding complexes. The role of electrostatics in the binding pathways of transient complexes is less well understood. Similarly to previously studied tight complexes, we find that SH3 domain association rates are enhanced by long range electrostatics, whereas short range interactions are formed late in the docking process. However, the extent of electrostatic association rate enhancement is several orders of magnitudes less, whereas the electrostatic-free basal association rate is significantly greater. Thus, the SH3 domain is far less reliant on electrostatic enhancement to achieve rapid association kinetics than are previously studied systems. This suggests that there may be overall differences in the role played by electrostatics in the binding pathways of extremely stable versus transient complexes. PMID:25122758

  15. Salt-dependent structure change and ion binding in cytochrome c studied by two-dimensional proton NMR

    SciTech Connect

    Feng, Yiqing; Englander, S.W. )

    1990-04-10

    To search for salt-dependent structure changes that might help to explain physicochemical differences observed in previous solution studies, two-dimensional proton NMR spectra of reduced and oxidized cytochrome c were recorded at relatively high and low salt concentrations. The results rule out substantial ionic strength dependent structure change in either redox form over the salt concentrations tested. Chemical shift changes were found for several residues within a limited segment of the oxidized protein, most prominently in the sequence Lys-86, Lys-87, Lys-88, Thr-89. A salt-dependent binding of phosphate anion(s) at this site, as observed earlier by others, is indicated. The binding of one or two phosphates at the cytochrome c surface can explain earlier small-angle X-ray scattering observations of an increase in the calculated radius of gyration of the oxidized protein at the same low-salt condition used here. The results obtained support the view that the absence of sizeable redox-dependent structure change observed in X-ray and NMR studies at varying salt conditions is characteristic of the protein at all salt conditions above the low millimolar range. Physicochemical differences between oxidized and reduced cytochrome c apparently represent differences in stability without patent structure change.

  16. NMR characterization of HIV-1 reverse transcriptase binding to various non-nucleoside reverse transcriptase inhibitors with different activities

    PubMed Central

    Thammaporn, Ratsupa; Yagi-Utsumi, Maho; Yamaguchi, Takumi; Boonsri, Pornthip; Saparpakorn, Patchreenart; Choowongkomon, Kiattawee; Techasakul, Supanna; Kato, Koichi; Hannongbua, Supa

    2015-01-01

    Human immunodeficiency virus type 1 reverse transcriptase (HIV-1 RT) is an important target for antiviral therapy against acquired immunodeficiency syndrome. However, the efficiency of available drugs is impaired most typically by drug-resistance mutations in this enzyme. In this study, we applied a nuclear magnetic resonance (NMR) spectroscopic technique to the characterization of the binding of HIV-1 RT to various non-nucleoside reverse transcriptase inhibitors (NNRTIs) with different activities, i.e., nevirapine, delavirdine, efavirenz, dapivirine, etravirine, and rilpivirine. 1H-13C heteronuclear single-quantum coherence (HSQC) spectral data of HIV-1 RT, in which the methionine methyl groups of the p66 subunit were selectively labeled with 13C, were collected in the presence and absence of these NNRTIs. We found that the methyl 13C chemical shifts of the M230 resonance of HIV-1 RT bound to these drugs exhibited a high correlation with their anti-HIV-1 RT activities. This methionine residue is located in proximity to the NNRTI-binding pocket but not directly involved in drug interactions and serves as a conformational probe, indicating that the open conformation of HIV-1 RT was more populated with NNRTIs with higher inhibitory activities. Thus, the NMR approach offers a useful tool to screen for novel NNRTIs in developing anti-HIV drugs. PMID:26510386

  17. Bacterial cadherin domains as carbohydrate binding modules: determination of affinity constants to insoluble complex polysaccharides.

    PubMed

    Fraiberg, Milana; Borovok, Ilya; Weiner, Ronald M; Lamed, Raphael; Bayer, Edward A

    2012-01-01

    Cadherin (CA) and cadherin-like (CADG) doublet domains from the complex polysaccharide-degrading marine bacterium, Saccharophagus degradans 2-40, demonstrated reversible calcium-dependent binding to different complex polysaccharides, which serve as growth substrates for the bacterium. Here we describe a procedure based on adsorption of CA and CADG doublet domains to different insoluble complex polysaccharides, followed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) for visualizing and quantifying the distribution of cadherins between the bound and unbound fractions. Scatchard plots were employed to determine the kinetics of interactions of CA and CADG with several complex carbohydrates. On the basis of these binding studies, the CA and CADG doublet domains are proposed to form a new family of carbohydrate-binding module (CBM). PMID:22843394

  18. NMR assignments, secondary structure, and global fold of calerythrin, an EF-hand calcium-binding protein from Saccharopolyspora erythraea.

    PubMed Central

    Aitio, H.; Annila, A.; Heikkinen, S.; Thulin, E.; Drakenberg, T.; Kilpeläinen, I.

    1999-01-01

    Calerythrin is a 20 kDa calcium-binding protein isolated from gram-positive bacterium Saccharopolyspora erythraea. Based on amino acid sequence homology, it has been suggested that calerythrin belongs to the family of invertebrate sarcoplasmic EF-hand calcium-binding proteins (SCPs), and therefore it is expected to function as a calcium buffer. NMR spectroscopy was used to obtain structural information on the protein in solution. Backbone and side chain 1H, 13C, and 15N assignments were obtained from triple resonance experiments HNCACB, HN(CO)CACB, HNCO, CC(CO)NH, and [15N]-edited TOCSY, and HCCH-TOCSY. Secondary structure was determined by using secondary chemical shifts and characteristic NOEs. In addition, backbone N-H residual dipolar couplings were measured from a spin-state selective [1H, 15N] correlation spectrum acquired from a sample dissolved in a dilute liquid crystal. Four EF-hand motifs with characteristic helix-loop-helix patterns were observed. Three of these are typical calcium-binding EF-hands, whereas site 2 is an atypical nonbinding site. The global fold of calerythrin was assessed by dipolar couplings. Measured dipolar couplings were compared with values calculated from four crystal structures of proteins with sequence homology to calerythrin. These data allowed us to recognize an overall similarity between the folds of calerythrin and sarcoplasmic calcium-binding proteins from the sandworm Nereis diversicolor and the amphioxus Branchiostoma lanceolatum. PMID:10631973

  19. Interaction of phenylbutazone and colchicine in binding to serum albumin in rheumatoid therapy: 1H NMR study

    NASA Astrophysics Data System (ADS)

    Maciążek-Jurczyk, M.; Sułkowska, A.; Bojko, B.; Równicka-Zubik, J.; Sułkowski, W. W.

    2009-09-01

    The monitoring of drug concentration in blood serum is necessary in multi-drug therapy. Mechanism of drug binding with serum albumin (SA) is one of the most important factors which determine drug concentration and its transport to the destination tissues. In rheumatoid diseases drugs which can induce various adverse effects are commonly used in combination therapy. Such proceeding may result in the enhancement of those side effects due to drug interaction. Interaction of phenylbutazone and colchicine in binding to serum albumin and competition between them in gout has been studied by proton nuclear magnetic resonance ( 1H NMR) technique. The aim of the study was to determine the low affinity binding sites, the strength and kind of interaction between serum albumin and drugs used in combination therapy. The study of competition between phenylbutazone and colchicine in binding to serum albumin points to the change of their affinity to serum albumin in the ternary systems. This should be taken into account in multi-drug therapy. This work is a subsequent part of the spectroscopic study on Phe-COL-SA interactions [A. Sułkowska, et al., J. Mol. Struct. 881 (2008) 97-106].

  20. Determination of ligand binding constants for the iron-molybdenum cofactor of nitrogenase: monomers, multimers, and cooperative behavior.

    PubMed

    Frank, P; Angove, H C; Burgess, B K; Hodgson, K O

    2001-09-01

    Equilibrium titrations in N-methylformamide (NMF) of G-25 gel filtered (ox)-state FeMo cofactor [FeMoco(ox)] from Azotobacter vinelandii nitrogenase were carried out using sodium ethanethiolate and followed using UV/Vis absorption spectroscopy. For Fe-Moco(ox), a non-linear least squares (NLLSQ) fit to the data indicated a strong equilibrium thiolate-binding step with Keq = 1.3+/-0.2x10(6) M(-1). With 245 molar excess imidazole, cooperative binding of three ethanethiolates was observed. The best NLLSQ fit gave Keq=2.0+/-0.1x10(5) M(-2) and a Hill coefficient n=2.0+/-0.3. A Scatchard plot of these data was concave upward, indicating positive cooperativity. The fit to previously published data involving benzenethiol titration of the one-electron reduced (semi-reduced) cofactor, FeMoco(sr), as followed by EPR required a model that included both a sub-stoichiometric ratio of thiol to FeMoco(sr) and about five cooperative ligand binding sites. These constraints were met by modeling FeMoco(sr) as an aggregate, with fewer thiol binding sites than FeMoco(sr) units. The best fit model was that of FeMoco(sr) as a dodecamer with five cooperative benzenethiol binding sites, yielding a thiol binding constant of 3.32+/-0.09x10(4) M(-4.8) and a Hill coefficient n=4.8+/-0.6. The results of all the other published ligand titrations of FeMoco(sr) were similarly analyzed successfully in terms of equilibrium models that include both cooperative ligand binding and dimer-level aggregation. A possible structural model for FeMoco aggregation in NMF solution is proposed. PMID:11681702

  1. Minimalist Relativistic Force Field: Prediction of Proton-Proton Coupling Constants in (1)H NMR Spectra Is Perfected with NBO Hybridization Parameters.

    PubMed

    Kutateladze, Andrei G; Mukhina, Olga A

    2015-05-15

    We previously developed a reliable method for multiparametric scaling of Fermi contacts to achieve fast and accurate prediction of proton-proton spin-spin coupling constants (SSCC) in (1)H NMR. We now report that utilization of NBO hybridization coefficients for carbon atoms in the involved C-H bonds allows for a significant simplification of this parametric scheme, requiring only four general types of SSCCs: geminal, vicinal, 1,3-, and long-range constants. The method is optimized for inexpensive B3LYP/6-31G(d) molecular geometries. A new DU8 basis set, based on a training set of 475 experimental spin-spin coupling constants, is developed for hydrogen and common non-hydrogen atoms (Li, B, C, N, O, F, Si, P, S, Cl, Se, Br, I) to calculate Fermi contacts. On a test set of 919 SSCCs from a diverse collection of natural products and complex synthetic molecules the method gave excellent accuracy of 0.29 Hz (rmsd) with the maximum unsigned error not exceeding 1 Hz. PMID:25885091

  2. Ionization of isocitrate bound to pig hear NADP/sup +/-dependent isocitrate dehydrogenase: /sup 13/C NMR study of substrate binding

    SciTech Connect

    Ehrlich, R.S.; Colman, R.F.

    1987-06-16

    Isocitrate and ..cap alpha..-ketoglutarate have been synthesized with carbon-13 enrichment at specific positions. The /sup 13/C NMR spectra of these derivatives were measured as a function of pH. The magnitudes of the changes in chemical shifts with pH for free isocitrate and the magnesium-isocitrate complex suggest that the primary site of ionization at the ..beta..-carboxyl. In the presence of the enzyme NADP/sup +/-dependent isocitrate dehydrogenase and the activating metal magnesium, the carbon-13 resonances of all three carboxyls remain constant from pH 5.5 to pH 7.5. Thus, the carboxyls remain in the ionized form in the enzyme-isocitrate complex. The ..cap alpha..-hydroxyl carbon resonance could not be located in the enzyme-isocitrate complex, suggesting immobilization of this group. Magnesium produces a 2 ppm downfield shift of the ..beta..-carboxyl but does not change the resonances of the ..cap alpha..- and ..gamma..-carboxyls. This result is consistent with metal activation of both the dehydrogenation and decarboxylation reactions. The /sup 13/C NMR spectrum of ..cap alpha..-ketoglutarate remains unchanged in the presence of isocitrate dehydrogenase, implying the absence of alterations in geometry in the enzyme-bound form. Formation of the quaternary complex with Mg/sup 2 +/ and NADPH leads to loss of the ..cap alpha..-ketoglutarate resonances and the appearance of new resonances characteristic of ..cap alpha..-hydroxyglutarate. In addition, a broad peak ascribed to the enol form of ..cap alpha..-ketoglutarate is observed. The substantial change in the shift of the ..beta..-carboxyl of isocitrate and the lack of significant shifts in the other carboxyls of isocitrate or ..cap alpha..-ketoglutarate suggest that interaction of the ..beta..-carboxyl with the enzyme contributes to the tighter binding of isocitrate and may be significant for the oxidative decarboxylation function of isocitrate dehydrogenase.

  3. Structure and Dynamic Properties of a Ti-Binding Peptide Bound to TiO2 Nanoparticles As Accessed by (1)H NMR Spectroscopy.

    PubMed

    Suzuki, Yu; Shindo, Heisaburo; Asakura, Tetsuo

    2016-05-26

    Saturation transfer difference (STD) NMR spectroscopy is a powerful method for detecting and characterizing ligand-receptor interactions. In this study, the STD method was used to characterize the interactions of a Ti-binding peptide (TBP:RKLPDA) with TiO2 nanoparticles. The water peak in the NMR spectrum was selectively saturated, and the STD amplitudes for TBP were observed in the presence of TiO2, demonstrating that the side chains of the N-terminal residues Arg1 and Lys2 exhibit the strongest saturation transfer effect from water molecules; i.e., the two N-terminal residues are in contact with the TiO2 surface. The relaxation rate in the rotating frame, R1ρ, was observed to be high at the N-terminal residues; R1ρ decelerated toward the C-terminus, indicating that the N-terminal residues serve as anchors on the TiO2 surface and that the TBP motion bound to TiO2 particles is modeled as a wobble-in-cone with a fairly flexible C-terminus. The dissociation constant Kd of the TBP-TiO2 nanoparticle complex was 4.9 ± 1.8 mM, as estimated from the STD experiments and R1ρ measurements. The combination of these results and the negative zeta potential of the TiO2 surface validate that both the positively charged guanidyl group of Arg1 and amino group of Lys2 play key roles in interaction with the TiO2 surface by electrostatic force. PMID:27138325

  4. Binding constants of divalent mercury (Hg2+) in soil humic acids and soil organic matter.

    PubMed

    Khwaja, Abdul R; Bloom, Paul R; Brezonik, Patrick L

    2006-02-01

    Distribution coefficients (K(OC)) for Hg2+ binding by IHSS Pahokee peat humic acid (PHA) and humic acids separated from O-horizons and peats in a northern temperate forest were determined using a competitive ligand-exchange method. All measurements were made at low ratios of added Hg2+ to reduced S. The commonly used chelating agents, EGTA and DTPA, were found to be ineffective competitive ligands; thus, we used DL-penicillamine, a synthetic amino acid with a thiol group. Calculated free [Hg2+] at equilibrium is very low, ranging from 10(-26.4) at pH 1.9 to 10(-36.9) at pH 5.8. Corresponding log Koc values ranged from 22.6 to 32.8. The slope of the plot of pH versus log K(OC) was 2.68, suggesting that two or more protons are released when each Hg2+ is bound. This is consistent with binding of Hg2+ to bidentate thiol sites with some participation of a third weak-acid group, presumably a thiol. The 1:2 stoichiometry is consistent with X-ray spectroscopy data for Hg2+ bound to HA and with other pH-dependency results showing release of two protons with the binding of each Hg2+. Our K(OC) values are much greater than indicated by the data from most previous studies. PMID:16509327

  5. Spectrophotometric Determination of Iron(III)-Glycine Formation Constant in Aqueous Medium Using Competitive Ligand Binding

    ERIC Educational Resources Information Center

    Prasad, Rajendra; Prasad, Surendra

    2009-01-01

    The formation constant of iron(III) complex with glycine (Gly) ligand in aqueous acidic medium (0.2 M HNO[subscript 3], I = 0.2 M at 28 plus or minus 1 degree C) was determined spectrophotometrically in which a competing color reaction between Fe(III) and SCN[superscript -] was used as an indicator reaction. Under the specified conditions Fe(III)…

  6. NMR structure and dynamics of the RNA-binding site for the histone mRNA stem-loop binding protein.

    PubMed Central

    DeJong, Eric S; Marzluff, William F; Nikonowicz, Edward P

    2002-01-01

    The 3' end of replication-dependent histone mRNAs terminate in a conserved sequence containing a stem-loop. This 26-nt sequence is the binding site for a protein, stem-loop binding protein (SLBP), that is involved in multiple aspects of histone mRNA metabolism and regulation. We have determined the structure of the 26-nt sequence by multidimensional NMR spectroscopy. There is a 16-nt stem-loop motif, with a conserved 6-bp stem and a 4-nt loop. The loop is closed by a conserved U.A base pair that terminates the canonical A-form stem. The pyrimidine-rich 4-nt loop, UUUC, is well organized with the three uridines stacking on the helix, and the fourth base extending across the major groove into the solvent. The flanking nucleotides at the base of the hairpin stem do not assume a unique conformation, despite the fact that the 5' flanking nucleotides are a critical component of the SLBP binding site. PMID:11871662

  7. Quantifying Protein-Ligand Binding Constants using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors

    NASA Astrophysics Data System (ADS)

    Cubrilovic, Dragana; Biela, Adam; Sielaff, Frank; Steinmetzer, Torsten; Klebe, Gerhard; Zenobi, Renato

    2012-10-01

    NanoESI-MS is used for determining binding strengths of trypsin in complex with two different series of five congeneric inhibitors, whose binding affinity in solution depends on the size of the P3 substituent. The ligands of the first series contain a 4-amidinobenzylamide as P1 residue, and form a tight complex with trypsin. The inhibitors of the second series have a 2-aminomethyl-5-chloro-benzylamide as P1 group, and represent a model system for weak binders. The five different inhibitors of each group are based on the same scaffold and differ only in the length of the hydrophobic side chain of their P3 residue, which modulates the interactions in the S3/4 binding pocket of trypsin. The dissociation constants (KD) for high affinity ligands investigated by nanoESI-MS ranges from 15 nM to 450 nM and decreases with larger hydrophobic P3 side chains. Collision-induced dissociation (CID) experiments of five trypsin and benzamidine-based complexes show a correlation between trends in KD and gas-phase stability. For the second inhibitor series we could show that the effect of imidazole, a small stabilizing additive, can avoid the dissociation of the complex ions and as a result increases the relative abundance of weakly bound complexes. Here the KD values ranging from 2.9 to 17.6 μM, some 1-2 orders of magnitude lower than the first series. For both ligand series, the dissociation constants (KD) measured via nanoESI-MS were compared with kinetic inhibition constants (Ki) in solution.

  8. Structural requirements of tetracycline-Tet repressor interaction: determination of equilibrium binding constants for tetracycline analogs with the Tet repressor.

    PubMed Central

    Degenkolb, J; Takahashi, M; Ellestad, G A; Hillen, W

    1991-01-01

    We used the Tn10-encoded Tet repressor, which has a highly specific binding capacity for tetracycline, to probe contacts between the drug and protein by chemical interference studies of the antibiotic. For that purpose, the equilibrium association constants of modified tetracyclines with the Tet repressor and Mg2+ cations were determined quantitatively. The results confirm the previous notion that Mg2+ probably binds with the oxygens at positions 11 and 12 and is absolutely required for protein-drug recognition. Modifications were introduced at positions seven, six, five, and four of the drug, and anhydrotetracycline was also studied. Substitutions or eliminations of functions at these positions influenced binding to the Tet repressor up to 35-fold. The introduction of an azido function at position seven in 7-azidotetracycline and epimerization of the substituents at position four in 4-epitetracycline lead to a 2- or 25-fold reduction, respectively, of Tet repressor affinity in those compounds. Anhydrotetracycline bound about 35-fold more strongly than tetracycline did, indicating that the oxygen at position 11 may be involved in Tet repressor recognition. This increased binding is in contrast to the lower antibiotic activity of anhydrotetracycline and indicates that the Tet repressor and ribosomes recognize the drug differently. PMID:1929330

  9. The binding of metal ions and angiotensin converting enzyme (ACE) inhibitor by 13C NMR

    NASA Astrophysics Data System (ADS)

    Sakamoto, Yohko; Sakamoto, Yuko; Ishii, Tomoko; Ohmoto, Taichi

    1991-06-01

    Enalaprilat (MK-422, 1- [ N- [1 (S)-carboxy-3-phenylpropyl]- L-alanyl]- L-proline (1)) and Lisinopril (MK521, N- N- [ (s)-l-carboxy-3- phenylpropyl]- L-lysyl- L-proline, (2)) exhibit the capacity to act as a chelate, unidentate or bridge towards metal ions in aqueous solution, as determined by 13C NMR. By adding metal ions, in the series of Zn 2+, Ni 2+, Pb 2+, Pd 2+ and Cd 2+, the active site of the ACE inhibitor was well defined. MK-521 was more influenced by nuclei that were distant from the active site than MK-422.

  10. The RXR{alpha} C-terminus T462 is a NMR sensor for coactivator peptide binding

    SciTech Connect

    Lu Jianyun Chen Minghe; DeKoster, Gregory T.; Cistola, David P.; Li, Ellen

    2008-02-22

    The C-terminal activation function-2 (AF-2) helix plays a crucial role in retinoid X receptor alpha (RXR{alpha})-mediated gene expression. Here, we report a nuclear magnetic resonance (NMR) study of the RXR{alpha} ligand-binding domain complexed with 9-cis-retinoic acid and a glucocorticoid receptor-interacting protein 1 peptide. The AF-2 helix and most of the C-terminal residues were undetectable due to a severe line-broadening effect. Due to its outstanding signal-to-noise ratio, the C-terminus residue, threonine 462 (T462) exhibited two distinct crosspeaks during peptide titration, suggesting that peptide binding was in a slow exchange regime on the chemical shift timescale. Consistently, the K{sub d} derived from T462 intensity decay agreed with that derived from isothermal titration calorimetry. Furthermore, the exchange contribution to the {sup 15}N transverse relaxation rate was measurable in either T462 or the bound peptide. These results suggest that T462 is a sensor for coactivator binding and is a potential probe for AF-2 helix mobility.

  11. NMR Binding and Functional Assays for Detecting Inhibitors of S. aureus MnaA.

    PubMed

    Hou, Yan; Mayhood, Todd; Sheth, Payal; Tan, Christopher M; Labroli, Marc; Su, Jing; Wyss, Daniel F; Roemer, Terry; McCoy, Mark A

    2016-07-01

    Nonessential enzymes in the staphylococcal wall teichoic acid (WTA) pathway serve as highly validated β-lactam potentiation targets. MnaA (UDP-GlcNAc 2-epimerase) plays an important role in an early step of WTA biosynthesis by providing an activated form of ManNAc. Identification of a selective MnaA inhibitor would provide a tool to interrogate the contribution of the MnaA enzyme in the WTA pathway as well as serve as an adjuvant to restore β-lactam activity against methicillin-resistant Staphylococcus aureus (MRSA). However, development of an epimerase functional assay can be challenging since both MnaA substrate and product (UDP-GlcNAc/UDP-ManNAc) share an identical molecular weight. Herein, we developed a nuclear magnetic resonance (NMR) functional assay that can be combined with other NMR approaches to triage putative MnaA inhibitors from phenotypic cell-based screening campaigns. In addition, we determined that tunicamycin, a potent WTA pathway inhibitor, inhibits both S. aureus MnaA and a functionally redundant epimerase, Cap5P. PMID:27028606

  12. Thin-layer chromatography combined with MALDI-TOF-MS and 31P-NMR to study possible selective bindings of phospholipids to silica gel.

    PubMed

    Teuber, Kristin; Riemer, Thomas; Schiller, Jürgen

    2010-12-01

    High-performance thin-layer chromatography (HPTLC) is a highly established separation method in the field of lipid and (particularly) phospholipid (PL) research. HPTLC is not only used to identify certain lipids in a mixture but also to isolate lipids (preparative TLC). To do this, the lipids are separated and subsequently re-eluted from the silica gel. Unfortunately, it is not yet known whether all PLs are eluted to the same extent or whether some lipids bind selectively to the silica gel. It is also not known whether differences in the fatty acyl compositions affect the affinities to the stationary phase. We have tried to clarify these questions by using a readily available extract from hen egg yolk as a selected example of a lipid mixture. After separation, the complete lanes or selected spots were eluted from the silica gel and investigated by a combination of MALDI-TOF MS and (31)P NMR spectroscopy. The data obtained were compared with the composition of the total extract (without HPTLC). Although there were significant, solvent-dependent losses in the amount of each lipid, the relative composition of the mixture remained constant; there were also only very slight changes in the fatty acyl compositions of the individual PL classes. Therefore, lipid isolation by TLC may be used without any risk of major sample alterations. PMID:20694807

  13. Large structure rearrangement of colicin ia channel domain after membrane binding from 2D 13C spin diffusion NMR.

    PubMed

    Luo, Wenbin; Yao, Xiaolan; Hong, Mei

    2005-05-01

    One of the main mechanisms of membrane protein folding is by spontaneous insertion into the lipid bilayer from the aqueous environment. The bacterial toxin, colicin Ia, is one such protein. To shed light on the conformational changes involved in this dramatic transfer from the polar to the hydrophobic milieu, we carried out 2D magic-angle spinning (13)C NMR experiments on the water-soluble and membrane-bound states of the channel-forming domain of colicin Ia. Proton-driven (13)C spin diffusion spectra of selectively (13)C-labeled protein show unequivocal attenuation of cross-peaks after membrane binding. This attenuation can be assigned to distance increases but not reduction of the diffusion coefficient. Analysis of the statistics of the interhelical and intrahelical (13)C-(13)C distances in the soluble protein structure indicates that the observed cross-peak reduction is well correlated with a high percentage of short interhelical contacts in the soluble protein. This suggests that colicin Ia channel domain becomes open and extended upon membrane binding, thus lengthening interhelical distances. In comparison, cross-peaks with similar intensities between the two states are dominated by intrahelical contacts in the soluble state. This suggests that the membrane-bound structure of colicin Ia channel domain may be described as a "molten globule", in which the helical secondary structure is retained while the tertiary structure is unfolded. This study demonstrates that (13)C spin diffusion NMR is a valuable tool for obtaining qualitative long-range distance constraints on membrane protein folding. PMID:15853348

  14. NMR spin-spin coupling constants: bond angle dependence of the sign and magnitude of the vicinal (3)JHF coupling.

    PubMed

    Viesser, Renan V; Ducati, Lucas C; Autschbach, Jochen; Tormena, Cláudio F

    2016-08-24

    The dependence of the magnitude and sign of (3)JHFF on the bond angle in fluoro-cycloalkene compounds is evaluated by electronic structure calculations using different levels of theory, viz. DFT, SOPPA(CCSD) and SOPPA(CC2). Localized molecular orbital contributions to (3)JHFF are analyzed to assess which orbitals are responsible for (3)JHFF and which are the most important coupling transmission mechanisms for each compound. Fluoro-ethylene is used as a model system to evaluate the dependence of the (3)JHFF coupling constant on the angle between the σCα-F and σCα'-HF vectors. Through-space and hyperconjugative transmission pathways and ring strain are identified as responsible for the opposite trend between (3)JHFF and bond angle, and for the negative signs obtained for the two molecules, respectively. One of the fluorine lone pairs, σCα'-HF, σCα-F, σCα'-Cβ' bonding orbitals and the σ*Cα-F antibonding orbital are involved in the J-coupling pathways, according to analyses of pairwise-steric and hyperconjugative energies. PMID:27526856

  15. NMR studies of a new family of DNA binding proteins: the THAP proteins.

    PubMed

    Gervais, Virginie; Campagne, Sébastien; Durand, Jade; Muller, Isabelle; Milon, Alain

    2013-05-01

    The THAP (THanatos-Associated Protein) domain is an evolutionary conserved C2CH zinc-coordinating domain shared with a large family of cellular factors (THAP proteins). Many members of the THAP family act as transcription factors that control cell proliferation, cell cycle progression, angiogenesis, apoptosis and epigenetic gene silencing. They recognize specific DNA sequences in the promoters of target genes and subsequently recruit effector proteins. Recent structural and functional studies have allowed getting better insight into the nuclear and cellular functions of some THAP members and the molecular mechanisms by which they recognize DNA. The present article reviews recent advances in the knowledge of the THAP domains structures and their interaction with DNA, with a particular focus on NMR. It provides the solution structure of the THAP domain of THAP11, a recently characterized human THAP protein with important functions in transcription and cell growth in colon cancer. PMID:23306615

  16. NMR study of the phosphoryl binding loop in purine nucleotide proteins: Evidence for strong hydrogen binding in human N-ras p21

    SciTech Connect

    Redfield, A.G.; Papastavros, M.Z. )

    1990-04-10

    The structure of the phosphoryl binding region of human N-ras p21 was probed by using heteronuclear proton-observed NMR methods. Normal protein and a Gly-12 {yields} Asp-12 mutant protein were prepared with two amino acids labeled with {sup 15}N at their amide positions: valine and glycine, aspartic acid and glycine, and lysine and glycine. The authors completed the identification of amide {sup 15}NH resonances from Gly-12 and Asp-12 to the end of the phosphoryl binding domain consensus sequence (Lys-16) in protein complexed with GDP and have made tentative amide identifications from Val-9 to Ser-17. The methods used, together with initial identifications of the Gly-12 and -13 amide resonances, were described previously. The amide resonances of both Gly-13 and Lys-16 are shifted downfield below 10.4 ppm in both the normal and mutant proteins. These downfield shifts are presumed to be due to strong hydrogen bonds with the {beta}-phosphate of GDP.

  17. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  18. USING 19F-NMR SPECTROSCOPY TO DETERMINE TRIFLURALIN BINDING TO SOIL

    EPA Science Inventory

    Trifluralin is a widely used herbicide for the control of broad leaf weeds in a variety of crops. Its binding to soil may result in significant losses in herbicidal activity and a delayed pollution problem. To investigate the nature of soil-bound trifluralin residues, 14

  19. Strategies for the uses of lanthanide NMR shift probes in the determination of protein structure in solutio. Application to the EF calcium binding site of carp parvalbumin.

    PubMed

    Lee, L; Sykes, B D

    1980-10-01

    The homologous sequences observed for many calcium binding proteins such as parvalbumin, troponin C, the myosin light chains, and calmodulin has lead to the hypothesis that these proteins have homologous structures at the level of their calcium binding sites. This paper discusses the development of a nuclear magnetic resonance (NMR) technique which will enable us to test this structural hypothesis in solution. The technique involves the substitution of a paramagnetic lanthanide ion for the calcium ion which results in lanthanide induced shifts and broadening in the 1H NMR spectrum of the protein. These shifts are sensitive monitors of the precise geometrical orientation of each proton nucleus relative to the metal. The values of several parameters in the equation relating the NMR shifts to the structure are however known as priori. We have attempted to determine these parameters, the orientation and principal elements of the magnetic susceptibility tensor of the protein bound metal, by studying the lanthanide induced shifts for the protein parvalbumin whose structure has been determined by x-ray crystallographic techniques. The interaction of the lanthanide ytterbium with parvalbumin results in high resolution NMR spectra exhibiting a series of resonances with shifts spread over the range 32 to -19 ppm. The orientation and principal elements of the ytterbium magnetic susceptibility tensor have been determined using three assigned NMR resonances, the His-26 C2 and C4 protons and the amino terminal acetyl protons, and seven methyl groups; all with known geometry relative to the EF calcium binding site. The elucidation of these parameters has allowed us to compare the observed spectrum of the nuclei surrounding the EF calcium binding site of parvalbumin with that calculated from the x-ray structure. A significant number of the calculated shifts are larger than any of the observed shifts. We feel that a refinement of the x-ray based proton coordinates will be possible

  20. Absolute NMR shielding scales and nuclear spin–rotation constants in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br and {sup 127}I)

    SciTech Connect

    Demissie, Taye B. Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth; Jaszuński, Michał

    2015-10-28

    We present nuclear spin–rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in {sup 175}LuX and {sup 197}AuX (X = {sup 19}F, {sup 35}Cl, {sup 79}Br, {sup 127}I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin–rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin–rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin–rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin–rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  1. Absolute NMR shielding scales and nuclear spin-rotation constants in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br and (127)I).

    PubMed

    Demissie, Taye B; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-28

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in (175)LuX and (197)AuX (X = (19)F, (35)Cl, (79)Br, (127)I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides. PMID:26520517

  2. Absolute NMR shielding scales and nuclear spin-rotation constants in 175LuX and 197AuX (X = 19F, 35Cl, 79Br and 127I)

    NASA Astrophysics Data System (ADS)

    Demissie, Taye B.; Jaszuński, Michał; Komorovsky, Stanislav; Repisky, Michal; Ruud, Kenneth

    2015-10-01

    We present nuclear spin-rotation constants, absolute nuclear magnetic resonance (NMR) shielding constants, and shielding spans of all the nuclei in 175LuX and 197AuX (X = 19F, 35Cl, 79Br, 127I), calculated using coupled-cluster singles-and-doubles with a perturbative triples (CCSD(T)) correction theory, four-component relativistic density functional theory (relativistic DFT), and non-relativistic DFT. The total nuclear spin-rotation constants determined by adding the relativistic corrections obtained from DFT calculations to the CCSD(T) values are in general in agreement with available experimental data, indicating that the computational approach followed in this study allows us to predict reliable results for the unknown spin-rotation constants in these molecules. The total NMR absolute shielding constants are determined for all the nuclei following the same approach as that applied for the nuclear spin-rotation constants. In most of the molecules, relativistic effects significantly change the computed shielding constants, demonstrating that straightforward application of the non-relativistic formula relating the electronic contribution to the nuclear spin-rotation constants and the paramagnetic contribution to the shielding constants does not yield correct results. We also analyze the origin of the unusually large absolute shielding constant and its relativistic correction of gold in AuF compared to the other gold monohalides.

  3. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-01

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D 1H/13C/1H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond 13C/1H and 13C/13C chemical shift correlations, the 3D 1H/13C/1H experiment also provides a COSY-type 1H/1H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices (1H/1H chemical shift correlation spectrum) at different 13C chemical shift frequencies from the 3D 1H/13C/1H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D 1H/13C/1H experiment would be useful to study the structure and dynamics of a variety of chemical and biological

  4. Constant-time 2D and 3D through-bond correlation NMR spectroscopy of solids under 60 kHz MAS.

    PubMed

    Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2016-01-21

    Establishing connectivity and proximity of nuclei is an important step in elucidating the structure and dynamics of molecules in solids using magic angle spinning (MAS) NMR spectroscopy. Although recent studies have successfully demonstrated the feasibility of proton-detected multidimensional solid-state NMR experiments under ultrafast-MAS frequencies and obtaining high-resolution spectral lines of protons, assignment of proton resonances is a major challenge. In this study, we first re-visit and demonstrate the feasibility of 2D constant-time uniform-sign cross-peak correlation (CTUC-COSY) NMR experiment on rigid solids under ultrafast-MAS conditions, where the sensitivity of the experiment is enhanced by the reduced spin-spin relaxation rate and the use of low radio-frequency power for heteronuclear decoupling during the evolution intervals of the pulse sequence. In addition, we experimentally demonstrate the performance of a proton-detected pulse sequence to obtain a 3D (1)H/(13)C/(1)H chemical shift correlation spectrum by incorporating an additional cross-polarization period in the CTUC-COSY pulse sequence to enable proton chemical shift evolution and proton detection in the incrementable t1 and t3 periods, respectively. In addition to through-space and through-bond (13)C/(1)H and (13)C/(13)C chemical shift correlations, the 3D (1)H/(13)C/(1)H experiment also provides a COSY-type (1)H/(1)H chemical shift correlation spectrum, where only the chemical shifts of those protons, which are bonded to two neighboring carbons, are correlated. By extracting 2D F1/F3 slices ((1)H/(1)H chemical shift correlation spectrum) at different (13)C chemical shift frequencies from the 3D (1)H/(13)C/(1)H spectrum, resonances of proton atoms located close to a specific carbon atom can be identified. Overall, the through-bond and through-space homonuclear/heteronuclear proximities determined from the 3D (1)H/(13)C/(1)H experiment would be useful to study the structure and dynamics of

  5. A solution NMR study of the interactions of oligomannosides and the anti-HIV-1 2G12 antibody reveals distinct binding modes for branched ligands.

    PubMed

    Enríquez-Navas, Pedro M; Marradi, Marco; Padro, Daniel; Angulo, Jesús; Penadés, Soledad

    2011-02-01

    The structural and affinity details of the interactions of synthetic oligomannosides, linear (di-, tri-, and tetra-) and branched (penta- and hepta-), with the broadly neutralizing anti-HIV-1 antibody 2G12 (HIV=human immunodeficiency virus) have been investigated in solution by using ligand-based NMR techniques, specifically saturation transfer difference (STD) NMR spectroscopy and transferred NOE experiments. Linear oligomannosides show similar binding modes to the antibody, with the nonreducing terminal disaccharide Manα(1→2)Man (Man=mannose) making the closest protein/ligand contacts in the bound state. In contrast, the branched pentamannoside shows two alternate binding modes, involving both ligand arms (D2- and D3-like), a dual binding description of the molecular recognition of this ligand by 2G12 in solution that differs from the single binding mode deduced from X-ray studies. On the contrary, the antibody shows an unexpected selectivity for one arm (D1-like) of the other branched ligand (heptamannoside). This result explains the previously reported lack of affinity enhancement relative to that of the D1-like tetramannoside. Single-ligand STD NMR titration experiments revealed noticeable differences in binding affinities among the linear and branched ligands in solution, with the latter showing decreased affinity. Among the analyzed series of ligands, the strongest 2G12 binders were the linear tri- and tetramannosides because both show similar affinity for the antibody. These results demonstrate that NMR spectroscopic techniques can deliver abundant structural, dynamics, and affinity information for the characterization of oligomannose-2G12 binding in solution, thus complementing, and, as in the case of the pentamannoside, extending, the structural view from X-ray crystallography. This information is of key importance for the development of multivalent synthetic gp120 high-mannose glycoconjugate mimics in the context of vaccine development. PMID:21268157

  6. Saturation-Transfer Difference (STD) NMR: A Simple and Fast Method for Ligand Screening and Characterization of Protein Binding

    ERIC Educational Resources Information Center

    Viegas, Aldino; Manso, Joao; Nobrega, Franklin L.; Cabrita, Eurico J.

    2011-01-01

    Saturation transfer difference (STD) NMR has emerged as one of the most popular ligand-based NMR techniques for the study of protein-ligand interactions. The success of this technique is a consequence of its robustness and the fact that it is focused on the signals of the ligand, without any need of processing NMR information about the receptor…

  7. /sup 113/Cd NMR studies of a 1:1 Cd adduct with an 18-residue finger peptide from HIV-1 nucleic acid binding protein, p7

    SciTech Connect

    South, T.L.; Kim, B.; Summers, M.F.

    1989-01-04

    The Zn/sup 2+/ and Cd/sup 2+/ adducts with the 18-residue peptide comprising the amino acid sequence of the first finger (residues 13 through 30) of retroviral nucleic acid binding proteins p7 from HIV-1 (the causative agent of AIDS) have been prepared. /sup 1/H NMR data indicate that the metal adducts are 1:1 compounds that are stable in aqueous solutions for at least a month. The /sup 113/Cd NMR spectral results for the adduct are presented and analyzed. 26 references, 3 figures.

  8. NMR structure of the amino-terminal domain from the Tfb1 subunit of TFIIH and characterization of its phosphoinositide and VP16 binding sites.

    PubMed

    Di Lello, Paola; Nguyen, Bao D; Jones, Tamara N; Potempa, Krzysztof; Kobor, Michael S; Legault, Pascale; Omichinski, James G

    2005-05-31

    General transcription factor IIH (TFIIH) is recruited to the preinitiation complex (PIC) through direct interactions between its p62 (Tfb1) subunit and the carboxyl-terminal domain of TFIIEalpha. TFIIH has also been shown to interact with a number of transcriptional activator proteins through interactions with the same p62 (Tfb1) subunit. We have determined the NMR solution structure of the amino-terminal domain from the Tfb1 subunit of yeast TFIIH (Tfb1(1-115)). Like the corresponding domain from the human p62 protein, Tfb1(1-115) contains a PH domain fold despite a low level of sequence identity between the two functionally homologous proteins. In addition, we have performed in vitro binding studies that demonstrate that the PH domains of Tfb1 and p62 specifically bind to monophosphorylated inositides [PtdIns(5)P and PtdIns(3)P]. NMR chemical shift mapping demonstrated that the PtdIns(5)P binding site on Tfb1 (p62) is located in the basic pocket formed by beta-strands beta5-beta7 of the PH domain fold. Interestingly, the structural composition of the PtdIns(5)P binding site is different from the composition of the binding sites for phosphoinositides on prototypic PH domains. We have also determined that the PH domains from Tfb1 and p62 are sufficient for binding to the activation domain of VP16. NMR chemical shift mapping demonstrated that the VP16 binding site within the PH domain of Tfb1 (p62) overlaps with the PtdIns(5)P binding site on Tfb1 (p62). These results provide new information about the recognition of phosphoinositides by PH domains, and point to a potential role for phosphoinositides in VP16 regulation. PMID:15909982

  9. Targeting bacterial membranes: NMR spectroscopy characterization of substrate recognition and binding requirements of D-arabinose-5-phosphate isomerase.

    PubMed

    Airoldi, Cristina; Sommaruga, Silvia; Merlo, Silvia; Sperandeo, Paola; Cipolla, Laura; Polissi, Alessandra; Nicotra, Francesco

    2010-02-01

    Lipopolysaccharide (LPS) is an essential component of the outer membrane of gram-negative bacteria and consists of three elements: lipid A, the core oligosaccharide, and the O-antigen. The inner-core region is highly conserved and contains at least one residue of 3-deoxy-D-manno-octulosonate (Kdo). Arabinose-5-phosphate isomerase (API) is an aldo-keto isomerase catalyzing the reversible isomerization of D-ribulose-5-phosphate (Ru5P) to D-arabinose-5-phosphate (A5P), the first step of Kdo biosynthesis. By exploiting saturation transfer difference (STD) NMR spectroscopy, the structural requirements necessary for API substrate recognition and binding were identified, with the aim of designing new API inhibitors. In addition, simple experimental conditions for the STD experiments to perform a fast, robust, and efficient screening of small libraries of potential API inhibitors, allowing the identification of new potential leads, were set up. Due to the essential role of API enzymes in LPS biosynthesis and gram-negative bacteria survival, by exploiting these data, a new generation of potent antibacterial drugs could be developed. PMID:20039350

  10. Proton and tritium NMR relaxation studies of peptide inhibitor binding to bacterial collagenase: Conformation and dynamics

    SciTech Connect

    Dive, V.; Lai, A.; Valensin, G.; Saba, G.; Yiotakis, A.; Toma, F. )

    1991-02-15

    The interaction of succinyl-Pro-Ala, a competitive inhibitor of Achromobacter iophagus collagenase, with the enzyme was studied by longitudinal proton and tritium relaxation. Specific deuterium and tritium labeling of the succinyl part at vicinal positions allowed the measurement of the cross-relaxation rates of individual proton or tritium spin pairs in the inhibitor-enzyme complex as well as in the free inhibitor. Overall correlation times, internuclear distances, and qualitative information on the internal mobility in Suc1 (as provided by the generalized order parameter S2) could be deduced by the comparison of proton and tritium cross-relaxation of spin pairs at complementary positions in the -CH2- CH2- moiety as analyzed in terms of the model-free approach by Lipari and Szabo. The conformational and motional parameters of the inhibitor in the free and enzyme-bound state were directly compared by this method. The measurement of proton cross-relaxation in the Ala residue provided additional information on the inhibitor binding. The determination of the order parameter in different parts of the inhibitor molecule in the bound state indicates that the succinyl and alanyl residues are primarily involved in the interaction with the enzyme activity site. The succinyl moiety, characterized in solution by the conformational equilibrium among the three staggered rotamers--i.e., trans: 50%; g+: 20%; g-: 30%--adopted in the bound state the unique trans conformation.

  11. Fast and Efficient Fragment-Based Lead Generation by Fully Automated Processing and Analysis of Ligand-Observed NMR Binding Data.

    PubMed

    Peng, Chen; Frommlet, Alexandra; Perez, Manuel; Cobas, Carlos; Blechschmidt, Anke; Dominguez, Santiago; Lingel, Andreas

    2016-04-14

    NMR binding assays are routinely applied in hit finding and validation during early stages of drug discovery, particularly for fragment-based lead generation. To this end, compound libraries are screened by ligand-observed NMR experiments such as STD, T1ρ, and CPMG to identify molecules interacting with a target. The analysis of a high number of complex spectra is performed largely manually and therefore represents a limiting step in hit generation campaigns. Here we report a novel integrated computational procedure that processes and analyzes ligand-observed proton and fluorine NMR binding data in a fully automated fashion. A performance evaluation comparing automated and manual analysis results on (19)F- and (1)H-detected data sets shows that the program delivers robust, high-confidence hit lists in a fraction of the time needed for manual analysis and greatly facilitates visual inspection of the associated NMR spectra. These features enable considerably higher throughput, the assessment of larger libraries, and shorter turn-around times. PMID:26964888

  12. Ultra-high field NMR studies of antibody binding and site-specific phosphorylation of {alpha}-synuclein

    SciTech Connect

    Sasakawa, Hiroaki |; Sakata, Eri; Yamaguchi, Yoshiki; Masuda, Masami |; Mori, Tetsuya; Kurimoto, Eiji; Iguchi, Takeshi; Hisanaga, Shin-ichi; Iwatsubo, Takeshi; Hasegawa, Masato; Kato, Koichi |

    2007-11-23

    Although biological importance of intrinsically disordered proteins is becoming recognized, NMR analyses of this class of proteins remain as tasks with more challenge because of poor chemical shift dispersion. It is expected that ultra-high field NMR spectroscopy offers improved resolution to cope with this difficulty. Here, we report an ultra-high field NMR study of {alpha}-synuclein, an intrinsically disordered protein identified as the major component of the Lewy bodies. Based on NMR spectral data collected at a 920 MHz proton frequency, we performed epitope mapping of an anti-{alpha}-synuclein monoclonal antibody, and furthermore, characterized conformational effects of phosphorylation at Ser129 of {alpha}-synuclein.

  13. Extending the Diffuse Layer Model of Surface Acidity Constant Behavior: II. Estimation of Intrinsic Acidity and Electrolyte Ion Site Binding Constants

    EPA Science Inventory

    The two-pK metal oxide surface acidity constant model relies on generic mass action expressions of the form: Ka = [>SOHx-1x-2]aH+EXP(-ΔGexcess/RT)/[>SOHxX-l] where x equals 1 or 2. While all current two-pK surface complexation models require numerical estimates of "intrinsic" aci...

  14. NMR analysis of interactions of a phosphatidylinositol 3'-kinase SH2 domain with phosphotyrosine peptides reveals interdependence of major binding sites.

    PubMed

    Günther, U L; Liu, Y; Sanford, D; Bachovchin, W W; Schaffhausen, B

    1996-12-01

    The interactions of the N-terminal src homology (SH2) domain (N-SH2) of the 85 kDa subunit of phosphatidylinositol 3'-kinase (PI-3K) with phosphotyrosine (ptyr) and a series of ptyr-containing peptides have been examined by NMR spectroscopy. HSQC (heteronuclear single-quantum coherence) NMR spectra of 15N-labeled SH2 were used to evaluate its interactions with ptyr-containing ligands. The ability of ligands to cause chemical shift changes was compared to their potency as competitors in in vitro binding experiments using polyoma virus middle T antigen (MT). The results suggest the interdependence of SH2 binding elements. Chemical shifts of residues involved in the ptyr binding were altered by variations of the sequence of the bound peptide, suggesting that the ptyr fit can be adjusted by the peptide sequence. Perturbations of chemical shifts of residues coordinating the methionine three residues C-terminal to the ptyr (the +3 residue) were affected by substitution in the binding peptide at +1 and vice versa. Such results show synergistic interplay between regions of the SH2 binding residues C-terminal to the ptyr. PMID:8952511

  15. Constant pH Molecular Dynamics Reveals pH-Modulated Binding of Two Small-Molecule BACE1 Inhibitors.

    PubMed

    Ellis, Christopher R; Tsai, Cheng-Chieh; Hou, Xinjun; Shen, Jana

    2016-03-17

    Targeting β-secretase (BACE1) with small-molecule inhibitors offers a promising route for treatment of Alzheimer's disease. However, the intricate pH dependence of BACE1 function and inhibitor efficacy has posed major challenges for structure-based drug design. Here we investigate two structurally similar BACE1 inhibitors that have dramatically different inhibitory activity using continuous constant pH molecular dynamics (CpHMD). At high pH, both inhibitors are stably bound to BACE1; however, within the enzyme active pH range, only the iminopyrimidinone-based inhibitor remains bound, while the aminothiazine-based inhibitor becomes partially dissociated following the loss of hydrogen bonding with the active site and change of the 10s loop conformation. The drastically lower activity of the second inhibitor is due to the protonation of a catalytic aspartate and the lack of a propyne tail. This work demonstrates that CpHMD can be used for screening pH-dependent binding profiles of small-molecule inhibitors, providing a new tool for structure-based drug design and optimization. PMID:26905811

  16. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  17. NMR-Assisted Molecular Docking Methodologies.

    PubMed

    Sturlese, Mattia; Bellanda, Massimo; Moro, Stefano

    2015-08-01

    Nuclear magnetic resonance (NMR) spectroscopy and molecular docking are regularly being employed as helpful tools of drug discovery research. Molecular docking is an extremely rapid method to evaluate possible binders from a large chemical library in a fast and cheap manner. NMR techniques can directly detect a protein-ligand interaction, can determine the corresponding association constant, and can consistently identify the ligand binding cavity. Consequently, molecular docking and NMR techniques are naturally complementary techniques where the combination of the two has the potential to improve the overall efficiency of drug discovery process. In this review, we would like to summarize the state of the art of docking methods which have been recently bridged to NMR experiments to identify novel and effective therapeutic drug candidates. PMID:27490497

  18. A survey of diamagnetic probes for copper2+ binding to the prion protein. 1H NMR solution structure of the palladium2+ bound single octarepeat.

    PubMed

    Garnett, Anthony P; Jones, Christopher E; Viles, John H

    2006-01-21

    The prion protein (PrP(C)) is a copper binding cell surface glycoprotein which when misfolded causes transmissible spongiform encephalopathies. The cooperative binding of Cu2+ to an unstructured octarepeat sequence within PrP(C) causes profound folding of this region. The use of NMR to determine the solution structure of the octarepeat region of PrP with Cu2+ bound has been hampered by the paramagnetic nature of the Cu2+ ions. Using NMR we have investigated the binding of candidate diamagnetic replacement ions, to the octarepeat region of PrP. We show that Pd2+ forms diamagnetic complexes with the peptides HGGG, HGGGW and QPHGGGWGQ with 1:1 stoichiometry. The 1H NMR spectra indicate that these peptides are in slow-exchange between free and bound Pd2+ on the chemical-shift time-scale. We demonstrate that the Pd-peptide complex forms slowly with a time taken to reach half-maximal signal of 3 hours. Other candidate metal ions, Ni2+, Pt2+ and Au3+, were investigated but only the Pd2+ complexes gave resolvable 1H NMR spectra. We have determined the solution structure of the QPHGGGWGQ-Pd 1:1 complex using 71 NOE distance restraints. A backbone RMSD of 0.30 A was observed over residues 3 to 7 in the final ensemble. The co-ordinating ligands consist of the histidine imidazole side chain N epsilon, the amide N of the second and third glycines with possibly H2O as the fourth ligand. The co-ordination geometry differs markedly from that of the HGGGW-Cu crystal structure. This survey of potential replacement metal ions to Cu2+ provides insight into the metal specificity and co-ordination chemistry of the metal bound octarepeats. PMID:16395451

  19. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations.

