Science.gov

Sample records for nmr metabolite profiling

  1. Rapid Etiological Classification of Meningitis by NMR Spectroscopy Based on Metabolite Profiles and Host Response

    PubMed Central

    Himmelreich, Uwe; Malik, Richard; Kühn, Till; Daniel, Heide-Marie; Somorjai, Ray L.; Dolenko, Brion; Sorrell, Tania C.

    2009-01-01

    Bacterial meningitis is an acute disease with high mortality that is reduced by early treatment. Identification of the causative microorganism by culture is sensitive but slow. Large volumes of cerebrospinal fluid (CSF) are required to maximise sensitivity and establish a provisional diagnosis. We have utilised nuclear magnetic resonance (NMR) spectroscopy to rapidly characterise the biochemical profile of CSF from normal rats and animals with pneumococcal or cryptococcal meningitis. Use of a miniaturised capillary NMR system overcame limitations caused by small CSF volumes and low metabolite concentrations. The analysis of the complex NMR spectroscopic data by a supervised statistical classification strategy included major, minor and unidentified metabolites. Reproducible spectral profiles were generated within less than three minutes, and revealed differences in the relative amounts of glucose, lactate, citrate, amino acid residues, acetate and polyols in the three groups. Contributions from microbial metabolism and inflammatory cells were evident. The computerised statistical classification strategy is based on both major metabolites and minor, partially unidentified metabolites. This data analysis proved highly specific for diagnosis (100% specificity in the final validation set), provided those with visible blood contamination were excluded from analysis; 6–8% of samples were classified as indeterminate. This proof of principle study suggests that a rapid etiologic diagnosis of meningitis is possible without prior culture. The method can be fully automated and avoids delays due to processing and selective identification of specific pathogens that are inherent in DNA-based techniques. PMID:19390697

  2. In vivo 13C NMR metabolite profiling: potential for understanding and assessing conifer seed quality.

    PubMed

    Terskikh, Victor V; Feurtado, J Allan; Borchardt, Shane; Giblin, Michael; Abrams, Suzanne R; Kermode, Allison R

    2005-08-01

    High-resolution 13C MAS NMR spectroscopy was used to profile a range of primary and secondary metabolites in vivo in intact whole seeds of eight different conifer species native to North America, including six of the Pinaceae family and two of the Cupressaceae family. In vivo 13C NMR provided information on the total seed oil content and fatty acid composition of the major storage lipids in a non-destructive manner. In addition, a number of monoterpenes were identified in the 13C NMR spectra of conifer seeds containing oleoresin; these compounds showed marked variability in individual seeds of Pacific silver fir within the same seed lot. In imbibed conifer seeds, the 13C NMR spectra showed the presence of considerable amounts of dissolved sucrose presumed to play a protective role in the desiccation-tolerance of seeds. The free amino acids arginine and asparagine, generated as a result of storage protein mobilization, were detected in vivo during seed germination and early seedling growth. The potential for NMR to profile metabolites in a non-destructive manner in single conifer seeds and seed populations is discussed. It is a powerful tool to evaluate seed quality because of its ability to assess reserve accumulation during seed development or at seed maturity; it can also be used to monitor reserve mobilization, which is critical for seedling emergence. PMID:15996983

  3. Determination of metabolite profiles in tropical wines by 1H NMR spectroscopy and chemometrics.

    PubMed

    da Silva Neto, Humberto G; da Silva, João B P; Pereira, Giuliano E; Hallwass, Fernando

    2009-12-01

    Traditionally, wines are produced in temperate climate zones, with one harvest per year. Tropical wines are a new concept of vitiviniculture that is being developed, principally in Brazil. The new Brazilian frontier is located in the northeast region (São Francisco River Valley) in Pernambuco State, close to the equator, between 8 and 9 degrees S. Compared with other Brazilian and worldwide vineyards, the grapes of this region possess peculiar characteristics. The aim of this work is a preliminary study of commercial São Francisco River Valley wines, analyzing their metabolite profiles by (1)H NMR and chemometric methods. PMID:19810052

  4. Dolphin: a tool for automatic targeted metabolite profiling using 1D and 2D (1)H-NMR data.

    PubMed

    Gómez, Josep; Brezmes, Jesús; Mallol, Roger; Rodríguez, Miguel A; Vinaixa, Maria; Salek, Reza M; Correig, Xavier; Cañellas, Nicolau

    2014-12-01

    One of the main challenges in nuclear magnetic resonance (NMR) metabolomics is to obtain valuable metabolic information from large datasets of raw NMR spectra in a high throughput, automatic, and reproducible way. To date, established software packages used to match and quantify metabolites in NMR spectra remain mostly manually operated, leading to low resolution results and subject to inconsistencies not attributable to the NMR technique itself. Here, we introduce a new software package, called Dolphin, able to automatically quantify a set of target metabolites in multiple sample measurements using an approach based on 1D and 2D NMR techniques to overcome the inherent limitations of 1D (1)H-NMR spectra in metabolomics. Dolphin takes advantage of the 2D J-resolved NMR spectroscopy signal dispersion to avoid inconsistencies in signal position detection, enhancing the reliability and confidence in metabolite matching. Furthermore, in order to improve accuracy in quantification, Dolphin uses 2D NMR spectra to obtain additional information on all neighboring signals surrounding the target metabolite. We have compared the targeted profiling results of Dolphin, recorded from standard biological mixtures, with those of two well established approaches in NMR metabolomics. Overall, Dolphin produced more accurate results with the added advantage of being a fully automated and high throughput processing package. PMID:25370160

  5. 1H-NMR metabolite profiles of different strains of Plasmodium falciparum.

    PubMed

    Teng, Rongwei; Lehane, Adele M; Winterberg, Markus; Shafik, Sarah H; Summers, Robert L; Martin, Rowena E; van Schalkwyk, Donelly A; Junankar, Pauline R; Kirk, Kiaran

    2014-01-01

    Although efforts to understand the basis for inter-strain phenotypic variation in the most virulent malaria species, Plasmodium falciparum, have benefited from advances in genomic technologies, there have to date been few metabolomic studies of this parasite. Using 1H-NMR spectroscopy, we have compared the metabolite profiles of red blood cells infected with different P. falciparum strains. These included both chloroquine-sensitive and chloroquine-resistant strains, as well as transfectant lines engineered to express different isoforms of the chloroquine-resistance-conferring pfcrt (P. falciparum chloroquine resistance transporter). Our analyses revealed strain-specific differences in a range of metabolites. There was marked variation in the levels of the membrane precursors choline and phosphocholine, with some strains having >30-fold higher choline levels and >5-fold higher phosphocholine levels than others. Chloroquine-resistant strains showed elevated levels of a number of amino acids relative to chloroquine-sensitive strains, including an approximately 2-fold increase in aspartate levels. The elevation in amino acid levels was attributable to mutations in pfcrt. Pfcrt-linked differences in amino acid abundance were confirmed using alternate extraction and detection (HPLC) methods. Mutations acquired to withstand chloroquine exposure therefore give rise to significant biochemical alterations in the parasite. PMID:25405893

  6. NMR metabolomics profiling of blood plasma mimics shows that medium- and long-chain fatty acids differently release metabolites from human serum albumin

    NASA Astrophysics Data System (ADS)

    Jupin, M.; Michiels, P. J.; Girard, F. C.; Spraul, M.; Wijmenga, S. S.

    2014-02-01

    Metabolite profiling by NMR of body fluids is increasingly used to successfully differentiate patients from healthy individuals. Metabolites and their concentrations are direct reporters of body biochemistry. However, in blood plasma the NMR-detected free-metabolite concentrations are also strongly affected by interactions with the abundant plasma proteins, which have as of yet not been considered much in metabolic profiling. We previously reported that many of the common NMR-detected metabolites in blood plasma bind to human serum albumin (HSA) and many are released by fatty acids present in fatted HSA. HSA is the most abundant plasma protein and main transporter of endogenous and exogenous metabolites. Here, we show by NMR how the two most common fatty acids (FAs) in blood plasma - the long-chain FA, stearate (C18:0) and medium-chain FA, myristate (C14:0) - affect metabolite-HSA interaction. Of the set of 18 common NMR-detected metabolites, many are released by stearate and/or myristate, lactate appearing the most strongly affected. Myristate, but not stearate, reduces HSA-binding of phenylalanine and pyruvate. Citrate signals were NMR invisible in the presence of HSA. Only at high myristate-HSA mole ratios 11:1, is citrate sufficiently released to be detected. Finally, we find that limited dilution of blood-plasma mimics releases HSA-bound metabolites, a finding confirmed in real blood plasma samples. Based on these findings, we provide recommendations for NMR experiments for quantitative metabolite profiling.

  7. Quantitative metabolite profiling of edible onion species by NMR and HPLC-MS.

    PubMed

    Soininen, Tuula H; Jukarainen, Niko; Auriola, Seppo O K; Julkunen-Tiitto, Riitta; Karjalainen, Reijo; Vepsäläinen, Jouko J

    2014-12-15

    Allium genus is a treasure trove of valuable bioactive compounds with potentially therapeutically important properties. This work utilises HPLC-MS and a constrained total-line-shape (CTLS) approach applied to (1)H NMR spectra to quantify metabolites present in onion species to reveal important inter-species differences. Extensive differences were detected between the sugar concentrations in onion species. Yellow onion contained the highest and red onion the lowest amounts of amino acids. The main flavonol-glucosides were quercetin 3,4'-diglucoside and quercetin 4'-glucoside. In general, the levels of flavonols were, higher in yellow onions than in red onions, and garlic and leek contained a lower amount of flavonols than the other Allium species. Our results highlight how (1)H NMR together with HPLC-MS can be useful in the quantification and the identification of the most abundant metabolites, representing an efficient means to pinpoint important functional food ingredients from Allium species. PMID:25038704

  8. Assessment of peeling of Astragalus roots using 1H NMR- and UPLC-MS-based metabolite profiling.

    PubMed

    Jung, Jee-Youn; Jung, Youngae; Kim, Jin-Sup; Ryu, Do Hyun; Hwang, Geum-Sook

    2013-10-30

    A metabolomic analysis was performed to examine the postharvest processing of Astragalus membranaceus roots with a focus on the peeling procedure using (1)H NMR and UPLC-MS analyses. Principal component analysis (PCA) score plots from the (1)H NMR and UPLC-MS data showed clear separation between peeled and unpeeled Astragalus roots. Peeled roots exhibited significant losses of several primary metabolites, including acetate, alanine, arginine, caprate, fumarate, glutamate, histidine, N-acetylaspartate, malate, proline, sucrose, trigonelline, and valine. In contrast, the peeled roots contained higher levels of asparagine, aspartate, and xylose, which are xylem-related compounds, and formate, which is produced in response to wound stress incurred during postharvest processing. In addition, the levels of isoflavonoids and astragalosides were significantly reduced in peeled Astragalus root. These results demonstrate that metabolite profiling based on a combination of (1)H NMR and UPLC-MS analyses can be used to evaluate peeling procedures used in the postharvest processing of herbal medicines. PMID:24073592

  9. Comparative structural profiling of trichome specialized metabolites in tomato (Solanum lycopersicum) and S. habrochaites: acylsugar profiles revealed by UHPLC/MS and NMR.

    PubMed

    Ghosh, Banibrata; Westbrook, Thomas C; Jones, A Daniel

    2014-01-01

    Many plants accumulate large quantities of specialized metabolites in secretory glandular trichomes (SGTs), which are specialized epidermal cells. In the genus Solanum, SGTs store a diverse collection of glucose and sucrose esters. Profiling of extracts from two accessions (LA1777 and LA1392) of Solanum habrochaites using ultra-high performance liquid chromatography-mass spectrometry (UHPLC/MS) revealed wide acylsugar diversity, with up to 11 isomers annotated for each individual elemental formula. These isomers arise from differences in ester chain lengths and their positions of substitution or branching. Since fragment ion masses were not sufficient to distinguish all isomers, 24 acylsucroses were purified from S. habrochaites accessions and cultivated tomato (Solanum lycopersicum M82) and characterized using NMR spectroscopy. Two-dimensional NMR spectra yielded assignments of positions of substitution of specific acyl groups, and locations of branching. The range of substitution was wider than reported earlier, and in contrast to previous reports, tetra- and penta-acylsucroses were substituted at position 2 with acyl groups other than acetate. Because UHPLC/MS fails to yield sufficient information about structure diversity, and quantitative NMR of acylsugar mixtures is confounded by structural redundancy, the strategic combination of NMR and UHPLC/MS provides a powerful approach for profiling a class of metabolites with great structural diversity across genotypes. PMID:24772058

  10. Metabolite profiling of Curcuma species grown in different regions using 1H NMR spectroscopy and multivariate analysis.

    PubMed

    Jung, Youngae; Lee, Jueun; Kim, Ho Kyoung; Moon, Byeong Cheol; Ji, Yunui; Ryu, Do Hyun; Hwang, Geum-Sook

    2012-12-01

    Curcuma is used to treat skin diseases and colic inflammatory disorders, and in insect repellants and antimicrobial and antidiabetic medications. Two Curcuma species (C. aromatica and C. longa) grown in Jeju-do and Jin-do were used in this study. Methanolic extracts were analyzed by (1)H NMR spectroscopy, and metabolite profiling coupled with multivariate analysis was applied to characterize the differences between species or origin. PCA analysis showed significantly greater differences between species than origins, and the metabolites responsible for the differences were identified. The concentrations of sugars (glucose, fructose, and sucrose) and essential oils (eucalyptol, curdione, and germacrone) were significantly different between the two species. However, the samples from Jeju-do and Jin-do were different mainly in their concentrations of organic acids (fumarate, succinate, acetate, and formate) and sugars. This study demonstrates that NMR-based metabolomics is an efficient method for fingerprinting and determining differences between Curcuma species or those grown in different regions. PMID:23066525

  11. 1H NMR-Based Metabolite Profiling of Plasma in a Rat Model of Chronic Kidney Disease

    PubMed Central

    Kim, Ju-Ae; Choi, Hyo-Jung; Kwon, Yong-Kook; Ryu, Do Hyun; Kwon, Tae-Hwan; Hwang, Geum-Sook

    2014-01-01

    Chronic kidney disease (CKD) is characterized by the gradual loss of the kidney function to excrete wastes and fluids from the blood. 1H NMR-based metabolomics was exploited to investigate the altered metabolic pattern in rats with CKD induced by surgical reduction of the renal mass (i.e., 5/6 nephrectomy (5/6 Nx)), particularly for identifying specific metabolic biomarkers associated with early of CKD. Plasma metabolite profiling was performed in CKD rats (at 4- or 8-weeks after 5/6 Nx) compared to sham-operated rats. Principle components analysis (PCA), partial least squares-discriminant analysis (PLS-DA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) score plots showed a significant separation between the groups. The resulting metabolic profiles demonstrated significantly increased plasma levels of organic anions, including citrate, β-hydroxybutyrate, lactate, acetate, acetoacetate, and formate in CKD. Moreover, levels of alanine, glutamine, and glutamate were significantly higher. These changes were likely to be associated with complicated metabolic acidosis in CKD for counteracting systemic metabolic acidosis or increased protein catabolism from muscle. In contrast, levels of VLDL/LDL (CH2)n and N-acetylglycoproteins were decreased. Taken together, the observed changes of plasma metabolite profiles in CKD rats provide insights into the disturbed metabolism in early phase of CKD, in particular for the altered metabolism of acid-base and/or amino acids. PMID:24465563

  12. 15N-Cholamine – A Smart Isotope Tag for Combining NMR- and MS-Based Metabolite Profiling

    PubMed Central

    Tayyari, Fariba; Nagana Gowda, G. A.; Gu, Haiwei; Raftery, Daniel

    2013-01-01

    Recently, the enhanced resolution and sensitivity offered by chemoselective isotope tags have enabled new and enhanced methods for detecting hundreds of quantifiable metabolites in biofluids using nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry. However, the inability to effectively detect the same metabolites using both complementary analytical techniques has hindered the correlation of data derived from the two powerful platforms and thereby the maximization of their combined strengths for applications such as biomarker discovery of the identification of unknown metabolites. With the goal of alleviating this bottleneck, we describe a smart isotope tag, 15N-cholamine, which possesses two important properties: an NMR sensitive isotope, and a permanent charge for MS sensitivity. Using this tag, we demonstrate the detection of carboxyl group containing metabolites in both human serum and urine. By combining the individual strengths of the 15N label and permanent charge, the smart isotope tag facilitates effective detection of the carboxyl-containing metabolome by both analytical methods. This study demonstrates a unique approach to exploit the combined strength of MS and NMR in the field of metabolomics. PMID:23930664

  13. Identification of Metabolites from LC-EC Profiling: GC-MS and Re-Fractionation Provide Essential Information Orthogonal to LCMS/microNMR

    PubMed Central

    Gathungu, Rose M.; Bird, Susan S.; Sheldon, Diane P.; Kautz, Roger; Vouros, Paul; Matson, Wayne R.; Kristal, Bruce S.

    2014-01-01

    HPLC-coulometric electrode-array detection (LC-EC) is a sensitive, quantitative and robust metabolomics profiling tool that complements the commonly used MS and NMR-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling, combined with LC-ESI-MS and microNMR. This methodology is now extended to include: (i) GC-EI-MS analysis to fill structural gaps left by LC-ESI-MS and NMR, and (ii) secondary fractionation of LC-collected fractions containing multiple co-eluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion-suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples, including: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in 1H NMR, or non-volatile species in GC-MS).; (ii) detection of labile compounds, (iii) resolution of closely eluting and/or co-eluting compounds and, (iv) the capability to harness structural similarities common in many biologically-related, LC-EC detectable compounds. PMID:24657819

  14. NMR-based metabolite profiling of human milk: A pilot study of methods for investigating compositional changes during lactation.

    PubMed

    Wu, Junfang; Domellöf, Magnus; Zivkovic, Angela M; Larsson, Göran; Öhman, Anders; Nording, Malin L

    2016-01-15

    Low-molecular-weight metabolites in human milk are gaining increasing interest in studies of infant nutrition. In the present study, the milk metabolome from a single mother was explored at different stages of lactation. Metabolites were extracted from sample aliquots using either methanol/water (MeOH/H2O) extraction or ultrafiltration. Nuclear magnetic resonance (NMR) spectroscopy was used for metabolite identification and quantification, and multi- and univariate statistical data analyses were used to detect changes over time of lactation. Compared to MeOH/H2O extraction, ultrafiltration more efficiently reduced the interference from lipid and protein resonances, thereby enabling the identification and quantification of 36 metabolites. The human milk metabolomes at the early (9-24 days after delivery) and late (31-87 days after delivery) stages of lactation were distinctly different according to multi- and univariate statistics. The late lactation stage was characterized by significantly elevated concentrations of lactose, choline, alanine, glutamate, and glutamine, as well as by reduced levels of citrate, phosphocholine, glycerophosphocholine, and N-acetylglucosamine. Our results indicate that there are significant compositional changes of the human milk metabolome also in different phases of the matured lactation stage. These findings complement temporal studies on the colostrum and transitional metabolome in providing a better understanding of the nutritional variations received by an infant. PMID:26655810

  15. Software-assisted serum metabolite quantification using NMR.

    PubMed

    Jung, Young-Sang; Hyeon, Jin-Seong; Hwang, Geum-Sook

    2016-08-31

    The goal of metabolomics is to analyze a whole metabolome under a given set of conditions, and accurate and reliable quantitation of metabolites is crucial. Absolute concentration is more valuable than relative concentration; however, the most commonly used method in NMR-based serum metabolic profiling, bin-based and full data point peak quantification, provides relative concentration levels of metabolites and are not reliable when metabolite peaks overlap in a spectrum. In this study, we present the software-assisted serum metabolite quantification (SASMeQ) method, which allows us to identify and quantify metabolites in NMR spectra using Chenomx software. This software uses the ERETIC2 utility from TopSpin to add a digitally synthesized peak to a spectrum. The SASMeQ method will advance NMR-based serum metabolic profiling by providing an accurate and reliable method for absolute quantification that is superior to bin-based quantification. PMID:27506360

  16. A NMR-based, non-targeted multistep metabolic profiling revealed L-rhamnitol as a metabolite that characterised apples from different geographic origins.

    PubMed

    Tomita, Satoru; Nemoto, Tadashi; Matsuo, Yosuke; Shoji, Toshihiko; Tanaka, Fukuyo; Nakagawa, Hiroyuki; Ono, Hiroshi; Kikuchi, Jun; Ohnishi-Kameyama, Mayumi; Sekiyama, Yasuyo

    2015-05-01

    This study utilises (1)H NMR-based metabolic profiling to characterise apples of five cultivars grown either in Japan (Fuji, Orin, and Jonagold) or New Zealand (Fuji, Jazz, and Envy). Principal component analysis (PCA) showed a clear separation between the Fuji-Orin-Jonagold class and the Jazz-Envy class, primarily corresponding to the differences in sugar signals, such as sucrose, glucose, and fructose. Multistep PCA removed the influence of dominant sugars and highlighted minor metabolites such as aspartic acid, 2-methylmalate, and an unidentified compound. These minor metabolites separated the apples into two classes according to different geographical areas. Subsequent partial least squares discriminant analysis (PLS-DA) indicated the importance of the unidentified metabolite. This metabolite was isolated using charcoal chromatography, and was identified as L-rhamnitol by 2D NMR and LC/MS analyses. The remarkable contribution of L-rhamnitol to geographic discrimination suggests that apples may be characterised according to various factors, including storage duration, cultivation method, and climate. PMID:25529666

  17. Identification of metabolites from liquid chromatography-coulometric array detection profiling: gas chromatography-mass spectrometry and refractionation provide essential information orthogonal to LC-MS/microNMR.

    PubMed

    Gathungu, Rose M; Bird, Susan S; Sheldon, Diane P; Kautz, Roger; Vouros, Paul; Matson, Wayne R; Kristal, Bruce S

    2014-06-01

    Liquid chromatography-coulometric array detection (LC-EC) is a sensitive, quantitative, and robust metabolomics profiling tool that complements the commonly used mass spectrometry (MS) and nuclear magnetic resonance (NMR)-based approaches. However, LC-EC provides little structural information. We recently demonstrated a workflow for the structural characterization of metabolites detected by LC-EC profiling combined with LC-electrospray ionization (ESI)-MS and microNMR. This methodology is now extended to include (i) gas chromatography (GC)-electron ionization (EI)-MS analysis to fill structural gaps left by LC-ESI-MS and NMR and (ii) secondary fractionation of LC-collected fractions containing multiple coeluting analytes. GC-EI-MS spectra have more informative fragment ions that are reproducible for database searches. Secondary fractionation provides enhanced metabolite characterization by reducing spectral overlap in NMR and ion suppression in LC-ESI-MS. The need for these additional methods in the analysis of the broad chemical classes and concentration ranges found in plasma is illustrated with discussion of four specific examples: (i) characterization of compounds for which one or more of the detectors is insensitive (e.g., positional isomers in LC-MS, the direct detection of carboxylic groups and sulfonic groups in (1)H NMR, or nonvolatile species in GC-MS), (ii) detection of labile compounds, (iii) resolution of closely eluting and/or coeluting compounds, and (iv) the capability to harness structural similarities common in many biologically related, LC-EC-detectable compounds. PMID:24657819

  18. Comparative metabolite profiling and fingerprinting of genus Passiflora leaves using a multiplex approach of UPLC-MS and NMR analyzed by chemometric tools.

    PubMed

    Farag, Mohamed A; Otify, Asmaa; Porzel, Andrea; Michel, Camilia George; Elsayed, Aly; Wessjohann, Ludger A

    2016-05-01

    Passiflora incarnata as well as some other Passiflora species are reported to possess anxiolytic and sedative activity and to treat various CNS disorders. The medicinal use of only a few Passiflora species has been scientifically verified. There are over 400 species in the Passiflora genus worldwide, most of which have been little characterized in terms of phytochemical or pharmacological properties. Herein, large-scale multi-targeted metabolic profiling and fingerprinting techniques were utilized to help gain a broader insight into Passiflora species leaves' chemical composition. Nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS) spectra of extracted components derived from 17 Passiflora accessions and from different geographical origins were analyzed using multivariate data analyses. A total of 78 metabolites were tentatively identified, that is, 20 C-flavonoids, 8 O-flavonoids, 21 C, O-flavonoids, 2 cyanogenic glycosides, and 23 fatty acid conjugates, of which several flavonoid conjugates are for the first time to be reported in Passiflora spp. To the best of our knowledge, this study provides the most complete map for secondary metabolite distribution within that genus. Major signals in (1)H-NMR and MS spectra contributing to species discrimination were assigned to those of C-flavonoids including isovitexin-2″-O-xyloside, luteolin-C-deoxyhexoside-O-hexoside, schaftoside, isovitexin, and isoorientin. P. incarnata was found most enriched in C-flavonoids, justifying its use as an official drug within that genus. Compared to NMR, LC-MS was found more effective in sample classification based on genetic and/ or geographical origin as revealed from derived multivariate data analyses. Novel insight on metabolite candidates to mediate for Passiflora CNS sedative effects is also presented. PMID:26883968

  19. The Use of NMR Metabolite Profiling and in vivo Hypoglycemic Assay for Comparison of Unfractionated Aqueous Leaf Extracts of Two Ocimum Species.

    PubMed

    Casanova, Livia Marques; Espíndola-Netto, Jair Machado; Tinoco, Luzineide Wanderley; Sola-Penna, Mauro; Costa, Sônia Soares

    2016-06-01

    Ocimum basilicum and Ocimum gratissimum (Lamiaceae) are used to treat diabetes mellitus in Africa. In a previous work, we identified chicoric acid as a hypoglycemic substance in O. gratissimum. This study aims to compare the chemical metabolite profile and the hypoglycemic activity of unfractionated aqueous extracts from leaves of both Lamiaceae species. The metabolite composition of OB and OG decoctions (10% w/v) was analyzed using HPLC-DAD and NMR tools. Chicoric acid showed to be the major phenolic in both extracts, besides caftaric, caffeic, and rosmarinic acids; nevertheless, there is approximately three times more of this substance in OG. From 1D- and 2D-NMR analyses, 19 substances were identified in OB, while 12 in OG. The in vivo acute hypoglycemic activity of the extracts was assessed intraperitoneally in streptozotocin (STZ)-induced diabetic mice. The doses of 100 and 200 mg/kg of both extracts significantly reduced their glycemia, compared to controls (P < 0.05). OB was a little more effective than OG, despite the lower content of chicoric acid in OB. This result strongly suggests that components other than chicoric acid contribute to the hypoglycemic activity of the two extracts. Despite the abundance of caffeic and rosmarinic acids in OB, their hypoglycemic activity observed at 8.3 μmol/kg was low. This is the first chemical profile of crude extracts from Ocimum species by NMR. Our findings confirmed the potential of both species in DM treatment in spite of marked differences in their chemical composition. However, long-term studies are necessary in order to identify the most promising of the two species for the development of an herbal medicine. PMID:27218231

  20. A comparison of metabolite extraction strategies for 1H-NMR-based metabolic profiling using mature leaf tissue from the model plant Arabidopsis thaliana.

    PubMed

    Kaiser, Kayla A; Barding, Gregory A; Larive, Cynthia K

    2009-12-01

    Metabolite analysis is recognized as an important facet of systems biology, however complete metabolome characterization has not been realized due to challenges in sample preparation, inherent instrumental limitations and the labor intensive task of data interpretation. This work aims to compare several commonly used metabolite extraction strategies for their effect on the (1)H nuclear magnetic resonance (NMR) metabolic profile of extracts of the model plant Arabidopsis thaliana. Extractions were carried out on aliquots from a pool of homogenized plant tissue using CD(3)CN/D(2)O, buffered D(2)O, perchloric acid in D(2)O, CD(3)OD/D(2)O and CD(3)OD/D(2)O/CDCl(3) as the extraction solvents. The effects of lyophilization as a sample pretreatment, solvent evaporation and extract fractionation for removal of interfering species were studied. Representative spectra are presented for qualitative interpretation. Analytical reproducibility was evaluated by principal components analysis. Perchloric acid facilitated acid-catalyzed cleavage of sucrose, further complicating biological interpretation of the resulting metabolite profile. The solvent system CD(3)OD/D(2)O/CDCl(3) gave the least reproducible results in our hands. D(2)O extracts suffered from poor stability probably due to contamination by soluble enzymes, which were not denatured in this solvent. CD(3)CN/D(2)O extracts showed greater stability than D(2)O alone, but problems were encountered due to degradation of (1)H NMR spectral resolution during lengthy acquisitions due to partial phase separation. In addition, this solvent system produced spectra with significant contamination by lipids that obscured spectral regions containing the resonances of the aliphatic amino acids. These problems were solved by speedvacuuming the CD(3)CN/D(2)O extract and reconstituting in D(2)O solution. PMID:19551810

  1. Quantitating Metabolites in Protein Precipitated Serum Using NMR Spectroscopy

    PubMed Central

    2015-01-01

    Quantitative NMR-based metabolite profiling is challenged by the deleterious effects of abundant proteins in the intact blood plasma/serum, which underscores the need for alternative approaches. Protein removal by ultrafiltration using low molecular weight cutoff filters thus represents an important step. However, protein precipitation, an alternative and simple approach for protein removal, lacks detailed quantitative assessment for use in NMR based metabolomics. In this study, we have comprehensively evaluated the performance of protein precipitation using methanol, acetonitrile, perchloric acid, and trichloroacetic acid and ultrafiltration approaches using 1D and 2D NMR, based on the identification and absolute quantitation of 44 human blood metabolites, including a few identified for the first time in the NMR spectra of human serum. We also investigated the use of a “smart isotope tag,” 15N-cholamine for further resolution enhancement, which resulted in the detection of a number of additional metabolites. 1H NMR of both protein precipitated and ultrafiltered serum detected all 44 metabolites with comparable reproducibility (average CV, 3.7% for precipitation; 3.6% for filtration). However, nearly half of the quantified metabolites in ultrafiltered serum exhibited 10–74% lower concentrations; specifically, tryptophan, benzoate, and 2-oxoisocaproate showed much lower concentrations compared to protein precipitated serum. These results indicate that protein precipitation using methanol offers a reliable approach for routine NMR-based metabolomics of human blood serum/plasma and should be considered as an alternative to ultrafiltration. Importantly, protein precipitation, which is commonly used by mass spectrometry (MS), promises avenues for direct comparison and correlation of metabolite data obtained from the two analytical platforms to exploit their combined strength in the metabolomics of blood. PMID:24796490

  2. Defensive Armor of Potato Tubers: Nonpolar Metabolite Profiling, Antioxidant Assessment, and Solid-State NMR Compositional Analysis of Suberin-Enriched Wound-Healing Tissues.

    PubMed

    Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C; Huang, Wenlin; Serra, Olga; Stark, Ruth E

    2015-08-01

    The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative (13)C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar. PMID:26166447

  3. Defensive Armor of Potato Tubers: Nonpolar Metabolite Profiling, Antioxidant Assessment, and Solid-State NMR Compositional Analysis of Suberin-Enriched Wound-Healing Tissues

    PubMed Central

    Dastmalchi, Keyvan; Kallash, Linda; Wang, Isabel; Phan, Van C.; Huang, Wenlin; Serra, Olga; Stark, Ruth E.

    2016-01-01

    The cultivation, storage, and distribution of potato tubers are compromised by mechanical damage and suboptimal healing. To investigate wound-healing progress in cultivars with contrasting russeting patterns, metabolite profiles reported previously for polar tissue extracts were complemented by GC/MS measurements for nonpolar extracts and quantitative 13C NMR of interfacial solid suspensions. Potential marker compounds that distinguish cultivar type and wound-healing time point included fatty acids, fatty alcohols, alkanes, glyceryl esters, α,ω-fatty diacids, and hydroxyfatty acids. The abundant long-chain fatty acids in nonpolar extracts and solids from the smooth-skinned Yukon Gold cultivar suggested extensive suberin biopolymer formation; this hypothesis was supported by high proportions of arenes, alkenes, and carbonyl groups in the solid and among the polar markers. The absence of many potential marker classes in nonpolar Atlantic extracts and interfacial solids suggested a limited extent of suberization. Modest scavenging activities of all nonpolar extracts indicate that the majority of antioxidants produced in response to wounding are polar. PMID:26166447

  4. (1)H NMR-based metabolite profiling workflow to reduce inter-sample chemical shift variations in urine samples for improved biomarker discovery.

    PubMed

    Gil, Ryan B; Lehmann, Rainer; Schmitt-Kopplin, Philippe; Heinzmann, Silke S

    2016-07-01

    Metabolite profiling of urine has seen much advancement in recent years, and its analysis by nuclear magnetic resonance (NMR) spectroscopy has become well established. However, the highly variable nature of human urine still requires improved protocols despite some standardization. In particular, diseases such as kidney disease can have a profound effect on the composition of urine and generate a highly diverse sample set for clinical studies. Large variations in pH and the cationic concentration of urine play an important role in creating positional noise within datasets generated from NMR. We demonstrate positional noise to be a confounding variable for multivariate statistical tools such as statistical total correlation spectroscopy (STOCSY), thereby hindering the process of biomarker discovery. We present a two-dimensional buffering system using potassium fluoride (KF) and phosphate buffer to reduce positional noise in metabolomic data generated from urine samples with various levels of proteinuria. KF reduces positional noise in citrate peaks, by decreasing the mean relative standard deviation (RSD) from 0.17 to 0.09. By reducing positional noise with KF, STOCSY analysis of citrate peaks saw significant improvement. We further aligned spectral data using a recursive segment-wise peak alignment (RSPA) method, which leads to further improvement of the positional noise (RSD = 0.06). These results were validated using diverse selection of metabolites which lead to an overall improvement in positional noise using the suggested protocol. In summary, we provide an improved workflow for urine metabolite biomarker discovery to achieve higher data quality for better pathophysiological understanding of human diseases. Graphical abstract Citrate peaks in the range 2.75-2.5 ppm from datasets with different sample preparation protocols and with/without in silico alignment. A Citrate peaks with standard phosphate buffering and without in silico alignment. B citrate

  5. Toward an in Vivo Neurochemical Profile: Quantification of 18 Metabolites in Short-Echo-Time 1H NMR Spectra of the Rat Brain

    NASA Astrophysics Data System (ADS)

    Pfeuffer, Josef; Tkáč , Ivan; Provencher, Stephen W.; Gruetter, Rolf

    1999-11-01

    Localized in vivo1H NMR spectroscopy was performed with 2-ms echo time in the rat brain at 9.4 T. Frequency domain analysis with LCModel showed that the in vivo spectra can be explained by 18 metabolite model solution spectra and a highly structured background, which was attributed to resonances with fivefold shorter in vivo T1 than metabolites. The high spectral resolution (full width at half maximum approximately 0.025 ppm) and sensitivity (signal-to-noise ratio approximately 45 from a 63-μL volume, 512 scans) was used for the simultaneous measurement of the concentrations of metabolites previously difficult to quantify in 1H spectra. The strongly represented signals of N-acetylaspartate, glutamate, taurine, myo-inositol, creatine, phosphocreatine, glutamine, and lactate were quantified with Cramér-Rao lower bounds below 4%. Choline groups, phosphorylethanolamine, glucose, glutathione, γ-aminobutyric acid, N-acetylaspartylglutamate, and alanine were below 13%, whereas aspartate and scyllo-inositol were below 22%. Intra-assay variation was assessed from a time series of 3-min spectra, and the coefficient of variation was similar to the calculated Cramér-Rao lower bounds. Interassay variation was determined from 31 pooled spectra, and the coefficient of variation for total creatine was 7%. Tissue concentrations were found to be in very good agreement with neurochemical data from the literature.

  6. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments

    PubMed Central

    Dona, Anthony C.; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A.; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R.

    2016-01-01

    Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC–MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice. PMID:27087910

  7. Metabolic responses of willow (Salix purpurea L.) leaves to mycorrhization as revealed by mass spectrometry and 1H NMR spectroscopy metabolite profiling

    PubMed Central

    Aliferis, Konstantinos A.; Chamoun, Rony; Jabaji, Suha

    2015-01-01

    The root system of most terrestrial plants form symbiotic interfaces with arbuscular mycorrhizal fungi (AMF), which are important for nutrient cycling and ecosystem sustainability. The elucidation of the undergoing changes in plants' metabolism during symbiosis is essential for understanding nutrient acquisition and for alleviation of soil stresses caused by environmental cues. Within this context, we have undertaken the task of recording the fluctuation of willow (Salix purpurea L.) leaf metabolome in response to AMF inoculation. The development of an advanced metabolomics/bioinformatics protocol employing mass spectrometry (MS) and 1H NMR analyzers combined with the in-house-built metabolite library for willow (http://willowmetabolib.research.mcgill.ca/index.html) are key components of the research. Analyses revealed that AMF inoculation of willow causes up-regulation of various biosynthetic pathways, among others, those of flavonoid, isoflavonoid, phenylpropanoid, and the chlorophyll and porphyrin pathways, which have well-established roles in plant physiology and are related to resistance against environmental stresses. The recorded fluctuation in the willow leaf metabolism is very likely to provide AMF-inoculated willows with a significant advantage compared to non-inoculated ones when they are exposed to stresses such as, high levels of soil pollutants. The discovered biomarkers of willow response to AMF inoculation and corresponding pathways could be exploited in biomarker-assisted selection of willow cultivars with superior phytoremediation capacity or genetic engineering programs. PMID:26042135

  8. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  9. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR

    PubMed Central

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their 1H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  10. Metabolite localization in living drosophila using High Resolution Magic Angle Spinning NMR.

    PubMed

    Sarou-Kanian, Vincent; Joudiou, Nicolas; Louat, Fanny; Yon, Maxime; Szeremeta, Frédéric; Même, Sandra; Massiot, Dominique; Decoville, Martine; Fayon, Franck; Beloeil, Jean-Claude

    2015-01-01

    We have developed new methods enabling in vivo localization and identification of metabolites through their (1)H NMR signatures, in a drosophila. Metabolic profiles in localized regions were obtained using HR-MAS Slice Localized Spectroscopy and Chemical Shift Imaging at high magnetic fields. These methods enabled measurement of metabolite contents in anatomic regions of the fly, demonstrated by a decrease in β-alanine signals in the thorax of flies showing muscle degeneration. PMID:25892587

  11. Untargeted NMR-based methodology in the study of fruit metabolites.

    PubMed

    Sobolev, Anatoly Petrovich; Mannina, Luisa; Proietti, Noemi; Carradori, Simone; Daglia, Maria; Giusti, Anna Maria; Antiochia, Riccarda; Capitani, Donatella

    2015-01-01

    In this review, fundamental aspects of the untargeted NMR-based methodology applied to fruit characterization are described. The strategy to perform the structure elucidation of fruit metabolites is discussed with some examples of spectral assignments by 2D experiments. Primary ubiquitous metabolites as well as secondary species-specific metabolites, identified in different fruits using an untargeted 1H-NMR approach, are summarized in a comprehensive way. Crucial aspects regarding the quantitative elaboration of spectral data are also discussed. The usefulness of the NMR-based metabolic profiling was highlighted using some results regarding quality, adulteration, varieties and geographical origin of fruits and fruit-derived products such as juices. PMID:25749679

  12. NMR identification of endogenous metabolites interacting with fatted and non-fatted human serum albumin in blood plasma: Fatty acids influence the HSA-metabolite interaction

    NASA Astrophysics Data System (ADS)

    Jupin, Marc; Michiels, Paul J.; Girard, Frederic C.; Spraul, Manfred; Wijmenga, Sybren S.

    2013-03-01

    Metabolites and their concentrations are direct reporters on body biochemistry. Thanks to technical developments metabolic profiling of body fluids, such as blood plasma, by for instance NMR has in the past decade become increasingly accurate enabling successful clinical diagnostics. Human Serum Albumin (HSA) is the main plasma protein (˜60% of all plasma protein) and responsible for the transport of endogenous (e.g. fatty acids) and exogenous metabolites, which it achieves thanks to its multiple binding sites and its flexibility. HSA has been extensively studied with regard to its binding of drugs (exogenous metabolites), but only to a lesser extent with regard to its binding of endogenous (non-fatty acid) metabolites. To obtain correct NMR measured metabolic profiles of blood plasma and/or potentially extract information on HSA and fatty acids content, it is necessary to characterize these endogenous metabolite/plasma protein interactions. Here, we investigate these metabolite-HSA interactions in blood plasma and blood plasma mimics. The latter contain the roughly twenty metabolites routinely detected by NMR (also most abundant) in normal relative concentrations with fatted or non-fatted HSA added or not. First, we find that chemical shift changes are small and seen only for a few of the metabolites. In contrast, a significant number of the metabolites display reduced resonance integrals and reduced free concentrations in the presence of HSA or fatted HSA. For slow-exchange (or strong) interactions, NMR resonance integrals report the free metabolite concentration, while for fast exchange (weak binding) the chemical shift reports on the binding. Hence, these metabolites bind strongly to HSA and/or fatted HSA, but to a limited degree because for most metabolites their concentration is smaller than the HSA concentration. Most interestingly, fatty acids decrease the metabolite-HSA binding quite significantly for most of the interacting metabolites. We further find

  13. NMR ANALYSIS OF MALE FATHEAD MINNOW URINARY METABOLITES: A POTENTIAL APPROACH FOR STUDYING IMPACTS OF CHEMICAL EXPOSURES

    EPA Science Inventory

    The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...

  14. Identifying metabolites related to nitrogen mineralisation using 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    . T McDonald, Noeleen; Graham, Stewart; Watson, Catherine; Gordon, Alan; Lalor, Stan; Laughlin, Ronnie; Elliott, Chris; . P Wall, David

    2015-04-01

    Exploring new analysis techniques to enhance our knowledge of the various metabolites within our soil systems is imperative. Principally, this knowledge would allow us to link key metabolites with functional influences on critical nutrient processes, such as the nitrogen (N) mineralisation in soils. Currently there are few studies that utilize proton nuclear magnetic resonance spectroscopy (1H NMR) to characterize multiple metabolites within a soil sample. The aim of this research study was to examine the effectiveness of 1H NMR for isolating multiple metabolites that are related to the mineralizable N (MN) capacity across a range of 35 Irish grassland soils. Soils were measured for MN using the standard seven day anaerobic incubation (AI-7). Additionally, soils were also analysed for a range of physio-chemical properties [e.g. total N, total C, mineral N, texture and soil organic matter (SOM)]. Proton NMR analysis was carried on these soils by extracting with 40% methanol:water, lyophilizing and reconstituting in deuterium oxide and recording the NMR spectra on a 400MHz Bruker AVANCE III spectrometer. Once the NMR data were spectrally processed and analysed using multivariate statistical analysis, seven metabolites were identified as having significant relationships with MN (glucose, trimethylamine, glutamic acid, serine, aspartic acid, 4-aminohippuirc acid and citric acid). Following quantification, glucose was shown to explain the largest percentage variability in MN (72%). These outcomes suggest that sources of labile carbon are essential in regulating N mineralisation and the capacity of plant available N derived from SOM-N pools in these soils. Although, smaller in concentration, the amino acids; 4-aminohippuirc acid, glutamic acid and serine also significantly (P<0.05) explained 43%, 27% and 19% of the variability in MN, respectively. This novel study highlights the effectiveness of using 1H NMR as a practical approach to profile multiple metabolites in

  15. Nuclear Magnetic Resonance (NMR) Spectroscopy For Metabolic Profiling of Medicinal Plants and Their Products.

    PubMed

    Kumar, Dinesh

    2016-09-01

    NMR spectroscopy has multidisciplinary applications, including excellent impact in metabolomics. The analytical capacity of NMR spectroscopy provides information for easy qualitative and quantitative assessment of both endogenous and exogenous metabolites present in biological samples. The complexity of a particular metabolite and its contribution in a biological system are critically important for understanding the functional state that governs the organism's phenotypes. This review covers historical aspects of developments in the NMR field, its applications in chemical profiling, metabolomics, and quality control of plants and their derived medicines, foods, and other products. The bottlenecks of NMR in metabolic profiling are also discussed, keeping in view the future scope and further technological interventions. PMID:26575437

  16. CHARACTERIZATION OF METABOLITES IN SMALL FISH BIOFLUIDS AND TISSUES BY NMR SPECTROSCOPY

    EPA Science Inventory

    Nuclear magnetic resonance (NMR) spectroscopy has been utilized for assessing ecotoxicity in small fish models by means of metabolomics. Two fundamental challenges of NMR-based metabolomics are the detection limit and characterization of metabolites (or NMR resonance assignments...

  17. NMR spectroscopy as a tool to close the gap on metabolite characterization under MIST.

    PubMed

    Caceres-Cortes, Janet; Reily, Michael D

    2010-07-01

    Withdrawals from the market due to unforeseen adverse events have triggered changes in the way therapeutics are discovered and developed. This has resulted in an emphasis on truly understanding the efficacy and toxicity profile of new chemical entities (NCE) and the contributions of their metabolites to on-target pharmacology and off-target receptor-mediated toxicology. Members of the pharmaceutical industry, scientific community and regulatory agencies have held dialogues with respect to metabolites in safety testing (MIST); and both the US FDA and International Conference on Harmonisation have issued guidances with respect to when and how to characterize metabolites for human safety testing. This review provides a brief overview of NMR spectroscopy as applied to the structure elucidation and quantification of drug metabolites within the drug discovery and development process. It covers advances in this technique, including cryogenic cooling of detection circuitry for enhanced sensitivity, hyphenated LC-NMR techniques, improved dynamic range through new solvent-suppression pulse sequences and quantitation. These applications add to the already diverse NMR toolkit and further anchor NMR as a technique that is directly applicable to meeting the requirements of MIST guidelines. PMID:21083239

  18. METABOLITE PROFILING OF ECHINACEA GENOTYPES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Echinacea extracts have historically been used as herbal remedies to treat colds, coughs and snake bites. Echinacea products are currently sold as a popular herbal-remedy used for general enhancement of the immune system. However, the genetic variation in metabolites has not been systematically ch...

  19. Identification of novel hydrazine metabolites by 15N-NMR.

    PubMed

    Preece, N E; Nicholson, J K; Timbrell, J A

    1991-05-01

    15N-NMR has been used to study the metabolism of hydrazine in rats in vivo. Single doses of [15N2]hydrazine (2.0 mmol/kg: 98.6% g atom) were administered to rats and urine collected for 24 hr over ice. A number of metabolites were detected by 15N-NMR analysis of lyophilized urine. Ammonia was detected as a singlet at 0 ppm and unchanged [15N2]hydrazine was present in the urine detectable as a singlet at 32 ppm. Peaks were observed at 107 and 110 ppm which were identified as being due to the hydrazido nitrogen of acetylhydrazine and diacetylhydrazine, respectively. A resonance at 85 ppm was ascribed to carbazic acid, resulting from reaction of hydrazine with carbon dioxide. A singlet detected at 316 ppm was thought to be due to the hydrazono nitrogen of the pyruvate hydrazone. The resonance at 56 ppm was assigned to 15N-enriched urea, this together with the presence of ammonia indicates that the N-N bond of hydrazine is cleaved in vivo, possibly by N-oxidation, and the resultant ammonia is incorporated into urea. A doublet centred at 150 ppm and a singlet at 294 ppm were assigned to a metabolite which results from cyclization of the 2-oxoglutarate hydrazone. Therefore 15N-NMR spectroscopic analysis of urine has yielded significant new information on the metabolism of hydrazine. PMID:2018564

  20. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoaceticum metabolic profiles

    SciTech Connect

    Xue, Junfeng; Isern, Nancy G.; Ewing, R James; Liyu, Andrey V.; Sears, Jesse A.; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R.; Ahring, Birgitte K.; Majors, Paul D.

    2014-06-20

    An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequency of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.

  1. The 1H NMR Profile of Healthy Dog Cerebrospinal Fluid

    PubMed Central

    Musteata, Mihai; Nicolescu, Alina; Solcan, Gheorghe; Deleanu, Calin

    2013-01-01

    The availability of data for reference values in cerebrospinal fluid for healthy humans is limited due to obvious practical and ethical issues. The variability of reported values for metabolites in human cerebrospinal fluid is quite large. Dogs present great similarities with humans, including in cases of central nervous system pathologies. The paper presents the first study on healthy dog cerebrospinal fluid metabolomic profile using 1H NMR spectroscopy. A number of 13 metabolites have been identified and quantified from cerebrospinal fluid collected from a group of 10 mix breed healthy dogs. The biological variability as resulting from the relative standard deviation of the physiological concentrations of the identified metabolites had a mean of 18.20% (range between 9.3% and 44.8%). The reported concentrations for metabolites may be used as normal reference values. The homogeneity of the obtained results and the low biologic variability show that the 1H NMR analysis of the dog’s cerebrospinal fluid is reliable in designing and interpreting clinical and therapeutic trials in dogs with central nervous system pathologies. PMID:24376499

  2. 1H NMR metabolomics study of age profiling in children

    PubMed Central

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Hainline, Bryan E.; Shanaiah, Narasimhamurthy; Asiago, Vincent; Nagana Gowda, G. A.; Raftery, Daniel

    2014-01-01

    Metabolic profiling of urine provides a fingerprint of personalized endogenous metabolite markers that correlate to a number of factors such as gender, disease, diet, toxicity, medication, and age. It is important to study these factors individually, if possible to unravel their unique contributions. In this study, age-related metabolic changes in children of age 12 years and below were analyzed by 1H NMR spectroscopy of urine. The effect of age on the urinary metabolite profile was observed as a distinct age-dependent clustering even from the unsupervised principal component analysis. Further analysis, using partial least squares with orthogonal signal correction regression with respect to age, resulted in the identification of an age-related metabolic profile. Metabolites that correlated with age included creatinine, creatine, glycine, betaine/TMAO, citrate, succinate, and acetone. Although creatinine increased with age, all the other metabolites decreased. These results may be potentially useful in assessing the biological age (as opposed to chronological) of young humans as well as in providing a deeper understanding of the confounding factors in the application of metabolomics. PMID:19441074

  3. New generation NMR bioreactor coupled with high-resolution NMR spectroscopy leads to novel discoveries in Moorella thermoacetica metabolic profiles.

    PubMed

    Xue, Junfeng; Isern, Nancy G; Ewing, R James; Liyu, Andrei V; Sears, Jesse A; Knapp, Harlan; Iversen, Jens; Sisk, Daniel R; Ahring, Birgitte K; Majors, Paul D

    2014-10-01

    An in situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution NMR (HR-NMR) spectroscopy. In situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at 500 MHz, and aliquots of the bioreactor contents were taken for 600-MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol, and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in situ NMR bioreactor facilitated monitoring of the fermentation process, enabling identification of intermediate and endpoint metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts. PMID:24946863

  4. Identification of natural metabolites in mixture: a pattern recognition strategy based on (13)C NMR.

    PubMed

    Hubert, Jane; Nuzillard, Jean-Marc; Purson, Sylvain; Hamzaoui, Mahmoud; Borie, Nicolas; Reynaud, Romain; Renault, Jean-Hugues

    2014-03-18

    Because of their highly complex metabolite profile, the chemical characterization of bioactive natural extracts usually requires time-consuming multistep purification procedures to achieve the structural elucidation of pure individual metabolites. The aim of the present work was to develop a dereplication strategy for the identification of natural metabolites directly within mixtures. Exploiting the polarity range of metabolites, the principle was to rapidly fractionate a multigram quantity of a crude extract by centrifugal partition extraction (CPE). The obtained fractions of simplified chemical composition were subsequently analyzed by (13)C NMR. After automatic collection and alignment of (13)C signals across spectra, hierarchical clustering analysis (HCA) was performed for pattern recognition. As a result, strong correlations between (13)C signals of a single structure within the mixtures of the fraction series were visualized as chemical shift clusters. Each cluster was finally assigned to a molecular structure with the help of a locally built (13)C NMR chemical shift database. The proof of principle of this strategy was achieved on a simple model mixture of commercially available plant secondary metabolites and then applied to a bark extract of the African tree Anogeissus leiocarpus Guill. & Perr. (Combretaceae). Starting from 5 g of this genuine extract, the fraction series was generated by CPE in only 95 min. (13)C NMR analyses of all fractions followed by pattern recognition of (13)C chemical shifts resulted in the unambiguous identification of seven major compounds, namely, sericoside, trachelosperogenin E, ellagic acid, an epimer mixture of (+)-gallocatechin and (-)-epigallocatechin, 3,3'-di-O-methylellagic acid 4'-O-xylopyranoside, and 3,4,3'-tri-O-methylflavellagic acid 4'-O-glucopyranoside. PMID:24555703

  5. Metabolite profiles during oral glucose challenge.

    PubMed

    Ho, Jennifer E; Larson, Martin G; Vasan, Ramachandran S; Ghorbani, Anahita; Cheng, Susan; Rhee, Eugene P; Florez, Jose C; Clish, Clary B; Gerszten, Robert E; Wang, Thomas J

    2013-08-01

    To identify distinct biological pathways of glucose metabolism, we conducted a systematic evaluation of biochemical changes after an oral glucose tolerance test (OGTT) in a community-based population. Metabolic profiling was performed on 377 nondiabetic Framingham Offspring cohort participants (mean age 57 years, 42% women, BMI 30 kg/m(2)) before and after OGTT. Changes in metabolite levels were evaluated with paired Student t tests, cluster-based analyses, and multivariable linear regression to examine differences associated with insulin resistance. Of 110 metabolites tested, 91 significantly changed with OGTT (P ≤ 0.0005 for all). Amino acids, β-hydroxybutyrate, and tricarboxylic acid cycle intermediates decreased after OGTT, and glycolysis products increased, consistent with physiological insulin actions. Other pathways affected by OGTT included decreases in serotonin derivatives, urea cycle metabolites, and B vitamins. We also observed an increase in conjugated, and a decrease in unconjugated, bile acids. Changes in β-hydroxybutyrate, isoleucine, lactate, and pyridoxate were blunted in those with insulin resistance. Our findings demonstrate changes in 91 metabolites representing distinct biological pathways that are perturbed in response to an OGTT. We also identify metabolite responses that distinguish individuals with and without insulin resistance. These findings suggest that unique metabolic phenotypes can be unmasked by OGTT in the prediabetic state. PMID:23382451

  6. Biodegradation pathway of mesotrione: complementarities of NMR, LC-NMR and LC-MS for qualitative and quantitative metabolic profiling.

    PubMed

    Durand, Stéphanie; Sancelme, Martine; Besse-Hoggan, Pascale; Combourieu, Bruno

    2010-09-01

    Enhanced knowledge of pesticide transformation products formed in the environment could lead to both accurate estimates of the overall effects of these compounds on environmental ecosystems and human health and improved removal processes. These compounds can present chemical and environmental behaviours completely different from the starting active ingredient. The difficulty lies on their identification or/and their quantification due to the lack of analytical reference standards. In this context, ex situ Nuclear Magnetic Resonance (NMR) and Liquid Chromatography-NMR (LC-NMR) were used as complementary tools to LC-Mass Spectrometry (MS) to define the metabolic pathway of mesotrione, an emergent herbicide, by the bacterial strain Bacillus sp. 3B6. The complementarities of ex situ and LC-NMR allowed us to unambiguously identify six metabolites whereas the structures of only four metabolites were suggested by LC-MS. The presence of a new metabolic pathway was evidenced by NMR. These results demonstrate that NMR and LC-NMR spectroscopy provided unambiguous structural information for xenobiotic metabolic profiling, even at moderate magnetic field and allowed direct absolute quantification despite the lack of commercial or synthetic standards, required for LC-MS techniques. PMID:20692682

  7. Alterations of urinary metabolite profile in model diabetic nephropathy

    SciTech Connect

    Stec, Donald F.; Wang, Suwan; Stothers, Cody; Avance, Josh; Denson, Deon; Harris, Raymond; Voziyan, Paul

    2015-01-09

    Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelial nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be

  8. An efficient spectra processing method for metabolite identification from 1H-NMR metabolomics data.

    PubMed

    Jacob, Daniel; Deborde, Catherine; Moing, Annick

    2013-06-01

    The spectra processing step is crucial in metabolomics approaches, especially for proton NMR metabolomics profiling. During this step, noise reduction, baseline correction, peak alignment and reduction of the 1D (1)H-NMR spectral data are required in order to allow biological information to be highlighted through further statistical analyses. Above all, data reduction (binning or bucketing) strongly impacts subsequent statistical data analysis and potential biomarker discovery. Here, we propose an efficient spectra processing method which also provides helpful support for compound identification using a new data reduction algorithm that produces relevant variables, called buckets. These buckets are the result of the extraction of all relevant peaks contained in the complex mixture spectra, rid of any non-significant signal. Taking advantage of the concentration variability of each compound in a series of samples and based on significant correlations that link these buckets together into clusters, the method further proposes automatic assignment of metabolites by matching these clusters with the spectra of reference compounds from the Human Metabolome Database or a home-made database. This new method is applied to a set of simulated (1)H-NMR spectra to determine the effect of some processing parameters and, as a proof of concept, to a tomato (1)H-NMR dataset to test its ability to recover the fruit extract compositions. The implementation code for both clustering and matching steps is available upon request to the corresponding author. PMID:23525538

  9. Metabolite Profiling of Sugarcane Genotypes and Identification of Flavonoid Glycosides and Phenolic Acids.

    PubMed

    Coutinho, Isabel D; Baker, John M; Ward, Jane L; Beale, Michael H; Creste, Silvana; Cavalheiro, Alberto J

    2016-06-01

    Sugarcane is an important agricultural crop in the economy of tropical regions, and Brazil has the largest cultivated acreage in the world. Sugarcane accumulates high levels of sucrose in its stalks. Other compounds produced by sugarcane are currently not of economic importance. To explore potential coproducts, we have studied the chemical diversity of sugarcane genotypes, via metabolite profiling of leaves by NMR and LC-DAD-MS. Metabolites were identified via in-house and public databases. From the analysis of 60 HPLC-fractionated extracts, LC-DAD-MS detected 144 metabolites, of which 56 were identified (MS-MS and (1)H NMR), including 19 phenolics and 25 flavones, with a predominance of isomeric flavone C-glycosides. Multivariate analysis of the profiles from genotypes utilized in Brazilian breeding programs revealed clustering according to sugar, phenolic acid, and flavone contents. PMID:27152527

  10. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals.

    PubMed

    Simmler, Charlotte; Anderson, Jeffrey R; Gauthier, Laura; Lankin, David C; McAlpine, James B; Chen, Shao-Nong; Pauli, Guido F

    2015-08-28

    Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on (1)H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements. PMID:26244884

  11. Metabolite Profiling and Classification of DNA-Authenticated Licorice Botanicals

    PubMed Central

    Simmler, Charlotte; Anderson, Jeffrey R.; Gauthier, Laura; Lankin, David C.; McAlpine, James B.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    Raw licorice roots represent heterogeneous materials obtained from mainly three Glycyrrhiza species. G. glabra, G. uralensis, and G. inflata exhibit marked metabolite differences in terms of flavanones (Fs), chalcones (Cs), and other phenolic constituents. The principal objective of this work was to develop complementary chemometric models for the metabolite profiling, classification, and quality control of authenticated licorice. A total of 51 commercial and macroscopically verified samples were DNA authenticated. Principal component analysis and canonical discriminant analysis were performed on 1H NMR spectra and area under the curve values obtained from UHPLC-UV chromatograms, respectively. The developed chemometric models enable the identification and classification of Glycyrrhiza species according to their composition in major Fs, Cs, and species specific phenolic compounds. Further key outcomes demonstrated that DNA authentication combined with chemometric analyses enabled the characterization of mixtures, hybrids, and species outliers. This study provides a new foundation for the botanical and chemical authentication, classification, and metabolomic characterization of crude licorice botanicals and derived materials. Collectively, the proposed methods offer a comprehensive approach for the quality control of licorice as one of the most widely used botanical dietary supplements. PMID:26244884

  12. MeRy-B: a web knowledgebase for the storage, visualization, analysis and annotation of plant NMR metabolomic profiles

    PubMed Central

    2011-01-01

    Background Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. Description MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. Conclusion MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php. PMID:21668943

  13. Application of 1H-NMR metabolomic profiling for reef-building corals.

    PubMed

    Sogin, Emilia M; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  14. Application of 1H-NMR Metabolomic Profiling for Reef-Building Corals

    PubMed Central

    Sogin, Emilia M.; Anderson, Paul; Williams, Philip; Chen, Chii-Shiarng; Gates, Ruth D.

    2014-01-01

    In light of global reef decline new methods to accurately, cheaply, and quickly evaluate coral metabolic states are needed to assess reef health. Metabolomic profiling can describe the response of individuals to disturbance (i.e., shifts in environmental conditions) across biological models and is a powerful approach for characterizing and comparing coral metabolism. For the first time, we assess the utility of a proton-nuclear magnetic resonance spectroscopy (1H-NMR)-based metabolomics approach in characterizing coral metabolite profiles by 1) investigating technical, intra-, and inter-sample variation, 2) evaluating the ability to recover targeted metabolite spikes, and 3) assessing the potential for this method to differentiate among coral species. Our results indicate 1H-NMR profiling of Porites compressa corals is highly reproducible and exhibits low levels of variability within and among colonies. The spiking experiments validate the sensitivity of our methods and showcase the capacity of orthogonal partial least squares discriminate analysis (OPLS-DA) to distinguish between profiles spiked with varying metabolite concentrations (0 mM, 0.1 mM, and 10 mM). Finally, 1H-NMR metabolomics coupled with OPLS-DA, revealed species-specific patterns in metabolite profiles among four reef-building corals (Pocillopora damicornis, Porites lobata, Montipora aequituberculata, and Seriatopora hystrix). Collectively, these data indicate that 1H-NMR metabolomic techniques can profile reef-building coral metabolomes and have the potential to provide an integrated picture of the coral phenotype in response to environmental change. PMID:25354140

  15. Profile of urinary arsenic metabolites during pregnancy.

    PubMed Central

    Hopenhayn, Claudia; Huang, Bin; Christian, Jay; Peralta, Cecilia; Ferreccio, Catterina; Atallah, Raja; Kalman, David

    2003-01-01

    Chronic exposure to inorganic arsenic (In-As) from drinking water is associated with different health effects, including skin, lung, bladder, and kidney cancer as well as vascular and possibly reproductive effects. In-As is metabolized through the process of methylation, resulting in the production and excretion of methylated species, mainly monomethylarsenate (MMA) and dimethylarsenate (DMA). Because a large percentage of the dose is excreted in urine, the distribution of urinary In-As, MMA, and DMA is considered a useful indicator of methylation patterns in human populations. Several factors affect these patterns, including sex and exposure level. In this study, we investigated the profile of urinary In-As, MMA, and DMA of pregnant women. Periodic urine samples were collected from early to late pregnancy among 29 pregnant women living in Antofagasta, Chile, who drank tap water containing 40 micro g/L In-As. The total urinary arsenic across four sampling periods increased with increasing weeks of gestation, from an initial mean value of 36.1 to a final value of 54.3 micro g/L. This increase was mainly due to an increase in DMA, resulting in lower percentages of In-As and MMA and a higher percentage of DMA. Our findings indicate that among women exposed to moderate arsenic from drinking water during pregnancy, changes occur in the pattern of urinary arsenic excretion and metabolite distribution. The toxicologic significance of this is not clear, given recent evidence suggesting that intermediate methylated species may be highly toxic. Nevertheless, this study suggests that arsenic metabolism changes throughout the course of pregnancy, which in turn may have toxicologic effects on the developing fetus. Key words: arsenic, arsenic metabolism, arsenic methylation, Chile, pregnancy, urinary arsenic. PMID:14644662

  16. Metabolite profiling of wheat (Triticum aestivum L.) phloem exudate

    PubMed Central

    2014-01-01

    Background Biofortification of staple crops with essential micronutrients relies on the efficient, long distance transport of nutrients to the developing seed. The main route of this transport in common wheat (Triticum aestivum) is via the phloem, but due to the reactive nature of some essential micronutrients (specifically Fe and Zn), they need to form ligands with metabolites for transport within the phloem. Current methods available in collecting phloem exudate allows for small volumes (μL or nL) to be collected which limits the breadth of metabolite analysis. We present a technical advance in the measurement of 79 metabolites in as little as 19.5 nL of phloem exudate. This was achieved by using mass spectrometry based, metabolomic techniques. Results Using gas chromatography–mass spectrometry (GC-MS), 79 metabolites were detected in wheat phloem. Of these, 53 were identified with respect to their chemistry and 26 were classified as unknowns. Using the ratio of ion area for each metabolite to the total ion area for all metabolites, 39 showed significant changes in metabolite profile with a change in wheat reproductive maturity, from 8–12 to 17–21 days after anthesis. Of these, 21 were shown to increase and 18 decreased as the plant matured. An amine group derivitisation method coupled with liquid chromatography MS (LC-MS) based metabolomics was able to quantify 26 metabolites and semi-quantitative data was available for a further 3 metabolites. Conclusions This study demonstrates that it is possible to determine metabolite profiles from extremely small volumes of phloem exudate and that this method can be used to determine variability within the metabolite profile of phloem that has occurred with changes in maturity. This is also believed to be the first report of the presence of the important metal complexing metabolite, nicotianamine in the phloem of wheat. PMID:25143779

  17. Investigating Compensation and Recovery of Fathead Minnow (Pimephales promelas) Exposed to 17α-Ethynylestradiol with Metabolite Profiling

    EPA Science Inventory

    1H-NMR spectroscopy was used to profile metabolite changes in the livers of fathead minnows (Pimephales promelas) exposed to the synthetic estrogen 17α ethynylestradiol (EE2) via a continuous flow water exposure. Fish were exposed to either 10 or 100 ng EE2/L for 8 days, followed...

  18. Profiling Reactive Metabolites via Chemical Trapping and Targeted Mass Spectrometry.

    PubMed

    Chang, Jae Won; Lee, Gihoon; Coukos, John S; Moellering, Raymond E

    2016-07-01

    Metabolomic profiling studies aim to provide a comprehensive, quantitative, and dynamic portrait of the endogenous metabolites in a biological system. While contemporary technologies permit routine profiling of many metabolites, intrinsically labile metabolites are often improperly measured or omitted from studies due to unwanted chemical transformations that occur during sample preparation or mass spectrometric analysis. The primary glycolytic metabolite 1,3-bisphosphoglyceric acid (1,3-BPG) typifies this class of metabolites, and, despite its central position in metabolism, has largely eluded analysis in profiling studies. Here we take advantage of the reactive acylphosphate group in 1,3-BPG to chemically trap the metabolite with hydroxylamine during metabolite isolation, enabling quantitative analysis by targeted LC-MS/MS. This approach is compatible with complex cellular metabolome, permits specific detection of the reactive (1,3-) instead of nonreactive (2,3-) BPG isomer, and has enabled direct analysis of dynamic 1,3-BPG levels resulting from perturbations to glucose processing. These studies confirmed that standard metabolomic methods misrepresent cellular 1,3-BPG levels in response to altered glucose metabolism and underscore the potential for chemical trapping to be used for other classes of reactive metabolites. PMID:27314642

  19. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin

    2015-11-01

    Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

  20. The metabolite profiling of coastal coccolithophorid species Pleurochrysis carterae (Haptophyta)

    NASA Astrophysics Data System (ADS)

    Zhou, Chengxu; Luo, Jie; Ye, Yangfang; Yan, Xiaojun; Liu, Baoning; Wen, Xin

    2016-07-01

    Pleurochrysis carterae is a calcified coccolithophorid species that usually blooms in the coastal area and causes aquaculture losses. The cellular calcification, blooming and many other critical species specific eco-physiological processes are closely related to various metabolic pathways. The purpose of this study is to apply the unbiased and non-destructive method of nuclear magnetic resonance (NMR) to detect the unknown holistic metabolite of P. carterae. The results show that NMR spectroscopic method is practical in the analysis of metabolites of phytoplankton. The metabolome of P. carterae was dominated by 26 metabolites involved in a number of different primary and secondary metabolic pathways. Organic acids and their derivatives, amino acids, sugars, nucleic aides were mainly detected. The abundant metabolites are that closely related to the process of cellular osmotic adjustment, which possibly reflect the active ability of P. carterae to adapt to the versatile coastal niche. DMSP (dimethylsulphoniopropionate) was the most dominant metabolite in P. carterae, up to 2.065±0.278 mg/g lyophilized cells, followed by glutamate and lactose, the contents were 0.349±0.035 and 0.301±0.073 mg/g lyophilized cells respectively. Other metabolites that had the content ranged between 0.1-0.2 mg/g lyophilized cells were alanine, isethionate and arabinose. Amino acid (valine, phenylalanine, isoleucine, tyrosine), organic acid salts (lactate, succinate), scyllitol and uracil had content ranged from 0.01 to below 0.1 mg/g lyophilized cells. Trigonelline, fumarate and formate were detected in very low content (only thousandths of 1 mg per gram of lyophilized cells or below). Our results of the holistic metabolites of P. carterae are the basic references for the further studies when multiple problems will be addressed to this notorious blooming calcifying species.

  1. Metabolite profiling in plant biology: platforms and destinations

    PubMed Central

    Kopka, Joachim; Fernie, Alisdair; Weckwerth, Wolfram; Gibon, Yves; Stitt, Mark

    2004-01-01

    Optimal use of genome sequences and gene-expression resources requires powerful phenotyping platforms, including those for systematic analysis of metabolite composition. The most used technologies for metabolite profiling, including mass spectral, nuclear magnetic resonance and enzyme-based approaches, have various advantages and disadvantages, and problems can arise with reliability and the interpretation of the huge datasets produced. These techniques will be useful for answering important biological questions in the future. PMID:15186482

  2. NMR-based metabolic profiling for serum of mouse exposed to source water.

    PubMed

    Zhang, Yan; Li, Weixin; Sun, Jie; Zhang, Rui; Wu, Bing; Zhang, Xuxiang; Cheng, Shupei

    2011-07-01

    (1)H nuclear magnetic resonance (NMR) based metabonomic method was used to characterize the profile of low-molecular-weight endogenous metabolites in mouse (Mus musculus) serum following exposure to Taihu Lake source water for 90 days. The (1)H NMR spectra of mice sera were recoded and a total of 21 metabolites were identified. Data reduction and latent biomarkers identification were processed by pattern recognition (PR) analysis. The principal component analysis (PCA) and partial least square discriminant analysis (PLS-DA) identified differences in metabolic profiles between control and treatment groups. A number of serum metabolic perturbations were observed in sera of source water treatment mice compared to control mice, including decreased levels of acetone, pyruvate, glutamine, lysine and citrate. These results indicated that Taihu Lake source water could induce energy metabolism changes in mouse related to fatty acid β-oxidation, tricarboxylic acid (TCA) cycle, citric acid cycle, and metabolism of some amino acids. (1)H NMR-based metabolic profiling provides new insight into the toxic effect of Taihu Lake source water, and suggests potential biomarkers for noninvasive monitoring of health risk. PMID:21400091

  3. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    PubMed Central

    2015-01-01

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level. PMID:25496351

  4. Autonomous metabolomics for rapid metabolite identification in global profiling.

    PubMed

    Benton, H Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G; Kurczy, Michael E; Johnson, Caroline H; Franco, Lauren; Rinehart, Duane; Valentine, Elizabeth; Gowda, Harsha; Ubhi, Baljit K; Tautenhahn, Ralf; Gieschen, Andrew; Fields, Matthew W; Patti, Gary J; Siuzdak, Gary

    2015-01-20

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level. PMID:25496351

  5. Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status

    PubMed Central

    Allam-Ndoul, Bénédicte; Guénard, Frédéric; Garneau, Véronique; Cormier, Hubert; Barbier, Olivier; Pérusse, Louis; Vohl, Marie-Claude

    2016-01-01

    Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1’s (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3’s (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile. PMID:27240400

  6. The application of HPLC and microprobe NMR spectroscopy in the identification of metabolites in complex biological matrices.

    PubMed

    Miao, Zhaoxia; Jin, Mengxia; Liu, Xia; Guo, Wei; Jin, Xiangju; Liu, Hongyue; Wang, Yinghong

    2015-05-01

    Nuclear magnetic resonance (NMR)-based metabolomics can be used directly to identify a variety of metabolites in biological fluids and tissues. Metabolite analysis is an important part of life science and metabolomics research. However, the identification of some metabolites using NMR spectroscopy remains a big challenge owing to low abundance or signal overlap. It is important to develop a method to measure these compounds accurately. Two-dimensional NMR spectroscopy, metabolite prediction software packages, and spike-in experiments with authentic standards are often used to solve these problems, but they are costly and time-consuming. In this study, methods were developed to identify metabolites in complex biological mixtures using both high-performance liquid chromatography (HPLC) and off-line microprobe NMR spectroscopy. With use of these methods, 83 and 73 metabolites were identified in Sprague Dawley rat urine and feces, respectively. Among them, 40 and 45 metabolites, respectively, could not be identified with traditional NMR methods. Our research revealed that the combination of HPLC and NMR techniques could significantly improve the accuracy of trace and overlapped metabolite identification, while offering an effective and convenient approach to identify potential biomarkers in complex biological systems. PMID:25814271

  7. Profiling Lipid Metabolites Yields Unique Information on Sex- and Time-dependent Responses of Fathead Minnows (Pimephales promelas) Exposed to 17α-Ethynylestradiol

    EPA Science Inventory

    Alterations in hepatic lipid profiles of fathead minnows (FHM) exposed to the synthetic estrogen 17α-ethynylestradiol (EE2) were determined using 1H-NMR spectroscopy-based metabolite profiling. The exposures were conducted using either 10 ng/l or 100 ng/l EE2 via a continuous flo...

  8. Application of (1)h NMR profiling to assess seed metabolomic diversity. A case study on a soybean era population.

    PubMed

    Harrigan, George G; Skogerson, Kirsten; MacIsaac, Susan; Bickel, Anna; Perez, Tim; Li, Xin

    2015-05-13

    (1)H NMR spectroscopy offers advantages in metabolite quantitation and platform robustness when applied in food metabolomics studies. This paper provides a (1)H NMR-based assessment of seed metabolomic diversity in conventional and glyphosate-resistant genetically modified (GM) soybean from a genetic lineage representing ∼35 years of breeding and differing yield potential. (1)H NMR profiling of harvested seed allowed quantitation of 27 metabolites, including free amino acids, sugars, and organic acids, as well as choline, O-acetylcholine, dimethylamine, trigonelline, and p-cresol. Data were analyzed by canonical discriminant analysis (CDA) and principal variance component analysis (PVCA). Results demonstrated that (1)H NMR spectroscopy was effective in highlighting variation in metabolite levels in the genetically diverse sample set presented. The results also confirmed that metabolite variability is influenced by selective breeding and environment, but not genetic modification. Therefore, metabolite variability is an integral part of crop improvement that has occurred for decades and is associated with a history of safe use. PMID:25940152

  9. Metabolite Fingerprinting of Eugenia jambolana Fruit Pulp Extracts using NMR, HPLC-PDA-MS, GC-MS, MALDI-TOF-MS and ESI-MS/MS Spectrometry.

    PubMed

    Sharma, Ram Jee; Gupta, Ramesh C; Bansal, Arvind Kumar; Singh, Inder Pal

    2015-06-01

    Eugenia jambolana, commonly known as 'jamun' or Indian blackberry, is an important source of bioactive compounds. All parts of the plant like stem bark, leaves, flower, fruit pulp and seeds are traditionally used for many diseases. Metabolite profiling in medicinally important plants is critical to resolve the problems associated with standardization and quality control. Metabolite profiling of the fruit pulp of Jamun was performed by NMR, HPLC, MS, GC-MS and MALDI-TOF mass spectrometry. These hyphenated techniques helped in the identification of 68 chemically-diverse metabolites of the fruit pulp. These include anthocyanins, anthocyanidins, sugars, phenolics and volatile compounds. Five extracts of fruit pulp were prepared i.e. hexane, chloroform, ethylacetate, butanol and aqueous methanolic. Twenty-five metabolites identified and quantified in the n-butanol and aqueous-methanolic extracts of ripe jamun fruit by qNMR. LC-PDA-MS and MALDI-TOF spectrometry helped in deciphering thirty-nine metabolites out of which thirteen were quantified. PMID:26197529

  10. In vivo NMR metabolic profiling of Fabrea salina reveals sequential defense mechanisms against ultraviolet radiation.

    PubMed

    Marangoni, Roberto; Paris, Debora; Melck, Dominique; Fulgentini, Lorenzo; Colombetti, Giuliano; Motta, Andrea

    2011-01-01

    Fabrea salina is a hypersaline ciliate that is known to be among the strongest ultraviolet (UV)-resistant microorganisms; however, the molecular mechanisms of this resistance are almost unknown. By means of in vivo NMR spectroscopy, we determined the metabolic profile of living F. salina cells exposed to visible light and to polychromatic UV-B + UV-A + Vis radiation for several different exposure times. We used unsupervised pattern-recognition analysis to compare these profiles and discovered some metabolites whose concentration changed specifically upon UV exposure and in a dose-dependent manner. This variation was interpreted in terms of a two-phase cell reaction involving at least two different pathways: an early response consisting of degradation processes, followed by a late response activating osmoprotection mechanisms. The first step alters the concentration of formate, acetate, and saturated fatty-acid metabolites, whereas the osmoprotection modifies the activity of betaine moieties and other functionally related metabolites. In the latter pathway, alanine, proline, and sugars suggest a possible incipient protein synthesis as defense and/or degeneration mechanisms. We conclude that NMR spectroscopy on in vivo cells is an optimal approach for investigating the effect of UV-induced stress on the whole metabolome of F. salina because it minimizes the invasiveness of the measurement. PMID:21190674

  11. Noninvasive quantitation of phosphorus metabolites in human tissue by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Roth, K.; Hubesch, B.; Meyerhoff, D. J.; Naruse, S.; Gober, J. R.; Lawry, T. J.; Boska, M. D.; Matson, G. B.; Weiner, M. W.

    Quantitation of metabolite concentrations by NMR spectroscopy is complicated by the need to determine the volume from which signals are detected, and by the need to obtain the relative sensitivity of detection within this volume. The use of coils with inhomogeneous B1 fields further complicates these problems. In order to quantify metabolite concentrations using 31P NMR spectroscopy, an external reference of hexamethyl phosphoroustriamide was used. Studies were performed on phantoms, using either a surface coil or a Helmholtz head coil to confirm the accuracy of both the ISIS volume selection technique and the use of an external reference. The limitations of this method are related to contamination and signal loss inherent in the ISIS technique and difficulties with integration of broad overlapping peaks. The method was applied to seven normal human subjects. The integrals for metabolite signals in normal brain and calf muscle were determined by using NMRI software. The T1 values of the signals of all phosphorus metabolites in the selected volume were measured in order to correct for saturation effects. The concentrations for PCr, P i, and ATP were 4.9, 2.0, and 2.5 m M in brain and 36.5, 5.7, and 7.3 m M in muscle. These results are in good agreement with those reported for animals, demonstrating the validity of this quantitation technique.

  12. 1H HR-MAS NMR Spectroscopy and the Metabolite Determination of Typical Foods in Mediterranean Diet

    PubMed Central

    Corsaro, Carmelo; Mallamace, Domenico; Vasi, Sebastiano; Ferrantelli, Vincenzo; Dugo, Giacomo; Cicero, Nicola

    2015-01-01

    NMR spectroscopy has become an experimental technique widely used in food science. The experimental procedures that allow precise and quantitative analysis on different foods are relatively simple. For a better sensitivity and resolution, NMR spectroscopy is usually applied to liquid sample by means of extraction procedures that can be addressed to the observation of particular compounds. For the study of semisolid systems such as intact tissues, High-Resolution Magic Angle Spinning (HR-MAS) has received great attention within the biomedical area and beyond. Metabolic profiling and metabolism changes can be investigated both in animal organs and in foods. In this work we present a proton HR-MAS NMR study on the typical vegetable foods of Mediterranean diet such as the Protected Geographical Indication (PGI) cherry tomato of Pachino, the PGI Interdonato lemon of Messina, several Protected Designation of Origin (PDO) extra virgin olive oils from Sicily, and the Traditional Italian Food Product (PAT) red garlic of Nubia. We were able to identify and quantify the main metabolites within the studied systems that can be used for their characterization and authentication. PMID:26495154

  13. Urine Metabolite Profiles Predictive of Human Kidney Allograft Status.

    PubMed

    Suhre, Karsten; Schwartz, Joseph E; Sharma, Vijay K; Chen, Qiuying; Lee, John R; Muthukumar, Thangamani; Dadhania, Darshana M; Ding, Ruchuang; Ikle, David N; Bridges, Nancy D; Williams, Nikki M; Kastenmüller, Gabi; Karoly, Edward D; Mohney, Robert P; Abecassis, Michael; Friedewald, John; Knechtle, Stuart J; Becker, Yolanda T; Samstein, Benjamin; Shaked, Abraham; Gross, Steven S; Suthanthiran, Manikkam

    2016-02-01

    Noninvasive diagnosis and prognostication of acute cellular rejection in the kidney allograft may help realize the full benefits of kidney transplantation. To investigate whether urine metabolites predict kidney allograft status, we determined levels of 749 metabolites in 1516 urine samples from 241 kidney graft recipients enrolled in the prospective multicenter Clinical Trials in Organ Transplantation-04 study. A metabolite signature of the ratio of 3-sialyllactose to xanthosine in biopsy specimen-matched urine supernatants best discriminated acute cellular rejection biopsy specimens from specimens without rejection. For clinical application, we developed a high-throughput mass spectrometry-based assay that enabled absolute and rapid quantification of the 3-sialyllactose-to-xanthosine ratio in urine samples. A composite signature of ratios of 3-sialyllactose to xanthosine and quinolinate to X-16397 and our previously reported urinary cell mRNA signature of 18S ribosomal RNA, CD3ε mRNA, and interferon-inducible protein-10 mRNA outperformed the metabolite signatures and the mRNA signature. The area under the receiver operating characteristics curve for the composite metabolite-mRNA signature was 0.93, and the signature was diagnostic of acute cellular rejection with a specificity of 84% and a sensitivity of 90%. The composite signature, developed using solely biopsy specimen-matched urine samples, predicted future acute cellular rejection when applied to pristine samples taken days to weeks before biopsy. We conclude that metabolite profiling of urine offers a noninvasive means of diagnosing and prognosticating acute cellular rejection in the human kidney allograft, and that the combined metabolite and mRNA signature is diagnostic and prognostic of acute cellular rejection with very high accuracy. PMID:26047788

  14. Metabolite Content Profiling of Bottlenose Dolphin Exhaled Breath

    PubMed Central

    2014-01-01

    Changing ocean health and the potential impact on marine mammal health are gaining global attention. Direct health assessments of wild marine mammals, however, is inherently difficult. Breath analysis metabolomics is a very attractive assessment tool due to its noninvasive nature, but it is analytically challenging. It has never been attempted in cetaceans for comprehensive metabolite profiling. We have developed a method to reproducibly sample breath from small cetaceans, specifically Atlantic bottlenose dolphins (Tursiops truncatus). We describe the analysis workflow to profile exhaled breath metabolites and provide here a first library of volatile and nonvolatile compounds in cetacean exhaled breath. The described analytical methodology enabled us to document baseline compounds in exhaled breath of healthy animals and to study changes in metabolic content of dolphin breath with regard to a variety of factors. The method of breath analysis may provide a very valuable tool in future wildlife conservation efforts as well as deepen our understanding of marine mammals biology and physiology. PMID:25254551

  15. Metabolite content profiling of bottlenose dolphin exhaled breath.

    PubMed

    Aksenov, Alexander A; Yeates, Laura; Pasamontes, Alberto; Siebe, Craig; Zrodnikov, Yuriy; Simmons, Jason; McCartney, Mitchell M; Deplanque, Jean-Pierre; Wells, Randall S; Davis, Cristina E

    2014-11-01

    Changing ocean health and the potential impact on marine mammal health are gaining global attention. Direct health assessments of wild marine mammals, however, is inherently difficult. Breath analysis metabolomics is a very attractive assessment tool due to its noninvasive nature, but it is analytically challenging. It has never been attempted in cetaceans for comprehensive metabolite profiling. We have developed a method to reproducibly sample breath from small cetaceans, specifically Atlantic bottlenose dolphins (Tursiops truncatus). We describe the analysis workflow to profile exhaled breath metabolites and provide here a first library of volatile and nonvolatile compounds in cetacean exhaled breath. The described analytical methodology enabled us to document baseline compounds in exhaled breath of healthy animals and to study changes in metabolic content of dolphin breath with regard to a variety of factors. The method of breath analysis may provide a very valuable tool in future wildlife conservation efforts as well as deepen our understanding of marine mammals biology and physiology. PMID:25254551

  16. Potent Antidiabetic Activity and Metabolite Profiling of Melicope Lunu-ankenda Leaves.

    PubMed

    Al-Zuaidy, Mizher Hezam; Hamid, Azizah Abdul; Ismail, Amin; Mohamed, Suhaila; Abdul Razis, Ahmad Faizal; Mumtaz, Muhammad Waseem; Salleh, Syafiq Zikri

    2016-05-01

    Diabetes mellitus is normally characterized by chronic hyperglycemia associated with disturbances in the fat, carbohydrate, and protein metabolism. There is an increasing trend of using natural products instead of synthetic agents as alternative therapy for disorders due to their fewer side effects. In this study, antidiabetic and antioxidant activities of different Melicope lunu-ankenda (ML) ethanolic extracts were evaluated using inhibition of α-glucosidase and 2,2-diphenyl-l-picrylhydrazyl (DPPH) radicals scavenging activity, respectively; whereas, proton nuclear magnetic resonance ((1) H NMR) and ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) techniques were used for metabolite profiling of ML leaf extracts at different concentrations of ethanol and water. Sixty percent of ethanolic ML extract showed highest inhibitory effect against α-glucosidase enzyme (IC50 of 37 μg/mL) and DPPH scavenging activity (IC50 of 48 μg/mL). Antidiabetic effect of ML extracts was also evaluated in vivo and it was found that the high doses (400 mg/Kg BW) of ML extract exhibited high suppression in fasting blood glucose level by 62.75%. The metabolites responsible for variation among ML samples with variable ethanolic levels have been evaluated successfully using (1) H-NMR-based metabolomics. The principal component analysis (PCA) and partial least squares(PLS) analysis scores depicted clear and distinct separations into 4 clusters representing the 4 ethanolic concentrations by PC1 and PC2, with an eigenvalue of 69.9%. Various (1) H-NMR chemical shifts related to the metabolites responsible for sample difference were also ascribed. The main bioactive compounds identified attributing toward the separation included: isorhamnetin, skimmianine, scopoletin, and melicarpinone. Hence, ML may be used as promising medicinal plant for the development of new functional foods, new generation antidiabetic drugs, as a single entity phytomedicine or in

  17. Method for determining molar concentrations of metabolites in complex solutions from two-dimensional 1H-13C NMR spectra.

    PubMed

    Lewis, Ian A; Schommer, Seth C; Hodis, Brendan; Robb, Kate A; Tonelli, Marco; Westler, William M; Sussman, Michael R; Markley, John L

    2007-12-15

    One-dimensional (1D) (1)H nuclear magnetic resonance (NMR) spectroscopy is used extensively for high-throughput analysis of metabolites in biological fluids and tissue extracts. Typically, such spectra are treated as multivariate statistical objects rather than as collections of quantifiable metabolites. We report here a two-dimensional (2D) (1)H-(13)C NMR strategy (fast metabolite quantification, FMQ, by NMR) for identifying and quantifying the approximately 40 most abundant metabolites in biological samples. To validate this technique, we prepared mixtures of synthetic compounds and extracts from Arabidopsis thaliana, Saccharomyces cerevisiae, and Medicago sativa. We show that accurate (technical error 2.7%) molar concentrations can be determined in 12 min using our quantitative 2D (1)H-(13)C NMR strategy. In contrast, traditional 1D (1)H NMR analysis resulted in 16.2% technical error under nearly ideal conditions. We propose FMQ by NMR as a practical alternative to 1D (1)H NMR for metabolomics studies in which 50-mg (extract dry weight) samples can be obtained. PMID:17985927

  18. Urinary Metabolite Profiles in Premature Infants Show Early Postnatal Metabolic Adaptation and Maturation

    PubMed Central

    Moltu, Sissel J.; Sachse, Daniel; Blakstad, Elin W.; Strømmen, Kenneth; Nakstad, Britt; Almaas, Astrid N.; Westerberg, Ane C.; Rønnestad, Arild; Brække, Kristin; Veierød, Marit B.; Iversen, Per O.; Rise, Frode; Berg, Jens P.; Drevon, Christian A.