    PubMed

    Shokri, Alireza; Wang, Xue-Bin; Wang, Yanping; O'Doherty, George A; Kass, Steven R

    2016-03-17

    Flexible acyclic alcohols with one to five hydroxyl groups were bound to a chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45-5.96 eV. These values are 0.84-2.35 eV larger than the adiabatic detachment energy of Cl(-) as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol-Cl(-) clusters are more difficult to determine both experimentally and computationally. This is due to the large geometry changes that occur upon photodetachment and the large bond dissociation energy of H-Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and nonionic hydrogen bonds (i.e., OH···Cl(-) and OH···OH···Cl(-)) form in the larger polyols complexes and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds, and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrabutylammonium chloride (TBACl) in acetonitrile at -24.2, +22.0, and +53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol(-1)). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with molecular

  20. The prokaryotic Cys2His2 zinc-finger adopts a novel fold as revealed by the NMR structure of Agrobacterium tumefaciens Ros DNA-binding domain

    PubMed Central

    Malgieri, Gaetano; Russo, Luigi; Esposito, Sabrina; Baglivo, Ilaria; Zaccaro, Laura; Pedone, Emilia M.; Di Blasio, Benedetto; Isernia, Carla; Pedone, Paolo V.; Fattorusso, Roberto

    2007-01-01

    The first putative prokaryotic Cys2His2 zinc-finger domain has been identified in the transcriptional regulator Ros from Agrobacterium tumefaciens, indicating that the Cys2His2 zinc-finger domain, originally thought to be confined to the eukaryotic kingdom, could be widespread throughout the living kingdom from eukaryotic, both animal and plant, to prokaryotic. In this article we report the NMR solution structure of Ros DNA-binding domain (Ros87), providing 79 structural characterization of a prokaryotic Cys2His2 zinc-finger domain. The NMR structure of Ros87 shows that the putative prokaryotic Cys2His2 zinc-finger sequence is indeed part of a significantly larger zinc-binding globular domain that possesses a novel protein fold very different from the classical fold reported for the eukaryotic classical zinc-finger. The Ros87 globular domain consists of 58 aa (residues 9–66), is arranged in a βββαα topology, and is stabilized by an extensive 15-residue hydrophobic core. A backbone dynamics study of Ros87, based on 15N R1, 15N R2, and heteronuclear 15N-{1H}-NOE measurements, has further confirmed that the globular domain is uniformly rigid and flanked by two flexible tails. Mapping of the amino acids necessary for the DNA binding onto Ros87 structure reveals the protein surface involved in the DNA recognition mechanism of this new zinc-binding protein domain. PMID:17956987

  1. Variation in DNA binding constants with a change in geometry of ternary copper(II) complexes with N2O donor Schiff base and cyanate or dicyanamide

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Santra, Ramesh Chandra; Das, Saurabh; Chattopadhyay, Shouvik

    2014-09-01

    Two new copper(II) complexes, [Cu(L)(OCN)] (1) and [CuL(dca)]n (2), where HL = 2-(-(2-(diethylamino)ethylimino)methyl)naphthalen-1-ol, dca = N(CN)2-, have been synthesized and characterized by elemental analysis, IR, UV-VIS spectroscopy and single crystal X-ray diffraction studies. Complex 1 has square planar and complex 2 square pyramidal geometries in solid state around metal centre. Interactions of the complexes with calf thymus DNA (CT DNA) were studied by UV-VIS spectroscopy. Binding constant and site size of interaction were determined. Binding site size and intrinsic binding constant K revealed complex 1 interacted with calf thymus DNA better than complex 2.

  2. NMR structure of rALF-Pm3, an anti-lipopolysaccharide factor from shrimp: model of the possible lipid A-binding site.

    PubMed

    Yang, Yinshan; Boze, Hélène; Chemardin, Patrick; Padilla, André; Moulin, Guy; Tassanakajon, Anchalee; Pugnière, Martine; Roquet, Françoise; Destoumieux-Garzón, Delphine; Gueguen, Yannick; Bachère, Evelyne; Aumelas, André

    2009-03-01

    The anti-lipopolysaccharide factor ALF-Pm3 is a 98-residue protein identified in hemocytes from the black tiger shrimp Penaeus monodon. It was expressed in Pichia pastoris from the constitutive glyceraldehyde-3-phosphate dehydrogenase promoter as a folded and (15)N uniformly labeled rALF-Pm3 protein. Its 3D structure was established by NMR and consists of three alpha-helices packed against a four-stranded beta-sheet. The C(34)-C(55) disulfide bond was shown to be essential for the structure stability. By using surface plasmon resonance, we demonstrated that rALF-Pm3 binds to LPS, lipid A and to OM-174, a soluble analogue of lipid A. Biophysical studies of rALF-Pm3/LPS and rALF-Pm3/OM-174 complexes indicated rather high molecular sized aggregates, which prevented us to experimentally determine by NMR the binding mode of these lipids to rALF-Pm3. However, on the basis of striking structural similarities to the FhuA/LPS complex, we designed an original model of the possible lipid A-binding site of ALF-Pm3. Such a binding site, located on the ALF-Pm3 beta-sheet and involving seven charged residues, is well conserved in ALF-L from Limulus polyphemus and in ALF-T from Tachypleus tridentatus. In addition, our model is in agreement with experiments showing that beta-hairpin synthetic peptides corresponding to ALF-L beta-sheet bind to LPS. Delineating lipid A-binding site of ALFs will help go further in the de novo design of new antibacterial or LPS-neutralizing drugs. PMID:19107926

  3. Solution structure of the carboxyl-terminal domain of RAP74 and NMR characterization of the FCP1-binding sites of RAP74 and human TFIIB.

    PubMed

    Nguyen, Bao D; Chen, Hung-Ta; Kobor, Michael S; Greenblatt, Jack; Legault, Pascale; Omichinski, James G

    2003-02-18

    FCP1 (TFIIF-associated CTD phosphatase) is the only known phosphatase specific for the phosphorylated CTD of RNAP II. The phosphatase activity of FCP1 is strongly enhanced by the carboxyl-terminal domain of RAP74 (cterRAP74, residues 436-517), and this stimulatory effect of TFIIF can be blocked by TFIIB. It has been shown that cterRAP74 and the core domain of hTFIIB (TFIIBc, residues 112-316) directly interact with the carboxyl-terminal domain of hFCP1 (cterFCP, residues 879-961), and these interactions may be responsible for the regulatory activities of TFIIF and TFIIB on FCP1. We have determined the NMR solution structure of human cterRAP74, and we have used NMR methods to map the cterFCP-binding sites for both cterRAP74 and human TFIIB. We show that cterFCP binds to a groove of cterRAP74 between alpha-helices H2 and H3, without affecting the secondary structure of cterRAP74. We also show that cterFCP binds to a groove of TFIIBc between alpha-helices D1 and E1 in the first cyclin repeat. We find that the cterFCP-binding site of TFIIBc is very similar to the binding site for the HSV transcriptional activator protein VP16 on the first cyclin repeat of TFIIBc. The cterFCP-binding sites of both RAP74 and TFIIBc form shallow grooves on the protein surface, and they are both rich in hydrophobic and positively charged amino acid residues. These results provide new information about the recognition of acidic-rich activation domains involved in transcriptional regulation, and provide insights into how TFIIF and TFIIB regulate the FCP1 phosphatase activity in vivo. PMID:12578358

  4. Langerin-heparin interaction: two binding sites for small and large ligands as revealed by a combination of NMR spectroscopy and cross-linking mapping experiments.

    PubMed

    Muñoz-García, Juan C; Chabrol, Eric; Vivès, Romain R; Thomas, Aline; de Paz, José L; Rojo, Javier; Imberty, Anne; Fieschi, Franck; Nieto, Pedro M; Angulo, Jesús

    2015-04-01

    Langerin is a C-type lectin present on Langerhans cells that mediates capture of pathogens in a carbohydrate-dependent manner, leading to subsequent internalization and elimination in the cellular organelles called Birbeck granules. This mechanism mediated by langerin was shown to constitute a natural barrier for HIV-1 particle transmission. Besides interacting specifically with high mannose and fucosylated neutral carbohydrate structures, langerin has the ability to bind sulfated carbohydrate ligands as 6-sulfated galactosides in the Ca(2+)-dependent binding site. Very recently langerin was demonstrated to interact with sulfated glycosaminoglycans (GAGs), in a Ca(2+)-independent way, resulting in the proposal of a new binding site for GAGs. On the basis of those results, we have conducted a structural study of the interactions of small heparin (HEP)-like oligosaccharides with langerin in solution. Heparin bead cross-linking experiments, an approach specifically designed to identify HEP/heparan sulfate binding sites in proteins were first carried out and experimentally validated the previously proposed model for the interaction of langerin extracellular domain with 6 kDa HEP. High-resolution NMR studies of a set of eight synthetic HEP-like trisaccharides harboring different sulfation patterns demonstrated that all of them bound to langerin in a Ca(2+)-dependent way. The binding epitopes were determined by saturation transfer difference NMR and the bound conformations by transferred NOESY experiments. These experimental data were combined with docking and molecular dynamics and resulted in the proposal of a binding mode characterized by the coordination of calcium by the two equatorial hydroxyl groups, OH3 and OH4, at the non-reducing end. The binding also includes the carboxylate group at the adjacent iduronate residue. This epitope is shared by all eight ligands, explaining the absence of any impact on binding from differences in their substitution patterns

  5. Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy.

    PubMed

    Cady, Sarah D; Wang, Jun; Wu, Yibing; DeGrado, William F; Hong, Mei

    2011-03-30

    The transmembrane domain of the influenza M2 protein (M2TM) forms a tetrameric proton channel important for the virus lifecycle. The proton-channel activity is inhibited by amine-containing adamantyl drugs amantadine and rimantadine, which have been shown to bind specifically to the pore of M2TM near Ser31. However, whether the polar amine points to the N- or C-terminus of the channel has not yet been determined. Elucidating the polar group direction will shed light on the mechanism by which drug binding inhibits this proton channel and will facilitate rational design of new inhibitors. In this study, we determine the polar amine direction using M2TM reconstituted in lipid bilayers as well as dodecylphosphocholine (DPC) micelles. (13)C-(2)H rotational-echo double-resonance NMR experiments of (13)C-labeled M2TM and methyl-deuterated rimantadine in lipid bilayers showed that the polar amine pointed to the C-terminus of the channel, with the methyl group close to Gly34. Solution NMR experiments of M2TM in DPC micelles indicate that drug binding causes significant chemical shift perturbations of the protein that are very similar to those seen for M2TM and M2(18-60) bound to lipid bilayers. Specific (2)H-labeling of the drugs permitted the assignment of drug-protein cross peaks, which indicate that amantadine and rimantadine bind to the pore in the same fashion as for bilayer-bound M2TM. These results strongly suggest that adamantyl inhibition of M2TM is achieved not only by direct physical occlusion of the channel, but also by perturbing the equilibrium constant of the proton-sensing residue His37. The reproduction of the pharmacologically relevant specific pore-binding site in DPC micelles, which was not observed with a different detergent, DHPC, underscores the significant influence of the detergent environment on the functional structure of this membrane protein. PMID:21381693

  6. NMR chemical shift perturbation mapping of DNA binding by a zinc-finger domain from the yeast transcription factor ADR1.

    PubMed Central

    Schmiedeskamp, M.; Rajagopal, P.; Klevit, R. E.

    1997-01-01

    Mutagenesis studies have revealed that the minimal DNA-binding domain of the yeast transcription factor ADR1 consists of two Cys2-His2 zinc fingers plus an additional 20 residues proximal and N-terminal to the fingers. We have assigned NMR 1H, 15N, and 13C chemical shifts for the entire minimal DNA-binding domain of ADR1 both free and bound to specific DNA. 1H chemical shift values suggest little structural difference between the zinc fingers in this construct and in single-finger constructs, and 13C alpha chemical shift index analysis indicates little change in finger structure upon DNA binding. 1H chemical shift perturbations upon DNA binding are observed, however, and these are mapped to define the protein-DNA interface. The two zinc fingers appear to bind DNA with different orientations, as the entire helix of finger 1 is perturbed, while only the extreme N-terminus of the finger 2 helix is affected. Furthermore, residues N-terminal to the first finger undergo large chemical shift changes upon DNA binding suggesting a role at the protein-DNA interface. A striking correspondence is observed between the protein-DNA interface mapped by chemical shift changes and that previously mapped by mutagenesis. PMID:9300483

  7. NMR Structure and Dynamics of the Engineered Fluorescein-Binding Lipocalin FluA Reveals Rigidification of β-Barrel and Variable Loops upon Enthalpy-Driven Ligand Binding

    PubMed Central

    Mills, Jeffrey L.; Liu, Gaohua; Skerra, Arne; Szyperski, Thomas

    2010-01-01

    The NMR structure of the 21 kDa lipocalin FluA, which was previously obtained by combinatorial design, elucidates a reshaped binding site specific for the dye fluorescein resulting from 21 side chain replacements with respect to the parental lipocalin, the naturally occurring bilin-binding protein (BBP). As expected, FluA exhibits the lipocalin fold of BBP, comprising eight antiparallel β-strands forming a β-barrel with an α-helix attached to its side. Comparison of the NMR structure of the free FluA with the X-ray structures of BBP•biliverdin IXγ and FluA•fluorescein complexes revealed significant conformational changes in the binding pocket, which is formed by four loops at the open end of the β-barrel as well as adjoining β-strand segments. An ‘induced fit’ became apparent for the side-chain conformations of Arg 88 and Phe 99, which contact the bound fluorescein in the complex and undergo concerted rearrangement upon ligand binding. Moreover, slower internal motional modes of the polypeptide backbone were identified by measuring transverse 15N backbone spin relaxation times in the rotating frame for the free FluA and also the FluA•fluorescein complex. A reduction of such motions was detected upon complex formation, indicating rigidification of the protein structure and loss of conformational entropy. This hypothesis was confirmed by isothermal titration calorimetry, showing that ligand binding is enthalpy driven, thus overcompensating negative entropy associated with both ligand binding per se and rigidification of the protein. Our investigation of the solution structure and dynamics as well as thermodynamics of lipocalin-ligand interaction does not only provide insight into the general mechanism of small molecule accommodation in the deep and narrow cavity of this abundant class of proteins but will also support the future design of corresponding binding proteins with novel specificities, so-called “anticalins”. PMID:19603796

  8. NMR WaterLOGSY Reveals Weak Binding of Bisphenol A with Amyloid Fibers of a Conserved 11 Residue Peptide from Androgen Receptor.

    PubMed

    Asencio-Hernández, Julia; Kieffer, Bruno; Delsuc, Marc-André

    2016-01-01

    There is growing evidence that bisphenol A (BPA), a molecule largely released in the environment, has detrimental effects on ecosystems and on human health. It acts as an endocrine disruptor targeting steroid hormone receptors, such as the estrogen receptor (ER), estrogen-related receptor (ERR) and androgen receptor (AR). BPA-derived molecules have recently been shown to interact with the AR N-terminal domain (AR-NTD), which is known to be largely intrinsically disordered. This N-terminal domain contains an 11 residue conserved domain that forms amyloid fibers upon oxidative dimerisation through its strictly conserved Cys240 residue. We investigate here the interaction of BPA, and other potential endocrine disruptors, with AR-NTD amyloid fibers using the WaterLOGSY NMR experiment. We observed a selective binding of these compounds to the amyloid fibers formed by the AR-NTD conserved region and glutamine homopolymers. This observation suggests that the high potency of endocrine disruptors may result, in part, from their ability to bind amyloid forms of nuclear receptors in addition to their cognate binding sites. This property may be exploited to design future therapeutic strategies targeting AR related diseases such as the spinal bulbar muscular atrophy or prostate cancer. The ability of NMR WaterLOGSY experiments to detect weak interactions between small ligands and amyloid fibers may prove to be of particular interest for identifying promising hit molecules. PMID:27583469

  9. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase

    SciTech Connect

    Lukat, G.S.; Goff, H.M.

    1986-12-15

    The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin.

  10. Proton and nitrogen-15 NMR spectroscopic studies of hydrogen ion-dependent pseudo-halide ion binding to chloroperoxidase.

    PubMed

    Lukat, G S; Goff, H M

    1986-12-15

    The proton nuclear magnetic resonance spectra of several chloroperoxidase-inhibitor complexes have been investigated. Titrations of chloroperoxidase with azide, thiocyanate, cyanate, or nitrite ions indicate that only the chloroperoxidase-thiocyanate complex exhibits slow ligand exchange on the 360-MHz NMR time scale. The temperature dependence of the proton NMR spectra of the complexes suggests that, although the complexes are predominantly low-spin ferric heme iron, a spin equilibrium is present presumably between S = 1/2 and S = 5/2 states. The pH dependence of the proton NMR spectra of the psuedo-halide-chloroperoxidase complexes was examined at 360 and 90 MHz. Chloroperoxidase complexes with azide and cyanate show similar behavior; 360-MHz proton spectra are readily observed at low pH (less than 5.0) but not at high pH. At high pH, the ligand exchange rate falls in an intermediate time range. When the complexes are examined at 90 MHz, however, spectra consisting of averaged signals are observed. The chloroperoxidase-thiocyanate complex does not form at high pH values; the proton NMR spectrum observed is that of native chloroperoxidase. The pKa for the chloroperoxidase-thiocyanate heme-linked ionizable amino acid residue falls between 4.2 and 5.0. Only an averaged azide signal was observed in the nitrogen-15 NMR spectra for solutions that contained the azide complex of chloroperoxidase, horseradish peroxidase, and myoglobin. PMID:3023353

  11. Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.

    1996-05-01

    A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K- Δ E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO 2-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log Kint between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces.

  12. Molecular statics calculations of proton binding to goethite surfaces: A new approach to estimation of stability constants for multisite surface complexation models

    SciTech Connect

    Rustad, J.R.; Felmy, A.R.; Hay, B.P.

    1996-05-01

    A new approach to estimating stability constants for proton binding in multisite surface complexation models is presented. The method is based on molecular statics computation of energies for the formation of proton vacancies and interstitials in ideal periodic slabs representing the (100), (110), (010), (001), and (021) surfaces of goethite. Gas-phase energies of clusters representing the hydrolysis products of ferric iron are calculated using the same potential energy functions used for the surface. These energies are linearly related to the hydrolysis constants for ferric iron in aqueous solution. Stability constants for proton binding at goethite surfaces are estimated by assuming the same log K-{Delta}E relationship for goethite surface protonation reactions. These stability constants predict a pH of zero charge of 8.9, in adequate agreement with measurements on CO{sub 2}-free goethite. The estimated stability constants differ significantly from previous estimations based on Pauling bond strength. We find that nearly all the surface oxide ions are reactive; nineteen of the twenty-six surface sites investigated have log K{sup int} between 7.7 and 9.4. This implies a site density between fifteen and sixteen reactive sites/nm for crystals dominated by (110) and (021) crystal faces. 39 refs., 8 figs., 4 tabs.

  13. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    SciTech Connect

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, the chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.

  14. Changes in dynamics of SRE-RNA on binding to the VTS1p-SAM domain studied by 13C NMR relaxation.

    PubMed

    Oberstrass, Florian C; Allain, Frédéric H-T; Ravindranathan, Sapna

    2008-09-10

    RNA recognition by proteins is often accompanied by significant changes in RNA dynamics in addition to conformational changes. However, there are very few studies which characterize the changes in molecular motions in RNA on protein binding. We present a quantitative (13)C NMR relaxation study of the changes in RNA dynamics in the pico-nanosecond time scale and micro-millisecond time scale resulting from interaction of the stem-loop SRE-RNA with the VTS1p-SAM domain. (13)C relaxation rates of the protonated carbons of the nucleotide base and anomeric carbons have been analyzed by employing the model-free formalism, for a fully (13)C/(15)N-labeled sample of the SRE-RNA in the free and protein-bound forms. In the free RNA, the nature of molecular motions are found to be distinctly different in the stem and the loop region. On binding to the protein, the nature of motions becomes more homogeneous throughout the RNA, with many residues showing increased flexibility at the aromatic carbon sites, while the anomeric carbon sites become more rigid. Surprisingly, we also observe indications of a slow collective motion of the RNA in the binding pocket of the protein. The observation of increased motions on binding is interesting in the context of growing evidence that binding does not always lead to motional restrictions and the resulting entropy gain could favor the free energy of association. PMID:18698768

  15. Structural effects in solvolytic reactions; carbon-13 NMR studies of carbocations†: Effect of increasing electron demand on the carbon-13 NMR shifts in substituted tert-cumyl and 1-aryl-1-cyclopentyl carbocations—correlation of the data by a new set of substituent constants, σC+*†

    PubMed Central

    Brown, Herbert C.; Kelly, David P.; Periasamy, Mariappan

    1980-01-01

    The cationic carbon substituent chemical shifts (ΔδC+) for nine representative meta-substituted tert-cumyl carbocations are correlated satisfactorily by the σm+ substituent constants (slope ρ+ = -18.18, correlation coefficient r = 0.990). However, the substituent chemical shifts (ΔδC+) for the corresponding para derivatives are not correlated by the σp+ substituent constants. The possibility of developing a set of substituent constants capable of correlating such 13C NMR shifts was examined. The slope of the line defined by the meta substituents (ρ+ = -18.18) was utilized to calculate σC+ constants for both meta and para substituents. The utility of these constants was then tested by their ability to correlate the 13C NMR shifts in the cations for a different system, the 1-aryl-1-cyclopentyl cations. Indeed, these σC+ values correlate very well with the ΔδC+ values, yielding ρC+ = -16.84, r = 0.999. PMID:16592926

  16. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR

    NASA Astrophysics Data System (ADS)

    Ogura, Kenji; Okamura, Hideyasu

    2013-10-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.

  17. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR.

    PubMed

    Ogura, Kenji; Okamura, Hideyasu

    2013-01-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3. PMID:24105423

  18. NMR Studies of Heat-Induced Transitions in Structure and Cation Binding Environments of a Strontium-Saturated Swelling Mica

    SciTech Connect

    Bowers, Geoffrey M.; Davis, Michael C.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2007-12-03

    In this work we combined Al, Si, F, and Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to characterize the structure and interlayer cation environments in a strontium-saturated member of the swelling mica family before and after a heat induced collapse of the interlayer space.

  19. Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653.

    PubMed Central

    Ramaen, Odile; Masscheleyn, Sandrine; Duffieux, Francis; Pamlard, Olivier; Oberkampf, Marine; Lallemand, Jean-Yves; Stoven, Véronique; Jacquet, Eric

    2003-01-01

    Multidrug-resistance-associated protein 1 (MRP1/ABCC1) is a human ATP-binding cassette transporter that confers cell resistance to antitumour drugs. Its NBDs (nucleotide-binding domains) bind/hydrolyse ATP, a key step in the activation of MRP1 function. To relate its intrinsic functional features to the mechanism of action of the full-size transporter, we expressed the N-terminal NBD1 domain (Asn(642) to Ser(871)) in Escherichia coli. NBD1 was highly purified under native conditions and was characterized as a soluble monomer. (15)N-labelling allowed recording of the first two-dimensional NMR spectra of this domain. The NMR study showed that NBD1 was folded, and that Trp(653) was a key residue in the NBD1-ATP interaction. Thus, interaction of NBD1 with ATP/ADP was studied by intrinsic tryptophan fluorescence. The affinity for ATP and ADP were in the same range (K (d(ATP))=118 microM and K (d(ADP))=139 microM). Binding of nucleotides did not influence the monomeric state of NBD1. The ATPase activity of NBD1 was magnesium-dependent and very low [V (max) and K (m) values of 5x10(-5) pmol of ATP x (pmol NBD1)(-1) x s(-1) and 833 microM ATP respectively]. The present study suggests that NBD1 has a low contribution to the ATPase activity of full-length MRP1 and/or that this activity requires NBD1-NBD2 heterodimer formation. PMID:12954082

  20. Biochemical characterization and NMR studies of the nucleotide-binding domain 1 of multidrug-resistance-associated protein 1: evidence for interaction between ATP and Trp653.

    PubMed

    Ramaen, Odile; Masscheleyn, Sandrine; Duffieux, Francis; Pamlard, Olivier; Oberkampf, Marine; Lallemand, Jean-Yves; Stoven, Véronique; Jacquet, Eric

    2003-12-15

    Multidrug-resistance-associated protein 1 (MRP1/ABCC1) is a human ATP-binding cassette transporter that confers cell resistance to antitumour drugs. Its NBDs (nucleotide-binding domains) bind/hydrolyse ATP, a key step in the activation of MRP1 function. To relate its intrinsic functional features to the mechanism of action of the full-size transporter, we expressed the N-terminal NBD1 domain (Asn(642) to Ser(871)) in Escherichia coli. NBD1 was highly purified under native conditions and was characterized as a soluble monomer. (15)N-labelling allowed recording of the first two-dimensional NMR spectra of this domain. The NMR study showed that NBD1 was folded, and that Trp(653) was a key residue in the NBD1-ATP interaction. Thus, interaction of NBD1 with ATP/ADP was studied by intrinsic tryptophan fluorescence. The affinity for ATP and ADP were in the same range (K (d(ATP))=118 microM and K (d(ADP))=139 microM). Binding of nucleotides did not influence the monomeric state of NBD1. The ATPase activity of NBD1 was magnesium-dependent and very low [V (max) and K (m) values of 5x10(-5) pmol of ATP x (pmol NBD1)(-1) x s(-1) and 833 microM ATP respectively]. The present study suggests that NBD1 has a low contribution to the ATPase activity of full-length MRP1 and/or that this activity requires NBD1-NBD2 heterodimer formation. PMID:12954082

  1. The electric dipole moment of DNA-binding HU protein calculated by the use of an NMR database.

    PubMed

    Takashima, S; Yamaoka, K

    1999-08-30

    Electric birefringence measurements indicated the presence of a large permanent dipole moment in HU protein-DNA complex. In order to substantiate this observation, numerical computation of the dipole moment of HU protein homodimer was carried out by using NMR protein databases. The dipole moments of globular proteins have hitherto been calculated with X-ray databases and NMR data have never been used before. The advantages of NMR databases are: (a) NMR data are obtained, unlike X-ray databases, using protein solutions. Accordingly, this method eliminates the bothersome question as to the possible alteration of the protein structure due to the transition from the crystalline state to the solution state. This question is particularly important for proteins such as HU protein which has some degree of internal flexibility; (b) the three-dimensional coordinates of hydrogen atoms in protein molecules can be determined with a sufficient resolution and this enables the N-H as well as C = O bond moments to be calculated. Since the NMR database of HU protein from Bacillus stearothermophilus consists of 25 models, the surface charge as well as the core dipole moments were computed for each of these structures. The results of these calculations show that the net permanent dipole moments of HU protein homodimer is approximately 500-530 D (1 D = 3.33 x 10(-30) Cm) at pH 7.5 and 600-630 D at the isoelectric point (pH 10.5). These permanent dipole moments are unusually large for a small protein of the size of 19.5 kDa. Nevertheless, the result of numerical calculations is compatible with the electro-optical observation, confirming a very large dipole moment in this protein. PMID:10483709

  2. Differential ubiquitin binding of the UBA domains from human c-Cbl and Cbl-b: NMR structural and biochemical insights

    PubMed Central

    Zhou, Zi-Ren; Gao, Hong-Chang; Zhou, Chen-Jie; Chang, Yong-Gang; Hong, Jing; Song, Ai-Xin; Lin, Dong-Hai; Hu, Hong-Yu

    2008-01-01

    The Cbl proteins, RING-type E3 ubiquitin ligases, are responsible for ubiquitinating the activated tyrosine kinases and targeting them for degradation. Both c-Cbl and Cbl-b have a UBA (ubiquitin-associated) domain at their C-terminal ends, and these two UBA domains share a high sequence similarity (75%). However, only the UBA from Cbl-b, but not from c-Cbl, can bind ubiquitin (Ub). To understand the mechanism by which the UBA domains specifically interact with Ub with different affinities, we determined the solution NMR structures of these two UBA domains, cUBA from human c-Cbl and UBAb from Cbl-b. Their structures show that these two UBA domains share the same fold, a compact three-helix bundle, highly resembling the typical UBA fold. Chemical shift perturbation experiments reveal that the helix-1 and loop-1 of UBAb form a predominately hydrophobic surface for Ub binding. By comparing the Ub-interacting surface on UBAb and its counterpart on cUBA, we find that the hydrophobic patch on cUBA is interrupted by a negatively charged residue Glu12. Fluorescence titration data show that the Ala12Glu mutant of UBAb completely loses the ability to bind Ub, whereas the mutation disrupting the dimerization has no significant effect on Ub binding. This study provides structural and biochemical insights into the Ub binding specificities of the Cbl UBA domains, in which the hydrophobic surface distribution on the first helix plays crucial roles in their differential affinities for Ub binding. That is, the amino acid residue diversity in the helix-1 region, but not the dimerization, determines the abilities of various UBA domains binding with Ub. PMID:18596201

  3. Concerted influence of key amino acids on the lipid binding properties of a single-spanning membrane protein: NMR and mutational analysis.

    PubMed

    Mousson, F; Beswick, V; Coïc, Y M; Baleux, F; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2001-08-21

    Finding the combinations of key amino acids involved in the interaction network underlying the interfacial features of membrane proteins would contribute to a better understanding of their sequence-structure-function relationships and the role of anionic phospholipids. To further address these questions, we performed mutational analysis associated with NMR experiments on synthetic fragments of the single-spanning membrane protein PMP1 that exhibit binding specificity for phosphatidylserine (PS). The aromatic and glutamine residues of the helix part of the PMP1 cytoplasmic domain were mutated. (1)H NMR experiments were carried out using perdeuterated DPC micelles as a membrane-like environment, in the absence and presence of small amounts of either POPC or POPS lipids. From intermolecular NOEs and chemical shift data, specific and nonspecific aspects of peptide-phospholipid interactions were distinguished. The major finding of our study is to reveal the concerted influence of a tryptophan and a glutamine residue on the interfacial conformation and lipid binding specificity of the PMP1 cytoplasmic domain. PMID:11502196

  4. H-H, C-H, and C-C NMR spin-spin coupling constants calculated by the FP-INDO method for aromatic hydrocarbons

    NASA Technical Reports Server (NTRS)

    Long, S. A. T.; Memory, J. D.

    1978-01-01

    The FP-INDO (finite perturbation-intermediate neglect of differential overlap) method is used to calculate the H-H, C-H, and C-C coupling constants in hertz for molecules of six different benzenoid hydrocarbons: benzene, naphthalene, biphenyl, anthracene, phenanthrene, and pyrene. The calculations are based on both the actual and the average molecular geometries. It is found that only the actual molecular geometries can always yield the correct relative order of values for the H-H coupling constants. For the calculated C-C coupling constants, as for the calculated C-H coupling constants, the signs are positive (negative) for an odd (even) number of bonds connecting the two nuclei. Agreements between the calculated and experimental values of the coupling constants for all six molecules are comparable to those reported previously for other molecules.

  5. BDflex: A method for efficient treatment of molecular flexibility in calculating protein-ligand binding rate constants from Brownian dynamics simulations

    NASA Astrophysics Data System (ADS)

    Greives, Nicholas; Zhou, Huan-Xiang

    2012-10-01

    A method developed by Northrup et al. [J. Chem. Phys. 80, 1517 (1984)], 10.1063/1.446900 for calculating protein-ligand binding rate constants (ka) from Brownian dynamics (BD) simulations has been widely used for rigid molecules. Application to flexible molecules is limited by the formidable computational cost to treat conformational fluctuations during the long BD simulations necessary for ka calculation. Here, we propose a new method called BDflex for ka calculation that circumvents this problem. The basic idea is to separate the whole space into an outer region and an inner region, and formulate ka as the product of kE and bar η _d, which are obtained by separately solving exterior and interior problems. kE is the diffusion-controlled rate constant for the ligand in the outer region to reach the dividing surface between the outer and inner regions; in this exterior problem conformational fluctuations can be neglected. bar η _d is the probability that the ligand, starting from the dividing surface, will react at the binding site rather than escape to infinity. The crucial step in reducing the determination of bar η _d to a problem confined to the inner region is a radiation boundary condition imposed on the dividing surface; the reactivity on this boundary is proportional to kE. By confining the ligand to the inner region and imposing the radiation boundary condition, we avoid multiple-crossing of the dividing surface before reaction at the binding site and hence dramatically cut down the total simulation time, making the treatment of conformational fluctuations affordable. BDflex is expected to have wide applications in problems where conformational fluctuations of the molecules are crucial for productive ligand binding, such as in cases where transient widening of a bottleneck allows the ligand to access the binding pocket, or the binding site is properly formed only after ligand entrance induces the closure of a lid.

  6. Diminazene or berenil, a classic duplex minor groove binder, binds to G-quadruplexes with low nanomolar dissociation constants and the amidine groups are also critical for G-quadruplex binding.

    PubMed

    Zhou, Jie; Le, Vu; Kalia, Dimpy; Nakayama, Shizuka; Mikek, Clinton; Lewis, Edwin A; Sintim, Herman O

    2014-10-01

    G-quadruplexes have shown great promise as chemotherapeutic targets, probably by inhibiting telomere elongation or downregulating oncogene expression. There have been many G-quadruplex ligands developed over the years but only a few have drug-like properties. Consequently only a few G-quadruplex ligands have entered clinical trials as cancer chemotherapeutic agents. The DNA minor groove ligand, berenil (diminazene aceturate or DMZ), is used to treat animal trypanosomiasis and hence its toxicological profile is already known, making it an ideal platform to engineer into new therapeutics. Herein, using a plethora of biophysical methods including UV, NMR, MS and ITC, we show that DMZ binds to several G-quadruplexes with a Kd of ∼1 nM. This is one of the strongest G-quadruplex binding affinities reported to date and is 10(3) tighter than the berenil affinity for an AT-rich duplex DNA. Structure-activity-relationship studies demonstrate that the two amidine groups on DMZ are important for binding to both G-quadruplex and duplex DNA. This work reveals that DMZ or berenil is not as selective for AT-rich duplexes as originally thought and that some of its biological effects could be manifested through G-quadruplex binding. The DMZ scaffold represents a good starting point to develop new G-quadruplex ligands for cancer cell targeting. PMID:25096593

  7. An Introduction to Biological NMR Spectroscopy*

    PubMed Central

    Marion, Dominique

    2013-01-01

    NMR spectroscopy is a powerful tool for biologists interested in the structure, dynamics, and interactions of biological macromolecules. This review aims at presenting in an accessible manner the requirements and limitations of this technique. As an introduction, the history of NMR will highlight how the method evolved from physics to chemistry and finally to biology over several decades. We then introduce the NMR spectral parameters used in structural biology, namely the chemical shift, the J-coupling, nuclear Overhauser effects, and residual dipolar couplings. Resonance assignment, the required step for any further NMR study, bears a resemblance to jigsaw puzzle strategy. The NMR spectral parameters are then converted into angle and distances and used as input using restrained molecular dynamics to compute a bundle of structures. When interpreting a NMR-derived structure, the biologist has to judge its quality on the basis of the statistics provided. When the 3D structure is a priori known by other means, the molecular interaction with a partner can be mapped by NMR: information on the binding interface as well as on kinetic and thermodynamic constants can be gathered. NMR is suitable to monitor, over a wide range of frequencies, protein fluctuations that play a crucial role in their biological function. In the last section of this review, intrinsically disordered proteins, which have escaped the attention of classical structural biology, are discussed in the perspective of NMR, one of the rare available techniques able to describe structural ensembles. This Tutorial is part of the International Proteomics Tutorial Programme (IPTP 16 MCP). PMID:23831612

  8. Solution-state NMR Investigation of DNA Binding Interactions in Escherichia coli Formamidopyrimidine-DNA Glycosylase (Fpg): A Dynamic Description of the DNA/Protein Interface

    SciTech Connect

    Buchko, Garry W.; McAteer, Kathleen; Wallace, Susan S.; Kennedy, Michael A.

    2005-03-02

    Formamidopyrimidine-DNA glycosylase (Fpg) is a base excision repair protein that removes oxidative DNA lesions. Recent crystal structures of Fpg bound to DNA revealed residues involved in damage recognition and enzyme catalysis, but failed to shed light on the dynamic nature of the processes. To examine the structural and dynamic changes that occur in solution when Fpg binds DNA, NMR spectroscopy was used to study Escherichia coli Fpg free and bound to a double-stranded DNA oligomer (13-PD) containing propanediol, a non-hydrolyzable abasic-site analogue. Only 209 out of a possible 252 (83%) free-precession HSQC cross peaks were observed and 180 of these were assignable, indicating that ~30% of the residues undergo intermediate timescale motion that makes them intractable in backbone assignment experiments. DNA titration experiments revealed line broadening and chemical shift perturbations for backbone amides nearby and distant from the DNA binding surface, but failed to quench the intermediate time-scale motion observed for free Fpg. CPMG-HSQC experiments revealed millisecond to microsecond motion for the backbone amides of D91 and H92 that was quenched upon binding 13-PD. Collectively, these observations reveal that, in solution, Fpg contains highly flexible regions. The dynamic nature of Fpg, especially at the DNA binding surface, may be key to its processive search mechanism.

  9. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    SciTech Connect

    Ruud, Kenneth; Demissie, Taye B.; Jaszuński, Michał

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  10. Dissection of Binding between a Phosphorylated Tyrosine Hydroxylase Peptide and 14-3-3ζ: A Complex Story Elucidated by NMR

    PubMed Central

    Hritz, Jozef; Byeon, In-Ja L.; Krzysiak, Troy; Martinez, Aurora; Sklenar, Vladimir; Gronenborn, Angela M.

    2014-01-01

    Human tyrosine hydroxylase activity is regulated by phosphorylation of its N-terminus and by an interaction with the modulator 14-3-3 proteins. We investigated the binding of singly or doubly phosphorylated and thiophosphorylated peptides, comprising the first 50 amino acids of human tyrosine hydroxylase, isoform 1 (hTH1), that contain the critical interaction domain, to 14-3-3ζ, by 31P NMR. Single phosphorylation at S19 generates a high affinity 14-3-3ζ binding epitope, whereas singly S40-phosphorylated peptide interacts with 14-3-3ζ one order-of-magnitude weaker than the S19-phosphorylated peptide. Analysis of the binding data revealed that the 14-3-3ζ dimer and the S19- and S40-doubly phosphorylated peptide interact in multiple ways, with three major complexes formed: 1), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphate with the S40 phosphate occupying the other binding site; 2), a single peptide bound to a 14-3-3ζ dimer via the S19 phosphorous with the S40 free in solution; or 3), a 14-3-3ζ dimer with two peptides bound via the S19 phosphorous to each binding site. Our system and data provide information as to the possible mechanisms by which 14-3-3 can engage binding partners that possess two phosphorylation sites on flexible tails. Whether these will be realized in any particular interacting pair will naturally depend on the details of each system. PMID:25418103

  11. Determination of the ratio of cationic flexible nanoparticles binding constant of counterions X- and Br- (KX/KBr) using the semi-empirical spectrophotometric (SESp) technique

    NASA Astrophysics Data System (ADS)

    Khalid, Khalisanni; Khan, M. Niyaz; Sharifuddin, M. Z.; Kim, R. P. T.; Azri, M. N. Muhammad

    2016-07-01

    The determination of the ion exchange constant (KXBr) for ion-exchange process occurring between counterions X- and Br- (X= C6H5CO2- ) at the cationic flexible nanoparticles surface using the semi-emperical spectrophotometric (SESp) technique is described in this paper. The method uses an anionic spectrophotometric probe molecule, N-(2-methoxyphnyl) phthalamate ion (1-), which measures the effects of varying concentrations of nanoparticles (CTABr/NaX/H2O) on absorbance, (Aob) at 310 nm of samples containing constant concentration of (1-), NaOH, CTABr and NaX. The observed data, Aob vs [NaX] fit satisfactorily to an empirical equation which gives the values of two empirical constants. These empirical constants lead to the determination of KXBr (=KX/KBr with KX and KBr representing cationic flexible nanoparticles binding constants of counterions X- Br- respectively). This method gives values of KXBr for moderately hydrophobic X-. The value of KXBr, obtained by using this method, is comparable with the corresponding values of KXBr , obtained by the use of semi-emperical kinetic (SEK) method.

  12. CopK from Cupriavidus metallidurans CH34 binds Cu(I) in a tetrathioether site: characterization by X-ray absorption and NMR spectroscopy.

    PubMed

    Sarret, Géraldine; Favier, Adrien; Covès, Jacques; Hazemann, Jean-Louis; Mergeay, Max; Bersch, Beate

    2010-03-24

    Cupriavidus metallidurans CH34 is a bacterium that is resistant to high metal concentrations in the environment. Increased copper resistance is associated with the cop cluster on the large plasmid pMOL30 that is composed of at least 21 genes. The copK gene encodes a 74 residue periplasmic protein whose expression is strongly upregulated in the presence of copper. CopK was previously shown to cooperatively bind Cu(I) and Cu(II) in distinct, specific sites. The solution structure of Cu(I)-CopK and the characterization of the Cu(I) site by X-ray absorption spectroscopy and NMR are reported here. EXAFS spectra are in agreement with a tetrathioether Cu(I) site, providing so far unique spectral information on a 4S-coordinated Cu(I) in a protein. The methionine residues forming the Cu(I) site, M28, M38, M44, and M54, are identified by NMR. We propose the chemical shift of the methionine C(epsilon) as a new and sensitive probe for the detection of Cu(I) bound to thioether groups. The solution structure of Cu(I)-CopK demonstrates that Cu(I) binding induces a complete structural modification with the disruption of the second beta-sheet and a rotation of the C-terminal part of nearly 180 degrees around a hinge formed by asparagine 57. This conformational change is directly related to the loss of the dimer interface and most probably to the formation of the Cu(II) site involving histidine 70. The solution structure of Cu(I)-CopK therefore provides the molecular basis for the understanding of the Cu(I)/Cu(II) binding cooperativity. PMID:20192263

  13. Using Electrophoretic Mobility Shift Assays to Measure Equilibrium Dissociation Constants: GAL4-p53 Binding DNA as a Model System

    ERIC Educational Resources Information Center

    Heffler, Michael A.; Walters, Ryan D.; Kugel, Jennifer F.

    2012-01-01

    An undergraduate biochemistry laboratory experiment is described that will teach students the practical and theoretical considerations for measuring the equilibrium dissociation constant (K[subscript D]) for a protein/DNA interaction using electrophoretic mobility shift assays (EMSAs). An EMSA monitors the migration of DNA through a native gel;…

  14. NMR Structure of Navel Orangeworm Moth Pheromone-Binding Protein (AtraPBP1): Implications for pH-Sensitive Pheromone Detection†

    PubMed Central

    Xu, Xianzhong; Xu, Wei; Rayo, Josep; Ishida, Yuko; Leal, Walter S.; Ames, James B.

    2010-01-01

    The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male-female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present the three-dimensional structure of a PBP from Amyelois transitella (AtraPBP1) in solution at pH 4.5 determined by nuclear magnetic resonance (NMR) spectroscopy. Pulsed-field gradient NMR diffusion experiments, multi-angle light scattering, and 15N NMR relaxation analysis indicate that AtraPBP1 forms a stable monomer in solution at pH 4.5 in contrast to forming mostly dimers at pH 7. The NMR structure of AtraPBP1 at pH 4.5 contains seven α-helices (α1: L8-L23, α2: D27-F36, α3: R46-V62, α4: A73-M78; α5: D84-S100; α6: R107-L125; α7: M131-E141) that adopt an overall main chain fold similar to that of PBPs found in Antheraea polyphemus and Bombyx mori. The AtraPBP1 structure is stabilized by three disulfide bonds formed by C19/C54, C50/C108 and C97/C117, and salt bridges formed by H69/E60, H70/E57, H80/E132, H95/E141 and H123/D40. All five His residues are cationic at pH 4.5, whereas H80 and H95 become neutral at pH 7.0. The C-terminal helix (α7) contains hydrophobic residues (M131, V133, V134, V135, V138, L139 and A140) that contact conserved residues (W37, L59, A73, F76, A77, I94, V111, V115) suggested to interact with bound pheromone. Our NMR studies reveal that acid-induced formation of the C-terminal helix at pH 4.5 is triggered by a histidine protonation switch that promotes rapid release of bound pheromone under acidic conditions. PMID:20088570

  15. Development of a fluorescence model for the determination of constants associated with binding, quenching, and Förster resonance energy transfer efficiency.

    PubMed

    Casciato, Shelly L; Liljestrand, Howard M; Holcombe, James A

    2014-02-27

    Determining accurate dissociation constants for equilibrium processes involving a fluorescent mechanism can prove to be quite challenging. Typically, titration curves and nonlinear least squares fitting of the data using computer programs are employed to obtain such constants. However, these approaches only consider the total fluorescence signal and often ignore other energy transfer processes within the system. The current model considers the impact on fluorescence from equilibrium binding (viz., metal-ligand, ligand-substrate, etc.), quenching, and resonance energy transfer. This model should provide more accurate binding constant as well as insights into other photonic processes. The equations developed for this model are discussed and are applied to experimental data from titrimetric experiments. Since the experimental data are generally in excess of the number of parameters that are needed to define the system, fitting is operated in an overdetermined mode and employs error minimization (either absolute or relative) to define goodness of fit. Examples of how changes in certain parameters affect the shape of the titrimetric curve are also presented. The current model does not consider chelation-enhanced fluorescence. PMID:24528663

  16. Toll-like receptors (TLRs) and mannan-binding lectin (MBL): on constant alert in a hostile environment.

    PubMed

    Bergman, Ingrid-Maria

    2011-05-01

    In the beginning were neither B cells nor T cells nor antibodies, but innate immune defense alone. The primary functional theme of innate immunity is the distinction between self and non-self, which is maintained by a vast number of cellular and subcellular components. In this context, the immense importance of the Toll-like receptors (TLRs) is well established. Positive (Darwinian) selection seems to be acting on the ligand-binding domains of these molecules, suggesting a selection pattern similar to that previously observed in the MHC proteins. In sharp contrast to TLRs, the biological significance of mannan-binding lectin (MBL) is controversial, and, concerning humans, it has been suggested that low concentration of MBL in serum represents a selective advantage. In this mini-review, based on a doctoral thesis, evolutionary aspects of TLRs and MBL are discussed. PMID:21323627

  17. Molecular environment of stable iodine and radioiodine (129I) in natural organic matter: Evidence inferred from NMR and binding experiments at environmentally relevant concentrations

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhong, Junyan; Hatcher, Patrick G.; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Schwehr, Kathleen A.; Kaplan, Daniel I.; Roberts, Kimberly A.; Brinkmeyer, Robin; Yeager, Chris M.; Santschi, Peter H.

    2012-11-01

    129I is a major by-product of nuclear fission and had become one of the major radiation risk drivers at Department of Energy (DOE) sites. 129I is present at elevated levels in the surface soils of the Savannah River Site (SRS) F-Area and was found to be bound predominantly to soil organic matter (SOM). Naturally bound 127I and 129I to sequentially extracted humic acids (HAs), fulvic acids (FAs) and a water extractable colloid (WEC) were measured in a 129I-contaminated wetland surface soil located on the SRS. WEC is a predominantly colloidal organic fraction obtained from soil re-suspension experiments to mimic the fraction that may be released during groundwater exfiltration, storm water or surface runoff events. For the first time, NMR techniques were applied to infer the molecular environment of naturally occurring stable iodine and radioiodine binding to SOM. Iodine uptake partitioning coefficients (Kd) by these SOM samples at ambient iodine concentrations were also measured and related to quantitative structural analyses by 13C DPMAS NMR and solution state 1H NMR on the eight humic acid fractions. By assessing the molecular environment of iodine, it was found that it was closely associated with the aromatic regions containing esterified products of phenolic and formic acids or other aliphatic carboxylic acids, amide functionalities, quinone-like structures activated by electron-donating groups (e.g., NH2), or a hemicellulose-lignin-like complex with phenyl-glycosidic linkages. However, FAs and WEC contained much greater concentrations of 127I or 129I than HAs. The contrasting radioiodine contents among the three different types of SOM (HAs, FAs and WEC) suggest that the iodine binding environment cannot be explained solely by the difference in the amount of their reactive binding sites. Instead, indirect evidence indicates that the macro-molecular conformation, such as the hydrophobic aliphatic periphery hindering the active aromatic cores and the hydrophilic

  18. NMR unfolding studies on a liver bile acid binding protein reveal a global two-state unfolding and localized singular behaviors.

    PubMed

    D'Onofrio, Mariapina; Ragona, Laura; Fessas, Dimitrios; Signorelli, Marco; Ugolini, Raffaella; Pedò, Massimo; Assfalg, Michael; Molinari, Henriette

    2009-01-01

    The folding properties of a bile acid binding protein, belonging to a subfamily of the fatty acid binding proteins, have been here investigated both by hydrogen exchange measurements, using the SOFAST NMR approach, and urea denaturation experiments. The urea unfolding profiles of individual residues, acting as single probes, were simultaneously analyzed through a global fit, according to a two-state unfolding model. The resulting conformational stability DeltaG(U)(H(2)O)=7.2+/-0.25kcal mol(-1) is in good agreement with hydrogen exchange stability DeltaG(op). While the majority of protein residues satisfy this model, few amino-acids display a singular behavior, not directly amenable to the presence of a folding intermediate, as reported for other fatty acid binding proteins. These residues are part of a protein patch characterized by enhanced plasticity. To explain this singular behavior a tentative model has been proposed which takes into account the interplay between the dynamic features and the formation of transient aggregates. A functional role for this plasticity, related to translocation across the nuclear membrane, is discussed. PMID:18977333

  19. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions.

    PubMed

    McShan, Andrew C; Kaur, Kawaljit; Chatterjee, Srirupa; Knight, Kevin M; De Guzman, Roberto N

    2016-08-01

    The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc. PMID:27093649

  20. sup 1 H NMR studies of DNA recognition by the glucocorticoid receptor: Complex of the DNA binding domain with a half-site response element

    SciTech Connect

    Remerowski, M.L.; Kellenbach, E.; Boelens, R.; Kaptein, R. ); van der Marel, G.A.; van Boom, J.H. ); Maler, B.A.; Yamamoto, K.R. )

    1991-12-17

    The complex of the rat glucocorticoid receptor (GR) DNA binding domain (DBD) and half-site sequence of the consensus glucocorticoid response element (GRE) has been studied by two-dimensional {sup 1}H NMR spectroscopy. The DNA fragment is a 10 base-pair oligonucleotide, 5{prime}d(GCTGTTCTGC)3{prime}{center dot}5{prime}d-(GCAGAACAGC)3{prime}, containing the stronger binding GRE half-site hexamer, with GC base pairs at each end. The 93-residue GR-DBD contains an 86-residue segment corresponding to residues 440-525 of the rat GR. Eleven NOE cross peaks between the protein and DNA have been identified, and changes in the chemical shift of the DNA protons upon complex formation have been analyzed. Using these protein-DNA contact points, it can be concluded that (1) the 'recognition helix' formed by residues C460-E469 lies in the major groove of the DNA; (2) the GR-DBD is oriented on the GRE half-site such that residues A477-D481, forming the so-called D-loop, are available for protein-protein interaction in the GR-DBD dimer on the intact consensus GRE; and (3) the 5-methyl of the second thymine in the half-site and valine 462 interact, confirming indirect evidence that both play an important role in GR-DBD DNA binding.