    2014-01-01

    Objectives: Early nutrition influences metabolic programming and long-term health. We explored the urinary metabolite profiles of 48 premature infants (birth weight < 1500 g) randomized to an enhanced or a standard diet during neonatal hospitalization. Methods: Metabolomics using nuclear magnetic resonance spectroscopy (NMR) was conducted on urine samples obtained during the first week of life and thereafter fortnightly. Results: The intervention group received significantly higher amounts of energy, protein, lipids, vitamin A, arachidonic acid and docosahexaenoic acid as compared to the control group. Enhanced nutrition did not appear to affect the urine profiles to an extent exceeding individual variation. However, in all infants the glucogenic amino acids glycine, threonine, hydroxyproline and tyrosine increased substantially during the early postnatal period, along with metabolites of the tricarboxylic acid cycle (succinate, oxoglutarate, fumarate and citrate). The metabolite changes correlated with postmenstrual age. Moreover, we observed elevated threonine and glycine levels in first-week urine samples of the small for gestational age (SGA; birth weight < 10th percentile for gestational age) as compared to the appropriate for gestational age infants. Conclusion: This first nutri-metabolomics study in premature infants demonstrates that the physiological adaptation during the fetal-postnatal transition as well as maturation influences metabolism during the breastfeeding period. Elevated glycine and threonine levels were found in the first week urine samples of the SGA infants and emerged as potential biomarkers of an altered metabolic phenotype. PMID:24824288

  19. 1H NMR studies distinguish the water soluble metabolomic profiles of untransformed and RAS-transformed cells

    PubMed Central

    Marks, Vered; Munoz, Anisleidys; Rai, Priyamvada

    2016-01-01

    Metabolomic profiling is an increasingly important method for identifying potential biomarkers in cancer cells with a view towards improved diagnosis and treatment. Nuclear magnetic resonance (NMR) provides a potentially noninvasive means to accurately characterize differences in the metabolomic profiles of cells. In this work, we use 1H NMR to measure the metabolomic profiles of water soluble metabolites extracted from isogenic control and oncogenic HRAS-, KRAS-, and NRAS-transduced BEAS2B lung epithelial cells to determine the robustness of NMR metabolomic profiling in detecting differences between the transformed cells and their untransformed counterparts as well as differences among the RAS-transformed cells. Unique metabolomic signatures between control and RAS-transformed cell lines as well as among the three RAS isoform-transformed lines were found by applying principal component analysis to the NMR data. This study provides a proof of principle demonstration that NMR-based metabolomic profiling can robustly distinguish untransformed and RAS-transformed cells as well as cells transformed with different RAS oncogenic isoforms. Thus, our data may potentially provide new diagnostic signatures for RAS-transformed cells. PMID:27330862

  20. mQTL.NMR: an integrated suite for genetic mapping of quantitative variations of (1)H NMR-based metabolic profiles.

    PubMed

    Hedjazi, Lyamine; Gauguier, Dominique; Zalloua, Pierre A; Nicholson, Jeremy K; Dumas, Marc-Emmanuel; Cazier, Jean-Baptiste

    2015-04-21

    High-throughput (1)H nuclear magnetic resonance (NMR) is an increasingly popular robust approach for qualitative and quantitative metabolic profiling, which can be used in conjunction with genomic techniques to discover novel genetic associations through metabotype quantitative trait locus (mQTL) mapping. There is therefore a crucial necessity to develop specialized tools for an accurate detection and unbiased interpretability of the genetically determined metabolic signals. Here we introduce and implement a combined chemoinformatic approach for objective and systematic analysis of untargeted (1)H NMR-based metabolic profiles in quantitative genetic contexts. The R/Bioconductor mQTL.NMR package was designed to (i) perform a series of preprocessing steps restoring spectral dependency in collinear NMR data sets to reduce the multiple testing burden, (ii) carry out robust and accurate mQTL mapping in human cohorts as well as in rodent models, (iii) statistically enhance structural assignment of genetically determined metabolites, and (iv) illustrate results with a series of visualization tools. Built-in flexibility and implementation in the powerful R/Bioconductor framework allow key preprocessing steps such as peak alignment, normalization, or dimensionality reduction to be tailored to specific problems. The mQTL.NMR package is freely available with its source code through the Comprehensive R/Bioconductor repository and its own website ( http://www.ican-institute.org/tools/ ). It represents a significant advance to facilitate untargeted metabolomic data processing and quantitative analysis and their genetic mapping. PMID:25803548

  1. Identifying Hypoxia in a Newborn Piglet Model Using Urinary NMR Metabolomic Profiling

    PubMed Central

    Skappak, Christopher; Regush, Shana; Cheung, Po-Yin; Adamko, Darryl J.

    2013-01-01

    Establishing the severity of hypoxic insult during the delivery of a neonate is key step in the determining the type of therapy administered. While successful therapy is present, current methods for assessing hypoxic injuries in the neonate are limited. Urine Nuclear Magnetic Resonance (NMR) metabolomics allows for the rapid non-invasive assessment of a multitude breakdown products of physiological processes. In a newborn piglet model of hypoxia, we used NMR spectroscopy to determine the levels of metabolites in urine samples, which were correlated with physiological measurements. Using PLS-DA analysis, we identified 13 urinary metabolites that differentiated hypoxic versus nonhypoxic animals (1-methylnicotinamide, 2-oxoglutarate, alanine, asparagine, betaine, citrate, creatine, fumarate, hippurate, lactate, N-acetylglycine, N-carbamoyl-β-alanine, and valine). Using this metabolomic profile, we then were able to blindly identify hypoxic animals correctly 84% of the time compared to nonhypoxic controls. This was better than using physiologic measures alone. Metabolomic profiling of urine has potential for identifying neonates that have undergone episodes of hypoxia. PMID:23741447

  2. NMR Chemical Shift Ranges of Urine Metabolites in Various Organic Solvents.

    PubMed

    Görling, Benjamin; Bräse, Stefan; Luy, Burkhard

    2016-01-01

    Signal stability is essential for reliable multivariate data analysis. Urine samples show strong variance in signal positions due to inter patient differences. Here we study the exchange of the solvent of a defined urine matrix and how it affects signal and integral stability of the urinary metabolites by NMR spectroscopy. The exchange solvents were methanol, acetonitrile, dimethyl sulfoxide, chloroform, acetone, dichloromethane, and dimethyl formamide. Some of these solvents showed promising results with a single batch of urine. To evaluate further differences between urine samples, various acid, base, and salt solutions were added in a defined way mimicking to some extent inter human differences. Corresponding chemical shift changes were monitored. PMID:27598217

  3. Chemoselective detection and discrimination of carbonyl-containing compounds in metabolite mixtures by 1H-detected 15N NMR

    PubMed Central

    Lane, Andrew N.; Arumugam, Sengodagounder; Lorkiewicz, Pawel K.; Higashi, Richard M.; Laulhé, Sébastien; Nantz, Michael H.; Moseley, Hunter N.B.; Fan, Teresa W.-M.

    2015-01-01

    NMR spectra of mixtures of metabolites extracted from cells or tissues are extremely complex, reflecting the large number of compounds that are present over a wide range of concentrations. Although multidimensional NMR can greatly improve resolution as well as improve reliability of compound assignments, lower abundance metabolites often remain hidden. We have developed a carbonyl selective aminooxy probe that specifically reacts with free keto and aldehyde functions, but not carboxylates. By incorporating 15N in the aminooxy functional group, 15N-edited NMR was used to select exclusively those metabolites that contain a free carbonyl function while all other metabolites are rejected. Here we demonstrate that the chemical shifts of the aminooxy adducts of ketones and aldehydes are very different, which can be used to discriminate between aldoses and ketoses for example. Utilizing the 2 or 3 bond 15N-1H couplings, the 15N-edited NMR analysis was optimized first with authentic standards and then applied to an extract of the lung adenocarcinoma cell line A549. More than 30 carbonyl containing compounds at NMR detectable levels, 6 of which we have assigned by reference to our database. As the aminooxy probe contains a permanently charged quaternary ammonium group, the adducts are also optimized for detection by mass spectrometry. Thus, this sample preparation technique provides a better link between the two structural determination tools, thereby paving the way to faster and more reliable identification of both known and unknown metabolites directly in crude biological extracts. PMID:25616249

  4. Geographical and climatic dependencies of green tea (Camellia sinensis) metabolites: a (1)H NMR-based metabolomics study.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Hwang, Jeong-Ah; Lee, Sang-Jun; Lee, Cherl-Ho; Hong, Young-Shick

    2010-10-13

    The effects of climatic conditions on green tea metabolites in three different growing areas of Jeju Island, South Korea, were investigated through global metabolite profiling by (1)H nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition methods, such as principal component analysis (PCA) and orthogonal projection on latent structure-discriminant analysis (OPLS-DA), revealed clear discriminations of green teas from the three different growing areas. Variations of theanine, isoleucine, leucine, valine, alanine, threonine, glutamine, quinic acid, glucose, epicatechin (EC), epigallocatechin (EGC), epigallocatechin-3-gallate (EGCG), and caffeine levels were responsible for the discriminations. Green teas grown in an area with high temperature, long sun exposure time, and high rainfall had higher levels of theanine but lower levels of isoleucine, leucine, valine, alanine, EC, EGC, EGCG, and caffeine than those grown in areas with relatively low temperature, short sun exposure time, and low rainfall. These results indicate that high temperature, long sun exposure, and high preciptation stimulate theanine synthesis in green tea during the spring season. This study highlights how metabolomics coupled with multivariate statistical analysis can illuminate the metabolic characteristics of green tea associated with climatic variables, thereby allowing for the assessment of quality strategy in green tea production. PMID:20828156

  5. NMR Spectroscopy Identifies Metabolites Translocated from Powdery Mildew Resistant Rootstocks to Susceptible Watermelon Scions.

    PubMed

    Mahmud, Iqbal; Kousik, Chandrasekar; Hassell, Richard; Chowdhury, Kamal; Boroujerdi, Arezue F

    2015-09-16

    Powdery mildew (PM) disease causes significant loss in watermelon. Due to the unavailability of a commercial watermelon variety that is resistant to PM, grafting susceptible cultivars on wild resistant rootstocks is being explored as a short-term management strategy to combat this disease. Nuclear magnetic resonance-based metabolic profiles of susceptible and resistant rootstocks of watermelon and their corresponding susceptible scions (Mickey Lee) were compared to screen for potential metabolites related to PM resistance using multivariate principal component analysis. Significant score plot differences between the susceptible and resistant groups were revealed through Mahalanobis distance analysis. Significantly different spectral buckets and their corresponding metabolites (including choline, fumarate, 5-hydroxyindole-3-acetate, and melatonin) have been identified quantitatively using multivariate loading plots and verified by volcano plot analyses. The data suggest that these metabolites were translocated from the powdery mildew resistant rootstocks to their corresponding powdery mildew susceptible scions and can be related to PM disease resistance. PMID:26302171

  6. Evaluation of 1H NMR metabolic profiling using biofluid mixture design.

    PubMed

    Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C

    2013-07-16

    A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain. PMID:23730812

  7. IQMNMR: Open source software using time-domain NMR data for automated identification and quantification of metabolites in batches

    PubMed Central

    2011-01-01

    Background One of the most promising aspects of metabolomics is metabolic modeling and simulation. Central to such applications is automated high-throughput identification and quantification of metabolites. NMR spectroscopy is a reproducible, nondestructive, and nonselective method that has served as the foundation of metabolomics studies. However, the automated high-throughput identification and quantification of metabolites in NMR spectroscopy is limited by severe spectral overlap. Although numerous software programs have been developed for resolving overlapping resonances, as well as for identifying and quantifying metabolites, most of these programs are frequency-domain methods, considerably influenced by phase shifts and baseline distortions, and effective only in small-scale studies. Almost all these programs require multiple spectra for each application, and do not automatically identify and quantify metabolites in batches. Results We created IQMNMR, an R package that integrates a relaxation algorithm, digital filter, and similarity search algorithm. It differs from existing software in that it is a time-domain method; it uses not only frequency to resolve overlapping resonances but also relaxation time constants; it requires only one NMR spectrum per application; is uninfluenced by phase shifts and baseline distortions; and most important, yields a batch of quantified metabolites. Conclusions IQMNMR provides a solution that can automatically identify and quantify metabolites by one-dimensional proton NMR spectroscopy. Its time-domain nature, stability against phase shifts and baseline distortions, requirement for only one NMR spectrum, and capability to output a batch of quantified metabolites are of considerable significance to metabolic modeling and simulation. IQMNMR is available at http://cran.r-project.org/web/packages/IQMNMR/. PMID:21838867

  8. The metabolism of 4-trifluoromethoxyaniline and [13C]-4-trifluoromethoxyacetanilide in the rat: detection and identification of metabolites excreted in the urine by NMR and HPLC-NMR.

    PubMed

    Tugnait, M; Lenz, E M; Phillips, P; Hofmann, M; Spraul, M; Lindon, J C; Nicholson, J K; Wilson, I D

    2002-06-01

    A combination of 19F, 1H NMR and HPLC-NMR spectroscopic approaches have been used to quantify and identify the urinary-excreted metabolites of 4-trifluoromethoxyaniline (4-TFMeA) and its [13C]-labelled acetanilide following i.p. administration at 50 mg/kg to rats. The major metabolite excreted in the urine for both compounds was a sulphated ring-hydroxylated metabolite (either 2- or 3-trifluoromethyl-5-aminosulphate) which accounted for approximately 32.3% of the dose following the administration of 4-TFMeA and approximately 29.9% following dosing of the acetanilide. The trifluoromethoxy-substituent appeared to be metabolically stable, with no evidence of O-detrifluoromethylation. There was no evidence of the excretion of N-oxanilic acids in urine, of the type seen with 4-trifluoromethylaniline. PMID:12039629

  9. Endogenous and xenobiotic metabolite profiling of liver extracts from SCID and chimeric humanized mice following repeated oral administration of troglitazone.

    PubMed

    Barnes, Alan J; Baker, David R; Hobby, Kirsten; Ashton, Simon; Michopoulos, Filippos; Spagou, Konstantina; Loftus, Neil J; Wilson, Ian D

    2014-01-01

    1. Metabonomic analysis, via a combination of untargeted and targeted liquid chromatography-mass spectrometry (LC-MS) and untargeted (1)H NMR spectroscopy-based metabolite profiling, was performed on aqueous (AQ) and organic liver extracts from control (SCID) and chimeric humanized (PXB) mice dosed with troglitazone at 0, 300 and 600 mg/kg/day for seven days. 2. LC-MS analysis of AQ liver extracts showed a more "human-like" profile for troglitazone metabolites for PXB, compared with SCID, mice. 3. LC-MS detected differences in endogenous metabolites, particularly lipid species in dosed mice, including elevated triacylglycerols and 1-alkyl,2-acylglycerophosphates as well as lowered diacylglycerophosphocholines and 1-alkyl,2-acylglycerophosphocholines for PXB compared with SCID mouse liver extracts. Following drug administration changes in the relative proportions of the ions for various unsaturated fatty acids were observed for both types of mouse, some of which were specific to PXB or SCID mice. 4.  (1)H NMR spectroscopy revealed that AQ PXB mouse liver extracts had elevated amounts of inosine, fumarate, creatine, aspartate, trimethylamine N-oxide, glycerophosphocholine, phosphocholine, choline, glutamine, glutamate, acetate, alanine and lactate relative to SCID mice and decreased histidine, glycogen, α- and β-glucose, taurine, and glutathione. Increased uracil and tyrosine concentrations were detected for PXB mice on troglitazone administration. 5. Metabonomic profiling thus showed clear differences between humanized and SCID mice, including after administration of troglitazone. PMID:24350779

  10. Sample preparation methods for LC-MS-based global aqueous metabolite profiling.

    PubMed

    Beltran, Antoni; Samino, Sara; Yanes, Oscar

    2014-01-01

    Metabolite extraction is a key step in metabolomic analyses, particularly for untargeted studies. The extraction determines the types of metabolites that will be detected and the analytical platform to be used. In this chapter we describe two protocols aimed at detecting polar metabolites from biological samples; the first is aimed at detecting reduced species by LC/MS, and the second satisfies the requirements for both NMR and LC/MS analysis simultaneously. PMID:25270923

  11. Profiling of plasma metabolites in postmenopausal women with metabolic syndrome

    PubMed Central

    Iida, Miho; Harada, Sei; Kurihara, Ayako; Fukai, Kota; Kuwabara, Kazuyo; Sugiyama, Daisuke; Takeuchi, Ayano; Okamura, Tomonori; Akiyama, Miki; Nishiwaki, Yuji; Suzuki, Asako; Hirayama, Akiyoshi; Sugimoto, Masahiro; Soga, Tomoyoshi; Tomita, Masaru; Banno, Kouji; Aoki, Daisuke; Takebayashi, Toru

    2016-01-01

    Abstract Objective: The aim of the study was to investigate the associations of amino acids and other polar metabolites with metabolic syndrome (MetS) in postmenopausal women in a lean Asian population. Methods: The participants were 1,422 female residents enrolled in a cohort study from April to August 2012. MetS was defined according to the National Cholesterol Education Program Adult Treatment Panel III modified for Japanese women. Associations were examined between MetS and 78 metabolites assayed in fasting plasma samples using capillary electrophoresis-mass spectrometry. Replication analysis was performed to confirm the robustness of the results in a separate population created by random allocation. Results: Analysis was performed for 877 naturally postmenopausal women, including 594 in the original population and 283 in the replication population. The average age, body mass index, and levels of high- and low-density lipoprotein cholesterol of the entire population were 64.6 years, 23.0 kg/m2, 72.1 mg/dL, and 126.1 mg/dL, respectively. There was no significant difference in low-density lipoprotein cholesterol levels between women with and without MetS. Thirteen metabolites were significantly related to MetS: multiple plasma amino acids were elevated in women with MetS, including branched-chain amino acids, alanine, glutamate, and proline; and alpha-aminoadipate, which is generated by lysine degradation, was also significantly increased. Conclusions: Our large-scale metabolomic profiling indicates that Japanese postmenopausal women with MetS have abnormal polar metabolites, suggesting altered catabolic pathways. These results may help to understand metabolic disturbance, including in persons with normal body mass index and relatively high levels of high-density lipoprotein cholesterol, and may have clinical utility based on further studies. PMID:27070805

  12. Quantitative Profiling of Polar Metabolites in Herbal Medicine Injections for Multivariate Statistical Evaluation Based on Independence Principal Component Analysis

    PubMed Central

    Wang, Yuefei; Xu, Lei; Wang, Meng; Zhao, Buchang; Jia, Lifu; Pan, Hao; Zhu, Yan; Gao, Xiumei

    2014-01-01

    Botanical primary metabolites extensively exist in herbal medicine injections (HMIs), but often were ignored to control. With the limitation of bias towards hydrophilic substances, the primary metabolites with strong polarity, such as saccharides, amino acids and organic acids, are usually difficult to detect by the routinely applied reversed-phase chromatographic fingerprint technology. In this study, a proton nuclear magnetic resonance (1H NMR) profiling method was developed for efficient identification and quantification of small polar molecules, mostly primary metabolites in HMIs. A commonly used medicine, Danhong injection (DHI), was employed as a model. With the developed method, 23 primary metabolites together with 7 polyphenolic acids were simultaneously identified, of which 13 metabolites with fully separated proton signals were quantified and employed for further multivariate quality control assay. The quantitative 1H NMR method was validated with good linearity, precision, repeatability, stability and accuracy. Based on independence principal component analysis (IPCA), the contents of 13 metabolites were characterized and dimensionally reduced into the first two independence principal components (IPCs). IPC1 and IPC2 were then used to calculate the upper control limits (with 99% confidence ellipsoids) of χ2 and Hotelling T2 control charts. Through the constructed upper control limits, the proposed method was successfully applied to 36 batches of DHI to examine the out-of control sample with the perturbed levels of succinate, malonate, glucose, fructose, salvianic acid and protocatechuic aldehyde. The integrated strategy has provided a reliable approach to identify and quantify multiple polar metabolites of DHI in one fingerprinting spectrum, and it has also assisted in the establishment of IPCA models for the multivariate statistical evaluation of HMIs. PMID:25157567

  13. Intermolecular interaction of voriconazole analogues with model membrane by DSC and NMR, and their antifungal activity using NMR based metabolic profiling.

    PubMed

    Kalamkar, Vaibhav; Joshi, Mamata; Borkar, Varsha; Srivastava, Sudha; Kanyalkar, Meena

    2013-11-01

    The development of novel antifungal agents with high susceptibility and increased potency can be achieved by increasing their overall lipophilicity. To enhance the lipophilicity of voriconazole, a second generation azole antifungal agent, we have synthesized its carboxylic acid ester analogues, namely p-methoxybenzoate (Vpmb), toluate (Vtol), benzoate (Vbz) and p-nitrobenzoate (Vpnb). The intermolecular interactions of these analogues with model membrane have been investigated using nuclear magnetic resonance (NMR) and differential scanning calorimetric (DSC) techniques. The results indicate varying degree of changes in the membrane bilayer's structural architecture and physico-chemical characteristics which possibly can be correlated with the antifungal effects via fungal membrane. Rapid metabolite profiling of chemical entities using cell preparations is one of the most important steps in drug discovery. We have evaluated the effect of synthesized analogues on Candida albicans. The method involves real time (1)H NMR measurement of intact cells monitoring NMR signals from fungal metabolites which gives Metabolic End Point (MEP). This is then compared with Minimum Inhibitory Concentration (MIC) determined using conventional methods. Results indicate that one of the synthesized analogues, Vpmb shows reasonably good activity. PMID:24012381

  14. A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples

    PubMed Central

    Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong

    2015-01-01

    NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples. PMID:25670027

  15. A high-resolution 2D J-resolved NMR detection technique for metabolite analyses of biological samples.

    PubMed

    Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong

    2015-01-01

    NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples. PMID:25670027

  16. NMR-based metabonomic investigations into the metabolic profile of the senescence-accelerated mouse.

    PubMed

    Jiang, Ning; Yan, Xianzhong; Zhou, Wenxia; Zhang, Qi; Chen, Hebing; Zhang, Yongxiang; Zhang, Xuemin

    2008-09-01

    In this work, metabonomic methods utilizing (1)H NMR spectroscopy and multivariate statistical technique have been applied to investigate the metabolic profiles of SAM. The serum metabolome of senescence-prone 8 (SAMP8), a murine model of age-related learning and memory deficits and Alzheimer's disease (AD), was compared with that of control, senescence-resistant 1 (SAMR1), which shows normal aging process. Serum samples were collected for study from both male and female 12-month-old SAMP8 and age matched SAMR1 ( n = 5). (1)H NMR spectra of serum were analyzed by pattern recognition using principal components analysis. The results showed that the serum metabolic patterns of SAMP8 and SAMR1 were significantly different due to strains and genders. Subtle differences in the endogenous metabolite profiles in serum between SAMP8 and SAMR1 were observed. The most important metabolite responsible for the strain separation was lack of inosine, which meant the protective function of anti-inflammation, immunomodulation and neuroprotection might be attenuated in SAMP8. Other differential metabolites observed between strains included decreased glucose, PUFA, choline, phosphocholine, HDL, LDL, D-3-hydoxybutyrate, citrate and pyruvate and increased lactate, SFA, alanine, methionine, glutamine and VLDL in serum of SAMP8 compared with those of SAMR1, suggesting perturbed glucose and lipid metabolisms in SAMP8. Besides the differences observed between the strains, an impact of gender on metabolism was also found. The females exhibited larger metabolic deviations than males and these gender differences in SAMP8 were much larger than in SAMR1. Higher levels of VLDL, lactate and amino acids and lower levels of HDL, LDL and unsaturated lipids were detected in female than in male SAMP8. These facts indicated that the metabolism disequilibrium in female and male SAMP8 was different and this may partly explain that females were more prone to AD than males. The results of this work may

  17. Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness.

    PubMed

    Sellick, Christopher A; Croxford, Alexandra S; Maqsood, Arfa R; Stephens, Gill M; Westerhoff, Hans V; Goodacre, Royston; Dickson, Alan J

    2015-09-01

    Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. PMID:26198903

  18. Targeted serum metabolite profiling and sequential metabolite ratio analysis for colorectal cancer progression monitoring.

    PubMed

    Zhu, Jiangjiang; Djukovic, Danijel; Deng, Lingli; Gu, Haiwei; Himmati, Farhan; Abu Zaid, Mohammad; Chiorean, Elena Gabriela; Raftery, Daniel

    2015-10-01

    Colorectal cancer (CRC) is one of the most prevalent cancers worldwide and a major cause of human morbidity and mortality. In addition to early detection, close monitoring of disease progression in CRC can be critical for patient prognosis and treatment decisions. Efforts have been made to develop new methods for improved early detection and patient monitoring; however, research focused on CRC surveillance for treatment response and disease recurrence using metabolomics has yet to be reported. In this proof of concept study, we applied a targeted liquid chromatography tandem mass spectrometry (LC-MS/MS) metabolic profiling approach focused on sequential metabolite ratio analysis of serial serum samples to monitor disease progression from 20 CRC patients. The use of serial samples reduces patient to patient metabolic variability. A partial least squares-discriminant analysis (PLS-DA) model using a panel of five metabolites (succinate, N2, N2-dimethylguanosine, adenine, citraconic acid, and 1-methylguanosine) was established, and excellent model performance (sensitivity = 0.83, specificity = 0.94, area under the receiver operator characteristic curve (AUROC) = 0.91 was obtained, which is superior to the traditional CRC monitoring marker carcinoembryonic antigen (sensitivity = 0.75, specificity = 0.76, AUROC = 0.80). Monte Carlo cross validation was applied, and the robustness of our model was clearly observed by the separation of true classification models from the random permutation models. Our results suggest the potential utility of metabolic profiling for CRC disease monitoring. PMID:26342311

  19. IDH1 R132H mutation generates a distinct phospholipid metabolite profile in glioma.

    PubMed

    Esmaeili, Morteza; Hamans, Bob C; Navis, Anna C; van Horssen, Remco; Bathen, Tone F; Gribbestad, Ingrid S; Leenders, William P; Heerschap, Arend

    2014-09-01

    Many patients with glioma harbor specific mutations in the isocitrate dehydrogenase gene IDH1 that associate with a relatively better prognosis. IDH1-mutated tumors produce the oncometabolite 2-hydroxyglutarate. Because IDH1 also regulates several pathways leading to lipid synthesis, we hypothesized that IDH1-mutant tumors have an altered phospholipid metabolite profile that would impinge on tumor pathobiology. To investigate this hypothesis, we performed (31)P-MRS imaging in mouse xenograft models of four human gliomas, one of which harbored the IDH1-R132H mutation. (31)P-MR spectra from the IDH1-mutant tumor displayed a pattern distinct from that of the three IDH1 wild-type tumors, characterized by decreased levels of phosphoethanolamine and increased levels of glycerophosphocholine. This spectral profile was confirmed by ex vivo analysis of tumor extracts, and it was also observed in human surgical biopsies of IDH1-mutated tumors by (31)P high-resolution magic angle spinning spectroscopy. The specificity of this profile for the IDH1-R132H mutation was established by in vitro (31)P-NMR of extracts of cells overexpressing IDH1 or IDH1-R132H. Overall, our results provide evidence that the IDH1-R132H mutation alters phospholipid metabolism in gliomas involving phosphoethanolamine and glycerophosphocholine. These new noninvasive biomarkers can assist in the identification of the mutation and in research toward novel treatments that target aberrant metabolism in IDH1-mutant glioma. PMID:25005896

  20. NMR-based metabolic profiling identifies biomarkers of liver regeneration following partial hepatectomy in the rat.

    PubMed

    Bollard, Mary E; Contel, Nancy R; Ebbels, Timothy M D; Smith, Leon; Beckonert, Olaf; Cantor, Glenn H; Lehman-McKeeman, Lois; Holmes, Elaine C; Lindon, John C; Nicholson, Jeremy K; Keun, Hector C

    2010-01-01

    Tissue injury and repair are often overlapping consequences of disease or toxic exposure, but are not often considered as distinct processes in molecular studies. To establish the systemic metabolic response to liver regeneration, the partial hepatectomy (PH) model has been studied in the rat by an integrated metabonomics strategy, utilizing (1)H NMR spectroscopy of urine, liver and serum. Male Sprague-Dawley rats were subjected to either surgical removal of approximately two-thirds of the liver, sham operated (SO) surgery, or no treatment (n = 10/group) and samples collected over a 7 day period. A number of urinary metabolic perturbations were observed in PH rats compared with SO and control animals, including elevated levels of taurine, hypotaurine, creatine, guanidinoacetic acid, betaine, dimethylglycine and bile acids. Serum betaine and creatine were also elevated after PH, while levels of triglyceride were reduced. In the liver, triglycerides, cholesterol, alanine and betaine were elevated after PH, while choline and its derivatives were reduced. Upon examining the dynamic pattern of urinary response (the 'metabolic trajectory'), several metabolites could be categorized into groups likely to reflect perturbations to different processes such as dietary intake or hepatic 1-carbon metabolism. Several of the urinary perturbations observed during the regenerative phase of the PH model have also been observed after exposure to liver toxins, indicating that hepatic regeneration may make a contribution to the systemic alterations in metabolism associated with hepatotoxicity. The observed changes in 1-carbon and lipid metabolism are consistent with the proposed role of these pathways in the activation of a regenerative response and provide further evidence regarding the utility of urinary NMR profiles in the detection of liver-specific pathology. Biofluid (1)H NMR-based metabolic profiling provides new insight into the role of metabolism of liver regeneration, and

  1. Metabolomic profiling of the phytomedicinal constituents of Carica papaya L. leaves and seeds by 1H NMR spectroscopy and multivariate statistical analysis.

    PubMed

    Gogna, Navdeep; Hamid, Neda; Dorai, Kavita

    2015-11-10

    Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity. PMID:26163870

  2. Metabolite Profiling of Justicia gendarussa Burm. f. Leaves Using UPLC-UHR-QTOF-MS

    PubMed Central

    Ningsih, Indah Yulia; Purwanti, Diah Intan; Wongso, Suwidji; Prajogo, Bambang E. W.; Indrayanto, Gunawan

    2015-01-01

    An ultra-performance liquid chromatography ultra-high-resolution quadrupole-time-of-flight-mass spectrometry (UPLC-UHR-QTOF-MS) metabolite profiling ofxs Justicia gendarussa Burm. f. leaves was performed. PCA and HCA analyses were applied to observe the clustering patterns and inter-sample relationships. It seemed that the concentrations of Ca, P, and Cu in the soil could affect the metabolite profiles of Justicia gendarussa. Six significant metabolites were proposed. PMID:26839833

  3. Influence of growing conditions on metabolite profile of Ammi visnaga umbels with special reference to bioactive furanochromones and pyranocoumarins.

    PubMed

    Sellami, Hela Kallel; Napolitano, Assunta; Masullo, Milena; Smiti, Samira; Piacente, Sonia; Pizza, Cosimo

    2013-11-01

    The medicinal plant Ammi visnaga is a valuable source of furanochromones and pyranocoumarins used as vasodilator agents. Its ability to germinate under unfavourable growth conditions, such as saline soil and hypoxia characterizing clay soils and marshes ecosystems, prompted us to qualitatively characterize secondary metabolites in umbels of A. visnaga plants grown under different conditions (in field, hydroponically controlled, and contrasted by salinity and/or hypoxia) by HPLC-ESI/IT/MS(n) analysis. Subsequently, the quantitative analysis of the bioactive compounds, above all furanochromones and pyranocoumarins, was carried out by HPLC-ESI/QqQ/MS/MS. The results show the influence of growing conditions on the quali-quantitative profile of A. visnaga secondary metabolites and evidence that hydroponic culture leads to increased level of A. visnaga active principles. Furthermore, two furanochromones never reported before were identified and characterized by 1D- and 2D-NMR analysis. PMID:23993295

  4. Integrating candidate metabolites and biochemical factors to elucidate the action mechanism of Xue-sai-tong injection based on (1)H NMR metabolomics.

    PubMed

    Jiang, Miaomiao; Zhao, Xiaoping; Wang, Linli; Xu, Lei; Zhang, Yan; Li, Zheng

    2016-07-15

    A strategy of integrating candidate metabolites with crucial biochemical factors was proposed in this study to discover relevant biological functions for interpreting the action mechanism of Traditional Chinese Medicines (TCM). This approach was applied to Xue-Sai-Tong injection (XST) to reveal the action mechanism based on the metabolic response in an ischemia/reperfusion (I/R) rat model by analyzing NMR profile. Partial least squares discriminate analysis (PLS-DA) was used to compare metabolic profiles of serum samples and revealed nine metabolites altered by I/R injury could be restored to normal status (sham-operated group) under the therapy of XST. The pathway enrichment analysis suggested the metabolic changes were mainly involved in pyruvate metabolism, glycolysis, and citrate cycle. The functional roles of the candidate metabolites were further identified by Pearson correlation analysis with the key biochemical factors in serum. The results indicated pyruvate, succinate, acetate and lysine showed significant associations with the oxidative stress factors. Elevated level of pyruvate was found as an essential metabolic response for the major effect of XST against I/R injury by enhancing glycolysis and overcoming the induced reactive oxygen species (ROS). This metabolomics approach provides a better understanding of the mechanisms of TCM and helps to develop a holistic view of TCM efficacy. PMID:26862062

  5. Metabolite Profiling and Cardiovascular Event Risk: A Prospective Study of Three Population-Based Cohorts

    PubMed Central

    Würtz, Peter; Havulinna, Aki S; Soininen, Pasi; Tynkkynen, Tuulia; Prieto-Merino, David; Tillin, Therese; Ghorbani, Anahita; Artati, Anna; Wang, Qin; Tiainen, Mika; Kangas, Antti J; Kettunen, Johannes; Kaikkonen, Jari; Mikkilä, Vera; Jula, Antti; Kähönen, Mika; Lehtimäki, Terho; Lawlor, Debbie A; Gaunt, Tom R; Hughes, Alun D; Sattar, Naveed; Illig, Thomas; Adamski, Jerzy; Wang, Thomas J; Perola, Markus; Ripatti, Samuli; Vasan, Ramachandran S; Raitakari, Olli T; Gerszten, Robert E; Casas, Juan-Pablo; Chaturvedi, Nish; Ala-Korpela, Mika; Salomaa, Veikko

    2015-01-01

    Background High-throughput profiling of circulating metabolites may improve cardiovascular risk prediction over established risk factors. Methods and Results We applied quantitative NMR metabolomics to identify biomarkers for incident cardiovascular disease during long-term follow-up. Biomarker discovery was conducted in the FINRISK study (n=7256; 800 events). Replication and incremental risk prediction was assessed in the SABRE study (n=2622; 573 events) and British Women’s Health and Heart Study (n=3563; 368 events). In targeted analyses of 68 lipids and metabolites, 33 measures were associated with incident cardiovascular events at P<0.0007 after adjusting for age, sex, blood pressure, smoking, diabetes and medication. When further adjusting for routine lipids, four metabolites were associated with future cardiovascular events in meta-analyses: higher serum phenylalanine (hazard ratio per standard deviation: 1.18 [95%CI 1.12–1.24]; P=4×10−10) and monounsaturated fatty acid levels (1.17 [1.11–1.24]; P=1×10−8) were associated with increased cardiovascular risk, while higher omega-6 fatty acids (0.89 [0.84–0.94]; P=6×10−5) and docosahexaenoic acid levels (0.90 [0.86–0.95]; P=5×10−5) were associated with lower risk. A risk score incorporating these four biomarkers was derived in FINRISK. Risk prediction estimates were more accurate in the two validation cohorts (relative integrated discrimination improvement 8.8% and 4.3%), albeit discrimination was not enhanced. Risk classification was particularly improved for persons in the 5–10% risk range (net reclassification 27.1% and 15.5%). Biomarker associations were further corroborated with mass spectrometry in FINRISK (n=671) and the Framingham Offspring Study (n=2289). Conclusions Metabolite profiling in large prospective cohorts identified phenylalanine, monounsaturated and polyunsaturated fatty acids as biomarkers for cardiovascular risk. This study substantiates the value of high

  6. Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates

    SciTech Connect

    Caines, G.H.; Schleich, T.; Morgan, C.F. ); Farnsworth, P.N. )

    1990-08-21

    The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of {sup 31}P off-resonance rotating frame spin-lattice relaxation as a means of assessing the occurrence and extent of phosphorus metabolite-lens protein interactions. {sup 31}P NMR spectra of calf lens homogenates were obtained at 10 and 18{degree}C at 7.05 T. Effective rotational correlation times ({tau}{sub 0,eff}) for the major phosphorus metabolites present in cortical and nuclear bovine calf lens homogenates were derived from nonlinear least-squares analysis of R vs {omega}{sub e} data with the assumption of isotropic reorientational motion. Intramolecular dipole-dipole ({sup 1}H-{sup 31}P, {sup 31}P-{sup 31}P), chemical shift anisotropy (CSA), and solvent (water) translational intermolecular dipole-dipole ({sup 1}H-{sup 31}P) relaxation contributions were assumed in the analyses. A fast-exchange model between free and bound forms, was employed in the analysis of the metabolite R vs {omega}{sub e} curves to yield the fraction of free (unbound) metabolite ({Theta}{sub free}). The results of this study establish the occurrence of significant temperature-dependent (above and below the cold cataract phase transition temperature) binding of ATP (cortex) and PME (nucleus) and p{sub i} (nucleus) in calf lens.

  7. NMR metabolomic profiling reveals new roles of SUMOylation in DNA damage response.

    PubMed

    Cano, Kristin E; Li, Yi-Jia; Chen, Yuan

    2010-10-01

    Post-translational modifications by the Small Ubiquitin-like Modifier (SUMO) family of proteins have been established as critical events in the cellular response to a wide range of DNA damaging reagents and radiation; however, the detailed mechanism of SUMOylation in DNA damage response is not well understood. In this study, we used a nuclear magnetic resonance (NMR) spectroscopy-based metabolomics approach to examine the effect of an inhibitor of SUMO-mediated protein-protein interactions on MCF7 breast cancer cell response to radiation. Metabolomics is sensitive to changes in cellular functions and thus provides complementary information to other biological studies. The peptide inhibitor (SUMO interaction motif mimic, SIM) and a control peptide were stably expressed in MCF-7 cell line. Metabolite profiles of the cell lines before and after radiation were analyzed using solution NMR methods. Various statistical methods were used to isolate significant changes. Differences in the amounts of glutamine, aspartate, malate, alanine, glutamate and NADH between the SIM-expressing and control cells suggest a role for SUMOylation in regulating mitochondrial function. This is also further verified following the metabolism of (13)C-labeled glutamine. The inability of the cells expressing the SIM peptide to increase production of the antioxidants carnosine and glutathione after radiation damage suggests an important role of SUMOylation in regulating the levels of antioxidants that protect cells from free radicals and reactive oxygen species generated by radiation. This study reveals previously unknown roles of SUMOylation in DNA damage response. PMID:20695451

  8. Solving the Jigsaw Puzzle of Wound-Healing Potato Cultivars: Metabolite Profiling and Antioxidant Activity of Polar Extracts

    PubMed Central

    2015-01-01

    Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264

  9. Investigation of chemomarkers of astragali radix of different ages and geographical origin by NMR profiling.

    PubMed

    Zheng, Lu; Wang, Mei; Ibarra-Estrada, Emmanuel; Wu, Changsheng; Wilson, Erica Georgina; Verpoorte, Robert; Klinkhamer, Petrus Gerardus Leonardus; Choi, Young Hae

    2015-01-01

    Astragalus roots from Astragalus membranaceus Bunge or Astragalus membranaceus var. mongholicus (Bunge) Hsiao are among the most popular traditional medicinal plants due to their diverse therapeutic uses based on their tonic, antinephritic, immunostimulant, hepatoprotectant, diuretic, antidiabetic, analgesic, expectorant and sedative properties. Currently, the herb is produced or cultivated in various sites, including 10 different locations in China with very diverse environmental conditions. These differences affect their metabolic pools and consequently their medicinal properties. The comparative metabolic profiling of plants of different geographical origins or ages could contribute to detect biomarkers for their quality control and thus guarantee the efficacy of the herbal medicines produced with this drug. In this paper nuclear magnetic resonance spectroscopy (NMR)-based metabolomics was applied for to plants of different origins and age for this purpose. The results of this study show that in the set of samples evaluated, age is more discriminating than geographical location. The quantity of individual flavonoids and some primary metabolites contributed most to this age differentiation. On the other hand, based on the analysis of orthogonal partial least square (OPLS) modeling, the marker metabolites for the geographical origin were saponins and isoflavonoids. PMID:25690295

  10. Identification of intra- and inter-individual metabolite variation in plasma metabolite profiles of cats and dogs.

    PubMed

    Colyer, Alison; Gilham, Matthew S; Kamlage, Beate; Rein, Dietrich; Allaway, David

    2011-10-01

    The purpose of the present study was first to identify drivers of variance in plasma metabolite profiles of cats and dogs that may affect the interpretation of nutritional metabolomic studies. A total of fourteen cats and fourteen dogs housed in environmentally enriched accommodation were fed a single batch of diet to maintain body weight. Fasting blood samples were taken on days 14, 16 and 18 of the study. Gas chromatography-mass spectrometry (GC-MS), liquid chromatography (LC)-MS/MS and solid-phase extraction-LC-MS/MS analyses were used for metabolite profiling. Principal component (PC) analysis that indicated 31 and 27 % of the variance was explained in PC1 and PC2 for cats and dogs, respectively, with most individuals occupying a unique space. As the individual was a major driver of variance in the plasma metabolome, the second objective was to identify metabolites associated with the individual variation observed. The proportion of intra- and inter-individual variance was calculated for 109 cat and 101 dog metabolites with a low intra-individual variance (SD < 0.05). Of these, fifteen cat and six dog metabolites had inter-individual variance accounting for at least 90 % of the total variance. There were four metabolites common to both species (campesterol, DHA, a cholestenol and a sphingosine moiety). Many of the metabolites with >75 % inter-individual variance were common to both species and to similar areas of metabolism. In summary, the individual is an important driver of variance in the fasted plasma metabolome, and specific metabolites and areas of metabolism may be differentially regulated by individuals in two companion animal species. PMID:22005413

  11. Spatially localized sup 1 H NMR spectra of metabolites in the human brain

    SciTech Connect

    Hanstock, C.C. ); Rothman, D.L.; Jue, T.; Shulman, R.G. ); Prichard, J.W. )

    1988-03-01

    Using a surface coil, the authors have obtained {sup 1}H NMR spectra from metabolites in the human brain. Localization was achieved by combining depth pulses with image-selected in vivo spectroscopy magnetic field gradient methods. {sup 1}H spectra in which total creatine (3.03 ppm) has a signal/noise ratio of 95:1 were obtained in 4 min from 14 ml of brain. A resonance at 2.02 ppm consisting predominantly of N-acetylaspartate was measured relative to the creatine peak in gray and white matter, and the ratio was lower in the white matter. The spin-spin relaxation times of N-acetylaspartate and creatine were measured in white and gray matter and while creatine relaxation times were the same in both, the N-acetylaspartate relaxation time was longer in white matter. Lactate was detected in the normoxic brain and the average of three measurements was {approx}0.5 mM from comparison with the creatine plus phosphocreatine peak, which was assumed to be 10.5 mM.

  12. Metabolite

    MedlinePlus

    A metabolite is any substance produced during metabolism (digestion or other bodily chemical processes). The term metabolite may also refer to the product that remains after a drug is broken down (metabolized) by the body.

  13. Quantification of Human Brain Metabolites from in Vivo1H NMR Magnitude Spectra Using Automated Artificial Neural Network Analysis

    NASA Astrophysics Data System (ADS)

    Hiltunen, Yrjö; Kaartinen, Jouni; Pulkkinen, Juhani; Häkkinen, Anna-Maija; Lundbom, Nina; Kauppinen, Risto A.

    2002-01-01

    Long echo time (TE=270 ms) in vivo proton NMR spectra resembling human brain metabolite patterns were simulated for lineshape fitting (LF) and quantitative artificial neural network (ANN) analyses. A set of experimental in vivo1H NMR spectra were first analyzed by the LF method to match the signal-to-noise ratios and linewidths of simulated spectra to those in the experimental data. The performance of constructed ANNs was compared for the peak area determinations of choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) signals using both manually phase-corrected and magnitude spectra as inputs. The peak area data from ANN and LF analyses for simulated spectra yielded high correlation coefficients demonstrating that the peak areas quantified with ANN gave similar results as LF analysis. Thus, a fully automated ANN method based on magnitude spectra has demonstrated potential for quantification of in vivo metabolites from long echo time spectroscopic imaging.

  14. Rapid construction of metabolite biosensors using domain-insertion profiling

    PubMed Central

    Nadler, Dana C.; Morgan, Stacy-Anne; Flamholz, Avi; Kortright, Kaitlyn E.; Savage, David F.

    2016-01-01

    Single-fluorescent protein biosensors (SFPBs) are an important class of probes that enable the single-cell quantification of analytes in vivo. Despite advantages over other detection technologies, their use has been limited by the inherent challenges of their construction. Specifically, the rational design of green fluorescent protein (GFP) insertion into a ligand-binding domain, generating the requisite allosteric coupling, remains a rate-limiting step. Here, we describe an unbiased approach, termed domain-insertion profiling with DNA sequencing (DIP-seq), that combines the rapid creation of diverse libraries of potential SFPBs and high-throughput activity assays to identify functional biosensors. As a proof of concept, we construct an SFPB for the important regulatory sugar trehalose. DIP-seq analysis of a trehalose-binding-protein reveals allosteric hotspots for GFP insertion and results in high-dynamic range biosensors that function robustly in vivo. Taken together, DIP-seq simultaneously accelerates metabolite biosensor construction and provides a novel tool for interrogating protein allostery. PMID:27470466

  15. Rapid construction of metabolite biosensors using domain-insertion profiling.

    PubMed

    Nadler, Dana C; Morgan, Stacy-Anne; Flamholz, Avi; Kortright, Kaitlyn E; Savage, David F

    2016-01-01

    Single-fluorescent protein biosensors (SFPBs) are an important class of probes that enable the single-cell quantification of analytes in vivo. Despite advantages over other detection technologies, their use has been limited by the inherent challenges of their construction. Specifically, the rational design of green fluorescent protein (GFP) insertion into a ligand-binding domain, generating the requisite allosteric coupling, remains a rate-limiting step. Here, we describe an unbiased approach, termed domain-insertion profiling with DNA sequencing (DIP-seq), that combines the rapid creation of diverse libraries of potential SFPBs and high-throughput activity assays to identify functional biosensors. As a proof of concept, we construct an SFPB for the important regulatory sugar trehalose. DIP-seq analysis of a trehalose-binding-protein reveals allosteric hotspots for GFP insertion and results in high-dynamic range biosensors that function robustly in vivo. Taken together, DIP-seq simultaneously accelerates metabolite biosensor construction and provides a novel tool for interrogating protein allostery. PMID:27470466

  16. Optimization of cell disruption methods for efficient recovery of bioactive metabolites via NMR of three freshwater microalgae (chlorophyta).