  1. Ferrous Iron Binding Key to Mms6 Magnetite Biomineralisation: A Mechanistic Study to Understand Magnetite Formation Using pH Titration and NMR Spectroscopy.

    PubMed

    Rawlings, Andrea E; Bramble, Jonathan P; Hounslow, Andrea M; Williamson, Michael P; Monnington, Amy E; Cooke, David J; Staniland, Sarah S

    2016-06-01

    Formation of magnetite nanocrystals by magnetotactic bacteria is controlled by specific proteins which regulate the particles' nucleation and growth. One such protein is Mms6. This small, amphiphilic protein can self-assemble and bind ferric ions to aid in magnetite formation. To understand the role of Mms6 during in vitro iron oxide precipitation we have performed in situ pH titrations. We find Mms6 has little effect during ferric salt precipitation, but exerts greatest influence during the incorporation of ferrous ions and conversion of this salt to mixed-valence iron minerals, suggesting Mms6 has a hitherto unrecorded ferrous iron interacting property which promotes the formation of magnetite in ferrous-rich solutions. We show ferrous binding to the DEEVE motif within the C-terminal region of Mms6 by NMR spectroscopy, and model these binding events using molecular simulations. We conclude that Mms6 functions as a magnetite nucleating protein under conditions where ferrous ions predominate. PMID:27112228

  2. Complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction in determining the binding constants of hydrophobic organic pollutants to dissolved humic substances.

    PubMed

    Hsieh, Ping-Chieh; Lee, Chon-Lin; Jen, Jen-Fon; Chang, Kuei-Chen

    2015-02-21

    The binding constants, KDOC, of selected polycyclic aromatic hydrocarbons (PAHs)-phenanthrene, anthracene, fluoranthene, and pyrene-to dissolved humic substances (DHS) were determined by complexation-flocculation combined with microwave-assisted headspace solid-phase microextraction (CF-MA-HS-SPME). The results obtained are comparable with KDOC data reported in the literature. No disruption of the PAH to DHS binding equilibrium was observed during the complexation-flocculation process. The present study, which is the first to determine KDOC by CF-MA-HS-SPME, provides an alternative approach to determine the KDOC of PAHs. CF-MA-HS-SPME provides some advantages over other methods, such as no limitation of fluorescent compounds, greater determination speed, and the capability of measuring various compounds simultaneously. PMID:25568896

  3. Solution conformation of a peptide fragment representing a proposed RNA-binding site of a viral coat protein studied by two-dimensional NMR

    SciTech Connect

    van der Graaf, M.; van Mierlo, C.P.M.; Hemminga, M.A. )

    1991-06-11

    The first 25 amino acids of the coat protein of cowpea chlorotic mottle virus are essential for binding the encapsidated RNA. Although an {alpha}-helical conformation has been predicted for this highly positively charged N-terminal region. No experimental evidence for this conformation has been presented so far. In this study, two-dimensional proton NMR experiments were performed on a chemically synthesized pentacosapeptide containing the first 25 amino acids of this coat protein. All resonances could be assigned by a combined use of two-dimensional correlated spectroscopy and nuclear Overhauser enhancement spectroscopy carried out at four different temperatures. Various NMR parameters indicate the presence of a conformational ensemble consisting of helical structures rapidly converting into more extended states. Differences in chemical shifts and nuclear Overhauser effects indicate that lowering the temperature induces a shift of the dynamic equilibrium toward more helical structures. At 10{degrees}C, a perceptible fraction of the conformational ensemble consists of structures with an {alpha}-helical conformation between residues 9 and 17, likely starting with a turnlike structure around Thr9 and Arg10. Both the conformation and the position of this helical region agree well with the secondary structure predictions mentioned above.

  4. Solid-state NMR as a probe of anion binding: molecular dynamics and associations in a [5]polynorbornane bisurea host complexed with terephthalate.

    PubMed

    Rawal, Aditya; Hook, James M; Robson, Ryan N; Gunzelmann, Daniel; Pfeffer, Frederick M; O'Dell, Luke A

    2015-09-14

    A range of solid-state NMR techniques is used to characterise a molecular host:guest complex consisting of a [5]polynorbornane bisurea host binding a terephthalate dianion guest. Detailed information is obtained on the molecular dynamics and associations from the point of view of both the host and guest molecules. The formation of the complex in the solid state is confirmed using (1)H 2D exchange NMR, and the 180° flipping of the (2)H-labelled terephthalate guest and its eventual expulsion from the complex at elevated temperatures are quantified using variable-temperature (2)H spin-echo experiments. Two-dimensional (1)H-(13)C HETCOR spectra obtained under fast magic angle spinning conditions (60 kHz) show a high resolution despite the poor crystallinity of the solid complex, and clearly reveal changes in the rigidity of the host molecule when complexed. Short-range intra- and intermolecular (1)H-(1)H proximities are also detected using 2D SQ-DQ correlation methods, providing insight into the molecular packing in the solid phase. PMID:26239510

  5. Fluorine detected 2D NMR experiments for the practical determination of size and sign of homonuclear F-F and heteronuclear C-F multiple bond J-coupling constants in multiple fluorinated compounds

    NASA Astrophysics Data System (ADS)

    Aspers, Ruud L. E. G.; Ampt, Kirsten A. M.; Dvortsak, Peter; Jaeger, Martin; Wijmenga, Sybren S.

    2013-06-01

    The use of fluorine in molecules obtained from chemical synthesis has become increasingly important within the pharmaceutical and agricultural industry. NMR characterization of these compounds is of great value with respect to their structure elucidation, their screening in metabolomics investigations and binding studies. The favorable NMR properties of the fluorine nucleus make NMR with fluorine detection of great value in this respect. A suite of NMR 2D F-F- and F-C-correlation experiments with fluorine detection was applied to the assignment of resonances, nJCF- and nJFF-couplings as well as the determination of their size and sign. The utilization of this experiment suite was exemplarily demonstrated for a highly fluorinated vinyl alkyl ether. Especially F-C HSQC and J-scaled F-C HMBC experiments allowed determining the size of the J-couplings of this compound. The relative sign of its homo- and heteronuclear couplings was achieved by different combinations of 2D NMR experiments, including non-selective and F2-selective F-C XLOC, F2-selective F-C HMQC, and F-F COSY. The F2-one/two-site selective F-C XLOC versions were found highly useful, as they led to simplifications of the common E.COSY patterns and resulted in a higher confidence level of the assignment by using selective excitation. The combination of F2-one/two-site selective F-C XLOC experiments with a F2-one-site selective F-C HMQC experiment provided the signs of all nJCF- and nJFF-couplings in the vinyl moiety of the test compound. Other combinations of experiments were found useful as well for special purposes when focusing for example on homonuclear couplings a combination of F-F COSY-10 with a F2-one-site selective F-C HMQC could be used. The E.COSY patterns in the spectra demonstrated were analyzed by use of the spin-selective displacement vectors, and in case of the XLOC also by use of the DQ- and ZQ-displacement vectors. The variety of experiments presented shall contribute to facilitate the

  6. NMR studies of (U- sup 13 C)cyclosporin A bound to cyclophilin: Bound conformation and protions of cyclosporin involved in binding

    SciTech Connect

    Fesik, S.W.; Gampe, R.T. Jr.; Eaton, H.L.; Gemmecker, G.; Olejniczak, E.T.; Neri, P.; Holzman, T.F.; Egan, D.A.; Edalji, R.; Simmer, R.; Helfrich, R.; Hochlowski, J.; Jackson, M. )

    1991-07-02

    Cyclosporin A (CsA), a potent immunosuppressant, is known to bind with high specificity to cyclophilin (CyP), a 17.7 kDa protein with peptidyl-prolyl isomerase activity. In order to investigate the three-dimensional structure of the CsA/CyP complex, the authors have applied a variety of multidimensional NMR methods in the study of uniformly {sup 13}C-labeled CsA bound to cyclophilin. The {sup 1}H and {sup 13}C NMR signals of cyclosporin A in the bound state have been assigned, and, from a quantitative interpretation of the 3D NOE data, the bound conformation of CsA has been determined. Three-dimensional structures of CsA calculated from the NOE data by using a distance geometry/simulated annealing protocol were found to be very different form previously determined crystalline and solution conformations of uncomplexed CsA. In addition, from CsA/CyP NOEs, the portions of CsA that interact with cyclophilin were identified. For the most part, those CsA residues with NOEs to cyclophilin were the same residues important for cyclophilin binding and immunosuppressive activity as determined from sturcture/activity relationships. The structural information derived in this study together with the known structure/activity relationships for CsA analogues may prove useful in the design of improved immunosuppressants. Moreover, the approach that is described for obtaining the structural information is widely applicable to the study of small molecule/large molecule interactions.

  7. NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1.

    PubMed

    Omichinski, J G; Clore, G M; Schaad, O; Felsenfeld, G; Trainor, C; Appella, E; Stahl, S J; Gronenborn, A M

    1993-07-23

    The three-dimensional solution structure of a complex between the DNA binding domain of the chicken erythroid transcription factor GATA-1 and its cognate DNA site has been determined with multidimensional heteronuclear magnetic resonance spectroscopy. The DNA binding domain consists of a core which contains a zinc coordinated by four cysteines and a carboxyl-terminal tail. The core is composed of two irregular antiparallel beta sheets and an alpha helix, followed by a long loop that leads into the carboxyl-terminal tail. The amino-terminal part of the core, including the helix, is similar in structure, although not in sequence, to the amino-terminal zinc module of the glucocorticoid receptor DNA binding domain. In the other regions, the structures of these two DNA binding domains are entirely different. The DNA target site in contact with the protein spans eight base pairs. The helix and the loop connecting the two antiparallel beta sheets interact with the major groove of the DNA. The carboxyl-terminal tail, which is an essential determinant of specific binding, wraps around into the minor groove. The complex resembles a hand holding a rope with the palm and fingers representing the protein core and the thumb, the carboxyl-terminal tail. The specific interactions between GATA-1 and DNA in the major groove are mainly hydrophobic in nature, which accounts for the preponderance of thymines in the target site. A large number of interactions are observed with the phosphate backbone. PMID:8332909

  8. Membrane binding of an acyl-lactoferricin B antimicrobial peptide from solid-state NMR experiments and molecular dynamics simulations

    PubMed Central

    Romo, Tod D.; Bradney, Laura A.; Greathouse, Denise V.; Grossfield, Alan

    2011-01-01

    One approach to the growing health problem of antibiotic resistant bacteria is the development of antimicrobial peptides (AMPs) as alternative treatments. The mechanism by which these AMPs selectively attack the bacterial membrane is not well understood, but is believed to depend on differences in membrane lipid composition. N-acylation of the small amidated hexapeptide, RRWQWR-NH2 (LfB6) derived from the 25 amino acid bovine lactoferricin (LfB25) can be an effective means to improve its antimicrobial properties. Here, we investigate the interactions of C6-LfB6, N-acylated with a 6 carbon fatty acid, with model lipid bilayers with two distinct compositions: 3:1 POPE:POPG (negatively charged) and POPC (zwitterionic). Results from solid-state 2H and 31P NMR experiments are compared with those from an ensemble of all-atom molecular dynamics simulations running in aggregate more than 8.6 microseconds. 2H NMR spectra reveal no change in the lipid acyl chain order when C6-LfB6 is bound to the negatively charged membrane and only a slight decrease in order when it is bound to the zwitterionic membrane. 31P NMR spectra show no significant perturbation of the phosphate headgroups of either lipid system in the presence of C6-LfB6. Molecular dynamics simulations show that for the negatively charged membrane, the peptide’s arginines drive the initial association with the membrane, followed by attachment of the tryptophans at the membrane-water interface, and finally by the insertion of the C6 tails deep into the bilayer. In contrast, the C6 tail leads the association with the zwitterionic membrane, with the tryptophans and arginines associating with the membrane-water interface in roughly the same amount of time. We find similar patterns in the order parameters from our simulations. Moreover, we find in the simulations that the C6 tail can insert 1–2 Å more deeply into the zwitterionic membrane and can exist in a wider range of angles than in the negatively charged

  9. A Large Intrinsically Disordered Region in SKIP and Its Disorder-Order Transition Induced by PPIL1 Binding Revealed by NMR*

    PubMed Central

    Wang, Xingsheng; Zhang, Shaojie; Zhang, Jiahai; Huang, Xiaojuan; Xu, Chao; Wang, Weiwei; Liu, Zhijun; Wu, Jihui; Shi, Yunyu

    2010-01-01

    Intrinsically disordered proteins or protein regions play an important role in fundamental biological processes. During spliceosome activation, a large structural rearrangement occurs. The Prp19 complex and related factors are involved in the catalytic activation of the spliceosome. Recent mass spectrometric analyses have shown that Ski interaction protein (SKIP) and peptidylprolyl isomerase-like protein 1 (PPIL1) are Prp19-related factors that constitute the spliceosome B, B*, and C complexes. Here, we report that a highly flexible region of SKIP (SKIPN, residues 59–129) is intrinsically disordered. Upon binding to PPIL1, SKIPN undergoes a disorder-order transition. A highly conserved fragment of SKIP (residues 59–79) called the PPIL1-binding fragment (PBF) was sufficient to bind PPIL1. The structure of PBF·PPIL1 complex, solved by NMR, shows that PBF exhibits an ordered structure and interacts with PPIL1 through electrostatic and hydrophobic interactions. Three subfragments in the PBF (residues 59–67, 68–73, and 74–79) show hook-like backbone structure, and interactions between these subfragments are necessary for PBF·PPIL1 complex formation. PPIL1 is a cyclophilin family protein. It is recruited by SKIP into the spliceosome by a region other than the peptidylprolyl isomerase active site. This enables the active site of PPIL1 to remain open in the complex and still function as a peptidylprolyl cis/trans-isomerase or molecular chaperon to facilitate the folding of other proteins in the spliceosomes. The large disordered region in SKIP provides an interaction platform. Its disorder-order transition, induced by PPIL1 binding, may adapt the requirement for a large structural rearrangement occurred in the activation of spliceosome. PMID:20007319

  10. Stretched poly(methyl methacrylate) gel aligns small organic molecules in chloroform. stereochemical analysis and diastereotopic proton NMR assignment in ludartin using residual dipolar couplings and 3J coupling constant analysis.

    PubMed

    Gil, Roberto R; Gayathri, Chakicherla; Tsarevsky, Nicolay V; Matyjaszewski, Krzysztof

    2008-02-01

    Poly(methyl methacrylate) (PMMA) gels prepared by copolymerizing methyl methacrylate (MMA) and various amounts of ethylene glycol dimethacrylate (EGDMA) in the presence of the radical initiator V-70 (2,2'-azobis(2,4-dimethyl-4-methoxyvaleronitrile)) can orient small organic molecules when swollen in NMR tubes with CDCl(3). The aligning properties of the stretched PMMA gels were evaluated by monitoring the quadrupolar splitting of the (2)H NMR signal of CDCl(3), and the aligning degree is proportional to the cross-linking density. Natural abundance one-bond (1)H-(13)C residual dipolar couplings (RDCs) for menthol measured in the gels depended on the cross-link density. The stereochemistry and assignment of the diastereotopic protons of the gastroprotective and nonsteroidal aromatase inhibitor sesquiterpene lactone ludartin, isolated from Stevia yaconensis var. subeglandulosa, were unambiguously determined using a combination of natural abundance one-bond (1)H-(13)C RDCs measured in a PMMA gel and a (3)J coupling constant analysis. PMID:18177050

  11. Structural, conformational, and theoretical binding studies of antitumor antibiotic porfiromycin (N-methylmitomycin C), a covalent binder of DNA, by X-ray, NMR, and molecular mechanics.

    PubMed

    Arora, S K; Cox, M B; Arjunan, P

    1990-11-01

    X-ray, NMR, and molecular mechanics studies on antitumor antibiotic porfiromycin (C16H20N4O5), a covalent binder of DNA, have been carried out to study the structure, conformation, and theoretical interactions with DNA. The crystal structure was solved by direct methods and refined to an R value of 0.052. The configurations at C(9), C(9a), C(1), and C(2) are S, R, S, and S, except for the orientation of the aziridine ring and (carbamoyloxy)methyl side chain. The five-membered ring attached to the aziridine ring adopts an envelope conformation. The solution conformation is similar to that observed in the solid state except for the (carbamoyloxy)methyl side chain. Monovalent and cross-linked models of the drug bound to DNA have been energetically refined by using molecular mechanics. The results indicate that, in the case of monocovalent binding, the drug clearly prefers a d(CpG) sequence rather than a d(GpC) sequence. In the case of the cross-linked model there is no clear-cut preference of d(CpG) over d(GpC), indicating that the binding preference of the drug may be kinetic rather than thermodynamic. PMID:2231597

  12. Targeting the Endocannabinoid System for Neuroprotection: A 19F-NMR Study of a Selective FAAH Inhibitor Binding with an Anandamide Carrier Protein, HSA

    PubMed Central

    Zhuang, Jianqin; Yang, De-Ping; Tian, Xiaoyu; Nikas, Spyros P.; Sharma, Rishi; Guo, Jason Jianxin; Makriyannis, Alexandros

    2013-01-01

    Fatty acid amide hydrolase (FAAH), the enzyme involved in the inactivation of the endocannabinoid anandamide (AEA), is being considered as a therapeutic target for analgesia and neuroprotection. We have developed a brain permeable FAAH inhibitor, AM5206, which has served as a valuable pharmacological tool to explore neuroprotective effects of this class of compounds. In the present work, we characterized the interactions of AM5206 with a representative AEA carrier protein, human serum albumin (HSA), using 19F nuclear magnetic resonance (NMR) spectroscopy. Our data showed that as a drug carrier, albumin can significantly enhance the solubility of AM5206 in aqueous environment. Through a series of titration and competitive binding experiments, we also identified that AM5206 primarily binds to two distinct sites within HSA. Our results may provide insight into the mechanism of HSA-AM5206 interactions. The findings should also help in the development of suitable formulations of the lipophilic AM5206 and its congeners for their effective delivery to specific target sites in the brain. PMID:24533425

  13. Communication: Localized molecular orbital analysis of the effect of electron correlation on the anomalous isotope effect in the NMR spin-spin coupling constant in methane

    SciTech Connect

    Zarycz, M. Natalia C. Provasi, Patricio F.; Sauer, Stephan P. A.

    2014-10-21

    We discuss the effect of electron correlation on the unexpected differential sensitivity (UDS) in the {sup 1}J(C–H) coupling constant of CH{sub 4} using a decomposition into contributions from localized molecular orbitals and compare with the {sup 1}J(N–H) coupling constant in NH{sub 3}. In particular, we discuss the well known fact that uncorrelated coupled Hartree-Fock (CHF) calculations are not able to reproduce the UDS in methane. For this purpose we have implemented for the first time a localized molecular orbital analysis for the second order polarization propagator approximation with coupled cluster singles and doubles amplitudes—SOPPA(CCSD) in the DALTON program. Comparing the changes in the localized orbital contributions at the correlated SOPPA and SOPPA(CCSD) levels and at the uncorrelated CHF level, we find that the latter overestimates the effect of stretching the bond between the coupled atoms on the contribution to the coupling from the localized bonding orbital between these atoms. This disturbs the subtle balance between the molecular orbital contributions, which lead to the UDS in methane.

  14. NMR relaxation behavior and quadrupole coupling constants of 39K and 23Na ions in glycerol. Comparisons with 39K tissue data

    NASA Astrophysics Data System (ADS)

    Wellard, R. Mark; Shehan, B. Philip; Craik, David J.; Adam, William R.

    The quadrupole coupling constants (qcc) for 39K and 23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of 39K in glycerol is found to be 1.7 MHz, and that of 23Na is 1.6 MHz. The relaxation behavior of 39K and 23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τ c is not simply proportional to the ratio of viscosity/temperature (η T). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T 2 measurements of 39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing 39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of 39K in tissue. Similar results and conclusions are found for 23Na.

  15. Measurement of homonuclear magnetic dipole-dipole interactions in multiple 1/2-spin systems using constant-time DQ-DRENAR NMR

    NASA Astrophysics Data System (ADS)

    Ren, Jinjun; Eckert, Hellmut

    2015-11-01

    A new pulse sequence entitled DQ-DRENAR (Double-Quantum based Dipolar Recoupling Effects Nuclear Alignment Reduction) was recently described for the quantitative measurement of magnetic dipole-dipole interactions in homonuclear spin-1/2 systems involving multiple nuclei. As described in the present manuscript, the efficiency and performance of this sequence can be significantly improved, if the measurement is done in the constant-time mode. We describe both the theoretical analysis of this method and its experimental validation of a number of crystalline model compounds, considering both symmetry-based and back-to-back (BABA) DQ-coherence excitation schemes. Based on the combination of theoretical analysis and experimental results we discuss the effect of experimental parameters such as the chemical shift anisotropy (CSA), the spinning rate, and the radio frequency field inhomogeneity upon its performance. Our results indicate that constant-time (CT-) DRENAR is a method of high efficiency and accuracy for compounds with multiple homonuclear spin systems with particular promise for the analysis of stronger-coupled and short T2 spin systems.

  16. Quantitative chemical exchange saturation transfer with hyperpolarized nuclei (qHyper-CEST): Sensing xenon-host exchange dynamics and binding affinities by NMR

    SciTech Connect

    Kunth, M. Witte, C.; Schröder, L.

    2014-11-21

    The reversible binding of xenon to host molecules has found numerous applications in nuclear magnetic resonance studies. Quantitative characterization of the Xe exchange dynamics is important to understand and optimize the physico-chemical behavior of such Xe hosts, but is often challenging to achieve at low host concentrations. We have investigated a sensitive quantification technique based on chemical exchange saturation transfer with hyperpolarized nuclei, qHyper-CEST. Using simulated signals we demonstrated that qHyper-CEST yielded accurate and precise results and was robust in the presence of large amounts of noise (10%). This is of particular importance for samples with completely unknown exchange rates. Using these findings we experimentally determined the following exchange parameters for the Xe host cryptophane-A monoacid in dimethyl sulfoxide in one type of experiment: the ratio of bound and free Xe, the Xe exchange rate, the resonance frequencies of free and bound Xe, the Xe host occupancy, and the Xe binding constant. Taken together, qHyper-CEST facilitates sensitive quantification of the Xe exchange dynamics and binding to hydrophobic cavities and has the potential to analyze many different host systems or binding sites. This makes qHyper-CEST an indispensable tool for the efficient design of highly specific biosensors.

  17. Reinvestigation of the copper(II)-carcinine equilibrium system: "two-dimensional" EPR simulation and NMR relaxation studies for determining the formation constants and coordination modes.

    PubMed

    Arkosi, Zsuzsanna; Paksi, Zoltán; Korecz, László; Gajda, Tamás; Henry, Bernard; Rockenbauer, Antal

    2004-12-01

    The equilibria and solution structure of complexes formed between copper(II) and carcinine (beta-alanyl-histamine) at 2< or = pH< or =11.2 have been studied by EPR and NMR relaxation methods. Beside the species that have already been described in the literature from pH-potentiometric measurements, several new complexes have been identified and/or structurally characterized. The singlet on the EPR spectrum detected in equimolar solutions at pH 7, indicates the formation of an oligomerized (CuL)n(2n+) complex, with [NH2,Nim] coordination. The oligomerization is probably associated with the low stability of the ten-membered macrochelate ring, which would form in the mononuclear complex CuL2+. In presence of moderate excess of ligand the formation of four new bis-complexes (CuL2Hn(2+n), n=2,1 and 0/-1) was detected with [Nim][Nim], [NH2,Nim][Nim] and [NH2,N-,Nim][Nim] type co-ordination modes, respectively. At higher excess of ligand ([L]/[Cu2+]>10) and at pH approximately 7, the predominant species is CuL4H2(4+). The 1H and 13C relaxation measurements of carcinine solutions (0.6 M) in presence of 0 mM< or = [Cu2+](tot)< or = 5 mM at pH=6.8, allowed us to extract the carbon-to-metal distances, the electronic relaxation and tumbling correlation times, as well as the ligand exchange rate for the species CuL4H2(4+). According to these results, the metal ion is [4Nim] co-ordinated in the equatorial plane, while the neutral amino groups are unbounded. Since naturally occurring carcinine shows in vivo antioxidant property, the SOD-like activity of the copper(II)-carcinine system has also been investigated and the complex CuLH(-1) was found to be highly active. PMID:15541487

  18. Conformation and concerted dynamics of the integrin-binding site and the C-terminal region of echistatin revealed by homonuclear NMR

    PubMed Central

    Monleón, Daniel; Esteve, Vicent; Kovacs, Helena; Calvete, Juan J.; Celda, Bernardo

    2004-01-01

    Echistatin is a potent antagonist of the integrins αvβ3, α5β1 and αIIbβ3. Its full inhibitory activity depends on an RGD (Arg-Gly-Asp) motif expressed at the tip of the integrin-binding loop and on its C-terminal tail. Previous NMR structures of echistatin showed a poorly defined integrin-recognition sequence and an incomplete C-terminal tail, which left the molecular basis of the functional synergy between the RGD loop and the C-terminal region unresolved. We report a high-resolution structure of echistatin and an analysis of its internal motions by off-resonance ROESY (rotating-frame Overhauser enhancement spectroscopy). The full-length C-terminal polypeptide is visible as a β-hairpin running parallel to the RGD loop and exposing at the tip residues Pro43, His44 and Lys45. The side chains of the amino acids of the RGD motif have well-defined conformations. The integrin-binding loop displays an overall movement with maximal amplitude of 30°. Internal angular motions in the 100–300 ps timescale indicate increased flexibility for the backbone atoms at the base of the integrin-recognition loop. In addition, backbone atoms of the amino acids Ala23 (flanking the R24GD26 tripeptide) and Asp26 of the integrin-binding motif showed increased angular mobility, suggesting the existence of major and minor hinge effects at the base and the tip, respectively, of the RGD loop. A strong network of NOEs (nuclear Overhauser effects) between residues of the RGD loop and the C-terminal tail indicate concerted motions between these two functional regions. A full-length echistatin–αvβ3 docking model suggests that echistatin's C-terminal amino acids may contact αv-subunit residues and provides new insights to delineate structure–function correlations. PMID:15535803

  19. Structural plasticity and Mg2+ binding properties of RNase P P4 from combined analysis of NMR residual dipolar couplings and motionally decoupled spin relaxation.

    PubMed

    Getz, Melissa M; Andrews, Andy J; Fierke, Carol A; Al-Hashimi, Hashim M

    2007-02-01

    The P4 helix is an essential element of ribonuclease P (RNase P) that is believed to bind catalytically important metals. Here, we applied a combination of NMR residual dipolar couplings (RDCs) and a recently introduced domain-elongation strategy for measuring "motionally decoupled" relaxation data to characterize the structural dynamics of the P4 helix from Bacillus subtilis RNase P. In the absence of divalent ions, the two P4 helical domains undergo small amplitude (approximately 13 degrees) collective motions about an average interhelical angle of 10 degrees. The highly conserved U7 bulge and helical residue C8, which are proposed to be important for substrate recognition and metal binding, are locally mobile at pico- to nanosecond timescales and together form the pivot point for the collective domain motions. Chemical shift mapping reveals significant association of Mg2+ ions at the P4 major groove near the flexible pivot point at residues (A5, G22, G23) previously identified to bind catalytically important metals. The Mg2+ ions do not, however, significantly alter the structure or dynamics of P4. Analysis of results in the context of available X-ray structures of the RNA component of RNase P and structural models that include the pre-tRNA substrate suggest that the internal motions observed in P4 likely facilitate adaptive changes in conformation that take place during folding and substrate recognition, possibly aided by interactions with Mg2+ ions. Our results add to a growing view supporting the existence of functionally important internal motions in RNA occurring at nanosecond timescales. PMID:17194721

  20. Binding of sucrose octasulphate to the C-type lectin-like domain of the recombinant natural killer cell receptor NKR-P1A observed by NMR spectroscopy.

    PubMed

    Kogelberg, Heide; Frenkiel, Thomas A; Birdsall, Berry; Chai, Wengang; Muskett, Frederick W

    2002-11-01

    NKR-P1A is a C-type lectin-like receptor on natural killer cells believed to be involved in the cytotoxicity of these cells. Ligands for this protein are not known. Here, we describe the binding of a fully sulphated disaccharide, sucrose octasulphate, by the recombinant C-type lectin-like domain of NKR-P1A. The binding was observed by NMR spectroscopy methods that have recently been described for the screening of compound libraries for bioaffinities, namely the 2D NOESY and saturation transfer difference NMR experiments. (1)H titration studies indicate that the binding is specific. These findings raise the possibility that NKR-P1A recognises sulphated natural ligands in common with certain other members of the C-type lectin family. PMID:12404632

  1. Characterizing carbohydrate-protein interactions by NMR

    PubMed Central

    Bewley, Carole A.; Shahzad-ul-Hussan, Syed

    2013-01-01

    Interactions between proteins and soluble carbohydrates and/or surface displayed glycans are central to countless recognition, attachment and signaling events in biology. The physical chemical features associated with these binding events vary considerably, depending on the biological system of interest. For example, carbohydrate-protein interactions can be stoichiometric or multivalent, the protein receptors can be monomeric or oligomeric, and the specificity of recognition can be highly stringent or rather promiscuous. Equilibrium dissociation constants for carbohydrate binding are known to vary from micromolar to millimolar, with weak interactions being far more prevalent; and individual carbohydrate binding sites can be truly symmetrical or merely homologous, and hence, the affinities of individual sites within a single protein can vary, as can the order of binding. Several factors, including the weak affinities with which glycans bind their protein receptors, the dynamic nature of the glycans themselves, and the non-equivalent interactions among oligomeric carbohydrate receptors, have made NMR an especially powerful tool for studying and defining carbohydrate-protein interactions. Here we describe those NMR approaches that have proven to be the most robust in characterizing these systems, and explain what type of information can (or cannot) be obtained from each. Our goal is to provide to the reader the information necessary for selecting the correct experiment or sets of experiments to characterize their carbohydrate-protein interaction of interest. PMID:23784792

  2. Novel chiral N4S2- and N6S3-donor macrocyclic ligands: synthesis, protonation constants, metal-ion binding and asymmetric catalysis in the Henry reaction.

    PubMed

    Gao, Jian; Martell, A E

    2003-08-01

    New hydrophobic chiral macrocyclic ligands L1-L3 with chiral diamino and thiophene moieties have been synthesized by the Schiff base condensation approach. Protonation constants of L1 and L2 were determined by potentiometry titration. Metal-ion binding experiments exhibited that L1 and L3 are pronounced in selective recognition, Ag+, Cu2+ and Ca2+ ions among the surveyed metal ions (Cu2+, Co2+, Ni2+, Zn2+, Cd2+, Pb2+, Ag+, Li+, Na+, K+, and Ca2+). L1 was found to spectroscopically detect the presence of Cu2+ and Ca2+ to function as a multiple readout sensor. The detection limit for Ca2+ ions was found to be 9.8 x 10(-5) M in CH2Cl2-MeOH solution. The trimeric chiral ligand L3 has been shown to be an efficient auxiliary in a Zn(II)-mediated enantioselective Henry reaction. PMID:12948208

  3. From correlation-consistent to polarization-consistent basis sets estimation of NMR spin spin coupling constant in the B3LYP Kohn Sham basis set limit

    NASA Astrophysics Data System (ADS)

    Kupka, Teobald

    2008-08-01

    Based on B3LYP spin-spin coupling constants (SSCC) of several molecules calculated with cc-pV xZ, cc-pCV xZ, cc-pCV xZ-sd and cc-pCV xZ-sd+ t basis sets, a reasonably fit, using the two-parameter formula, to the Kohn-Sham complete basis set limit (CBS) is shown. Improvement in the CBS values going from cc-pV xZ to the most elaborated cc-pCV xZ-sd+ t basis set family is observed: standard deviation for all data drops from 33.7 to 23.1, and from 6.0 to 4.8 Hz after excluding problematic 1J(F,H) and 1J(F,C). Calculation of water's 1J(OH) using B3LYP/cc-pCV xZ and B3LYP/pcJ- n significantly improved the FC term convergence.

  4. Premelting base pair opening probability and drug binding constant of a daunomycin-poly d(GCAT).poly d(ATGC) complex.

    PubMed Central

    Chen, Y Z; Prohofsky, E W

    1994-01-01

    We calculate room temperature thermal fluctuational base pair opening probability of a daunomycin-poly d(GCAT).poly d(ATGC) complex. This system is constructed at an atomic level of detail based on x-ray analysis of a crystal structure. The base pair opening probabilities are calculated from a modified self-consistent phonon approach of anharmonic lattice dynamics theory. We find that daunomycin binding substantially enhances the thermal stability of one of the base pairs adjacent the drug because of strong hydrogen bonding between the drug and the base. The possible effect of this enhanced stability on the drug inhibition of DNA transcription and replication is discussed. We also calculate the probability of drug dissociation from the helix based on the selfconsistent calculation of the probability of the disruption of drug-base H-bonds and the unstacking probability of the drug. The calculations can be used to determine the equilibrium drug binding constant which is found to be in good agreement with observations on similar daunomycin-DNA systems. PMID:8011914

  5. Moving NMR

    NASA Astrophysics Data System (ADS)

    Blümich, Bernhard; Casanova, Federico; Danieli, Ernesto; Gong, Qingxia; Greferath, Marcus; Haber, Agnes; Kolz, Jürgen; Perlo, Juan

    2008-12-01

    Initiated by the use of NMR for well logging, portable NMR instruments are being developed for a variety of novel applications in materials testing and process analysis and control. Open sensors enable non-destructive testing of large objects, and small, cup-size magnets become available for high throughput analysis by NMR relaxation and spectroscopy. Some recent developments of mobile NMR are reviewed which delineate the direction into which portable NMR is moving.

  6. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed

    Mühlhahn, P; Bernhagen, J; Czisch, M; Georgescu, J; Renner, C; Ross, A; Bucala, R; Holak, T A

    1996-10-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  7. NMR characterization of structure, backbone dynamics, and glutathione binding of the human macrophage migration inhibitory factor (MIF).

    PubMed Central

    Mühlhahn, P.; Bernhagen, J.; Czisch, M.; Georgescu, J.; Renner, C.; Ross, A.; Bucala, R.; Holak, T. A.

    1996-01-01

    Human macrophage migration inhibitory factor is a 114 amino acid protein that belongs to the family of immunologic cytokines. Assignments of 1H, 15N, and 13C resonances have enabled the determination of the secondary structure of the protein, which consists of two alpha-helices (residues 18-31 and 89-72) and a central four-stranded beta-sheet. In the beta-sheet, two parallel beta-sheets are connected in an antiparallel sense. From the total of three cysteines present in the primary structure of MIF, none was found to form disulfide bridges. 1H-15N heteronuclear T1, T2, and steady-state NOE measurements indicate that the backbone of MIF exists in a rigid structure of limited conformational flexibility (on the nanosecond to picosecond time scale). Several residues located in the loop regions and at the N termini of two helices exhibit internal motions on the 1-3 ns time scale. The capacity to bind glutathione was investigated by titration of a uniform 15N-labeled sample and led us to conclude that MIF has, at best, very low affinity for glutathione. PMID:8897610

  8. Binding kinetics of histone chaperone Chz1 and variant histone H2A.Z-H2B by relaxation dispersion NMR spectroscopy

    PubMed Central

    Hansen, D. Flemming; Zhou, Zheng; Feng, Haniqiao; Miller Jenkins, Lisa M.; Bai, Yawen; Kay, Lewis E.

    2009-01-01

    The genome of eukaryotic cells is packed into a compact structure called chromatin that consists of DNA as well as both histone and non-histone proteins. Histone-chaperones associate with histone proteins and play important roles in the assembly of chromatin structure and transport of histones in the cell. The recently discovered histone-chaperone Chz1 associates with the variant histone H2A.Z of budding yeast and plays a critical role in the exchange of the canonical histone pair H2A-H2B for the variant H2A.Z-H2B. Here, we present an NMR approach that provides accurate estimates for the rates of association and dissociation of Chz1 and H2A.Z-H2B. The methodology exploits the fact that in a 1:1 mixture of Chz1 and H2A.Z-H2B the small amounts of unbound proteins that are invisible in spectra produce line-broadening of signals from the complex that can be quantified in terms of the thermodynamics and kinetics of the exchange process. The dissociation rate constant measured, 22±2 s−1, provides an upper bound for the rate of transfer of H2A.Z-H2B to the chromatin remodeling complex and the faster than diffusion association rate, 108±107 M−1s−1, establishes the importance of attractive electrostatic interactions that form the chaperone:histone complex. PMID:19385041

  9. Identification and characterization of a novel high affinity metal-binding site in the hammerhead ribozyme.

    PubMed Central

    Hansen, M R; Simorre, J P; Hanson, P; Mokler, V; Bellon, L; Beigelman, L; Pardi, A

    1999-01-01

    A novel metal-binding site has been identified in the hammerhead ribozyme by 31P NMR. The metal-binding site is associated with the A13 phosphate in the catalytic core of the hammerhead ribozyme and is distinct from any previously identified metal-binding sites. 31P NMR spectroscopy was used to measure the metal-binding affinity for this site and leads to an apparent dissociation constant of 250-570 microM at 25 degrees C for binding of a single Mg2+ ion. The NMR data also show evidence of a structural change at this site upon metal binding and these results are compared with previous data on metal-induced structural changes in the core of the hammerhead ribozyme. These NMR data were combined with the X-ray structure of the hammerhead ribozyme (Pley HW, Flaherty KM, McKay DB. 1994. Nature 372:68-74) to model RNA ligands involved in binding the metal at this A13 site. In this model, the A13 metal-binding site is structurally similar to the previously identified A(g) metal-binding site and illustrates the symmetrical nature of the tandem G x A base pairs in domain 2 of the hammerhead ribozyme. These results demonstrate that 31P NMR represents an important method for both identification and characterization of metal-binding sites in nucleic acids. PMID:10445883

  10. Revised stability constant, spectroscopic properties and binding mode of Zn(II) to FluoZin-3, the most common zinc probe in life sciences.

    PubMed

    Marszałek, I; Krężel, A; Goch, W; Zhukov, I; Paczkowska, I; Bal, W

    2016-08-01

    2-[2-[2-[2-[bis(carboxylatomethyl)amino]-5-methoxyphenoxy]ethoxy]-4-(2,7-difluoro-3-oxido-6-oxo-4a,9a-dihydroxanthen-9-yl)anilino]acetate (FluoZin-3) is used very broadly in life sciences as intra- and extracellular Zn(II) sensor selective for Zn(II) over Co(II), Ca(II) and Mg(II) ions at their physiological concentrations. It has been used for determination of relative and absolute levels of exchangeable Zn(II) in cells and extracellular fluids. Despite its popularity, the knowledge of its acid/base and Zn(II) coordination abilities and of its spectroscopic properties remained very limited. Also the published conditional dissociation constant ((C)Kd) values at pH7.4 are slightly discrepant, (15nM or 8.9nM). In this work we determined the (C)Kd for Zn(II) complexation by FluoZin-3 at pH7.4 with nitrilotriacetic acid (NTA) as competitor using two independent methods: fluorimetry and UV-Vis spectroscopy. For the first time, we investigated FluoZin-3 alone and complexed with Zn(II) in the wide range of pH, determining the total of eight pKa values from fluorescence spectra and from various regions of UV-Vis spectra. The validated values of (C)Kd (9.1±0.4nM; -log (C)Kd=8.04) and of the absolute (pH-independent) stability constant log βZnL (8.16±0.05) were provided by fluorescence spectroscopy experiments performed at 1μM concentrations. Our experiments demonstrated that both of aminocarboxylate moieties of FluoZin-3 bind the Zn(II) ion synergistically. PMID:27216451

  11. Determination of the tautomeric equilibria of pyridoyl benzoyl β-diketones in the liquid and solid state through the use of deuterium isotope effects on (1)H and (13)C NMR chemical shifts and spin coupling constants.

    PubMed

    Hansen, Poul Erik; Borisov, Eugeny V; Lindon, John C

    2015-02-01

    The tautomeric equilibria for 2-pyridoyl-, 3-pyridoyl-, and 4-pyridoyl-benzoyl methane have been investigated using deuterium isotope effects on (1)H and (13)C chemical shifts both in the liquid and the solid state. Equilibria are established both in the liquid and the solid state. In addition, in the solution state the 2-bond and 3-bond J((1)H-(13)C) coupling constants have been used to confirm the equilibrium positions. The isotope effects due to deuteriation at the OH position are shown to be superior to chemical shift in determination of equilibrium positions of these almost symmetrical -pyridoyl-benzoyl methanes. The assignments of the NMR spectra are supported by calculations of the chemical shifts at the DFT level. The equilibrium positions are shown to be different in the liquid and the solid state. In the liquid state the 4-pyridoyl derivative is at the B-form (C-1 is OH), whereas the 2-and 3-pyridoyl derivatives are in the A-form. In the solid state all three compounds are on the B-form. The 4-pyridoyl derivative shows unusual deuterium isotope effects in the solid, which are ascribed to a change of the crystal structure of the deuteriated compound. PMID:24070650

  12. Study of stereospecificity of 1H, 13C, 15N and 77Se shielding constants in the configurational isomers of the selenophene-2-carbaldehyde azine by NMR spectroscopy and MP2-GIAO calculations.

    PubMed

    Afonin, Andrei V; Pavlov, Dmitry V; Albanov, Alexander I; Levanova, Ekaterina P; Levkovskaya, Galina G

    2011-11-01

    In the (1)H and (13)C NMR spectra of selenophene-2-carbaldehyde azine, the (1)H-5, (13)C-3 and (13)C-5 signals of the selenophene ring are shifted to higher frequencies, whereas those of the (1)H-1, (13)C-1, (13)C-2 and (13)C-4 are shifted to lower frequencies on going from the EE to ZZ isomer or from the E moiety to the Z moiety of EZ isomer. The (15)N chemical shift is significantly larger in the EE isomer relative to the ZZ isomer and in the E moiety relative to the Z moiety of EZ isomer. A very pronounced difference (60-65 mg/g) between the (77)Se resonance positions is revealed in the studied azine isomers, the (77)Se peak being shifted to higher frequencies in the ZZ isomer and in the Z moiety of EZ isomer. The trends in the changes of the measured chemical shifts are reasonably reproduced by the GIAO calculations at the MP2 level of the (1)H, (13)C, (15)N and (77)Se shielding constants in the energy-favorable conformation with the syn orientation of both selenophene rings relative to the C = N groups. The NBO analysis suggests that such an arrangement of the selenophene rings may take place because of a higher energy of some intramolecular interactions. PMID:22002712

  13. Sequence-specific sup 1 H NMR assignments, secondary structure, and location of the calcium binding site in the first epidermal growth factor like domain of blood coagulation factor IX

    SciTech Connect

    Huang, L.H.; Cheng, H.; Sweeney, W.V. ); Pardi, A. ); Tam, J.P. )

    1991-07-30

    Factor IX is a blood clotting protein that contains three regions, including a {gamma}-carboxyglutamic acid (Gla) domain, two tandemly connected epidermal growth factor like (EGF-like) domains, and a serine protease region. The protein exhibits a high-affinity calcium binding site in the first EGF0like domain, in addition to calcium binding in the Gla domain. The first EGF-like domain, factor IX (45-87), has been synthesized. Sequence-specific resonance assignment of the peptide has been made by using 2D NMR techniques, and its secondary structure has been determined. The protein is found to have two antiparallel {beta}-sheets, and preliminary distance geometry calculations indicate that the protein has two domains, separated by Trp{sup 28}, with the overall structure being similar to that of EGF. An NMR investigation of the calcium-bound first EGF-like domain indicates the presence and location of a calcium binding site involving residues on both strands of one of the {beta}-sheets as well as the N-terminal region of the peptide. These results suggest that calcium binding in the first EGF-like domain could induce long-range (possibly interdomain) conformational changes in factor IX, rather than causing structural alterations in the EGF-like domain itself.

  14. pH and ionic strength effects on the binding constant between a nitrogen-containing polycyclic aromatic compound and humic acid.

    PubMed

    Chang, Kuei-Chen; Lee, Chon-Lin; Hsieh, Ping-Chieh; Brimblecombe, Peter; Kao, Shu-Min

    2015-09-01

    Polycyclic aromatic compounds (PACs) are widespread environmental pollutants with a high potential to act as human carcinogens and mutagens. The behavior of PACs is significantly affected by their interactions with dissolved organic matter (DOM), such as their transport, solubility, bioavailability, and bioaccumulation in the aquatic environment. Being a basic PAC, benzo(h)quinoline (BQ) is the dominant species, as the solution's pH value is higher than BQ's pK a (pK a of BQ = 4.2). In contrast, benzo(h)quinolinium (BQH(+)) is the major species, as the solution's pH value is lower than its pK a. The binding constant (K DOC), measured by fluorescence quenching, between BQ/BQH(+) and Leonardite humic acid (LHA) would decrease 70 to 95 % and 20 to 90 % when increasing the ionic strength in acidic and neutral to basic conditions, respectively. The results can be attributed to the added cation (Na(+) and Mg(2+)), which forms a bridge with LHA and enhances the intramolecular reaction among these functional groups, therefore inducing the coiling up within the LHA molecule. In addition, the decrease of the K DOC with added MgCl2/MgSO4 (75-95 %) is higher than that with added NaCl/Na2SO4 (20-75 %), indicating that the K DOC was affected by the charge density of cations. The fluorescence intensity of BQH(+) in the absence of LHA (F 0) was found to decay only in the acidic solution with Cl(-), suggesting that Cl(-) might be a heavy atom serving as a quencher in an acidic solution. PMID:25940463

  15. (1)H NMR spectroscopic identification of binding modes of 2,2'-bipyridine ligands in complexes of square-planar d(8) metal ions.

    PubMed

    Shen, Wei-Zheng; Trötscher-Kaus, Gabriele; Lippert, Bernhard

    2009-10-21

    The reaction of [M(bpy)](2+) (M = Pd(II) and/or Pt(II); bpy = 2,2'-bipyridine) moieties with model nucleobases leads to a variety of products, viz. 1 : 1, 1 : 2 and 2 : 2 (head-tail, ht, or head-head, hh) complexes. By carefully analysing the H5 (H5') resonances of the bpy ligands, which in all cases occur furthest upfield, and with additional indicators (concentration dependence of H6, H6' resonances; (195)Pt-(1)H coupling constants, if observable; absolute shifts of H5, H5'), it is possible to assign binding situations of bpy ligands, even in multinuclear complexes with several [M(bpy)](2+) entities in different environments present. The analysis presented here is carried out on X-ray structurally established cases of [M(bpy)](2+) complexes, including three new ones, [Pt(1-MeC-N3)(2)(bpy)](NO(3))(2).2.5H(2)O (), ht-[(bpy)Pd(N3-1-MeC(-)-N4)(2)Pd(bpy)](ClO(4))(2).3H(2)O () and ht-[(bpy)Pd(N1-ampy(-)-N2)(2)Pd(bpy)](NO(3))(2).3H(2)O (). The data provide a consistent picture, useful for the future assignment of similar bpy complexes in the absence of X-ray structural evidence. PMID:19789773

  16. Chromatographic NMR in NMR solvents

    NASA Astrophysics Data System (ADS)

    Carrara, Caroline; Viel, Stéphane; Delaurent, Corinne; Ziarelli, Fabio; Excoffier, Grégory; Caldarelli, Stefano

    2008-10-01

    Recently, it was demonstrated that pseudo-chromatographic NMR experiments could be performed using typical chromatographic solids and solvents. This first setup yielded improved separation of the spectral components of the NMR spectra of mixtures using PFG self-diffusion measurements. The method (dubbed Chromatographic NMR) was successively shown to possess, in favorable cases, superior resolving power on non-functionalized silica, compared to its LC counterpart. To further investigate the applicability of the method, we studied here the feasibility of Chromatographic NMR in common deuterated solvents. Two examples are provided, using deuterated chloroform and water, for homologous compounds soluble in these solvents, namely aromatic molecules and alcohols, respectively.

  17. NMR structures of apo L. casei dihydrofolate reductase and its complexes with trimethoprim and NADPH: contributions to positive cooperative binding from ligand-induced refolding, conformational changes, and interligand hydrophobic interactions.

    PubMed

    Feeney, James; Birdsall, Berry; Kovalevskaya, Nadezhda V; Smurnyy, Yegor D; Navarro Peran, Emna M; Polshakov, Vladimir I

    2011-05-10

    In order to examine the origins of the large positive cooperativity (ΔG(0)(coop) = -2.9 kcal mol(-1)) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A-B loop region and part of helix B (residues 15-31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to -0.95 kcals mol(-1) if 80% of A-B loop requires refolding). Comparisons of Cα-Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to -1.4 kcal mol(-1)). PMID:21410224

  18. NMR Structures of Apo L. casei Dihydrofolate Reductase and Its Complexes with Trimethoprim and NADPH: Contributions to Positive Cooperative Binding from Ligand-Induced Refolding, Conformational Changes, and Interligand Hydrophobic Interactions

    PubMed Central

    2011-01-01

    In order to examine the origins of the large positive cooperativity (ΔG0coop = −2.9 kcal mol−1) of trimethoprim (TMP) binding to a bacterial dihydrofolate reductase (DHFR) in the presence of NADPH, we have determined and compared NMR solution structures of L. casei apo DHFR and its binary and ternary complexes with TMP and NADPH and made complementary thermodynamic measurements. The DHFR structures are generally very similar except for the A−B loop region and part of helix B (residues 15−31) which could not be directly detected for L. casei apo DHFR because of line broadening from exchange between folded and unfolded forms. Thermodynamic and NMR measurements suggested that a significant contribution to the cooperativity comes from refolding of apo DHFR on binding the first ligand (up to −0.95 kcals mol−1 if 80% of A−B loop requires refolding). Comparisons of Cα−Cα distance differences and domain rotation angles between apo DHFR and its complexes indicated that generally similar conformational changes involving domain movements accompany formation of the binary complexes with either TMP or NADPH and that the binary structures are approaching that of the ternary complex as would be expected for positive cooperativity. These favorable ligand-induced structural changes upon binding the first ligand will also contribute significantly to the cooperative binding. A further substantial contribution to cooperative binding results from the proximity of the bound ligands in the ternary complex: this reduces the solvent accessible area of the ligand and provides a favorable entropic hydrophobic contribution (up to −1.4 kcal mol−1). PMID:21410224

  19. Estimation of Model VII humic binding constants for Pd2+, Sn2+, U4+, NpO2(2+), Pu4+ and PuO2(2+).

    PubMed

    Stockdale, Anthony; Bryan, Nick D; Lofts, Stephen

    2011-10-01

    Using previously established procedures that utilise linear free energy relationships, we estimated binding constants for the Windermere Humic Aqueous Model VII (WHAM/Model VII) for several radionuclide cations (Pd(2+), Sn(2+), U(4+), NpO(2)(2+), Pu(4+) and PuO(2)(2+)). This extends the number of cations that can be calculated with the model above the 40 included in the original Model VII work. When combined with equilibrium constants for inorganic species this allows the calculation of equilibrium distributions of chemical species under a wide range of conditions. PMID:21870014

  20. Solution NMR and calorimetric analysis of Rem2 binding to the Ca2+ channel β4 subunit: a low affinity interaction is required for inhibition of Cav2.1 Ca2+ currents.

    PubMed

    Xu, Xingfu; Zhang, Fangxiong; Zamponi, Gerald W; Horne, William A

    2015-05-01

    Rem, Rad, Kir/Gem (RGK) proteins, including Rem2, mediate profound inhibition of high-voltage activated Ca(2+) channels containing intracellular regulatory β subunits. All RGK proteins bind to voltage-gated Ca(2+) channel β subunit (Cavβ) subunits in vitro, but the necessity of the interaction for current inhibition remains controversial. This study applies NMR and calorimetric techniques to map the binding site for Rem2 on human Cavβ4a and measure its binding affinity. Our experiments revealed 2 binding surfaces on the β4 guanylate kinase domain contributing to a 156 ± 18 µM Kd interaction: a hydrophobic pocket lined by 4 critical residues (L173, N261, H262, and V303), mutation of any of which completely disrupted binding, and a nearby surface containing 3 residues (D206, L209, and D258) that when individually mutated decreased affinity. Voltage-gated Ca(2+) channel α1A subunit (Cav2.1) Ca(2+) currents were completely inhibited by Rem2 when co-expressed with wild-type Cavβ4a, but were unaffected by Rem2 when coexpressed with a Cavβ4a site 1 (L173A/V303A) or site 2 (D258A) mutant. These results provide direct evidence for a low-affinity Rem2/Cavβ4 interaction and show definitively that the interaction is required for Cav2.1 inhibition. PMID:25563298

  1. What Is the True Color of Fresh Meat? A Biophysical Undergraduate Laboratory Experiment Investigating the Effects of Ligand Binding on Myoglobin Using Optical, EPR, and NMR Spectroscopy

    ERIC Educational Resources Information Center

    Linenberger, Kimberly; Bretz, Stacey Lowery; Crowder, Michael W.; McCarrick, Robert; Lorigan, Gary A.; Tierney, David L.

    2011-01-01

    With an increased focus on integrated upper-level laboratories, we present an experiment integrating concepts from inorganic, biological, and physical chemistry content areas. Students investigate the effects of ligand strength on the spectroscopic properties of the heme center in myoglobin using UV-vis, [superscript 1]H NMR, and EPR…

  2. Monoclonal IgM rheumatoid factors bind IgG at a discontinuous epitope comprised of amino acid loops from heavy-chain constant-region domains 2 and 3.

    PubMed Central

    Artandi, S E; Calame, K L; Morrison, S L; Bonagura, V R

    1992-01-01

    A combination of site-directed mutagenesis and exon exchange has been used to further define the structure on IgG recognized by monoclonal IgM rheumatoid factors (RFs) from patients with Waldenstrom macroglobulinemia. Most of these RFs bound IgG1, -2, and -4 but not IgG3. For these RFs, His-435 is a critical residue for binding and replacing it with arginine, the residue present in IgG3, destroys or reduces RF binding. However, additional polymorphic sequences in both the heavy-chain constant-region domains (CH) 2 and 3 are important for RF binding. Among the important residues in CH2 are amino acids 252-254 and 309-311, which are conserved among IgG isotypes and comprise two loops of amino acids on the surface of the domain. Therefore, at least three regions, two from CH2 and one from CH3, contribute significantly to the epitope recognized by the RFs. Although this epitope contains many of the same residues as the staphylococcal protein A binding site on IgG, the binding specificities of staphylococcal protein A and monoclonal RFs are not identical. Sera from patients with rheumatoid arthritis contain antibodies directed not only at this epitope but also at other sites on IgG. Images PMID:1370358

  3. The prion protein binds thiamine.

    PubMed

    Perez-Pineiro, Rolando; Bjorndahl, Trent C; Berjanskii, Mark V; Hau, David; Li, Li; Huang, Alan; Lee, Rose; Gibbs, Ebrima; Ladner, Carol; Dong, Ying Wei; Abera, Ashenafi; Cashman, Neil R; Wishart, David S

    2011-11-01

    Although highly conserved throughout evolution, the exact biological function of the prion protein is still unclear. In an effort to identify the potential biological functions of the prion protein we conducted a small-molecule screening assay using the Syrian hamster prion protein [shPrP(90-232)]. The screen was performed using a library of 149 water-soluble metabolites that are known to pass through the blood-brain barrier. Using a combination of 1D NMR, fluorescence quenching and surface plasmon resonance we identified thiamine (vitamin B1) as a specific prion ligand with a binding constant of ~60 μM. Subsequent studies showed that this interaction is evolutionarily conserved, with similar binding constants being seen for mouse, hamster and human prions. Various protein construct lengths, both with and without the unstructured N-terminal region in the presence and absence of copper, were examined. This indicates that the N-terminus has no influence on the protein's ability to interact with thiamine. In addition to thiamine, the more biologically abundant forms of vitamin B1 (thiamine monophosphate and thiamine diphosphate) were also found to bind the prion protein with similar affinity. Heteronuclear NMR experiments were used to determine thiamine's interaction site, which is located between helix 1 and the preceding loop. These data, in conjunction with computer-aided docking and molecular dynamics, were used to model the thiamine-binding pharmacophore and a comparison with other thiamine binding proteins was performed to reveal the common features of interaction. PMID:21848803

  4. Properties of the manganese(II) binding site in ternary complexes of Mnter dot ADP and Mnter dot ATP with chloroplast coupling factor 1: Magnetic field dependence of solvent sup 1 H and sup 2 H NMR relaxation rates

    SciTech Connect

    Haddy, A.E.; Frasch, W.D.; Sharp, R.R. )

    1989-05-02

    The influence of the binding of ADP and ATP on the high-affinity Mn(II) binding site of chloroplast coupling factor 1 (CF{sub 1}) was studied by analysis of field-dependent solvent proton and deuteron spin-lattice relaxation data. In order to characterize metal-nucleotide complexes of CF{sub 1} under conditions similar to those of the NMR experiments, the enzyme was analyzed for bound nucleotides and Mn(II) after incubation with AdN and MnCl{sub 2} and removal of labile ligands by extensive gel filtration chromatography. In the field-dependent NMR experiments, the Mn(II) binding site of CF{sub 1} was studied for three mole ratios of added Mn(II) to CF{sub 1}, 0.5, 1.0, and 1.5, in the presence of an excess of either ADP or ATP. The results were extrapolated to zero Mn(II) concentration to characterize the environment of the first Mn(II) binding site of Cf{sub 1}. In the presence of both adenine nucleotides, pronounced changes in the Mn(II) environment relative to that in Mn(II)-CF{sub 1} were evident; the local relaxation rate maxima were more pronounced and shifted to higher field strengths, and the relaxation rate per bound Mn(II) increased at all field strengths. Analysis of the data revealed that the number of exchangeable water molecules liganded to bound Mn(II) increased from one in the binary Mn(II)-CF{sub 1} complex to three and two in the ternary Mn(II)-ADP-CF{sub 1} and Mn(II)-ATP-CF{sub 1} complexes, respectively; these results suggest that a water ligand to bound Mn(II) in the Mn(II)-ADP-CF{sub 1} complex is replaced by the {gamma}-phosphate of ATP in the Mn(II)-ATP-CF{sub 1} complex. A binding model is presented to account for these observations.

  5. Differences in heat stability and ligand binding among β-lactoglobulin genetic variants A, B and C using (1)H NMR and fluorescence quenching.

    PubMed

    Keppler, Julia K; Sönnichsen, Frank D; Lorenzen, Peter-Christian; Schwarz, Karin

    2014-06-01

    The structure of β-lactoglobulin (β-LG) is well characterized, but the exact location of binding sites for retinol and (-)-epigallocatechingallate (EGCG) is still a subject of controversy. Here we report that the genetic β-LG variants A, B and C have different numbers of binding sites for retinol (almost completely incorporated into the calyx), as well as for EGCG (exclusively bound on the surface), and β-LG A with the most binding sites for EGCG, which include Tyr(20), Phe(151) and His(59). Upon heat related unfolding, new unspecific binding sites emerge, which are comparable in number and affinity for retinol and for EGCG, and in the three genetic variants A, B and C. The findings of our study provide new insights into the use of β-LG as nanotransporter. PMID:24590114

  6. Comparative analysis the binding affinity of mycophenolic sodium and meprednisone with human serum albumin: Insight by NMR relaxation data and docking simulation.

    PubMed

    Ma, Xiaoli; He, Jiawei; Yan, Jin; Wang, Qing; Li, Hui

    2016-03-25

    Mycophenolic sodium is an immunosuppressive agent that is always combined administration with corticosteroid in clinical practice. Considering the distribution and side-effect of the drug may change when co-administrated drug exist, this paper comparatively analyzed the binding ability of mycophenolic sodium and meprednisone toward human serum albumin by nuclear magnetic resonance relaxation data and docking simulation. The nuclear magnetic resonance approach was based on the analysis of proton selective and non-selective relaxation rate enhancement of the ligand in the absence and presence of macromolecules. The contribution of the bound ligand fraction to the observed relaxation rate in relation to protein concentration allowed the calculation of the affinity index. This approach allowed the comparison of the binding affinity of mycophenolic sodium and meprednisone. Molecular modeling was operated to simulate the binding model of ligand and albumin through Autodock 4.2.5. Competitive binding of mycophenolic sodium and meprednisone was further conducted through fluorescence spectroscopy. PMID:26892221

  7. Evidence for a conserved binding motif of the dinuclear metal site in mammalian and plant purple acid phosphatases: 1H NMR studies of the di-iron derivative of the Fe(III)Zn(II) enzyme from kidney bean.

    PubMed Central

    Battistuzzi, G; Dietrich, M; Löcke, R; Witzel, H

    1997-01-01

    The di-iron core of mammalian purple acid phosphatases has been reproduced in the plant enzyme from kidney bean (Mr 111000) upon insertion of an Fe(II) ion in place of the native zinc(II) in the dinuclear Fe(III)Zn(II) core. The shortening of the electronic relaxation time of the metal centre allows detection of hyperfine-shifted 1H NMR resonances, although severe broadening due to Curie relaxation prevents independent signal assignment. Nevertheless, comparison of the spectral features of the structurally characterized plant enzyme with those of the mammalian species, which were previously extensively assigned, is consistent with a close similarity of the metal-binding sites, also suggested by previous sequence-alignment studies. Some differences appear to be mainly localized at the M(II) site. Spectral comparison was also carried out on the Fe(III)Co(II) derivatives. PMID:9169589

  8. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  9. The binding of manganese(II) and zinc(II) to the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2. A 1H NMR study.

    PubMed

    Frøystein, N A; Sletten, E

    1991-03-01

    The interaction of the synthetic oligonucleotide d(C-G-C-G-A-A-T-T-C-G-C-G)2 with two different transition-metal ions has been investigated in aqueous solution by means of 1H NMR spectroscopy. The effects on the DNA due to the presence of manganese(II) or zinc(II) have been monitored by observing the paramagnetic broadening and diamagnetic shifts of the non-exchangeable proton resonance lines, respectively. The 1H NMR spectra acquired during the course of the manganese(II) titration show very distinct broadening effects on certain DNA resonance lines. Primarily, the H8 resonance of G4 is affected, but also the H5 and H6 resonances of C3 are clearly affected by the metal. The results imply that the binding of manganese(II) to DNA is sequence specific. The 1H spectra obtained during the zinc(II) titration reveal diamagnetic shift effects which largely conform with the paramagnetic broadening effects due to the presence of manganese(II), although this picture is somewhat more complex. The H8 resonance of G4 displays a clearly visible high-field shift, while for the other guanosine H8 protons this effect is absent. The H1' and H2' protons of C3 show an effect of similar strength, although in the opposite direction, while H5 and H6 of C3 are only slightly affected. Local differences in the structure of the DNA and the basicities of potential binding sites on different base steps in the sequence might account for the observed sequence selectivity. PMID:2039665

  10. 1H NMR Study of the Enantioselective Binding of λ- and Δ-[Ru(bpy)2(m-bpy-GHK)]Cl2 to the Deoxynucleotide Duplex d(5'-C1G2C3G4A5A6T7T8C9G10C11G12-3')2

    PubMed Central

    Myari, A.; Garoufis, A.

    2005-01-01

    The interaction of the diastereomeric complexes Λ- and Δ - [Ru(bpy)2(m - GHK)]Cl2, (GHK = glycine-histidine-lysine) to the deoxynucleotide duplex d(5'-CGCGAATTCGCG-3')2 was studied by means of 1H NMR spectroscopy. The diastereomers interact with the oligonucleotide duplex differently. The Δ - [Ru(bpy)2 (m - GHK)]Cl2 is characterized by major groove binding close to the central part of the oligonucleotide, with both the peptide and the bipyridine ligand of the complex involved in the binding. The λ - [Ru(bpy)2 (m - bpy - GHK)]C2 binds loosely, approaching the helix from the minor groove. The NMR analysis shows that the peptide (GHK) binding has a determinative role in the interactions of both diastereomers with the oligonucleotide. PMID:18365093

  11. Binding of copper(II) ions to the polyproline II helices of PEVK modules of the giant elastic protein titin as revealed by ESI-MS, CD, and NMR.

    PubMed

    Ma, Kan; Wang, Kuan

    2003-10-01

    Titin, a family of giant elastic proteins, constitutes an elastic sarcomere matrix in striated muscle. In the I-band region of the sarcomere, the titin PEVK segment acts as a molecular spring to generate elasticity as well as sites of adhesion with parallel thin filaments. Previously, we reported that PEVK consists of tandem repeats of 28 residue modules and that the "polyproline II-coil" motif is the fundamental conformational motif of the PEVK module. In order to characterize the factors that may affect and alter the PPII-coil conformational motifs, we have initiated a systematic study of the interaction with divalent cations (Cu2+, Ca2+, Zn2+, and Ni2+) and a conformational profile of PEVK peptides (a representative 28-mer peptide PR: PEPPKEVVPEKKAPVAPPKKPEVPPVKV and its subfragments PR1: kvPEPPKEVVPE, PR2: VPEKKAPVAPPK, PR3: KPEVPPVKV). UV-Vis absorption difference spectra and CD spectra showed that Cu2+ bound to PR1 with high affinity (20 microM), while its binding to PR2 and PR3 as well as the binding of other cations to all four peptides were of lower affinity (>100 microM). Conformational studies by CD revealed that Cu2+ binding to PR1 resulted in a polyproline II to turn transition up to a 1:2 PR1/Cu2+ ratio and a coil to turn transition at higher Cu2+ concentration. ESI-MS provided the stoichiometry of PEVK peptide-Cu2+ complexes at both low and high ion strength, confirming the specific high affinity binding of Cu2+ to PR1 and PR. Furthermore, NMR and ESI-MS/MS fragmentation analysis elucidated the binding sites of the PEVK peptide-Cu2+ complexes at (-2)KVPE2, 8VPE10, 13APV15, and 22EVP24. A potential application of Cu2+ binding in peptide sequencing by mass spectrometry was also revealed. We conclude that Cu2+ binds and bends PEVK peptides to a beta-turn-like structure at specific sites. The specific targeting of Cu2+ towards PPII is likely to be of significant value in elucidating the roles of PPII in titin elasticity as well as in interactions of

  12. Deuterium Exchange Kinetics by NMR.

    ERIC Educational Resources Information Center

    Roper, G. C.

    1985-01-01

    Describes a physical chemistry experiment which allows such concepts as kinetics, catalysis, isotope shifts, coupling constants, and the use of nuclear magnetic resonance (NMR) for quantitative work to be covered in the same exercise. Background information, experimental procedures used, and typical results obtained are included. (JN)

  13. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-11-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  14. PMP1 18-38, a yeast plasma membrane protein fragment, binds phosphatidylserine from bilayer mixtures with phosphatidylcholine: a (2)H-NMR study.

    PubMed Central

    Roux, M; Beswick, V; Coïc, Y M; Huynh-Dinh, T; Sanson, A; Neumann, J M

    2000-01-01

    PMP1 is a 38-residue plasma membrane protein of the yeast Saccharomyces cerevisiae that regulates the activity of the H(+)-ATPase. The cytoplasmic domain conformation results in a specific interfacial distribution of five basic side chains, thought to strongly interact with anionic phospholipids. We have used the PMP1 18-38 fragment to carry out a deuterium nuclear magnetic resonance ((2)H-NMR) study for investigating the interactions between the PMP1 cytoplasmic domain and phosphatidylserines. For this purpose, mixed bilayers of 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl, 2-oleoyl-sn-glycero-3-phosphoserine (POPS) were used as model membranes (POPC/POPS 5:1, m/m). Spectra of headgroup- and chain-deuterated POPC and POPS phospholipids, POPC-d4, POPC-d31, POPS-d3, and POPS-d31, were recorded at different temperatures and for various concentrations of the PMP1 fragment. Data obtained from POPS deuterons revealed the formation of specific peptide-POPS complexes giving rise to a slow exchange between free and bound PS lipids, scarcely observed in solid-state NMR studies of lipid-peptide/protein interactions. The stoichiometry of the complex (8 POPS per peptide) was determined and its significance is discussed. The data obtained with headgroup-deuterated POPC were rationalized with a model that integrates the electrostatic perturbation induced by the cationic peptide on the negatively charged membrane interface, and a "spacer" effect due to the intercalation of POPS/PMP1f complexes between choline headgroups. PMID:11053135

  15. Structural Biology of The sequestration & Transport of Heavy Metal Toxins: NMR Structure Determination of Proteins Containing the CYS-X-Y-Metal Binding Motif

    SciTech Connect

    Stanley J. Opella

    2004-03-10

    The support from the Department of Energy enabled us to initiate research on several proteins from the bacterial mercury detoxification system; in particular, we were able to determine the structures of MerP and related metal binding sequences. We have also worked on the membrane transport proteins MerF and MerT.

  16. Size and alloying induced changes in lattice constant, core, and valance band binding energy in Pd-Ag, Pd, and Ag nanoparticles: Effect of in-flight sintering temperature

    NASA Astrophysics Data System (ADS)

    Sengar, Saurabh K.; Mehta, B. R.; Govind

    2012-07-01

    In the present study, we report the growth of size selected Pd, Ag, and Pd-Ag alloy nanoparticles by an integrated method comprising of the gas phase synthesis, electrical mobility size selection, and in-flight sintering steps. Effect of temperature during in-flight sintering on nanoparticle size, crystal structure, and electronic properties has been studied. XRD studies show lattice expansion in Pd and Ag nanoparticles and lattice contraction in Pd-Ag alloy nanoparticles on increasing the sintering temperatures. In case of Pd and Ag nanoparticles, size induced changes in lattice constants are consistent with the changes in the binding energy positions with respect to bulk values. In case of Pd-Ag alloy nanoparticles, change in nanoparticle size and composition on sintering affect the lattice constant and binding energy positions. Large changes in Pd4d valance band centroid in Pd-Ag nanoparticles are due to size and alloying effects. The results of this study are important for understanding the correlation between electronic properties and Pd-H interaction in Pd alloy nanoparticles.

  17. Exploring Weak Ligand–Protein Interactions by Long-Lived NMR States: Improved Contrast in Fragment-Based Drug Screening**

    PubMed Central

    Buratto, Roberto; Mammoli, Daniele; Chiarparin, Elisabetta; Williams, Glyn; Bodenhausen, Geoffrey

    2014-01-01

    Ligands that have an affinity for protein targets can be screened very effectively by exploiting favorable properties of long-lived states (LLS) in NMR spectroscopy. In this work, we describe the use of LLS for competitive binding experiments to measure accurate dissociation constants of fragments that bind weakly to the ATP binding site of the N-terminal ATPase domain of heat shock protein 90 (Hsp90), a therapeutic target for cancer treatment. The LLS approach allows one to characterize ligands with an exceptionally wide range of affinities, since it can be used for ligand concentrations [L] that are several orders of magnitude smaller than the dissociation constants KD. This property makes the LLS method particularly attractive for the initial steps of fragment-based drug screening, where small molecular fragments that bind weakly to a target protein must be identified, which is a difficult task for many other biophysical methods. PMID:25196717

  18. Structural characterization of a 39-residue synthetic peptide containing the two zinc binding domains from the HIV-1 p7 nucleocapsid protein by CD and NMR spectroscopy.

    PubMed

    Omichinski, J G; Clore, G M; Sakaguchi, K; Appella, E; Gronenborn, A M

    1991-11-01

    A 39-residue peptide (p7-DF) containing the two zinc binding domains of the p7 nucleocapsid protein was prepared by solid-phase peptide synthesis. The solution structure of the peptide was characterized using circular dichroic and nuclear magnetic resonance spectroscopy in both the presence and absence of zinc ions. Circular dichroic spectroscopy indicates that the peptide exhibits a random coil conformation in the absence of zinc but appears to form an ordered structure in the presence of zinc. Two-dimensional nuclear magnetic resonance spectroscopy indicates that the two zinc binding domains within the peptide form stable, but independent, units upon the addition of 2 equivalents of ZnCl2 per equivalent of peptide. Structure calculations on the basis of nuclear Overhauser (NOE) data indicate that the two zinc binding domains have the same polypeptide fold within the errors of the coordinates (approximately 0.5 A for the backbone atoms, the zinc atoms and the coordinating cysteine and histidine ligands). The linker region (Arg17-Gly23) is characterized by a very limited number of sequential NOEs and the absence of any non-sequential NOEs suggest that this region of polypeptide chain is highly flexible. The latter coupled with the occurrence of a large number of basic residues (four out of seven) in the linker region suggests that it may serve to allow adaptable positioning of the nucleic acid recognition sequences within the protein. PMID:1959614

  19. Application of high resolution NMR, ESR, and gamma-ray scintillation spectroscopy to the study of ligand binding in proteins. [Torpedo californica

    SciTech Connect

    Lancione, G.V.

    1982-01-01

    Electron spin resonance spectroscopy has been employed to study the nature of the ligand binding site of alpha-1-antitrypsin. Spectra of spin-labeled alpha-1-antitrypsin were recorded at pH's ranging from 2.4 to 12.5. This data demonstrates the tight binding of the spin-label to the protease, and the sensitivity of the bound spin-label to informational changes in the protease inhibitor. A molecular dipstick approach has also been applied to this system and has yielded information on the geometry of the cleft accommodating the spin-label. /sup 160/Terbium(III) exchange experiments have been performed on the acetylcholine receptor protein isolated from Torpedo californica, employing a specially designed flow dialysis apparatus constructed in the laboratory. The apparatus is designed to allow continuous monitoring of /sup 160/Tb(III) gamma-ray emission from the protein compartment of the flow dialysis cell. Nicotinic ligand-induced displacement of /sup 160/Tb(III) from the nicotinic binding site of the receptor was monitored as a funtion of (1) the concentration of nicotinic ligand in the washout buffer, and (2) the nature of the nicotinic ligand in the buffer. Measured /sup 160/Tb(III) exchange half-lives indicate (1) a direct relationship between /sup 160/Tb(III) displacement and nicotinic ligand concentration in the wash-out buffer, and (2) an enhanced /sup 160/Tb(III) displacement for nicotinic agents possessing quaternary ammonium functions.

  20. NMR spectroscopic analysis reveals extensive binding interactions of complex xyloglucan oligosaccharides with the Cellvibrio japonicus glycoside hydrolase family 31 α-xylosidase.

    PubMed

    Silipo, Alba; Larsbrink, Johan; Marchetti, Roberta; Lanzetta, Rosa; Brumer, Harry; Molinaro, Antonio

    2012-10-15

    The study of the interaction of glycoside hydrolases with their substrates is fundamental to diverse applications in medicine, food and feed production, and biomass-resource utilization. Recent molecular modeling of the α-xylosidase CjXyl31A from the soil saprophyte Cellvibrio japonicus, together with protein crystallography and enzyme-kinetic analysis, has suggested that an appended PA14 protein domain, unique among glycoside hydrolase family 31 members, may confer specificity for large oligosaccharide fragments of the ubiquitous plant polysaccharide xyloglucan (J. Larsbrink, A. Izumi, F.M. Ibatullin, A. Nakhai, H.J. Gilbert, G.J. Davies, H. Brumer, Biochem. J. 2011, 436, 567-580). In the present study, a combination of NMR spectroscopic techniques, including saturation transfer difference (STD) and transfer NOE (TR-NOE) spectroscopy, was used to reveal extensive interactions between CjXyl31A active-site variants and xyloglucan hexa- and heptasaccharides. The data specifically indicate that the enzyme recognizes the entire cello-tetraosyl backbone of the substrate and product in positive enzyme subsites and makes further significant interactions with internal pendant α-(1→6)-linked xylosyl units. As such, the present analysis provides an important rationalization of previous kinetic data on CjXyl31A and unique insight into the role of the PA14 domain, which was not otherwise obtainable by protein crystallography. PMID:22961810

  1. MD and NMR analyses of choline and TMA binding to duplex DNA: on the origins of aberrant sequence-dependent stability by alkyl cations in aqueous and water-free solvents.

    PubMed

    Portella, Guillem; Germann, Markus W; Hud, Nicholas V; Orozco, Modesto

    2014-02-26

    It has been known for decades that alkylammonium ions, such as tetramethyl ammonium (TMA), alter the usual correlation between DNA GC-content and duplex stability. In some cases it is even possible for an AT-rich duplex to be more stable than a GC-rich duplex of the same length. There has been much speculation regarding the origin of this aberration in sequence-dependent DNA duplex stability, but no clear resolution. Using a combination of molecular dynamics simulations and NMR spectroscopy we demonstrate that choline (2-hydroxy-N,N,N-trimethylethanaminium) and TMA are preferentially localized in the minor groove of DNA duplexes at A·T base pairs and these same ions show less pronounced localization in the major groove compared to what has been demonstrated for alkali and alkali earth metal ions. Furthermore, free energy calculations show that single-stranded GC-rich sequences exhibit more favorable solvation by choline than single-stranded AT-rich sequences. The sequence-specific nature of choline and TMA binding provides a rationale for the enhanced stability of AT-rich sequences when alkyl-ammonium ions are used as the counterions of DNA. Our combined theoretical and experimental study provides one of the most detailed pictures to date of cations localized along DNA in the solution state, and provides insights that go beyond understanding alkyl-ammonium ion binding to DNA. In particular, because choline and TMA bind to DNA in a manner that is found to be distinct from that previously reported for Na(+), K(+), Mg(2+), and Ca(2+), our results reveal the important but underappreciated role that most other cations play in sequence-specific duplex stability. PMID:24490755

  2. Caught in the act: ATP hydrolysis of an ABC-multidrug transporter followed by real-time magic angle spinning NMR.

    PubMed

    Hellmich, Ute A; Haase, Winfried; Velamakanni, Saroj; van Veen, Hendrik W; Glaubitz, Clemens

    2008-10-15

    The ATP binding cassette (ABC) transporter LmrA from Lactococcus lactis transports cytotoxic molecules at the expense of ATP. Molecular and kinetic details of LmrA can be assessed by solid-state nuclear magnetic resonance (ssNMR), if functional reconstitution at a high protein-lipid ratio can be achieved and the kinetic rate constants are small enough. In order to follow ATP hydrolysis directly by 31P-magic angle spinning (MAS) nuclear magnetic resonance (NMR), we generated such conditions by reconstituting LmrA-dK388, a mutant with slower ATP turnover rate, at a protein-lipid ration of 1:150. By analysing time-resolved 31P spectra, protein activity has been directly assessed. These data demonstrate the general possibility to perform ssNMR studies on a fully active full length ABC transporter and also form the foundation for further kinetic studies on LmrA by NMR. PMID:18817774

  3. Bacterial expression, purification, and model membrane reconstitution of the transmembrane and cytoplasmic domains of the human APP binding protein LR11/SorLA for NMR studies.

    PubMed

    Wang, Xingsheng; Gill, Richard L; Zhu, Qin; Tian, Fang

    2011-06-01

    LR11 (SorLA) is a recently identified neuronal protein that interacts with amyloid precursor protein (APP), a central player in the pathology of the Alzheimer's disease (AD). AD is a neurodegenerative disease and the most common cause of dementia in the elderly. Current estimates suggest that as many as 5.3 million Americans are living with AD. Recent investigations have uncovered the pathophysiological relevance of APP intracellular trafficking in AD. LR11 is of particular importance due to its role in regulating APP transport and processing. LR11 is a type I transmembrane protein and belongs to a novel family of Vps10p receptors. Using a new expression vector, pMTTH (MBP-MCS1 (multiple cloning site)-Thrombin protease cleavage site-MCS2-TEV protease cleavage site-MCS3-His(6)), we successfully expressed, purified and reconstituted the LR11 transmembrane (TM) and cytoplasmic (CT) domains into bicelles and detergent micelles for NMR structural studies. This new construct allowed us to overcome several obstacles during sample preparation. MBP fused LR11TM and LR11TMCT proteins are preferably expressed at high levels in Escherichia coli membrane, making a refolding of the protein unnecessary. The C-terminal His-tag allows for easy separation of the target protein from the truncated products from the C-terminus, and provides a convenient route for screening detergents to produce high quality 2D (1)H-(15)N TROSY spectra. Thrombin protease cleavage is compatible with most of the commonly used detergents, including a direct cleavage at the E. coli membrane surface. This new MBP construct may provide an effective route for the preparation of small proteins with TM domains. PMID:21320603

  4. Structure of amantadine-bound M2 transmembrane peptide of influenza A in lipid bilayers from magic-angle-spinning solid-state NMR: the role of Ser31 in amantadine binding.

    PubMed

    Cady, Sarah D; Mishanina, Tatiana V; Hong, Mei

    2009-01-30

    The M2 proton channel of influenza A is the target of the antiviral drugs amantadine and rimantadine, whose effectiveness has been abolished by a single-site mutation of Ser31 to Asn in the transmembrane domain of the protein. Recent high-resolution structures of the M2 transmembrane domain obtained from detergent-solubilized protein in solution and crystal environments gave conflicting drug binding sites. We present magic-angle-spinning solid-state NMR results of Ser31 and a number of other residues in the M2 transmembrane peptide (M2TMP) bound to lipid bilayers. Comparison of the spectra of the membrane-bound apo and complexed M2TMP indicates that Ser31 is the site of the largest chemical shift perturbation by amantadine. The chemical shift constraints lead to a monomer structure with a small kink of the helical axis at Gly34. A tetramer model is then constructed using the helix tilt angle and several interhelical distances previously measured on unoriented bilayer samples. This tetramer model differs from the solution and crystal structures in terms of the openness of the N-terminus of the channel, the constriction at Ser31, and the side-chain conformations of Trp41, a residue important for channel gating. Moreover, the tetramer model suggests that Ser31 may interact with amantadine amine via hydrogen bonding. While the apo and drug-bound M2TMP have similar average structures, the complexed peptide has much narrower linewidths at physiological temperature, indicating drug-induced changes of the protein dynamics in the membrane. Further, at low temperature, several residues show narrower lines in the complexed peptide than the apo peptide, indicating that amantadine binding reduces the conformational heterogeneity of specific residues. The differences of the current solid-state NMR structure of the bilayer-bound M2TMP from the detergent-based M2 structures suggest that the M2 conformation is sensitive to the environment, and care must be taken when interpreting

  5. Two-iron rubredoxin of Pseudomonas oleovorans: production, stability and characterization of the individual iron-binding domains by optical, CD and NMR spectroscopies.

    PubMed

    Perry, A; Lian, L Y; Scrutton, N S

    2001-02-15

    A minigene encoding the C-terminal domain of the 2Fe rubredoxin of Pseudomonas oleovorans was created from the parental alk G gene contained in the expression plasmid pKK223-3. The vector directed the high-level production of the C-terminal domain of this rubredoxin; a simple procedure was used to purify the recombinant domain in the 1Fe form. The 1Fe form of the C-terminal domain was readily converted into the apoprotein and cadmium forms after precipitation with trichloroacetic acid and resolubilization in the presence or absence of cadmium chloride respectively. In steady-state assays, the recombinant 1Fe C-terminal domain is redox-active and able to transfer electrons from reduced rubredoxin reductase to cytochrome c. The absorption spectrum and dichroic features of the CD spectrum for the iron- and cadmium-substituted C-terminal domain are similar to those reported for the iron- and cadmium-substituted Desulfovibrio gigas rubredoxin [Henehen, Pountney, Zerbe and Vasak (1993) Protein Sci. 2, 1756-1764]. Difference absorption spectroscopy of the cadmium-substituted C-terminal domain revealed the presence of four Gaussian-resolved maxima at 202, 225, 240 and 276 nm; from Jørgensen's electronegativity theory, the 240 nm band is attributable to a CysS-Cd(II) charge-transfer excitation. Attempts to express the N-terminal domain of the 2Fe rubredoxin directly from a minigene were unsuccessful. However, the N-terminal domain was isolated through cleavage of an engineered 2Fe rubredoxin in which a factor Xa proteolysis site had been introduced into the putative interdomain linker. The N-terminal domain is characterized by absorption spectra typical of the 1Fe rubredoxins. The domain is folded as determined by CD and NMR spectroscopies and is redox-active. However, the N-terminal domain is less stable than the isolated C-terminal domain, a finding consistent with the known properties of the full-length 2Fe and cadmium-substituted Ps. oleovorans rubredoxin. PMID

  6. 7Li NMR study of normal human erythrocytes

    NASA Astrophysics Data System (ADS)

    Pettegrew, J. W.; Post, J. F. M.; Panchalingam, K.; Withers, G.; Woessner, D. E.

    The biological action of lithium is of great interest because of the therapeutic efficacy of the cation in manic-depressive illness. To investigate possible molecular interactions of lithium, 7Li NMR studies were conducted on normal human erythrocytes which had been incubated with lithium chloride. The uptake of lithium ions was followed by 7Li NMR, using a dysprosium, tripolyphosphate shift reagent. Lithium uptake followed single-exponential kinetics with a time constant of 14.7 h. The intracellular lithium relaxation times were T 1 ⋍ 5 s and T 2 ⋍ 0.15 s, which implies a lengthening of the lithium correlation time. It was found that lithium does not interact significantly with hemoglobin, the erythrocyte membrane, or artificial phospholipid membranes. Based on measurements of lithium T1 and T2 in concentrated agar gels, the large difference between T1 and T2 for intracellular lithium ions may be due to diffusion of the hydrated lithium ion through heterogeneous electrostatic field gradients created by the erythrocyte membrane-associated cytoskeletal network. Lithium binding to the membrane-associated cytoskeleton, however, cannot be ruled out. Because of the large differences between T1 and T2 of intracellular lithium ions, 1Li NMR may be a sensitive and promising noninvasive method to probe the intracellular environment.

  7. Constant time INEPT CT-HSQC (CTi-CT-HSQC) - A new NMR method to measure accurate one-bond J and RDCs with strong 1H-1H couplings in natural abundance

    NASA Astrophysics Data System (ADS)

    Yu, Bingwu; van Ingen, Hugo; Freedberg, Darón I.

    2013-03-01

    Strong 1H-1H coupling can significantly reduce the accuracy of 1JCH measured from frequency differences in coupled HSQC spectra. Although accurate 1JCH values can be extracted from spectral simulation, it would be more convenient if the same accurate 1JCH values can be obtained experimentally. Furthermore, simulations reach their limit for residual dipolar coupling (RDC) measurement, as many significant, but immeasurable RDCs are introduced into the spin system when a molecule is weakly aligned, thus it is impossible to have a model spin system that truly represents the real spin system. Here we report a new J modulated method, constant-time INEPT CT-HSQC (CTi-CT-HSQC), to accurately measure one-bond scalar coupling constant and RDCs without strong coupling interference. In this method, changing the spacing between the two 180° pulses during a constant time INEPT period selectively modulates heteronuclear coupling in quantitative J fashion. Since the INEPT delays for measuring one-bond carbon-proton spectra are short compared to 3JHH, evolution due to (strong) 1H-1H coupling is marginal. The resulting curve shape is practically independent of 1H-1H coupling and only correlated to the heteronuclear coupling evolution. Consequently, an accurate 1JCH can be measured even in the presence of strong coupling. We tested this method on N-acetyl-glucosamine and mannose whose apparent isotropic 1JCH values are significantly affected by strong coupling with other methods. Agreement to within 0.5 Hz or better is found between 1JCH measured by this method and previously published simulation data. We further examined the strong coupling effects on RDC measurements and observed an error up to 100% for one bond RDCs using coupled HSQC in carbohydrates. We demonstrate that RDCs can be obtained with higher accuracy by CTi-CT-HSQC, which compensates the limitation of simulation method.

  8. Synthesis and structural analysis using 2-D NMR of Sialyl Lewis X (SLe{sup x}) and Lewis X (Le{sup x}) oligosaccharides: Ligands related to E-selectin [ELAM-1] binding

    SciTech Connect

    Ball, G.E.; Nagy, J.O.; Brown, E.G.

    1992-06-17

    The sialyl Lewis X (SLe{sup x}) determinant (NeuAc-{alpha}-2,3-Gal-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), compound 1, is a ligand for E-selectin (endothelial leucocyte adhesion molecule 1, or ELAM-1), a member of the selectin family of cell adhesion molecules. Interactions between E-selectin and leucocyte-bound SLe{sup x} or closely related oligosaccharides are thought to be important early events in the inflammation process. Binding analysis has shown that the sialic acid (NeuAc) and the fucose (Fuc) moieties are essential for high affinity. The related desialylated trisaccharide Le{sup x} (Gas-{beta}-1,4-[Fuc-{alpha}-1,3]-GlcNAc), for example, is not a high-affinity ligand for E-selectin. In this communication, the authors describe the syntheses of SLe{sup x} 1 and the {beta}-O-allyl glycoside of Le{sup x} 2 using a cloned fucosyltransferase and their complete NMR spectral assignments including ROESY and NOESY experiments in order to investigate the conformation of these compounds in solution. 25 refs., 2 figs.

  9. A spectroscopic investigations of anticancer drugs binding to bovine serum albumin

    NASA Astrophysics Data System (ADS)

    Bakkialakshmi, S.; Chandrakala, D.

    2012-03-01

    The binding of anticancer drugs (i) Uracil (U), (ii) 5-Fluorouracil (5FU) and (iii) 5-Chlorouracil (5ClU), to bovine serum albumin (BSA) at two levels of temperature was studied by the fluorescence of quenching method. UV/Vis, time-resolved fluorescence, Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR) and scanning electron microscope (SEM) analyses were also made. Binding constants (Ka) and binding sites (n) at various levels of temperature were calculated. The obtained binding sites were found to be equal to one for all the three quenchers (U, 5FU and 5ClU) at two different temperature levels. Thermodynamic parameters ΔH, ΔG and ΔS have been calculated and were presented in tables. Change in FTIR absorption intensity shows strong binding of anticancer drugs to BSA. Changes in chemical shifts of NMR and fluorescence lifetimes of the drugs indicate the presence of interaction and binding of BSA to anticancer drugs. 1H NMR spectra and SEM photographs also conform this binding.

  10. Models of metal binding structures in fulvic acid from the Suwannee River, Georgia

    SciTech Connect

    Leenheer, J.A.; Brown, G.K.; Cabaniss, S.E.; MacCarthy, P.

    1998-08-15

    Fulvic acid, isolated from the Suwannee River, Georgia, was assessed for its ability to bind Ca{sup 2+}, Cd{sup 2+}, Cu{sup 2+}, Ni{sup 2+}, and Zn{sup 2+} ions at pH 6 before and after extensive fractionation that was designed to reveal the nature of metal binding functional groups. The binding constant for Ca{sup 2+} ion had the greatest increase of all the ions in a metal binding fraction that was selected for intensive characterization for the purpose of building quantitative average model structures. The metal binding fraction was characterized by quantitative {sup 13}C NMR, {sup 1}H NMR, and FT-IR spectrometry and elemental, titrimetric, and molecular weight determinations. The characterization data revealed that carboxyl groups were clustered in short-chain aliphatic dibasic acid structures. The Ca{sup 2+} binding data suggested that ether-substituted oxysuccinic acid structures are good models for the metal binding sites at pH 6. Structural models were derived based upon oxidation and photolytic rearrangements of cutin, lignin, and tannin precursors. These structural models rich in substituted dibasic acid structures revealed polydentate binding sites with the potential for both inner-sphere and outer-sphere type binding. The majority of the fulvic acid molecule was involved with metal binding rather than a small substructural unit.

  11. Application of NMR Methods to Identify Detection Reagents for Use in the Development of Robust Nanosensors

    SciTech Connect

    Cosman, M; Krishnan, V V; Balhorn, R

    2004-04-29

    Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique for studying bi-molecular interactions at the atomic scale. Our NMR lab is involved in the identification of small molecules, or ligands that bind to target protein receptors, such as tetanus (TeNT) and botulinum (BoNT) neurotoxins, anthrax proteins and HLA-DR10 receptors on non-Hodgkin's lymphoma cancer cells. Once low affinity binders are identified, they can be linked together to produce multidentate synthetic high affinity ligands (SHALs) that have very high specificity for their target protein receptors. An important nanotechnology application for SHALs is their use in the development of robust chemical sensors or biochips for the detection of pathogen proteins in environmental samples or body fluids. Here, we describe a recently developed NMR competition assay based on transferred nuclear Overhauser effect spectroscopy (trNOESY) that enables the identification of sets of ligands that bind to the same site, or a different site, on the surface of TeNT fragment C (TetC) than a known ''marker'' ligand, doxorubicin. Using this assay, we can identify the optimal pairs of ligands to be linked together for creating detection reagents, as well as estimate the relative binding constants for ligands competing for the same site.

  12. Study of non-covalent interactions between MRI contrast agents and human serum albumin by NMR diffusometry.

    PubMed

    Henoumont, C; Vander Elst, L; Laurent, S; Muller, Robert N

    2009-06-01

    The NMR diffusometry technique, based on the measurement of the diffusion coefficient of a ligand in the absence and in the presence of its macromolecular partner, was used to study the affinity for human serum albumin (HSA) of four gadolinium complexes, potential or already used magnetic resonance imaging contrast agents. Diamagnetic lanthanum(III) ion or europium(III) ion, which has the advantage of shifting the NMR signals far away from those of the macromolecule, was used to avoid the excessive broadening of the NMR signals induced by the gadolinium(III) ion. Titration experiments, in which the HSA concentration was kept constant and the concentration of the europium or lanthanum chelate was varied, were performed to evaluate the association constant and the number of binding sites. Some additional information about the kinetics of the exchange between the free and the bound chelate was also obtained. Competition experiments with ibuprofen and salicylate, which are ligands with a known affinity for the macromolecule and for which the binding site is known, were also performed to get information about the binding site of the contrast agents. PMID:19241095

  13. Protein Motions and Folding Investigated by NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Palmer, Arthur

    2002-03-01

    NMR spin relaxation spectroscopy is a powerful experimental approach for globally characterizing conformational dynamics of proteins in solution. Laboratory frame relaxation measurements are sensitive to overall rotational diffusion and internal motions on picosecond-nanosecond time scales, while rotating frame relaxation measurements are sensitive to chemical exchange processes on microsecond-millisecond time scales. The former approach is illustrated by ^15N laboratory-frame relaxation experiments as a function of temperature for the helical subdomain HP36 of the F-actin-binding headpiece domain of chicken villin. The data are analyzed using the model-free formalism to characterize order parameters and effective correlation times for intramolecular motions of individual ^15N sites. The latter approach is illustrated by ^13C Carr-Purcell-Meiboom-Gill relaxation measurements for the de novo designed α_2D protein and by ^15N rotating-frame relaxation measurements for the peripheral subunit-binding domain (PSBD) from the dihydrolopoamide acetyltransferase component of the pyruvate dehydrogenase multienzyme complex from Bacillus stearothermophilus. These experiments are used to determine the folding and unfolding kinetic rate constants for the two proteins. The results for HP36, α_2D, and PSBD illustrate the capability of current NMR methods for characterizing dynamic processes on multiple time scales in proteins.

  14. Estradiol Binds to Insulin and Insulin Receptor Decreasing Insulin Binding in vitro

    PubMed Central

    Root-Bernstein, Robert; Podufaly, Abigail; Dillon, Patrick F.

    2014-01-01

    Rationale: Insulin (INS) resistance associated with hyperestrogenemias occurs in gestational diabetes mellitus, polycystic ovary syndrome, ovarian hyperstimulation syndrome, estrogen therapies, metabolic syndrome, and obesity. The mechanism by which INS and estrogen interact is unknown. We hypothesize that estrogen binds directly to INS and the insulin receptor (IR) producing INS resistance. Objectives: To determine the binding constants of steroid hormones to INS, the IR, and INS-like peptides derived from the IR; and to investigate the effect of estrogens on the binding of INS to its receptor. Methods: Ultraviolet spectroscopy, capillary electrophoresis, and NMR demonstrated estrogen binding to INS and its receptor. Horse-radish peroxidase-linked INS was used in an ELISA-like procedure to measure the effect of estradiol on binding of INS to its receptor. Measurements: Binding constants for estrogens to INS and the IR were determined by concentration-dependent spectral shifts. The effect of estradiol on INS binding to its receptor was determined by shifts in the INS binding curve. Main Results: Estradiol bound to INS with a Kd of 12 × 10−9 M and to the IR with a Kd of 24 × 10−9 M, while other hormones had significantly less affinity. Twenty-two nanomolars of estradiol shifted the binding curve of INS to its receptor 0.8 log units to the right. Conclusion: Estradiol concentrations in hyperestrogenemic syndromes may interfere with INS binding to its receptor producing significant INS resistance. PMID:25101056

  15. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods.

    PubMed

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-15

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server. PMID:24769381

  16. Study of inclusion complex between 2,6-dinitrobenzoic acid and β-cyclodextrin by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD, SEM and photophysical methods

    NASA Astrophysics Data System (ADS)

    Srinivasan, Krishnan; Stalin, Thambusamy

    2014-09-01

    The formation of host-guest inclusion complex of 2,6-dinitrobenzoic acid (2,6-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase has been studied by UV-visible spectroscopy and electrochemical analysis (cyclic voltammetry, CV). The effect of acid-base concentrations of 2,6-DNB has been studied in presence and absence of β-CD to determination for the ground state acidity constant (pKa). The binding constant of inclusion complex at 303 K was calculated using Benesi-Hildebrand plot and thermodynamic parameter (ΔG) was also calculated. The solid inclusion complex formation between β-CD and 2,6-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process was proposed by molecular docking studies using patch dock server.

  17. NMR data handbook for biomedical applications

    SciTech Connect

    Beall, P.T.; Amtey, S.R.; Kasturi, S.R.

    1984-01-01

    The text is divided into 10 chapters, each of which covers a specific block of material and has its own references. The volume is meant to serve as a laboratory handbook and a desk reference, containing basic NMR theory, useful formulae and physical constants, and compiled data from the NMR literature. The volume attempts to cover the development of biological NMR through several decades of in vitro experiments that have laid the groundwork for and pointed to profitable areas of investigation for new in vivo techniques.

  18. LEGO-NMR spectroscopy: a method to visualize individual subunits in large heteromeric complexes.

    PubMed

    Mund, Markus; Overbeck, Jan H; Ullmann, Janina; Sprangers, Remco

    2013-10-18

    Seeing the big picture: Asymmetric macromolecular complexes that are NMR active in only a subset of their subunits can be prepared, thus decreasing NMR spectral complexity. For the hetero heptameric LSm1-7 and LSm2-8 rings NMR spectra of the individual subunits of the complete complex are obtained, showing a conserved RNA binding site. This LEGO-NMR technique makes large asymmetric complexes accessible to detailed NMR spectroscopic studies. PMID:23946163

  19. The cooperative binding of phenylalanine to phenylalanine 4-monooxygenase studied by 1H-NMR paramagnetic relaxation. Changes in water accessibility to the iron at the active site upon substrate binding.

    PubMed

    Martínez, A; Olafsdottir, S; Flatmark, T

    1993-01-15

    The effect of the paramagnetic high-spin Fe(III) ion in phenylalanine 4-monooxygenase (phenylalanine hydroxylase, EC 1.14.16.1) on the water proton longitudinal relaxation rate has been used to study the environment of the iron center. The relaxation rate was measured as a function of the concentration of enzyme, substrate (phenylalanine), inhibitor (noradrenaline) and activator (lysolecithin), as well as of the temperature (18-40 degrees C) and the external magnetic field strength (100-600 MHz). From the frequency dependence of the relaxation rate, an effective correlation time (tau c) of 4.2(+/- 0.5) x 10(-10) s was calculated for the enzyme-substrate complex, which most likely represents the electron spin relaxation rate (tau s) for Fe(III) (S = 5/2) in this complex. The relaxation rate was proportional to the concentration of enzyme (0.04-1 mM) both in the absence and presence of phenylalanine, but the paramagnetic molar relaxivity at 400 MHz and 22 degrees C decreased from 2.2(+/- 0.05) x 10(3) s-1.M-1 in the enzyme as isolated to 1.2(+/- 0.06) x 10(3) s-1.M-1 in the presence of saturating concentrations of the substrate. The activation energy of the relaxation rate also decreased from 11.3 +/- 0.8 kJ/mol to -1.5 +/- 0.2 kJ/mol upon incubation of the enzyme with 5 mM phenylalanine. The results obtained can be interpreted in terms of a slowly exchanging water molecule coordinated to the catalytic paramagnetic Fe(III) in the native and resting enzyme, and that this water molecule seems to be displaced from coordination on the binding of substrate or inhibitor. Moreover, the effect of increasing concentrations of phenylalanine and noradrenaline on the water proton relaxation rate and on the hydrophobic surface properties of the enzyme indicate that substrate and inhibitor induce a similar cooperative conformational change upon binding at the active site. By contrast, the activator lysolecithin does not seem to affect the interaction of water with the catalytic Fe

  20. HC[triple bond]P and H3C-C[triple bond]P as proton acceptors in protonated complexes containing two phosphorus bases: structures, binding energies, and spin-spin coupling constants.