    PubMed

    Ma, Nyuk Ling; Teh, Kit Yinn; Lam, Su Shiung; Kaben, Anne Marie; Cha, Thye San

    2015-08-01

    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts. PMID:25812996

  17. Unsupervised principal component analysis of NMR metabolic profiles for the assessment of substantial equivalence of transgenic grapes (Vitis vinifera).

    PubMed

    Picone, Gianfranco; Mezzetti, Bruno; Babini, Elena; Capocasa, Franco; Placucci, Giuseppe; Capozzi, Francesco

    2011-09-14

    Substantial equivalence is a key concept in the evaluation of unintended and potentially harmful metabolic impact consequent to a genetic modification of food. The application of unsupervised multivariate data analysis to the metabolic profiles is expected to improve the effectiveness of such evaluation. The present study uses NMR spectra of hydroalcoholic extracts, as holistic representations of the metabolic profiles of grapes, to evaluate the effect of the insertion of one or three copies of the DefH9-iaaM construct in plants of Silcora and Thompson Seedless cultivars. The comparison of the metabolic profiles of transgenic derivatives with respect to their corresponding natural lines pointed out that the overall metabolic changes occur in the same direction, independent of the host genotype, although the two cultivars are modified to different extents. A higher number of copies not only produces a larger effect but also modifies the whole pattern of perturbed metabolites. PMID:21806070

  18. Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.

    PubMed

    Andersen, Birgitte; Dongo, Anita; Pryor, Barry M

    2008-02-01

    Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila. PMID:18262401

  19. Characterization of the biochemical effects of 1-nitronaphthalene in rats using global metabolic profiling by NMR spectroscopy and pattern recognition.

    PubMed

    Azmi, J; Connelly, J; Holmes, E; Nicholson, J K; Shore, R F; Griffin, J L

    2005-01-01

    Metabolic fingerprints, in the form of patterns of high-concentration endogenous metabolites, of 1-nitronaphthalene (NN)-induced lung toxicity have been elucidated in bronchoalveolar lavage fluid (BALF), urine, blood plasma, and intact lung and liver tissue using NMR spectroscopy-based metabolic profiling. A single dose of NN (75 mg kg(-1)) was administered orally to Sprague-Dawley rats. BALF and lung tissue were obtained 24 h after dosing from these animals and matched control rats post-mortem. High-resolution (1)H-NMR spectroscopy of BALF samples indicated that NN caused increases in concentrations of choline, amino acids (leucine, isoleucine and alanine) and lactate together with decreased concentrations of succinate, citrate, creatine, creatinine and glucose. In addition, the intact lung weights were higher in the NN-treated group (p<0.01), consistent with pulmonary oedema. The NMR-detected perturbations indicated that NN induces a perturbation in energy metabolism in both lung and liver tissue, as well as surfactant production and osmolyte levels in the lungs. As well as reporting the first NMR spectroscopic combined examination of BALF and intact lung, this study indicates that such holistic approaches to investigating mechanisms of lung toxicity may be of value in evaluating disease progression or the effects of therapeutic intervention in pulmonary conditions such as surfactant disorders or asthma. PMID:16308265

  20. Characterizing Exposures of Fish to Wastewater Treatment Plant Effluent: An Integrated Metabolite and Lipid Profiling Approach

    EPA Science Inventory

    Metabolite and lipid profiling are well established techniques for studying chemical-induced alterations to normal biological function in numerous organisms. These techniques have been used successfully to identify biomarkers of chemical exposure, screen for chemical potency, or ...

  1. Using radial NMR profiles to characterize pore size distributions

    NASA Astrophysics Data System (ADS)

    Deriche, Rachid; Treilhard, John

    2012-02-01

    Extracting information about axon diameter distributions in the brain is a challenging task which provides useful information for medical purposes; for example, the ability to characterize and monitor axon diameters would be useful in diagnosing and investigating diseases like amyotrophic lateral sclerosis (ALS)1 or autism.2 Three families of operators are defined by Ozarslan,3 whose action upon an NMR attenuation signal extracts the moments of the pore size distribution of the ensemble under consideration; also a numerical method is proposed to continuously reconstruct a discretely sampled attenuation profile using the eigenfunctions of the simple harmonic oscillator Hamiltonian: the SHORE basis. The work presented here extends Ozarlan's method to other bases that can offer a better description of attenuation signal behaviour; in particular, we propose the use of the radial Spherical Polar Fourier (SPF) basis. Testing is performed to contrast the efficacy of the radial SPF basis and SHORE basis in practical attenuation signal reconstruction. The robustness of the method to additive noise is tested and analysed. We demonstrate that a low-order attenuation signal reconstruction outperforms a higher-order reconstruction in subsequent moment estimation under noisy conditions. We propose the simulated annealing algorithm for basis function scale parameter estimation. Finally, analytic expressions are derived and presented for the action of the operators on the radial SPF basis (obviating the need for numerical integration, thus avoiding a spectrum of possible sources of error).

  2. Genetic engineering and metabolite profiling for overproduction of polyhydroxybutyrate in cyanobacteria.

    PubMed

    Hondo, Sayaka; Takahashi, Masatoshi; Osanai, Takashi; Matsuda, Mami; Hasunuma, Tomohisa; Tazuke, Akio; Nakahira, Yoichi; Chohnan, Shigeru; Hasegawa, Morifumi; Asayama, Munehiko

    2015-11-01

    Genetic engineering and metabolite profiling for the overproduction of polyhydroxybutyrate (PHB), which is a carbon material in biodegradable plastics, were examined in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Transconjugants harboring cyanobacterial expression vectors that carried the pha genes for PHB biosynthesis were constructed. The overproduction of PHB by the engineering cells was confirmed through microscopic observations using Nile red, transmission electron microscopy (TEM), or nuclear magnetic resonance (NMR). We successfully recovered PHB from transconjugants prepared from nitrogen-depleted medium without sugar supplementation in which PHB reached approximately 7% (w/w) of the dry cell weight, showing a value of 12-fold higher productivity in the transconjugant than that in the control strain. We also measured the intracellular levels of acetyl-CoA, acetoacetyl-CoA, and 3-hydroxybutyryl-CoA (3HB-CoA), which are intermediate products for PHB. The results obtained indicated that these products were absent or at markedly low levels when cells were subjected to the steady-state growth phase of cultivation under nitrogen depletion for the overproduction of bioplastics. Based on these results, efficient factors were discussed for the overproduction of PHB in recombinant cyanobacteria. PMID:26055446

  3. The effects of GA and ABA treatments on metabolite profile of germinating barley.

    PubMed

    Huang, Yuqing; Cai, Shengguan; Ye, Lingzhen; Hu, Hongliang; Li, Chengdao; Zhang, Guoping

    2016-02-01

    Sugar degradation during grain germination is important for malt quality. In malting industry, gibberellin (GA) is frequently used for improvement of malting quality. In this study, the changes of metabolite profiles and starch-degrading enzymes during grain germination, and as affected by GA and abscisic acid (ABA) were investigated using two wild barley accessions XZ72 and XZ95. Totally fifty-two metabolites with known structures were detected and the change of metabolite during germination was time- and genotype dependent. Sugars and amino acids were the most dramatically changed compounds. Addition of GA enhanced the activities of starch-degrading enzymes, and increased most metabolites, especially sugars and amino acids, whereas ABA had the opposite effect. The effect varied with the barley accessions. The current study is the first attempt in investigating the effect of hormones on metabolite profiles in germinating barley grain, being helpful for identifying the factors affecting barley germination or malt quality. PMID:26304431

  4. Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.

    PubMed

    Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji

    2009-03-23

    The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments. PMID:19270373

  5. A Carbonyl Capture Approach for Profiling Oxidized Metabolites in Cell Extracts

    PubMed Central

    Mattingly, Stephanie J.; Xu, Tao; Nantz, Michael H.; Higashi, Richard M.; Fan, Teresa W.-M.

    2012-01-01

    Fourier-transform ion-cyclotron resonance mass spectrometry (FT-ICR-MS) detection of oxidized cellular metabolites is described using isotopologic, carbonyl-selective derivatizing agents that integrate aminooxy functionality for carbonyl capture, quaternary nitrogen for electrospray enhancement, and a hydrophobic domain for sample cleanup. These modular structural features enable rapid, sensitive analysis of complex mixtures of metabolite-derivatives by FT-ICR-MS via continuous nanoelectrospray infusion. Specifically, this approach can be used to globally assess levels of low abundance and labile aldehyde and ketone metabolites quantitatively and in high throughput manner. These metabolites are often key and unique indicators of various biochemical pathways and their perturbations. Analysis of lung adenocarcinoma A549 cells established a profile of carbonyl metabolites spanning multiple structural classes. We also demonstrate a procedure for metabolite quantification using pyruvate as a model analyte. PMID:23175637

  6. Differential metabolite profiles and salinity tolerance between two genetically related brown-seeded and yellow-seeded Brassica carinata lines.

    PubMed

    Canam, Thomas; Li, Xiang; Holowachuk, Jennifer; Yu, Min; Xia, Jianguo; Mandal, Rupasri; Krishnamurthy, Ramanarayan; Bouatra, Souhaila; Sinelnikov, Igor; Yu, Bianyun; Grenkow, Larry; Wishart, David S; Steppuhn, Harold; Falk, Kevin C; Dumonceaux, Tim J; Gruber, Margaret Y

    2013-01-01

    Brassica carinata (Ethiopian mustard) has previously been identified as a potential crop species suitable for marginal land in the North American prairies due to its relatively high salt tolerance. Two genetically related B. carinata lines with brown-seeded (BS) and yellow-seeded (YS) phenotypes were assessed for their tolerance to sodium sulfate. Specifically, each line was greenhouse-grown under 0, 50 and 100mM of salt, and analyzed after four weeks and eight weeks of treatment. Generally, the height of the BS line was greater than the YS line under both salt treatments, indicating enhanced salt tolerance of the BS line. NMR-based metabolite profiling and PCA analyses indicated a more pronounced shift in key stem metabolites after four weeks of treatment with the YS line compared to the BS line. For example, tryptophan and formate levels increased in the YS line after four weeks of 100mM salt treatment, while proline and threonine levels varied uniquely compared to other metabolites of the lines. Together, the data indicate that the brown-seeded line has greater sodium tolerance than the yellow-seed line, provide clues to the biochemical underpinnings for the phenotypic variation, and highlight the utility of B. carinata as a biorefinery crop for saline land. PMID:23199683

  7. Combining DI-ESI–MS and NMR datasets for metabolic profiling

    PubMed Central

    Marshall, Darrell D.; Lei, Shulei; Worley, Bradley; Huang, Yuting; Garcia-Garcia, Aracely; Franco, Rodrigo; Dodds, Eric D.; Powers, Robert

    2014-01-01

    Metabolomics datasets are commonly acquired by either mass spectrometry (MS) or nuclear magnetic resonance spectroscopy (NMR), despite their fundamental complementarity. In fact, combining MS and NMR datasets greatly improves the coverage of the metabolome and enhances the accuracy of metabolite identification, providing a detailed and high-throughput analysis of metabolic changes due to disease, drug treatment, or a variety of other environmental stimuli. Ideally, a single metabolomics sample would be simultaneously used for both MS and NMR analyses, minimizing the potential for variability between the two datasets. This necessitates the optimization of sample preparation, data collection and data handling protocols to effectively integrate direct-infusion MS data with one-dimensional (1D) 1H NMR spectra. To achieve this goal, we report for the first time the optimization of (i) metabolomics sample preparation for dual analysis by NMR and MS, (ii) high throughput, positive-ion direct infusion electrospray ionization mass spectrometry (DI-ESI-MS) for the analysis of complex metabolite mixtures, and (iii) data handling protocols to simultaneously analyze DI-ESI-MS and 1D 1H NMR spectral data using multiblock bilinear factorizations, namely multiblock principal component analysis (MB-PCA) and multiblock partial least squares (MB-PLS). Finally, we demonstrate the combined use of backscaled loadings, accurate mass measurements and tandem MS experiments to identify metabolites significantly contributing to class separation in MB-PLS-DA scores. We show that integration of NMR and DI-ESI-MS datasets yields a substantial improvement in the analysis of neurotoxin involvement in dopaminergic cell death. PMID:25774104

  8. The Serum Metabolite Response to Diet Intervention with Probiotic Acidified Milk in Irritable Bowel Syndrome Patients Is Indistinguishable from that of Non-Probiotic Acidified Milk by 1H NMR-Based Metabonomic Analysis

    PubMed Central

    Pedersen, Simon M. M.; Nielsen, Niels Chr.; Andersen, Henrik J.; Olsson, Johan; Simrén, Magnus; Öhman, Lena; Svensson, Ulla; Malmendal, Anders; Bertram, Hanne C.

    2010-01-01

    The effects of a probiotic acidified milk product on the blood serum metabolite profile of patients suffering from Irritable Bowel Syndrome (IBS) compared to a non-probiotic acidified milk product was investigated using 1H NMR metabonomics. For eight weeks, IBS patients consumed 0.4 L per day of a probiotic fermented milk product or non-probiotic acidified milk. Both diets resulted in elevated levels of blood serum L-lactate and 3-hydroxybutyrate. Our results showed identical effects of acidified milk consumption independent of probiotic addition. A similar result was previously obtained in a questionnaire-based evaluation of symptom relief. A specific probiotic effect is thus absent both in the patient subjective symptom evaluations and at the blood serum metabolite level. However, there was no correspondence between symptom relief and metabolite response on the patient level. PMID:22254002

  9. Metabolite profiling in retinoblastoma identifies novel clinicopathological subgroups

    PubMed Central

    Kohe, Sarah; Brundler, Marie-Anne; Jenkinson, Helen; Parulekar, Manoj; Wilson, Martin; Peet, Andrew C; McConville, Carmel M

    2015-01-01

    Background: Tumour classification, based on histopathology or molecular pathology, is of value to predict tumour behaviour and to select appropriate treatment. In retinoblastoma, pathology information is not available at diagnosis and only exists for enucleated tumours. Alternative methods of tumour classification, using noninvasive techniques such as magnetic resonance spectroscopy, are urgently required to guide treatment decisions at the time of diagnosis. Methods: High-resolution magic-angle spinning magnetic resonance spectroscopy (HR-MAS MRS) was undertaken on enucleated retinoblastomas. Principal component analysis and cluster analysis of the HR-MAS MRS data was used to identify tumour subgroups. Individual metabolite concentrations were determined and were correlated with histopathological risk factors for each group. Results: Multivariate analysis identified three metabolic subgroups of retinoblastoma, with the most discriminatory metabolites being taurine, hypotaurine, total-choline and creatine. Metabolite concentrations correlated with specific histopathological features: taurine was correlated with differentiation, total-choline and phosphocholine with retrolaminar optic nerve invasion, and total lipids with necrosis. Conclusions: We have demonstrated that a metabolite-based classification of retinoblastoma can be obtained using ex vivo magnetic resonance spectroscopy, and that the subgroups identified correlate with histopathological features. This result justifies future studies to validate the clinical relevance of these subgroups and highlights the potential of in vivo MRS as a noninvasive diagnostic tool for retinoblastoma patient stratification. PMID:26348444

  10. Metabolic Profiling and Classification of Propolis Samples from Southern Brazil: An NMR-Based Platform Coupled with Machine Learning.

    PubMed

    Maraschin, Marcelo; Somensi-Zeggio, Amélia; Oliveira, Simone K; Kuhnen, Shirley; Tomazzoli, Maíra M; Raguzzoni, Josiane C; Zeri, Ana C M; Carreira, Rafael; Correia, Sara; Costa, Christopher; Rocha, Miguel

    2016-01-22

    The chemical composition of propolis is affected by environmental factors and harvest season, making it difficult to standardize its extracts for medicinal usage. By detecting a typical chemical profile associated with propolis from a specific production region or season, certain types of propolis may be used to obtain a specific pharmacological activity. In this study, propolis from three agroecological regions (plain, plateau, and highlands) from southern Brazil, collected over the four seasons of 2010, were investigated through a novel NMR-based metabolomics data analysis workflow. Chemometrics and machine learning algorithms (PLS-DA and RF), including methods to estimate variable importance in classification, were used in this study. The machine learning and feature selection methods permitted construction of models for propolis sample classification with high accuracy (>75%, reaching ∼90% in the best case), better discriminating samples regarding their collection seasons comparatively to the harvest regions. PLS-DA and RF allowed the identification of biomarkers for sample discrimination, expanding the set of discriminating features and adding relevant information for the identification of the class-determining metabolites. The NMR-based metabolomics analytical platform, coupled to bioinformatic tools, allowed characterization and classification of Brazilian propolis samples regarding the metabolite signature of important compounds, i.e., chemical fingerprint, harvest seasons, and production regions. PMID:26693586

  11. Profiling of Serum Metabolites in Canine Lymphoma Using Gas Chromatography Mass Spectrometry

    PubMed Central

    TAMAI, Reo; FURUYA, Masaru; HATOYA, Shingo; AKIYOSHI, Hideo; YAMAMOTO, Ryohei; KOMORI, Yoshiaki; YOKOI, Shin-ichi; TANI, Kenichiro; HIRANO, Yuji; KOMORI, Masayuki; TAKENAKA, Shigeo

    2014-01-01

    ABSTRACT Canine lymphoma is a common cancer that has high rates of complete remission with combination chemotherapy. However, the duration of remission varies based on multiple factors, and there is a need to develop a method for early detection of recurrence. In this study, we compared the metabolites profiles in serum from 21 dogs with lymphoma and 13 healthy dogs using gas chromatography mass spectrometry (GC-MS). The lymphoma group was separated from the control group in an orthogonal projection to latent structure with discriminant analysis (OPLS-DA) plot using ions of m/z 100–600, indicating that the metabolites profiles in lymphoma cases differed from those in healthy dogs. The lymphoma group was also separated from the control group on OPLS-DA plot using 29 metabolites identified in all serum samples. Significant differences were found for 16 of these metabolites with higher levels in the lymphoma group for 15 of the metabolites and lower levels for inositol. An OPLS-DA plot showed separation of the lymphoma and healthy groups using these 16 metabolites only. These results indicate that metabolites profile with GC-MS may be a useful tool for detection of potential biomarker and diagnosis of canine lymphoma. PMID:25131950

  12. 1H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study

    PubMed Central

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M.

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  13. (1)H high resolution magic-angle coil spinning (HR-MACS) μNMR metabolic profiling of whole Saccharomyces cervisiae cells: a demonstrative study.

    PubMed

    Wong, Alan; Boutin, Céline; Aguiar, Pedro M

    2014-01-01

    The low sensitivity and thus need for large sample volume is one of the major drawbacks of Nuclear Magnetic Resonance (NMR) spectroscopy. This is especially problematic for performing rich metabolic profiling of scarce samples such as whole cells or living organisms. This study evaluates a (1)H HR-MAS approach for metabolic profiling of small volumes (250 nl) of whole cells. We have applied an emerging micro-NMR technology, high-resolution magic-angle coil spinning (HR-MACS), to study whole Saccharomyces cervisiae cells. We find that high-resolution high-sensitivity spectra can be obtained with only 19 million cells and, as a demonstration of the metabolic profiling potential, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging. PMID:24971307

  14. Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS.

    PubMed

    Lee, Jae Won; Ji, Seung-Heon; Kim, Geum-Soog; Song, Kyung-Sik; Um, Yurry; Kim, Ok Tae; Lee, Yi; Hong, Chang Pyo; Shin, Dong-Ho; Kim, Chang-Kug; Lee, Seung-Eun; Ahn, Young-Sup; Lee, Dae-Young

    2015-01-01

    In this study, a method of metabolite profiling based on UPLC-QTOF/MS was developed to analyze Platycodon grandiflorum. In the optimal UPLC, various metabolites, including major platycosides, were separated well in 15 min. The metabolite extraction protocols were also optimized by selecting a solvent for use in the study, the ratio of solvent to sample and sonication time. This method was used to profile two different parts of P. grandiflorum, i.e., the roots of P. grandiflorum (PR) and the stems and leaves of P. grandiflorum (PS), in the positive and negative ion modes. As a result, PR and PS showed qualitatively and quantitatively different metabolite profiles. Furthermore, their metabolite compositions differed according to individual plant samples. These results indicate that the UPLC-QTOF/MS-based profiling method is a good tool to analyze various metabolites in P. grandiflorum. This metabolomics approach can also be applied to evaluate the overall quality of P. grandiflorum, as well as to discriminate the cultivars for the medicinal plant industry. PMID:26569219

  15. Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS

    PubMed Central

    Lee, Jae Won; Ji, Seung-Heon; Kim, Geum-Soog; Song, Kyung-Sik; Um, Yurry; Kim, Ok Tae; Lee, Yi; Hong, Chang Pyo; Shin, Dong-Ho; Kim, Chang-Kug; Lee, Seung-Eun; Ahn, Young-Sup; Lee, Dae-Young

    2015-01-01

    In this study, a method of metabolite profiling based on UPLC-QTOF/MS was developed to analyze Platycodon grandiflorum. In the optimal UPLC, various metabolites, including major platycosides, were separated well in 15 min. The metabolite extraction protocols were also optimized by selecting a solvent for use in the study, the ratio of solvent to sample and sonication time. This method was used to profile two different parts of P. grandiflorum, i.e., the roots of P. grandiflorum (PR) and the stems and leaves of P. grandiflorum (PS), in the positive and negative ion modes. As a result, PR and PS showed qualitatively and quantitatively different metabolite profiles. Furthermore, their metabolite compositions differed according to individual plant samples. These results indicate that the UPLC-QTOF/MS-based profiling method is a good tool to analyze various metabolites in P. grandiflorum. This metabolomics approach can also be applied to evaluate the overall quality of P. grandiflorum, as well as to discriminate the cultivars for the medicinal plant industry. PMID:26569219

  16. Systematic NMR Analysis of Stable Isotope Labeled Metabolite Mixtures in Plant and Animal Systems: Coarse Grained Views of Metabolic Pathways

    PubMed Central

    Chikayama, Eisuke; Suto, Michitaka; Nishihara, Takashi; Shinozaki, Kazuo; Hirayama, Takashi; Kikuchi, Jun

    2008-01-01

    Background Metabolic phenotyping has become an important ‘bird's-eye-view’ technology which can be applied to higher organisms, such as model plant and animal systems in the post-genomics and proteomics era. Although genotyping technology has expanded greatly over the past decade, metabolic phenotyping has languished due to the difficulty of ‘top-down’ chemical analyses. Here, we describe a systematic NMR methodology for stable isotope-labeling and analysis of metabolite mixtures in plant and animal systems. Methodology/Principal Findings The analysis method includes a stable isotope labeling technique for use in living organisms; a systematic method for simultaneously identifying a large number of metabolites by using a newly developed HSQC-based metabolite chemical shift database combined with heteronuclear multidimensional NMR spectroscopy; Principal Components Analysis; and a visualization method using a coarse-grained overview of the metabolic system. The database contains more than 1000 1H and 13C chemical shifts corresponding to 142 metabolites measured under identical physicochemical conditions. Using the stable isotope labeling technique in Arabidopsis T87 cultured cells and Bombyx mori, we systematically detected >450 HSQC peaks in each 13C-HSQC spectrum derived from model plant, Arabidopsis T87 cultured cells and the invertebrate animal model Bombyx mori. Furthermore, for the first time, efficient 13C labeling has allowed reliable signal assignment using analytical separation techniques such as 3D HCCH-COSY spectra in higher organism extracts. Conclusions/Significance Overall physiological changes could be detected and categorized in relation to a critical developmental phase change in B. mori by coarse-grained representations in which the organization of metabolic pathways related to a specific developmental phase was visualized on the basis of constituent changes of 56 identified metabolites. Based on the observed intensities of 13C atoms of

  17. Steroid receptor profiling of vinclozolin and its primary metabolites

    SciTech Connect

    Molina-Molina, Jose-Manuel; Hillenweck, Anne; Jouanin, Isabelle; Zalko, Daniel; Cravedi, Jean-Pierre; Fernandez, Mariana-Fatima; Pillon, Arnaud; Nicolas, Jean-Claude; Olea, Nicolas; Balaguer, Patrick . E-mail: balaguer@montp.inserm.fr

    2006-10-01

    Several pesticides and fungicides commonly used to control agricultural and indoor pests are highly suspected to display endocrine-disrupting effects in animals and humans. Endocrine disruption is mainly caused by the interference of chemicals at the level of steroid receptors: it is now well known that many of these chemicals can display estrogenic effects and/or anti-androgenic effects, but much less is known about the interaction of these compounds with other steroid receptors. Vinclozolin, a dicarboximide fungicide, like its primary metabolites 2-[[(3,5-dichlorophenyl)-carbamoyl]oxy]-2-methyl-3-butenoic acid (M1), and 3',5'-dichloro-2-hydroxy-2-methylbut-3-enanilide (M2), is known to bind androgen receptor (AR). Although vinclozolin and its metabolites were characterized as anti-androgens, relatively little is known about their effects on the function of the progesterone (PR), glucocorticoid (GR), mineralocorticoid (MR) or estrogen receptors (ER{alpha} and ER{beta}). Objectives of the study were to determine the ability of vinclozolin and its two primary metabolites to activate AR, PR, GR, MR and ER. For this purpose, we used reporter cell lines bearing luciferase gene under the control of wild type or chimeric Gal4 fusion AR, PR, GR, MR or ERs. We confirmed that all three were antagonists for AR, whereas only M2 was found a partial agonist. Interestingly, M2 was also a PR, GR and MR antagonist (MR >> PR > GR) while vinclozolin was an MR and PR antagonist. Vinclozolin, M1 and M2 were agonists for both ERs with a lower affinity for ER{beta}. Although the potencies of the fungicide and its metabolites are low when compared to natural ligands, their ability to act via more than one mechanism and the potential for additive or synergistic effect must be taken into consideration in the risk assessment process.

  18. Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle

    PubMed Central

    Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred

    2015-01-01

    In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response

  19. High-resolution mass spectrometry elucidates metabonate (false metabolite) formation from alkylamine drugs during in vitro metabolite profiling.

    PubMed

    Barbara, Joanna E; Kazmi, Faraz; Muranjan, Seema; Toren, Paul C; Parkinson, Andrew

    2012-10-01

    In vitro metabolite profiling and characterization experiments are widely employed in early drug development to support safety studies. Samples from incubations of investigational drugs with liver microsomes or hepatocytes are commonly analyzed by liquid chromatography/mass spectrometry for detection and structural elucidation of metabolites. Advanced mass spectrometers with accurate mass capabilities are becoming increasingly popular for characterization of drugs and metabolites, spurring changes in the routine workflows applied. In the present study, using a generic full-scan high-resolution data acquisition approach with a time-of-flight mass spectrometer combined with postacquisition data mining, we detected and characterized metabonates (false metabolites) in microsomal incubations of several alkylamine drugs. If a targeted approach to mass spectrometric detection (without full-scan acquisition and appropriate data mining) were employed, the metabonates may not have been detected, hence their formation underappreciated. In the absence of accurate mass data, the metabonate formation would have been incorrectly characterized because the detected metabonates manifested as direct cyanide-trapped conjugates or as cyanide-trapped metabolites formed from the parent drugs by the addition of 14 Da, the mass shift commonly associated with oxidation to yield a carbonyl. This study demonstrates that high-resolution mass spectrometry and the associated workflow is very useful for the detection and characterization of unpredicted sample components and that accurate mass data were critical to assignment of the correct metabonate structures. In addition, for drugs containing an alkylamine moiety, the results suggest that multiple negative controls and chemical trapping agents may be necessary to correctly interpret the results of in vitro experiments. PMID:22798552

  20. Metabolite profiling of microfluidic cell culture conditions for droplet based screening

    PubMed Central

    Bjork, Sara M.; Sjostrom, Staffan L.; Andersson-Svahn, Helene; Joensson, Haakan N.

    2015-01-01

    We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format. PMID:26392830

  1. 1H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit

    PubMed Central

    Goulas, Vlasios; Minas, Ioannis S.; Kourdoulas, Panayiotis M.; Lazaridou, Athina; Molassiotis, Athanassios N.; Gerothanassis, Ioannis P.; Manganaris, George A.

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. ‘Canada Giant’, ‘Ferrovia’) were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: ‘Canada Giant’ fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile ‘Ferrovia’ possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, 1H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. ‘Ferrovia’ fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an 1H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2–8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  2. (1)H NMR Metabolic Fingerprinting to Probe Temporal Postharvest Changes on Qualitative Attributes and Phytochemical Profile of Sweet Cherry Fruit.

    PubMed

    Goulas, Vlasios; Minas, Ioannis S; Kourdoulas, Panayiotis M; Lazaridou, Athina; Molassiotis, Athanassios N; Gerothanassis, Ioannis P; Manganaris, George A

    2015-01-01

    Sweet cherry fruits (Prunus avium cvs. 'Canada Giant', 'Ferrovia') were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: 'Canada Giant' fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile 'Ferrovia' possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, (1)H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. 'Ferrovia' fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an (1)H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2-8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits. PMID:26617616

  3. Metabolic Profiling and Antioxidant Assay of Metabolites from Three Radish Cultivars (Raphanus sativus).

    PubMed

    Park, Chang Ha; Baskar, Thanislas Bastin; Park, Soo-Yun; Kim, Sun-Ju; Valan Arasu, Mariadhas; Al-Dhabi, Naif Abdullah; Kim, Jae Kwang; Park, Sang Un

    2016-01-01

    A total of 13 anthocyanins and 33 metabolites; including organic acids, phenolic acids, amino acids, organic compounds, sugar acids, sugar alcohols, and sugars, were profiled in three radish cultivars by using high-performance liquid chromatography (HPLC) and gas chromatography time-of-flight mass spectrometry (GC-TOFMS)-based metabolite profiling. Total phenolics and flavonoids and their in vitro antioxidant activities were assessed. Pelargonidins were found to be the major anthocyanin in the cultivars studied. The cultivar Man Tang Hong showed the highest level of anthocyanins (1.89 ± 0.07 mg/g), phenolics (0.0664 ± 0.0033 mg/g) and flavonoids (0.0096 ± 0.0004 mg/g). Here; the variation of secondary metabolites in the radishes is described, as well as their association with primary metabolites. The low-molecular-weight hydrophilic metabolite profiles were subjected to principal component analysis (PCA), hierarchical clustering analysis (HCA), Pearson's correlation analysis. PCA fully distinguished the three radish cultivars tested. The polar metabolites were strongly correlated between metabolites that participate in the TCA cycle. The chemometrics results revealed that TCA cycle intermediates and free phenolic acids as well as anthocyanins were higher in the cultivar Man Tang Hong than in the others. Furthermore; superoxide radical scavenging activities and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging were investigated to elucidate the antioxidant activity of secondary metabolites in the cultivars. Man Tang Hong showed the highest superoxide radical scavenging activity (68.87%) at 1000 μg/mL, and DPPH activity (20.78%), followed by Seo Ho and then Hong Feng No. 1. The results demonstrate that GC-TOFMS-based metabolite profiling, integrated with chemometrics, is an applicable method for distinguishing phenotypic variation and determining biochemical reactions connecting primary and secondary metabolism. Therefore; this study might provide

  4. NMR-Based Metabolic Profiling Reveals Neurochemical Alterations in the Brain of Rats Treated with Sorafenib.

    PubMed

    Du, Changman; Shao, Xue; Zhu, Ruiming; Li, Yan; Zhao, Qian; Fu, Dengqi; Gu, Hui; Kong, Jueying; Luo, Li; Long, Hailei; Deng, Pengchi; Wang, Huijuan; Hu, Chunyan; Zhao, Yinglan; Cen, Xiaobo

    2015-11-01

    Sorafenib, an active multi-kinase inhibitor, has been widely used as a chemotherapy drug to treat advanced clear-cell renal cell carcinoma patients. In spite of the relative safety, sorafenib has been shown to exert a negative impact on cognitive functioning in cancer patients, specifically on learning and memory; however, the underlying mechanism remains unclear. In this study, an NMR-based metabolomics approach was applied to investigate the neurochemical effects of sorafenib in rats. Male rats were once daily administrated with 120 mg/kg sorafenib by gavage for 3, 7, and 28 days, respectively. NMR-based metabolomics coupled with histopathology examinations for hippocampus, prefrontal cortex (PFC), and striatum were performed. The (1)H NMR spectra data were analyzed by using multivariate pattern recognition techniques to show the time-dependent biochemical variations induced by sorafenib. Excellent separation was obtained and distinguishing metabolites were observed between sorafenib-treated and control rats. A total of 36 differential metabolites in hippocampus of rats treated with sorafenib were identified, some of which were significantly changed. Furthermore, these modified metabolites mainly reflected the disturbances in neurotransmitters, energy metabolism, membrane, and amino acids. However, only a few metabolites in PFC and striatum were altered by sorafenib. Additionally, no apparent histological changes in these three brain regions were observed in sorafenib-treated rats. Together, our findings demonstrate the disturbed metabonomics pathways, especially, in hippocampus, which may underlie the sorafenib-induced cognitive deficits in patients. This work also shows the advantage of NMR-based metabolomics over traditional approach on the study of biochemical effects of drugs. PMID:26233726

  5. Comprehensive Chemical Profiling of Picrorhiza kurroa Royle ex Benth Using NMR, HPTLC and LC-MS/MS Techniques.

    PubMed

    Kumar, Dinesh; Kumar, Rakesh; Singh, Bikram; Ahuja, Paramvir Singh

    2016-01-01

    Picrorhiza kurroa is an important herb in Indian medicine and contains cucurbitacins, flavonoids, phenolics, iridoid-glucoside and their derivatives as active constituents for the treatment of indigestion, fever, hepatitis, cancer, liver and respiratory diseases. Extensive use of P. kurroa needs detailed analysis and recognition of chemical diversity, is of great importance to evaluate their role as quality control markers. In the present study, comprehensive metabolic profiling of crude extracts of leaves and rhizomes of P. kurroa was carried out using NMR, HPTLC and LC-MS/MS. Primary and secondary metabolites were unambiguously identified along with a new report of monoterpenic glycoside (1-β-D-glucopyranosyl)-8-hydroxy-3,7-dimethyl-oct-2(E),6(E)-dienoate) in P. Kurroa. Significant qualitative differences with respect to the secondary metabolites were noticed between the leaves and rhizomes tissues. Leaves contained more cucurbitacins and flavonoids while iridoids were present more in rhizomes. The comprehensive chemical profiling is expected to give an idea of chemical diversity and quality of P. kurroa, for their ultimate utilisation in various applications. PMID:26777484

  6. Digital NMR profiles as building blocks: assembling ¹H fingerprints of steviol glycosides.

    PubMed

    Napolitano, José G; Simmler, Charlotte; McAlpine, James B; Lankin, David C; Chen, Shao-Nong; Pauli, Guido F

    2015-04-24

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by (1)H iterative full spin analysis and then joined together as building blocks to recreate the (1)H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2-8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  7. Digital NMR Profiles as Building Blocks: Assembling 1H Fingerprints of Steviol Glycosides

    PubMed Central

    Napolitano, José G.; Simmler, Charlotte; McAlpine, James B.; Lankin, David C.; Chen, Shao-Nong; Pauli, Guido F.

    2015-01-01

    This report describes a fragment-based approach to the examination of congeneric organic compounds by NMR spectroscopy. The method combines the classic interpretation of 1D- and 2D-NMR data sets with contemporary computer-assisted NMR analysis. Characteristic NMR profiles of key structural motifs were generated by 1H iterative full spin analysis and then joined together as building blocks to recreate the 1H NMR spectra of increasingly complex molecules. To illustrate the methodology described, a comprehensive analysis of steviol (1), seven steviol glycosides (2–8) and two structurally related isosteviol compounds (9, 10) was carried out. The study also assessed the potential impact of this method on relevant aspects of natural product research including structural verification, chemical dereplication, and mixture analysis. PMID:25714117

  8. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of (13)C-labeled Plant Metabolites and Lignocellulose.

    PubMed

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our (13)C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the (13)C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the (13)C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in (13)C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  9. Multidimensional High-Resolution Magic Angle Spinning and Solution-State NMR Characterization of 13C-labeled Plant Metabolites and Lignocellulose

    PubMed Central

    Mori, Tetsuya; Tsuboi, Yuuri; Ishida, Nobuhiro; Nishikubo, Nobuyuki; Demura, Taku; Kikuchi, Jun

    2015-01-01

    Lignocellulose, which includes mainly cellulose, hemicellulose, and lignin, is a potential resource for the production of chemicals and for other applications. For effective production of materials derived from biomass, it is important to characterize the metabolites and polymeric components of the biomass. Nuclear magnetic resonance (NMR) spectroscopy has been used to identify biomass components; however, the NMR spectra of metabolites and lignocellulose components are ambiguously assigned in many cases due to overlapping chemical shift peaks. Using our 13C-labeling technique in higher plants such as poplar samples, we demonstrated that overlapping peaks could be resolved by three-dimensional NMR experiments to more accurately assign chemical shifts compared with two-dimensional NMR measurements. Metabolites of the 13C-poplar were measured by high-resolution magic angle spinning NMR spectroscopy, which allows sample analysis without solvent extraction, while lignocellulose components of the 13C-poplar dissolved in dimethylsulfoxide/pyridine solvent were analyzed by solution-state NMR techniques. Using these methods, we were able to unambiguously assign chemical shifts of small and macromolecular components in 13C-poplar samples. Furthermore, using samples of less than 5 mg, we could differentiate between two kinds of genes that were overexpressed in poplar samples, which produced clearly modified plant cell wall components. PMID:26143886

  10. Extending metabolome coverage for untargeted metabolite profiling of adherent cultured hepatic cells.

    PubMed

    García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín

    2016-02-01

    MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids. PMID:26769129

  11. 1H High Resolution Magic-Angle Coil Spinning (HR-MACS) - NMR Metabolic Profiling of whole Saccharomyces cervisiae cells: A Demonstrative Study

    NASA Astrophysics Data System (ADS)

    Wong, Alan; Boutin, Celine; Aguiar, Pedro

    2014-06-01

    The low sensitivity of Nuclear Magnetic Resonance (NMR) is its prime shortcoming compared to other analytical methods for metabolomic studies. It relies on large sample volume (30-50 µl for HR-MAS) for rich metabolic profiling, hindering high-throughput screening especially when the sample requires a labor-intensive preparation or is a sacred specimen. This is indeed the case for some living organisms. This study evaluates a 1H HR-MAS approach for metabolic profiling of small volume (250 nl) whole bacterial cells, Saccharomyces cervisiae, using an emerging micro-NMR technology: high-resolution magic-angle coil spinning (HR-MACS). As a demonstrative study for whole cells, we perform two independent metabolomics studies identifying the significant metabolites associated with osmotic stress and aging.

  12. Identification of endogenous metabolites in human sperm cells using proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS).

    PubMed

    Paiva, C; Amaral, A; Rodriguez, M; Canyellas, N; Correig, X; Ballescà, J L; Ramalho-Santos, J; Oliva, R

    2015-05-01

    The objective of this study was to contribute to the first comprehensive metabolomic characterization of the human sperm cell through the application of two untargeted platforms based on proton nuclear magnetic resonance ((1) H-NMR) spectroscopy and gas chromatography coupled to mass spectrometry (GC-MS). Using these two complementary strategies, we were able to identify a total of 69 metabolites, of which 42 were identified using NMR, 27 using GC-MS and 4 by both techniques. The identity of some of these metabolites was further confirmed by two-dimensional (1) H-(1) H homonuclear correlation spectroscopy (COSY) and (1) H-(13) C heteronuclear single-quantum correlation (HSQC) spectroscopy. Most of the metabolites identified are reported here for the first time in mature human spermatozoa. The relationship between the metabolites identified and the previously reported sperm proteome was also explored. Interestingly, overrepresented pathways included not only the metabolism of carbohydrates, but also of lipids and lipoproteins. Of note, a large number of the metabolites identified belonged to the amino acids, peptides and analogues super class. The identification of this initial set of metabolites represents an important first step to further study their function in male gamete physiology and to explore potential reasons for dysfunction in future studies. We also demonstrate that the application of NMR and MS provides complementary results, thus constituting a promising strategy towards the completion of the human sperm cell metabolome. PMID:25854681

  13. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types.

    PubMed

    Baldina, Svetlana; Picarella, Maurizio E; Troise, Antonio D; Pucci, Anna; Ruggieri, Valentino; Ferracane, Rosalia; Barone, Amalia; Fogliano, Vincenzo; Mazzucato, Andrea

    2016-01-01

    Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate). Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids, and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs) among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm as an experimental

  14. Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types

    PubMed Central

    Baldina, Svetlana; Picarella, Maurizio E.; Troise, Antonio D.; Pucci, Anna; Ruggieri, Valentino; Ferracane, Rosalia; Barone, Amalia; Fogliano, Vincenzo; Mazzucato, Andrea

    2016-01-01

    Increased interest toward traditional tomato varieties is fueled by the need to rescue desirable organoleptic traits and to improve the quality of fresh and processed tomatoes in the market. In addition, the phenotypic and genetic variation preserved in tomato landraces represents a means to understand the genetic basis of traits related to health and organoleptic aspects and improve them in modern varieties. To establish a framework for this approach, we studied the content of several metabolites in a panel of Italian tomato landraces categorized into three broad fruit type classes (flattened/ribbed, pear/oxheart, round/elongate). Three modern hybrids, corresponding to the three fruit shape typologies, were included as reference. Red ripe fruits were morphologically characterized and biochemically analyzed for their content in glycoalkaloids, phenols, amino acids, and Amadori products. The round/elongate types showed a higher content in glycoalkaloids, whereas flattened types had higher levels of phenolic compounds. Flattened tomatoes were also rich in total amino acids and in particular in glutamic acid. Multivariate analysis of amino acid content clearly separated the three classes of fruit types. Making allowance of the very low number of genotypes, phenotype-marker relationships were analyzed after retrieving single nucleotide polymorphisms (SNPs) among the landraces available in the literature. Sixty-six markers were significantly associated with the studied traits. The positions of several of these SNPs showed correspondence with already described genomic regions and QTLs supporting the reliability of the association. Overall the data indicated that significant changes in quality-related metabolites occur depending on the genetic background in traditional tomato germplasm, frequently according to specific fruit shape categories. Such a variability is suitable to harness association mapping for metabolic quality traits using this germplasm as an experimental

  15. Detection of hepatotoxicity potential with metabolite profiling (metabolomics) of rat plasma.

    PubMed

    Mattes, W; Davis, K; Fabian, E; Greenhaw, J; Herold, M; Looser, R; Mellert, W; Groeters, S; Marxfeld, H; Moeller, N; Montoya-Parra, G; Prokoudine, A; van Ravenzwaay, B; Strauss, V; Walk, T; Kamp, H

    2014-11-01

    While conventional parameters used to detect hepatotoxicity in drug safety assessment studies are generally informative, the need remains for parameters that can detect the potential for hepatotoxicity at lower doses and/or at earlier time points. Previous work has shown that metabolite profiling (metabonomics/metabolomics) can detect signals of potential hepatotoxicity in rats treated with doxorubicin at doses that do not elicit hepatotoxicity as monitored with conventional parameters. The current study extended this observation to the question of whether such signals could be detected in rats treated with compounds that can elicit hepatotoxicity in humans (i.e., drug-induced liver injury, DILI) but have not been reported to do so in rats. Nine compounds were selected on the basis of their known DILI potential, with six other compounds chosen as negative for DILI potential. A database of rat plasma metabolite profiles, MetaMap(®)Tox (developed by metanomics GmbH and BASF SE) was used for both metabolite profiles and mode of action (MoA) metabolite signatures for a number of known toxicities. Eight of the nine compounds with DILI potential elicited metabolite profiles that matched with MoA patterns of various rat liver toxicities, including cholestasis, oxidative stress, acetaminophen-type toxicity and peroxisome proliferation. By contrast, only one of the six non-DILI compounds showed a weak match with rat liver toxicity. These results suggest that metabolite profiling may indeed have promise to detect signals of hepatotoxicity in rats treated with compounds having DILI potential. PMID:25086301

  16. Comparative metabolite profiling of Solanum tuberosum against six wild Solanum species with Colorado potato beetle resistance.