    PubMed

    Alkorta, Ibon; Elguero, José; Bene, Janet E Del

    2007-10-01

    Ab initio calculations at the MP2/aug'-cc-pVTZ level have been carried out to investigate the structures and binding energies of cationic complexes involving protonated sp, sp2, and sp3 phosphorus bases as proton donor ions and the sp-hybridized phosphorus bases H-C[triple bond]P and H3C-C[triple bond]P as proton acceptors. These proton-bound complexes exhibit a variety of structural motifs, but all are stabilized by interactions that occur through the pi cloud of the acceptor base. The binding energies of these complexes range from 6 to 15 kcal/mol. Corresponding complexes with H3C-C[triple bond]P as the proton acceptor are more stable than those with H-C[triple bond]P as the acceptor, a reflection of the greater basicity of H3C-C[triple bond]P. In most complexes with sp2- or sp3-hybridized P-H donor ions, the P-H bond lengthens and the P-H stretching frequency is red-shifted relative to the corresponding monomers. Complex formation also leads to a lengthening of the C[triple bond]P bond and a red shift of the C[triple bond]P stretching vibration. The two-bond coupling constants 2pihJ(P-P) and 2pihJ(P-C) are significantly smaller than 2hJ(P-P) and 2hJ(P-C) for complexes in which hydrogen bonding occurs through lone pairs of electrons on P or C. This reflects the absence of significant s electron density in the hydrogen-bonding regions of these pi complexes. PMID:17760429

  1. NMR of group 2 element quadrupolar nuclei and some applications in materials science and biology

    NASA Astrophysics Data System (ADS)

    Li, Xiaohua

    1999-11-01

    fundamental coordination chemistry of strontium present in the sol, the homogeneity of the ceramic was substantially enhanced, and the resulting electronic properties were improved. In another application of the new technique which have been developed, 87Sr NMR was employed to study the metal ion binding properties of alpha-Lactalbumin. The NMR data was fitted into a model with one high affinity and one low affinity site in alpha-Lactalbumin. The calculation of the correlation time, quadrupolar coupling constant provided the opportunity to study the location and the structure of the binding sites. In the application of the new technique in the area of biology, 25Mg NMR was employed to study the metal ion binding properties of bacteriorhodopsin. We presented the results of our studies regarding to two important questions in the photo conversion process: (1) The number of metal binding sites and their binding constants; and (2) What is the role of metal cations in the proton dissociation process/proton transfer (e.g., the key issue of the switch of the proton pump)? 113Cd NM of metal-bR complexes was employed as a probe of the chemical structure of bR calcium binding sites. We discuss the results in terms of the possible involvement of the metal cations in the bR function.

  2. NMR Logging to Estimate Hydraulic Conductivity in Unconsolidated Aquifers.

    PubMed

    Knight, Rosemary; Walsh, David O; Butler, James J; Grunewald, Elliot; Liu, Gaisheng; Parsekian, Andrew D; Reboulet, Edward C; Knobbe, Steve; Barrows, Mercer

    2016-01-01

    Nuclear magnetic resonance (NMR) logging provides a new means of estimating the hydraulic conductivity (K) of unconsolidated aquifers. The estimation of K from the measured NMR parameters can be performed using the Schlumberger-Doll Research (SDR) equation, which is based on the Kozeny-Carman equation and initially developed for obtaining permeability from NMR logging in petroleum reservoirs. The SDR equation includes empirically determined constants. Decades of research for petroleum applications have resulted in standard values for these constants that can provide accurate estimates of permeability in consolidated formations. The question we asked: Can standard values for the constants be defined for hydrogeologic applications that would yield accurate estimates of K in unconsolidated aquifers? Working at 10 locations at three field sites in Kansas and Washington, USA, we acquired NMR and K data using direct-push methods over a 10- to 20-m depth interval in the shallow subsurface. Analysis of pairs of NMR and K data revealed that we could dramatically improve K estimates by replacing the standard petroleum constants with new constants, optimal for estimating K in the unconsolidated materials at the field sites. Most significant was the finding that there was little change in the SDR constants between sites. This suggests that we can define a new set of constants that can be used to obtain high resolution, cost-effective estimates of K from NMR logging in unconsolidated aquifers. This significant result has the potential to change dramatically the approach to determining K for hydrogeologic applications. PMID:25810149

  3. Applications of high resolution /sup 3/H NMR spectroscopy

    SciTech Connect

    Williams, P.G.

    1987-10-01

    The advantages of tritium as an NMR nucleus are pointed out. Examples of its use are given, including labelled toluene, hydrogenation of ..beta..-methylstyrene, and maltose and its binding proteins. 7 refs., 2 figs. (DLC)

  4. NMR analysis of biodiesel

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biodiesel is usually analyzed by the various methods called for in standards such as ASTM D6751 and EN 14214. Nuclear magnetic resonance (NMR) is not one of these methods. However, NMR, with 1H-NMR commonly applied, can be useful in a variety of applications related to biodiesel. These include monit...

  5. Aminoglycoside binding to Oxytricha Nova Telomeric DNA

    PubMed Central

    Ranjan, Nihar; Andreasen, Katrine F.; Kumar, Sunil; Hyde-volpe, David; Arya, Dev P.

    2012-01-01

    Telomeric DNA sequences have been at the center stage of drug design for cancer treatment in recent years. The ability of these DNA structures to form four stranded nucleic acid structures, called G-quadruplexes, has been perceived as target for inhibiting telomerase activity vital for the longevity of cancer cells. Being highly diverse in structural forms, these G-quadruplexes are subjects of detailed studies of ligand–DNA interactions of different classes, which will pave the way for logical design of more potent ligands in future. The binding of aminoglycosides were investigated with Oxytricha Nova quadruplex forming DNA sequence (GGGGTTTTGGGG)2. Isothermal Titration calorimetry (ITC) determined ligand to quadruplex binding ratio shows 1:1 neomycin:quadruplex binding with association constants (Ka ) ~ 105M−1 while paromomycin was found to have a two-fold weaker affinity than neomycin. The CD titration experiments with neomycin resulted in minimal changes in the CD signal. FID assays, performed to determine the minimum concentration required to displace half of the fluorescent probe bound, showed neomycin as the best of the all aminoglycosides studied for quadruplex binding. Initial NMR footprint suggests that ligand-DNA interactions occur in the wide groove of the quadruplex. Computational docking studies also indicate that aminoglycosides bind in the wide groove of the quadruplex. PMID:20886815

  6. Cooperative Binding of Divalent Diamides by N-Alkyl Ammonium Resorcinarene Chlorides.

    PubMed

    Beyeh, N Kodiah; Ala-Korpi, Altti; Pan, Fangfang; Jo, Hyun Hwa; Anslyn, Eric V; Rissanen, Kari

    2015-06-22

    N-Alkyl ammonium resorcinarene chlorides, stabilized by an intricate array of hydrogen bonds leading to a cavitand-like structure, bind amides. The molecular recognition occurs through intermolecular hydrogen bonds between the carbonyl oxygen and the amide hydrogen of the guests and the cation-anion circular hydrogen-bonded seam of the hosts, as well as through CH⋅⋅⋅π interactions. The N-alkyl ammonium resorcinarene chlorides cooperatively bind a series of di-acetamides of varying spacer lengths ranging from three to seven carbons. Titration data fit either a 1:1 or 2:1 binding isotherm depending on the spacer lengths. Considering all the guests possess similar binding motifs, the first binding constants were similar (K1:10(2)  M(-1)) for each host. The second binding constant was found to depend on the upper rim substituent of the host and the spacer length of the guests, with the optimum binding observed with the six-carbon spacer (K2:10(3)  M(-2)). Short spacer lengths increase steric hindrance, whereas longer spacer lengths increase flexibility thus reducing cooperativity. The host with the rigid cyclohexyl upper rim showed stronger binding than the host with flexible benzyl arms. The cooperative binding of these divalent guests was studied in solution through (1)H NMR titration studies and supplemented by diffusion-ordered spectroscopy (DOSY), X-ray crystallography, and mass spectrometry. PMID:26014834

  7. Experimental and Theoretical Studies on Halide Binding with a p-Xylyl-Based Azamacrocycle

    PubMed Central

    2015-01-01

    A p-xylyl-based macrocycle L has been synthesized and its binding properties with halides have been investigated by 1H NMR titrations, single crystal X-ray diffraction analysis, and density functional theory (DFT) calculations. As investigated by 1H NMR titrations, the ligand preferentially binds a halide in a 1:2 binding mode, with the association constants (in log K2) of 2.82, 2.70, 2.28, and 2.20 for fluoride, chloride, bromide, and iodide, respectively. The overall binding trend was found to be in the order of fluoride > chloride > bromide > iodide, reflecting that the binding strength correlates with the relative basicity and size of the respective halide. Crystallographic studies indicate that the ligand forms 1:2 complexes with chloride, bromide and iodide. In the chloride complex, the ligand is hexaprotonated and each chloride is held via three NH···Cl– bonds. The ligand is tetraprotonated for the other complexes, where each halide is H-bonded to two secondary ammonium NH+ groups via NH···X– bonds. The results of DFT calculations performed on [H6L]6+ at M062x/6-311G (d,p) level in both gas and solvent phases, suggest that the ligand binds halides with the binding energy in the order of F– > Cl– > Br– > I–, supporting the experimental data obtained from 1H NMR studies. Results from DFT calculations further indicate that a 1:2 binding is energetically more favorable than a 1:1 binding of the ligand. PMID:25517862

  8. Melittin binding to mixed phosphatidylglycerol/phosphatidylcholine membranes

    SciTech Connect

    Beschiaschvili, G.; Seelig, J. )

    1990-01-09

    The binding of bee venom melittin to negatively charged unilamellar vesicles and planar lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) was studied with circular dichroism and deuterium NMR spectroscopy. The melittin binding isotherm was measured for small unilamellar vesicles containing 10 or 20 mol % POPG. Due to electrostatic attraction, binding of the positively charged melittin was much enhanced as compared to the binding to neutral lipid vesicles. However, after correction for electrostatic effects by means of the Gouy-Chapman theory, all melittin binding isotherms could be described by a partition Kp = (4.5 +/- 0.6) x 10(4) M-1. It was estimated that about 50% of the total melittin surface was embedded in a hydrophobic environment. The melittin partition constant for small unilamellar vesicles was by a factor of 20 larger than that of planar bilayers and attests to the tighter lipid packing in the nonsonicated bilayers. Deuterium NMR studies were performed with coarse lipid dispersions. Binding of melittin to POPC/POPG (80/20 mol/mol) membranes caused systematic changes in the conformation of the phosphocholine and phosphoglycerol head groups which were ascribed to the influence of electrostatic charge on the choline dipole. While the negative charge of phosphatidylglycerol moved the N+ end of the choline -P-N+ dipole toward the bilayer interior, the binding of melittin reversed this effect and rotated the N+ end toward the aqueous phase. No specific melittin-POPG complexes could be detected. The phosphoglycerol head group was less affected by melittin binding than its choline counterpart.

  9. Study of the cyclodextrin and its complexation with 2,4-dinitrobenzoic acid through photophysical properties and 2D NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Stalin, T.; Srinivasan, K.; Sivakumar, K.

    2014-02-01

    The host-guest inclusion complex formation of 2,4-dinitrobenzoic acid (2,4-DNB) with nano-hydrophobic cavity of β-cyclodextrin (β-CD) in solution phase were studied by UV-visible spectrophotometer and electrochemical method (cyclic voltammetry, CV). The prototropic behaviors of 2,4-DNB with and without β-CD and the ground state acidity constant (pKa) of host-guest inclusion complex (2,4-DNB-β-CD) was studied. The binding constant of the inclusion complex at 303 K was calculated using Benesi-Hildebrand plot. The solid inclusion complex formation between β-CD and 2,4-DNB was confirmed by 1H NMR, 2D 1H NMR (ROESY), FT-IR, XRD and SEM analysis. A schematic representation of this inclusion process is proposed by molecular docking studies using the patch dock server.

  10. Polarization transfer NMR imaging

    DOEpatents

    Sillerud, Laurel O.; van Hulsteyn, David B.

    1990-01-01

    A nuclear magnetic resonance (NMR) image is obtained with spatial information modulated by chemical information. The modulation is obtained through polarization transfer from a first element representing the desired chemical, or functional, information, which is covalently bonded and spin-spin coupled with a second element effective to provide the imaging data. First and second rf pulses are provided at first and second frequencies for exciting the imaging and functional elements, with imaging gradients applied therebetween to spatially separate the nuclei response for imaging. The second rf pulse is applied at a time after the first pulse which is the inverse of the spin coupling constant to select the transfer element nuclei which are spin coupled to the functional element nuclei for imaging. In a particular application, compounds such as glucose, lactate, or lactose, can be labeled with .sup.13 C and metabolic processes involving the compounds can be imaged with the sensitivity of .sup.1 H and the selectivity of .sup.13 C.

  11. NMR structural studies on antifreeze proteins.

    PubMed

    Sönnichsen, F D; Davies, P L; Sykes, B D

    1998-01-01

    Antifreeze proteins (AFPs) are a structurally diverse class of proteins that bind to ice and inhibit its growth in a noncolligative manner. This adsorption-inhibition mechanism operating at the ice surface results in a lowering of the (nonequilibrium) freezing point below the melting point. A lowering of approximately 1 degree C, which is sufficient to prevent fish from freezing in ice-laden seawater, requires millimolar AFP levels in the blood. The solubility of AFPs at these millimolar concentrations and the small size of the AFPs (typically 3-15 kDa) make them ideal subjects for NMR analysis. Although fish AFPs are naturally abundant, seasonal expression, restricted access to polar fishes, and difficulties in separating numerous similar isoforms have made protein expression the method of choice for producing AFPs for structural studies. Expression of recombinant AFPs has also facilitated NMR analysis by permitting isotopic labeling with 15N and 13C and has permitted mutations to be made to help with the interpretation of NMR data. NMR analysis has recently solved two AFP structures and provided valuable information about the disposition of ice-binding side chains in a third. The potential exists to solve other AFP structures, including the newly described insect AFPs, and to use solid-state NMR techniques to address fundamental questions about the nature of the interaction between AFPs and ice. PMID:9923697

  12. The inclusion complex of rosmarinic acid into beta-cyclodextrin: A thermodynamic and structural analysis by NMR and capillary electrophoresis.

    PubMed

    Aksamija, Amra; Polidori, Ange; Plasson, Raphaël; Dangles, Olivier; Tomao, Valérie

    2016-10-01

    This work focuses on the characterization of the rosmarinic acid (RA)-β-cyclodextrin (CD) complex in aqueous solution by (1)H NMR (1D- and 2D-ROESY), completed with studies by capillary electrophoresis (CE). From the (1)H NMR data, the stoichiometry of the complex was determined by a Job's plot and the binding constant was estimated from a linear regression (Scott's method). At pH 2.9, the results showed that RA binds CD with a 1:1 stoichiometry and a binding constant Kb of 445 (±53) M(-1) or 465 (±81) M(-1) depending on the CD protons (H-5 or H-3) selected for the evaluation. The Kb value was also calculated from the CD-induced chemical shifts of each RA proton in order to collect information on the structure of the complex. The pH dependence of Kb revealed that the RA carboxylic form displays the highest affinity for CD. An investigation by capillary electrophoresis fully confirmed these results. 2D ROESY analysis provided detailed structural information on the complex and showed a strong correlation between H-3 and H-5 of CD and most RA protons. In conclusion, RA, an efficient phenolic antioxidant from rosemary with a marketing authorization, spontaneously forms a relatively stable inclusion complex with CD in water. PMID:27132848

  13. New mixed ligand palladium(II) complexes based on the antiepileptic drug sodium valproate and bioactive nitrogen-donor ligands: Synthesis, structural characterization, binding interactions with DNA and BSA, in vitro cytotoxicity studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Tabrizi, Leila; Chiniforoshan, Hossein; Tavakol, Hossein

    2015-04-01

    The complexes [Pd(valp)2(imidazole)2] (1), [Pd(valp)2(pyrazine)2] (2) (valp is sodium valproate) have been synthesized and characterized using IR, 1H NMR, 13C{1H} NMR and UV-Vis spectrometry. The interaction of complexes with CT-DNA has been investigated using spectroscopic tools and viscosity measurement. In each case, the association constant (Kb) was deduced from the absorption spectral study and the number of binding sites (n) and the binding constant (K) were calculated from relevant fluorescence quenching data. As a result, a non-covalent interaction between the metal complex and DNA was suggested, which could be assigned to an intercalative binding. In addition, the interaction of 1 and 2 was ventured with bovine serum albumin (BSA) with the help of absorption and fluorescence spectroscopy measurements. Through these techniques, the apparent association constant (Kapp) and the binding constant (K) could be calculated for each complex. Evaluation of cytotoxic activity of the complexes against four different cancer cell lines proved that the complexes exhibited cytotoxic specificity and significant cancer cell inhibitory rate. Moreover, density functional theory (DFT) calculations were employed to provide more evidence about the observed data. The majority of trans isomers were supported not only by energies, but also by the similarity of its calculated IR frequencies, UV adsorptions and NMR chemical shifts to the experimental values.

  14. Two dimensional NMR spectroscopy

    SciTech Connect

    Schram, J.; Bellama, J.M.

    1988-01-01

    Two dimensional NMR represents a significant achievement in the continuing effort to increase solution in NMR spectroscopy. This book explains the fundamentals of this new technique and its analytical applications. It presents the necessary information, in pictorial form, for reading the ''2D NMR,'' and enables the practicing chemist to solve problems and run experiments on a commercial spectrometer by using the software provided by the manufacturer.

  15. Reaction of vanadate with aquatic humic substances: An ESR and {sup 51}V NMR study

    SciTech Connect

    Lu, Xi.; Johnson, W.D.; Hook, J.

    1998-08-01

    Electron spin resonance (ESR) spectroscopy and {sup 51}V nuclear magnetic resonance (NMR) spectroscopy have been used to study the interaction of vanadate with aqueous solutions of humic substances (HS) at different pH values and at different concentrations. Under acidic pH conditions, ESR spectra show that humic substances reduce vanadium(V) to vanadium(IV) without further reduction to vanadium(III). The reduced vanadium(IV) ion is bound to oxygen donor atoms, probably at carboxylic acid sites in the humic substances. {sup 51}V NMR spectra show that the VO{sub 2}{sup +} cation is immediately reduced and that the decavanadate cation decomposes to the VO{sub 2}{sup +} cation prior to reduction. The overall rate of reduction depends on both concentration and pH. There is no reduction above pH 6, which suggests that the standard reduction potential of humic substances is about +0.65 V. Near pH 7, vanadate is stabilized by binding to humic substances. As the concentration of humic substances increases, the total vanadium NMR signal intensity decreases. This is due to the quadrupolar nature of the {sup 51}V nucleus that, when bound to humic substances, is invisible in NMR measurements. Quantitative models applied to intensity changes show that the vanadate monomer forms HS0V(V) complexes. The formation equilibrium constant is estimated to be 108 M{sup {minus}1}. At pH above 9, NMR signals appear at {minus}623.6 and at {minus}763.2 ppm when humic substances are added to vanadate solution. The intensities of the signals increase with increasing pH and with increasing concentration of humic substances. These signals appear to be associated with peroxyvanadate anions, which are not bound to humic substances.

  16. Development of Halbach magnet for portable NMR device

    NASA Astrophysics Data System (ADS)

    Doğan, N.; Topkaya, R.; Subaşi, H.; Yerli, Y.; Rameev, B.

    2009-03-01

    Nuclear magnetic resonance (NMR) has enormous potential for various applications in industry as the on-line or at-line test/control device of process environments. Advantage of NMR is its non-destructive nature, because it does not require the measurement probe to have a contact with the tested media. Despite of the recent progress in this direction, application of NMR in industry is still very limited. This is related to the technical and analytical complications of NMR as a method, and high cost of NMR analyzers available at the market. However in many applications, NMR is a very useful technique to test various products and to monitor quantitatively industrial processes. Fortunately usually there is no need in a high-field superconducting magnets to obtain the high-resolution spectra with the detailed information on chemical shifts and coupling-constant. NMR analyzers are designed to obtain the relaxation parameters by measuring the NMR spectra in the time domain rather than in frequency domain. Therefore it is possible to use small magnetic field (and low frequency of 2-60 MHz) in NMR systems, based on permanent magnet technology, which are specially designed for specific at-line and on-line process applications. In this work we present the permanent magnet system developed to use in the portative NMR devices. We discuss the experimental parameters of the designed Halbach magnet system and compare them with results of theoretical modelling.

  17. Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear magnetic resonance studies

    SciTech Connect

    Modi, S.; Behere, D.V.; Mitra, S. )

    1989-05-30

    The binding of thiocyanate to lactoperoxidase (LPO) has been investigated by 1H and 15N NMR spectroscopy. 1H NMR of LPO shows that the major broad heme methyl proton resonance at about 61 ppm is shifted upfield by addition of the thiocyanate, indicating binding of the thiocyanate to the enzyme. The pH dependence of line width of 15N resonance of SC15N- in the presence of the enzyme has revealed that the binding of the thiocyanate to the enzyme is facilitated by protonation of an ionizable group (with pKa of 6.4), which is presumably distal histidine. Dissociation constants (KD) of SC15N-/LPO, SC15N-/LPO/I-, and SC15N-/LPO/CN- equilibria have been determined by 15N T1 measurements and found to be 90 +/- 5, 173 +/- 20, and 83 +/- 6 mM, respectively. On the basis of these values of KD, it is suggested that the iodide ion inhibits the binding of the thiocyanate but cyanide ion does not. The thiocyanate is shown to bind at the same site of LPO as iodide does, but the binding is considerably weaker and is away from the ferric ion. The distance of 15N of the bound thiocyanate ion from the iron is determined to be 7.2 +/- 0.2 A from the 15N T1 measurements.

  18. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1988-08-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 32 refs., 56 figs.

  19. Lectures on pulsed NMR

    SciTech Connect

    Pines, A.

    1986-09-01

    These lectures discuss some recent developments in pulsed NMR, emphasizing fundamental principles with selected illustrative applications. Major topics covered include multiple-quantum spectroscopy, spin decoupling, the interaction of spins with a quantized field, adiabatic rapid passage, spin temperature and statistics of cross-polarization, coherent averaging, and zero field NMR. 55 figs.

  20. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions.

    PubMed

    Fritzsche, H; Petri, I; Schütz, H; Weller, K; Sedmera, P; Lang, H

    1980-02-01

    1) The self-association of both caffeine (Cf) and 5'-adenosine monophosphate (AMP) in aqueous solution has been reinvestigated by 1H NMR. The self-association process is characterized by an isodesmic model. The apparent self-association constants of the vertical stacking process are KCf = (10.6 +/- 1.0) M-1 and KAMP = (1.67 +/- 0.17) M-1. The arrangement of the monomeric units in the stacked aggregates is discussed in terms of isoshielding curves theoretically calculated by Giessner-Prettre and Pullman. Models are proposed which are consistent with these and further previous NMR data. 2) The interaction of Cf and AMP has been studied by 1H NMR. The apparent association constant of the complex Cf-AMP is KC-A = (7.3 +/- 1.2) M-1. Two models of the mutual arrangement of AMP and Cf in the complex are proposed on the basis of the calculated isoshielding curves considering both ring current and local atomic diamagnetic anisotropy effects. 3) The interaction of Cf and poly(riboadenylate), (rA)n, is indicated by a downfield shift of the H-8 line but an upfield shifts of the H-2 line in the 1H NMR spectra of (rA)n. The concentration dependence of the 1H NMR shifts of both Cf and (rA)n can be explained by the existence of two binding mechanisms. We suggest (i) partial insertion of Cf between adjacent base residues of ordered single-stranded regions of (rA)n and (ii) outside binding of Cf in form of monomeric Cf as well as of self-associated aggregates. The complex geometry of insertion proposed on the basis of the calculated isoshielding curves is characterized by a stronger overlapping of the Cf ring and the H-2 proton of (rA)n as compared to the H-8 proton. PMID:7357061

  1. Discovery of a potent inhibitor of the antiapoptotic protein Bcl-xL from NMR and parallel synthesis.

    PubMed

    Petros, Andrew M; Dinges, Jurgen; Augeri, David J; Baumeister, Steven A; Betebenner, David A; Bures, Mark G; Elmore, Steven W; Hajduk, Philip J; Joseph, Mary K; Landis, Shelley K; Nettesheim, David G; Rosenberg, Saul H; Shen, Wang; Thomas, Sheela; Wang, Xilu; Zanze, Irini; Zhang, Haichao; Fesik, Stephen W

    2006-01-26

    The antiapoptotic proteins Bcl-x(L) and Bcl-2 play key roles in the maintenance of normal cellular homeostasis. However, their overexpression can lead to oncogenic transformation and is responsible for drug resistance in certain types of cancer. This makes Bcl-x(L) and Bcl-2 attractive targets for the development of potential anticancer agents. Here we describe the structure-based discovery of a potent Bcl-x(L) inhibitor directed at a hydrophobic groove on the surface of the protein. This groove represents the binding site for BH3 peptides from proapoptotic Bcl-2 family members such as Bak and Bad. Application of NMR-based screening yielded an initial biaryl acid with an affinity (K(d)) of approximately 300 microM for the protein. Following the classical "SAR by NMR" approach, a second-site ligand was identified that bound proximal to the first-site ligand in the hydrophobic groove. From NMR-based structural studies and parallel synthesis, a potent ligand was obtained, which binds to Bcl-x(L) with an inhibition constant (K(i)) of 36 +/- 2 nM. PMID:16420051

  2. NMR logging apparatus

    DOEpatents

    Walsh, David O; Turner, Peter

    2014-05-27

    Technologies including NMR logging apparatus and methods are disclosed. Example NMR logging apparatus may include surface instrumentation and one or more downhole probes configured to fit within an earth borehole. The surface instrumentation may comprise a power amplifier, which may be coupled to the downhole probes via one or more transmission lines, and a controller configured to cause the power amplifier to generate a NMR activating pulse or sequence of pulses. Impedance matching means may be configured to match an output impedance of the power amplifier through a transmission line to a load impedance of a downhole probe. Methods may include deploying the various elements of disclosed NMR logging apparatus and using the apparatus to perform NMR measurements.

  3. Silver and Gold NMR

    PubMed Central

    Zangger, Klaus

    1999-01-01

    Silver and gold, together with copper, form the transition metal group IB elements in the periodic table and possess very different nuclear magnetic resonance (NMR) spectroscopic properties. While there is only one gold isotope (197Au), which has a spin of 3/2 and therefore a quadrupole moment, silver occurs in two isotopic forms (109Ag and 109Au), both of which have a spin 1/2 and similar NMR spectroscopic properties. The unfavorable properties of gold have prevented its NMR spectroscopic investigation thus far. On the other hand, there are several reports of silver NMR. However, the low sensitivity of silver, combined with its long relaxation times have rendered the direct detection of silver possible only with concentrations greater than a few tenth molar. Reviewed here are the general limitations of silver NMR and some techniques to partially overcome these limitations, as well as a summary of currently available chemical shift and scalar coupling data on 109Ag. PMID:18475898

  4. Heavy metal binding to heparin disaccharides. I. Iduronic acid is the main binding site.

    PubMed

    Whitfield, D M; Choay, J; Sarkar, B

    1992-06-01

    As model compounds for Ni(II)-binding heparin-like compounds isolated from human kidneys (Templeton, D.M. & Sarkar, B. (1985) Biochem. J. 230 35-42.), we investigated two disaccharides--4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-2,5-anhydro- D-mannitol, disodium salt (1a), and 4-O-(2-O-sulfo-alpha-L-idopyranosyluronic acid)-6-O- sulfo-2,5-anhydro-D-mannitol, trisodium salt (1b)--that were isolated from heparin after nitrous acid hydrolysis and reduction. The monosulfate (1a) was active whereas the disulfate (1b) was inactive in a high-performance liquid chromatography (HPLC) binding assay with the tracer ions 63Ni(II) 54Mn(II), 65Zn(II), and 109Cd(II). This result is in accord with the isolation of two 67Cu(II) and 63Ni(II) binding fractions from a complete pool of nitrous-acid-derived heparin disaccharides using sulfate gradients and a MonoQ anion exchange column on an FPLC system. One was identified as compound (1a) and the other as a tetrasulfated trisaccharide by high resolution FAB-MS, NMR and HPLC-PAD. Similarly, two synthetic disaccharides-methyl, 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-alpha-D-glucosamine, trisodium salt [IdopA2S(alpha 1,4)GlcNS alpha Me, 2a], and 2-O-sulfo-4-O-(alpha-L-idopyranosyluronic acid)-2-deoxy-2-sulfamide-6-O-sulfo- alpha-D-glucosamine, tetrasodium salt [IdopA2S (alpha 1,4)GlcNS6S alpha Me, 2b]--were shown to bind tracer amounts of 63Ni and 67Cu using chromatographic assays. Subsequently, 1H NMR titrations of 1a, 1b, 2a, and 2b with Zn (OAc)2 were analyzed to yield 1:1 Zn(II)-binding constants of 472 +/- 59, 698 +/- 120, 8,758 +/- 2,237 and 20,100 +/- 5,598 M-1, respectively. The values for 2a and 2b suggest chelation. It is suggested that the idopyranosiduronic acid residue is the major metal binding site. NMR evidence for this hypothesis comes from marked 1H and 13C chemical shift changes to the iduronic acid resonances after addition of diamagnetic Zn(II) ions. PMID:1643264

  5. Simulation of Peptide Binding to Silica and Silica Mineralization

    NASA Astrophysics Data System (ADS)

    Emami, F. S.; Heinz, H.; Berry, R. J.; Varshney, V.; Farmer, B. L.; Naik, R. R.; Patwardhan, S. V.; Perry, C. C.

    2009-03-01

    The purpose of this study is to identify the nature of the interaction of peptides with silica surfaces and their effect on mineralization. Classical force fields (CVFF, PCFF) have been extended for silica aiming at the computation of surface properties in quantitative agreement with experiment, taking explicitly into account water molecules, pH, and surface coverage with peptides. We focus on the interaction of five short peptides (pep1, pep4, 82-4, H4, R5) identified by biopanning with regular and amorphous silica surfaces (Q3 and Q2) to understand the relation between peptide sequence and affinity to the surface. Results of the atomistic molecular dynamics simulation indicate adsorption energies, binding constants and conformational changes upon adsorption. The comparison of NMR chemical shifts in solution and on the surface in computation and experiment further aids in understanding the mechanism of binding.

  6. Molecular recognition of epothilones by microtubules and tubulin dimers revealed by biochemical and NMR approaches.

    PubMed

    Canales, Angeles; Nieto, Lidia; Rodríguez-Salarichs, Javier; Sánchez-Murcia, Pedro A; Coderch, Claire; Cortés-Cabrera, Alvaro; Paterson, Ian; Carlomagno, Teresa; Gago, Federico; Andreu, José M; Altmann, Karl-Heinz; Jiménez-Barbero, Jesús; Díaz, J Fernando

    2014-04-18

    The binding of epothilones to dimeric tubulin and to microtubules has been studied by means of biochemical and NMR techniques. We have determined the binding constants of epothilone A (EpoA) and B (EpoB) to dimeric tubulin, which are 4 orders of magnitude lower than those for microtubules, and we have elucidated the conformation and binding epitopes of EpoA and EpoB when bound to tubulin dimers and microtubules in solution. The determined conformation of epothilones when bound to dimeric tubulin is similar to that found by X-ray crystallographic techniques for the binding of EpoA to the Tubulin/RB3/TTL complex; it is markedly different from that reported for EpoA bound to zinc-induced sheets obtained by electron crystallography. Likewise, only the X-ray structure of EpoA bound to the Tubulin/RB3/TTL complex at the luminal site, but not the electron crystallography structure, is compatible with the results obtained by STD on the binding epitope of EpoA bound to dimeric tubulin, thus confirming that the allosteric change (structuring of the M-loop) is the biochemical mechanism of induction of tubulin assembly by epothilones. TR-NOESY signals of EpoA bound to microtubules have been obtained, supporting the interaction with a transient binding site with a fast exchange rate (pore site), consistent with the notion that epothilones access the luminal site through the pore site, as has also been observed for taxanes. Finally, the differences in the tubulin binding affinities of a series of epothilone analogues has been quantitatively explained using the newly determined binding pose and the COMBINE methodology. PMID:24524625

  7. Study of molecular interactions with 13C DNP-NMR

    NASA Astrophysics Data System (ADS)

    Lerche, Mathilde H.; Meier, Sebastian; Jensen, Pernille R.; Baumann, Herbert; Petersen, Bent O.; Karlsson, Magnus; Duus, Jens Ø.; Ardenkjær-Larsen, Jan H.

    2010-03-01

    NMR spectroscopy is an established, versatile technique for the detection of molecular interactions, even when these interactions are weak. Signal enhancement by several orders of magnitude through dynamic nuclear polarization alleviates several practical limitations of NMR-based interaction studies. This enhanced non-equilibrium polarization contributes sensitivity for the detection of molecular interactions in a single NMR transient. We show that direct 13C NMR ligand binding studies at natural isotopic abundance of 13C gets feasible in this way. Resultant screens are easy to interpret and can be performed at 13C concentrations below μM. In addition to such ligand-detected studies of molecular interaction, ligand binding can be assessed and quantified with enzymatic assays that employ hyperpolarized substrates at varying enzyme inhibitor concentrations. The physical labeling of nuclear spins by hyperpolarization thus provides the opportunity to devise fast novel in vitro experiments with low material requirement and without the need for synthetic modifications of target or ligands.

  8. Probing surface interactions by combining NMR cryoporometry and NMR relaxometry

    NASA Astrophysics Data System (ADS)

    Mitchell, J.; Stark, S. C.; Strange, J. H.

    2005-06-01

    To further expand on the understanding of surface interactions at the liquid/solid interface on pore walls, the nuclear magnetic resonance (NMR) techniques of cryoporometry and relaxometry have been combined. The combination of these techniques allows variations in NMR relaxation parameters from pore surface to volume ratio changes and from surface interaction changes to be distinguished. By studying a range of sol-gel silicas from two different sources, it was noted that the relaxation time measurements were not consistent with the pore diameters determined by cryoporometry and N2 gas adsorption. Instead distinctly different relaxivity constants were determined for each absorbate in each of the two brands of silica. It was clear that the relaxation times were modified by more than just the pore geometry. Independent experiments on the two brands of silica suggested that the relaxometry results were heavily influenced by the concentration of paramagnetic relaxation centres in the silica gels. The strength of surface interaction, and hence surface affinity, was seen to depend on the liquid in the pores. Using this difference in surface affinities, binary mixtures of alkanes placed in sol-gel silicas were separated via preferential absorption and their components identified using cryoporometry, whereas the components could not be distinguished in the bulk liquid.

  9. Evidence That Antibiotics Bind to Human Mitochondrial Ribosomal RNA Has Implications for Aminoglycoside Toxicity.

    PubMed

    Hong, Seoyeon; Harris, Kimberly A; Fanning, Kathryn D; Sarachan, Kathryn L; Frohlich, Kyla M; Agris, Paul F

    2015-07-31

    Aminoglycosides are a well known antibiotic family used to treat bacterial infections in humans and animals, but which can be toxic. By binding to the decoding site of helix44 of the small subunit RNA of the bacterial ribosome, the aminoglycoside antibiotics inhibit protein synthesis, cause misreading, or obstruct peptidyl-tRNA translocation. Although aminoglycosides bind helix69 of the bacterial large subunit RNA as well, little is known about their interaction with the homologous human helix69. To probe the role this binding event plays in toxicity, changes to thermal stability, base stacking, and conformation upon aminoglycoside binding to the human cytoplasmic helix69 were compared with those of the human mitochondrial and Escherichia coli helix69. Surprisingly, binding of gentamicin and kanamycin A to the chemically synthesized terminal hairpins of the human cytoplasmic, human mitochondrial, and E. coli helix69 revealed similar dissociation constants (1.3-1.7 and 4.0-5.4 μM, respectively). In addition, aminoglycoside binding enhanced conformational stability of the human mitochondrial helix69 by increasing base stacking. Proton one-dimensional and two-dimensional NMR suggested significant and specific conformational changes of human mitochondrial and E. coli helix69 upon aminoglycoside binding, as compared with human cytoplasmic helix69. The conformational changes and similar aminoglycoside binding affinities observed for human mitochondrial helix69 and E. coli helix69, as well as the increase in structural stability shown for the former, suggest that this binding event is important to understanding aminoglycoside toxicity. PMID:26060252

  10. Studies of organic paint binders by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Spyros, A.; Anglos, D.

    2006-06-01

    Nuclear magnetic resonance spectroscopy is applied to the study of aged binding media used in paintings, namely linseed oil, egg tempera and an acrylic medium. High resolution 1D and 2D NMR experiments establish the state of hydrolysis and oxidation of the linseed and egg tempera binders after five years of aging, by determining several markers sensitive to the hydrolytic and oxidative processes of the binder lipid fraction. The composition of the acrylic binder co-polymer is determined by 2D NMR spectroscopy, while the identification of a surfactant, poly(ethylene glycol), found in greater amounts in aged acrylic medium, is reported. The non-destructive nature of the proposed analytical NMR methodology, and minimization of the amount of binder material needed through the use of sophisticated cryoprobes and hyphenated LC-NMR techniques, make NMR attractive for the arts analyst, in view of its rapid nature and experimental simplicity.

  11. NMR Wool Tube: a novel method for NMR solution analysis of derivatized glass surfaces.

    PubMed

    Cholewa, Olivia Maria

    2004-08-13

    Glass wool was placed within an NMR tube as a solid support for the covalent attachment of a molecule to allow for a simple one-dimensional 1H FT NMR solution analysis. This novel procedure avoids the use of expensive sample tubes or platforms, as required for magic angle or fast spinning, exotic pulse sequences, isotopic labeling or the use of a large number of scans to provide the ability to analyze the structure, mobility, ligand binding, and solvent interactions of the surface bound molecule. PMID:15387199

  12. Role of membrane lipids in peptide hormone function: binding of enkephalins to micelles.

    PubMed Central

    Deber, C M; Behnam, B A

    1984-01-01

    In the course of their biological function, peptide hormones must be transferred from an aqueous phase to the lipid-rich environment of their membrane-bound receptor proteins. We have investigated the possible influence of phospholipids in this process, using 360-MHz 1H and 90-MHz 13C NMR spectroscopy to examine the association of the opioid peptides [Met]- and [Leu]enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) with phospholipid micelles. Binding of peptides to lipid was monitored in NMR spectra by selective chemical shift movements (e.g., the Phe aromatic ring protons) and residue-specific line broadening (e.g., of Met/Leu carbonyl- and alpha-carbon resonances). Results established that the zwitterionic hormones associate hydrophobically both with a neutral lipid (lysophosphatidylcholine) and (also electrostatically) with a negative lipid (lysophosphatidylglycerol). An association constant of Ka = 3.7 X 10(1) M-1 was calculated for the hydrophobic binding of enkephalin to lysophosphatidylcholine. NMR data suggested that enkephalin binds to the lipid with Met/Leu, Phe, and likely Tyr side-chain substituents associated with nonpolar interior regions of the micelle, whereas the COOH-terminal carboxylate moiety of the peptide is located in the surface of the lipid particle. An "attraction-interaction" model is proposed for hormone-lipid association wherein negative lipids attract the hormone electrostatically, while site-specific hydrophobic contacts facilitate its entry, concentration, and orientation into the lipid phase. PMID:6320173

  13. Fragment-Based Drug Discovery Using NMR Spectroscopy

    PubMed Central

    Harner, Mary J.; Frank, Andreas O.; Fesik, Stephen W.

    2013-01-01

    Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool for fragment-based drug discovery over the last two decades. While NMR has been traditionally used to elucidate the three-dimensional structures and dynamics of biomacromolecules and their interactions, it can also be a very valuable tool for the reliable identification of small molecules that bind to proteins and for hit-to-lead optimization. Here, we describe the use of NMR spectroscopy as a method for fragment-based drug discovery and how to most effectively utilize this approach for discovering novel therapeutics based on our experience. PMID:23686385

  14. 31P NMR study of daunorubicin-d(CGTACG) complex in solution. Evidence of the intercalation sites.

    PubMed

    Ragg, E; Mondelli, R; Battistini, C; Garbesi, A; Colonna, F P

    1988-08-15

    The interaction of daunorubicin with the self-complementary DNA fragment d(CGTACG) was studied by 31P NMR spectroscopy. The individual phosphates have been assigned for the nucleotide and the complex and signals from bound and free species in slow exchange at 19 degrees C were detected. In solution, the hexanucleotide binds two molecules of daunorubicin, which intercalate in the d(CG) sequence at both ends of the helix. Evidence for local deformations of the backbone at the sites of C5pG6, C1pG2 and G2pT3 phosphates is given. The binding constants for the stepwise equilibrium and the rate of dissociation of the intercalated duplex were also determined. PMID:3402614

  15. The Nucleotide-Free State of the Multidrug Resistance ABC Transporter LmrA: Sulfhydryl Cross-Linking Supports a Constant Contact, Head-to-Tail Configuration of the Nucleotide-Binding Domains

    PubMed Central

    Jones, Peter M.; George, Anthony M.

    2015-01-01

    ABC transporters are integral membrane pumps that are responsible for the import or export of a diverse range of molecules across cell membranes. ABC transporters have been implicated in many phenomena of medical importance, including cystic fibrosis and multidrug resistance in humans. The molecular architecture of ABC transporters comprises two transmembrane domains and two ATP-binding cassettes, or nucleotide-binding domains (NBDs), which are highly conserved and contain motifs that are crucial to ATP binding and hydrolysis. Despite the improved clarity of recent structural, biophysical, and biochemical data, the seemingly simple process of ATP binding and hydrolysis remains controversial, with a major unresolved issue being whether the NBD protomers separate during the catalytic cycle. Here chemical cross-linking data is presented for the bacterial ABC multidrug resistance (MDR) transporter LmrA. These indicate that in the absence of nucleotide or substrate, the NBDs come into contact to a significant extent, even at 4°C, where ATPase activity is abrogated. The data are clearly not in accord with an inward-closed conformation akin to that observed in a crystal structure of V. cholerae MsbA. Rather, they suggest a head-to-tail configuration ‘sandwich’ dimer similar to that observed in crystal structures of nucleotide-bound ABC NBDs. We argue the data are more readily reconciled with the notion that the NBDs are in proximity while undergoing intra-domain motions, than with an NBD ‘Switch’ mechanism in which the NBD monomers separate in between ATP hydrolysis cycles. PMID:26120849

  16. An NMR Biochemical Assay for Fragment-Based Drug Discovery: Evaluation of an Inhibitor Activity on Spermidine Synthase of Trypanosoma cruzi.

    PubMed

    Yamasaki, Kazuhiko; Tani, Osamu; Tateishi, Yukihiro; Tanabe, Eiki; Namatame, Ichiji; Niimi, Tatsuya; Furukawa, Koji; Sakashita, Hitoshi

    2016-03-10

    Although NMR in fragment-based drug discovery is utilized almost exclusively to evaluate physical binding between molecules, it should be also a powerful tool for biochemical assay, evaluating inhibitory effect of compounds on enzymatic activity. Time-dependent spectral change in real-time monitoring or inhibitor concentration-dependent spectral change after constant-time reaction was processed by factor analysis, by which reaction rate or IC50 value was obtained. Applications to spermidine synthase of Trypanosoma cruzi, which causes Chagas disease, are described. PMID:26881725

  17. Dissecting the Binding between Glutamine Synthetase and Its Two Natively Unfolded Protein Inhibitors.

    PubMed

    Pantoja-Uceda, David; Neira, José L; Saelices, Lorena; Robles-Rengel, Rocío; Florencio, Francisco J; Muro-Pastor, M Isabel; Santoro, Jorge

    2016-06-21

    Ammonium is incorporated into carbon skeletons by the sequential action of glutamine synthetase (GS) and glutamate synthase (GOGAT) in cyanobacteria. The activity of Synechocystis sp. PCC 6803 GS type I is controlled by protein-protein interactions with two intrinsically disordered inactivating factors (IFs): the 65-residue (IF7) and the 149-residue one (IF17). In this work, we studied both IF7 and IF17 by nuclear magnetic resonance (NMR), and we described their binding to GS by using NMR and biolayer interferometry. We assigned the backbone nuclei of all residues of IF7. Analyses of chemical shifts and the (15)N-{(1)H} NOEs at two field strengths suggest that IF7 region Thr3-Arg13 and a few residues around Ser27 and Phe41 populated helical conformations (although the percentage is smaller around Phe41). The two-dimensional (1)H-(15)N HSQC and CON experiments suggest that IF17 populated several conformations. We followed the binding between GS and IF7 by NMR at physiological pH, and the residues interacting first with IF7 were Gln6 and Ser27, belonging to those regions that appeared to be ordered in the isolated protein. We also determined the kon values and koff values for the binding of both IF7 and IF17 to GS, where the GS protein was bound to a biosensor. The measurements of the kinetic constants for the binding of IF7 to GS suggest that: (i) binding does not follow a kinetic two-state model ([Formula: see text]), (ii) there is a strong electrostatic component in the determined kon, and (iii) the binding is not diffusion-limited. PMID:27232663

  18. On the Khinchin Constant

    NASA Technical Reports Server (NTRS)

    Bailey, David H.; Borwein, Jonathan M.; Crandall, Richard E.; Craw, James M. (Technical Monitor)

    1995-01-01

    We prove known identities for the Khinchin constant and develop new identities for the more general Hoelder mean limits of continued fractions. Any of these constants can be developed as a rapidly converging series involving values of the Riemann zeta function and rational coefficients. Such identities allow for efficient numerical evaluation of the relevant constants. We present free-parameter, optimizable versions of the identities, and report numerical results.

  19. Solar constant secular changes

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.; Orosz, Jerome A.

    1990-01-01

    A recent model for solar constant secular changes is used to calculate a 'proxy' solar constant for: (1) the past four centuries, based upon the sunspot record, (2) the past nine centuries, based upon C-14 observations and their relation to solar activity, and (3) the next decade, based upon a dynamo theory model for the solar cycle. The proxy solar constant data is tabulated as it may be useful for climate modelers studying global climate changes.

  20. Bile salt recognition by human liver fatty acid binding protein.

    PubMed

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  1. Correlation between 1H NMR chemical shifts of hydroxyl protons in n-hexanol/cyclohexane and molecular association properties investigated using density functional theory

    NASA Astrophysics Data System (ADS)

    Flores, Mario E.; Shibue, Toshimichi; Sugimura, Natsuhiko; Nishide, Hiroyuki; Moreno-Villoslada, Ignacio

    2016-01-01

    Association of n-hexanol molecules in cyclohexane forming clusters is studied by DFT and 1H NMR. Geometry optimization, corrected binding energies, charge distributions, charge transfer energies, and 1H NMR chemical shifts have been obtained. The calculated chemical shifts of hydroxyl protons have been correlated to experimental data obtained in the range of n-hexanol molar fraction between 0.002 and 0.2, showing that n-hexanol molecules at a molar fraction around 0.1, where well-structured hydrogen bond networks are observed, tend to form linear pentamers and hexamers. The experimental data are consistent with the continuous linear association thermodynamic model, showing a dimensionless association constant of 284.

  2. The Effect of Mutation of Carboxyl Side-Chain Amino Acids Near the Heme on the Midpoint Potentials and Ligand Binding Constants of Nitrophorin 2 and Its NO, Histamine and Imidazole Complexes

    PubMed Central

    Berry, Robert E.; Shokhirev, Maxim N.; Ho, Arthur Y. W.; Yang, Fei; Shokhireva, Tatiana K.; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R.; Walker, F. Ann

    2009-01-01

    Nitrophorins (NPs) are a group of NO-carrying heme proteins found in the saliva of a bloodsucking insect from tropical Central and South America, Rhodnius prolixus, the “kissing bug”. NO is kept stable for long periods of time by binding it as an axial ligand to a ferriheme center. The fact that the nitrophorins are stabilized as FeIII-NO proteins is a unique property, for most heme proteins are readily autoreduced by excess NO, and bind NO to the Fe(II) heme irreversibly (Kds in the pM range). In contrast, the nitrophorins, as Fe(III) heme centers, have Kds in the μM to nM range, and thus allow NO to dissociate upon dilution following injection into the tissues of the victim. This NO can cause vasodilation, and thereby allow more blood to be transported to the site of the wound. We have prepared thirteen site-directed mutants of three major nitrophorins, NP2, NP1 and NP4, to investigate the stabilization of the ferric–NO heme center and preservation of reversible binding that facilitates these proteins’ NO storage, transport and release functions. Of the mutations in which Glu and/or Asp were replaced by Ala, most of these carboxyls show a significant role stabilizing FeIII-NO over FeII-NO, with buried E53 of NP2 or E55 of NP1 and NP4 being the most important, and partially buried D29 of NP2 or D30 of NP4 being second in importance. The pKas of the carboxyl groups studied vary significantly, but all are largely deprotonated at pH 7.5 except E124. PMID:19175316

  3. Effect of mutation of carboxyl side-chain amino acids near the heme on the midpoint potentials and ligand binding constants of nitrophorin 2 and its NO, histamine, and imidazole complexes.

    PubMed

    Berry, Robert E; Shokhirev, Maxim N; Ho, Arthur Y W; Yang, Fei; Shokhireva, Tatiana K; Zhang, Hongjun; Weichsel, Andrzej; Montfort, William R; Walker, F Ann

    2009-02-18

    Nitrophorins (NPs) are a group of NO-carrying heme proteins found in the saliva of a blood-sucking insect from tropical Central and South America, Rhodnius prolixus, the "kissing bug". NO is kept stable for long periods of time by binding it as an axial ligand to a ferriheme center. The fact that the nitrophorins are stabilized as Fe(III)-NO proteins is a unique property because most heme proteins are readily autoreduced by excess NO and bind NO to the Fe(II) heme irreversibly (K(d)s in the picomolar range). In contrast, the nitrophorins, as Fe(III) heme centers, have K(d)s in the micromolar to nanomolar range and thus allow NO to dissociate upon dilution following injection into the tissues of the victim. This NO can cause vasodilation and thereby allow more blood to be transported to the site of the wound. We prepared 13 site-directed mutants of three major nitrophorins, NP2, NP1, and NP4, to investigate the stabilization of the ferric-NO heme center and preservation of reversible binding that facilitates these proteins' NO storage, transport, and release functions. Of the mutations in which Glu and/or Asp were replaced by Ala, most of these carboxyls show a significant role stabilizing Fe(III)-NO over Fe(II)-NO, with buried E53 of NP2 or E55 of NP1 and NP4 being the most important and partially buried D29 of NP2 or D30 of NP4 being second in importance. The pK(a)s of the carboxyl groups studied vary significantly but all are largely deprotonated at pH 7.5 except E124. PMID:19175316

  4. Chemical shifts and coupling constants of C8H10N4O2

    NASA Astrophysics Data System (ADS)

    Jain, M.

    This document is part of Subvolume D3 `Chemical Shifts and Coupling Constants for Carbon-13: Heterocycles' of Volume 35 `Nuclear Magnetic Resonance (NMR) Data' of Landolt-Börnstein Group III `Condensed Matter'

  5. Fundamental Physical Constants

    National Institute of Standards and Technology Data Gateway

    SRD 121 CODATA Fundamental Physical Constants (Web, free access)   This site, developed in the Physics Laboratory at NIST, addresses three topics: fundamental physical constants, the International System of Units (SI), which is the modern metric system, and expressing the uncertainty of measurement results.