    PubMed

    Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A

    2014-09-10

    The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum. PMID:25144460

  17. Profiling of metabolites in oil palm mesocarp at different stages of oil biosynthesis.

    PubMed

    Neoh, Bee Keat; Teh, Huey Fang; Ng, Theresa Lee Mei; Tiong, Soon Huat; Thang, Yin Mee; Ersad, Mohd Amiron; Mohamed, Mohaimi; Chew, Fook Tim; Kulaveerasingam, Harikrishna; Appleton, David R

    2013-02-27

    Oil palm is one of the most productive oil producing crops and can store up to 90% oil in its fruit mesocarp. However, the biosynthetic regulation and drivers of palm mesocarp development are still not well understood. Multiplatform metabolomics technology was used to profile palm metabolites during six critical stages of fruit development in order to better understand lipid biosynthesis. Significantly higher amino acid levels were observed in palm mesocarp preceding lipid biosynthesis. Nucleosides were found to be in high concentration during lipid biosynthesis, whereas levels of metabolites involved in the tricarboxylic acid cycle were more concentrated during early fruit development. Apart from insights into the regulation of metabolites during fruit development in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programs. PMID:23384169

  18. Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.

    PubMed

    Wei, Ru; Li, Guodong; Seymour, Albert B

    2014-01-01

    Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min. PMID:25270930

  19. Consumption of pasteurized human lysozyme transgenic goats’ milk alters serum metabolite profile in young pigs

    PubMed Central

    Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.

    2009-01-01

    Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666

  20. Comparison of the urinary metabolite profile of caffeine in young and elderly males.

    PubMed Central

    Blanchard, J; Sawers, S J; Jonkman, J H; Tang-Liu, D D

    1985-01-01

    The urinary metabolite profile of caffeine was compared in a group of seven healthy young men aged 18-29 years and in a group of five healthy elderly men aged 66-71 years. All subjects were given 5 mg/kg doses of caffeine as an aqueous oral solution or an intravenous infusion on two separate occasions in a randomized crossover design. Urine samples were collected for 24 h after dosing and analysed for caffeine and eleven of its metabolites by high-performance liquid chromatography. The effects of age, route of administration, and order of administration by route on the metabolite profile of caffeine were examined. The route of administration and the order of administration by the two routes were found not to influence the urinary metabolite pattern significantly. The urinary metabolite profile did not vary substantially with age except for the observation that significantly greater amounts of 1-methyluric acid, 7-methyluric acid and 1,7-dimethyluric acid were excreted by the elderly subjects. PMID:3986081

  1. Classification of terverticillate penicillia based on profiles of mycotoxins and other secondary metabolites.

    PubMed Central

    Frisvad, J C; Filtenborg, O

    1983-01-01

    Strains of available terverticillate penicillium species and varieties were analyzed for profiles of known mycotoxins and other secondary metabolites produced on Czapek yeast autolysate agar (intracellular metabolites) and yeast extract-sucrose agar (extracellular metabolites) by using simple thin-layer chromatography screening techniques. These strains (2,473 in all) could be classified into 29 groups based on profiles of secondary metabolites. Most of these profiles of secondary metabolites were distinct, containing several biosynthetically different mycotoxins and unknown metabolites characterized by distinct colors and retardation factors on thin-layer chromatography plates. Some species (P. italicum and P. atramentosum) only produced one or two metabolites by the simple screening methods. The 29 groups based on profiles of secondary metabolites were known species or subgroups thereof. These species and subgroups were independently identifiable by using morphological and physiological criteria. The species accepted, the number of isolates in each species investigated, and the mycotoxins they produced were: P. atramentosum, 4; P. aurantiogriseum, 510 (group I: penicillic acid and S-toxin and group II: penicillic acid, penitrem A [low frequency], terrestric acid [low frequency], viomellein, and xanthomegnin); P. brevicompactum, 81 (brevianamid A and mycophenolic acid); P. camembertii group I, 38, and group II, 114 (cyclopiazonic acid); P. chrysogenum, 87 (penicillin, roquefortine C, and PR-toxin); P. claviforme, 4 (patulin and roquefortine C); P. clavigerum, 4 (penitrem A); P. concentricum group I, 10 (griseofulvin and roquefortine C), and group II, 3 (patulin and roquefortine C); P. crustosum, 123 (penitrem A, roquefortine C, and terrestric acid); P. echinulatum, 13; P. expansum, 91 (citrinin, patulin, and roquefortine C); P. granulatum, 6 (patulin, penitrem A, and roquefortine C [traces]); P. griseofulvum, 21 (cyclopiazonic acid, griseofulvin, patulin, and

  2. Leveraging non-targeted metabolite profiling via statistical genomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the challenges of systems biology is to integrate multiple sources of data in order to build a cohesive view of the system of study. Here we describe the mass spectrometry based profiling of maize kernels, a model system for genomic studies and a cornerstone of the agroeconomy. Using a networ...

  3. Secondary metabolite profiles in HLB-affected sweet orange leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preliminary analyses of methanolic extracts of orange leaves that are either healthy or symptomatic of citrus greening (HLB) have shown consistent differences in the profiles of important classes of phytochemicals. The main flavonoids in symptomatic and healthy leaves were monitored in the HPLC chro...

  4. Nontargeted metabolite profiles and sensory properties of strawberry cultivars grown both organically and conventionally.

    PubMed

    Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; Karjalainen, Reijo O; Sandell, Mari

    2015-01-28

    Strawberry (Fragaria × ananassa Duch.) contains many secondary metabolites potentially beneficial for human health, and several of these compounds contribute to strawberry sensory properties, as well. In this study, three strawberry cultivars grown both conventionally and organically were subjected to nontargeted metabolite profiling analysis with LC-qTOF-ESI-MS and to descriptive sensory evaluation by a trained panel. Combined metabolome and sensory data (PLS model) revealed that 79% variation in the metabolome explained 88% variation in the sensory profiles. Flavonoids and condensed and hydrolyzable tannins determined the orosensory properties, and fatty acids contributed to the odor attributes of strawberry. Overall, the results indicated that the chemical composition and sensory quality of strawberries grown in different cultivation systems vary mostly according to cultivar. Organic farming practices may enhance the accumulation of some plant metabolites in specific strawberry genotypes. Careful cultivar selection is a key factor for the improvement of nutritional quality and marketing value of organic strawberries. PMID:25569122

  5. Anionic metabolite profiling by capillary electrophoresis-mass spectrometry using a noncovalent polymeric coating. Orange juice and wine as case studies.

    PubMed

    Acunha, Tanize; Simó, Carolina; Ibáñez, Clara; Gallardo, Alberto; Cifuentes, Alejandro

    2016-01-01

    In several metabolomic studies, it has already been demonstrated that capillary electrophoresis hyphenated to mass spectrometry (CE-MS) can detect an important group of highly polar and ionized metabolites that are overseen by techniques such as NMR, LC-MS and GC-MS, providing complementary information. In this work, we present a strategy for anionic metabolite profiling by CE-MS using a cationic capillary coating. The polymer, abbreviated as PTH, is composed of a poly-(N,N,N',N'-tetraethyldiethylenetriamine, N-(2-hydroxypropyl) methacrylamide, TEDETAMA-co-HPMA (50:50) copolymer. A CE-MS method based on PTH-coating was optimized for the analysis of a group of 16 standard anionic metabolites. Separation was achieved within 12min, with high separation efficiency (up to 92,000 theoretical plates per meter), and good repeatability, namely, relative standard deviation values for migration times and peak areas were below 0.2 and 2.1%, respectively. The optimized method allowed the detection of 87 metabolites in orange juice and 142 metabolites in red wine, demonstrating the good possibilities of this strategy for metabolomic applications. PMID:26296988

  6. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    EPA Science Inventory

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  7. Arabidopsis Transcript and Metabolite Profiles: Ecotype-specific Acclimation to Open-air Elevated [CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A FACE (Free-Air CO2 Enrichment) experiment compared physiological parameters, and transcript and metabolite profiles of Arabidopsis thaliana ecotypes Col-0 and Cvi-0 at ambient (~375ppm) and elevated (~550ppm) CO2 concentration ([CO2]). Photosynthesis and photoassimilate pool sizes were enhanced in...

  8. Metabolite Profile Changes in Xylem Sap and Leaf Extracts of Strategy I Plants in Response to Iron Deficiency and Resupply

    PubMed Central

    Rellán-Álvarez, Rubén; El-Jendoubi, Hamdi; Wohlgemuth, Gert; Abadía, Anunciación; Fiehn, Oliver; Abadía, Javier; Álvarez-Fernández, Ana

    2011-01-01

    The metabolite profile changes induced by Fe deficiency in leaves and xylem sap of several Strategy I plant species have been characterized. We have confirmed that Fe deficiency causes consistent changes both in the xylem sap and leaf metabolite profiles. The main changes in the xylem sap metabolite profile in response to Fe deficiency include consistent decreases in amino acids, N-related metabolites and carbohydrates, and increases in TCA cycle metabolites. In tomato, Fe resupply causes a transitory flush of xylem sap carboxylates, but within 1 day the metabolite profile of the xylem sap from Fe-deficient plants becomes similar to that of Fe-sufficient controls. The main changes in the metabolite profile of leaf extracts in response to Fe deficiency include consistent increases in amino acids and N-related metabolites, carbohydrates and TCA cycle metabolites. In leaves, selected pairs of amino acids and TCA cycle metabolites show high correlations, with the sign depending of the Fe status. These data suggest that in low photosynthesis, C-starved Fe-deficient plants anaplerotic reactions involving amino acids can be crucial for short-term survival. PMID:22645546

  9. COVALENT BINDING OF REDUCED METABOLITES OF [15N3] TNT TO SOIL ORGANIC MATTER DURING A BIOREMEDIATION PROCESS ANALYZED BY 15N NMR SPECTROSCOPY. (R826646)

    EPA Science Inventory

    Evidence is presented for the covalent binding of
    biologically reduced metabolites of 2,4,6-15N3-trinitrotoluene
    (TNT) to different soil fractions (humic acids, fulvic
    acids, and humin) using liquid 15N NMR spectroscopy. A
    silylation p...

  10. Mathematical Modeling and Data Analysis of NMR Experiments using Hyperpolarized 13C Metabolites

    PubMed Central

    Pagès, Guilhem; Kuchel, Philip W.

    2013-01-01

    Rapid-dissolution dynamic nuclear polarization (DNP) has made significant impact in the characterization and understanding of metabolism that occurs on the sub-minute timescale in several diseases. While significant efforts have been made in developing applications, and in designing rapid-imaging radiofrequency (RF) and magnetic field gradient pulse sequences, very few groups have worked on implementing realistic mathematical/kinetic/relaxation models to fit the emergent data. The critical aspects to consider when modeling DNP experiments depend on both nuclear magnetic resonance (NMR) and (bio)chemical kinetics. The former constraints are due to the relaxation of the NMR signal and the application of ‘read’ RF pulses, while the kinetic constraints include the total amount of each molecular species present. We describe the model-design strategy we have used to fit and interpret our DNP results. To our knowledge, this is the first report on a systematic analysis of DNP data. PMID:25114541

  11. Evaluation of saffron (Crocus sativus L.) adulteration with plant adulterants by (1)H NMR metabolite fingerprinting.

    PubMed

    Petrakis, Eleftherios A; Cagliani, Laura R; Polissiou, Moschos G; Consonni, Roberto

    2015-04-15

    In the present work, a preliminary study for the detection of adulterated saffron and the identification of the adulterant used by means of (1)H NMR and chemometrics is reported. Authentic Greek saffron and four typical plant-derived materials utilised as bulking agents in saffron, i.e., Crocus sativus stamens, safflower, turmeric, and gardenia were investigated. A two-step approach, relied on the application of both OPLS-DA and O2PLS-DA models to the (1)H NMR data, was adopted to perform authentication and prediction of authentic and adulterated saffron. Taking into account the deficiency of established methodologies to detect saffron adulteration with plant adulterants, the method developed resulted reliable in assessing the type of adulteration and could be viable for dealing with extensive saffron frauds at a minimum level of 20% (w/w). PMID:25466103

  12. Use of NMR in profiling of cocaine seizures.

    PubMed

    Pagano, Bruno; Lauri, Ilaria; De Tito, Stefano; Persico, Guido; Chini, Maria Giovanna; Malmendal, Anders; Novellino, Ettore; Randazzo, Antonio

    2013-09-10

    Cocaine is the most widely used illicit drug, and its origin is always the focus of intense investigation aimed at identifying the trafficking routes. Since NMR represents a unique methodology for performing chemical identification and quantification, here it is proposed a strategy based on (1)H NMR spectral analysis in conjunction with multivariate analysis to identify the chemical "fingerprint" of cocaine samples, and to link cocaine samples based on this information. The most relevant spectral regions containing the fingerprint have been identified: δH 0.86-0.96, 1.50-1.56, 5.90-5.93, 6.48-6.52, 7.31-7.34, 7.61-7.63, 7.68-7.72 ppm. The strategy has been applied on samples seized in different times and places in Naples (Italy). The chemical "fingerprint" depend on what plant they were extracted from, where it was cultivated, and which procedures were used for extraction and purification, thus adding significant information in the process toward identification of the trafficking routes for this drug. PMID:23890625

  13. Metabolite Profiling of Root Exudates of Common Bean under Phosphorus Deficiency

    PubMed Central

    Tawaraya, Keitaro; Horie, Ryota; Saito, Saki; Wagatsuma, Tadao; Saito, Kazuki; Oikawa, Akira

    2014-01-01

    Root exudates improve the nutrient acquisition of plants and affect rhizosphere microbial communities. The plant nutrient status affects the composition of root exudates. The purpose of this study was to examine common bean (Phaseolus vulgaris L.) root exudates under phosphorus (P) deficiency using a metabolite profiling technique. Common bean plants were grown in a culture solution at P concentrations of 0 (P0), 1 (P1) and 8 (P8) mg P L−1 for 1, 10 and 20 days after transplanting (DAT). Root exudates were collected, and their metabolites were determined by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). The shoot P concentration and dry weight of common bean plants grown at P0 were lower than those grown at P8. One hundred and fifty-nine, 203 and 212 metabolites were identified in the root exudates, and 16% (26/159), 13% (26/203) and 9% (20/212) of metabolites showed a P0/P8 ratio higher than 2.0 at 1, 10 and 20 DAT, respectively. The relative peak areas of several metabolites, including organic acids and amino acids, in root exudates were higher at P0 than at P8. These results suggest that more than 10% of primary and secondary metabolites are induced to exude from roots of common bean by P deficiency. PMID:25032978

  14. Investigating the drought-stress response of hybrid poplar genotypes by metabolite profiling.

    PubMed

    Barchet, Genoa L H; Dauwe, Rebecca; Guy, Robert D; Schroeder, William R; Soolanayakanahally, Raju Y; Campbell, Malcolm M; Mansfield, Shawn D

    2014-11-01

    Drought stress is perhaps the most commonly encountered abiotic stress plants experience in the natural environment, and it is one of the most important factors limiting plant productivity. Here, we employed untargeted metabolite profiling to examine four drought-stressed hybrid poplar (Populus spp.) genotypes for their metabolite content, using gas chromatography coupled to mass spectrometry. The primary objective of these analyses was to characterize the metabolite profile of poplar trees to assess relative drought resistance and to investigate the underlying biochemical mechanisms employed by the genotypes to combat drought. Metabolite profiling identified key metabolites that increased or decreased in relative abundance upon exposure to drought stress. Overall, amino acids, the antioxidant phenolic compounds catechin and kaempferol, as well as the osmolytes raffinose and galactinol exhibited increased abundance under drought stress, whereas metabolites involved in photorespiration, redox regulation and carbon fixation showed decreased abundance under drought stress. One clone in particular, Okanese, displayed unique responses to the imposed drought conditions. This clone was found to have higher leaf water potential, but lower growth rate relative to the other clones tested. Okanese also had lower accumulation of osmolytes such as raffinose, galactinol and proline, but higher overall levels of antioxidants such as catechin and dehydroascorbic acid. As such, it was proposed that osmotic adjustment as a mechanism for drought avoidance in this clone is not as well developed in comparison with the other clones investigated in this study, and that a possible alternative mechanism for the enhanced drought avoidance displayed by Okanese may be due to differential allocation of resources or better retention of water. PMID:24178982

  15. Differential Metabolite Profiles during Fruit Development in High-Yielding Oil Palm Mesocarp

    PubMed Central

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd.; Kulaveerasingam, Harikrishna; Appleton, David R.

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  16. Differential metabolite profiles during fruit development in high-yielding oil palm mesocarp.

    PubMed

    Teh, Huey Fang; Neoh, Bee Keat; Hong, May Ping Li; Low, Jaime Yoke Sum; Ng, Theresa Lee Mei; Ithnin, Nalisha; Thang, Yin Mee; Mohamed, Mohaimi; Chew, Fook Tim; Yusof, Hirzun Mohd; Kulaveerasingam, Harikrishna; Appleton, David R

    2013-01-01

    To better understand lipid biosynthesis in oil palm mesocarp, in particular the differences in gene regulation leading to and including de novo fatty acid biosynthesis, a multi-platform metabolomics technology was used to profile mesocarp metabolites during six critical stages of fruit development in comparatively high- and low-yielding oil palm populations. Significantly higher amino acid levels preceding lipid biosynthesis and nucleosides during lipid biosynthesis were observed in a higher yielding commercial palm population. Levels of metabolites involved in glycolysis revealed interesting divergence of flux towards glycerol-3-phosphate, while carbon utilization differences in the TCA cycle were proven by an increase in malic acid/citric acid ratio. Apart from insights into the regulation of enhanced lipid production in oil palm, these results provide potentially useful metabolite yield markers and genes of interest for use in breeding programmes. PMID:23593468

  17. The metabolic profile of lemon juice by proton HR-MAS NMR: the case of the PGI Interdonato Lemon of Messina.

    PubMed

    Cicero, Nicola; Corsaro, Carmelo; Salvo, Andrea; Vasi, Sebastiano; Giofré, Salvatore V; Ferrantelli, Vincenzo; Di Stefano, Vita; Mallamace, Domenico; Dugo, Giacomo

    2015-01-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) the metabolic profile of the famous Sicilian lemon known as 'Interdonato Lemon of Messina PGI'. The PGI Interdonato Lemon of Messina possesses high organoleptic and healthy properties and is recognised as one of the most nutrient fruits. In particular, some of its constituents are actively studied for their chemo-preventive and therapeutic properties. In this paper, we have determined by means of HR-MAS NMR spectroscopy the molar concentration of the main metabolites constituent the juice of PGI Interdonato Lemon of Messina in comparison with that of the not-PGI Interdonato Lemon of Turkey. Our aim is to develop an analytical technique, in order to determine a metabolic fingerprint able to reveal commercial frauds in national and international markets. PMID:25702767

  18. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging.

    PubMed

    Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W; Niehaus, Karsten

    2016-01-01

    MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals' germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880

  19. Serum and Urine Metabolite Profiling Reveals Potential Biomarkers of Human Hepatocellular Carcinoma*

    PubMed Central

    Chen, Tianlu; Xie, Guoxiang; Wang, Xiaoying; Fan, Jia; Qiu, Yunping; Zheng, Xiaojiao; Qi, Xin; Cao, Yu; Su, Mingming; Wang, Xiaoyan; Xu, Lisa X.; Yen, Yun; Liu, Ping; Jia, Wei

    2011-01-01

    Hepatocellular carcinoma (HCC) is a common malignancy in the world with high morbidity and mortality rate. Identification of novel biomarkers in HCC remains impeded primarily because of the heterogeneity of the disease in clinical presentations as well as the pathophysiological variations derived from underlying conditions such as cirrhosis and steatohepatitis. The aim of this study is to search for potential metabolite biomarkers of human HCC using serum and urine metabolomics approach. Sera and urine samples were collected from patients with HCC (n = 82), benign liver tumor patients (n = 24), and healthy controls (n = 71). Metabolite profiling was performed by gas chromatography time-of-flight mass spectrometry and ultra performance liquid chromatography-quadrupole time of flight mass spectrometry in conjunction with univariate and multivariate statistical analyses. Forty three serum metabolites and 31 urinary metabolites were identified in HCC patients involving several key metabolic pathways such as bile acids, free fatty acids, glycolysis, urea cycle, and methionine metabolism. Differentially expressed metabolites in HCC subjects, such as bile acids, histidine, and inosine are of great statistical significance and high fold changes, which warrant further validation as potential biomarkers for HCC. However, alterations of several bile acids seem to be affected by the condition of liver cirrhosis and hepatitis. Quantitative measurement and comparison of seven bile acids among benign liver tumor patients with liver cirrhosis and hepatitis, HCC patients with liver cirrhosis and hepatitis, HCC patients without liver cirrhosis and hepatitis, and healthy controls revealed that the abnormal levels of glycochenodeoxycholic acid, glycocholic acid, taurocholic acid, and chenodeoxycholic acid are associated with liver cirrhosis and hepatitis. HCC patients with alpha fetoprotein values lower than 20 ng/ml was successfully differentiated from healthy controls with an

  20. Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis.

    PubMed

    Heijne, Wilbert H M; Lamers, Robert-Jan A N; van Bladeren, Peter J; Groten, John P; van Nesselrooij, Joop H J; van Ommen, Ben

    2005-01-01

    This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233. To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org. PMID:16036859

  1. Metabolite profiling of Arabidopsis seedlings in response to exogenous sinalbin and sulfur deficiency.

    PubMed

    Zhang, Jixiu; Sun, Xiumei; Zhang, Zhiping; Ni, Yuwen; Zhang, Qing; Liang, Xinmiao; Xiao, Hongbin; Chen, Jiping; Tokuhisa, James G

    2011-10-01

    In order to determine how plant uptake of a sulfur-rich secondary metabolite, sinalbin, affects the metabolic profile of sulfur-deficient plants, gas chromatography time-of-flight mass spectrometry (GC-TOF-MS), in combination with liquid chromatography-mass spectrometry (LC-MS), was used to survey the metabolome of Arabidopsis seedlings grown in nutrient media under different sulfur conditions. The growth media had either sufficient inorganic sulfur for normal plant growth or insufficient inorganic sulfur in the presence or absence of supplementation with organic sulfur in the form of sinalbin (p-hydroxybenzylglucosinolate). A total of 90 metabolites were identified by GC-TOF-MS and their levels were compared across the three treatments. Of the identified compounds, 21 showed similar responses in plants that were either sulfur deficient or sinalbin supplemented compared to sulfur-sufficient plants, while 12 metabolites differed in abundance only in sulfur-deficient plants. Twelve metabolites accumulated to higher levels in sinalbin-supplemented than in the sulfur-sufficient plants. Secondary metabolites such as flavonol conjugates, sinapinic acid esters and glucosinolates, were identified by LC-MS and their corresponding mass fragmentation patterns were determined. Under sinalbin-supplemented conditions, sinalbin was taken up by Arabidopsis and contributed to the endogenous formation of glucosinolates. Additionally, levels of flavonol glycosides and sinapinic acid esters increased while levels of flavonol diglycosides with glucose attached to the 3-position were reduced. The exogenously administered sinalbin resulted in inhibition of root and hypocotyl growth and markedly influenced metabolite profiles, compared to control and sulfur-deficient plants. These results indicate that, under sulfur deficient conditions, glucosinolates can be a sulfur source for plants. This investigation defines an opportunity to elucidate the mechanism of glucosinolate degradation in

  2. Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging

    PubMed Central

    Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W.; Niehaus, Karsten

    2016-01-01

    MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880

  3. Fragment Assembly Approach Based on Graph/Network Theory with Quantum Chemistry Verifications for Assigning Multidimensional NMR Signals in Metabolite Mixtures.

    PubMed

    Ito, Kengo; Tsutsumi, Yu; Date, Yasuhiro; Kikuchi, Jun

    2016-04-15

    The abundant observation of chemical fragment information for molecular complexities is a major advantage of biological NMR analysis. Thus, the development of a novel technique for NMR signal assignment and metabolite identification may offer new possibilities for exploring molecular complexities. We propose a new signal assignment approach for metabolite mixtures by assembling H-H, H-C, C-C, and Q-C fragmental information obtained by multidimensional NMR, followed by the application of graph and network theory. High-speed experiments and complete automatic signal assignments were achieved for 12 combined mixtures of (13)C-labeled standards. Application to a (13)C-labeled seaweed extract showed 66 H-C, 60 H-H, 326 C-C, and 28 Q-C correlations, which were successfully assembled to 18 metabolites by the automatic assignment. The validity of automatic assignment was supported by quantum chemical calculations. This new approach can predict entire metabolite structures from peak networks of biological extracts. PMID:26789380

  4. Mass Spectrometry-Based Metabolite Profiling in the Mouse Liver following Exposure to Ultraviolet B Radiation

    PubMed Central

    Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan

    2014-01-01

    Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light. PMID:25275468

  5. Taxonomic and Environmental Variation of Metabolite Profiles in Marine Dinoflagellates of the Genus Symbiodinium

    PubMed Central

    Klueter, Anke; Crandall, Jesse B.; Archer, Frederick I.; Teece, Mark A.; Coffroth, Mary Alice

    2015-01-01

    Microorganisms in terrestrial and marine ecosystems are essential to environmental sustainability. In the marine environment, invertebrates often depend on metabolic cooperation with their endosymbionts. Coral reefs, one of the most important marine ecosystems, are based on the symbiosis between a broad diversity of dinoflagellates of the genus Symbiodinium and a wide phyletic diversity of hosts (i.e., cnidarian, molluscan, poriferan). This diversity is reflected in the ecology and physiology of the symbionts, yet the underlying biochemical mechanisms are still poorly understood. We examined metabolite profiles of four cultured species of Symbiodinium known to form viable symbioses with reef-building corals, S. microadriaticum (cp-type A194), S. minutum (cp-type B184), S. psygmophilum (cp-type B224) and S. trenchii (cp-type D206). Metabolite profiles were shown to differ among Symbiodinium species and were found to be affected by their physiological response to growth in different temperatures and light regimes. A combined Random Forests and Bayesian analysis revealed that the four Symbiodinium species examined primarily differed in their production of sterols and sugars, including a C29 stanol and the two sterols C28Δ5 and C28Δ5,22, as well as differences in metabolite abundances of a hexose and inositol. Inositol levels were also strongly affected by changes in temperature across all Symbiodinium species. Our results offer a detailed view of the metabolite profile characteristic of marine symbiotic dinoflagellates of the genus Symbiodinium, and identify patterns of metabolites related to several growth conditions. PMID:25693143

  6. Chemotaxonomic Metabolite Profiling of 62 Indigenous Plant Species and Its Correlation with Bioactivities.

    PubMed

    Lee, Sarah; Oh, Dong-Gu; Lee, Sunmin; Kim, Ga Ryun; Lee, Jong Seok; Son, Youn Kyoung; Bae, Chang-Hwan; Yeo, Joohong; Lee, Choong Hwan

    2015-01-01

    Chemotaxonomic metabolite profiling of 62 indigenous Korean plant species was performed by ultrahigh performance liquid chromatography (UHPLC)-linear trap quadrupole-ion trap (LTQ-IT) mass spectrometry/mass spectrometry (MS/MS) combined with multivariate statistical analysis. In partial least squares discriminant analysis (PLS-DA), the 62 species clustered depending on their phylogenetic family, in particular, Aceraceae, Betulaceae, and Fagaceae were distinguished from Rosaceae, Fabaceae, and Asteraceae. Quinic acid, gallic acid, quercetin, quercetin derivatives, kaempferol, and kaempferol derivatives were identified as family-specific metabolites, and were found in relatively high concentrations in Aceraceae, Betulaceae, and Fagaceae. Fagaceae and Asteraceae were selected based on results of PLS-DA and bioactivities to determine the correlation between metabolic differences among plant families and bioactivities. Quinic acid, quercetin, kaempferol, quercetin derivatives, and kaempferol derivatives were found in higher concentrations in Fagaceae than in Asteraceae, and were positively correlated with antioxidant and tyrosinase inhibition activities. These results suggest that metabolite profiling was a useful tool for finding the different metabolic states of each plant family and understanding the correlation between metabolites and bioactivities in accordance with plant family. PMID:26540030

  7. NMR-based metabolic profiling in healthy individuals overfed different types of fat: links to changes in liver fat accumulation and lean tissue mass

    PubMed Central

    Elmsjö, A; Rosqvist, F; Engskog, M K R; Haglöf, J; Kullberg, J; Iggman, D; Johansson, L; Ahlström, H; Arvidsson, T; Risérus, U; Pettersson, C

    2015-01-01

    Background: Overeating different dietary fatty acids influence the amount of liver fat stored during weight gain, however, the mechanisms responsible are unclear. We aimed to identify non-lipid metabolites that may differentiate between saturated (SFA) and polyunsaturated fatty acid (PUFA) overfeeding using a non-targeted metabolomic approach. We also investigated the possible relationships between plasma metabolites and body fat accumulation. Methods: In a randomized study (LIPOGAIN study), n=39 healthy individuals were overfed with muffins containing SFA or PUFA. Plasma samples were precipitated with cold acetonitrile and analyzed by nuclear magnetic resonance (NMR) spectroscopy. Pattern recognition techniques were used to overview the data, identify variables contributing to group classification and to correlate metabolites with fat accumulation. Results: We previously reported that SFA causes a greater accumulation of liver fat, visceral fat and total body fat, whereas lean tissue levels increases less compared with PUFA, despite comparable weight gain. In this study, lactate and acetate were identified as important contributors to group classification between SFA and PUFA (P<0.05). Furthermore, the fat depots (total body fat, visceral adipose tissue and liver fat) and lean tissue correlated (P(corr)>0.5) all with two or more metabolites (for example, branched amino acids, alanine, acetate and lactate). The metabolite composition differed in a manner that may indicate higher insulin sensitivity after a diet with PUFA compared with SFA, but this needs to be confirmed in future studies. Conclusion: A non-lipid metabolic profiling approach only identified a few metabolites that differentiated between SFA and PUFA overfeeding. Whether these metabolite changes are involved in depot-specific fat storage and increased lean tissue mass during overeating needs further investigation. PMID:26479316

  8. Quantitative Comparison and Metabolite Profiling of Saponins in Different Parts of the Root of Panax notoginseng

    PubMed Central

    2015-01-01

    Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in “Chinese Pharmacopoeia”, individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fibrous root. Ginsenoside Rb2 was proposed as a potential marker with a content of 0.5 mg/g as a threshold value for differentiating rhizome from other parts. Multivariate analysis of the metabolite profile further suggested 32 saponins as potential markers for the discrimination of different parts of notoginseng. Collectively, the study provided comprehensive chemical evidence for the distinct usage of different parts of notoginseng and, hence, is of great importance for the rational application and exploitation of individual parts of notoginseng. PMID:25118819

  9. Quantitative 1H Nuclear Magnetic Resonance Metabolite Profiling as a Functional Genomics Platform to Investigate Alkaloid Biosynthesis in Opium Poppy1[W

    PubMed Central

    Hagel, Jillian M.; Weljie, Aalim M.; Vogel, Hans J.; Facchini, Peter J.

    2008-01-01

    Opium poppy (Papaver somniferum) produces a diverse array of bioactive benzylisoquinoline alkaloids and has emerged as a versatile model system to study plant alkaloid metabolism. The plant is widely cultivated as the only commercial source of the narcotic analgesics morphine and codeine. Variations in plant secondary metabolism as a result of genetic diversity are often associated with perturbations in other metabolic pathways. As part of a functional genomics platform, we used 1H nuclear magnetic resonance (NMR) metabolite profiling for the analysis of primary and secondary metabolism in opium poppy. Aqueous and chloroform extracts of six different opium poppy cultivars were subjected to chemometric analysis. Principle component analysis of the 1H NMR spectra for latex extracts clearly distinguished two varieties, including a low-alkaloid variety and a high-thebaine, low-morphine cultivar. Distinction was also made between pharmaceutical-grade opium poppy cultivars and a condiment variety. Such phenotypic differences were not observed in root extracts. Loading plots confirmed that morphinan alkaloids contributed predominantly to the variance in latex extracts. Quantification of 34 root and 21 latex metabolites, performed using Chenomx NMR Suite version 4.6, showed major differences in the accumulation of specific alkaloids in the latex of the low-alkaloid and high-thebaine, low-morphine varieties. Relatively few differences were found in the levels of other metabolites, indicating that the variation was specific for alkaloid metabolism. Exceptions in the low-alkaloid cultivar included an increased accumulation of the alkaloid precursor tyramine and reduced levels of sucrose, some amino acids, and malate. Real-time polymerase chain reaction analysis of 42 genes involved in primary and secondary metabolism showed differential gene expression mainly associated with alkaloid biosynthesis. Reduced alkaloid levels in the condiment variety were associated with the

  10. Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.

    PubMed

    Wu, Ting-Hsiang; Sagullo, Enrico; Case, Dana; Zheng, Xin; Li, Yanjing; Hong, Jason S; TeSlaa, Tara; Patananan, Alexander N; McCaffery, J Michael; Niazi, Kayvan; Braas, Daniel; Koehler, Carla M; Graeber, Thomas G; Chiou, Pei-Yu; Teitell, Michael A

    2016-05-10

    mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells. PMID:27166949

  11. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae

    PubMed Central

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-01-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease. PMID:27479467

  12. Profiling of Intracellular Metabolites: An Approach to Understanding the Characteristic Physiology of Mycobacterium leprae.

    PubMed

    Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko

    2016-08-01

    Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease. PMID:27479467

  13. (1)H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment.

    PubMed

    Chen, Jian-Li; Shi, Bi-Yun; Xiang, Huan; Hou, Wen-Jing; Qin, Xue-Mei; Tian, Jun-Sheng; Du, Guan-Hua

    2015-11-10

    Genipin, a hydrolyzed metabolite of geniposide extracted from the fruit of Gardenia jasminoides Ellis, has shown promise in alleviating depressive symptoms, however, the antidepressant mechanism of genipin remains unclear and incomprehensive. In this study, the metabolic profiles of aqueous and lipophilic extracts in liver of the chronic unpredictable mild stress (CUMS)-induced rat with genipin treatment were investigated using proton nuclear magnetic resonance ((1)H NMR) spectroscopy coupled with multivariate data analysis. Significant differences in the metabolic profiles of rats in the CUMS model group (MS) and the control group (NS) were observed with metabolic effects including decreasing in choline, glycerol and glycogen, increasing in lactate, alanine and succinate, and a disordered lipid metabolism, while the moderate dose (50mg/kg) of genipin could significantly regulate the concentrations of glycerol, lactate, alanine, succinate and the lipid to their normal levels. These biomakers were involved in metabolism pathways such as glycolysis/gluconeogensis, tricarboxylic acid (TCA) cycle and lipid metabolism, which may be helpful for understanding of antidepressant mechanism of genipin. PMID:26204246

  14. Metabolomics profiling of extracellular metabolites in recombinant Chinese Hamster Ovary fed-batch culture.

    PubMed

    Chong, William P K; Goh, Lin Tang; Reddy, Satty G; Yusufi, Faraaz N K; Lee, Dong Yup; Wong, Niki S C; Heng, Chew Kiat; Yap, Miranda G S; Ho, Ying Swan

    2009-12-01

    A metabolomics-based approach was used to time profile extracellular metabolites in duplicate fed-batch bioreactor cultures of recombinant Chinese Hamster Ovary (CHO) cells producing monoclonal IgG antibody. Culture medium was collected and analysed using a high-performance liquid chromatography (HPLC) system in tandem with an LTQ-Orbitrap mass spectrometer. An in-house software was developed to pre-process the LC/MS data in terms of filtering and peak detection. This was followed by principal component analysis (PCA) to assess variance amongst the samples, and hierarchical clustering to categorize mass peaks by their time profiles. Finally, LC/MS2 experiments using the LTQ-Orbitrap (where standard was available) and SYNAPT HDMS (where standard was unavailable) were performed to confirm the identities of the metabolites. Two groups of identified metabolites were of particular interest; the first consisted of metabolites that began to accumulate when the culture entered stationary phase. The majority of them were amino acid derivatives and they were likely to be derived from the amino acids in the feed media. Examples included acetylphenylalanine and dimethylarginine which are known to be detrimental to cell growth. The second group of metabolites showed a downward trend as the culture progressed. Two of them were medium components--tryptophan and choline, and these became depleted midway into the culture despite the addition of feed media. The findings demonstrated the potential of utilizing metabolomics to guide medium design for fed-batch culture to potentially improve cell growth and product titer. PMID:19902412

  15. Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma.

    PubMed

    Jung, Klaus; Reszka, Regina; Kamlage, Beate; Bethan, Bianca; Stephan, Carsten; Lein, Michael; Kristiansen, Glen

    2013-12-15

    Metabolomic research offers a deeper insight into biochemical changes in cancer metabolism and is a promising tool for identifying novel biomarkers. We aimed to evaluate the diagnostic and prognostic potential of metabolites in prostate cancer (PCa) tissue after radical prostatectomy. In matched malignant and nonmalignant prostatectomy samples from 95 PCa patients, aminoadipic acid, cerebronic acid, gluconic acid, glycerophosphoethanolamine, 2-hydroxybehenic acid, isopentenyl pyrophosphate, maltotriose, 7-methylguanine and tricosanoic acid were determined within a global metabolite profiling study using gas chromatography/liquid chromatography-mass spectrometry. The data were related to clinicopathological variables like prostate volume, tumor stage, Gleason score, preoperative prostate-specific antigen and disease recurrence in the follow-up. All nine metabolites showed higher concentrations in malignant than in nonmalignant samples except for gluconic acid and maltotriose, which had lower levels in tumors. Receiver -operating characteristics analysis demonstrated a significant discrimination for all metabolites between malignant and nonmalignant tissue with a maximal area under the curve of 0.86 for tricosanoic acid, whereas no correlation was observed between the metabolite levels and the Gleason score or tumor stage except for gluconic acid. Univariate Cox regression and Kaplan-Meier analyses showed that levels of aminoadipic acid, gluconic acid and maltotriose were associated with the biochemical tumor recurrence (prostate-specific antigen > 0.2 ng/mL). In multivariate Cox regression analyses, aminoadipic acid together with tumor stage and Gleason score remained in a model as independent marker for prediction of biochemical recurrence. This study proved that metabolites in PCa tissue can be used, in combination with traditional clinicopathological factors, as promising diagnostic and prognostic tools. PMID:23737455

  16. (1)H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model.

    PubMed

    Niu, Qian-Yun; Li, Zhen-Yu; Du, Guan-Hua; Qin, Xue-Mei

    2016-01-25

    Doxorubicin (DOX) is used as a chemotherapy drug with severe carditoxicity. In this study, an integrated echocardiography along with pathological examination and (1)H NMR analysis of multiple biological matrices (urine, serum, heart, and kidney) was employed to systemically assess the toxicity of DOX. Echocardiographic results showed that impaired left ventricular contractility and degenerative pathology lesions in DOX group, which were in consistent with pathology. The endogenous metabolites in the urine, serum, heart and kidney was identified by comparison with the data from the literature and databases. Multivariate analysis, including PCA and OPLS, revealed 8 metabolites in urine, including succinate, 2-ketoglutarate, citrate, hippurate, methylamine, benzoate, allantion, and acetate were the potential changed biomarkers. In serum, perturbed metabolites include elevation of leucine, β-glucose, O-acetyl-glycoprotein, creatine, lysine, glycerin, dimethylglycine, trimethylamine-N-oxide, myo-inositol, and N-acetyl-glycoprotein, together with level decreases of acetone, lipid, lactate, glutamate, phosphocholine, acetoacetate and pyruvate. For heart, DOX exposure caused decline of lipid, lactate, leucine, alanine, glutamate, choline, xanthine, glycerin, carnitine, and fumarate, together with elevation of glutamine, creatine, inosine, taurine and malate. Metabolic changes of kidney were mainly involved in the accumulation of α-glucose, lactate, phosphocholine, betaine, threonine, choline, taurine, glycine, urea, hypoxanthine, glutamate, and nicotinamide, coupled with reduction of asparagine, valine, methionine, tyrosine, lysine, alanine, leucine, ornithine, creatine, lipid, and acetate. In addition, alterations of urinary metabolites exhibited a time-dependent manner. Complementary evidences by multiple matrices revealed disturbed pathways concerning energy metabolism, fatty acids oxidation, amino acids and purine metabolism, choline metabolism, and gut microbiota

  17. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    DOE PAGESBeta

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Tilton, Susan C.; Pounds, Joel G.; Corley, Richard A.; Liu, Maili; Hu, Mary Y.

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations ofmore » adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.« less

  18. Actions of mammalian insulin on a Neurospora variant: effects on intracellular metabolite levels as monitored by P-31 NMR spectroscopy

    SciTech Connect

    Greenfield, N.J.; McKenzie, M.A.; Jordan, F.; Takahashi, M.; Lenard, J.

    1986-05-01

    Fourier transform P-31 NMR spectroscopy (81 MHz) was used to investigate the biochemical nature of insulin action upon the cell wall-deficient slime mutant of Neurospora crassa. Spectra of oxygenated, living cells (ca.10/sup 9//ml.) in late logarithmic-early stationary phase of growth were accumulated for approximately 20 min. (350-450 pulses). Pronounced differences were seen in the metabolite levels of cells cultured for 18-21 hours in the presence of insulin (100 nM) as compared to cells cultured in its absence. Differences in the insulin-grown cells included higher levels of sugar phosphates, inorganic (cytoplasmic) phosphate, NAD+/NADH and UDP-glucose (UDPG) compared to control cells, in which UDP-N-acetylglucosamine (UDPNAG) was the prominent sugar nucleotide. When 100 mM glucose was administered with insulin immediately prior to measurement, short term effects were seen. There were significant increases of sugar phosphates, inorganic phosphate, NAD+/NADH, phosphodiesters and UDPG relative to the case of glucose addition alone. These results are wholly consistent with the known influence of insulin upon mammalian metabolism: stimulation of glucose uptake, phosphorylation and oxidation, phosphatide synthesis and Pi uptake.

  19. Metabolite Signatures in Hydrophilic Extracts of Mouse Lungs Exposed to Cigarette Smoke Revealed by 1H NMR Metabolomics Investigation

    PubMed Central

    JZ, Hu; X, Wang; J, Feng; BJ, Robertson; KM, Waters; SC, Tilton; JG, Pounds; RA, Corley; M, Liu; M, Hu

    2015-01-01

    1H-NMR metabolomics was used to investigate the changes of metabolites in the lungs of mice with and without being exposed to a controlled amount of cigarette smoke. It was found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine were significantly changed in the lungs of mice exposed to cigarette smoke when compared with controls regardless the mice were obese or of regular weight. The decreased ATP, ADP, AMP and elevated inosine suggested that the deaminases in charge of adenosine derivatives to inosine derivatives conversion would be significantly changed in the lungs of mice exposed to cigarette smoke. Indeed, transcriptional study confirmed that the concentrations of adenosine monophosphate deaminase 2 and adenosine deaminase 2 were significantly changed in the lungs of mice exposed to cigarette smoke. We also found that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) was significantly increased in the lungs of obese mice compared with those of the regular weight mice. The GPC/PC ratio was further elevated in the lungs of obese group exposed to cigarette smoke. PMID:26609465

  20. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease.

    PubMed

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678

  1. Alteration of the fecal microbiota and serum metabolite profiles in dogs with idiopathic inflammatory bowel disease

    PubMed Central

    Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S

    2015-01-01

    Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678

  2. Two new flavonol glycosides and a metabolite profile of Bryophyllum pinnatum, a phytotherapeutic used in obstetrics and gynaecology.

    PubMed

    Fürer, Karin; Raith, Melanie; Brenneisen, Rudolf; Mennet, Monica; Simões-Wüst, Ana Paula; von Mandach, Ursula; Hamburger, Matthias; Potterat, Olivier

    2013-11-01

    Bryophyllum pinnatum is a succulent perennial plant native to Madagascar which is used in anthroposophical medicine to treat psychiatric disorders and as a tocolytic agent to prevent premature labour. We performed a metabolite profiling study in order to obtain a comprehensive picture of the constituents in B. pinnatum leaves and to identify chromatographic markers for quality control and safety assessment of medicinal preparations. Preliminary HPLC-PDA-ESIMS analyses revealed that flavonoid glycosides were the main UV-absorbing constituents in the MeOH extract of B. pinnatum. Two phenolic glucosides, syringic acid β-D-glucopyranosyl ester (1) and 4'-O-β-D-glucopyranosyl-cis-p-coumaric acid (2), as well as nine flavonoids (3-11) including kaempferol, quercetin, myricetin, acacetin, and diosmetin glycosides were unambiguously identified by 1H and 2D NMR analysis after isolation from a MeOH extract. The flavonol glycosides quercetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside 7-O-β-D-glucopyranoside (3) and myricetin 3-O-α-L-arabinopyranosyl-(1 → 2)-α-L-rhamnopyranoside (4) were new natural products. With the aid of HPLC-PDA-APCIMS and authentic references isolated from the related species B. daigremontianum, the presence of four bufadienolides, bersaldegenin-1-acetate (12), bryophyllin A (13), bersaldegenin-3-acetate (14), and bersaldegenin-1,3,5-orthoacetate (15) was detected in B. pinnatum. PMID:24072500

  3. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences

    PubMed Central

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R.; Schmid, Amy K.