  6. NMR imaging microscopy

    SciTech Connect

    Not Available

    1986-10-01

    In the past several years, proton nuclear magnetic resonance (NMR) imaging has become an established technique in diagnostic medicine and biomedical research. Although much of the work in this field has been directed toward development of whole-body imagers, James Aguayo, Stephen Blackband, and Joseph Schoeninger of the Johns Hopkins University School of Medicine working with Markus Hintermann and Mark Mattingly of Bruker Medical Instruments, recently developed a small-bore NMR microscope with sufficient resolution to image a single African clawed toad cell (Nature 1986, 322, 190-91). This improved resolution should lead to increased use of NMR imaging for chemical, as well as biological or physiological, applications. The future of NMR microscopy, like that of many other newly emerging techniques, is ripe with possibilities. Because of its high cost, however, it is likely to remain primarily a research tool for some time. ''It's like having a camera,'' says Smith. ''You've got a way to look at things at very fine levels, and people are going to find lots of uses for it. But it is a very expensive technique - it costs $100,000 to add imaging capability once you have a high-resolution NMR, which itself is at least a $300,000 instrument. If it can answer even a few questions that can't be answered any other way, though, it may be well worth the cost.''

  7. Design and Nuclear Magnetic Resonance (NMR) Structure Determination of the Second Extracellular Immunoglobulin Tyrosine Kinase A (TrkAIg2) Domain Construct for Binding Site Elucidation in Drug Discovery

    PubMed Central

    2014-01-01

    The tyrosine kinase A (TrkA) receptor is a validated therapeutic intervention point for a wide range of conditions. TrkA activation by nerve growth factor (NGF) binding the second extracellular immunoglobulin (TrkAIg2) domain triggers intracellular signaling cascades. In the periphery, this promotes the pain phenotype and, in the brain, cell survival or differentiation. Reproducible structural information and detailed validation of protein–ligand interactions aid drug discovery. However, the isolated TrkAIg2 domain crystallizes as a β-strand-swapped dimer in the absence of NGF, occluding the binding surface. Here we report the design and structural validation by nuclear magnetic resonance spectroscopy of the first stable, biologically active construct of the TrkAIg2 domain for binding site confirmation. Our structure closely mimics the wild-type fold of TrkAIg2 in complex with NGF (1WWW.pdb), and the 1H–15N correlation spectra confirm that both NGF and a competing small molecule interact at the known binding interface in solution. PMID:25454499

  8. Targeted Molecular Imaging of Cancer Cells Using MS2-Based (129)Xe NMR.

    PubMed

    Jeong, Keunhong; Netirojjanakul, Chawita; Munch, Henrik K; Sun, Jinny; Finbloom, Joel A; Wemmer, David E; Pines, Alexander; Francis, Matthew B

    2016-08-17

    We have synthesized targeted, selective, and highly sensitive (129)Xe NMR nanoscale biosensors using a spherical MS2 viral capsid, Cryptophane A molecules, and DNA aptamers. The biosensors showed strong binding specificity toward targeted lymphoma cells (Ramos line). Hyperpolarized (129)Xe NMR signal contrast and hyper-CEST (129)Xe MRI image contrast indicated its promise as highly sensitive hyperpolarized (129)Xe NMR nanoscale biosensor for future applications in cancer detection in vivo. PMID:27454679

  9. NMR Studies of Dynamic Biomolecular Conformational Ensembles

    PubMed Central

    Torchia, Dennis A.

    2015-01-01

    Multidimensional heteronuclear NMR approaches can provide nearly complete sequential signal assignments of isotopically enriched biomolecules. The availability of assignments together with measurements of spin relaxation rates, residual spin interactions, J-couplings and chemical shifts provides information at atomic resolution about internal dynamics on timescales ranging from ps to ms, both in solution and in the solid state. However, due to the complexity of biomolecules, it is not possible to extract a unique atomic-resolution description of biomolecular motions even from extensive NMR data when many conformations are sampled on multiple timescales. For this reason, powerful computational approaches are increasingly applied to large NMR data sets to elucidate conformational ensembles sampled by biomolecules. In the past decade, considerable attention has been directed at an important class of biomolecules that function by binding to a wide variety of target molecules. Questions of current interest are: “Does the free biomolecule sample a conformational ensemble that encompasses the conformations found when it binds to various targets; and if so, on what time scale is the ensemble sampled?” This article reviews recent efforts to answer these questions, with a focus on comparing ensembles obtained for the same biomolecules by different investigators. A detailed comparison of results obtained is provided for three biomolecules: ubiquitin, calmodulin and the HIV-1 trans-activation response RNA. PMID:25669739

  10. DFT and NMR parameterized conformation of valeranone.

    PubMed

    Torres-Valencia, J Martín; Meléndez-Rodríguez, Myriam; Alvarez-García, Rocío; Cerda-García-Rojas, Carlos M; Joseph-Nathan, Pedro

    2004-10-01

    A Monte Carlo random search using molecular mechanics, followed by geometry optimization of each minimum energy structure employing density functional theory (DFT) calculations at the B3LYP/6-31G* level and a Boltzmann analysis of the total energies, generated accurate molecular models which describe the conformational behavior of the antispasmodic bicyclic sesquiterpene valeranone (1). The theoretical H-C-C-H dihedral angles gave the corresponding 1H, 1H vicinal coupling constants using a generalized Karplus-type equation. In turn, the 3J(H,H) values were used as initial input data for the spectral simulation of 1, which after iteration provided an excellent correlation with the experimental 1H NMR spectrum. The calculated 3J(H,H) values closely predicted the experimental values, excepting the coupling constant between the axial hydrogen alpha to the carbonyl group and the equatorial hydrogen beta to the carbonyl group (J(2beta, 3beta)). The difference is explained in terms of the electron density distribution found in the highest occupied molecular orbital (HOMO) of 1. The simulated spectrum, together with 2D NMR experiments, allowed the total assignment of the 1H and 13C NMR spectra of 1. PMID:15366065

  11. Dual Species NMR Oscillator

    NASA Astrophysics Data System (ADS)

    Weber, Joshua; Korver, Anna; Thrasher, Daniel; Walker, Thad

    2016-05-01

    We present progress towards a dual species nuclear magnetic oscillator using synchronous spin exchange optical pumping. By applying the bias field as a sequence of alkali 2 π pulses, we generate alkali polarization transverse to the bias field. The alkali polarization is then modulated at the noble gas resonance so that through spin exchange collisions the noble gas becomes polarized. This novel method of NMR suppresses the alkali field frequency shift by at least a factor of 2500 as compared to longitudinal NMR. We will present details of the apparatus and measurements of dual species co-magnetometry using this method. Research supported by the NSF and Northrop-Grumman Corp.

  12. NMR relaxation studies of the interaction of thiocyanate with lactoperoxidase.

    PubMed

    Crull, G B; Goff, H M

    1993-05-15

    The interaction of lactoperoxidase, LPO, with its substrate, thiocyanate, SCN-, has been investigated by 13C and 15N NMR relaxation measurements. When 0.1 M SCN-, enriched with either 13C or 15N, was titrated with native ferric lactoperoxidase a large change in the spin-lattice relaxation time of the respective nucleus was observed. In the presence of saturating amounts of CN-, a high affinity ligand for the heme iron, a similar but much smaller change in the relaxation time for SCN- was found. Studies of the rate of carbon relaxation as a function of temperature have shown that thiocyanate is in fast exchange between a site on the enzyme and bulk solution. When LPO in either the absence or presence of CN- was titrated with SCN- a linear increase in the relaxation time was observed. Dissociation constants (Kd values) have been determined from a least-squares analysis of these data. Apparent distances between the heme iron of lactoperoxidase and either the carbon or nitrogen atoms of bound thiocyanate ion have been determined through application of the Solomon-Bloembergen equation. These distances demonstrate that the observed association does not involve iron-thiocyanate coordination, suggesting the possibility of an anion binding site. PMID:8501464

  13. Fragment-based discovery of novel thymidylate synthase leads by NMR screening and group epitope mapping

    PubMed Central

    Begley, Darren W.; Zheng, Suxin; Varani, Gabriele

    2010-01-01

    Solution state nuclear magnetic resonance (NMR1) is a versatile tool for the study of binding interactions between small molecules and macromolecular targets. We applied ligand-based NMR techniques to the study of human thymidylate synthase (hTS) using known nanomolar inhibitors and a library of small molecule fragments. Screening by NMR led to the rapid identification of ligand pairs that bind in proximal sites within the co-factor binding pocket of hTS. Screening hits were used as search criteria within commercially available sources, and a subset of catalog analogs were tested for potency by in vitro assay and binding affinity by quantitative saturation transfer difference (STD)-NMR titration. Two compounds identified by this approach possess low micromolar affinity and potency, as well as excellent binding efficiency against hTS. Relative binding orientations for both leads were modeled using AutoDock, and the most likely bound conformations validated using experimentally-derived STD-NMR binding epitope data. These ligands represent novel starting points for fragment-based drug design of non-canonical TS inhibitors, and their binding epitopes highlight important and previously unexploited interactions with conserved residues in the cofactor binding site. PMID:20626411

  14. The cosmological constant problem

    SciTech Connect

    Dolgov, A.D.

    1989-05-01

    A review of the cosmological term problem is presented. Baby universe model and the compensating field model are discussed. The importance of more accurate data on the Hubble constant and the Universe age is stressed. 18 refs.

  15. Space Shuttle astrodynamical constants

    NASA Technical Reports Server (NTRS)

    Cockrell, B. F.; Williamson, B.

    1978-01-01

    Basic space shuttle astrodynamic constants are reported for use in mission planning and construction of ground and onboard software input loads. The data included here are provided to facilitate the use of consistent numerical values throughout the project.

  16. NMR studies of differences in the conformations and dynamics of ligand complexes formed with mutant dihydrofolate reductases

    SciTech Connect

    Birdsall, B.; Andrews, J.; Ostler, G.; Tendler, S.J.B.; Feeney, J.; Roberts, G.C.K.; Davies, R.W.; Cheung, H.T.A. )

    1989-02-07

    Two mutants of Lactobacillus casei dihydrofolate reductase, Trp 21 {yields} Leu and Asp 26 {yields} Glu, have been prepared by using site-directed mutagenesis methods, and their ligand binding and structural properties have been compared with those of the wild-type enzyme. {sup 1}H, {sup 13}C, and {sup 31}P NMR studies have been carried out to characterize the structural changes in the complexes of the mutant and wild-type enzymes. Replacement of the conserved Trp 21 by a Leu residue causes a decrease in activity of the enzyme and reduces the NADPH binding constant by a factor of 400. The binding of substrates and substrate analogues is only slightly affected. {sup 1}H NMR studies of the Trp 21 {yields} Leu enzyme complexes have confirmed the original resonance assignments for Trp 21. In complexes formed with methotrexate and the mutant enzyme, the results indicate some small changes in conformation occurring as much as 14 {angstrom} away from the site of substitution. For the enzyme-NADPH complexes, the chemical shifts of nuclei in the bound coenzyme indicate that the nicotinamide ring binds differently in complexes with the mutant and the wild-type enzyme. There are complexes where the wild-type enzyme has been shown to exist in solution as a mixture of conformations, and studies on the corresponding complexes with the Trp 21 {yields} Leu mutant indicate that the delicately poised equilibria can be perturbed. Some conformational adjustments are required to allow the carboxylate of Glu 26 to bind effectively to the N1 proton of inhibitors such as methotrexate and trimethoprim.

  17. Constant potential pulse polarography

    USGS Publications Warehouse

    Christie, J.H.; Jackson, L.L.; Osteryoung, R.A.

    1976-01-01

    The new technique of constant potential pulse polarography, In which all pulses are to be the same potential, is presented theoretically and evaluated experimentally. The response obtained is in the form of a faradaic current wave superimposed on a constant capacitative component. Results obtained with a computer-controlled system exhibit a capillary response current similar to that observed In normal pulse polarography. Calibration curves for Pb obtained using a modified commercial pulse polarographic instrument are in good accord with theoretical predictions.

  18. The anthrax protective antigen (PA63) bound conformation of a peptide inhibitor of the binding of lethal factor to PA63: as determined by trNOESY NMR and molecular modeling.

    PubMed

    Hicks, Rickey P; Bhattacharjee, Apurba K; Koser, Brandon W; Traficante, Daniel D

    2004-10-21

    Anthrax protective antigen (PA) is one of the three proteins produced by the gram positive bacteria Bacillus anthracis collectively known as the "anthrax toxin" (Ascenzi, P.; Visca, P.; Ippolito, G.; Spallarossa, A.; Bolognesi, M.; et al. Anthrax toxin: a tripartite lethal combination. FEBS Lett. 2002, 531, 384-388). The role played by PA in anthrax intoxication is to transport the two enzymes lethal factor (LF) and edema factor (EF) into the cell. Collier and co-workers (Mourez, M.; Kane, R. S.; Mogridge, J.; Metallo, S.; Deschatelets, P.; et al. Designing a polyvalent inhibitor of anthrax toxin. Nat. Biotechnol. 2001, 958). reported the isolation of two peptides via phage display that bind to the PA63 heptamer and inhibit its interaction with LF and EF, and thereby prevent the transport of LF and EF into the cell. One of these peptides, His-Thr-Ser-Thr-Try-Trp-Trp-Leu-Asp-Gly-Ala-Pro (P1), was selected for structural investigation on the basis of its ability to prevent the binding of LF to the PA63 heptamer bundle. Two-dimensional trNOESY experiments coupled with NOE restrained simulated annealing calculations were used to determine the PA63-bound conformation of P1. On binding to PA63, P1 adopts a helical conformation involving residues 3-9 while the C- and N-terminal residues exhibit dynamic fraying. PMID:15481973

  19. Experimental Determination of pK[subscript a] Values by Use of NMR Chemical Shifts, Revisited

    ERIC Educational Resources Information Center

    Gift, Alan D.; Stewart, Sarah M.; Bokashanga, Patrick Kwete

    2012-01-01

    This laboratory experiment, using proton NMR spectroscopy to determine the dissociation constant for heterocyclic bases, has been modified from a previously described experiment. A solution of a substituted pyridine is prepared using deuterium oxide (D[subscript 2]O) as the solvent. The pH of the solution is adjusted and proton NMR spectra are…

  20. Identification by stopped-exchange solution /sup 31/P NMR spectroscopy of the stepwise formation of (AgL/sub n/)PF/sub 6/ (n = 1-4). Comparison of metal-phosphorus coupling constants for triphenylphosphine and 5-phenyldibenzophosphole

    SciTech Connect

    Alyea, E.C.; Malito, J.; Nelson, J.H.

    1987-12-16

    The coordination properties of 5-phenyldibenzophosphate (PhDBP) have been studied extensively. The stepwise formation of (L/sub n/Ag)/sup +/PF/sub 6//sup -/ (n = 1-4) for L = PhDBP and PhP/sub 3/ observed in situ by stopped-exchange solution /sup 31/P NMR spectroscopy is reported herein. The relative coordinating properties of PhDBP and PhP/sub 3/ are compared. 21 references, 1 figure, 2 tables.

  1. NMR with excitation modulated by Frank sequences.

    PubMed

    Blümich, Bernhard; Gong, Qingxia; Byrne, Eimear; Greferath, Marcus

    2009-07-01

    Miniaturized NMR is of growing importance in bio-, chemical, and -material sciences. Other than the magnet, bulky components are the radio-frequency power amplifier and the power supply or battery pack. We show that constant flip-angle excitation with phase modulation following a particular type of polyphase perfect sequences results in low peak excitation power at high response peak power. It has ideal power distribution in both the time domain and the frequency domain. A savings in peak excitation power of six orders of magnitude has been realized compared to conventionally pulsed excitation. Among others, the excitation promises to be of use for button-cell operated miniature NMR devices as well as for complying with specific-absorption-rate regulations in high-field medical imaging. PMID:19386525

  2. Some nitrogen-14 NMR studies in solids

    SciTech Connect

    Pratum, T.K.

    1983-11-01

    The first order quadrupolar perturbation of the /sup 14/N NMR spectrum yields information regarding the static and dynamic properties of the surrounding electronic environment. Signal to noise problems caused by long /sup 14/N longitudinal relaxation times (T/sub 1/) and small equilibrium polarizations are reduced by rotating frame cross polarization (CP) experiments between /sup 14/N and /sup 1/H. Using quadrupolar echo and CP techniques, the /sup 14/N quadrupolar coupling constants (e/sup 2/qQ/h) and asymmetry parameters (eta) have been obtained for a variety of tetraalkylammonium compounds by observation of their quadrupolar powder patterns at various temperatures. For choline chloride and iodide the /sup 14/N NMR powder patterns exhibit the effects of anisotropic molecular motion, while choline bromide spectra show no such effects.

  3. Screening proteins for NMR suitability

    PubMed Central

    Yee, Adelinda A.; Semesi, Anthony; Garcia, Maite; Arrowsmith, Cheryl H.

    2014-01-01

    Summary NMR spectroscopy is an invaluable tool in structural genomics. Identification of protein samples that are amenable to structure determination by NMR spectroscopy requires efficient screening. Here, we describe how we prepare multiple samples in parallel and screen by NMR. The method described here is applicable to large structural genomics projects but can easily be scaled down for application to small structural biology projects since all the equipments used are those commonly found in any NMR structural biology laboratory. PMID:24590717

  4. Modern NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Jelinski, Lynn W.

    1984-01-01

    Discusses direct chemical information that can be obtained from modern nuclear magnetic resonance (NMR) methods, concentrating on the types of problems that can be solved. Shows how selected methods provide information about polymers, bipolymers, biochemistry, small organic molecules, inorganic compounds, and compounds oriented in a magnetic…

  5. Enantiodiscrimination by NMR spectroscopy.

    PubMed

    Uccello-Barretta, Gloria; Balzano, Federica; Salvadori, Piero

    2006-01-01

    The analysis of enantiorecognition processes involves the detection of enantiomeric species as well as the study of chiral discrimination mechanisms. In both fields Nuclear Magnetic Resonance (NMR) spectroscopy plays a fundamental role, providing several tools, based on the use of suitable chiral auxiliaries, for observing distinct signals of enantiomers and for investigating the complexation phenomena involved in enantiodiscrimination processes. PMID:17100610

  6. S-Adenosylmethionine-Binding Properties of a Bacterial Phospholipid N-Methyltransferase▿†

    PubMed Central

    Aktas, Meriyem; Gleichenhagen, Jan; Stoll, Raphael; Narberhaus, Franz

    2011-01-01

    The presence of the membrane lipid phosphatidylcholine (PC) in the bacterial membrane is critically important for many host-microbe interactions. The phospholipid N-methyltransferase PmtA from the plant pathogen Agrobacterium tumefaciens catalyzes the formation of PC by a three-step methylation of phosphatidylethanolamine via monomethylphosphatidylethanolamine and dimethylphosphatidylethanolamine. The methyl group is provided by S-adenosylmethionine (SAM), which is converted to S-adenosylhomocysteine (SAH) during transmethylation. Despite the biological importance of bacterial phospholipid N-methyltransferases, little is known about amino acids critical for binding to SAM or phospholipids and catalysis. Alanine substitutions in the predicted SAM-binding residues E58, G60, G62, and E84 in A. tumefaciens PmtA dramatically reduced SAM-binding and enzyme activity. Homology modeling of PmtA satisfactorily explained the mutational results. The enzyme is predicted to exhibit a consensus topology of the SAM-binding fold consistent with cofactor interaction as seen with most structurally characterized SAM-methyltransferases. Nuclear magnetic resonance (NMR) titration experiments and 14C-SAM-binding studies revealed binding constants for SAM and SAH in the low micromolar range. Our study provides first insights into structural features and SAM binding of a bacterial phospholipid N-methyltransferase. PMID:21602340

  7. Interaction of the Heparin-Binding Consensus Sequence of β-Amyloid Peptides with Heparin and Heparin-Derived Oligosaccharides.

    PubMed

    Nguyen, Khanh; Rabenstein, Dallas L

    2016-03-10

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques in the AD brain. Comprised primarily of the 40- and 42-residue β-amyloid (Aβ) peptides, there is evidence that the heparan sulfate (HS) of heparan sulfate proteoglycans (HSPGs) plays a role in amyloid plaque formation and stability; however, details of the interaction of Aβ peptides with HS are not known. We have characterized the interaction of heparin and heparin-derived oligosaccharides with a model peptide for the heparin- and HS-binding domain of Aβ peptides (Ac-VHHQKLV-NH2; Aβ(12-18)), with mutants of Aβ(12-18), and with additional histidine-containing peptides. The nature of the binding interaction was characterized by NMR, binding constants and other thermodynamic parameters were determined by isothermal titration calorimetry (ITC), and relative binding affinities were determined by heparin affinity chromatography. The binding of Aβ(12-18) by heparin and heparin-derived oligosaccharides is pH-dependent, with the imidazolium groups of the histidine side chains interacting site-specifically within a cleft created by a trisaccharide sequence of heparin, the binding is mediated by electrostatic interactions, and there is a significant entropic contribution to the binding free energy as a result of displacement of Na(+) ions from heparin upon binding of cationic Aβ(12-18). The binding constant decreases as the size of the heparin-derived oligosaccharide decreases and as the concentration of Na(+) ion in the bulk solution increases. Structure-binding relationships characterized in this study are analyzed and discussed in terms of the counterion condensation theory of the binding of cationic peptides by anionic polyelectrolytes. PMID:26872053

  8. Potentiometric and NMR complexation studies of phenylboronic acid PBA and its aminophosphonate analog with selected catecholamines

    NASA Astrophysics Data System (ADS)

    Ptak, Tomasz; Młynarz, Piotr; Dobosz, Agnieszka; Rydzewska, Agata; Prokopowicz, Monika

    2013-05-01

    Boronic acids are a class of intensively explored compounds, which according to their specific properties have been intensively explored in last decades. Among them phenylboronic acids and their derivatives are most frequently examined as receptors for diverse carbohydrates. In turn, there is a large gap in basic research concerning complexation of catecholamines by these compounds. Therefore, we decided to undertake studies on interaction of chosen catecholamines, namely: noradrenaline (norephinephrine), dopamine, L-DOPA, DOPA-P (phosphonic analog of L-DOPA) and catechol, with simple phenyl boronic acid PBA by means of potentiometry and NMR spectroscopy. For comparison, the binding properties of recently synthesized phenylboronic receptor 1 bearing aminophosphonate function in meta-position were investigated and showed promising ability to bind catecholamines. The protonation and stability constants of PBA and receptor 1 complexes were examined by potentiometry. The obtained results demonstrated that PBA binds the catecholamines with the following affinity order: noradrenaline ⩾ dopamine ≈ L-DOPA > catechol > DOPA-P, while its modified analog 1 reveals slightly different preferences: dopamine > noradrenaline > catechol > L-DOPA > DOPA-P.

  9. Dielectric Constant of Suspensions

    NASA Astrophysics Data System (ADS)

    Mendelson, Kenneth S.; Ackmann, James J.

    1997-03-01

    We have used a finite element method to calculate the dielectric constant of a cubic array of spheres. Extensive calculations support preliminary conclusions reported previously (K. Mendelson and J. Ackmann, Bull. Am. Phys. Soc. 41), 657 (1996).. At frequencies below 100 kHz the real part of the dielectric constant (ɛ') shows oscillations as a function of the volume fraction of suspension. These oscillations disappear at low conductivities of the suspending fluid. Measurements of the dielectric constant (J. Ackmann, et al., Ann. Biomed. Eng. 24), 58 (1996). (H. Fricke and H. Curtis, J. Phys. Chem. 41), 729 (1937). are not sufficiently sensitive to show oscillations but appear to be consistent with the theoretical results.

  10. Elastic constants of calcite

    USGS Publications Warehouse

    Peselnick, L.; Robie, R.A.

    1962-01-01

    The recent measurements of the elastic constants of calcite by Reddy and Subrahmanyam (1960) disagree with the values obtained independently by Voigt (1910) and Bhimasenachar (1945). The present authors, using an ultrasonic pulse technique at 3 Mc and 25??C, determined the elastic constants of calcite using the exact equations governing the wave velocities in the single crystal. The results are C11=13.7, C33=8.11, C44=3.50, C12=4.82, C13=5.68, and C14=-2.00, in units of 1011 dyncm2. Independent checks of several of the elastic constants were made employing other directions and polarizations of the wave velocities. With the exception of C13, these values substantially agree with the data of Voigt and Bhimasenachar. ?? 1962 The American Institute of Physics.

  11. Characterization of lithium coordination sites with magic-angle spinning NMR

    NASA Astrophysics Data System (ADS)

    Haimovich, A.; Goldbourt, A.

    2015-05-01

    Lithium, in the form of lithium carbonate, is one of the most common drugs for bipolar disorder. Lithium is also considered to have an effect on many other cellular processes hence it possesses additional therapeutic as well as side effects. In order to quantitatively characterize the binding mode of lithium, it is required to identify the interacting species and measure their distances from the metal center. Here we use magic-angle spinning (MAS) solid-state NMR to study the binding site of lithium in complex with glycine and water (LiGlyW). Such a compound is a good enzyme mimetic since lithium is four-coordinated to one water molecule and three carboxylic groups. Distance measurements to carbons are performed using a 2D transferred echo double resonance (TEDOR) MAS solid-state NMR experiment, and water binding is probed by heteronuclear high-resolution proton-lithium and proton-carbon correlation (wPMLG-HETCOR) experiments. Both HETCOR experiments separate the main complex from impurities and non-specifically bound lithium species, demonstrating the sensitivity of the method to probe the species in the binding site. Optimizations of the TEDOR pulse scheme in the case of a quadrupolar nucleus with a small quadrupole coupling constant show that it is most efficient when pulses are positioned on the spin-1/2 (carbon-13) nucleus. Since the intensity of the TEDOR signal is not normalized, careful data analysis that considers both intensity and dipolar oscillations has to be performed. Nevertheless we show that accurate distances can be extracted for both carbons of the bound glycine and that these distances are consistent with the X-ray data and with lithium in a tetrahedral environment. The lithium environment in the complex is very similar to the binding site in inositol monophosphatase, an enzyme associated with bipolar disorder and the putative target for lithium therapy. A 2D TEDOR experiment applied to the bacterial SuhB gene product of this enzyme was designed

  12. p53 and TFIIEα share a common binding site on the Tfb1/p62 subunit of TFIIH

    PubMed Central

    Di Lello, Paola; Miller Jenkins, Lisa M.; Mas, Caroline; Langlois, Chantal; Malitskaya, Elena; Fradet-Turcotte, Amélie; Archambault, Jacques; Legault, Pascale; Omichinski, James G.

    2008-01-01

    The general transcription factor IIH is recruited to the transcription preinitiation complex through an interaction between its p62/Tfb1 subunit and the α-subunit of the general transcription factor IIE (TFIIEα). We have determined that the acidic carboxyl terminus of TFIIEα (TFIIEα336–439) directly binds the amino-terminal PH domain of p62/Tfb1 with nanomolar affinity. NMR mapping and mutagenesis studies demonstrate that the TFIIEα binding site on p62/Tfb1 is identical to the binding site for the second transactivation domain of p53 (p53 TAD2). In addition, we demonstrate that TFIIEα336–439 is capable of competing with p53 for a common binding site on p62/Tfb1 and that TFIIEα336–439 and the diphosphorylated form (pS46/pT55) of p53 TAD2 have similar binding constants. NMR structural studies reveal that TFIIEα336–439 contains a small domain (residues 395–433) folded in a novel ββααα topology. NMR mapping studies demonstrate that two unstructured regions (residues 377–393 and residues 433–439) located on either side of the folded domain appear to be required for TFIIEα336–439 binding to p62/Tfb1 and that these two unstructured regions are held close to each other in three-dimensional space by the novel structured domain. We also demonstrate that, like p53, TFIIEα336–439 can activate transcription in vivo. These results point to an important interplay between the general transcription factor TFIIEα and the tumor suppressor protein p53 in regulating transcriptional activation that may be modulated by the phosphorylation status of p53. PMID:18160537

  13. p53 and TFIIEalpha share a common binding site on the Tfb1/p62 subunit of TFIIH.

    PubMed

    Di Lello, Paola; Miller Jenkins, Lisa M; Mas, Caroline; Langlois, Chantal; Malitskaya, Elena; Fradet-Turcotte, Amélie; Archambault, Jacques; Legault, Pascale; Omichinski, James G

    2008-01-01

    The general transcription factor IIH is recruited to the transcription preinitiation complex through an interaction between its p62/Tfb1 subunit and the alpha-subunit of the general transcription factor IIE (TFIIEalpha). We have determined that the acidic carboxyl terminus of TFIIEalpha (TFIIEalpha(336-439)) directly binds the amino-terminal PH domain of p62/Tfb1 with nanomolar affinity. NMR mapping and mutagenesis studies demonstrate that the TFIIEalpha binding site on p62/Tfb1 is identical to the binding site for the second transactivation domain of p53 (p53 TAD2). In addition, we demonstrate that TFIIEalpha(336-439) is capable of competing with p53 for a common binding site on p62/Tfb1 and that TFIIEalpha(336-439) and the diphosphorylated form (pS46/pT55) of p53 TAD2 have similar binding constants. NMR structural studies reveal that TFIIEalpha(336-439) contains a small domain (residues 395-433) folded in a novel betabetaalphaalphaalpha topology. NMR mapping studies demonstrate that two unstructured regions (residues 377-393 and residues 433-439) located on either side of the folded domain appear to be required for TFIIEalpha(336-439) binding to p62/Tfb1 and that these two unstructured regions are held close to each other in three-dimensional space by the novel structured domain. We also demonstrate that, like p53, TFIIEalpha(336-439) can activate transcription in vivo. These results point to an important interplay between the general transcription factor TFIIEalpha and the tumor suppressor protein p53 in regulating transcriptional activation that may be modulated by the phosphorylation status of p53. PMID:18160537

  14. Dissection of the ion-induced folding of the hammerhead ribozyme using 19F NMR

    PubMed Central

    Hammann, Christian; Norman, David G.; Lilley, David M. J.

    2001-01-01

    We have used 19F NMR to analyze the metal ion-induced folding of the hammerhead ribozyme by selective incorporation of 5fluorouridine. We have studied the chemical shift and linewidths of 19F resonances of 5-fluorouridine at the 4 and 7 positions in the ribozyme core as a function of added Mg2+. The data fit well to a simple two-state model whereby the formation of domain 1 is induced by the noncooperative binding of Mg2+ with an association constant in the range of 100 to 500 M−1, depending on the concentration of monovalent ions present. The results are in excellent agreement with data reporting on changes in the global shape of the ribozyme. However, the NMR experiments exploit reporters located in the center of the RNA sections undergoing the folding transitions, thereby allowing the assignment of specific nucleotides to the separate stages. The results define the folding pathway at high resolution and provide a time scale for the first transition in the millisecond range. PMID:11331743

  15. XrayOpticsConstants

    Energy Science and Technology Software Center (ESTSC)

    2005-06-20

    This application (XrayOpticsConstants) is a tool for displaying X-ray and Optical properties for a given material, x-ray photon energy, and in the case of a gas, pressure. The display includes fields such as the photo-electric absorption attenuation length, density, material composition, index of refraction, and emission properties (for scintillator materials).

  16. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  17. Sodium ion effect on silk fibroin conformation characterized by solid-state NMR and generalized 2D NMR NMR correlation

    NASA Astrophysics Data System (ADS)

    Ruan, Qing-Xia; Zhou, Ping

    2008-07-01

    In the present work, we investigated Na + ion effect on the silk fibroin (SF) conformation. Samples are Na +-involved regenerated silk fibroin films. 13C CP-MAS NMR demonstrates that as added [Na +] increases, partial silk fibroin conformation transit from helix-form to β-form at certain Na + ion concentration which is much higher than that in Bombyx mori silkworm gland. The generalized two-dimensional NMR-NMR correlation analysis reveals that silk fibroin undergoes several intermediate states during its conformation transition process as [Na +] increase. The appearance order of the intermediates is followed as: helix and/or random coil → helix-like → β-sheet-like → β-sheet, which is the same as that produced by pH decrease from 6.8 to 4.8 in the resultant regenerated silk fibroin films. The binding sites of Na + to silk fibroin might involve the carbonyl oxygen atom of certain amino acids sequence which could promote the formation of β-sheet conformation. Since the Na +sbnd O bond is weak, the ability of Na + inducing the secondary structure transition is weaker than those of Ca 2+, Cu 2+ and even K +. It is maybe a reason why the sodium content is much lower than potassium in the silkworm gland.

  18. The NMR phased array.

    PubMed

    Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M

    1990-11-01

    We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm). PMID:2266841

  19. NMR imaging of materials

    SciTech Connect

    Vinegar, H.J.; Rothwell, W.P.

    1988-03-01

    A method for obtaining at least one petrophysical property of a porous material containing therein at least one preselected fluid, is described, comprising: NMR imaging the material to generate signals dependent upon both M(0) and T/sub 1/ and M(0) and T/sub 2/, generating separate M(0), T/sub 1/ and T/sub 2/ images from the signals, and determining at least one petrophysical property from at least one of the images.

  20. Bayesian reconstruction of projection reconstruction NMR (PR-NMR).

    PubMed

    Yoon, Ji Won

    2014-11-01

    Projection reconstruction nuclear magnetic resonance (PR-NMR) is a technique for generating multidimensional NMR spectra. A small number of projections from lower-dimensional NMR spectra are used to reconstruct the multidimensional NMR spectra. In our previous work, it was shown that multidimensional NMR spectra are efficiently reconstructed using peak-by-peak based reversible jump Markov chain Monte Carlo (RJMCMC) algorithm. We propose an extended and generalized RJMCMC algorithm replacing a simple linear model with a linear mixed model to reconstruct close NMR spectra into true spectra. This statistical method generates samples in a Bayesian scheme. Our proposed algorithm is tested on a set of six projections derived from the three-dimensional 700 MHz HNCO spectrum of a protein HasA. PMID:25218584

  1. NMR Studies on Li+, Na+ and K+ Complexes of Orthoester Cryptand o-Me2-1.1.1

    PubMed Central

    Brachvogel, René-Chris; Maid, Harald; von Delius, Max

    2015-01-01

    Cryptands, a class of three-dimensional macrobicyclic hosts ideally suited for accommodating small guest ions, have played an important role in the early development of supramolecular chemistry. In contrast to related two-dimensional crown ethers, cryptands have so far only found limited applications, owing in large part to their relatively inefficient multistep synthesis. We have recently described a convenient one-pot, template synthesis of cryptands based on O,O,O-orthoesters acting as bridgeheads. Here we report variable-temperature, 1H-1D EXSY and titration NMR studies on lithium, sodium, and potassium complexes of one such cryptand (o-Me2-1.1.1). Our results indicate that lithium and sodium ions fit into the central cavity of the cryptand, resulting in a comparably high binding affinity and slow exchange with the bulk. The potassium ion binds instead in an exo fashion, resulting in relatively weak binding, associated with fast exchange kinetics. Collectively, these results indicate that orthoester cryptands such as o-Me2-1.1.1 exhibit thermodynamic and kinetic properties in between those typically found for classical crown ethers and cryptands and that future efforts should be directed towards increasing the binding constants. PMID:26334274

  2. NMR methodologies for studying mitochondrial bioenergetics.

    PubMed

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  3. Soils, Pores, and NMR

    NASA Astrophysics Data System (ADS)

    Pohlmeier, Andreas; Haber-Pohlmeier, Sabina; Haber, Agnes; Sucre, Oscar; Stingaciu, Laura; Stapf, Siegfried; Blümich, Bernhard

    2010-05-01

    Within Cluster A, Partial Project A1, the pore space exploration by means of Nuclear Magnetic Resonance (NMR) plays a central role. NMR is especially convenient since it probes directly the state and dynamics of the substance of interest: water. First, NMR is applied as relaxometry, where the degree of saturation but also the pore geometry controls the NMR signature of natural porous systems. Examples are presented where soil samples from the Selhausen, Merzenhausen (silt loams), and Kaldenkirchen (sandy loam) test sites are investigated by means of Fast Field Cycling Relaxometry at different degrees of saturation. From the change of the relaxation time distributions with decreasing water content and by comparison with conventional water retention curves we conclude that the fraction of immobile water is characterized by T1 < 5 ms. Moreover, the dependence of the relaxation rate on magnetic field strength allows the identification of 2D diffusion at the interfaces as the mechanism which governs the relaxation process (Pohlmeier et al. 2009). T2 relaxation curves are frequently measured for the rapid characterization of soils by means of the CPMG echo train. Basically, they contain the same information about the pore systems like T1 curves, since mostly the overall relaxation is dominated by surface relaxivity and the surface/volume ratio of the pores. However, one must be aware that T2 relaxation is additionally affected by diffusion in internal gradients, and this can be overcome by using sufficiently short echo times and low magnetic fields (Stingaciu et al. 2009). Second, the logic continuation of conventional relaxation measurements is the 2-dimensional experiment, where prior to the final detection of the CPMG echo train an encoding period is applied. This can be T1-encoding by an inversion pulse, or T2 encoding by a sequence of 90 and 180° pulses. During the following evolution time the separately encoded signals can mix and this reveals information about

  4. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  5. Renormalization of Newton's constant

    NASA Astrophysics Data System (ADS)

    Falls, Kevin

    2015-12-01

    The problem of obtaining a gauge independent beta function for Newton's constant is addressed. By a specific parametrization of metric fluctuations a gauge independent functional integral is constructed for the semiclassical theory around an arbitrary Einstein space. The effective action then has the property that only physical polarizations of the graviton contribute, while all other modes cancel with the functional measure. We are then able to compute a gauge independent beta function for Newton's constant in d dimensions to one-loop order. No Landau pole is present provided Ng<18 , where Ng=d (d -3 )/2 is the number of polarizations of the graviton. While adding a large number of matter fields can change this picture, the absence of a pole persists for the particle content of the standard model in four spacetime dimensions.

  6. Exploring RNA polymerase regulation by NMR spectroscopy

    PubMed Central

    Drögemüller, Johanna; Strauß, Martin; Schweimer, Kristian; Wöhrl, Birgitta M.; Knauer, Stefan H.; Rösch, Paul

    2015-01-01

    RNA synthesis is a central process in all organisms, with RNA polymerase (RNAP) as the key enzyme. Multisubunit RNAPs are evolutionary related and are tightly regulated by a multitude of transcription factors. Although Escherichia coli RNAP has been studied extensively, only little information is available about its dynamics and transient interactions. This information, however, are crucial for the complete understanding of transcription regulation in atomic detail. To study RNAP by NMR spectroscopy we developed a highly efficient procedure for the assembly of active RNAP from separately expressed subunits that allows specific labeling of the individual constituents. We recorded [1H,13C] correlation spectra of isoleucine, leucine, and valine methyl groups of complete RNAP and the separately labeled β’ subunit within reconstituted RNAP. We further produced all RNAP subunits individually, established experiments to determine which RNAP subunit a certain regulator binds to, and identified the β subunit to bind NusE. PMID:26043358

  7. Binding of the growth factor glycyl-L-histidyl-L-lysine by heparin.

    PubMed

    Rabenstein, D L; Robert, J M; Hari, S

    1995-12-01

    Evidence is presented that the growth factor glycyl-histidyl-lysine (GHK) binds to heparin, and the interaction has been characterized by [1H]NMR spectroscopy. 1H chemical shifts indicate that GHK interacts with both the carboxylic acid and the carboxylate forms of heparin. The chemical shift data are consistent with a weak delocalized binding of the triprotonated (ImH+, GlyNH3+, LysNH3+) form of GHK by the carboxylic acid form of heparin. As the pD is increased and the carboxylic acid groups are titrated, chemical shift data indicate that ammonium groups of GHK are hydrogen bonded to heparin carboxylate groups, while the histidyl imidazolium ring occupies the imidazolium-binding site of heparin. Evidence for site-specific binding includes displacement of chemical shift titration curves for heparin to lower pD, increased shielding of specific heparin protons by the imidazolium ring current and displacement of chemical shift titration curves for GHK to higher pD. Specific binding constants were determined for binding of the (ImH+, GlyNH3+), LysNH3+) forms of GHK by the carboxylate form of heparin from chemical shift vs. pD titration data. PMID:7498545

  8. Transient protein-protein interactions visualized by solution NMR.

    PubMed

    Liu, Zhu; Gong, Zhou; Dong, Xu; Tang, Chun

    2016-01-01

    Proteins interact with each other to establish their identities in cell. The affinities for the interactions span more than ten orders of magnitude, and KD values in μM-mM regimen are considered transient and are important in cell signaling. Solution NMR including diamagnetic and paramagnetic techniques has enabled atomic-resolution depictions of transient protein-protein interactions. Diamagnetic NMR allows characterization of protein complexes with KD values up to several mM, whereas ultraweak and fleeting complexes can be modeled with the use of paramagnetic NMR especially paramagnetic relaxation enhancement (PRE). When tackling ever-larger protein complexes, PRE can be particularly useful in providing long-range intermolecular distance restraints. As NMR measurements are averaged over the ensemble of complex structures, structural information for dynamic protein-protein interactions besides the stereospecific one can often be extracted. Herein the protein interaction dynamics are exemplified by encounter complexes, alternative binding modes, and coupled binding/folding of intrinsically disordered proteins. Further integration of NMR with other biophysical techniques should allow better visualization of transient protein-protein interactions. In particular, single-molecule data may facilitate the interpretation of ensemble-averaged NMR data. Though same structures of proteins and protein complexes were found in cell as in diluted solution, we anticipate that the dynamics of transient protein protein-protein interactions be different, which awaits awaits exploration by NMR. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. This article is part of a Special Issue entitled: Physiological Enzymology and Protein Functions. PMID:25896389

  9. Conformational analysis of small molecules: NMR and quantum mechanics calculations.

    PubMed

    Tormena, Cláudio F

    2016-08-01

    This review deals with conformational analysis in small organic molecules, and describes the stereoelectronic interactions responsible for conformational stability. Conformational analysis is usually performed using NMR spectroscopy through measurement of coupling constants at room or low temperature in different solvents to determine the populations of conformers in solution. Quantum mechanical calculations are used to address the interactions responsible for conformer stability. The conformational analysis of a large number of small molecules is described, using coupling constant measurements in different solvents and at low temperature, as well as recent applications of through-space and through-hydrogen bond coupling constants JFH as tools for the conformational analysis of fluorinated molecules. Besides NMR parameters, stereoelectronic interactions such as conjugative, hyperconjugative, steric and intramolecular hydrogen bond interactions involved in conformational preferences are discussed. PMID:27573182

  10. Varying constants quantum cosmology

    SciTech Connect

    Leszczyńska, Katarzyna; Balcerzak, Adam; Dabrowski, Mariusz P. E-mail: abalcerz@wmf.univ.szczecin.pl

    2015-02-01

    We discuss minisuperspace models within the framework of varying physical constants theories including Λ-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansätze for the variability of constants: c(a) = c{sub 0} a{sup n} and G(a)=G{sub 0} a{sup q}. We find that most of the varying c and G minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe ''from nothing'' (a=0) to a Friedmann geometry with the scale factor a{sub t} is large for growing c models and is strongly suppressed for diminishing c models. As for G varying, the probability of tunneling is large for G diminishing, while it is small for G increasing. In general, both varying c and G change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.

  11. Connecting Fundamental Constants

    SciTech Connect

    Di Mario, D.

    2008-05-29

    A model for a black hole electron is built from three basic constants only: h, c and G. The result is a description of the electron with its mass and charge. The nature of this black hole seems to fit the properties of the Planck particle and new relationships among basic constants are possible. The time dilation factor in a black hole associated with a variable gravitational field would appear to us as a charge; on the other hand the Planck time is acting as a time gap drastically limiting what we are able to measure and its dimension will appear in some quantities. This is why the Planck time is numerically very close to the gravitational/electric force ratio in an electron: its difference, disregarding a {pi}{radical}(2) factor, is only 0.2%. This is not a coincidence, it is always the same particle and the small difference is between a rotating and a non-rotating particle. The determination of its rotational speed yields accurate numbers for many quantities, including the fine structure constant and the electron magnetic moment.

  12. The Hubble Constant

    NASA Astrophysics Data System (ADS)

    Jackson, Neal

    2015-09-01

    I review the current state of determinations of the Hubble constant, which gives the length scale of the Universe by relating the expansion velocity of objects to their distance. There are two broad categories of measurements. The first uses individual astrophysical objects which have some property that allows their intrinsic luminosity or size to be determined, or allows the determination of their distance by geometric means. The second category comprises the use of all-sky cosmic microwave background, or correlations between large samples of galaxies, to determine information about the geometry of the Universe and hence the Hubble constant, typically in a combination with other cosmological parameters. Many, but not all, object-based measurements give H_0 values of around 72-74 km s^-1 Mpc^-1, with typical errors of 2-3 km s^-1 Mpc^-1. This is in mild discrepancy with CMB-based measurements, in particular those from the Planck satellite, which give values of 67-68 km s^-1 Mpc^-1 and typical errors of 1-2 km s^-1 Mpc^-1. The size of the remaining systematics indicate that accuracy rather than precision is the remaining problem in a good determination of the Hubble constant. Whether a discrepancy exists, and whether new physics is needed to resolve it, depends on details of the systematics of the object-based methods, and also on the assumptions about other cosmological parameters and which datasets are combined in the case of the all-sky methods.

  13. Structural biology of the sequestration and transport of heavy metal toxins: NMR structure determination of proteins containing the -Cys-X-Y-Cys-metal binding motifs. 1997 annual progress report

    SciTech Connect

    Opella, S.J.

    1997-01-01

    'There are enormous amounts of heavy metals in the environment, much of it in the form of organometallic compounds resulting from various types of industrial and military waste. Nearly all of these metals and compounds are highly toxic to biological organisms including humans. However, some bacteria thrive in the presence of high concentrations of heavy metal toxins because they possess efficient mechanisms for the detoxification of these metals and compounds. Heavy metals appear to be universally toxic because of their non-selective chemistry, for example Hg(II) reacts with essentially all exposed sulfhydryl groups on proteins, thus, it may seem surprising that any organism at all can survive these chemical insults much less those that grow in a toxic milieu. However, the prebiotic environment was undoubtedly heavily polluted with heavy metals from geological processes, and the most primitive organisms simply had to evolve mechanisms for dealing with them if they were going to be able to utilize Cys, His, and the other amino acids that contribute to metal binding sites in their proteins. Genes associated with bacterial resistance to Ag, AsO{sub 2}, AsO{sub 4}, Bi, Cd, Co, CrO{sub 4}, Cu, Hg, iNi, TeO{sub 3}, TI, Pb, Zn, and other metals of environmental concern have been described (Silver, 1992; Silver and Walderhaug, 1995).'

  14. NMR studies of the R2 repeat and related peptide fragments of the DNA binding domain of c-Myb. New light on the structure and folding of R2.

    NASA Astrophysics Data System (ADS)

    Ségalas, I.; Desjardins, S.; Oulyadi, H.; Prigent, Y.; Tribouillard, S.; Bernardi, E.; Schoofs, A. R.; Davoust1, D.; Toma, F.

    1999-10-01

    The solution structure of the R2 repeat of the DNA binding domain of the protooncogene c-Myb contains a N-terminal structural motif comprising two antiparallel helices. The motif is stabilized by interactions involving conserved residues. The recognition region in C-terminal position is flexible. This structure differs from that of R2 of another c-Myb protein. La structure en solution de la répétition R2 du domaine de liaison à l'ADN du protooncogène c-Myb possède un motif à deux hélices antiparallèles dans la moitié N-terminale, stabilisé par des interactions entre résidus conservés. La région de reconnaissance à l'ADN en position C-terminale est flexible. Cette structure diffère de celle montrée pour la répétition R2 d'une autre protéine c-Myb.

  15. Design and applications of an in situ electrochemical NMR cell

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaocan; Zwanziger, Josef W.

    2011-01-01

    A device using a three-electrode electrochemical cell (referred to as an ECNMR cell) was successfully constructed that could be used in a standard 5 mm NMR probe to acquire high-resolution NMR spectra while the working electrode was held at a constant electrical potential. The working electrode was a 20 nm thick gold film thermally coated on the outside of an inner 3 mm glass tube. An underlayer consisting of (3-mercaptopropyl)trimethoxy-silane was coated on the glass surface in order to improve its adhesion to gold. Tests showed prolonged life of the gold film. Details of the design and construction of the ECNMR cell are described. The ECNMR cell could be routinely used in a multi-user service high-resolution NMR instrument under oxygen-free conditions in both aqueous and non-aqueous solvents. Different approaches were applied to suppress the noise transmitted between the potentiostat and the NMR spectrometer. These approaches were shown to be effective in reducing background noise in the NMR spectra. The electrochemical and NMR performance of the ECNMR cell is presented. The reduction of 1,4-benzoquinone in both aqueous and non-aqueous solvents was used for testing. The evolution of the in situ ECNMR spectra with time demonstrated that use of the ECNMR cell was feasible. Studies of caffeic acid and 9-chloroanthracene using this ECNMR cell were undertaken to explore its applications, such as monitoring reactions and studying their reaction mechanisms.

  16. Interaction Between Drugs and Biomedical Materials i: Binding Position of Bezafibrate to Human Serum Alubmin

    NASA Astrophysics Data System (ADS)

    Tanaka, Masami; Minagawa, Keiji; Berber, Mohamed R.; Hafez, Inas H.; Mori, Takeshi

    The interaction between bezafibrate (BZF) and human serum albumin (HSA) was investigated by equilibrium dialysis. Since the binding constant of BZF to HSA was independent of ionic strength and decreased with the addition of fatty acid, the interaction between BZF and HSA was considered to be due to hydrophobic mechanism. Chemical shifts in 1H-NMR spectra of BZF were independent of the concentration of BZF and addition of HSA. Spin-lattice relaxation time (T1) and spin-spin relaxation time (T2) of respective protons of BZF were independent of the concentration, but depended on the concentration of HSA added. The binding position of BZF to HSA was considered to involve the hydrophobic aromatic moiety of BZF from the ratio of spin-spin relaxation rates (1/T2) of BZF bound to HSA and free BZF.

  17. Uncovering the Thermodynamics of Monomer Binding for RNA Replication

    PubMed Central

    2015-01-01

    The nonenzymatic replication of primordial RNA is thought to have been a critical step in the origin of life. However, despite decades of effort, the poor rate and fidelity of model template copying reactions have thus far prevented an experimental demonstration of nonenzymatic RNA replication. The overall rate and fidelity of template copying depend, in part, on the affinity of free ribonucleotides to the RNA primer–template complex. We have now used 1H NMR spectroscopy to directly measure the thermodynamic association constants, Kas, of the standard ribonucleotide monophosphates (rNMPs) to native RNA primer–template complexes. The binding affinities of rNMPs to duplexes with a complementary single-nucleotide overhang follow the order C > G > A > U. Notably, these monomers bind more strongly to RNA primer–template complexes than to the analogous DNA complexes. The relative binding affinities of the rNMPs for complementary RNA primer–template complexes are in good quantitative agreement with the predictions of a nearest-neighbor analysis. With respect to G:U wobble base-pairing, we find that the binding of rGMP to a primer–template complex with a 5′-U overhang is approximately 10-fold weaker than to the complementary 5′-C overhang. We also find that the binding of rGMP is only about 2-fold weaker than the binding of rAMP to 5′-U, consistent with the poor fidelity observed in the nonenzymatic copying of U residues in RNA templates. The accurate Ka measurements for ribonucleotides obtained in this study will be useful for designing higher fidelity, more effective RNA replication systems. PMID:25901790

  18. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein

    PubMed Central

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisné, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55Gag, reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNALys3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  19. Quantitative analysis of protein-ligand interactions by NMR.

    PubMed

    Furukawa, Ayako; Konuma, Tsuyoshi; Yanaka, Saeko; Sugase, Kenji

    2016-08-01

    Protein-ligand interactions have been commonly studied through static structures of the protein-ligand complex. Recently, however, there has been increasing interest in investigating the dynamics of protein-ligand interactions both for fundamental understanding of the underlying mechanisms and for drug development. NMR is a versatile and powerful tool, especially because it provides site-specific quantitative information. NMR has widely been used to determine the dissociation constant (KD), in particular, for relatively weak interactions. The simplest NMR method is a chemical-shift titration experiment, in which the chemical-shift changes of a protein in response to ligand titration are measured. There are other quantitative NMR methods, but they mostly apply only to interactions in the fast-exchange regime. These methods derive the dissociation constant from population-averaged NMR quantities of the free and bound states of a protein or ligand. In contrast, the recent advent of new relaxation-based experiments, including R2 relaxation dispersion and ZZ-exchange, has enabled us to obtain kinetic information on protein-ligand interactions in the intermediate- and slow-exchange regimes. Based on R2 dispersion or ZZ-exchange, methods that can determine the association rate, kon, dissociation rate, koff, and KD have been developed. In these approaches, R2 dispersion or ZZ-exchange curves are measured for multiple samples with different protein and/or ligand concentration ratios, and the relaxation data are fitted to theoretical kinetic models. It is critical to choose an appropriate kinetic model, such as the two- or three-state exchange model, to derive the correct kinetic information. The R2 dispersion and ZZ-exchange methods are suitable for the analysis of protein-ligand interactions with a micromolar or sub-micromolar dissociation constant but not for very weak interactions, which are typical in very fast exchange. This contrasts with the NMR methods that are used

  20. Some specific features of the NMR study of fluid flows

    NASA Astrophysics Data System (ADS)

    Davydov, V. V.

    2016-07-01

    Some specific features of studying fluid flows with a NMR spectrometer are considered. The consideration of these features in the NMR spectrometer design makes it possible to determine the relative concentrations of paramagnetic ions and measure the longitudinal and transverse relaxation times ( T 1 and T 2, respectively) in fluid flows with an error no larger than 0.5%. This approach allows one to completely avoid errors in determining the state of a fluid from measured relaxation constants T 1 and T 2, which is especially urgent when working with medical suspensions and biological solutions. The results of an experimental study of fluid flows are presented.

  1. Summary of Miniature NMR Development

    SciTech Connect

    Friedman, Gennady; Feinerman, Alan

    2000-12-31

    The effort in this project has been in 3 distinct directions: (1) First, they focused on development of miniature microfabricated micro-coil NMR detectors with maximum Signal-to-Noise (SNR) ratio. (2) Secondly, they focused on design of miniature micro-coil NMR detectors that have minimal effect on the NMR spectrum distortions. (3) Lastly they focused on the development of a permanent magnet capable of generating fields on the order of 1 Tesla with better than 10 ppm uniformity.

  2. The surface-exposed tyrosine residue Tyr83 of pea plastocyanin is involved in both binding and electron transfer reactions with cytochrome f.

    PubMed Central

    He, S; Modi, S; Bendall, D S; Gray, J C

    1991-01-01

    Site-directed mutants of the pea plastocyanin gene in which the codon for the surface-exposed Tyr83 has been changed to codons for Phe83 and Leu83 have been expressed in transgenic tobacco plants. The mutant proteins have been purified to homogeneity and their conformations shown not to differ significantly from the wild-type plastocyanin by 1H-NMR and CD. Overall rate constants for electron transfer (k2) from cytochrome f to plastocyanin have been measured by stopped-flow spectrophotometry and rate constants for binding (ka) and association constants (KA) have been measured from the enhanced Soret absorption of cytochrome f on binding plastocyanin. These measurements allow the calculation of the intrinsic rate of electron transfer in the binary complex. An 8-fold decrease in the overall rate of electron transfer to the Phe83 mutant is due entirely to a decreased association constant for cytochrome f, whereas the 40-fold decrease in the overall rate of electron transfer to the Leu83 mutant is due to weaker binding and a lower intrinsic rate of electron transfer. This indicates that Tyr83 is involved in binding to cytochrome f and forms part of the main route of electron transfer. Images PMID:1756713

  3. Studies on the Chitin Binding Property of Novel Cysteine-Rich Peptides from Alternanthera sessilis.

    PubMed

    Kini, Shruthi G; Nguyen, Phuong Q T; Weissbach, Sophie; Mallagaray, Alvaro; Shin, Joon; Yoon, Ho Sup; Tam, James P

    2015-11-01

    Hevein-like peptides make up a family of cysteine-rich peptides (CRPs) and play a role in plants in their defense against insects and fungal pathogens. In this study, we report the isolation and characterization of six hevein-like peptides, aSG1-G3 and aSR1-R3, collectively named altides from green and red varieties of Alternanthera sessilis, a perennial herb belonging to the Amaranthaceae family. Proteomic analysis of altides revealed they contain six cysteines (6C), seven glycines, four prolines, and a conserved chitin-binding domain (SXYGY/SXFGY). Thus far, only four 6C-hevein-like peptides have been isolated and characterized; hence, our study expands the existing library of these peptides. Nuclear magnetic resonance (NMR) study of altides showed its three disulfide bonds were arranged in a cystine knot motif. As a consequence of this disulfide arrangement, they are stable against thermal and enzymatic degradation. Gene cloning studies revealed altides contain a three-domain precursor with an endoplasmic reticulum signal peptide followed by a mature CRP domain and a short C-terminal tail. This indicates that the biosynthesis of altides is through the secretory pathway. (1)H NMR titration experiments showed that the 29-30-amino acid altides bind to chitin oligomers with dissociation constants in the micromolar range. Aromatic residues in the chitin-binding domain of altides were involved in the binding interaction. To the best of our knowledge, aSR1 is the smallest hevein-like peptide with a dissociation constant toward chitotriose comparable to those of hevein and other hevein-like peptides. Together, our study expands the existing library of 6C-hevein-like peptides and provides insights into their structure, biosynthesis, and interaction with chitin oligosaccharides. PMID:26467613

  4. A tricatecholic receptor for carbohydrate recognition: synthesis and binding studies.

    PubMed

    Cacciarini, Martina; Cordiano, Elisa; Nativi, Cristina; Roelens, Stefano

    2007-05-11

    A new tripodal receptor bearing three catechol subunits on a benzene platform has been synthesized in four steps from 1,3,5-triethylbenzene and pyrogallol. The binding ability of the tricatecholic receptor was investigated toward several monosaccharides in CDCl3, where multiple equilibria were detected, and compared to that of a previously reported trisureidic receptor of analogous structure. Association constants were measured by 1H NMR titrations, and the corresponding affinities were assessed through the BC50 parameter, a binding descriptor univocally defining the affinity of a host for a guest in multi-equilibrium systems. Results show that the tripodal catecholic receptor binds the octyl glycosides with affinities ranging from 0.87 to 5.2 mM and with a 6-fold selectivity factor for the alpha-mannoside over the beta-glucoside. Although the affinity for glycosides was not appreciably improved with respect to the ureidic receptor, a significant change in selectivity was obtained by the H-bonding group replacement. PMID:17444686

  5. Electronic Structure, NMR, Spin-Spin Coupling, and Noncovalent Interactions in Aromatic Amino Acid Based Ionic Liquids.

    PubMed

    Rao, Soniya S; Gejji, Shridhar P

    2016-07-21

    Noncovalent interactions accompanying phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr) amino acids based ionic liquids (AAILs) composed of 1-methyl-3-butyl-imidazole and its methyl-substituted derivative as cations have been analyzed employing the dispersion corrected density functional theory. It has been shown that cation-anion binding in these bioionic ILs is primarily facilitated through hydrogen bonding in addition to lp---π and CH---π interactions those arising from aromatic moieties which can be probed through (1)H and (13)C NMR spectra calculated from the gauge independent atomic orbital method. Characteristic NMR spin-spin coupling constants across hydrogen bonds of ion pair structures viz., Fermi contact, spin-orbit and spin-dipole terms show strong dependence on mutual orientation of cation with the amino acid anion. The spin-spin coupling mechanism transmits spin polarization via electric field effect originating from lp---π interactions whereas the electron delocalization from lone pair on the carbonyl oxygen to antibonding C-H orbital is facilitated by hydrogen bonding. It has been demonstrated that indirect spin-spin coupling constants across the hydrogen bonds correlate linearly with hydrogen bond distances. The binding energies and dissected nucleus independent chemical shifts (NICS) document mutual reduction of aromaticity of hydrogen bonded ion pairs consequent to localization of π-character. Moreover the nature and type of such noncovalent interactions governing the in-plane and out-of-plane NICS components provide a measure of diatropic and paratropic currents for the aromatic rings of varying size in AAILs. Besides the direction of frequency shifts of characteristic C═O and NH stretching vibrations in the calculated vibrational spectra has been rationalized. PMID:27336283

  6. NMR Studies of Enzyme Structure and Mechanism

    NASA Astrophysics Data System (ADS)

    Mildvan, Albert

    2006-03-01

    At least three NMR methodologies pioneered by Al Redfield, have greatly benefited enzymology: (1) the suppression of strong water signals without pre-saturation; (2) sequence specific NH/ND exchange; and (3) dynamic studies of mobile loops of proteins. Water suppression has enabled us to identify unusually short, strong H-bonds at the active sites of five enzymes (three isomerases and two esterases), and to measure their lengths from both the chemical shifts and D/H fractionation factors of the deshielded protons involved (J. Mol. Struct. 615, 163 (2002)). Backbone NH exchange studies were used to detect regions of an NTP pyrophosphohydrolase in which NH groups became selectively protected against exchange on Mg(2+) binding, and further protected on product (NMP) binding, thus locating binding sites as well as conformationally linked remote sites (Biochemistry 42, 10140 (2003)). Dynamic studies were used to elucidate the frequency of motion of a flexible loop of GDP-mannose hydrolase (66,000/sec) containing the catalytic base His-124, from exchange broadening of the side chain NH signals of His-124 in the free enzyme. The binding of Mg(2+) and GDP-mannose lock His-124 in position to deprotonate the entering water and complete the reaction.

  7. The Determination of Protonation Constants of Peptidomimetic Cyclophanes in Binary Methanol-Water Mixtures

    PubMed Central

    Tomczyk, Danuta; Andrijewski, Grzegorz

    2016-01-01

    The protonation constants of new group of peptidomimetic cyclophanes with valine or phenylalanine moieties incorporated into the macrocyclic skeleton as well as their linear analogues were determined by potentiometric measurements in solutions of methanol-water mixtures at 25°C and constant ionic strength. The influence of cavity size, location of protonation sites, and attached substituents of the macrocyclic ligands on the protonation constants were discussed on the basis of potentiometric measurement as well as H1-NMR results. PMID:27516918

  8. The Determination of Protonation Constants of Peptidomimetic Cyclophanes in Binary Methanol-Water Mixtures.

    PubMed

    Seliger, Piotr; Tomczyk, Danuta; Andrijewski, Grzegorz; Tomal, Ewa

    2016-01-01

    The protonation constants of new group of peptidomimetic cyclophanes with valine or phenylalanine moieties incorporated into the macrocyclic skeleton as well as their linear analogues were determined by potentiometric measurements in solutions of methanol-water mixtures at 25°C and constant ionic strength. The influence of cavity size, location of protonation sites, and attached substituents of the macrocyclic ligands on the protonation constants were discussed on the basis of potentiometric measurement as well as H(1)-NMR results. PMID:27516918

  9. NMR investigation of phenanthridine dyes self-association in aqueous solution. Structural and thermodynamical analysis

    NASA Astrophysics Data System (ADS)

    Veselkov, A. N.; Lantushenko, A. O.

    2002-12-01

    Phenanthridine dyes have pronounced mutagenic activity due to their intercalative binding with double-helical DNA. Although the structural significance in the interacalation process of the phenanthridinium chromophore is well established, the role ofits side chains is still under discussion. The comparative analysis of complexation with DNA of phenanthridinium dyes - ethidium bormide (EB) and its two photosensitive analogues: 3-amino-8-azido-5-ethyl-6-phenyl phenanthridinium bormide (EMB) and 3,80diazido-5-ethyl-6-phenyl phenanthridinium chloride (EDC) has shown that they have different affinities of binding with nucleotide sequences in aqueous salt solution. In order to test the role of azido-groups in side chains of EB chromophore on the drug-DNA affinity, the self-association of EB and its two azido-analogues have been studied in this work by one- and two-dimensional 1H-NMR spectrosocpy. Self-association of the aromatic drug molecuels has been studied using concentration and temperature dependences of proton chemical shifts. The equilibrium reaction constants, cooperativity parameters, the limiting values of proton chemical shifts and thermodynamical parameters-enthalpy and entropy of drug self-association have been determined for all the molecular system studied.

  10. Study of the New Pulse NMR System for the Jefferson Lab Helium-3 Polarized Target

    NASA Astrophysics Data System (ADS)

    Newton, Joseph

    2013-10-01

    At Jefferson Lab, a polarized Helium-3 target is used to study the neutron. The Helium-3 target is undergoing an upgrade to improve its polarization. Measuring it involved a new technique known as pulse Nuclear Magnetic Resonance (NMR). The focus of this project was to find noise in the Pulse NMR signal and to compute the calibration constant to make the polarization easier to deduce. Pulse NMR calibration tests were performed by doing AFP NMR measurements followed by Pulse NMR measurements while varying certain conditions. These included the convection heater, the operation of the oven, and the operation of the laser. Data analysis was done by fitting the pulse NMR signal from the oscilloscope and utilizing the Fourier Transform. Noise was analyzed in the fitting and the Fourier Transform. The calibration constants were affected by the convection heater. The values deviated between the pumping and target chambers of the cell when there was no convection but the values were closer when convection was induced. As far as the noise, it was found to be significant. These results will enable the calculation of the polarization with pulse NMR. In addition, the signal analysis provided insight into the influence of background noise on the pulse NMR measurement. This research was done though the SULI program of the Department of Energy.

  11. UV-Vis, fluorescence and NMR spectroscopic investigations on inclusion properties of a designed tetrahomocalix[8]arene with fullerenes C 60 and C 70 in solution

    NASA Astrophysics Data System (ADS)

    Halder, Amal; Bhatt, Suchitra; Nayak, Sandip K.; Chattopadhyay, Subrata; Bhattacharya, Sumanta

    2011-12-01

    The present article reports the spectroscopic investigations on non-covalent interaction of fullerenes C 60 and C 70 with a macrocyclic receptor molecule, namely, 1,3,5,7-tetrahomo- p- tert-butylcalix[8]arene ( 1) in toluene. Jobs method of continuous variation reveals 1:1 stoichiometry for the fullerene complexes of 1. The most fascinating feature of the present study is that 1 binds selectively C 60 compared to C 70 as obtained from binding constant ( K) data of C 60- 1 ( KC60- 1) and C 70- 1 ( KC70- 1) complexes which are enumerated to be 265,000 dm 3 mol -1 and 63,430 dm 3 mol -1, respectively, and selectivity in binding ( KC60- 1/K C70- 1) is estimated to be 4.18 as obtained from UV-Vis study. Steady state fluorescence studies reveal quenching of fluorescence of 1 in presence of fullerenes and the K value of the C 60- 1 and C 70- 1 complexes are estimated to be 80,760 and 68,780 dm 3 mol -1, respectively, with selectivity in binding (K C60- 1/K C70- 1) ˜1.18. 1H NMR analysis provides very good support in favor of strong binding between C 60 and 1. The high value of K value for C 60- 1 complex indicates that 1 forms an inclusion complex with C 60.

  12. THz Dynamic Nuclear Polarization NMR

    PubMed Central

    Nanni, Emilio A.; Barnes, Alexander B.; Griffin, Robert G.; Temkin, Richard J.

    2013-01-01

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140–600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  13. THz Dynamic Nuclear Polarization NMR.

    PubMed

    Nanni, Emilio A; Barnes, Alexander B; Griffin, Robert G; Temkin, Richard J

    2011-08-29

    Dynamic nuclear polarization (DNP) increases the sensitivity of nuclear magnetic resonance (NMR) spectroscopy by using high frequency microwaves to transfer the polarization of the electrons to the nuclear spins. The enhancement in NMR sensitivity can amount to a factor of well above 100, enabling faster data acquisition and greatly improved NMR measurements. With the increasing magnetic fields (up to 23 T) used in NMR research, the required frequency for DNP falls into the THz band (140-600 GHz). Gyrotrons have been developed to meet the demanding specifications for DNP NMR, including power levels of tens of watts; frequency stability of a few megahertz; and power stability of 1% over runs that last for several days to weeks. Continuous gyrotron frequency tuning of over 1 GHz has also been demonstrated. The complete DNP NMR system must include a low loss transmission line; an optimized antenna; and a holder for efficient coupling of the THz radiation to the sample. This paper describes the DNP NMR process and illustrates the THz systems needed for this demanding spectroscopic application. THz DNP NMR is a rapidly developing, exciting area of THz science and technology. PMID:24639915

  14. The Hubble constant.

    PubMed

    Tully, R B

    1993-06-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  15. When constants are important

    SciTech Connect

    Beiu, V.

    1997-04-01

    In this paper the authors discuss several complexity aspects pertaining to neural networks, commonly known as the curse of dimensionality. The focus will be on: (1) size complexity and depth-size tradeoffs; (2) complexity of learning; and (3) precision and limited interconnectivity. Results have been obtained for each of these problems when dealt with separately, but few things are known as to the links among them. They start by presenting known results and try to establish connections between them. These show that they are facing very difficult problems--exponential growth in either space (i.e. precision and size) and/or time (i.e., learning and depth)--when resorting to neural networks for solving general problems. The paper will present a solution for lowering some constants, by playing on the depth-size tradeoff.

  16. Unitaxial constant velocity microactuator

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.

  17. A Constant Pressure Bomb

    NASA Technical Reports Server (NTRS)

    Stevens, F W

    1924-01-01

    This report describes a new optical method of unusual simplicity and of good accuracy suitable to study the kinetics of gaseous reactions. The device is the complement of the spherical bomb of constant volume, and extends the applicability of the relationship, pv=rt for gaseous equilibrium conditions, to the use of both factors p and v. The method substitutes for the mechanical complications of a manometer placed at some distance from the seat of reaction the possibility of allowing the radiant effects of reaction to record themselves directly upon a sensitive film. It is possible the device may be of use in the study of the photoelectric effects of radiation. The method makes possible a greater precision in the measurement of normal flame velocities than was previously possible. An approximate analysis shows that the increase of pressure and density ahead of the flame is negligible until the velocity of the flame approaches that of sound.

  18. The Hubble constant.

    PubMed Central

    Tully, R B

    1993-01-01

    Five methods of estimating distances have demonstrated internal reproducibility at the level of 5-20% rms accuracy. The best of these are the cepheid (and RR Lyrae), planetary nebulae, and surface-brightness fluctuation techniques. Luminosity-line width and Dn-sigma methods are less accurate for an individual case but can be applied to large numbers of galaxies. The agreement is excellent between these five procedures. It is determined that Hubble constant H0 = 90 +/- 10 km.s-1.Mpc-1 [1 parsec (pc) = 3.09 x 10(16) m]. It is difficult to reconcile this value with the preferred world model even in the low-density case. The standard model with Omega = 1 may be excluded unless there is something totally misunderstood about the foundation of the distance scale or the ages of stars. PMID:11607391

  19. NMR study in sodium-hydrogen-C{sub 60} superconductor

    SciTech Connect

    Ogata, H.; Miyajima, S.; Imaeda, K.; Inokuchi, H.

    1998-12-31

    {sup 23}Na and {sup 1}H NMR studies have been carried out for a Na{sub x}H{sub y}C{sub 60} superconductor. The peak position of the {sup 23}Na NMR spectrum exhibits discontinuous upfield shift of 30 ppm at about 250 K, indicates a first order phase transition. From the line shape of the {sup 23}Na spectrum obtained at 7 K, the quadrupole coupling constant tensor is evaluated to be {vert_bar}e{sup 2}Qq/h{vert_bar} = 3.7 MHz with the asymmetry parameter {eta} = 0.95. The {sup 1}H NMR spectrum suggests an anionic hydrogen state with weakly delocalized nature.

  20. Two-dimensional NMR spectroscopy

    SciTech Connect

    Croasmun, W.R.; Carlson, R.M.K.

    1987-01-01

    Written for chemists and biochemists who are not NMR spectroscopists, but who wish to use the new techniques of two-dimensional NMR spectroscopy, this book brings together for the first time much of the practical and experimental data needed. It also serves as information source for industrial, academic, and graduate student researchers who already use NMR spectroscopy, but not yet in two dimensions. The authors describe the use of 2-D NMR in a wide variety of chemical and biochemical fields, among them peptides, steroids, oligo- and poly-saccharides, nucleic acids, natural products (including terpenoids, alkaloids, and coal-derived heterocyclics), and organic synthetic intermediates. They consider throughout the book both the advantages and limitations of using 2-D NMR.

  1. Sensitivity of nonuniform sampling NMR.

    PubMed

    Palmer, Melissa R; Suiter, Christopher L; Henry, Geneive E; Rovnyak, James; Hoch, Jeffrey C; Polenova, Tatyana; Rovnyak, David

    2015-06-01

    Many information-rich multidimensional experiments in nuclear magnetic resonance spectroscopy can benefit from a signal-to-noise ratio (SNR) enhancement of up to about 2-fold if a decaying signal in an indirect dimension is sampled with nonconsecutive increments, termed nonuniform sampling (NUS). This work provides formal theoretical results and applications to resolve major questions about the scope of the NUS enhancement. First, we introduce the NUS Sensitivity Theorem in which any decreasing sampling density applied to any exponentially decaying signal always results in higher sensitivity (SNR per square root of measurement time) than uniform sampling (US). Several cases will illustrate this theorem and show that even conservative applications of NUS improve sensitivity by useful amounts. Next, we turn to a serious limitation of uniform sampling: the SNR by US decreases for extending evolution times, and thus total experimental times, beyond 1.26T2 (T2 = signal decay constant). Thus, SNR and resolution cannot be simultaneously improved by extending US beyond 1.26T2. We find that NUS can eliminate this constraint, and we introduce the matched NUS SNR Theorem: an exponential sampling density matched to the signal decay always improves the SNR with additional evolution time. Though proved for a specific case, broader classes of NUS densities also improve SNR with evolution time. Applications of these theoretical results are given for a soluble plant natural product and a solid tripeptide (u-(13)C,(15)N-MLF). These formal results clearly demonstrate the inadequacies of applying US to decaying signals in indirect nD-NMR dimensions, supporting a broader adoption of NUS. PMID:25901905

  2. Developing SABRE as an analytical tool in NMR

    NASA Astrophysics Data System (ADS)

    Lloyd, Lyrelle Stacey

    Work presented in this thesis centres around the application of the new hyperpolarisation technique, SABRE, within nuclear magnetic resonance spectroscopy, focusing on optimisation of the technique to characterise small organic molecules. While pyridine was employed as a model substrate, studies on a range of molecules are investigated including substituted pyridines, quinolines, thiazoles and indoles are detailed. Initial investigations explored how the properties of the SABRE catalyst effect the extent of polarisation transfer exhibited. The most important of these properties proved to be the rate constants for loss of pyridine and hydrides as these define the contact time of pyridine with the parahydrogen derived hydride ligands in the metal template. The effect of changing the temperature, solvent or concentration of substrate or catalyst are rationalised. For instance, the catalyst ICy(a) exhibits relatively slow ligand exchange rates and increasing the temperature during hyperpolarisation increases the observed signal enhancements. These studies have revealed a second polarisation transfer template can be used with SABRE in which two substrate molecules are bound. This allows the possibility of investigation of larger substrates which might otherwise be too sterically encumbered to bind. Another significant advance relates to the first demonstration that SABRE can be used in conjunction with an automated system designed with Bruker allowing the acquisition of scan averaged, phase cycled and traditional 2D spectra. The system also allowed investigations into the effect of the polarisation transfer field and application of that knowledge to collect single-scan 13C data for characterisation. The successful acquisition of 1H NOESY, 1H-1H COSY, 1H-13C 2D and ultrafast 1H-1H COSY NMR sequences is detailed for a 10 mM concentration sample, with 1H data collected for a 1 mM sample. A range of studies which aim to demonstrate the applicability of SABRE to the

  3. Using NMR to Develop New Allosteric and Allo-Network Drugs.

    PubMed

    Smith, Robert E; Tran, Kevin; Richards, Kristy M; Luo, Rensheng

    2015-01-01

    NMR is becoming an important tool for developing new allosteric and allo-network drugs that bind to allosteric sites on enzymes, partially inhibiting them and causing fewer side effects than drugs already developed that target active sites. This is based on systems thinking, in which active enzymes and other proteins are known to be flexible and interact with each other. In other words, proteins can exist in an ensemble of different conformations whose populations are tunable. NMR is being used to find the pathways through which the effects of binding of an allosteric ligand propagate. There are NMR screening assays for studying ligand binding. This includes determining the changes in the spin lattice relaxation due to changes in the mobility of atoms involved in the binding, measuring magnetization transfer from the protein to the ligand by saturation difference transfer NMR (STD-NMR) and the transfer of bulk magnetization to the ligand by water-Ligand Observed via Gradient Spectroscopy, or waterLOGSY. The chemical shifts of (1)H and (15)N of some of the atoms in amino acids change when an allosteric ligand binds to a protein. So, (1)H-(15)N heteronuclear single quantum coherence (HSQC) spectra can be used to identify key amino acids and ligand binding sites. The NMR chemical shifts of amino acids affected by ligand binding form a network that can be characterized. Allosteric networks can be identified by chemical shift covariance analysis (CHESCA). This approach has been used recently to study the binding of new molecular entities (NMEs) to potentially therapeutic drug targets. PMID:26577663

  4. Programming A Molecular Relay for Ultrasensitive Biodetection through 129 Xe NMR

    SciTech Connect

    Wang, Yanfei; Roose, Benjamin W.; Philbin, John P.; Doman, Jordan L.; Dmochowski, Ivan J.

    2015-12-21

    We reported a supramolecular strategy for detecting specific proteins in complex media by using hyperpolarized 129Xe NMR. A cucurbit[6]uril (CB[6])-based molecular relay was programmed for three sequential equilibrium conditions by designing a two-faced guest (TFG) that initially binds CB[6] and blocks the CB[6]–Xe interaction. Moreover, the protein analyte recruits the TFG and frees CB[6] for Xe binding. TFGs containing CB[6]- and carbonic anhydrase II (CAII)-binding domains were synthesized in one or two steps. X-ray crystallography confirmed TFG binding to Zn2+ in the deep CAII active-site cleft, which precludes simultaneous CB[6] binding. The molecular relay was reprogrammed to detect avidin by using a different TFG. Finally, Xe binding by CB[6] was detected in buffer and in E. coli cultures expressing CAII through ultrasensitive 129Xe NMR spectroscopy.

  5. NMR structure of a fungal virulence factor reveals structural homology with mammalian saposin B

    PubMed Central

    Beck, Moriah R.; DeKoster, Gregory T.; Cistola, David P.; Goldman, William E.

    2011-01-01

    SUMMARY The fungal protein CBP (calcium binding protein) is a known virulence factor with an unknown virulence mechanism. The protein was identified based on its ability to bind calcium and its prevalence as Histoplasma capsulatum’s most abundant secreted protein. However, CBP has no sequence homology with other calcium binding proteins and contains no known calcium-binding motifs. Here, the NMR structure of CBP reveals a highly intertwined homodimer and represents the first atomic level NMR model of any fungal virulence factor. Each CBP monomer is comprised of four α-helices that adopt the saposin fold, characteristic of a protein family that binds to membranes and lipids. This structural homology suggests that CBP functions as a lipid-binding protein, potentially interacting with host glycolipids in the phagolysosome of host cells. PMID:19298372

  6. Dynamics of cellular retinoic acid binding protein I on multiple time scales with implications for ligand binding.

    PubMed

    Krishnan, V V; Sukumar, M; Gierasch, L M; Cosman, M

    2000-08-01

    Cellular retinoic acid binding protein I (CRABPI) belongs to the family of intracellular lipid binding proteins (iLBPs), all of which bind a hydrophobic ligand within an internal cavity. The structures of several iLBPs reveal minimal structural differences between the apo (ligand-free) and holo (ligand-bound) forms, suggesting that dynamics must play an important role in the ligand recognition and binding processes. Here, a variety of nuclear magnetic resonance (NMR) spectroscopy methods were used to systematically study the dynamics of both apo and holo CRABPI at various time scales. Translational and rotational diffusion constant measurements were used to study the overall motions of the proteins. Both apo and holo forms of CRABPI tend to self-associate at high (1.2 mM) concentrations, while at low concentrations (0.2 mM), they are predominantly monomeric. Rapid amide exchange rate and laboratory frame relaxation rate measurements at two spectrometer field strengths (500 and 600 MHz) were used to probe the internal motions of the individual residues. Several residues in the apo form, notably within the ligand recognition region, exhibit millisecond time scale motions that are significantly arrested in the holo form. In contrast, no significant differences in the high-frequency motions were observed between the two forms. These results provide direct experimental evidence for dynamics-induced ligand recognition and binding at a specifically defined time scale. They also exemplify the importance of dynamics in providing a more comprehensive understanding of how a protein functions. PMID:10924105

  7. Determination of fat content in NMR images of meat

    NASA Astrophysics Data System (ADS)

    Ballerini, Lucia

    2000-12-01

    In this paper we present an application to food science of image processing technique. We describe a method for determining fat content in beef meat. The industry of meat faces a permanent need for improved methods for meat quality evaluation. Researchers want improved techniques to deepen their understanding of meat features. Expectations of consumers for meat quality grow constantly, which induces the necessity of quality control. Recent advances in the area of computer and video processing have created new ways to monitor quality in the food industry. We investigate the use of a new technology to control the quality of food: NMR imaging. The inherent advantages of NMR images are many. Chief among these unprecedented contrasts between the various structures present in meat like muscle, fat, and connective tissue. Moreover, the three-dimensional nature of the NMR method allow us to analyze isolated cross-sectional slices of the meat and to measure the volumetric content of fat, not only the fat visible on the surface. We propose a segmentation algorithm for the detection of fat together with a filtering technique to remove intensity inhomogeneities in NMR images caused by non-uniformities of the magnetic field during acquisition. Measurements have been successfully correlated with chemical analysis and digital photography. Results show that the NMR technique is a promising non-invasive method to determine the fat content in meat.

  8. Theoretical and experimental NMR chemical shifts of norsanguinarine and norchelerythrine

    NASA Astrophysics Data System (ADS)

    Toušek, Jaromír.; Dostál, Jiří; Marek, Radek

    2004-02-01

    Norchelerythrine and norsanguinarine, tertiary benzo[ c]phenanthridine alkaloids, were examined by gradient-selected 2D NMR spectroscopy and the later also by extensive theoretical calculations. 1H, 13C and 15N chemical shifts assignments of the title isoquinoline alkaloids based on NOE and multiple-bond chemical-shift correlation experiments (GSQMBC) are reported. Various methods were used for the NMR chemical shifts calculations. Molecular mechanics (MM3 forcefield), AM1 method and Ab initio methods were used for optimizing the geometry. Chemical shielding constants were computed by density functional theory, GIAO and IGLO approaches were used. Chemical shifts calculated by all methods display good qualitative agreement with experimentally determined values. The best overall agreement was achieved when geometry was optimized by RHF/6-31G** method and chemical shielding constants were calculated by B3LYP/6-311G** method, GIAO approach.

  9. Whole-core analysis by sup 13 C NMR

    SciTech Connect

    Vinegar, H.J.; Tutunjian, P.N. ); Edelstein, W.A.; Roemer, P.B. )

    1991-06-01

    This paper reports on a whole-core nuclear magnetic resonance (NMR) system that was used to obtain natural abundance {sup 13}C spectra. The system enables rapid, nondestructive measurements of bulk volume of movable oil, aliphatic/aromatic ratio, oil viscosity, and organic vs. carbonate carbon. {sup 13}C NMR can be used in cores where the {sup 1}H NMR spectrum is too broad to resolve oil and water resonances separately. A 5 1/4-in. {sup 13}C/{sup 1}H NMR coil was installed on a General Electric (GE) CSI-2T NMR imager/spectrometer. With a 4-in.-OD whole core, good {sup 13}C signal/noise ratio (SNR) is obtained within minutes, while {sup 1}H spectra are obtained in seconds. NMR measurements have been made of the {sup 13}C and {sup 1}H density of crude oils with a wide range of API gravities. For light- and medium-gravity oils, the {sup 13}C and {sup 1}H signal per unit volume is constant within about 3.5%. For heavy crudes, the {sup 13}C and {sup 1}H density measured by NMR is reduced by the shortening of spin-spin relaxation time. {sup 13}C and {sup 1}H NMR spin-lattice relaxation times were measured on a suite of Cannon viscosity standards, crude oils (4 to 60{degrees} API), and alkanes (C{sub 5} through C{sub 16}) with viscosities at 77{degrees}F ranging from 0.5 cp to 2.5 {times} 10{sup 7} cp. The {sup 13}C and {sup 1}H relaxation times show a similar correlation with viscosity from which oil viscosity can be estimated accurately for viscosities up to 100 cp. The {sup 13}C surface relaxation rate for oils on water-wet rocks is very low. Nonproton decoupled {sup 13}C NMR is shown to be insensitive to kerogen; thus, {sup 13}C NMR measures only the movable hydrocarbon content of the cores. In carbonates, the {sup 13}C spectrum also contains a carbonate powder pattern useful in quantifying inorganic carbon and distinguishing organic from carbonate carbon.

  10. Sensitization of a stray-field NMR to vibrations: A potential for MR elastometry with a portable NMR sensor

    NASA Astrophysics Data System (ADS)

    Mastikhin, Igor; Barnhill, Marie

    2014-11-01

    An NMR signal from a sample in a constant stray field of a portable NMR sensor is sensitized to vibrations. The CPMG sequence is synchronized to vibrations so that the constant gradient becomes an "effective" square-wave gradient, leading to the vibration-induced phase accumulation. The integrating nature of the spot measurement, combined with the phase distribution due to a non-uniform gradient and/or a wave field, leads to a destructive interference, the drop in the signal intensity and changes in the echo train shape. Vibrations with amplitudes as small as 140 nm were reliably detected with the permanent gradient of 12.4 T/m. The signal intensity depends on the phase offset between the vibrations and the pulse sequence. This approach opens the way for performing elastometry and micro-rheology measurements with portable NMR devices beyond the walls of a laboratory. Even without synchronization, if a vibration frequency is comparable to 1/2TE of the CPMG sequence, the signal can be severely affected, making it important for potential industrial applications of stray-field NMR.

  11. α-Mangostin Extraction from the Native Mangosteen (Garcinia mangostana L.) and the Binding Mechanisms of α-Mangostin to HSA or TRF.

    PubMed

    Guo, Ming; Wang, Xiaomeng; Lu, Xiaowang; Wang, Hongzheng; Brodelius, Peter E

    2016-01-01

    In order to obtain the biological active compound, α-mangostin, from the traditional native mangosteen (Garcinia mangostana L.), an extraction method for industrial application was explored. A high yield of α-mangostin (5.2%) was obtained by extraction from dried mangosteen pericarps with subsequent purification on macroporous resin HPD-400. The chemical structure of α-mangostin was verified mass spectrometry (MS), nuclear magnetic resonance (1H NMR and 13C NMR), infrared spectroscopy (IR) and UV-Vis spectroscopy. The purity of the obtained α-mangostin was 95.6% as determined by HPLC analysis. The binding of native α-mangostin to human serum albumin (HSA) or transferrin (TRF) was explored by combining spectral experiments with molecular modeling. The results showed that α-mangostin binds to HSA or TRF as static complexes but the binding affinities were different in different systems. The binding constants and thermodynamic parameters were measured by fluorescence spectroscopy and absorbance spectra. The association constant of HSA or TRF binding to α-mangostin is 6.4832×105 L/mol and 1.4652×105 L/mol at 298 K and 7.8619×105 L/mol and 1.1582×105 L/mol at 310 K, respectively. The binding distance, the energy transfer efficiency between α-mangostin and HSA or TRF were also obtained by virtue of the Förster theory of non-radiation energy transfer. The effect of α-mangostin on the HSA or TRF conformation was analyzed by synchronous spectrometry and fluorescence polarization studies. Molecular docking results reveal that the main interaction between α-mangostin and HSA is hydrophobic interactions, while the main interaction between α-mangostin and TRF is hydrogen bonding and Van der Waals forces. These results are consistent with spectral results. PMID:27584012

  12. Macromolecular NMR spectroscopy for the non-spectroscopist: beyond macromolecular solution structure determination.

    PubMed

    Bieri, Michael; Kwan, Ann H; Mobli, Mehdi; King, Glenn F; Mackay, Joel P; Gooley, Paul R

    2011-03-01

    A strength of NMR spectroscopy is its ability to monitor, on an atomic level, molecular changes and interactions. In this review, which is intended for non-spectroscopist, we describe major uses of NMR in protein science beyond solution structure determination. After first touching on how NMR can be used to quickly determine whether a mutation induces structural perturbations in a protein, we describe the unparalleled ability of NMR to monitor binding interactions over a wide range of affinities, molecular masses and solution conditions. We discuss the use of NMR to measure the dynamics of proteins at the atomic level and over a wide range of timescales. Finally, we outline new and expanding areas such as macromolecular structure determination in multicomponent systems, as well as in the solid state and in vivo. PMID:21214861

  13. Spectroscopy, NMR and DFT studies on molecular recognition of crown ether bridged chiral heterotrinuclear salen Zn(II) complex

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Ruan, Wen-Juan; Chen, Jia-Mei; Zhang, Ying-Hui; Zhu, Zhi-Ang

    2005-12-01

    A barium-containing crown ether bridged chiral heterotrinuclear salen Zn(II) complex BaZn 2L(ClO 4) 2, where L is a folded dinuclear chiral ( R, R)-salen ligand, has been synthesized and characterized by elemental analysis, 1H NMR, UV-vis, IR, circular dichroism (CD) spectra, and mass spectra. As a folded dinuclear chiral host, its recognition with achiral guests (imidazole derivatives), rigid bidentate guest (1,4-diazobicyclo[2,2,2]octane, DABCO) and chiral guests (amino acid methyl esters) was investigated by means of UV-vis spectrophotometric titration, CD spectra. The association constants of D-amino acid methyl esters are found to be higher than those of their L-enantiomer. The sandwich-type binding of BaZn 2L(ClO 4) 2-DABCO supramolecular assembly was specially studied via 1H NMR titration and 1H ROESY. To understand the recognition on molecular level, density functional theory (DFT) calculations on B3LYP/LanL2DZ were performed on the minimal energy conformations of host, guests, and host-guest complexes. The minimal energy conformations were obtained by molecular mechanics (MM) optimization and molecular dynamics (MD) simulation. The results of single point energy, HOMO energy, and charges transfer were analyzed. The results of theoretical calculations are in good agreement with the experimental data.

  14. Studies of electrolyte penetration in carbon anodes by NMR techniques.

    SciTech Connect

    Sandi, G.

    1998-12-09

    A toroid cavity nuclear magnetic resonance (NMR) detector capable of recording radial concentration profiles, diffusion constants, and displacements of charge carriers was employed to investigate the lithium ion distribution in an electrochemical cell containing a carbonaceous material synthesized from pyrene and pillared clays as inorganic templates. A carbon rod was used in a control experiment to assign the Li{sup +} spectrum and to calibrate the one dimensional radial images.

  15. Zn-, Cd-, and Pb-transcription factor IIIA: properties, DNA binding, and comparison with TFIIIA-finger 3 metal complexes

    PubMed Central

    Huang, Meilin; Krepkiy, Dmitriy; Hu, Weining; Petering, David H.

    2012-01-01

    Properties of the metal ion binding sites of Zn-transcription factor IIIA (TFIIIA) were investigated to understand the potential of this type of zinc finger to undergo reactions that remove Zn2+ from the protein. Zn–TFIIIA was purified from E. coli containing the cloned sequence for Xenopus laevis oocyte TFIIIA and its stoichiometry of bound Zn2+ was shown to depend on the details of the isolation process. The average dissociation constant of Zn2+ in Zn-TFIIIIA was 10−7. The dissociation constant for Zn-F3, the third finger from the N-terminus of TFIIIA, was 1.0 × 10−8. The reactivity of Zn–TFIIIA with a series of metal binding ligands, including 2-carboxy-2′-hydroxy-5′-sulfoformazylbenzene (zincon), 4-(2-pyridylazo)-resorcinol (PAR), and 3-ethoxy-2-oxo-butyraldehyde-bis-(N4-dimethylthiosemicarbazone) (H2KTSM2) revealed similar kinetics. The reactivity of PAR with Zn–TFIIIA declined substantially when the protein was bound to the internal control region (ICR) of the 5S ribosomal DNA. Both Cd2+ and Pb2+ disrupt TFIIIA binding to its cognate DNA sequence. The Pb2+ dissociation constant of Pb-F3 was measured as 2.5 × 10−8. According to NMR spectroscopy, F3 does not fold into a regular conformation in the presence of Pb2+. PMID:15134923

  16. Binding of cations of group IA and IIA to bovine serum amine oxidase: effect on the activity.

    PubMed Central

    Di Paolo, Maria Luisa; Scarpa, Marina; Corazza, Alessandra; Stevanato, Roberto; Rigo, Adelio

    2002-01-01

    In this paper, we report on the presence of cation binding areas on bovine serum amine oxidase, where metal ions of the groups IA and IIA, such as Na(+), K(+), Cs(+), Mg(2+), and Ca(2+), bind with various affinities. We found a cation-binding area that influences the enzyme activity if occupied, so that the catalytic reaction may be altered by some physiologically relevant cations, such as Ca(2+) and K(+). This binding area appears to be localized inside the enzyme active site, because some of these cations act as competitive inhibitors when highly charged amines, such as spermine and spermidine, are used as substrates. In particular, dissociation constant values (K(d)) of 23 and 27 mM were measured for Cs(+) and Ca(2+), respectively, using, as substrate, spermine, a polyamine of plasma. An additional cation-binding area, where metal ions such as Cs(+) (K(d) congruent with 0.1 mM) and Na(+) (K(d) congruent with 54 mM) bind without affecting the enzyme activity, was found by NMR. PMID:12324440

  17. Beyond the Hubble Constant

    NASA Astrophysics Data System (ADS)

    1995-08-01

    about the distances to galaxies and thereby about the expansion rate of the Universe. A simple way to determine the distance to a remote galaxy is by measuring its redshift, calculate its velocity from the redshift and divide this by the Hubble constant, H0. For instance, the measured redshift of the parent galaxy of SN 1995K (0.478) yields a velocity of 116,000 km/sec, somewhat more than one-third of the speed of light (300,000 km/sec). From the universal expansion rate, described by the Hubble constant (H0 = 20 km/sec per million lightyears as found by some studies), this velocity would indicate a distance to the supernova and its parent galaxy of about 5,800 million lightyears. The explosion of the supernova would thus have taken place 5,800 million years ago, i.e. about 1,000 million years before the solar system was formed. However, such a simple calculation works only for relatively ``nearby'' objects, perhaps out to some hundred million lightyears. When we look much further into space, we also look far back in time and it is not excluded that the universal expansion rate, i.e. the Hubble constant, may have been different at earlier epochs. This means that unless we know the change of the Hubble constant with time, we cannot determine reliable distances of distant galaxies from their measured redshifts and velocities. At the same time, knowledge about such change or lack of the same will provide unique information about the time elapsed since the Universe began to expand (the ``Big Bang''), that is, the age of the Universe and also its ultimate fate. The Deceleration Parameter q0 Cosmologists are therefore eager to determine not only the current expansion rate (i.e., the Hubble constant, H0) but also its possible change with time (known as the deceleration parameter, q0). Although a highly accurate value of H0 has still not become available, increasing attention is now given to the observational determination of the second parameter, cf. also the Appendix at the

  18. Dissociation rate constant of the biotin-streptavidin complex.

    PubMed

    Piran, U; Riordan, W J

    1990-10-01

    We measured the dissociation rate constants of the biotin/streptavidin and biotin/egg avidin complexes by following the release of radiolabeled biotin from the preformed complexes in the presence of excess unlabeled biotin. For separation of bound and free labeled biotin we employed ultrafiltration with disposable microconcentrators. The dissociation rate constant for underivatized streptavidin was 2.4 x 10(-6) s-1, or approximately 30-fold higher than that observed for egg avidin 7.5 x 10(-8) s-1). The value for streptavidin was further increased after derivatization with an acridinium ester label. Both biotin binding proteins exhibited a faster initial phase, suggesting binding site heterogeneity due to partial subunit dissociation or denaturation. The convenience of the method and the relatively fast dissociation of biotin from streptavidin render the dissociation rate constant a practical experimental criterion for monitoring the integrity of the binding site during purification and derivatization procedures. PMID:2212686

  19. Characterization of RNA binding and chaperoning activities of HIV-1 Vif protein. Importance of the C-terminal unstructured tail.

    PubMed

    Sleiman, Dona; Bernacchi, Serena; Xavier Guerrero, Santiago; Brachet, Franck; Larue, Valéry; Paillart, Jean-Christophe; Tisne, Carine

    2014-01-01

    The viral infectivity factor (Vif) is essential for the productive infection and dissemination of HIV-1 in non-permissive cells, containing the cellular anti-HIV defense cytosine deaminases APOBEC3 (A3G and A3F). Vif neutralizes the antiviral activities of the APOBEC3G/F by diverse mechanisms including their degradation through the ubiquitin/proteasome pathway and their translational inhibition. In addition, Vif appears to be an active partner of the late steps of viral replication by interacting with Pr55(Gag), reverse transcriptase and genomic RNA. Here, we expressed and purified full-length and truncated Vif proteins, and analyzed their RNA binding and chaperone properties. First, we showed by CD and NMR spectroscopies that the N-terminal domain of Vif is highly structured in solution, whereas the C-terminal domain remains mainly unfolded. Both domains exhibited substantial RNA binding capacities with dissociation constants in the nanomolar range, whereas the basic unfolded C-terminal domain of Vif was responsible in part for its RNA chaperone activity. Second, we showed by NMR chemical shift mapping that Vif and NCp7 share the same binding sites on tRNA(Lys) 3, the primer of HIV-1 reverse transcriptase. Finally, our results indicate that Vif has potent RNA chaperone activity and provide direct evidence for an important role of the unstructured C-terminal domain of Vif in this capacity. PMID:25144404

  20. Solution structure and metal-ion binding of the P4 element from bacterial RNase P RNA.

    PubMed Central

    Schmitz, M; Tinoco, I

    2000-01-01

    We determined the solution structure of two 27-nt RNA hairpins and their complexes with cobalt(III)-hexammine (Co(NH3)3+(6)) by NMR spectroscopy. The RNA hairpins used in this study are the P4 region from Escherichia coli RNase P RNA and a C-to-U mutant that confers altered divalent metal-ion specificity (Ca2+ replaces Mg2+) for catalytic activity of this ribozyme. Co(NH3)3+(6) is a useful spectroscopic probe for Mg(H2O)2+(6)-binding sites because both complexes have octahedral symmetry and have similar radii. The thermodynamics of binding to both RNA hairpins was studied using chemical shift changes upon titration with Mg2+, Ca2+, and Co(NH3)3+(6). We found that the equilibrium binding constants for each of the metal ions was essentially unchanged when the P4 model RNA hairpin was mutated, although the NMR structures show that the RNA hairpins adopt different conformations. In the C-to-U mutant a C.G base pair is replaced by U.G, and the conserved bulged uridine in the P4 wild-type stem shifts in the 3' direction by 1 nt. Intermolecular NOE cross-peaks between Co(NH3)3+(6) and RNA protons were used to locate the site of Co(NH3)3+(6) binding to both RNA hairpins. The metal ion binds in the major groove near a bulge loop, but is shifted 5' by more than 1 bp in the mutant. The change of the metal-ion binding site provides a possible explanation for changes in catalytic activity of the mutant RNase P in the presence of Ca2+. PMID:10999599

  1. Compact orthogonal NMR field sensor

    DOEpatents

    Gerald, II, Rex E.; Rathke, Jerome W.

    2009-02-03

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  2. Integrative NMR for biomolecular research.

    PubMed

    Lee, Woonghee; Cornilescu, Gabriel; Dashti, Hesam; Eghbalnia, Hamid R; Tonelli, Marco; Westler, William M; Butcher, Samuel E; Henzler-Wildman, Katherine A; Markley, John L

    2016-04-01

    NMR spectroscopy is a powerful technique for determining structural and functional features of biomolecules in physiological solution as well as for observing their intermolecular interactions in real-time. However, complex steps associated with its practice have made the approach daunting for non-specialists. We introduce an NMR platform that makes biomolecular NMR spectroscopy much more accessible by integrating tools, databases, web services, and video tutorials that can be launched by simple installation of NMRFAM software packages or using a cross-platform virtual machine that can be run on any standard laptop or desktop computer. The software package can be downloaded freely from the NMRFAM software download page ( http://pine.nmrfam.wisc.edu/download_packages.html ), and detailed instructions are available from the Integrative NMR Video Tutorial page ( http://pine.nmrfam.wisc.edu/integrative.html ). PMID:27023095

  3. Report on neptunium speciation by NMR and optical spectroscopies

    SciTech Connect

    Tait, C.D.; Palmer, P.D.; Ekberg, S.A.; Clark, D.L.

    1995-11-01

    Hydrolysis and carbonate complexation reactions were examined for NpO{sub 2}{sup 2+} and NpO{sub 2}{sup +} ions by a variety of techniques including potentiometric titration, UV-Vis-NIR and NMR spectroscopy. The equilibrium constant for the reaction 3NpO{sub 2}(CO{sub 3}){sub 3}{sup 4{minus}} + 3H{sup +} {rightleftharpoons} (NpO{sub 2}){sub 3}(CO{sub 3}){sub 6}{sup 6{minus}} + 3HCO{sub 3}{sup {minus}} was determined to be logK = 19.7 ({plus_minus} 0.8) (I = 2.5 m). {sup 17}O NMR spectroscopy of NpO{sub 2}{sup n+} ions (n = 1,2) reveals a readily observable {sup 17}O resonance for n = 2, but not for n = 1. The first hydrolysis constant for NpO{sub 2}{sup +} was studied as a function of temperature, and the functional form for the temperature-dependent equilibrium constant for the reaction written as NpO{sub 2}{sup +} + H{sub 2}O {rightleftharpoons} NpO{sub 2}OH + H{sup +} was found to be logK = 2.28 {minus} 3780/T, where T is in {degree}K. Finally, the temperature dependence of neptunium(V) carbonate complexation constants was studied. For the first carbonate complexation constant, the appropriate functional form was found to be log{beta}{sub 01} = 1.47 + 786/T.

  4. New methods of structure refinement for macromolecular structure determination by NMR

    PubMed Central

    Clore, G. Marius; Gronenborn, Angela M.

    1998-01-01

    Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-bond coupling constants, secondary 13C shifts, 1H shifts, T1/T2 ratios, and residual dipolar couplings. The latter two measurements provide long range restraints that are not accessible by other solution NMR parameters. PMID:9600889

  5. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping [sup 129]Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the [sup 131]Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  6. Optical pumping and xenon NMR

    SciTech Connect

    Raftery, M.D.