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  4. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  5. Profile of urinary and fecal proanthocyanidin metabolites from common cinnamon (Cinnamomum zeylanicum L.) in rats.

    PubMed

    Mateos-Martín, María Luisa; Pérez-Jiménez, Jara; Fuguet, Elisabet; Torres, Josep Lluís

    2012-04-01

    Cinnamon (Cinnamomum zeylanicum L.) bark is widely used as a spice and in traditional medicine. Its oligomeric and polymeric proanthocyanidins are believed to be partly responsible for the beneficial properties of the plant. We describe here the metabolic fate of cinnamon proanthocyanidins in the urine and feces of rats fed a suspension of the whole bark. The metabolites include ten mono-, di-, and tri- conjugated (epi)catechin phase II metabolites and more than 20 small phenolic acids from intestinal microbial fermentation. Some of these are sulfated conjugates. Feces contain intact (epi)catechin and dimers. This suggests that free radical scavenging species are in contact with the intestinal walls for hours after ingestion of cinnamon. The phenolic metabolite profile of cinnamon bark in urine is consistent with a mixture of proanthocyanidins that are depolymerized into their constitutive (epi)catechin units as well as cleaved into smaller phenolic acids during their transit along the intestinal tract, with subsequent absorption and conjugation into bioavailable metabolites. PMID:22383303

  6. Metabolite Profiles Correlate Closely with Neurobehavioral Function in Experimental Spinal Cord Injury in Rats

    PubMed Central

    Fujieda, Yusuke; Ueno, Shinya; Ogino, Ryoko; Kuroda, Mariko; Jönsson, Thomas J.; Guo, Lining; Bamba, Takeshi; Fukusaki, Eiichiro

    2012-01-01

    Traumatic spinal cord injury (SCI) results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score). Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery. PMID:22912814

  7. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    PubMed

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-01-01

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples. PMID:27338333

  8. Metabolite profiles correlate closely with neurobehavioral function in experimental spinal cord injury in rats.

    PubMed

    Fujieda, Yusuke; Ueno, Shinya; Ogino, Ryoko; Kuroda, Mariko; Jönsson, Thomas J; Guo, Lining; Bamba, Takeshi; Fukusaki, Eiichiro

    2012-01-01

    Traumatic spinal cord injury (SCI) results in direct physical damage and the generation of local factors contributing to secondary pathogenesis. Untargeted metabolomic profiling was used to uncover metabolic changes and to identify relationships between metabolites and neurobehavioral functions in the spinal cord after injury in rats. In the early metabolic phase, neuronal signaling, stress, and inflammation-associated metabolites were strongly altered. A dynamic inflammatory response consisting of elevated levels of prostaglandin E2 and palmitoyl ethanolamide as well as pro- and anti-inflammatory polyunsaturated fatty acids was observed. N-acetyl-aspartyl-glutamate (NAAG) and N-acetyl-aspartate (NAA) were significantly decreased possibly reflecting neuronal cell death. A second metabolic phase was also seen, consistent with membrane remodeling and antioxidant defense response. These metabolomic changes were consistent with the pathology and progression of SCI. Several metabolites, including NAA, NAAG, and the ω-3 fatty acids docosapentaenoate and docosahexaenoate correlated greatly with the established Basso, Beattie and Bresnahan locomotive score (BBB score). Our findings suggest the possibility of a biochemical basis for BBB score and illustrate that metabolites may correlate with neurobehavior. In particular the NAA level in the spinal cord might provide a meaningful biomarker that could help to determine the degree of injury severity and prognosticate neurologic recovery. PMID:22912814

  9. Culture condition-dependent metabolite profiling of Aspergillus fumigatus with antifungal activity.

    PubMed

    Kang, Daejung; Son, Gun Hee; Park, Hye Min; Kim, Jiyoung; Choi, Jung Nam; Kim, Hyang Yeon; Lee, Sarah; Hong, Seung-Beom; Lee, Choong Hwan

    2013-03-01

    Three sections of Aspergillus (five species, 21 strains) were classified according to culture medium-dependent and time-dependent secondary metabolite profile-based chemotaxonomy. Secondary metabolites were analysed by liquid chromatography-electrospray ionisation tandem mass spectrometry (LC-ESI-MS-MS) and multivariate statistical methods. From the Aspergillus sections that were cultured on malt extract agar (MEA) and Czapek yeast extract agar (CYA) for 7, 12, and 16 d, Aspergillus sections Fumigati (A. fumigatus), Nigri (A. niger), and Flavi (A. flavus, A. oryzae, and A. sojae) clustered separately on the basis of the results of the secondary metabolite analyses at 16 d regardless of culture medium. Based on orthogonal projection to latent structures discriminant analysis by partial least squares discriminant analysis (PLS-DA), we identified the secondary metabolites that helped differentiate sections between A. fumigatus and Aspergillus section Flavi to be gliotoxin G, fumigatin oxide, fumigatin, pseurotin A or D, fumiquinazoline D, fumagillin, helvolic acid, 1,2-dihydrohelvolic acid, and 5,8-dihydroxy-9,12-octadecadienoic acid (5,8-diHODE). Among these compounds, fumagillin, helvolic acid, and 1,2-dihydrohelvolic acid of A. fumigatus showed antifungal activities against Malassezia furfur, which is lipophilic yeast that causes epidermal skin disorders. PMID:23537878

  10. Covalent binding of reduced metabolites of [{sup 15}N{sub 3}]TNT to soil organic matter during a bioremediation process analyzed by {sup 15}N NMR spectroscopy

    SciTech Connect

    Achtnich, C.; Fernandes, E.; Bollag, J.M.; Knackmuss, H.J.; Lenke, H.

    1999-12-15

    Evidence is presented for the covalent binding of biologically reduced metabolites of 2,4,6-{sup 15}N{sub 3}-trinitrotoluene (TNT) to different soil fractions, using liquid {sup 15}N NMR spectroscopy. A silylation procedure was used to release soil organic matter from humin and whole soil for spectroscopic measurements. TNT-contaminated soil was spiked with 2,4,6-{sup 15}N{sub 3}-trinitrotoluene and {sup 14}C-ring labeled TNT, before treatment in a soil slurry reactor. During the anaerobic/aerobic incubation the amount of radioactivity detected in the fulvic and humic acid fractions did not change significantly whereas the radioactivity bound to humin increased to 71%. The {sup 15}N NMR spectra of the fulvic acid samples were dominated by a large peak that corresponded to aliphatic amines or ammonia. In the early stages of incubation, {sup 15}N NMR analysis of the humic acids indicated bound azoxy compounds. The signals arising from nitro and azoxy groups disappeared with further anaerobic treatment. At the end of incubation, the NMR shifts showed that nitrogen was covalently bound to humic acid as substituted amines and amides. The NMR spectra of the silylated humin suggest formation of azoxy compounds and imine linkages. Bound metabolites possessing nitro groups were also detected. Primary amines formed during the anaerobic incubation disappeared during the aerobic treatment. Simultaneously, the amount of amides and tertiary amines increased. Nitro and azoxy groups of bound molecules were still present in humin at the end of the incubation period. Formation of azoxy compounds from partially reduced TNT followed by binding and further reduction appears to be an important mechanism for the immobilization of metabolites of TNT to soil.

  11. (13)C-NMR-Based Metabolomic Profiling of Typical Asian Soy Sauces.

    PubMed

    Kamal, Ghulam Mustafa; Yuan, Bin; Hussain, Abdullah Ijaz; Wang, Jie; Jiang, Bin; Zhang, Xu; Liu, Maili

    2016-01-01

    It has been a strong consumer interest to choose high quality food products with clear information about their origin and composition. In the present study, a total of 22 Asian soy sauce samples have been analyzed in terms of (13)C-NMR spectroscopy. Spectral data were analyzed by multivariate statistical methods in order to find out the important metabolites causing the discrimination among typical soy sauces from different Asian regions. It was found that significantly higher concentrations of glutamate in Chinese red cooking (CR) soy sauce may be the result of the manual addition of monosodium glutamate (MSG) in the final soy sauce product. Whereas lower concentrations of amino acids, like leucine, isoleucine and valine, observed in CR indicate the different fermentation period used in production of CR soy sauce, on the other hand, the concentration of some fermentation cycle metabolites, such as acetate and sucrose, can be divided into two groups. The concentrations of these fermentation cycle metabolites were lower in CR and Singapore Kikkoman (SK), whereas much higher in Japanese shoyu (JS) and Taiwan (China) light (TL), which depict the influence of climatic conditions. Therefore, the results of our study directly indicate the influences of traditional ways of fermentation, climatic conditions and the selection of raw materials and can be helpful for consumers to choose their desired soy sauce products, as well as for researchers in further authentication studies about soy sauce. PMID:27598115

  12. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress

    PubMed Central

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by 1H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of 1H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  13. Metabolite Profiling of Diverse Rice Germplasm and Identification of Conserved Metabolic Markers of Rice Roots in Response to Long-Term Mild Salinity Stress.

    PubMed

    Nam, Myung Hee; Bang, Eunjung; Kwon, Taek Yun; Kim, Yuran; Kim, Eun Hee; Cho, Kyungwon; Park, Woong June; Kim, Beom-Gi; Yoon, In Sun

    2015-01-01

    The sensitivity of rice to salt stress greatly depends on growth stages, organ types and cultivars. Especially, the roots of young rice seedlings are highly salt-sensitive organs that limit plant growth, even under mild soil salinity conditions. In an attempt to identify metabolic markers of rice roots responding to salt stress, metabolite profiling was performed by ¹H-NMR spectroscopy in 38 rice genotypes that varied in biomass accumulation under long-term mild salinity condition. Multivariate statistical analysis showed separation of the control and salt-treated rice roots and rice genotypes with differential growth potential. By quantitative analyses of ¹H-NMR data, five conserved salt-responsive metabolic markers of rice roots were identified. Sucrose, allantoin and glutamate accumulated by salt stress, whereas the levels of glutamine and alanine decreased. A positive correlation of metabolite changes with growth potential and salt tolerance of rice genotypes was observed for allantoin and glutamine. Adjustment of nitrogen metabolism in rice roots is likely to be closely related to maintain the growth potential and increase the stress tolerance of rice. PMID:26378525

  14. Early pregnancy metabolite profiling discovers a potential biomarker for the subsequent development of gestational diabetes mellitus.

    PubMed

    de Seymour, Jamie V; Conlon, Cathryn A; Sulek, Karolina; Villas Bôas, Silas G; McCowan, Lesley M E; Kenny, Louise C; Baker, Philip N

    2014-10-01

    Current early pregnancy screening tools to identify women at risk of developing gestational diabetes mellitus lack both specificity and sensitivity. As a result, the foetus and mother are often subjected to insult during disease progression, prior to diagnosis and treatment in later pregnancy. Metabolomics is an analytical approach, which allows for appraisal of small molecular mass compounds in a biofluid. The aim of this pilot study was to investigate the relationship between the early gestation serum metabolite profile and the subsequent development of gestational diabetes mellitus in the search for early pregnancy biomarkers and potential metabolic mechanisms. Our nested case-control study analysed maternal serum at 20 weeks' gestation, obtained from the New Zealand cohort of the Screening for Pregnancy Endpoints study. Metabolomic profiling was performed using gas chromatography coupled to mass spectrometry, and metabolites were identified using R software and an in-house mass spectral library. Statistical analysis was performed using SPSS version 21.0. Forty-eight metabolites were identified in the serum samples. Itaconic acid (P = 0.0003), with a false discovery rate of 0.012, was found to be significantly more abundant in women who subsequently developed gestational diabetes mellitus, when compared to controls with uncomplicated pregnancies. The current pilot study found that itaconic acid may have potential as a novel biomarker in early pregnancy to predict the subsequent development of gestational diabetes mellitus. However, the findings from this pilot study require validation with a larger, diverse population before translation into the clinical setting. PMID:25064235

  15. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs.

    PubMed

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-09-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  16. Artificially decreased vapour pressure deficit in field conditions modifies foliar metabolite profiles in birch and aspen.

    PubMed

    Lihavainen, Jenna; Keinänen, Markku; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Sõber, Anu; Oksanen, Elina

    2016-07-01

    Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate. PMID:27255929

  17. Taxonomic Characterization and Secondary Metabolite Profiling of Aspergillus Section Aspergillus Contaminating Feeds and Feedstuffs

    PubMed Central

    Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro

    2015-01-01

    Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643

  18. Metabolite profiling stratifies pancreatic ductal adenocarcinomas into subtypes with distinct sensitivities to metabolic inhibitors

    PubMed Central

    Daemen, Anneleen; Peterson, David; Sahu, Nisebita; McCord, Ron; Du, Xiangnan; Liu, Bonnie; Kowanetz, Katarzyna; Hong, Rebecca; Moffat, John; Gao, Min; Boudreau, Aaron; Mroue, Rana; Corson, Laura; O’Brien, Thomas; Qing, Jing; Sampath, Deepak; Merchant, Mark; Yauch, Robert; Manning, Gerard; Settleman, Jeffrey; Hatzivassiliou, Georgia; Evangelista, Marie

    2015-01-01

    Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors. PMID:26216984

  19. An approach to the simultaneous quantitative analysis of metabolites in table wines by (1)H NMR self-constructed three-dimensional spectra.

    PubMed

    Li, Bao Qiong; Xu, Min Li; Wang, Xue; Zhai, Hong Lin; Chen, Jing; Liu, Jin Jin

    2017-02-01

    Wine consists of several hundred components with different concentrations, including water, ethanol, glycerol, organic acids and sugars. Accurate quantification of target compounds in such complex samples is a difficult task based on conventional (1)H NMR spectra due to some challenges. In this paper, the three-dimensional spectrum was constructed firstly by simply repeating (1)H NMR spectrum itself so as to extract the features of target compounds by Tchebichef moment method. A proof-of-concept model system, the determination of five metabolites in wines was utilized to evaluate the performance of the proposed strategy. The results indicate that the proposed approach can provide accurate and reliable concentration predictions, probably the best results ever achieved using PLS and interval-PLS methods. Our novel strategy has not only good performance but also does not require laborious multi-step and subjective pretreatments. Therefore, it is expected that the proposed method could extend the application of conventional (1)H NMR. PMID:27596391

  20. Comparative LC-MS-based metabolite profiling of the ancient tropical rainforest tree Symphonia globulifera.

    PubMed

    Cottet, Kévin; Genta-Jouve, Grégory; Fromentin, Yann; Odonne, Guillaume; Duplais, Christophe; Laprévote, Olivier; Michel, Sylvie; Lallemand, Marie-Christine

    2014-12-01

    In the last few years, several phytochemical studies have been undertaken on the tropical tree Symphonia globulifera leading to the isolation and characterisation of several compounds exhibiting antiparasitic activities against Plasmodium falciparum, Trypanosoma brucei and Leishmania donovani. The comparative LC-MS based metabolite profiling study conducted on the tree led to the identification of compounds originating from specific tissues. The results showed that renewable organs/tissues can be used as the starting material for the production of polycyclic poly-prenylated-acylphloroglucinols, therefore reducing impacts on biodiversity. This study also underlined the lack of knowledge on the secondary metabolites produced by S. globulifera since only a small number of the total detected features were putatively identified using the database of known compounds for the species. PMID:25301665

  1. Polyphenol metabolite profile of artichoke is modulated by agronomical practices and cooking method.

    PubMed

    Palermo, Mariantonella; Colla, Giuseppe; Barbieri, Giancarlo; Fogliano, Vincenzo

    2013-08-21

    In this paper artichoke phenolic pattern was characterized using an Orbitrap Exactive Mass Spectrometer at high mass accuracy and conventional HPLC MS/MS. Twenty four phenolic acids and 40 flavonoids were identified, many of them not previously reported in artichoke. Variations in phenolic compounds were investigated in relation to mycorrhization: results showed that inoculation with mycorrhizae greatly influences metabolite profile proving to be a good strategy to enhance the biosynthesis of secondary metabolites in this plant. This practice also caused a different distribution of the main phenolic compounds within head parts. Both steaming and microwaving cooking treatments caused an increase in antioxidant activity: the lower the initial concentration the higher the effect. A similar trend was observed looking at the phenolic compounds concentration: it increased because of cooking treatments the lower the initial content, the highest the increase. Steamed artichoke showed higher phenols content than microwaved ones. PMID:23865390

  2. Factors influencing annual fecal testosterone metabolite profiles in captive male polar bears (Ursus maritimus).

    PubMed

    Curry, E; Roth, T L; MacKinnon, K M; Stoops, M A

    2012-12-01

    The objectives of this study were to assess the effects of season, breeding activity, age and latitude on fecal testosterone metabolite concentrations in captive, adult male polar bears (Ursus maritimus). Fourteen polar bears from 13 North American zoos were monitored for 12-36 months, producing 25-year-long testosterone profiles. Results indicated that testosterone was significantly higher during the breeding season (early January through the end of May) compared with the non-breeding season with the highest concentrations excreted from early January through late March. Variations in excretion patterns were observed among individuals and also between years within an individual, with testosterone peaks closely associated with breeding activity. Results indicate that fecal testosterone concentrations are influenced by season, breeding activity and age, but not by latitude. This is the first report describing longitudinal fecal testosterone metabolite concentrations in individual adult male polar bears. PMID:23279504

  3. The Gut Microbiota Modulates Glycaemic Control and Serum Metabolite Profiles in Non-Obese Diabetic Mice

    PubMed Central

    Greiner, Thomas U.; Hyötyläinen, Tuulia; Knip, Mikael; Bäckhed, Fredrik; Orešič, Matej

    2014-01-01

    Islet autoimmunity in children who later progress to type 1 diabetes is preceded by dysregulated serum metabolite profiles, but the origin of these metabolic changes is unknown. The gut microbiota affects host metabolism and changes in its composition contribute to several immune-mediated diseases; however, it is not known whether the gut microbiota is involved in the early metabolic disturbances in progression to type 1 diabetes. We rederived non-obese diabetic (NOD) mice as germ free to explore the potential role of the gut microbiota in the development of diabetic autoimmunity and to directly investigate whether the metabolic profiles associated with the development of type 1 diabetes can be modulated by the gut microbiota. The absence of a gut microbiota in NOD mice did not affect the overall diabetes incidence but resulted in increased insulitis and levels of interferon gamma and interleukin 12; these changes were counterbalanced by improved peripheral glucose metabolism. Furthermore, we observed a markedly increased variation in blood glucose levels in the absence of a microbiota in NOD mice that did not progress to diabetes. Additionally, germ-free NOD mice had a metabolite profile similar to that of pre-diabetic children. Our data suggest that germ-free NOD mice have reduced glycaemic control and dysregulated immunologic and metabolic responses. PMID:25390735

  4. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  5. Deciphering the Duality of Clock and Growth Metabolism in a Cell Autonomous System Using NMR Profiling of the Secretome.

    PubMed

    Sengupta, Arjun; Krishnaiah, Saikumari Y; Rhoades, Seth; Growe, Jacqueline; Slaff, Barry; Venkataraman, Anand; Olarerin-George, Anthony O; Van Dang, Chi; Hogenesch, John B; Weljie, Aalim M

    2016-01-01

    Oscillations in circadian metabolism are crucial to the well being of organism. Our understanding of metabolic rhythms has been greatly enhanced by recent advances in high-throughput systems biology experimental techniques and data analysis. In an in vitro setting, metabolite rhythms can be measured by time-dependent sampling over an experimental period spanning one or more days at sufficent resolution to elucidate rhythms. We hypothesized that cellular metabolic effects over such a time course would be influenced by both oscillatory and circadian-independent cell metabolic effects. Here we use nuclear magnetic resonance (NMR) spectroscopy-based metabolic profiling of mammalian cell culture media of synchronized U2 OS cells containing an intact transcriptional clock. The experiment was conducted over 48 h, typical for circadian biology studies, and samples collected at 2 h resolution to unravel such non-oscillatory effects. Our data suggest specific metabolic activities exist that change continuously over time in this settting and we demonstrate that the non-oscillatory effects are generally monotonic and possible to model with multivariate regression. Deconvolution of such non-circadian persistent changes are of paramount importance to consider while studying circadian metabolic oscillations. PMID:27472375

  6. NMR and GC-MS based metabolic profiling and free-radical scavenging activities of Cordyceps pruinosa mycelia cultivated under different media and light conditions.

    PubMed

    Oh, Taek-Joo; Hyun, Sun-Hee; Lee, Seul-Gi; Chun, Young-Jin; Sung, Gi-Ho; Choi, Hyung-Kyoon

    2014-01-01

    Variation of metabolic profiles in Cordyceps pruinosa mycelia cultivated under various media and light conditions was investigated using 1H nuclear magnetic resonance (NMR) analysis and gas chromatography mass spectrometry (GC-MS) with multivariate statistical analysis. A total of 71 metabolites were identified (5 alcohols, 21 amino acids, 15 organic acids, 4 purines, 3 pyrimidines, 7 sugars, 11 fatty acids, and 5 other metabolites) by NMR and GC-MS analysis. The mycelia grown in nitrogen media and under dark conditions showed the lowest growth and ergosterol levels, essential to a functional fungal cell membrane; these mycelia, however, had the highest levels of putrescine, which is involved in abiotic stress tolerance. In contrast, mycelia cultivated in sabouraud dextrose agar with yeast extract (SDAY) media and under light conditions contained relatively higher levels of fatty acids, including valeric acid, stearic acid, lignoceric acid, myristic acid, oleic acid, palmitoleic acid, hepadecenoic acid, and linoleic acid. These mycelia also had the highest phenolic content and antioxidant activity, and did not exhibit growth retardation due to enhanced asexual development caused by higher levels of linoleic acid. Therefore, we suggested that a light-enriched environment with SDAY media was more optimal than dark condition for cultivation of C. pruinosa mycelia as biopharmaceutical or nutraceutical resources. PMID:24608751

  7. Metabolite profiling of sucrose effect on the metabolism of Melissa officinalis by gas chromatography-mass spectrometry.

    PubMed

    Kim, Sooah; Shin, Min Hye; Hossain, Md Aktar; Yun, Eun Ju; Lee, Hojoung; Kim, Kyoung Heon

    2011-04-01

    The effect of sugar on plant metabolism, which is known to be similar to hormone-like signaling, was metabolomically studied using Melissa officinalis (lemon balm). The metabolite profiles of M. officinalis treated with sucrose were analyzed by gas chromatography-mass spectrometry (GC-MS) and principal component analysis (PCA). A total of 64 metabolites from various chemical classes including alcohols, amines, amino acids, fatty acids, inorganic acids, organic acids, phosphates, and sugars were identified by GC-MS. Three groups treated with different sucrose concentrations were clearly separated by PCA of their metabolite profiles, indicating changes in the levels of many metabolites depending on the sucrose concentration. Metabolite profiling revealed that treatment with a higher sucrose level caused an increase in the levels of metabolites such as sugars, sugar alcohols, and sugar phosphates, which are related to the glycolytic pathway of M. officinalis. Furthermore, proline and succinic acid, which are associated with the proline-linked pentose phosphate pathway, the shikimic acid pathway, and the biosynthesis of phenylpropanoids, also increased with increasing sucrose concentration. Therefore, these metabolic changes induced by sucrose ultimately led to the increased production of flavonoids such as caffeic acid via the biosynthetic pathway of phenylpropanoids. This study demonstrated that the abundance changes in some primary and secondary metabolites were somewhat interlocked with each other in response to sucrose. PMID:21301821

  8. Rice Bran Fermented with Saccharomyces boulardii Generates Novel Metabolite Profiles with Bioactivity

    PubMed Central

    2011-01-01

    Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography−mass spectrometry (GC−MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety’s nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties. PMID:21306106

  9. Metabolite Profiles of Diabetes Incidence and Intervention Response in the Diabetes Prevention Program.

    PubMed

    Walford, Geoffrey A; Ma, Yong; Clish, Clary; Florez, Jose C; Wang, Thomas J; Gerszten, Robert E

    2016-05-01

    Identifying novel biomarkers of type 2 diabetes risk may improve prediction and prevention among individuals at high risk of the disease and elucidate new biological pathways relevant to diabetes development. We performed plasma metabolite profiling in the Diabetes Prevention Program (DPP), a completed trial that randomized high-risk individuals to lifestyle, metformin, or placebo interventions. Previously reported markers, branched-chain and aromatic amino acids and glutamine/glutamate, were associated with incident diabetes (P < 0.05 for all), but these associations were attenuated upon adjustment for clinical and biochemical measures. By contrast, baseline levels of betaine, also known as glycine betaine (hazard ratio 0.84 per SD log metabolite level, P = 0.02), and three other metabolites were associated with incident diabetes even after adjustment. Moreover, betaine was increased by the lifestyle intervention, which was the most effective approach to preventing diabetes, and increases in betaine at 2 years were also associated with lower diabetes incidence (P = 0.01). Our findings indicate betaine is a marker of diabetes risk among high-risk individuals both at baseline and during preventive interventions and they complement animal models demonstrating a direct role for betaine in modulating metabolic health. PMID:26861782

  10. Metabolite Profiling Reveals Abiotic Stress Tolerance in Tn5 Mutant of Pseudomonas putida

    PubMed Central

    Chaudhry, Vasvi; Bhatia, Anil; Bharti, Santosh Kumar; Mishra, Shashank Kumar; Chauhan, Puneet Singh; Mishra, Aradhana; Sidhu, Om Prakash; Nautiyal, Chandra Shekhar

    2015-01-01

    Pseudomonas is an efficient plant growth–promoting rhizobacteria (PGPR); however, intolerance to drought and high temperature limit its application in agriculture as a bioinoculant. Transposon 5 (Tn5) mutagenesis was used to generate a stress tolerant mutant from a PGPR Pseudomonas putida NBRI1108 isolated from chickpea rhizosphere. A mutant NBRI1108T, selected after screening of nearly 10,000 transconjugants, exhibited significant tolerance towards high temperature and drought. Southern hybridization analysis of EcoRI and XhoI restricted genomic DNA of NBRI1108T confirmed that it had a single Tn5 insertion. The metabolic changes in the polar and non-polar extracts of NBRI1108 and NBRI1108T were examined using 1H, 31P nuclear magnetic resonance (NMR) spectroscopy and gas chromatography-mass spectrometry (GC-MS). Thirty six chemically diverse metabolites consisting of amino acids, fatty acids and phospholipids were identified and quantified. Insertion of Tn5 influenced amino acid and phospholipid metabolism and resulted in significantly higher concentration of aspartic acid, glutamic acid, glycinebetaine, glycerophosphatidylcholine (GPC) and putrescine in NBRI1108T as compared to that in NBRI1108. The concentration of glutamic acid, glycinebetaine and GPC increased by 34%, 95% and 100%, respectively in the NBRI1108T as compared to that in NBRI1108. High concentration of glycerophosphatidylethanolamine (GPE) and undetected GPC in NBRI1108 indicates that biosynthesis of GPE may have taken place via the methylation pathway of phospholipid biosynthesis. However, high GPC and low GPE concentration in NBRI1108T suggest that methylation pathway and phosphatidylcholine synthase (PCS) pathway of phospholipid biosynthesis are being followed in the NBRI1108T. Application of multivariate principal component analysis (PCA) on the quantified metabolites revealed clear variations in NBRI1108 and NBRI1108T in polar and non-polar metabolites. Identification of abiotic stress

  11. 1H NMR profiling as an approach to differentiate conventionally and organically grown tomatoes.

    PubMed

    Hohmann, Monika; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2014-08-20

    This study describes the approach of (1)H NMR profiling for the authentication of organically produced tomatoes (Solanum lycopersicum). Overall, 361 tomato samples of two different cultivars and four different producers were regularly analyzed during a 7 month period. The results of principal component analysis showed a significant trend for the separation between organically and conventionally produced tomatoes (p < 0.001 using the t test). Linear discriminant analysis demonstrated good discrimination between the growing regimens, and external validation showed 100% correctly classified tomato samples. Further validation studies, however, also disclosed unexpected differences between individual producers, which interfere with the aim of predicting the cultivation method, yet the results indicate significant differences between (1)H NMR spectra of organically and conventionally grown tomatoes. PMID:25066078

  12. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa.

    PubMed

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  13. Metabolite profiling of somatic embryos of Cyclamen persicum in comparison to zygotic embryos, endosperm, and testa

    PubMed Central

    Winkelmann, Traud; Ratjens, Svenja; Bartsch, Melanie; Rode, Christina; Niehaus, Karsten; Bednarz, Hanna

    2015-01-01

    Somatic embryogenesis has been shown to be an efficient in vitro plant regeneration system for many crops such as the important ornamental plant Cyclamen persicum, for which this regeneration pathway of somatic embryogenesis is of interest for the vegetative propagation of parental lines as well as elite plants. However, somatic embryogenesis is not commercially used in many crops due to several unsolved problems, such as malformations, asynchronous development, deficiencies in maturation and germination of somatic embryos. In contrast, zygotic embryos in seeds develop and germinate without abnormalities in most cases. Instead of time-consuming and labor-intensive experiments involving tests of different in vitro culture conditions and plant growth regulator supplements, we follow a more directed approach. Zygotic embryos served as a reference and were compared to somatic embryos in metabolomic analyses allowing the future optimization of the in vitro system. The aims of this study were to detect differences in the metabolite profiles of torpedo stage somatic and zygotic embryos of C. persicum. Moreover, major metabolites in endosperm and testa were identified and quantified. Two sets of extracts of two to four biological replicates each were analyzed. In total 52 metabolites were identified and quantified in the different tissues. One of the most significant differences between somatic and zygotic embryos was that the proline concentration in the zygotic embryos was about 40 times higher than that found in somatic embryos. Epicatechin, a scavenger for reactive oxygen species, was found in highest abundance in the testa. Sucrose, the most abundant metabolite was detected in significantly higher concentrations in zygotic embryos. Also, a yet unknown trisaccharide, was significantly enriched in zygotic embryos. PMID:26300898

  14. The impact of blood on liver metabolite profiling - a combined metabolomic and proteomic approach.

    PubMed

    Ly-Verdú, Saray; Schaefer, Alexander; Kahle, Melanie; Groeger, Thomas; Neschen, Susanne; Arteaga-Salas, Jose M; Ueffing, Marius; de Angelis, Martin Hrabe; Zimmermann, Ralf

    2014-02-01

    Metabolomics has entered the well-established omic sciences as it is an indispensable information resource to achieve a global picture of biological systems. The aim of the present study was to estimate the influence of blood removal from mice liver as part of sample preparation for metabolomic and proteomic studies. For this purpose, perfused mice liver tissue (i.e. with blood removed) and unperfused mice liver tissue (i.e. containing blood) were compared by two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-TOFMS) for the metabolomic part, and by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the proteomic part. Our data showed significant differences between the unperfused and perfused liver tissue samples. Furthermore, we also observed an overlap of blood and tissue metabolite profiles in our data, suggesting that the perfusion of liver tissue prior to analysis is beneficial for an accurate metabolic profile of this organ. PMID:23934789

  15. Metabolite profiling of antidepressant drug action reveals novel drug targets beyond monoamine elevation

    PubMed Central

    Webhofer, C; Gormanns, P; Tolstikov, V; Zieglgänsberger, W; Sillaber, I; Holsboer, F; Turck, C W

    2011-01-01

    Currently used antidepressants elevate monoamine levels in the synaptic cleft. There is good reason to assume that this is not the only source for antidepressant therapeutic activities and that secondary downstream effects may be relevant for alleviating symptoms of depression. We attempted to elucidate affected biochemical pathways downstream of monoamine reuptake inhibition by interrogating metabolomic profiles in DBA/2Ola mice after chronic paroxetine treatment. Metabolomic changes were investigated using gas chromatography-mass spectrometry profiling and group differences were analyzed by univariate and multivariate statistics. Pathways affected by antidepressant treatment were related to energy metabolism, amino acid metabolism and hormone signaling. The identified pathways reveal further antidepressant therapeutic action and represent targets for drug development efforts. A comparison of the central nervous system with blood plasma metabolite alterations identified GABA, galactose-6-phosphate and leucine as biomarker candidates for assessment of antidepressant treatment effects in the periphery. PMID:22832350

  16. Metabolite profiling of the moss Physcomitrella patens reveals evolutionary conservation of osmoprotective substances.

    PubMed

    Erxleben, Anika; Gessler, Arthur; Vervliet-Scheebaum, Marco; Reski, Ralf

    2012-02-01

    The moss Physcomitrella patens is suitable for systems biology studies, as it can be grown axenically under standardised conditions in plain mineral medium and comprises only few cell types. We report on metabolite profiling of two major P. patens tissues, filamentous protonema and leafy gametophores, from different culture conditions. A total of 96 compounds were detected, 21 of them as yet unknown in public databases. Protonema and gametophores had distinct metabolic profiles, especially with regard to saccharides, sugar derivates, amino acids, lignin precursors and nitrogen-rich storage compounds. A hydroponic culture was established for P. patens, and was used to apply drought stress under physiological conditions. This treatment led to accumulation of osmoprotectants, such as altrose, maltitol, ascorbic acid and proline. Thus, these osmoprotectants are not unique to seed plants but have evolved at an early phase of the colonization of land by plants. PMID:22038371

  17. 1H NMR Metabolic Profiling of Biofluids from Rats with Gastric Mucosal Lesion and Electroacupuncture Treatment

    PubMed Central

    Xu, Jingjing; Cheng, Kian-Kai; Yang, Zongbao; Wang, Chao; Shen, Guiping; Wang, Yadong; Liu, Qiong; Dong, Jiyang

    2015-01-01

    Gastric mucosal lesion (GML) is a common gastrointestinal disorder with multiple pathogenic mechanisms in clinical practice. In traditional Chinese medicine (TCM), electroacupuncture (EA) treatment has been proven as an effective therapy for GML, although the underlying healing mechanism is not yet clear. Here, we used proton nuclear magnetic resonance- (1H NMR-) based metabolomic method to investigate the metabolic perturbation induced by GML and the therapeutic effect of EA treatment on stomach meridian (SM) acupoints. Clear metabolic differences were observed between GML and control groups, and related metabolic pathways were discussed by means of online metabolic network analysis toolbox. By comparing the endogenous metabolites from GML and GML-SM groups, the disturbed pathways were partly recovered towards healthy state via EA treated on SM acupoints. Further comparison of the metabolic variations induced by EA stimulated on SM and the control gallbladder meridian (GM) acupoints showed a quite similar metabolite composition except for increased phenylacetylglycine, 3,4-dihydroxymandelate, and meta-hydroxyphenylacetate and decreased N-methylnicotinamide in urine from rats with EA treated on SM acupoints. The current study showed the potential application of metabolomics in providing further insight into the molecular mechanism of acupuncture. PMID:26170882

  18. Mass Spectrometry-Based Metabolomics Identifies Longitudinal Urinary Metabolite Profiles Predictive of Radiation-Induced Cancer.

    PubMed

    Cook, John A; Chandramouli, Gadisetti V R; Anver, Miriam R; Sowers, Anastasia L; Thetford, Angela; Krausz, Kristopher W; Gonzalez, Frank J; Mitchell, James B; Patterson, Andrew D

    2016-03-15

    Nonlethal exposure to ionizing radiation (IR) is a public concern due to its known carcinogenic effects. Although latency periods for IR-induced neoplasms are relatively long, the ability to detect cancer as early as possible is highly advantageous for effective therapeutic intervention. Therefore, we hypothesized that metabolites in the urine from mice exposed to total body radiation (TBI) would predict for the presence of cancer before a palpable mass was detected. In this study, we exposed mice to 0 or 5.4 Gy TBI, collected urine samples periodically over 1 year, and assayed urine metabolites by using mass spectrometry. Longitudinal data analysis within the first year post-TBI revealed that cancers, including hematopoietic, solid, and benign neoplasms, could be distinguished by unique urinary signatures as early as 3 months post-TBI. Furthermore, a distinction among different types of malignancies could be clearly delineated as early as 3 months post-TBI for hematopoietic neoplasms, 6 months for solid neoplasms, and by 1 year for benign neoplasms. Moreover, the feature profile for radiation-exposed mice 6 months post-TBI was found to be similar to nonirradiated control mice at 18 months, suggesting that TBI accelerates aging. These results demonstrate that urine feature profiles following TBI can identify cancers in mice prior to macroscopic detection, with important implications for the early diagnosis and treatment. PMID:26880804

  19. Multicomponent Analysis of the Differential Induction of Secondary Metabolite Profiles in Fungal Endophytes.

    PubMed

    González-Menéndez, Víctor; Pérez-Bonilla, Mercedes; Pérez-Victoria, Ignacio; Martín, Jesús; Muñoz, Francisca; Reyes, Fernando; Tormo, José R; Genilloud, Olga

    2016-01-01

    Small molecule histone deacetylase (HDAC) and DNA methyltransferase (DNMT) inhibitors are commonly used to perturb the production of fungal metabolites leading to the induction of the expression of silent biosynthetic pathways. Several reports have described the variable effects observed in natural product profiles in fungi treated with HDAC and DNMT inhibitors, such as enhanced chemical diversity and/or the induction of new molecules previously unknown to be produced by the strain. Fungal endophytes are known to produce a wide variety of secondary metabolites (SMs) involved in their adaptation and survival within higher plants. The plant-microbe interaction may influence the expression of some biosynthetic pathways, otherwise cryptic in these fungi when grown in vitro. The aim of this study was to setup a systematic approach to evaluate and identify the possible effects of HDAC and DNMT inhibitors on the metabolic profiles of wild type fungal endophytes, including the chemical identification and characterization of the most significant SMs induced by these epigenetic modifiers. PMID:26901184

  20. NMR-metabolomics profiling of mammary gland secretory tissue and milk serum in two goat breeds with different levels of tolerance to seasonal weight loss.

    PubMed

    Palma, Mariana; Hernández-Castellano, Lorenzo E; Castro, Noemí; Arguëllo, Anastasio; Capote, Juan; Matzapetakis, Manolis; de Almeida, André Martinho

    2016-06-21

    Goats are of special importance in the Mediterranean and tropical regions for producing a variety of dairy products. The scarcity of pastures during the dry season leads to seasonal weight loss (SWL), which affects milk production. In this work, we studied the effect of feed-restriction on two dairy goat breeds, with different tolerance levels to SWL: the Majorera breed (tolerant) and the Palmera breed (susceptible). Nuclear magnetic resonance (NMR) was used to compare the metabolome of an aqueous fraction of the mammary gland and milk serum from both breeds. Goats in mid-lactation were divided by breed, and each in two feed-regime groups: the control group and the restricted-fed group (to achieve 15-20% reduction of body weight at the end of the experiment). Milk and mammary gland samples were collected at the end of the experimental period (23rd day). (1)H NMR spectra were collected from the aqueous extract of the mammary gland biopsies and the milk serum. Profiling analysis has led to the identification of 46 metabolites in the aqueous extract of the mammary gland. Lactose, glutamate, glycine and lactate were found to be the most abundant. Analysis of milk serum allowed the identification of 50 metabolites, the most abundant being lactose, citrate and creatine. Significant differences were observed, in mammary gland biopsies and milk serum, between control and restricted-fed groups in both breeds, albeit with no differences between the breeds. Variations seem to be related to metabolism adaptation to the low-energy diet and are indicative of breed-specific microflora. Milk serum showed more metabolites varying between control and restricted groups, than the mammary gland. The Majorera breed also showed more variations than the Palmera breed in milk samples, which could be an indication of a prompt adaptation to SWL by the Majorera breed. PMID:27001028

  1. SpinCouple: Development of a Web Tool for Analyzing Metabolite Mixtures via Two-Dimensional J-Resolved NMR Database.

    PubMed

    Kikuchi, Jun; Tsuboi, Yuuri; Komatsu, Keiko; Gomi, Masahiro; Chikayama, Eisuke; Date, Yasuhiro

    2016-01-01

    A new Web-based tool, SpinCouple, which is based on the accumulation of a two-dimensional (2D) (1)H-(1)H J-resolved NMR database from 598 metabolite standards, has been developed. The spectra include both J-coupling and (1)H chemical shift information; those are applicable to a wide array of spectral annotation, especially for metabolic mixture samples that are difficult to label through the attachment of (13)C isotopes. In addition, the user-friendly application includes an absolute-quantitative analysis tool. Good agreement was obtained between known concentrations of 20-metabolite mixtures versus the calibration curve-based quantification results obtained from 2D-Jres spectra. We have examined the web tool availability using nine series of biological extracts, obtained from animal gut and waste treatment microbiota, fish, and plant tissues. This web-based tool is publicly available via http://emar.riken.jp/spincpl. PMID:26624790

  2. Response to the Letter to the Editor regarding "Determination of the fatty acid profile by 1H-NMR spectroscopy."

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In expansion of previous work (G. Knothe, J.A. Kenar, Determination of the fatty acid profile by 1H-NMR spectroscopy, Eur. J. Lipid Sci. Technol. 2004, 106, 88-96), an additional approach is discussed for quantitating saturated fatty acids in the fatty acid profiles of common vegetable oils by 1H-NM...

  3. Combination of UHPLC/Q-TOF-MS, NMR spectroscopy, and ECD calculation for screening and identification of reactive metabolites of gentiopicroside in humans.

    PubMed

    Han, Han; Xiong, Ai-Zhen; He, Chun-Yong; Liu, Qing; Yang, Li; Wang, Zheng-Tao

    2014-02-01

    The metabolic investigation of natural products is a great challenge because of unpredictable metabolic pathways, little knowledge on metabolic effects, and lack of recommended analytical methodology. Herein, a combined strategy based on ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF-MS), nuclear magnetic resonance (NMR) spectroscopy, and electronic circular dichroism (ECD) calculation was developed and employed for the human metabolism study of gentiopicroside (GPS), a naturally hepato-protective iridoid glycoside. The whole metabolic study consisted of three major procedures. First, an improved UHPLC/Q-TOF-MS method was used to separate and detect a total of 15 GPS metabolites that were obtained from urine samples (0 to 72 h) of 12 healthy male participants after a single 50-mg oral dose of GPS. Second, a developed "MS-NMR-MS" method was applied to accurately identify molecular structures of the observed metabolites. Finally, given that the associated stereochemistry may be a crucial factor of the metabolic activation, the absolute configuration of the reactive metabolites was revealed through chemical calculations. Based on the combined use, a pair of diastereoisomers (G05 and G06) were experimentally addressed as the bioreactive metabolites of GPS, and the stereochemical determination was completed. Whereas several novel metabolic transformations, occurring via oxidation, N-heterocyclization and glucuronidation after deglycosylation, were also observed. The results indicated that GPS has to undergo in vivo metabolism-based activation to generate reactive molecules capable of processing its hepato-protective activity. PMID:24408300

  4. UPLC-ESI-TOF MS-Based Metabolite Profiling of the Antioxidative Food Supplement Garcinia buchananii.

    PubMed

    Stark, Timo D; Lösch, Sofie; Wakamatsu, Junichiro; Balemba, Onesmo B; Frank, Oliver; Hofmann, Thomas

    2015-08-19

    Comparative antioxidative analyses of aqueous ethanolic extracts from leaf, root, and stem of Garcinia buchananii revealed high activity of all three organs. To investigate the metabolite composition of the different parts of G. buchananii, an untargeted metabolomics approach using UPLC-ESI-TOF MS with simultaneous acquisition of low- and high-collision energy mass spectra (MS(e)) was performed. Unsupervised statistics (PCA) highlighted clear differences in the metabolomes of the three organs. OPLS-DA revealed (2R,3S,2″R,3″R)-GB-1, (2R,3S)-morelloflavone, and (2R,3S)-volkensiflavone as the most decisive marker compounds discriminating leaf from root and stem extract. Leaves represent the best source to isolate GB-1, morelloflavone, and volkensiflavone. Root extract is the best organ to isolate xanthones and stem bark extract the best source to isolate (2R,3S,2″R,3″R)-manniflavanone; the identified polyisoprenylated benzophenones are characteristic compounds for the leaf organ. Morelloflavone, volkensiflavone, and garcicowin C were isolated for the first time from G. buchananii, identified via MS, NMR, and CD spectroscopy, and showed in H2O2 scavenging, H/L-TEAC, and H/L-ORAC assays moderate to strong in vitro antioxidative activities. PMID:26226176

  5. Can NMR solve some significant challenges in metabolomics?

    NASA Astrophysics Data System (ADS)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  6. Qualitative profiling and quantification of neonicotinoid metabolites in human urine by liquid chromatography coupled with mass spectrometry.