    1991-11-01

    Nuclear Magnetic Resonance (NMR) spectroscopy of xenon has become an important tool for investigating a wide variety of materials, especially those with high surface area. The sensitivity of its chemical shift to environment, and its chemical inertness and adsorption properties make xenon a particularly useful NMR probe. This work discusses the application of optical pumping to enhance the sensitivity of xenon NMR experiments, thereby allowing them to be used in the study of systems with lower surface area. A novel method of optically-pumping {sup 129}Xe in low magnetic field below an NMR spectrometer and subsequent transfer of the gas to high magnetic field is described. NMR studies of the highly polarized gas adsorbed onto powdered samples with low to moderate surface areas are now possible. For instance, NMR studies of optically-pumped xenon adsorbed onto polyacrylic acid show that xenon has a large interaction with the surface. By modeling the low temperature data in terms of a sticking probability and the gas phase xenon-xenon interaction, the diffusion coefficient for xenon at the surface of the polymer is determined. The sensitivity enhancement afforded by optical pumping also allows the NMR observation of xenon thin films frozen onto the inner surfaces of different sample cells. The geometry of the thin films results in interesting line shapes that are due to the bulk magnetic susceptibility of xenon. Experiments are also described that combine optical pumping with optical detection for high sensitivity in low magnetic field to observe the quadrupoler evolution of 131 Xe spins at the surface of the pumping cells. In cells with macroscopic asymmetry, a residual quadrupolar interaction causes a splitting in the {sup 131}Xe NMR frequencies in bare Pyrex glass cells and cells with added hydrogen.

  7. Multispectral Analysis of NMR Imagery

    NASA Technical Reports Server (NTRS)

    Butterfield, R. L.; Vannier, M. W. And Associates; Jordan, D.

    1985-01-01

    Conference paper discusses initial efforts to adapt multispectral satellite-image analysis to nuclear magnetic resonance (NMR) scans of human body. Flexibility of these techniques makes it possible to present NMR data in variety of formats, including pseudocolor composite images of pathological internal features. Techniques do not have to be greatly modified from form in which used to produce satellite maps of such Earth features as water, rock, or foliage.

  8. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  9. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  10. Automated protein NMR resonance assignments.

    PubMed

    Wan, Xiang; Xu, Dong; Slupsky, Carolyn M; Lin, Guohui

    2003-01-01

    NMR resonance peak assignment is one of the key steps in solving an NMR protein structure. The assignment process links resonance peaks to individual residues of the target protein sequence, providing the prerequisite for establishing intra- and inter-residue spatial relationships between atoms. The assignment process is tedious and time-consuming, which could take many weeks. Though there exist a number of computer programs to assist the assignment process, many NMR labs are still doing the assignments manually to ensure quality. This paper presents (1) a new scoring system for mapping spin systems to residues, (2) an automated adjacency information extraction procedure from NMR spectra, and (3) a very fast assignment algorithm based on our previous proposed greedy filtering method and a maximum matching algorithm to automate the assignment process. The computational tests on 70 instances of (pseudo) experimental NMR data of 14 proteins demonstrate that the new score scheme has much better discerning power with the aid of adjacency information between spin systems simulated across various NMR spectra. Typically, with automated extraction of adjacency information, our method achieves nearly complete assignments for most of the proteins. The experiment shows very promising perspective that the fast automated assignment algorithm together with the new score scheme and automated adjacency extraction may be ready for practical use. PMID:16452794

  11. NMR Relaxation and Petrophysical Properties

    NASA Astrophysics Data System (ADS)

    Fleury, Marc

    2011-03-01

    NMR relaxation is routinely used in the field of geosciences to give basic petrophysical properties such as porosity, pore size distribution, saturation etc. In this tutorial, we focus on the pore size distribution deduced from NMR. We recall the basic principle used in the interpretation of the NMR signal and compare the results with other standard petrophysical techniques such as mercury pore size distribution, BET specific surface measurements, thin section visualizations. The NMR pore size distribution is a unique information available on water saturated porous media and can give similar results as MICP in certain situations. The scaling of NMR relaxation time distribution (s) into pore sizes (μm) requires the knowledge of the surface relaxivity (μm/s) and we recommend using specific surface measurements as an independent determination of solid surface areas. With usual surface relaxivities, the NMR technique can explore length-scales starting from nano-meters and ending around 100 μm. Finally, we will introduce briefly recent techniques sensitive to the pore to pore diffusional exchange, providing new information on the connectivity of the pore network, but showing another possibility of discrepancy in the determination of pore size distribution with standard techniques.

  12. A Quantitative Description of the Binding Equilibria of para-Substituted Aniline Ligands and CdSe Quantum Dots

    SciTech Connect

    Donakowski, Martin D.; Godbe, Jacqueline M.; Sknepnek, Rastko; Knowles, Kathryn E.; Olvera de la Cruz, Monica; Weiss, Emily A.

    2010-01-01

    This paper describes the use of ¹H NMR spectroscopy to measure the equilibrium constants for the solution-phase binding of two para-substituted aniline molecules (R-An), p-methoxyaniline (MeO-An) and p-bromoaniline (Br-An), to colloidal 4.1 nm CdSe quantum dots (QDs). Changes in the chemical shifts of the aromatic protons located ortho to the amine group on R-An were used to construct a binding isotherm for each R-An/QD system. These isotherms fit to a Langmuir function to yield K{sub a}, the equilibrium constant for binding of the R-An ligands to the QDs; Ka ≈ 150 M-1 and ΔGads ≈ -19 kJ/mol for both R = MeO and R = Br. ³¹P NMR indicates that the native octylphosphonate ligands, which, by inductively coupled plasma atomic emission spectroscopy, cover 90% of the QD surface, are not displaced upon binding of R-An. The MeO-An ligand quenches the photoluminescence of the QDs at much lower concentrations than does Br-An; the observation, therefore, that Ka,MeO-An ≈ Ka,Br-An shows that this difference in quenching efficiencies is due solely to differences in the nature of the electronic interactions of the bound R-An with the excitonic state of the QD.

  13. Protein–RNA specificity by high-throughput principal component analysis of NMR spectra

    PubMed Central

    Collins, Katherine M.; Oregioni, Alain; Robertson, Laura E.; Kelly, Geoff; Ramos, Andres

    2015-01-01

    Defining the RNA target selectivity of the proteins regulating mRNA metabolism is a key issue in RNA biology. Here we present a novel use of principal component analysis (PCA) to extract the RNA sequence preference of RNA binding proteins. We show that PCA can be used to compare the changes in the nuclear magnetic resonance (NMR) spectrum of a protein upon binding a set of quasi-degenerate RNAs and define the nucleobase specificity. We couple this application of PCA to an automated NMR spectra recording and processing protocol and obtain an unbiased and high-throughput NMR method for the analysis of nucleobase preference in protein–RNA interactions. We test the method on the RNA binding domains of three important regulators of RNA metabolism. PMID:25586222

  14. New Quasar Studies Keep Fundamental Physical Constant Constant

    NASA Astrophysics Data System (ADS)

    2004-03-01

    Very Large Telescope sets stringent limit on possible variation of the fine-structure constant over cosmological time Summary Detecting or constraining the possible time variations of fundamental physical constants is an important step toward a complete understanding of basic physics and hence the world in which we live. A step in which astrophysics proves most useful. Previous astronomical measurements of the fine structure constant - the dimensionless number that determines the strength of interactions between charged particles and electromagnetic fields - suggested that this particular constant is increasing very slightly with time. If confirmed, this would have very profound implications for our understanding of fundamental physics. New studies, conducted using the UVES spectrograph on Kueyen, one of the 8.2-m telescopes of ESO's Very Large Telescope array at Paranal (Chile), secured new data with unprecedented quality. These data, combined with a very careful analysis, have provided the strongest astronomical constraints to date on the possible variation of the fine structure constant. They show that, contrary to previous claims, no evidence exist for assuming a time variation of this fundamental constant. PR Photo 07/04: Relative Changes with Redshift of the Fine Structure Constant (VLT/UVES) A fine constant To explain the Universe and to represent it mathematically, scientists rely on so-called fundamental constants or fixed numbers. The fundamental laws of physics, as we presently understand them, depend on about 25 such constants. Well-known examples are the gravitational constant, which defines the strength of the force acting between two bodies, such as the Earth and the Moon, and the speed of light. One of these constants is the so-called "fine structure constant", alpha = 1/137.03599958, a combination of electrical charge of the electron, the Planck constant and the speed of light. The fine structure constant describes how electromagnetic forces hold

  15. Combining NMR of dynamic and paramagnetic molecules: fluxional high-spin nickel(II) complexes bearing bisguanidine ligands.

    PubMed

    Roquette, Pascal; Maronna, Astrid; Reinmuth, Matthias; Kaifer, Elisabeth; Enders, Markus; Himmel, Hans-Jörg

    2011-03-01

    A detailed nuclear magnetic resonance (NMR) study was carried out on a series of paramagnetic, tetrahedrally coordinated nickel(II) dihalide complexes featuring chelating guanidine ligands. A complete assignment of the NMR signals for all complexes was achieved by sophisticated NMR experiments, including correlation spectra. The effects of halide exchange, as well as the variation in the guanidine-metal bite angles on the paramagnetic shifts, were assessed. The paramagnetic shift was derived with the aid of the diamagnetic NMR spectra of the analogous Zn complexes, which were synthesized for this purpose. The experimentally derived paramagnetic shift was then compared with the values obtained from quantum chemical (DFT) calculations. Furthermore, variable-temperature NMR studies were recorded for all complexes. It is demonstrated that NMR spectroscopy can be applied to evaluate the rate constants of fast fluxional processes within paramagnetic and catalytically active metal complexes. PMID:21268654

  16. Re-evaluation of the model-free analysis of fast internal motion in proteins using NMR relaxation.

    PubMed

    Frederick, Kendra King; Sharp, Kim A; Warischalk, Nicholas; Wand, A Joshua

    2008-09-25

    NMR spin relaxation retains a central role in the characterization of the fast internal motion of proteins and their complexes. Knowledge of the distribution and amplitude of the motion of amino acid side chains is critical for the interpretation of the dynamical proxy for the residual conformational entropy of proteins, which can potentially significantly contribute to the entropy of protein function. A popular treatment of NMR relaxation phenomena in macromolecules dissolved in liquids is the so-called model-free approach of Lipari and Szabo. The robustness of the mode-free approach has recently been strongly criticized and the remarkable range and structural context of the internal motion of proteins, characterized by such NMR relaxation techniques, attributed to artifacts arising from the model-free treatment, particularly with respect to the symmetry of the underlying motion. We develop an objective quantification of both spatial and temporal asymmetry of motion and re-examine the foundation of the model-free treatment. Concerns regarding the robustness of the model-free approach to asymmetric motion appear to be generally unwarranted. The generalized order parameter is robustly recovered. The sensitivity of the model-free treatment to asymmetric motion is restricted to the effective correlation time, which is by definition a normalized quantity and not a true time constant and therefore of much less interest in this context. With renewed confidence in the model-free approach, we then examine the microscopic distribution of side chain motion in the complex between calcium-saturated calmodulin and the calmodulin-binding domain of the endothelial nitric oxide synthase. Deuterium relaxation is used to characterize the motion of methyl groups in the complex. A remarkable range of Lipari-Szabo model-free generalized order parameters are seen with little correlation with basic structural parameters such as the depth of burial. These results are contrasted with the

  17. Medical applications of NMR imaging and NMR spectroscopy with stable isotopes. Summary

    SciTech Connect

    Matwiyoff, N.A.

    1983-01-01

    The current status of NMR imaging and NMR spectroscopy are summarized. For the most part examples from the March 1983 Puerto Rico symposium are used to illustrate the utility of NMR in medicine. 18 refs., 5 figs.

  18. jsNMR: an embedded platform-independent NMR spectrum viewer.

    PubMed

    Vosegaard, Thomas

    2015-04-01

    jsNMR is a lightweight NMR spectrum viewer written in JavaScript/HyperText Markup Language (HTML), which provides a cross-platform spectrum visualizer that runs on all computer architectures including mobile devices. Experimental (and simulated) datasets are easily opened in jsNMR by (i) drag and drop on a jsNMR browser window, (ii) by preparing a jsNMR file from the jsNMR web site, or (iii) by mailing the raw data to the jsNMR web portal. jsNMR embeds the original data in the HTML file, so a jsNMR file is a self-transforming dataset that may be exported to various formats, e.g. comma-separated values. The main applications of jsNMR are to provide easy access to NMR data without the need for dedicated software installed and to provide the possibility to visualize NMR spectra on web sites. PMID:25641013

  19. NMR Imaging: Instrumentation and Techniques

    NASA Astrophysics Data System (ADS)

    Tingle, Jeremy Mark

    Available from UMI in association with The British Library. This thesis presents three original contributions to the field of Nuclear Magnetic Resonance (NMR): the experimental framework and analysis for the measurement of a new imaging parameter to describe perfusion; the measurement and analysis of magnetic field inhomogeneity and a practical correction system for their reduction; a novel system for the synchronous control of NMR experiments based on the microprogrammed concept. The thesis begins with an introduction to the theory of NMR. The application of NMR to imaging is also introduced with emphasis on the techniques which developed into those in common use today. Inaccurate determination of the traditional NMR parameters (T_1 and T_2 and the molecular diffusion coefficient) can be caused by non-diffusive fluid movement within the sample. The experimental basis for determining a new imaging parameter --the Perfusion coefficient--is presented. This provides a measure of forced isotropic fluid motion through an organ or tissue. The instrumentation required for conducting NMR experiments is described in order to introduce the contribution made in this area during this research: A sequence controller. The controller is based on the concept of microprogramming and enables completely synchronous output of 128 bits of data. The software for the generation and storage of control data and the regulation of the data to provide experimental control is microcomputer based. It affords precise and accurate regulation of the magnetic field gradients, the rf synthesizer and the spectrometer for spectroscopic and imaging applications. Fundamental to the science of NMR is the presence of a magnetic field. A detailed study of the analysis of magnetic field inhomogeneity in terms of spherical harmonics is presented. The field of a whole body imaging system with poor inhomogeneity was measured and analyzed to determine and describe the components of the inhomogeneity. Finally a

  20. All-Purpose Containers? Lipid-Binding Protein – Drug Interactions

    PubMed Central

    Beringhelli, Tiziana; Gianazza, Elisabetta; Maggioni, Daniela; Scanu, Sandra; Parravicini, Chiara; Sensi, Cristina; Monaco, Hugo L.; Eberini, Ivano

    2015-01-01

    The combined use of in vitro (19F-NMR) and in silico (molecular docking) procedures demonstrates the affinity of a number of human calycins (lipid-binding proteins from ileum, liver, heart, adipose tissue and epidermis, and retinol-binding protein from intestine) for different drugs (mainly steroids and vastatins). Comparative evaluations on the complexes outline some of the features relevant for interaction (non-polar character of the drugs; amino acids and water molecules in the protein calyx most often involved in binding). Dissociation constants (Ki) for drugs typically lie in the same range as Ki for natural ligands; in most instances (different proteins and docking conditions), vastatins are the strongest interactors, with atorvastatin ranking top in half of the cases. The affinity of some calycins for some of the vastatins is in the order of magnitude of the drug Cmax after systemic administration in humans. The possible biological implications of this feature are discussed in connection with drug delivery parameters (route of administration, binding to carrier proteins, distribution to, and accumulation in, human tissues). PMID:26167932

  1. Exploring the DNA binding mode of transition metal based biologically active compounds

    NASA Astrophysics Data System (ADS)

    Raman, N.; Sobha, S.

    2012-01-01

    Few novel 4-aminoantipyrine derived Schiff bases and their metal complexes were synthesized and characterized. Their structural features and other properties were deduced from the elemental analysis, magnetic susceptibility and molar conductivity as well as from mass, IR, UV-vis, 1H NMR and EPR spectral studies. The binding of the complexes with CT-DNA was analyzed by electronic absorption spectroscopy, viscosity measurement, and cyclic voltammetry. The interaction of the metal complexes with DNA was also studied by molecular modeling with special reference to docking. The experimental and docking results revealed that the complexes have the ability of interaction with DNA of minor groove binding mode. The intrinsic binding constants ( Kb) of the complexes with CT-DNA were found out which show that they are minor groove binders. Gel electrophoresis assay demonstrated the ability of the complexes to cleave the pUC19 DNA in the presence of AH 2 (ascorbic acid). Moreover, the oxidative cleavage studies using distamycin revealed the minor groove binding for the newly synthesized 4-aminoantipyrine derived Schiff bases and their metal complexes. Evaluation of antibacterial activity of the complexes against Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, and Klebsiella pneumoniae exhibited that the complexes have potent biocidal activity than the free ligands.

  2. 31P NMR studies of enzyme-bound substrate complexes of yeast 3-phosphoglycerate kinase: III. Two ADP binding sites and their Mg(II) affinity; effects of vanadate and arsenate on enzymic complexes with ADP and 3-P-glycerate.

    PubMed

    Ray, B D; Moore, J M; Rao, B D

    1990-09-01

    31P nuclear magnetic resonance (NMR) measurements (at 121.5 MHz and 5 degrees C) were made on complexes of 3-phosphoglycerate kinase with ADP and 3-P-glycerate. Addition of Mg(II) to E.ADP shifts the alpha-P signal downfield by 3.8 ppm such that the alpha-P signal superimposes that for beta-P(E.MgADP). Such a shift is atypical among the Mg(II)-nucleotide complexes with other ATP-utilizing enzymes. This shift allowed the determination that enzyme bound ADP is saturated with Mg(II) for [Mg(II)]/[ADP] = 3.0--similar to that reported for ATP complexes with this enzyme (B.D. Ray and B.D. Nageswara Rao, Biochemistry 27, 5574 (1988]. This parallel behavior suggests that ADP binds at two sites on the enzyme as does ATP with disparate Mg(II) affinities. 31P relaxation times in E.MnADP.vanadate.3-P-glycerate and E.CoADP.vanadate.3-P-glycerate complexes indicate that these are long-lived, tightly bound complexes. 31P chemical shift measurements on diamagnetic complexes (with Mg(II] revealed three signals in the 2-5 ppm region (attributable to 3-P-glycerate) only upon addition of all the components necessary to form the E.MgADP.vanadate.3-P-glycerate complex. Subsequent sequestration of Mg(II) from the complex with excess EDTA reversed the Mg(II) induced effects on the ADP signals but did not cause coalescence of the three signals seen in the 2-5 ppm region. Addition of excess sulfate to dissociate these complexes from the enzyme resulted in a single resonance of 3-P-glycerate. The use of arsenate in place of vanadate yielded very similar results. These results suggest that, in the presence of MgADP, vanadate or arsenate, and 3-P-glycerate, the enzyme catalyzed the formation of multiple structurally distinguishable complexes that are stable on the enzyme and labile off the enzyme. PMID:2283509

  3. Applications of (19)F-NMR in Fragment-Based Drug Discovery.

    PubMed

    Norton, Raymond S; Leung, Eleanor W W; Chandrashekaran, Indu R; MacRaild, Christopher A

    2016-01-01

    (19)F-NMR has proved to be a valuable tool in fragment-based drug discovery. Its applications include screening libraries of fluorinated fragments, assessing competition among elaborated fragments and identifying the binding poses of promising hits. By observing fluorine in both the ligand and the target protein, useful information can be obtained on not only the binding pose but also the dynamics of ligand-protein interactions. These applications of (19)F-NMR will be illustrated in this review with studies from our fragment-based drug discovery campaigns against protein targets in parasitic and infectious diseases. PMID:27438818

  4. NMR planar microcoil for microanalysis

    NASA Astrophysics Data System (ADS)

    Sorli, B.; Chateaux, J. F.; Quiquerez, L.; Bouchet-Fakri, L.; Briguet, A.; Morin, P.

    2006-11-01

    This article deals with the analysis of small sample volume by using a planar microcoil and a micromachined cavity. This microcoil is used as a nuclear magnetic resonance (NMR) radio frequency detection coil in order to perform in vitro NMR analysis of the sample introduced into the microcavity. It is a real challenging task to develop microsystem for NMR spectrum extraction for smaller and smaller sample volume. Moreover, it is advantageous that these microsystems could be integrated in a Micro Total Analysing System (μ -TAS) as an analysing tool. In this paper, NMR theory, description, fabrication process and electrical characterization of planar microcoils receiver are described. Results obtained on NMR microspectroscopy experiments have been performed on water and ethanol, using a 1 mm diameter planar coil. This microcoil is tuned and matched at 85.13 MHz which is the Larmor frequency of proton in a 2 T magnetic field. This paper has been presented at “3e colloque interdisciplinaire en instrumentation (C2I 2004)”, École Normale Supérieure de Cachan, 29 30 janvier 2004.

  5. Protein inhibitors of serine proteinases: role of backbone structure and dynamics in controlling the hydrolysis constant.

    PubMed

    Song, Jikui; Markley, John L

    2003-05-13

    Standard mechanism protein inhibitors of serine proteinases bind as substrates and are cleaved by cognate proteinases at their reactive sites. The hydrolysis constant for this cleavage reaction at the P(1)-P(1)' peptide bond (K(hyd)) is determined by the relative concentrations at equilibrium of the "intact" (uncleaved, I) and "modified" (reactive site cleaved, I*) forms of the inhibitor. The pH dependence of K(hyd) can be explained in terms of a pH-independent term, K(hyd) degrees, plus the proton dissociation constants of the newly formed amino and carboxylate groups at the cleavage site. Two protein inhibitors that differ from one another by a single residue substitution have been found to have K(hyd) degrees values that differ by a factor of 5 [Ardelt, W., and Laskowski, M., Jr. (1991) J. Mol. Biol. 220, 1041-1052]: turkey ovomucoid third domain (OMTKY3) has K(hyd) degrees = 1.0, and Indian peafowl ovomucoid third domain (OMIPF3), which differs from OMTKY3 by the substitution P(2)'-Tyr(20)His, has K(hyd) degrees = 5.15. What mechanism is responsible for this small difference? Is it structural (enthalpic) or dynamic (entropic)? Does the mutation affect the free energy of the I state, the I* state, or both? We have addressed these questions through NMR investigations of the I and I forms of OMTKY3 and OMIPF3. Information about structure was derived from measurements of NMR chemical shift changes and trans-hydrogen-bond J-couplings; information about dynamics was obtained through measurements of (15)N relaxation rates and (1)H-(15)N heteronuclear NOEs with model-free analysis of the results. Although the I forms of each variant are more dynamic than the corresponding I forms, the study revealed no appreciable difference in the backbone dynamics of either intact inhibitor (OMIPF3 vs OMTKY3) or modified inhibitor (OMIPF3* vs OMTKY3*). Instead, changes in chemical shifts and trans-hydrogen-bond J-couplings suggested that the K(hyd) degrees difference arises from

  6. Binding Procurement

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Vaidyanathan, Hari

    2007-01-01

    This viewgraph presentation reviews the use of the binding procurement process in purchasing Aerospace Flight Battery Systems. NASA Engineering and Safety Center (NESC) requested NASA Aerospace Flight Battery Systems Working Group to develop a set of guideline requirements document for Binding Procurement Contracts.

  7. Binding Isotherms and Time Courses Readily from Magnetic Resonance

    PubMed Central

    2016-01-01

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations. PMID:27458657

  8. Binding Isotherms and Time Courses Readily from Magnetic Resonance.

    PubMed

    Xu, Jia; Van Doren, Steven R

    2016-08-16

    Evidence is presented that binding isotherms, simple or biphasic, can be extracted directly from noninterpreted, complex 2D NMR spectra using principal component analysis (PCA) to reveal the largest trend(s) across the series. This approach renders peak picking unnecessary for tracking population changes. In 1:1 binding, the first principal component captures the binding isotherm from NMR-detected titrations in fast, slow, and even intermediate and mixed exchange regimes, as illustrated for phospholigand associations with proteins. Although the sigmoidal shifts and line broadening of intermediate exchange distorts binding isotherms constructed conventionally, applying PCA directly to these spectra along with Pareto scaling overcomes the distortion. Applying PCA to time-domain NMR data also yields binding isotherms from titrations in fast or slow exchange. The algorithm readily extracts from magnetic resonance imaging movie time courses such as breathing and heart rate in chest imaging. Similarly, two-step binding processes detected by NMR are easily captured by principal components 1 and 2. PCA obviates the customary focus on specific peaks or regions of images. Applying it directly to a series of complex data will easily delineate binding isotherms, equilibrium shifts, and time courses of reactions or fluctuations. PMID:27458657

  9. Formulas for determining rotational constants

    NASA Astrophysics Data System (ADS)

    Guelachvili, G.

    This document is part of Subvolume B `Linear Triatomic Molecules', Part 9, of Volume 20 `Molecular Constants mostly from Infrared Spectroscopy' of Landolt-Börnstein Group II `Molecules and Radicals'. Part of the introduction, it states formulas for determining rotational constants, band center, band origin, and quadrupole coupling. Specific comments relate to BHO (HBO) and COS (OCS).

  10. QCD coupling constants and VDM

    SciTech Connect

    Erkol, G.; Ozpineci, A.; Zamiralov, V. S.

    2012-10-23

    QCD sum rules for coupling constants of vector mesons with baryons are constructed. The corresponding QCD sum rules for electric charges and magnetic moments are also derived and with the use of vector-meson-dominance model related to the coupling constants. The VDM role as the criterium of reciprocal validity of the sum rules is considered.

  11. NMR spectroscopy and perfusion of mammalian cells using surface microprobes.

    PubMed

    Ehrmann, Klaus; Pataky, Kristopher; Stettler, Matthieu; Wurm, Florian Maria; Brugger, Jürgen; Besse, Pierre-André; Popovic, Radivoje

    2007-03-01

    NMR spectra of mammalian cells are taken using surface microprobes that are based on microfabricated planar coils. The surface microprobe resembles a miniaturized Petri dish commonly used in biological research. The diameter of the planar coils is 1 mm. Chinese Hamster Ovaries are immobilized in a uniform layer on the microprobe surface or patterned by an ink-jet printer in the centre of the microcoil, where the rf-field of the planar microcoil is most uniform. The acquired NMR spectra show the prevalent metabolites found in mammalian cells. The volumes of the detected samples range from 25 nL to 1 nL (or 50,000 to 1800 cells). With an extended set-up that provides fluid inlets and outlets to the microprobe, the cells can be perfused within the NMR-magnet while constantly taking NMR spectra. Perfusion of the cells opens the way to increased cell viability for long acquisitions or to analysis of the cells' response to environmental change. PMID:17330170

  12. A 13C-NMR study of azacryptand complexes.

    PubMed

    Wild, Aljoscha A C; Fennell, Kevin; Morgan, Grace G; Hewage, Chandralal M; Malthouse, J Paul G

    2014-09-28

    An azacryptand has been solubilised in aqueous media containing 50% (v/v) dimethyl sulphoxide. (13)C-NMR has been used to determine how the azacryptand is affected by zinc binding at pH 10. Using (13)C-NMR and (13)C-enriched bicarbonate we have been able to observe the formation of 4 different carbamate derivatives of the azacryptand at pH 10. The azacryptand was shown to solubilise zinc or cadmium at alkaline pHs. Two moles of zinc are bound per mole of azacryptand and this complex binds 1 mole of carbonate. By replacing the zinc with cadmium-113 we have shown that the (13)C-NMR signal of the (13)C-enriched carbon of the bound carbonate is split into two triplets at 2.2 °C. This shows that two cadmium complexes are formed and in each of these complexes the carbonate group is bound by two magnetically equivalent metal ions. It also demonstrates that these cadmium complexes are not in fast exchange. From temperature studies we show that in the zinc complexes both complexes are in fast exchange with each other but are in slow exchange with free bicarbonate. HOESY is used to determine the position of the carbonate carbon in the complex. The solution and crystal structures of the zinc-carbonate-azacryptand complexes are compared. PMID:25091182

  13. Improved spin-echo-edited NMR diffusion measurements.

    PubMed

    Otto, W H; Larive, C K

    2001-12-01

    The need for simple and robust schemes for the analysis of ligand-protein binding has resulted in the development of diffusion-based NMR techniques that can be used to assay binding in protein solutions containing a mixture of several ligands. As a means of gaining spectral selectivity in NMR diffusion measurements, a simple experiment, the gradient modified spin-echo (GOSE), has been developed to reject the resonances of coupled spins and detect only the singlets in the (1)H NMR spectrum. This is accomplished by first using a spin echo to null the resonances of the coupled spins. Following the spin echo, the singlet magnetization is flipped out of the transverse plane and a dephasing gradient is applied to reduce the spectral artifacts resulting from incomplete cancellation of the J-coupled resonances. The resulting modular sequence is combined here with the BPPSTE pulse sequence; however, it could be easily incorporated into any pulse sequence where additional spectral selectivity is desired. Results obtained with the GOSE-BPPSTE pulse sequence are compared with those obtained with the BPPSTE and CPMG-BPPSTE experiments for a mixture containing the ligands resorcinol and tryptophan in a solution of human serum albumin. PMID:11740906

  14. Improving NMR Structures of RNA.

    PubMed

    Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D

    2016-05-01

    Here, we show that modern solution nuclear magnetic resonance (NMR) structures of RNA exhibit more steric clashes and conformational ambiguities than their crystallographic X-ray counterparts. To tackle these issues, we developed RNA-ff1, a new force field for structure calculation with Xplor-NIH. Using seven published NMR datasets, RNA-ff1 improves covalent geometry and MolProbity validation criteria for clashes and backbone conformation in most cases, relative to both the previous Xplor-NIH force field and the original structures associated with the experimental data. In addition, with smaller base-pair step rises in helical stems, RNA-ff1 structures enjoy more favorable base stacking. Finally, structural accuracy improves in the majority of cases, as supported by complete residual dipolar coupling cross-validation. Thus, the reported advances show great promise in bridging the quality gap that separates NMR and X-ray structures of RNA. PMID:27066747

  15. Interpretation of chemical shifts and coupling constants in macromolecules.

    PubMed

    Case, D A

    2000-04-01

    Recent developments in NMR spectroscopy, along with advances in computational techniques, have produced new approaches to the interpretation of chemical shifts and spin-spin coupling constants in biomolecules. Quantum chemical studies of useful accuracy are now becoming more routine and are increasingly being used in conjunction with experimental studies to map out expected structural patterns for peptides and oligonucleotides. Topics of recent special interest include spin couplings across hydrogen bonds and patterns of chemical shift anisotropies, in both diamagnetic and paramagnetic proteins. PMID:10753812

  16. Detailed 1H and 13C NMR structural assignment and relative stereochemistry determination for three new and one known semi-synthetic sesquiterpene lactones

    NASA Astrophysics Data System (ADS)

    Sass, Daiane Cristina; Heleno, Vladimir Constantino Gomes; Soares, Ana Carolina Ferreira; Lopes, João Luis Callegari; Constantino, Mauricio Gomes

    2012-01-01

    In this work is described a complete 1H and 13C NMR analysis for a group of four sesquiterpene lactones, three previously unknown. The unequivocal assignments were achieved by 1H NMR, 13C{ 1H} NMR, J-resolved, gCOSY, gHMQC, gHMBC and NOESY experiments and no ambiguities were left behind. All hydrogen coupling constants were measured, clarifying all hydrogen signals multiplicities.

  17. Computational Analysis of Solvent Effects in NMR Spectroscopy.

    PubMed

    Dračínský, Martin; Bouř, Petr

    2010-01-12

    Solvent modeling became a standard part of first principles computations of molecular properties. However, a universal solvent approach is particularly difficult for the nuclear magnetic resonance (NMR) shielding and spin-spin coupling constants that in part result from collective delocalized properties of the solute and the environment. In this work, bulk and specific solvent effects are discussed on experimental and theoretical model systems comprising solvated alanine zwitterion and chloroform molecules. Density functional theory computations performed on larger clusters indicate that standard dielectric continuum solvent models may not be sufficiently accurate. In some cases, more reasonable NMR parameters were obtained by approximation of the solvent with partial atomic charges. Combined cluster/continuum models yielded the most reasonable values of the spectroscopic parameters, provided that they are dynamically averaged. The roles of solvent polarizability, solvent shell structure, and bulk permeability were investigated. NMR shielding values caused by the macroscopic solvent magnetizability exhibited the slowest convergence with respect to the cluster size. For practical computations, however, inclusion of the first solvation sphere provided satisfactory corrections of the vacuum values. The simulations of chloroform chemical shifts and CH J-coupling constants were found to be very sensitive to the molecular dynamics model used to generate the cluster geometries. The results show that computationally efficient solvent modeling is possible and can reveal fine details of molecular structure, solvation, and dynamics. PMID:26614339

  18. Benzodiazepine binding to bovine retina.

    PubMed

    Osborne, N N

    1980-02-01

    [3H]Diazepam binds to membrane preparations of the retina, suggesting that benzodiazepine receptors exist in this tissue. The binding characteristics are similar to those known to occur in the brain, with affinity constants in the same range. Unlike the finding in the brain, [3H]diazepam binding in the retina is not stimulated by GABA and other GABA agonists. These findings indicate that benzodiazepine receptors may have a more general function and not only be associated with anxiety or emotional behaviour. PMID:6302572

  19. (129)Xe NMR Relaxation-Based Macromolecular Sensing.

    PubMed

    Gomes, Muller D; Dao, Phuong; Jeong, Keunhong; Slack, Clancy C; Vassiliou, Christophoros C; Finbloom, Joel A; Francis, Matthew B; Wemmer, David E; Pines, Alexander

    2016-08-10

    We report a (129)Xe NMR relaxation-based sensing approach that exploits changes in the bulk xenon relaxation rate induced by slowed tumbling of a cryptophane-based sensor upon target binding. The amplification afforded by detection of the bulk dissolved xenon allows sensitive detection of targets. The sensor comprises a xenon-binding cryptophane cage, a target interaction element, and a metal chelating agent. Xenon associated with the target-bound cryptophane cage is rapidly relaxed and then detected after exchange with the bulk. Here we show that large macromolecular targets increase the rotational correlation time of xenon, increasing its relaxation rate. Upon binding of a biotin-containing sensor to avidin at 1.5 μM concentration, the free xenon T2 is reduced by a factor of 4. PMID:27472048

  20. A SENSITIVE NMR THERMOMETER FOR MULTINUCLEI FT NMR

    EPA Science Inventory

    A pernicious problem in multinuclei FT NMR is accurate measurement of sample temperature. This arises from several factors including widespread use of high-power decoupling, large sample tubes (with potentially large temperature gradients across the sample volume), and lack of su...

  1. Dissolution Dynamic Nuclear Polarization Instrumentation for Real-time Enzymatic Reaction Rate Measurements by NMR.

    PubMed

    Balzan, Riccardo; Fernandes, Laetitia; Comment, Arnaud; Pidial, Laetitia; Tavitian, Bertrand; Vasos, Paul R

    2016-01-01

    The main limitation of NMR-based investigations is low sensitivity. This prompts for long acquisition times, thus preventing real-time NMR measurements of metabolic transformations. Hyperpolarization via dissolution DNP circumvents part of the sensitivity issues thanks to the large out-of-equilibrium nuclear magnetization stemming from the electron-to-nucleus spin polarization transfer. The high NMR signal obtained can be used to monitor chemical reactions in real time. The downside of hyperpolarized NMR resides in the limited time window available for signal acquisition, which is usually on the order of the nuclear spin longitudinal relaxation time constant, T1, or, in favorable cases, on the order of the relaxation time constant associated with the singlet-state of coupled nuclei, TLLS. Cellular uptake of endogenous molecules and metabolic rates can provide essential information on tumor development and drug response. Numerous previous hyperpolarized NMR studies have demonstrated the relevancy of pyruvate as a metabolic substrate for monitoring enzymatic activity in vivo. This work provides a detailed description of the experimental setup and methods required for the study of enzymatic reactions, in particular the pyruvate-to-lactate conversion rate in presence of lactate dehydrogenase (LDH), by hyperpolarized NMR. PMID:26967906

  2. Thermostatted micro-reactor NMR probe head for monitoring fast reactions

    NASA Astrophysics Data System (ADS)

    Brächer, A.; Hoch, S.; Albert, K.; Kost, H. J.; Werner, B.; von Harbou, E.; Hasse, H.

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions.

  3. Thermostatted micro-reactor NMR probe head for monitoring fast reactions.

    PubMed

    Brächer, A; Hoch, S; Albert, K; Kost, H J; Werner, B; von Harbou, E; Hasse, H

    2014-05-01

    A novel nuclear magnetic resonance (NMR) probe head for monitoring fast chemical reactions is described. It combines micro-reaction technology with capillary flow NMR spectroscopy. Two reactants are fed separately into the probe head where they are effectively mixed in a micro-mixer. The mixed reactants then pass through a capillary NMR flow cell that is equipped with a solenoidal radiofrequency coil where the NMR signal is acquired. The whole flow path of the reactants is thermostatted using the liquid FC-43 (perfluorotributylamine) so that exothermic and endothermic reactions can be studied under almost isothermal conditions. The set-up enables kinetic investigation of reactions with time constants of only a few seconds. Non-reactive mixing experiments carried out with the new probe head demonstrate that it facilitates the acquisition of constant highly resolved NMR signals suitable for quantification of different species in technical mixtures. Reaction kinetic measurements on a test system are presented that prove the applicability of the novel NMR probe head for monitoring fast reactions. PMID:24650728

  4. 33S NMR spectroscopy 3. Substituent effects on 33S NMR parameters in 2-substituted ethanesulfonates.

    PubMed

    Musio, Roberta; Sciacovelli, Oronzo

    2006-08-01

    33S NMR parameters (chemical shifts and linewidths) in 2-substituted sodium ethanesulfonates, XCH2CH2SO3Na (X = H, CH3, OH, SH, NH2, Cl, Br, NH3+) depend upon the electronic properties of substituents. To explain experimental results and obtain additional information on the origin of the observed substituent effect (SE), sulfur isotropic absolute shielding constants have been calculated at DFT level of theory (B3LYP/6-311++G(2d,p)) by gauge-including atomic orbitals (GIAO) method. Data have been interpreted with the aid of natural bond orbital (NBO) method and natural chemical shielding (NCS) analysis. It has been demonstrated that in the class of compounds considered the diamagnetic contribution to sulfur-shielding constant is constant and the observed upfield shift of 33S resonance induced by electron-withdrawing substituents (reverse chemical shift effect) can be related to variations of the paramagnetic contribution. Substituents with different electronic properties cause variations in the polarization of S-C and S-O bonds of the -C-SO3- moiety thus determining changes of the electron density at sulfur nucleus and consequently the expansion or contraction of 3p sulfur orbitals. Also oxygen lone-pairs and sulfur core 2p electrons can play an active role in determining the paramagnetic contribution to sulfur shielding. With regard to linewidth variations, they can be ascribed primarily to changes in the nuclear quadrupole coupling constant values. B3LYP/6-311++G(2d,p) method allows obtaining a good reproducibility of SE on the electric field gradient (EFG) at sulfur, although its values tend to be underestimated significantly. Moreover, 17O shielding constants have been calculated. PMID:16741982

  5. Cryptophane-Folate Biosensor for 129Xe NMR

    PubMed Central

    2015-01-01

    Folate-conjugated cryptophane was developed for targeting cryptophane to membrane-bound folate receptors that are overexpressed in many human cancers. The cryptophane biosensor was synthesized in 20 nonlinear steps, which included functionalization with folate recognition moiety, solubilizing peptide, and Cy3 fluorophore. Hyperpolarized 129Xe NMR studies confirmed xenon binding to the folate-conjugated cryptophane. Cellular internalization of biosensor was monitored by confocal laser scanning microscopy and quantified by flow cytometry. Competitive blocking studies confirmed cryptophane endocytosis through a folate receptor-mediated pathway. Flow cytometry revealed 10-fold higher cellular internalization in KB cancer cells overexpressing folate receptors compared to HT-1080 cells with normal folate receptor expression. The biosensor was determined to be nontoxic in HT-1080 and KB cells by MTT assay at low micromolar concentrations typically used for hyperpolarized 129Xe NMR experiments. PMID:25438187

  6. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  7. "Solvent Effects" in 1H NMR Spectroscopy.

    ERIC Educational Resources Information Center

    Cavaleiro, Jose A. S.

    1987-01-01

    Describes a simple undergraduate experiment in chemistry dealing with the "solvent effects" in nuclear magnetic resonance (NMR) spectroscopy. Stresses the importance of having students learn NMR spectroscopy as a tool in analytical chemistry. (TW)

  8. Push-through Direction Injectin NMR Automation

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) and mass spectrometry (MS) are the two major spectroscopic techniques successfully used in metabolomics studies. The non-invasive, quantitative and reproducible characteristics make NMR spectroscopy an excellent technique for detection of endogeno...

  9. Mapping the binding surface of interleukin-8 complexed with an N-terminal fragment of the type 1 human interleukin-8 receptor.

    PubMed

    Clubb, R T; Omichinski, J G; Clore, G M; Gronenborn, A M

    1994-01-24

    Interleukin-8 and its receptors are key mediators of immune and inflammatory responses. Heteronuclear NMR spectroscopy has been utilized to map the binding surface on interleukin-8 (IL-8) for an N-terminal fragment of the human Type-1 IL-8 receptor. A peptide corresponding to residues 1-40 of the IL-8 type 1 receptor (IL8-r1) was titrated into a sample of uniformly 15N-labeled IL-8. IL8-r1 binds to IL-8 with a dissociation constant of 170 +/- 50 microM assuming the peptide binds with a stoichiometry of one peptide per IL-8 monomer, exchanges rapidly (> 900 s-1) between free and bound states, and selectively perturbs the chemical environment of several IL-8 residues. The binding surface on IL-8 suggested by our results is comprised of residues in strand beta 3 of the beta-sheet (Glu48 to Cys50), the turn preceding beta 3 (Ser44), the C-terminal alpha-helix (Val61) and the irregular N-terminal loop region (Thr12, Lys15, Phe17, His18, Lys20 and Phe21). The IL-8 dimer appears to present two symmetrical binding surfaces for the IL8-r1 peptide, suggesting two receptor peptides may bind per dimer. PMID:8307164

  10. NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c6.

    PubMed

    Díaz-Moreno, Irene; Díaz-Quintana, Antonio; Molina-Heredia, Fernando P; Nieto, Pedro M; Hansson, Orjan; De la Rosa, Miguel A; Karlsson, B Göran

    2005-03-01

    A structural analysis of the surface areas of cytochrome c(6), responsible for the transient interaction with photosystem I, was performed by NMR transverse relaxation-optimized spectroscopy. The hemeprotein was titrated by adding increasing amounts of the chlorophyllic photosystem, and the NMR spectra of the free and bound protein were analyzed in a comparative way. The NMR signals of cytochrome c(6) residues located at the hydrophobic and electrostatic patches, which both surround the heme cleft, were specifically modified by binding. The backbones of internal residues close to the hydrophobic patch of cytochrome c(6) were also affected, a fact that is ascribed to the conformational changes taking place inside the hemeprotein when interacting with photosystem I. To the best of our knowledge, this is the first structural analysis by NMR spectroscopy of a transient complex between soluble and membrane proteins. PMID:15611120

  11. Spectroscopic and molecular docking studies on the charge transfer complex of bovine serum albumin with quinone in aqueous medium and its influence on the ligand binding property of the protein

    NASA Astrophysics Data System (ADS)

    Satheshkumar, Angupillai; Elango, Kuppanagounder P.

    2014-09-01

    The spectral techniques such as UV-Vis, 1H NMR and fluorescence and electrochemical experiments have been employed to investigate the interaction between 2-methoxy-3,5,6-trichloro-1,4-benzoquinone (MQ; a water soluble quinone) and bovine serum albumin (BSA) in aqueous medium. The fluorescence of BSA was quenched by MQ via formation of a 1:1 BSA-MQ charge transfer adduct with a formation constant of 3.3 × 108 L mol-1. Based on the Forster’s theory the binding distance between them is calculated as 2.65 nm indicating high probability of binding. For the first time, influence of quinone on the binding property of various types of ligands such as aspirin, ascorbic acid, nicotinimide and sodium stearate has also been investigated. The results indicated that the strong and spontaneous binding existing between BSA and MQ, decreased the intensity of binding of these ligands with BSA. Since Tryptophan (Trp) is the basic residue present in BSA, a comparison between binding property of Trp-MQ adduct with that of BSA-MQ with these ligands has also been attempted. 1H NMR titration study indicated that the Trp forms a charge transfer complex with MQ, which reduces the interaction of Trp with the ligands. Molecular docking study supported the fact that the quinone interacts with the Trp212 unit of the BSA and the free energy change of binding (ΔG) for the BSA-MQ complex was found to be -46 kJ mol-1, which is comparable to our experimental free energy of binding (-49 kJ mol-1) obtained from fluorescence study.

  12. Mapping of the Signal Peptide-Binding Domain of Escherichia coli SecA Using Förster Resonance Energy Transfer†

    PubMed Central

    Auclair, Sarah M.; Moses, Julia P.; Musial-Siwek, Monika; Kendall, Debra A.; Oliver, Donald B.; Mukerji, Ishita

    2010-01-01

    Identification of the signal peptide-binding domain within SecA ATPase is an important goal for understanding the molecular basis of SecA preprotein recognition as well as elucidating the chemo-mechanical cycle of this nanomotor during protein translocation. In this study, Förster resonance energy transfer methodology was employed to map the location of the SecA signal peptide-binding domain using a collection of functional monocysteine SecA mutants and alkaline phosphatase signal peptides labeled with appropriate donor–acceptor fluorophores. Fluorescence anisotropy measurements yielded an equilibrium binding constant of 1.4 or 10.7 μM for the alkaline phosphatase signal peptide labeled at residue 22 or 2, respectively, with SecA, and a binding stoichiometry of one signal peptide bound per SecA monomer. Binding affinity measurements performed with a monomer-biased mutant indicate that the signal peptide binds equally well to SecA monomer or dimer. Distance measurements determined for 13 SecA mutants show that the SecA signal peptide-binding domain encompasses a portion of the preprotein cross-linking domain but also includes regions of nucleotide-binding domain 1 and particularly the helical scaffold domain. The identified region lies at a multidomain interface within the heart of SecA, surrounded by and potentially responsive to domains important for binding nucleotide, mature portions of the preprotein, and the SecYEG channel. Our FRET-mapped binding domain, in contrast to the domain identified by NMR spectroscopy, includes the two-helix finger that has been shown to interact with the preprotein during translocation and lies at the entrance to the protein-conducting channel in the recently determined SecA–SecYEG structure. PMID:20025247

  13. Constant Communities in Complex Networks

    NASA Astrophysics Data System (ADS)

    Chakraborty, Tanmoy; Srinivasan, Sriram; Ganguly, Niloy; Bhowmick, Sanjukta; Mukherjee, Animesh

    2013-05-01

    Identifying community structure is a fundamental problem in network analysis. Most community detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the community. However, there has been less study on how vertex ordering influences the results of the community detection algorithms. Here we identify and study the properties of invariant groups of vertices (constant communities) whose assignment to communities are, quite remarkably, not affected by vertex ordering. The percentage of constant communities can vary across different applications and based on empirical results we propose metrics to evaluate these communities. Using constant communities as a pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study on phoneme network and illustrate that constant communities, quite strikingly, form the core functional units of the larger communities.

  14. Petrophysical applications of NMR imaging

    SciTech Connect

    Rothwell, W.P.; Vinegar, H.J.

    1985-12-01

    A system for obtaining high-resolution NMR images of oil field cores is described. Separate proton density and T/sub 2/ relaxation images are obtained to distinguish spatial variations of fluid-filled porosity and the physical nature of the pores. Results are presented for typical sandstones.

  15. QUANTITATIVE 15N NMR SPECTROSCOPY

    EPA Science Inventory

    Line intensities in 15N NMR spectra are strongly influenced by spin-lattice and spin-spin relaxation times, relaxation mechanisms and experimental conditions. Special care has to be taken in using 15N spectra for quantitative purposes. Quantitative aspects are discussed for the 1...

  16. Backbone and side chain NMR assignments for the ribosome assembly factor Nop6 from Saccharomyces cerevisiae.

    PubMed

    Wurm, Jan Philip; Lioutikov, Anatoli; Kötter, Peter; Entian, Karl-Dieter; Wöhnert, Jens

    2014-10-01

    The Saccharomyces cerevisiae Nop6 protein is involved in the maturation of the small ribosomal subunit. It contains a central RNA binding domain and a predicted C-terminal coiled-coil domain. Here we report the almost complete (>90%) (1)H,(13)C,(15)N backbone and side chain NMR assignment of a 15 kDa Nop6 construct comprising the RNA binding and coiled-coil domains. PMID:23921755

  17. Benchmark calculations of the shielding constants in the water dimer

    NASA Astrophysics Data System (ADS)

    Pecul, Magdalena; Lewandowski, Józef; Sadlej, Joanna

    2001-01-01

    The NMR shielding constants in (H 2O) 2 have been calculated using GIAO-SCF, MP2, MP4 and CCSD methods and for a range of basis sets. According to the obtained results the 6-311++G ** or aug-cc-pVDZ basis sets are recommended for SCF calculations, and the aug-cc-pVXZ series is suggested for correlated calculations of the interaction-induced changes in the shielding constants. The counterpoise correction improves the results towards the basis set limit and is essential in the case of 17O shielding. Correlation effects are substantial for the changes in 17O shielding, less so for 1H shielding. They are overestimated by the MP2 method.

  18. Human liver aldehyde dehydrogenase: coenzyme binding

    SciTech Connect

    Kosley, L.L.; Pietruszko, R.

    1987-05-01

    The binding of (U-/sup 14/C) NAD to mitochondrial (E2) and cytoplasmin(E1) aldehyde dehydrogenase was measured by gel filtration and sedimentation techniques. The binding data for NAD and (E1) yielded linear Scatchard plots giving a dissociation constant of 25 (+/- 8) uM and the stoichiometry of 2 mol of NAD bound per mol of E1. The binding data for NAD and (E2) gave nonlinear Scatchard plots. The binding of NADH to E2 was measured via fluorescence enhancement; this could not be done with E1 because there was no signal. The dissociation constant for E2 by this technique was 0.7 (+/- 0.4) uM and stoichiometry of 1.0 was obtained. The binding of (U-/sup 14/C) NADH to (E1) and (E2) was also measured by the sedimentation technique. The binding data for (E1) and NADH gave linear Scatchard plots giving a dissociation constant of 13 (+/- 6) uM and the stoichiometry of 2.0. The binding data for NADH to (E2) gave nonlinear Scatchard plots. With (E1), the dissociation constants for both NAD and NADH are similar to those determined kinetically, but the stoichiometry is only half of that found by stopped flow technique. With (E2) the dissociation constant by fluorometric procedure was 2 orders of magnitude less than that from catalytic reaction.

  19. Solid state NMR strategy for characterizing native membrane protein structures.

    PubMed

    Murray, Dylan T; Das, Nabanita; Cross, Timothy A

    2013-09-17

    Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the

  20. Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers.

    PubMed

    Azhar, Mueed; Greiner, Andreas; Korvink, Jan G; Kauzlarić, David

    2016-06-28

    We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered. PMID:27369491