    PubMed

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  7. Qualitative Profiling and Quantification of Neonicotinoid Metabolites in Human Urine by Liquid Chromatography Coupled with Mass Spectrometry

    PubMed Central

    Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko

    2013-01-01

    Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human

  8. Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2

    PubMed Central

    Kim, Woo Jung; Kim, Young Ok; Kim, Jin Hee; Nam, Bo-Hye; Kim, Dong-Gyun; An, Cheul Min; Lee, Jun Sik; Kim, Pan Soo; Lee, Hye Min; Oh, Joa-Sup; Lee, Jong Suk

    2016-01-01

    The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS) and nuclear magnetic resonance (NMR) analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI). Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutyl)qunoline-4-(1H)-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutyl)quinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC)-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development. PMID:26805856

  9. Distinct Metabolic Profile of Primary Focal Segmental Glomerulosclerosis Revealed by NMR-Based Metabolomics

    PubMed Central

    Wang, Weiming; Ren, Hong; Xie, Jingyuan; Shen, Pingyan; Lin, Donghai; Chen, Nan

    2013-01-01

    Background Primary focal segmental glomerulosclerosis (FSGS) is pathological entity which is characterized by idiopathic steroid-resistant nephrotic syndrome (SRNS) and progression to end-stage renal disease (ESRD) in the majority of affected individuals. Currently, there is no practical noninvasive technique to predict different pathological types of glomerulopathies. In this study, the role of urinary metabolomics in the diagnosis and pathogenesis of FSGS was investigated. Methods NMR-based metabolomics was applied for the urinary metabolic profile in the patients with FSGS (n = 25), membranous nephropathy (MN, n = 24), minimal change disease (MCD, n = 14) and IgA nephropathy (IgAN, n = 26), and healthy controls (CON, n = 35). The acquired data were analyzed using principal component analysis (PCA) followed by orthogonal projections to latent structure discriminant analysis (OPLS-DA). Model validity was verified using permutation tests. Results FSGS patients were clearly distinguished from healthy controls and other three types of glomerulopathies with good sensitivity and specificity based on their global urinary metabolic profiles. In FSGS patients, urinary levels of glucose, dimethylamine and trimethylamine increased compared with healthy controls, while pyruvate, valine, hippurate, isoleucine, phenylacetylglycine, citrate, tyrosine, 3-methylhistidine and β-hydroxyisovalerate decreased. Additionally, FSGS patients had lower urine N-methylnicotinamide levels compared with other glomerulopathies. Conclusions NMR-based metabonomic approach is amenable for the noninvasive diagnosis and differential diagnosis of FSGS as well as other glomerulopathies, and it could indicate the possible mechanisms of primary FSGS. PMID:24244321

  10. Plasma progesterone and blood metabolite profiles in post-partum small east African zebu cows.

    PubMed

    Tegegne, A; Entwistle, K W; Mukasa-Mugerwa, E

    1993-05-01

    Plasma progesterone profiles were used to monitor post-partum reproductive activity in 12 Small East African zebu (Bos indicus) cows allocated to either supplementary or no supplementary feeding (control) with continuous or restricted (twice daily) suckling regimes. Intact bulls were used for breeding. Blood samples were collected 3 times a week for 33 weeks to determine plasma progesterone levels. Weekly blood samples were also used to determine blood metabolite concentrations. Plasma progesterone levels remained below 1 ng/ml in all cows until week 12 post-partum. Only 5 cows showed ovarian activity over the 33 week period. Cows that cycled expressed irregular and short-lived progesterone rises (> 1 ng/ml) lasting 8 to 12 days prior to establishment of normal patterns of progesterone secretion where progesterone levels ranged from 8 to 10 ng/ml in cows with normal cycles. Plasma total protein, albumin, globulin, blood urea nitrogen and glucose levels varied over time without consistent trends, and were not influenced by either supplementary feeding of suckling regimes, nor differed between cyclic and acyclic cows. It was concluded that extended post-partum anoestrus, conception failure and early embryonic mortality were responsible for lowered reproductive efficiency in zebu cows. Blood metabolite concentrations were not good indicators of nutritional status and were not related to post-partum ovarian activity. PMID:8236477

  11. Metabolite Profile of Cervicovaginal Fluids from Early Pregnancy Is Not Predictive of Spontaneous Preterm Birth

    PubMed Central

    Thomas, Melinda M.; Sulek, Karolina; McKenzie, Elizabeth J.; Jones, Beatrix; Han, Ting-Li; Villas-Boas, Silas G.; Kenny, Louise C.; McCowan, Lesley M. E.; Baker, Philip N.

    2015-01-01

    In our study, we used a mass spectrometry-based metabolomic approach to search for biomarkers that may act as early indicators of spontaneous preterm birth (sPTB). Samples were selected as a nested case-control study from the Screening for Pregnancy Endpoints (SCOPE) biobank in Auckland, New Zealand. Cervicovaginal swabs were collected at 20 weeks from women who were originally assessed as being at low risk of sPTB. Samples were analysed using gas chromatography-mass spectrometry (GC-MS). Despite the low amount of biomass (16–23 mg), 112 compounds were detected. Statistical analysis showed no significant correlations with sPTB. Comparison of reported infection and plasma inflammatory markers from early pregnancy showed two inflammatory markers were correlated with reported infection, but no correlation with any compounds in the metabolite profile was observed. We hypothesise that the lack of biomarkers of sPTB in the cervicovaginal fluid metabolome is simply because it lacks such markers in early pregnancy. We propose alternative biofluids be investigated for markers of sPTB. Our results lead us to call for greater scrutiny of previously published metabolomic data relating to biomarkers of sPTB in cervicovaginal fluids, as the use of small, high risk, or late pregnancy cohorts may identify metabolite biomarkers that are irrelevant for predicting risk in normal populations. PMID:26610472

  12. Penicillium strains isolated from Slovak grape berries taxonomy assessment by secondary metabolite profile.

    PubMed

    Santini, Antonello; Mikušová, Petra; Sulyok, Michael; Krska, Rudolf; Labuda, Roman; Srobárová, Antónia

    2014-11-01

    The secondary metabolite profiles of microfungi of the genus Penicillium isolated from samples of grape berries collected in two different phases during two vegetative seasons in Slovakia is described to assess the taxonomy. Three Slovak vine regions have been selected for this study, based on their climatic differences and national economic importance. Cultures of microfungi isolated from berries were incubated on different selective media for macro and micromorphology identification. The species Penicillium brevicompactum, Penicillium crustosum, Penicillium chrysogenum, Penicillium expansum, Penicillium palitans and Penicillium polonicum were identified according to growth and morphology. The related strains were found to produce a broad spectrum of fungal metabolites, including roquefortine C, chaetoglobosin A, penitrem A, cyclopeptin, cyclopenin, viridicatin, methylviridicatin, verrucofortine, secalonic acid D, cyclopiazonic acid, fumigaclavine and mycophenolic acid. Chemotaxonomy was performed using high-performance liquid chromatography (HPLC) and mass spectrometry (MS). Dried grape berries were also analyzed allowing to assess the presence of patulin, roquefortine C and penicillic acid; this last one has been identified in dried berries but not in vitro. PMID:25109845

  13. Blood, urine and faecal metabolite profiles in the study of adult renal disease.

    PubMed

    Barrios, Clara; Spector, Tim D; Menni, Cristina

    2016-01-01

    Chronic kidney disease (CKD) is a major public health burden and to date traditional biomarkers of renal function (such as serum creatinine and cystatin C) are unable to identify at-risk individuals before the disease process is well under way. To help preventive strategies and maximize the potential for effective interventions, it is important to characterise the molecular changes that take place in the development of renal damage. Metabolomics is a promising tool to identify markers of renal disease since the kidneys are involved in the handling of major biochemical classes of metabolites. These metabolite levels capture a snap-shot of the metabolic profile of the individual, allowing for the potential identification of early biomarkers, and the monitoring of real-time kidney function. In this review, we describe the current status of the identification of blood/urine/faecal metabolic biomarkers in different entities of kidney diseases including: acute kidney injury, chronic kidney disease, renal transplant, diabetic nephropathy and other disorders. PMID:26476344

  14. In Vivo Metabolite Profiling of a Purified Ellagitannin Isolated from Polygonum capitatum in Rats.

    PubMed

    Ma, Jing-Yi; Zhou, Xuelin; Fu, Jie; He, Chi-Yu; Feng, Ru; Huang, Min; Shou, Jia-Wen; Zhao, Zhen-Xiong; Li, Xiao-Yang; Zhang, Luye; Chen, Yang-Chao; Wang, Yan

    2016-01-01

    Ellagitannin is a common compound in food and herbs, but there are few detailed studies on the metabolism of purified ellagitannins. FR429 is a purified ellagitannin with antitumor potential, which is from Polygonum capitatum Buch.-Ham.ex D. Don. The present study was designed to investigate the metabolic profiles of FR429 in rats in vivo. Using liquid chromatography coupled to ion trap time-of-flight mass spectrometry (LC/MS(n)-IT-TOF), total eight metabolites were found in rat bile and urine after intravenous administration of FR429, but could not be detected in plasma. These metabolites were ellagic acid, mono-methylated FR429, ellagic acid methyl ether glucuronide, ellagic acid methyl ether diglucuronide, ellagic acid dimethyl ether glucuronide, and ellagic acid dimethyl ether diglucuronide. It was concluded that methylation and subsequent glucuronidation were the major metabolic pathways of FR429 in rats in vivo. This is the first report on the in vivo metabolism of the purified ellagitannin in rats. PMID:27563862

  15. Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert

    PubMed Central

    Brosché, Mikael; Vinocur, Basia; Alatalo, Edward R; Lamminmäki, Airi; Teichmann, Thomas; Ottow, Eric A; Djilianov, Dimitar; Afif, Dany; Bogeat-Triboulot, Marie-Béatrice; Altman, Arie; Polle, Andrea; Dreyer, Erwin; Rudd, Stephen; Paulin, Lars; Auvinen, Petri; Kangasjärvi, Jaakko

    2005-01-01

    Background Plants growing in their natural habitat represent a valuable resource for elucidating mechanisms of acclimation to environmental constraints. Populus euphratica is a salt-tolerant tree species growing in saline semi-arid areas. To identify genes involved in abiotic stress responses under natural conditions we constructed several normalized and subtracted cDNA libraries from control, stress-exposed and desert-grown P. euphratica trees. In addition, we identified several metabolites in desert-grown P. euphratica trees. Results About 14,000 expressed sequence tag (EST) sequences were obtained with a good representation of genes putatively involved in resistance and tolerance to salt and other abiotic stresses. A P. euphratica DNA microarray with a uni-gene set of ESTs representing approximately 6,340 different genes was constructed. The microarray was used to study gene expression in adult P. euphratica trees growing in the desert canyon of Ein Avdat in Israel. In parallel, 22 selected metabolites were profiled in the same trees. Conclusion Of the obtained ESTs, 98% were found in the sequenced P. trichocarpa genome and 74% in other Populus EST collections. This implies that the P. euphratica genome does not contain different genes per se, but that regulation of gene expression might be different and that P. euphratica expresses a different set of genes that contribute to adaptation to saline growth conditions. Also, all of the five measured amino acids show increased levels in trees growing in the more saline soil. PMID:16356264

  16. Profiling a gut microbiota-generated catechin metabolite's fate in human blood cells using a metabolomic approach.

    PubMed

    Mülek, Melanie; Fekete, Agnes; Wiest, Johannes; Holzgrabe, Ulrike; Mueller, Martin J; Högger, Petra

    2015-10-10

    The microbial catechin metabolite δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1) has been found in human plasma samples after intake of maritime pine bark extract (Pycnogenol). M1 has been previously shown to accumulate in endothelial and blood cells in vitro after facilitated uptake and to exhibit anti-inflammatory activity. The purpose of the present research approach was to systematically and comprehensively analyze the metabolism of M1 in human blood cells in vitro and in vivo. A metabolomic approach that had been successfully applied for drug metabolite profiling was chosen to detect 19 metabolite peaks of M1 which were subsequently further analyzed and validated. The metabolites were categorized into three levels of identification according to the Metabolomics Standards Initiative with six compounds each confirmed at levels 1 and 2 and seven putative metabolites at level 3. The predominant metabolites were glutathione conjugates which were rapidly formed and revealed prolonged presence within the cells. Although a formation of an intracellular conjugate of M1 and glutathione (M1-GSH) was already known two GSH conjugate isomers, M1-S-GSH and M1-N-GSH were observed in the current study. Additionally detected organosulfur metabolites were conjugates with oxidized glutathione and cysteine. Other biotransformation products constituted the open-chained ester form of M1 and a methylated M1. Six of the metabolites determined in in vitro assays were also detected in blood cells in vivo after ingestion of the pine bark extract by two volunteers. The present study provides the first evidence that multiple and structurally heterogeneous polyphenol metabolites can be generated in human blood cells. The bioactivity of the M1 metabolites and their contribution to the previously determined anti-inflammatory effects of M1 now need to be elucidated. PMID:26025814

  17. A multisection passive sampler for measuring sediment porewater profile of dichlorodiphenyltrichloroethane and its metabolites.

    PubMed

    Liu, Hui-Hui; Bao, Lian-Jun; Feng, Wei-Hao; Xu, Shi-Ping; Wu, Feng-Chang; Zeng, Eddy Y

    2013-08-01

    In situ measurements of hydrophobic organic chemicals in sediment porewater, a central component in assessing the bioavailability and mobility of chemicals in sediment, have been scarce. Here, we introduce a multisection passive sampler with low-density polyethylene (LDPE) as the sorbent phase, which is appropriate for measuring vertical concentration profiles of chemicals in sediment porewater. This sampler is composed of a series of identical sampling cells insulated with seclusion rings. In each section, sorption of chemicals into LDPE is diffusion-controlled through the water layer separated from the sediment by a glass fiber filtration membrane and a porous stainless steel shield. Pilot laboratory testing indicated that the sampler can roughly determine the porewater concentrations of 1,1-dichloro-2,2-bis-(chlorophenyl)ethane (p,p'-DDD) and 1,1-dichloro-2,2-bis-(chlorophenyl)ethylene (p,p'-DDE), comparable to those yielded through centrifugation/liquid-liquid extraction, a conventional technique for sampling sediment porewater. Field deployment of the sampler was performed in an urbanized coastal region to measure the depth profiles of dichlorodiphenyltrichloroethane and its metabolites in sediment porewater. Sampling rate-calibrated and performance reference compound-calibrated concentrations were calculated, which were consistent with those obtained by the centrifugation/liquid-liquid extraction method. These results verified the utility of the sampler for measuring depth profiles of sediment porewater chemicals. PMID:23808846

  18. Metabolite Profiling of the Plasma and Leukocytes of Chronic Myeloid Leukemia Patients.

    PubMed

    Karlíková, Radana; Široká, Jitka; Friedecký, David; Faber, Edgar; Hrdá, Marcela; Mičová, Kateřina; Fikarová, Iveta; Gardlo, Alžběta; Janečková, Hana; Vrobel, Ivo; Adam, Tomáš

    2016-09-01

    The discovery of tyrosine kinase inhibitors (TKIs) brought a major breakthrough in the treatment of patients with chronic myeloid leukemia (CML). Pathogenetic CML events are closely linked with the Bcr-Abl protein with tyrosine kinase activity. TKIs block the ATP-binding site; therefore, the signal pathways leading to malignant transformation are no longer active. However, there is limited information about the impact of TKI treatment on the metabolome of CML patients. Using liquid chromatography mass spectrometric metabolite profiling and multivariate statistical methods, we analyzed plasma and leukocyte samples of patients newly diagnosed with CML, patients treated with hydroxyurea and TKIs (imatinib, dasatinib, nilotinib), and healthy controls. The global metabolic profiles clearly distinguished the newly diagnosed CML patients and the patients treated with hydroxyurea from those treated with TKIs and the healthy controls. The major changes were found in glycolysis, the citric acid cycle, and amino acid metabolism. We observed differences in the levels of amino acids and acylcarnitines between those patients responding to imatinib treatment and those who were resistant to it. According to our findings, the metabolic profiling may be potentially used as an additional tool for the assessment of response/resistance to imatinib. PMID:27465658

  19. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer.

    PubMed

    Huan, Tao; Troyer, Dean A; Li, Liang

    2016-01-01

    We report a method of metabolomic profiling of intact tissue based on molecular preservation by extraction and fixation (mPREF) and high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). mPREF extracts metabolites by aqueous methanol from tissue biopsies without altering tissue architecture and thus conventional histology can be performed on the same tissue. In a proof-of-principle study, we applied dansylation LC-MS to profile the amine/phenol submetabolome of prostate needle biopsies from 25 patient samples derived from 16 subjects. 2900 metabolites were consistently detected in more than 50% of the samples. This unprecedented coverage allowed us to identify significant metabolites for differentiating tumor and normal tissues. The panel of significant metabolites was refined using 36 additional samples from 18 subjects. Receiver Operating Characteristic (ROC) analysis showed area-under-the-curve (AUC) of 0.896 with sensitivity of 84.6% and specificity of 83.3% using 7 metabolites. A blind study of 24 additional validation samples gave a specificity of 90.9% at the same sensitivity of 84.6%. The mPREF extraction can be readily implemented into the existing clinical workflow. Our method of combining mPREF with CIL LC-MS offers a powerful and convenient means of performing histopathology and discovering or detecting metabolite biomarkers in the same tissue biopsy. PMID:27578275

  20. Metabolite Analysis and Histology on the Exact Same Tissue: Comprehensive Metabolomic Profiling and Metabolic Classification of Prostate Cancer

    PubMed Central

    Huan, Tao; Troyer, Dean A.; Li, Liang

    2016-01-01

    We report a method of metabolomic profiling of intact tissue based on molecular preservation by extraction and fixation (mPREF) and high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). mPREF extracts metabolites by aqueous methanol from tissue biopsies without altering tissue architecture and thus conventional histology can be performed on the same tissue. In a proof-of-principle study, we applied dansylation LC-MS to profile the amine/phenol submetabolome of prostate needle biopsies from 25 patient samples derived from 16 subjects. 2900 metabolites were consistently detected in more than 50% of the samples. This unprecedented coverage allowed us to identify significant metabolites for differentiating tumor and normal tissues. The panel of significant metabolites was refined using 36 additional samples from 18 subjects. Receiver Operating Characteristic (ROC) analysis showed area-under-the-curve (AUC) of 0.896 with sensitivity of 84.6% and specificity of 83.3% using 7 metabolites. A blind study of 24 additional validation samples gave a specificity of 90.9% at the same sensitivity of 84.6%. The mPREF extraction can be readily implemented into the existing clinical workflow. Our method of combining mPREF with CIL LC-MS offers a powerful and convenient means of performing histopathology and discovering or detecting metabolite biomarkers in the same tissue biopsy. PMID:27578275

  1. MS/MS spectral tag-based annotation of non-targeted profile of plant secondary metabolites

    PubMed Central

    Matsuda, Fumio; Yonekura-Sakakibara, Keiko; Niida, Rie; Kuromori, Takashi; Shinozaki, Kazuo; Saito, Kazuki

    2009-01-01

    The MS/MS spectral tag (MS2T) library-based peak annotation procedure was developed for informative non-targeted metabolic profiling analysis using LC-MS. An MS2T library of Arabidopsis metabolites was created from a set of MS/MS spectra acquired using the automatic data acquisition function of the mass spectrometer. By using this library, we obtained structural information for the detected peaks in the metabolic profile data without performing additional MS/MS analysis; this was achieved by searching for the corresponding MS2T accession in the library. In the case of metabolic profile data for Arabidopsis tissues containing more than 1000 peaks, approximately 50% of the peaks were tagged by MS2Ts, and 90 peaks were identified or tentatively annotated with metabolite information by searching the metabolite databases and manually interpreting the MS2Ts. A comparison of metabolic profiles among the Arabidopsis tissues revealed that many unknown metabolites accumulated in a tissue-specific manner, some of which were deduced to be unusual Arabidopsis metabolites based on the MS2T data. Candidate genes responsible for these biosyntheses could be predicted by projecting the results to the transcriptome data. The method was also used for metabolic phenotyping of a subset of Ds transposon-inserted lines of Arabidopsis, resulting in clarification of the functions of reported genes involved in glycosylation of flavonoids. Thus, non-targeted metabolic profiling analysis using MS2T annotation methods could prove to be useful for investigating novel functions of secondary metabolites in plants. PMID:18939963

  2. Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork

    PubMed Central

    Trivedi, Drupad K.; Hollywood, Katherine A.; Rattray, Nicholas J. W.; Ward, Holli; Trivedi, Dakshat K.; Greenwood, Joseph; Ellis, David I.

    2016-01-01

    Adulteration of high quality food products with sub-standard and cheaper grades is a world-wide problem taxing the global economy. Currently, many traditional tests suffer from poor specificity, highly complex outputs and a lack of high-throughput processing. Metabolomics has been successfully used as an accurate discriminatory technique in a number of applications including microbiology, cancer research and environmental studies and certain types of food fraud. In this study, we have developed metabolomics as a technique to assess the adulteration of meat as an improvement on current methods. Different grades of beef mince and pork mince, purchased from a national retail outlet were combined in a number of percentage ratios and analysed using GC-MS and UHPLC-MS. These techniques were chosen because GC-MS enables investigations of metabolites involved in primary metabolism whilst UHPLC-MS using reversed phase chromatography provides information on lipophilic species. With the application of chemometrics and statistical analyses, a panel of differential metabolites were found for identification of each of the two meat types. Additionally, correlation was observed between metabolite content and percentage of fat declared on meat products’ labelling. PMID:26911805

  3. Meat, the metabolites: an integrated metabolite profiling and lipidomics approach for the detection of the adulteration of beef with pork.

    PubMed

    Trivedi, Drupad K; Hollywood, Katherine A; Rattray, Nicholas J W; Ward, Holli; Trivedi, Dakshat K; Greenwood, Joseph; Ellis, David I; Goodacre, Royston

    2016-04-01

    Adulteration of high quality food products with sub-standard and cheaper grades is a world-wide problem taxing the global economy. Currently, many traditional tests suffer from poor specificity, highly complex outputs and a lack of high-throughput processing. Metabolomics has been successfully used as an accurate discriminatory technique in a number of applications including microbiology, cancer research and environmental studies and certain types of food fraud. In this study, we have developed metabolomics as a technique to assess the adulteration of meat as an improvement on current methods. Different grades of beef mince and pork mince, purchased from a national retail outlet were combined in a number of percentage ratios and analysed using GC-MS and UHPLC-MS. These techniques were chosen because GC-MS enables investigations of metabolites involved in primary metabolism whilst UHPLC-MS using reversed phase chromatography provides information on lipophilic species. With the application of chemometrics and statistical analyses, a panel of differential metabolites were found for identification of each of the two meat types. Additionally, correlation was observed between metabolite content and percentage of fat declared on meat products' labelling. PMID:26911805

  4. Metabolomic analysis of polar metabolites in lipoprotein fractions identifies lipoprotein-specific metabolic profiles and their association with insulin resistance.

    PubMed

    Hyötyläinen, Tuulia; Mattila, Ismo; Wiedmer, Susanne K; Koivuniemi, Artturi; Taskinen, Marja-Riitta; Yki-Järvinen, Hannele; Orešič, Matej

    2012-10-01

    While the molecular lipid composition of lipoproteins has been investigated in detail, little is known about associations of small polar metabolites with specific lipoproteins. The aim of the present study was to investigate the profiles of polar metabolites in different lipoprotein fractions, i.e., very-low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), low-density lipoprotein (LDL) and two sub-fractions of the high-density lipoprotein (HDL). The VLDL, IDL, LDL, HDL(2), and HDL(3) fractions were isolated from serum of sixteen individuals having a broad range of insulin sensitivity and characterized using comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC×GC-TOFMS). The lipoprotein fractions had clearly different metabolite profiles, which correlated with the particle size and surface charge. Lipoprotein-specific associations of individual metabolites with insulin resistance were identified, particularly in VLDL and IDL fractions, even in the absence of such associations in serum. The results indicate that the polar molecules are strongly attached to the surface of the lipoproteins. Furthermore, strong lipoprotein-specific associations of metabolites with insulin resistance, as compared to their serum profiles, indicate that lipoproteins may be a rich source of tissue-specific metabolic biomarkers. PMID:22722885

  5. Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley.

    PubMed

    Heuberger, Adam L; Broeckling, Corey D; Kirkpatrick, Kaylyn R; Prenni, Jessica E

    2014-02-01

    The process of breeding superior varieties for the agricultural industry is lengthy and expensive. Plant metabolites may act as markers of quality traits, potentially expediting the appraisal of experimental lines during breeding. Here, we evaluated the utility of metabolites as markers by assessing metabolic variation influenced by genetic and environmental factors in an advanced breeding setting and in relation to the phenotypic distribution of 20 quality traits. Nontargeted liquid chromatography-mass spectrometry metabolite profiling was performed on barley (Hordeum vulgare L.) grain and malt from 72 advanced malting barley lines grown at two distinct but climatically similar locations, with 2-row and 6-row barley as the main genetic factors. 27 420 molecular features were detected, and the metabolite and quality trait profiles were similarly influenced by genotype and environment; however, malt was more influenced by genotype compared with barley. An O2PLS model characterized molecular features and quality traits that covaried, and 1319 features associated with at least one of 20 quality traits. An indiscriminant MS/MS acquisition and novel data analysis method facilitated the identification of metabolites. The analysis described 216 primary and secondary metabolites that correlated with multiple quality traits and included amines, amino acids, alkaloids, polyphenolics and lipids. The mechanisms governing quality trait-metabolite associations were interpreted based on colocalization to genetic markers and their gene annotations. The results of this study support the hypothesis that metabolism and quality traits are co-influenced by relatively narrow genetic and environmental factors and illustrate the utility of grain metabolites as functional markers of quality traits. PMID:24119106

  6. Metabolite Profiling of Low-P Tolerant and Low-P Sensitive Maize Genotypes under Phosphorus Starvation and Restoration Conditions

    PubMed Central

    Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M.; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad

    2015-01-01

    Background Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. Methodology/Principal Findings A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. Conclusion The new insights generated on the maize metabolome in resposne to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize. PMID

  7. Systemic and characteristic metabolites in the serum of streptozotocin-induced diabetic rats at different stages as revealed by a (1)H-NMR based metabonomic approach.

    PubMed

    Diao, Chengfeng; Zhao, Liangcai; Guan, Mimi; Zheng, Yongquan; Chen, Minjiang; Yang, Yunjun; Lin, Li; Chen, Weijian; Gao, Hongchang

    2014-03-01

    Diabetes mellitus is a typical heterogeneous metabolic disorder characterized by abnormal metabolism of carbohydrates, lipids, and proteins. Investigating the changes in metabolic pathways during the evolution of diabetes mellitus may contribute to the understanding of its metabolic features and pathogenesis. In this study, serum samples were collected from diabetic rats and age-matched controls at different time points: 1 and 9 weeks after streptozotocin (STZ) treatment. (1)H nuclear magnetic resonance ((1)H NMR)-based metabonomics with quantitative analysis was performed to study the metabolic changes. The serum samples were also subjected to clinical chemistry analysis to verify the metabolic changes observed by metabonomics. Partial least squares discriminant analysis (PLS-DA) demonstrated that the levels of serum metabolites in diabetic rats are different from those in control rats. These findings indicate that the metabolic characteristics of the two groups are markedly different at 1 and 9 weeks. Quantitative analysis showed that the levels of some metabolites, such as pyruvate, lactate, citrate, acetone, acetoacetate, acetate, glycerol, and valine, varied in a time-dependent manner in diabetic rats. These results suggest that serum metabolites related to glycolysis, the tricarboxylic acid cycle, gluconeogenesis, fatty acid β-oxidation, branched-chain amino acid metabolism, and the tyrosine metabolic pathways are involved in the evolution of diabetes. The metabolic changes represent potential features and promote a better understanding of the mechanisms involved in the development of diabetes mellitus. This work further suggests that (1)H NMR metabonomics is a valuable approach for providing novel insights into the pathogenesis of diabetes mellitus and its complications. PMID:24448714

  8. Arsenate Impact on the Metabolite Profile, Production, and Arsenic Loading of Xylem Sap in Cucumbers (Cucumis sativus L.)

    PubMed Central

    Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg

    2012-01-01

    Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187

  9. Establishing high temperature gas chromatographic profiles of non-polar metabolites for quality assessment of African traditional herbal medicinal products.

    PubMed

    Bony, Nicaise F; Libong, Danielle; Solgadi, Audrey; Bleton, Jean; Champy, Pierre; Malan, Anglade K; Chaminade, Pierre

    2014-01-01

    The quality assessment of African traditional herbal medicinal products is a difficult challenge since they are complex mixtures of several herbal drug or herbal drug preparations. The plant source is also often unknown and/or highly variable. Plant metabolites chromatographic profiling is therefore an important tool for quality control of such herbal products. The objective of this work is to propose a protocol for sample preparation and gas chromatographic profiling of non-polar metabolites for quality control of African traditional herbal medicinal products. The methodology is based on the chemometric assessment of chromatographic profiles of non-polar metabolites issued from several batches of leaves of Combretum micranthum and Mitracarpus scaber by high temperature gas chromatography coupled to mass spectrometry, performed on extracts obtained in refluxed dichloromethane, after removal of chlorophyll pigments. The method using high temperature gas chromatography after dichloromethane extraction allows detection of most non-polar bioactive and non-bioactive metabolites already identified in leaves of both species. Chemometric data analysis using Principal Component Analysis and Partial Least Squares after Orthogonal Signal Correction applied to chromatographic profiles of leaves of Combretum micranthum and Mitracarpus scaber showed slight batch to batch differences, and allowed clear differentiation of the two herbal extracts. PMID:24211706

  10. Automated Quantification of Human Brain Metabolites by Artificial Neural Network Analysis from in VivoSingle-Voxel 1H NMR Spectra

    NASA Astrophysics Data System (ADS)

    Kaartinen, Jouni; Mierisová, Šarka; Oja, Joni M. E.; Usenius, Jukka-Pekka; Kauppinen, Risto A.; Hiltunen, Yrjö

    1998-09-01

    A real-time automated way of quantifying metabolites fromin vivoNMR spectra using an artificial neural network (ANN) analysis is presented. The spectral training and test sets for ANN containing peaks at the chemical shift ranges resembling long echo time proton NMR spectra from human brain were simulated. The performance of the ANN constructed was compared with an established lineshape fitting (LF) analysis using both simulated and experimental spectral data as inputs. The correspondence between the ANN and LF analyses showed correlation coefficients of order of 0.915-0.997 for spectra with large variations in both signal-to-noise and peak areas. Water suppressed1H NMR spectra from 24 healthy subjects were collected and choline-containing compounds (Cho), total creatine (Cr), and N-acetyl aspartate (NAA) were quantified with both methods. The ANN quantified these spectra with an accuracy similar to LF analysis (correlation coefficients of 0.915-0.951). These results show that LF and ANN are equally good quantifiers; however, the ANN analyses are more easily automated than LF analyses.

  11. Quantification of metabolites from single-voxel in vivo 1H NMR data of normal human brain by means of time-domain data analysis.

    PubMed

    Ala-Korpela, M; Usenius, J P; Keisala, J; van den Boogaart, A; Vainio, P; Jokisaari, J; Soimakallio, S; Kauppinen, R

    1995-01-01

    We present here a combination of time-domain signal analysis procedures for quantification of human brain in vivo 1H NMR spectroscopy (MRS) data. The method is based on a separate removal of a residual water resonance followed by a frequency-selective time-domain line-shape fitting analysis of metabolite signals. Calculation of absolute metabolite concentrations was based on the internal water concentration as a reference. The estimated average metabolite concentrations acquired from six regions of normal human brain with a single-voxel spin-echo technique for the N-acetylaspartate, creatine, and choline-containing compounds were 11.4 +/- 1.0, 6.5 +/- 0.5, and 1.7 +/- 0.2 mumol kg-1 wet weight, respectively. The time-domain analyses of in vivo 1H MRS data from different brain regions with their specific characteristics demonstrate a case in which the use of frequency-domain methods pose serious difficulties. PMID:8749730

  12. Distinctive metabolite profiles in in-migrating Sockeye salmon suggest sex-linked endocrine perturbation.

    PubMed

    Benskin, Jonathan P; Ikonomou, Michael G; Liu, Jun; Veldhoen, Nik; Dubetz, Cory; Helbing, Caren C; Cosgrove, John R

    2014-10-01

    The health of Skeena River Sockeye salmon (Onchorhychus nerka) has been of increasing concern due to declining stock returns over the past decade. In the present work, in-migrating Sockeye from the 2008 run were evaluated using a mass spectrometry-based, targeted metabolomics platform. Our objectives were to (a) investigate natural changes in a subset of the hepatic metabolome arising from migration-associated changes in osmoregulation, locomotion, and gametogenesis, and (b) compare the resultant profiles with animals displaying altered hepatic vitellogenin A (vtg) expression at the spawning grounds, which was previously hypothesized as a marker of xenobiotic exposure. Of 203 metabolites monitored, 95 were consistently observed in Sockeye salmon livers and over half of these changed significantly during in-migration. Among the most dramatic changes in both sexes were a decrease in concentrations of taurine (a major organic osmolyte), carnitine (involved in fatty acid transport), and two major polyunsaturated fatty acids (eicosapentaenoic acid and docosahexaenoic acid). In females, an increase in amino acids was attributed to protein catabolism associated with vitellogenesis. Animals with atypical vtg mRNA expression demonstrated unusual hepatic amino acid, fatty acid, taurine, and carnitine profiles. The cause of these molecular perturbations remains unclear, but may include xenobiotic exposure, natural senescence, and/or interindividual variability. These data provide a benchmark for further investigation into the long-term health of migrating Skeena Sockeye. PMID:25198612

  13. Differential expression profiling of serum proteins and metabolites for biomarker discovery

    NASA Astrophysics Data System (ADS)

    Roy, Sushmita Mimi; Anderle, Markus; Lin, Hua; Becker, Christopher H.

    2004-11-01

    A liquid chromatography-mass spectrometry (LC-MS) proteomics and metabolomics platform is presented for quantitative differential expression analysis. Proteome profiles obtained from 1.5 [mu]L of human serum show ~5000 de-isotoped and quantifiable molecular ions. Approximately 1500 metabolites are observed from 100 [mu]L of serum. Quantification is based on reproducible sample preparation and linear signal intensity as a function of concentration. The platform is validated using human serum, but is generally applicable to all biological fluids and tissues. The median coefficient of variation (CV) for ~5000 proteomic and ~1500 metabolomic molecular ions is approximately 25%. For the case of C-reactive protein, results agree with quantification by immunoassay. The independent contributions of two sources of variance, namely sample preparation and LC-MS analysis, are respectively quantified as 20.4 and 15.1% for the proteome, and 19.5 and 13.5% for the metabolome, for median CV values. Furthermore, biological diversity for ~20 healthy individuals is estimated by measuring the variance of ~6500 proteomic and metabolomic molecular ions in sera for each sample; the median CV is 22.3% for the proteome and 16.7% for the metabolome. Finally, quantitative differential expression profiling is applied to a clinical study comparing healthy individuals and rheumatoid arthritis (RA) patients.

  14. 1H NMR-based metabolic profiling for evaluating poppy seed rancidity and brewing.

    PubMed

    Jawień, Ewa; Ząbek, Adam; Deja, Stanisław; Łukaszewicz, Marcin; Młynarz, Piotr

    2015-12-01

    Poppy seeds are widely used in household and commercial confectionery. The aim of this study was to demonstrate the application of metabolic profiling for industrial monitoring of the molecular changes which occur during minced poppy seed rancidity and brewing processes performed on raw seeds. Both forms of poppy seeds were obtained from a confectionery company. Proton nuclear magnetic resonance (1H NMR) was applied as the analytical method of choice together with multivariate statistical data analysis. Metabolic fingerprinting was applied as a bioprocess control tool to monitor rancidity with the trajectory of change and brewing progressions. Low molecular weight compounds were found to be statistically significant biomarkers of these bioprocesses. Changes in concentrations of chemical compounds were explained relative to the biochemical processes and external conditions. The obtained results provide valuable and comprehensive information to gain a better understanding of the biology of rancidity and brewing processes, while demonstrating the potential for applying NMR spectroscopy combined with multivariate data analysis tools for quality control in food industries involved in the processing of oilseeds. This precious and versatile information gives a better understanding of the biology of these processes. PMID:26540222

  15. Fast and global authenticity screening of honey using ¹H-NMR profiling.

    PubMed

    Spiteri, Marc; Jamin, Eric; Thomas, Freddy; Rebours, Agathe; Lees, Michèle; Rogers, Karyne M; Rutledge, Douglas N

    2015-12-15

    An innovative analytical approach was developed to tackle the most common adulterations and quality deviations in honey. Using proton-NMR profiling coupled to suitable quantification procedures and statistical models, analytical criteria were defined to check the authenticity of both mono- and multi-floral honey. The reference data set used was a worldwide collection of more than 800 honeys, covering most of the economically significant botanical and geographical origins. Typical plant nectar markers can be used to check monofloral honey labeling. Spectral patterns and natural variability were established for multifloral honeys, and marker signals for sugar syrups were identified by statistical comparison with a commercial dataset of ca. 200 honeys. Although the results are qualitative, spiking experiments have confirmed the ability of the method to detect sugar addition down to 10% levels in favorable cases. Within the same NMR experiments, quantification of glucose, fructose, sucrose and 5-HMF (regulated parameters) was performed. Finally markers showing the onset of fermentation are described. PMID:26190601

  16. Antibacterial and antilarval-settlement potential and metabolite profiles of novel sponge-associated marine bacteria.

    PubMed

    Dash, Swagatika; Jin, Cuili; Lee, On On; Xu, Ying; Qian, Pei-Yuan

    2009-08-01

    In this study, we screened seven novel sponge-associated marine bacteria for their antibacterial and antilarval-settlement activity in order to find possible new sources of non-toxic or less toxic bioactive antifoulants. The anti-bacterial-growth activity of crude extracts of each bacterium was evaluated by the disk-diffusion assay. Extracts of four potent bacteria with high and broad spectra of antibacterial activity were further separated with solvents of different polarities (hexane and ethyl acetate). To evaluate their indirect inhibitive effect on larval settlement, we tested for their antibiofilm formation activity against two of the test bacteria (Vibrio halioticoli and Loktanella hongkongensis) inductive to Hydroides elegans larval settlement. About 60 and 87% of the extracts inhibited biofilm formation by V. halioticoli and by L. hongkongensis respectively. The extracts were also tested for their direct antilarval-settlement activity against the barnacle Balanus amphitrite and the polychaete H. elegans; 87% of the extracts had a strong inhibitive effect on larval settlement of both species. Extracts of two of the isolates completely inhibited larval settlement of B. amphitrite at 70 microg ml(-1) and H. elegans at 60 microg ml(-1). The organic extracts of Winogradskyella poriferorum effectively inhibited the larval settlement of both H. elegans and B. amphitrite and the biofilm formation of the two bacterial species. The metabolites present in the active crude extracts were profiled using GC MS, and the most prevalent metabolites present in all extracts were identified. This study successfully identified potential new sources of antifouling compounds. PMID:19471982

  17. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth

    PubMed Central

    Peter, Barbara; Winter, Georg E.; Blatt, Katharina; Bennett, Keiryn L.; Stefanzl, Gabriele; Rix, Uwe; Eisenwort, Gregor; Hadzijusufovic, Emir; Gridling, Manuela; Dutreix, Catherine; Hoermann, Gregor; Schwaab, Juliana; Radia, Deepti; Roesel, Johannes; Manley, Paul W.; Reiter, Andreas; Superti-Furga, Giulio; Valent, Peter

    2016-01-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multi-kinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction-profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC50 values. Midostaurin and CGP62221 also produced growth-inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, that accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug-competition experiments revealed that midostaurin interacts with KIT and several additional kinase-targets. The key downstream-regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE-receptor-downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  18. Target interaction profiling of midostaurin and its metabolites in neoplastic mast cells predicts distinct effects on activation and growth.

    PubMed

    Peter, B; Winter, G E; Blatt, K; Bennett, K L; Stefanzl, G; Rix, U; Eisenwort, G; Hadzijusufovic, E; Gridling, M; Dutreix, C; Hoermann, G; Schwaab, J; Radia, D; Roesel, J; Manley, P W; Reiter, A; Superti-Furga, G; Valent, P

    2016-02-01

    Proteomic-based drug testing is an emerging approach to establish the clinical value and anti-neoplastic potential of multikinase inhibitors. The multikinase inhibitor midostaurin (PKC412) is a promising new agent used to treat patients with advanced systemic mastocytosis (SM). We examined the target interaction profiles and the mast cell (MC)-targeting effects of two pharmacologically relevant midostaurin metabolites, CGP52421 and CGP62221. All three compounds, midostaurin and the two metabolites, suppressed IgE-dependent histamine secretion in basophils and MC with reasonable IC(50) values. Midostaurin and CGP62221 also produced growth inhibition and dephosphorylation of KIT in the MC leukemia cell line HMC-1.2, whereas the second metabolite, CGP52421, which accumulates in vivo, showed no substantial effects. Chemical proteomic profiling and drug competition experiments revealed that midostaurin interacts with KIT and several additional kinase targets. The key downstream regulator FES was recognized by midostaurin and CGP62221, but not by CGP52421 in MC lysates, whereas the IgE receptor downstream target SYK was recognized by both metabolites. Together, our data show that the clinically relevant midostaurin metabolite CGP52421 inhibits IgE-dependent histamine release, but is a weak inhibitor of MC proliferation, which may have clinical implications and may explain why mediator-related symptoms improve in SM patients even when disease progression occurs. PMID:26349526

  19. Molecular dynamics and information on possible sites of interaction of intramyocellular metabolites in vivo from resolved dipolar couplings in localized 1H NMR spectra

    NASA Astrophysics Data System (ADS)

    Schröder, Leif; Schmitz, Christian; Bachert, Peter

    2004-12-01

    Proton NMR resonances of the endogenous metabolites creatine and phosphocreatine ((P)Cr), taurine (Tau), and carnosine (Cs, β-alanyl- L-histidine) were studied with regard to residual dipolar couplings and molecular mobility. We present an analysis of the direct 1H- 1H interaction that provides information on motional reorientation of subgroups in these molecules in vivo. For this purpose, localized 1H NMR experiments were performed on m. gastrocnemius of healthy volunteers using a 1.5-T clinical whole-body MR scanner. We evaluated the observable dipolar coupling strength SD0 ( S = order parameter) of the (P)Cr-methyl triplet and the Tau-methylene doublet by means of the apparent line splitting. These were compared to the dipolar coupling strength of the (P)Cr-methylene doublet. In contrast to the aliphatic protons of (P)Cr and Tau, the aromatic H2 ( δ = 8 ppm) and H4 ( δ = 7 ppm) protons of the imidazole ring of Cs exhibit second-order spectra at 1.5 T. This effect is the consequence of incomplete transition from Zeeman to Paschen-Back regime and allows a determination of SD0 from H2 and H4 of Cs as an alternative to evaluating the multiplet splitting which can be measured directly in high-resolution 1H NMR spectra. Experimental data showed striking differences in the mobility of the metabolites when the dipolar coupling constant D0 (calculated with the internuclear distance known from molecular geometry in the case of complete absence of molecular dynamics and motion) is used for comparison. The aliphatic signals involve very small order parameters S ≈ (1.4 - 3) × 10 -4 indicating rapid reorientation of the corresponding subgroups in these metabolites. In contrast, analysis of the Cs resonances yielded S ≈ (113 - 137) × 10 -4. Thus, the immobilization of the Cs imidazole ring owing to an anisotropic cellular substructure in human m. gastrocnemius is much more effective than for (P)Cr and Tau subgroups. Furthermore, 1H NMR experiments on aqueous model

  20. Improving Assessment of Lipoprotein Profile in Type 1 Diabetes by 1H NMR Spectroscopy

    PubMed Central

    Brugnara, Laura; Mallol, Roger; Ribalta, Josep; Vinaixa, Maria; Murillo, Serafín; Casserras, Teresa; Guardiola, Montse; Vallvé, Joan Carles; Kalko, Susana G.; Correig, Xavier; Novials, Anna

    2015-01-01

    Patients with type 1 diabetes (T1D) present increased risk of cardiovascular disease (CVD). The aim of this study is to improve the assessment of lipoprotein profile in patients with T1D by using a robust developed method 1H nuclear magnetic resonance spectroscopy (1H NMR), for further correlation with clinical factors associated to CVD. Thirty patients with T1D and 30 non-diabetes control (CT) subjects, matched for gender, age, body composition (DXA, BMI, waist/hip ratio), regular physical activity levels and cardiorespiratory capacity (VO2peak), were analyzed. Dietary records and routine lipids were assessed. Serum lipoprotein particle subfractions, particle sizes, and cholesterol and triglycerides subfractions were analyzed by 1H NMR. It was evidenced that subjects with T1D presented lower concentrations of small LDL cholesterol, medium VLDL particles, large VLDL triglycerides, and total triglycerides as compared to CT subjects. Women with T1D presented a positive association with HDL size (p<0.005; R = 0.601) and large HDL triglycerides (p<0.005; R = 0.534) and negative (p<0.005; R = -0.586) to small HDL triglycerides. Body fat composition represented an important factor independently of normal BMI, with large LDL particles presenting a positive correlation to total body fat (p<0.005; R = 0.505), and total LDL cholesterol and small LDL cholesterol a positive correlation (p<0.005; R = 0.502 and R = 0.552, respectively) to abdominal fat in T1D subjects; meanwhile, in CT subjects, body fat composition was mainly associated to HDL subclasses. VO2peak was negatively associated (p<0.005; R = -0.520) to large LDL-particles only in the group of patients with T1D. In conclusion, patients with T1D with adequate glycemic control and BMI and without chronic complications presented a more favourable lipoprotein profile as compared to control counterparts. In addition, slight alterations in BMI and/or body fat composition showed to be relevant to provoking alterations in

  1. Enhanced L-lactic acid production in Lactobacillus paracasei by exogenous proline addition based on comparative metabolite profiling analysis.

    PubMed

    Tian, Xiwei; Wang, Yonghong; Chu, Ju; Zhuang, Yingping; Zhang, Siliang

    2016-03-01

    This study investigated cell physiological and metabolic responses of Lactobacillus paracasei to osmotic stresses. Both cellular fatty acid composition and metabolite profiling were responded by increasing unsaturated and epoxy-fatty acid proportions, as well as accumulating some specific intracellular metabolites. Simultaneously, metabolite profiling was adopted to rationally and systematically discover potential osmoprotectants. Consequently, exogenous addition of proline or aspartate was validated to be a feasible and efficacious approach to improve cell growth under hyperosmotic stress in shake flasks. Particularly, with 5-L cultivation system, L-lactic acid concentration increased from 108 to 150 g/L during the following 16-h fermentation in 2 g/L proline addition group, while it only increased from 110 to 140 g/L in no proline addition group. Moreover, glucose consumption rate with proline addition reached 3.49 g/L/h during this phase, 35.8 % higher than that with no proline addition. However, extreme high osmotic pressure would significantly limit the osmoprotection of proline, and the osmolality threshold for L. paracasei was approximately 3600 mOsm/kg. It was suggested that proline principally played a role as a compatible solute accumulated in the cell for hyperosmotic preservation. The strategies of exploiting osmotic protectant with metabolite profiling and enhancing L-lactic acid production by osmoprotectant addition would be potential to provide a new insight for other microorganisms and organic acids production. PMID:26658821

  2. Identification of Drought Tolerance Markers in a Diverse Population of Rice Cultivars by Expression and Metabolite Profiling

    PubMed Central

    Degenkolbe, Thomas; Do, Phuc T.; Kopka, Joachim; Zuther, Ellen; Hincha, Dirk K.; Köhl, Karin I.

    2013-01-01

    Rice provides about half of the calories consumed in Asian countries, but its productivity is often reduced by drought, especially when grown under rain-fed conditions. Cultivars with increased drought tolerance have been bred over centuries. Slow selection for drought tolerance on the basis of phenotypic traits may be accelerated by using molecular markers identified through expression and metabolic profiling. Previously, we identified 46 candidate genes with significant genotype × environment interaction in an expression profiling study on four cultivars with contrasting drought tolerance. These potential markers and in addition GC-MS quantified metabolites were tested in 21 cultivars from both indica and japonica background that varied in drought tolerance. Leaf blades were sampled from this population of cultivars grown under control or long-term drought condition and subjected to expression analysis by qRT-PCR and metabolite profiling. Under drought stress, metabolite levels correlated mainly negatively with performance parameters, but eight metabolites correlated positively. For 28 genes, a significant correlation between expression level and performance under drought was confirmed. Negative correlations were predominant. Among those with significant positive correlation was the gene coding for a cytosolic fructose-1,6-bisphosphatase. This enzyme catalyzes a highly regulated step in C-metabolism. The metabolic and transcript marker candidates for drought tolerance were identified in a highly diverse population of cultivars. Thus, these markers may be used to select for tolerance in a wide range of rice germplasms. PMID:23717458

  3. Differences in the metabolite profiles of spinach (Spinacia oleracea L.) leaf in different concentrations of nitrate in the culture solution.

    PubMed

    Okazaki, Keiki; Oka, Norikuni; Shinano, Takuro; Osaki, Mitsuru; Takebe, Masako

    2008-02-01

    The nitrogen (N) status of a plant determines the composition of its major components (amino acids, proteins, carbohydrates and organic acids) and, directly or indirectly, affects the quality of agricultural products in terms of their calorific value and taste. Although these effects are guided by changes in metabolic pathways, no overall metabolic analysis has previously been conducted to demonstrate such effects. Here, metabolite profiling using gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of N levels on spinach tissue, comparing two cultivars that differed in their ability to use N. Wide variation in N content was observed without any distinct inhibition of growth in either cultivar. Principal component analysis (PCA) and self-organizing mapping (SOM) were undertaken to describe changes in the metabolites of mature spinach leaves. In PCA, the first component accounted for 44.5% of the total variance, the scores of which was positively correlated with the plant's N content, and a close relationship between metabolite profiles and N status was observed. Both PCA and SOM revealed that metabolites could be broadly divided into two types, correlating either positively or negatively with plant N content. The simple and co-coordinated metabolic stream, containing both general and spinach-specific aspects of plant N content, will be useful in future research on such topics as the detection of environmental effects on spinach through comprehensive metabolic profiling. PMID:18089581

  4. Optimization and evaluation of metabolite extraction protocols for untargeted metabolic profiling of liver samples by UPLC-MS.

    PubMed

    Masson, Perrine; Alves, Alexessander Couto; Ebbels, Timothy M D; Nicholson, Jeremy K; Want, Elizabeth J

    2010-09-15

    A series of six protocols were evaluated for UPLC-MS based untargeted metabolic profiling of liver extracts in terms of reproducibility and number of metabolite features obtained. These protocols, designed to extract both polar and nonpolar metabolites, were based on (i) a two stage extraction approach or (ii) a simultaneous extraction in a biphasic mixture, employing different volumes and combinations of extraction and resuspension solvents. A multivariate statistical strategy was developed to allow comparison of the multidimensional variation between the methods. The optimal protocol for profiling both polar and nonpolar metabolites was found to be an aqueous extraction with methanol/water followed by an organic extraction with dichloromethane/methanol, with resuspension of the dried extracts in methanol/water before UPLC-MS analysis. This protocol resulted in a median CV of feature intensities among experimental replicates of <20% for aqueous extracts and <30% for organic extracts. These data demonstrate the robustness of the proposed protocol for extracting metabolites from liver samples and make it well suited for untargeted liver profiling in studies exploring xenobiotic hepatotoxicity and clinical investigations of liver disease. The generic nature of this protocol facilitates its application to other tissues, for example, brain or lung, enhancing its utility in clinical and toxicological studies. PMID:20715759

  5. Metabolite profiles of repeatedly sampled urine from male fathead minnows (Pimephales promelas) contain unique lipid signatures following exposure to anti-androgens.

    PubMed

    Collette, Timothy W; Skelton, David M; Davis, John M; Cavallin, Jenna E; Jensen, Kathleen M; Kahl, Michael D; Villeneuve, Daniel L; Ankley, Gerald T; Martinović-Weigelt, Dalma; Ekman, Drew R

    2016-09-01

    The purpose of this study was twofold. First, we sought to identify candidate markers of exposure to anti-androgens by analyzing endogenous metabolite profiles in the urine of male fathead minnows (mFHM, Pimephales promelas). Based on earlier work, we hypothesized that unidentified lipids in the urine of mFHM were selectively responsive to exposure to androgen receptor antagonists, which is otherwise difficult to confirm using established fish toxicity assays. A second goal was to evaluate the feasibility of non-lethally and repeatedly sampling urine from individual mFHMs over the time course of response to a chemical exposure. Accordingly, we exposed mFHM to the model anti-androgens vinclozolin or flutamide. Urine was collected from each fish at 48hour intervals over the course of a 14day exposure. Parallel experiments were conducted with mFHM exposed to bisphenol A or control water. The frequent handling/sampling regime did not cause apparent adverse effects on the fish. Endogenous metabolite profiling was conducted with gas chromatography-mass spectrometry (GC-MS), which exhibited lower variation for the urinary metabolome than was found in earlier work with nuclear magnetic resonance (NMR) spectroscopy. Specifically, for inter- and intra-individual variations, the median spectrum-wide relative standard deviation (RSD) was 32.6% and 33.3%, respectively, for GC-MS analysis of urine from unexposed mFHM. These results compared favorably with similar measurements of urine from other model species, including the Sprague Dawley rat. In addition, GC-MS allowed us to identify several lipids (e.g., certain saturated fatty acids) in mFHM urine as candidate markers of exposure to androgen receptor antagonists. PMID:26810197

  6. Metabolomic profile in pancreatic cancer patients: a consensus-based approach to identify highly discriminating metabolites

    PubMed Central

    Di Gangi, Iole Maria; Mazza, Tommaso; Fontana, Andrea; Copetti, Massimiliano; Fusilli, Caterina; Ippolito, Antonio; Mattivi, Fulvio; Latiano, Anna; Andriulli, Angelo

    2016-01-01

    Purpose pancreatic adenocarcinoma is the fourth leading cause of cancer related deaths due to its aggressive behavior and poor clinical outcome. There is a considerable variability in the frequency of serum tumor markers in cancer' patients. We performed a metabolomics screening in patients diagnosed with pancreatic cancer. Experimental Design Two targeted metabolomic assays were conducted on 40 serum samples of patients diagnosed with pancreatic cancer and 40 healthy controls. Multivariate methods and classification trees were performed. Materials and Methods Sparse partial least squares discriminant analysis (SPLS-DA) was used to reduce the high dimensionality of a pancreatic cancer metabolomic dataset, differentiating between pancreatic cancer (PC) patients and healthy subjects. Using Random Forest analysis palmitic acid, 1,2-dioleoyl-sn-glycero-3-phospho-rac-glycerol, lanosterol, lignoceric acid, 1-monooleoyl-rac-glycerol, cholesterol 5α,6α epoxide, erucic acid and taurolithocholic acid (T-LCA), oleoyl-L-carnitine, oleanolic acid were identified among 206 metabolites as highly discriminating between disease states. Comparison between Receiver Operating Characteristic (ROC) curves for palmitic acid and CA 19-9 showed that the area under the ROC curve (AUC) of palmitic acid (AUC=1.000; 95% confidence interval) is significantly higher than CA 19-9 (AUC=0.963; 95% confidence interval: 0.896-1.000). Conclusion Mass spectrometry-based metabolomic profiling of sera from pancreatic cancer patients and normal subjects showed significant alterations in the profiles of the metabolome of PC patients as compared to controls. These findings offer an information-rich matrix for discovering novel candidate biomarkers with diagnostic or prognostic potentials. PMID:26735340

  7. Metabolite Profiling in the Pursuit of Biomarkers for IVF Outcome: The Case for Metabolomics Studies

    PubMed Central

    McRae, C.; Sharma, V.; Fisher, J.

    2013-01-01

    Background. This paper presents the literature on biomarkers of in vitro fertilisation (IVF) outcome, demonstrating the progression of these studies towards metabolite profiling, specifically metabolomics. The need for more, and improved, metabolomics studies in the field of assisted conception is discussed. Methods. Searches were performed on ISI Web of Knowledge SM for literature associated with biomarkers of oocyte and embryo quality, and biomarkers of IVF outcome in embryo culture medium, follicular fluid (FF), and blood plasma in female mammals. Results. Metabolomics in the field of female reproduction is still in its infancy. Metabolomics investigations of embryo culture medium for embryo selection have been the most common, but only within the last five years. Only in 2012 has the first metabolomics investigation of FF for biomarkers of oocyte quality been reported. The only metabolomics studies of human blood plasma in this context have been aimed at identifying women with polycystic ovary syndrome (PCOS). Conclusions. Metabolomics is becoming more established in the field of assisted conception, but the studies performed so far have been preliminary and not all potential applications have yet been explored. With further improved metabolomics studies, the possibility of identifying a method for predicting IVF outcome may become a reality. PMID:25763388

  8. Profiling of Phenolic Metabolites in Feces from Menopausal Women after Long-Term Isoflavone Supplementation.

    PubMed

    Guadamuro, Lucía; Jiménez-Girón, Ana M; Delgado, Susana; Flórez, Ana Belén; Suárez, Adolfo; Martín-Álvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, M Victoria; Mayo, Baltasar

    2016-01-13

    Phenolic compounds were screened by UPLC-ESI-MS/MS in the feces of 15 menopausal women before and after long-term isoflavone treatment. In total, 44 compounds were detected. Large intertreatment, interindividual, and intersample variations were observed in terms of the number of compounds and their concentration. Four compounds, the aglycones daidzein and genistein and the daidzein derivatives dihydrodaidzein and O-desmethylangolensin, were associated with isoflavone metabolism; these were identified only after the isoflavone treatment. In addition, 4-ethylcatechol, 3-hydroxyphenylacetic acid, and 3-phenylpropionic acid differed significantly in pre- and postintervention samples, whereas the concentration of 4-hydroxy-5-phenylvaleric acid showed a trend toward increasing over the treatment. The phenolic profiles of equol-producing and -non-producing groups were similar, with the exceptions of 3-hydroxyphenylacetic acid and 3-phenylpropionic acid, which showed higher concentrations in equol-non-producing women. These findings may help to trace isoflavone-derived metabolites in feces during isoflavone interventions and to design new studies to address their biological effects. PMID:26690567

  9. Parallel changes in metabolite and expression profiles in crooked-tail mutant and folate-reduced wild-type mice.

    PubMed

    Ernest, Sheila; Carter, Michelle; Shao, Haifeng; Hosack, Angela; Lerner, Natalia; Colmenares, Clemencia; Rosenblatt, David S; Pao, Yoh-Han; Ross, M Elizabeth; Nadeau, Joseph H

    2006-12-01

    Anomalies in homocysteine (HCY) and folate metabolism are associated with common birth defects and adult diseases, several of which can be suppressed with dietary folate supplementation. Although supplementation reduces the occurrence and severity of neural tube defects (NTDs), many cases are resistant to these beneficial effects. The basis for variable response and biomarkers that predict responsiveness are unknown. Crooked-tail (Cd) mutant mice are an important model of folate-responsive NTDs. To identify features that are diagnostic for responsiveness versus resistance to dietary folate supplementation, we surveyed metabolite and expression levels in liver samples from folate-supplemented, folate-reduced and control diets in Cd mutant and wild-type adult females. Cd homozygotes had normal total homocysteine (tHcy) levels suggesting that folate suppresses NTDs through a mechanism that does not involve modulating serum tHcy levels. Instead, parallel changes in metabolite and expression profiles in folate-supplemented Cd/Cd homozygotes and folate-reduced+/+and Cd/+mice suggest that Crooked-tail homozygotes have a defect in the utilization of intracellular folate. Then, by combining these expression and metabolite profile results with published results for other models and their controls, two clusters were found, one of which included several folate-responsive NTD models and the other previously untested and presumably folate-resistant models. The predictive value of these profiles was verified by demonstrating that NTDs of Ski-/-mutant mice, whose profile suggested resistance to folate supplementation, were not suppressed with dietary folate supplementation. These results raise the possibility of using metabolite and expression profiles to distinguish folate-responsive and resistance adult females who are at risk for bearing fetuses with an NTD. PMID:17050573

  10. Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes.

    PubMed

    Degu, Asfaw; Morcia, Caterina; Tumino, Giorgio; Hochberg, Uri; Toubiana, David; Mattivi, Fulvio; Schneider, Anna; Bosca, Polina; Cattivelli, Luigi; Terzi, Valeria; Fait, Aaron

    2015-01-01

    The chemical composition of grape berries is varietal dependent and influenced by the environment and viticulture practices. In Muscat grapes, phenolic compounds play a significant role in the organoleptic property of the wine. In the present study, we investigated the chemical diversity of berries in a Muscat collection. Metabolite profiling was performed on 18 Moscato bianco clones and 43 different red and white grape varieties of Muscat using ultra-performance liquid chromatography-quadrupole time of flight-mass spectrometry (UPLC-QTOF-MS/MS) coupled with SNP genotyping. Principle component analysis and hierarchical clustering showed a separation of the genotypes into six main groups, three red and three white. Anthocyanins mainly explained the variance between the different groups. Additionally, within the white varieties mainly flavonols and flavanols contributed to the chemical diversity identified. A genotype-specific rootstock effect was identified when separately analyzing the skin of the clones, and it was attributed mainly to resveratrol, quercetin 3-O-galactoside, citrate and malate. The metabolite profile of the varieties investigated reveals the chemical diversity existing among different groups of Muscat genotypes. The distribution pattern of metabolites among the groups dictates the abundance of precursors and intermediate metabolite classes, which contribute to the organoleptic properties of Muscat berries. PMID:25461697

  11. Gas Chromatography-Mass Spectrometry-Based Metabolite Profiling of Salmonella enterica Serovar Typhimurium Differentiates between Biofilm and Planktonic Phenotypes

    PubMed Central

    Maker, Garth L.; Trengove, Robert D.; O'Handley, Ryan M.

    2015-01-01

    The aim of this study was to utilize gas chromatography coupled with mass spectrometry (GC-MS) to compare and identify patterns of biochemical change between Salmonella cells grown in planktonic and biofilm phases and Salmonella biofilms of different ages. Our results showed a clear separation between planktonic and biofilm modes of growth. The majority of metabolites contributing to variance between planktonic and biofilm supernatants were identified as amino acids, including alanine, glutamic acid, glycine, and ornithine. Metabolites contributing to variance in intracellular profiles were identified as succinic acid, putrescine, pyroglutamic acid, and N-acetylglutamic acid. Principal-component analysis revealed no significant differences between the various ages of intracellular profiles, which would otherwise allow differentiation of biofilm cells on the basis of age. A shifting pattern across the score plot was illustrated when analyzing extracellular metabolites sampled from different days of biofilm growth, and amino acids were again identified as the metabolites contributing most to variance. An understanding of biofilm-specific metabolic responses to perturbations, especially antibiotics, can lead to the identification of novel drug targets and potential therapies for combating biofilm-associated diseases. We concluded that under the conditions of this study, GC-MS can be successfully applied as a high-throughput technique for “bottom-up” metabolomic biofilm research. PMID:25636852

  12. Can cyanobacteria serve as a model of plant photorespiration? - a comparative meta-analysis of metabolite profiles.

    PubMed

    Orf, Isabel; Timm, Stefan; Bauwe, Hermann; Fernie, Alisdair R; Hagemann, Martin; Kopka, Joachim; Nikoloski, Zoran

    2016-05-01

    Photorespiration is a process that is crucial for the survival of oxygenic phototrophs in environments that favour the oxygenation reaction of Rubisco. While photorespiration is conserved among cyanobacteria, algae, and embryophytes, it evolved to different levels of complexity in these phyla. The highest complexity is found in embryophytes, where the pathway involves four cellular compartments and respective transport processes. The complexity of photorespiration in embryophytes raises the question whether a simpler system, such as cyanobacteria, may serve as a model to facilitate our understanding of the common key aspects of photorespiration. In this study, we conducted a meta-analysis of publicly available metabolite profiles from the embryophyte Arabidopsis thaliana and the cyanobacterium Synechocystis sp. PCC 6803 grown under conditions that either activate or suppress photorespiration. The comparative meta-analysis evaluated the similarity of metabolite profiles, the variability of metabolite pools, and the patterns of metabolite ratios. Our results show that the metabolic signature of photorespiration is in part conserved between the compared model organisms under conditions that favour the oxygenation reaction. Therefore, our findings support the claim that cyanobacteria can serve as prokaryotic models of photorespiration in embryophytes. PMID:26969741

  13. Metabolite profiling of polyphenols in the Tunisian plant Tamarix aphylla (L.) Karst.

    PubMed

    Mahfoudhi, Adel; Prencipe, Francesco Pio; Mighri, Zine; Pellati, Federica

    2014-10-01

    In this study, a detailed investigation on the composition of polyphenols of Tamarix aphylla (L.) Karst., consisting of phenolic acids and flavonoids, was carried out. In order to optimize the yield of secondary metabolites, three extraction techniques were compared, including dynamic maceration, ultrasound-assisted extraction and Soxhlet extraction. The latter technique provided the best results in terms of both recovery and selectivity, using ethyl acetate as extraction solvent for 2h. The analysis of T. aphylla polyphenols was performed by means of HPLC-UV/DAD, HPLC-ESI-MS and MS(2), using an ion trap mass analyzer. Phenolic acids and flavonoids were separated on an Ascentis C18 column (250mm×4.6mm I.D., 5μm), with a mobile phase composed of 0.1M formic acid in water and acetonitrile, under gradient elution. The proposed method was fully validated in agreement with ICH guidelines and then applied to the analysis of T. aphylla leaves and stems. A total of 14 phenolic compounds were characterized for the first time in this plant extracts by using UV, MS and MS(2) data. The amount of total phenolics was found to be 993.1±22.5μg/g in the leaves and 113.1±25.8μg/g in the stems, respectively. The most abundant constituents found in the leaves include ellagic acid (211.4±10.8μg/g), quercetin (125.7±4.7μg/g) and gallic acid (120.6±1.2μg/g), whereas those in the stems were ellagic acid (44.4±3.9μg/g), gallic acid (24.3±3.3μg/g) and kaempferol (16.3±1.6μg/g). The developed method can be considered a useful tool for the metabolite profiling of T. aphylla, which represents a potential source of bioactive compounds to be used in phytotherapy. PMID:25108374

  14. How does P affect photosynthesis and metabolite profiles of Eucalyptus globulus?

    PubMed

    Warren, Charles R

    2011-07-01

    Phosphorus (P) has multiple effects on plant metabolism, but there are many unresolved questions especially for evergreen trees. For example, we do not know the general effects of P on metabolism, or if P affects photosynthesis via the internal conductance to CO(2) transfer from sub-stomatal cavities to chloroplast or amounts of Rubisco. This study investigates how P deficiency affects seedlings of the evergreen tree Eucalyptus globulus grown for 2.5 months with four nutrient solutions differing in P concentration. To determine why photosynthesis was affected by P supply, Rubisco was quantified by capillary electrophoresis, internal conductance was quantified from gas exchange and carbon isotope discrimination, and biochemical parameters of photosynthesis were estimated from A/C(c) responses. Additional insights into the effect of P on metabolism were provided by gas chromatography-mass spectrometry (GC-MS) metabolite profiling. Larger concentrations of P in the nutrient solution led to significantly faster rates of photosynthesis. There was no evidence that stomatal or internal conductances contributed to the effect of P supply on photosynthesis. The increase in photosynthesis with P supply was correlated with V(cmax), and amounts of P, phosphate and fructose 6-phosphate (6-P). Phosphorous supply affected approximately one-third of the 90 aqueous metabolites quantified by GC-MS, but the effect size was generally smaller than reported for experiments on herbaceous species. Phosphorus deficiency decreased concentrations of phosphate, glucose 6-P and fructose 6-P more than it decreased photosynthesis, suggesting faster turnover of smaller pools of phosphate and phosphorylated intermediates. The effect of P supply on most amino acids was small, with the exception of arginine and glutamine, which increased dramatically under P deficiency. P deficiency had small or non-significant effects on carbohydrates and organic acids of the tricarboxylic acid (TCA) cycle. The

  15. H-1 Relaxation Times of Metabolites in Biological Samples Obtained with Nondestructive Ex-vivo Slow-MAS NMR

    SciTech Connect

    Hu, Jian Zhi; Wind, Robert A.; Rommereim, Donald N.

    2006-03-01

    Methods suitable for measuring 1H relaxation times such as T1, T2 and T1p, in small sized biological objects including live cells, excised organs and tissues, oil seeds etc., were developed in this work. This was achieved by combining inversion-recovery, spin-echo, or spin lock segment with the phase-adjusted spinning sideband (PASS) technique that was applied at slow sample spinning rate. Here, 2D-PASS was used to produce a high-resolution 1H spectrum free from the magnetic susceptibility broadening so that the relaxation parameters of individual metabolite can be determined. Because of the slow spinning employed, tissue and cell damage due to sample spinning is minimized. The methodologies were demonstrated by measuring 1H T1, T2 and T1p of metabolites in excised rat livers and sesame seeds at spinning rates of as low as 40 Hz.

  16. Investigating associations between milk metabolite profiles and milk traits of Holstein cows.

    PubMed

    Melzer, N; Wittenburg, D; Hartwig, S; Jakubowski, S; Kesting, U; Willmitzer, L; Lisec, J; Reinsch, N; Repsilber, D

    2013-03-01

    In the field of dairy cattle research, it is of great interest to improve the detection and prevention of diseases (e.g., mastitis and ketosis) and monitor specific traits related to the state of health and management. During the standard milk performance test, traditional milk traits are monitored, and quality and quantity are screened. In addition to the standard test, it is also now possible to analyze milk metabolites in a high-throughput manner and to consider them in connection with milk traits to identify functionally important metabolites that can also serve as biomarker candidates. We present a study in which 190 milk metabolites and 14 milk traits of 1,305 Holstein cows on 18 commercial farms were investigated to characterize interrelations of milk metabolites between each other, to milk traits from the milk standard performance test, and to influencing factors such as farm and sire effect (half-sib structure). The effect of influencing factors (e.g., farm) varied among metabolites and traditional milk traits. The investigations of associations between metabolites and milk traits revealed groups of metabolites that show, for example, positive correlations to protein and casein, and negative correlations to lactose and pH. On the other hand, groups of metabolites jointly associated with the investigated milk traits can be identified and functionally discussed. To enable a multivariate investigation, 2 machine learning methods were applied to detect important metabolites that are highly correlated with the investigated traditional milk traits. For somatic cell score, uracil, lactic acid, and 9 other important metabolites were detected. Lactic acid has already been proposed as a biomarker candidate for mastitis in the recent literature. In conclusion, we found sets of metabolites eligible to predict milk traits, enabling the analysis of milk traits from a metabolic perspective and discussion of the possible functional background for some of the detected

  17. Integrating multiple analytical datasets to compare metabolite profiles of mouse colonic-cecal contents and feces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of fec...

  18. Drug Metabolite Profiling and Identification by High-resolution Mass Spectrometry*

    PubMed Central

    Zhu, Mingshe; Zhang, Haiying; Humphreys, W. Griffith

    2011-01-01

    Mass spectrometry plays a key role in drug metabolite identification, an integral part of drug discovery and development. The development of high-resolution (HR) MS instrumentation with improved accuracy and stability, along with new data processing techniques, has improved the quality and productivity of metabolite identification processes. In this minireview, HR-MS-based targeted and non-targeted acquisition methods and data mining techniques (e.g. mass defect, product ion, and isotope pattern filters and background subtraction) that facilitate metabolite identification are examined. Methods are presented that enable multiple metabolite identification tasks with a single LC/HR-MS platform and/or analysis. Also, application of HR-MS-based strategies to key metabolite identification activities and future developments in the field are discussed. PMID:21632546

  19. Metabolite Profiling Reveals YihU as a Novel Hydroxybutyrate Dehydrogenase for Alternative Succinic Semialdehyde Metabolism in Escherichia coli*

    PubMed Central

    Saito, Natsumi; Robert, Martin; Kochi, Hayataro; Matsuo, Goh; Kakazu, Yuji; Soga, Tomoyoshi; Tomita, Masaru

    2009-01-01

    The search for novel enzymes and enzymatic activities is important to map out all metabolic activities and reveal cellular metabolic processes in a more exhaustive manner. Here we present biochemical and physiological evidence for the function of the uncharacterized protein YihU in Escherichia coli using metabolite profiling by capillary electrophoresis time-of-flight mass spectrometry. To detect enzymatic activity and simultaneously identify possible substrates and products of the putative enzyme, we profiled a complex mixture of metabolites in the presence or absence of YihU. In this manner, succinic semialdehyde was identified as a substrate for YihU. The purified YihU protein catalyzed in vitro the NADH-dependent reduction of succinic semialdehyde to γ-hydroxybutyrate. Moreover, a yihU deletion mutant displayed reduced tolerance to the cytotoxic effects of exogenous addition of succinic semialdehyde. Profiling of intracellular metabolites following treatment of E. coli with succinic semialdehyde supports the existence of a YihU-catalyzed reduction of succinic semialdehyde to γ-hydroxybutyrate in addition to its known oxidation to succinate and through the tricarboxylic acid cycle. These findings suggest that YihU is a novel γ-hydroxybutyrate dehydrogenase involved in the metabolism of succinic semialdehyde, and other potentially toxic intermediates that may accumulate under stress conditions in E. coli. PMID:19372223

  20. Profile of Circulatory Metabolites in a Relapsing-remitting Animal Model of Multiple Sclerosis using Global Metabolomics

    PubMed Central

    Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S

    2013-01-01

    Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2

  1. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles

    PubMed Central

    Gopinathan, Navin; Yang, Bin; Lowe, John P.; Edler, Karen J.; Rigby, Sean P.

    2014-01-01

    PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible. However, the link between the controlled release nanoparticle synthesis route, and the subsequent drug release profile obtained, is not well-understood, which hinders design of synthesis routes and availability of suitable nanoparticles. In particular, despite pore structure evolution often forming a key aspect of past theories of the physical mechanism by which a particular drug release profile is obtained, these theories have not been independently tested and validated against pore structural information. Such validation is required for intelligent synthesis design, and NMR cryoporometry can supply the requisite information. Unlike conventional pore characterisation techniques, NMR cryoporometry permits the investigation of porous particles in the wet state. NMR cryoporometry has thus enabled the detailed study of the evolving, nanoscale structure of nanoparticles during drug release, and thus related pore structure to drug release profile in a way not done previously for nanoparticles. Nanoparticles with different types of carboplatin drug release profiles were compared, including burst release, and various forms of delayed release. ESEM and TEM images of these nanoparticles also provided supporting data showing the rapid initial evolution of some nanoparticles. Different stages, within a complex, varying drug release profile, were found to be associated with particular types of changes in the nanostructure which could be distinguished by NMR. For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release. This information could be used to independently validate the rationale for a particular synthesis

  2. Development of an NMR microprobe procedure for high-throughput environmental metabolomics of Daphnia magna.

    PubMed

    Nagato, Edward G; Lankadurai, Brian P; Soong, Ronald; Simpson, André J; Simpson, Myrna J

    2015-09-01

    Nuclear magnetic resonance (NMR) is the primary platform used in high-throughput environmental metabolomics studies because its non-selectivity is well suited for non-targeted approaches. However, standard NMR probes may limit the use of NMR-based metabolomics for tiny organisms because of the sample volumes required for routine metabolic profiling. Because of this, keystone ecological species, such as the water flea Daphnia magna, are not commonly studied because of the analytical challenges associated with NMR-based approaches. Here, the use of a 1.7-mm NMR microprobe in analyzing tissue extracts from D. magna is tested. Three different extraction procedures (D2O-based buffer, Bligh and Dyer, and acetonitrile : methanol : water) were compared in terms of the yields and breadth of polar metabolites. The D2O buffer extraction yielded the most metabolites and resulted in the best reproducibility. Varying amounts of D. magna dry mass were extracted to optimize metabolite isolation from D. magna tissues. A ratio of 1-1.5-mg dry mass to 40 µl of extraction solvent provided excellent signal-to-noise and spectral resolution using (1)H NMR. The metabolite profile of a single daphnid was also investigated (approximately 0.2 mg). However, the signal-to-noise of the (1)H NMR was considerably lower, and while feasible for select applications would likely not be appropriate for high-throughput NMR-based metabolomics. Two-dimensional NMR experiments on D. magna extracts were also performed using the 1.7-mm NMR probe to confirm (1)H NMR metabolite assignments. This study provides an NMR-based analytical framework for future metabolomics studies that use D. magna in ecological and ecotoxicity studies. PMID:25891518

  3. The profiling and identification of the metabolites of (+)-catechin and study on their distribution in rats by HPLC-DAD-ESI-IT-TOF-MS(n) technique.

    PubMed

    Liang, Jing; Xu, Feng; Zhang, Ya-Zhou; Zang, Xin-Yu; Wang, Dan; Shang, Ming-Ying; Wang, Xuan; Chui, De-Hua; Cai, Shao-Qing

    2014-03-01

    (+)-Catechin, a potential beneficial compound to human health, is widely distributed in plants and foods. A high-performance liquid chromatography with diode array detector and combined with electrospray ionization ion trap time-of-flight multistage mass spectrometry method was applied to profile and identify the metabolites of (+)-catechin in rats and to study the distribution of these metabolites in rat organs for the first time. In total, 51 phase II metabolites (44 new) and three phase I metabolites were tentatively identified, comprising 16 (+)-catechin conjugates, 14 diarylpropan-2-ol metabolites, 6 phenyl valerolactone metabolites and 18 aromatic acid metabolites. Further, 19 phase II metabolites were new compounds. The in vivo metabolic reactions of (+)-catechin in rats were found to be ring-cleavage, sulfation, glucuronidation, methylation, dehydroxylation and dehydrogenation. The numbers of detected metabolites in urine, plasma, small intestine, kidney, liver, lung, heart, brain and spleen were 53, 23, 27, 9, 7, 5, 3, 2 and 1, respectively. This indicated that small intestine, kidney and liver were the major organs for the distribution of (+)-catechin metabolites. In addition, eight metabolites were found to possess bioactivities according to literature. These results are very helpful for better comprehension of the in vivo metabolism of (+)-catechin and its pharmacological actions, and also can give strong indications on the effective forms of (+)-catechin in vivo. PMID:24105958

  4. Integrating Multiple Analytical Datasets to Compare Metabolite Profiles of Mouse Colonic-Cecal Contents and Feces

    PubMed Central

    Zeng, Huawei; Grapov, Dmitry; Jackson, Matthew I.; Fahrmann, Johannes; Fiehn, Oliver; Combs, Gerald F.

    2015-01-01

    The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of feces in order to determine the suitability of fecal specimens as proxies for assessing the metabolic impact of the gut microbiome. We detected a total of 270 low molecular weight metabolites in colonic-cecal contents and feces by gas chromatograph, time-of-flight mass spectrometry (GC-TOF) and ultra-high performance liquid chromatography, quadrapole time-of-flight mass spectrometry (UPLC-Q-TOF). Of that number, 251 (93%) were present in both types of specimen, representing almost all known biochemical pathways related to the amino acid, carbohydrate, energy, lipid, membrane transport, nucleotide, genetic information processing, and cancer-related metabolism. A total of 115 metabolites differed significantly in relative abundance between both colonic-cecal contents and feces. These data comprise the first characterization of relationships among metabolites present in the colonic-cecal contents and feces in a healthy mouse model, and shows that feces can be a useful proxy for assessing the pattern of metabolites to which the colonic mucosum is exposed. PMID:26378591

  5. 1H-NMR-based profiling of organic components in leachate from animal carcasses disposal site with time.

    PubMed

    Kwon, Yong-Kook; Bae, Hyun-Whee; Shin, Sun Kyoung; Jeon, Tae-Wan; Seo, Jungju; Hwang, Geum-Sook

    2014-09-01

    Leachate, generated by the decomposition of animal carcasses, presents many environmental, sanitary, and food safety hazards. However, research on the characteristics of leachate is lacking. In this study, we performed biochemical profiling of leachate from two animal species (pig and cattle) in two soil types (sandy loam and sandy soil) using (1)H-NMR-based profiling, followed by multivariate data analysis. The leachate was collected from a well-controlled artificial burial site over a 31-week period. Principal components analysis (PCA) of the NMR data showed similar patterns between species and soil types. Organic components, including organic acids and phenols, predominated, and their levels increased with time. The methylamine level in leachate from pig carcasses 18 weeks following burial was significantly higher than that from cattle carcasses; leachate from cattle carcasses in sandy soil 1 week after burial contained unique components (specifically ethanol, formate, alanine, N-methylation, and taurine), in contrast with those from sandy loam soil. This study suggests that a NMR-based profiling approach is useful to characterize the organic components in leachate from animal carcasses over time. PMID:24819439

  6. Dynamic phosphometabolomic profiling of human tissues and transgenic models by 18O-assisted ³¹P NMR and mass spectrometry.

    PubMed

    Nemutlu, Emirhan; Zhang, Song; Gupta, Anu; Juranic, Nenad O; Macura, Slobodan I; Terzic, Andre; Jahangir, Arshad; Dzeja, Petras

    2012-04-01

    Next-generation screening of disease-related metabolomic phenotypes requires monitoring of both metabolite levels and turnover rates. Stable isotope (18)O-assisted (31)P nuclear magnetic resonance (NMR) and mass spectrometry uniquely allows simultaneous measurement of phosphometabolite levels and turnover rates in tissue and blood samples. The (18)O labeling procedure is based on the incorporation of one (18)O into P(i) from [(18)O]H(2)O with each act of ATP hydrolysis and the distribution of (18)O-labeled phosphoryls among phosphate-carrying molecules. This enables simultaneous recording of ATP synthesis and utilization, phosphotransfer fluxes through adenylate kinase, creatine kinase, and glycolytic pathways, as well as mitochondrial substrate shuttle, urea and Krebs cycle activity, glycogen turnover, and intracellular energetic communication. Application of expanded (18)O-labeling procedures has revealed significant differences in the dynamics of G-6-P[(18)O] (glycolysis), G-3-P[(18)O] (substrate shuttle), and G-1-P[(18)O] (glycogenolysis) between human and rat atrial myocardium. In human atria, the turnover of G-3-P[(18)O], which defects are associated with the sudden death syndrome, was significantly higher indicating a greater importance of substrate shuttling to mitochondria. Phosphometabolomic profiling of transgenic hearts deficient in adenylate kinase (AK1-/-), which altered levels and mutations are associated to human diseases, revealed a stress-induced shift in metabolomic profile with increased CrP[(18)O] and decreased G-1-P[(18)O] metabolic dynamics. The metabolomic profile of creatine kinase M-CK/ScCKmit-/--deficient hearts is characterized by a higher G-6-[(18)O]P turnover rate, G-6-P levels, glycolytic capacity, γ/β-phosphoryl of GTP[(18)O] turnover, as well as β-[(18)O]ATP and β-[(18)O]ADP turnover, indicating altered glycolytic, guanine nucleotide, and adenylate kinase metabolic flux. Thus, (18)O-assisted gas chromatography-mass spectrometry

  7. Changes in the NMR Metabolic Profile of Live Human Neuron-Like SH-SY5Y Cells Exposed to Interferon-α2.

    PubMed

    Valeria, Righi; Luisa, Schenetti; Adele, Mucci; Stefania, Benatti; Fabio, Tascedda; Nicoletta, Brunello; Carmine, Pariante M; Silvia, Alboni

    2016-03-01

    Interferon (IFN)-α2 is an extensively therapeutically used pro-inflammatory cytokine. Though its efficacy in controlling viral replication and tumor cells proliferation, administration of IFN-α2 is often associated with the development of central side effects. Magnetic resonance spectroscopy studies have demonstrated that IFN-α2 administration affects brain metabolism, however the exact nature of this effect is not completely known. We hypothesized that IFN-α2 can affect metabolic activity of human neuron-like SH-SY5Y cells which possess many characteristics of neurons and represent one of the most used models for studying mechanisms involved in neurotoxicity or neuroprotection. To test our hypothesis we have characterized the metabolic signature of live SH-SY5Y, and their conditioned media, after 24 and 72 h of exposure to vehicle or IFN-α2 (100 ng/ml) by using High Resolution-Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) spectroscopy. Our results revealed that 1) the use of HR-MAS NMR is ideally suitable for the characterization of the metabolic profile of live cells and their conditioned media without extraction procedures; and 2) a 72 h exposure to IFN-α2 increases the level of metabolites involved in maintaining energetic (including creatine and lactate) and osmotic (such as myo-inositol, scyllo-inositol, taurine and glycerophosphorylcholine) balances in neuron-like cells and of metabolic waste products (namely lactate, ethanol and acetate), glycine and glutamine in their growth media. These results may contribute to gain more knowledge about the IFN-α2 induced effect on the brain and support the interpretation of magnetic resonance spectroscopy studies performed in humans. PMID:26541470

  8. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis).

    PubMed

    Watanabe, Miki; Roth, Terri L; Bauer, Stuart J; Lane, Adam; Romick-Rosendale, Lindsey E

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  9. Feasibility Study of NMR Based Serum Metabolomic Profiling to Animal Health Monitoring: A Case Study on Iron Storage Disease in Captive Sumatran Rhinoceros (Dicerorhinus sumatrensis)

    PubMed Central

    Watanabe, Miki; Roth, Terri L.; Bauer, Stuart J.; Lane, Adam; Romick-Rosendale, Lindsey E.

    2016-01-01

    A variety of wildlife species maintained in captivity are susceptible to iron storage disease (ISD), or hemochromatosis, a disease resulting from the deposition of excess iron into insoluble iron clusters in soft tissue. Sumatran rhinoceros (Dicerorhinus sumatrensis) is one of the rhinoceros species that has evolutionarily adapted to a low-iron diet and is susceptible to iron overload. Hemosiderosis is reported at necropsy in many African black and Sumatran rhinoceroses but only a small number of animals reportedly die from hemochromatosis. The underlying cause and reasons for differences in susceptibility to hemochromatosis within the taxon remains unclear. Although serum ferritin concentrations have been useful in monitoring the progression of ISD in many species, there is some question regarding their value in diagnosing hemochromatosis in the Sumatran rhino. To investigate the metabolic changes during the development of hemochromatosis and possibly increase our understanding of its progression and individual susceptibility differences, the serum metabolome from a Sumatran rhinoceros was investigated by nuclear magnetic resonance (NMR)-based metabolomics. The study involved samples from female rhinoceros at the Cincinnati Zoo (n = 3), including two animals that died from liver failure caused by ISD, and the Sungai Dusun Rhinoceros Conservation Centre in Peninsular Malaysia (n = 4). Principal component analysis was performed to visually and statistically compare the metabolic profiles of the healthy animals. The results indicated that significant differences were present between the animals at the zoo and the animals in the conservation center. A comparison of the 43 serum metabolomes of three zoo rhinoceros showed two distinct groupings, healthy (n = 30) and unhealthy (n = 13). A total of eighteen altered metabolites were identified in healthy versus unhealthy samples. Results strongly suggest that NMR-based metabolomics is a valuable tool for animal health

  10. Untargeted profiling of pesticide metabolites by LC-HRMS: an exposomics tool for human exposure evaluation.

    PubMed

    Jamin, Emilien L; Bonvallot, Nathalie; Tremblay-Franco, Marie; Cravedi, Jean-Pierre; Chevrier, Cécile; Cordier, Sylvaine; Debrauwer, Laurent

    2014-02-01

    Human exposure to xenobiotics is usually estimated by indirect methods. Biological monitoring has emerged during the last decade to improve assessment of exposure. However, biomonitoring is still an analytical challenge, because the amounts of sample available are often very small yet analysis must be as thorough and sensitive as possible. The purpose of this work was to develop an untargeted "exposomics" approach by using ultra-high-performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS), which was applied to the characterization of pesticide metabolites in urine from pregnant women from a French epidemiological cohort. An upgradable list of pesticides commonly used on different crops, with their metabolites (more than 400 substances) was produced. Raw MS data were then processed to extract signals from these substances. Metabolites were identified by tandem mass spectrometry; putative identifications were validated by comparison with standards and metabolites generated by experiments on animals. Finally, signals of identified compounds were statistically analyzed by use of multivariate methods. This enabled discrimination of exposure groups, defined by indirect methods, on the basis of four metabolites from two fungicides (azoxystrobin, fenpropimorph) used in cereal production. This original approach applied to pesticide exposure can be extended to a variety of contaminant families for upstream evaluation of exposure from food and the environment. PMID:23892877

  11. Phthalate metabolites in urine of Chinese young adults: Concentration, profile, exposure and cumulative risk assessment.

    PubMed

    Gao, Chong-Jing; Liu, Li-Yan; Ma, Wan-Li; Ren, Nan-Qi; Guo, Ying; Zhu, Ning-Zheng; Jiang, Ling; Li, Yi-Fan; Kannan, Kurunthachalam

    2016-02-01

    Phthalates are widely used in consumer products. People are frequently exposed to phthalates due to their applications in daily life. In this study, 14 phthalate metabolites were analyzed in 108 urine samples collected from Chinese young adults using high-performance liquid chromatography-tandem mass spectrometry. The total concentrations of 14 phthalate metabolites ranged from 71.3 to 2670 ng/mL, with the geometric mean concentration of 306 ng/mL. mBP and miBP were the two most abundant compounds, accounting for 48% of the total concentrations. Principal component analysis suggested two major sources of phthalates: one dominated by the DEHP metabolites and one by the group of mCPP, mBP and miBP metabolites. The estimated daily intakes of DMP, DEP, DBP, DiBP and DEHP were 1.68, 2.14, 4.12, 3.52 and 1.26-2.98 μg/kg-bw/day, respectively. In a sensitivity analysis, urinary concentration and body weight were the most influential variables for human exposure estimation. Furthermore, cumulative risk for hazard quotient (HQ) and hazard index (HI) were evaluated. Nearly half of Chinese young adults had high HI values exceeding the safe threshold. This is the first study on the occurrence and human exposure to urinary phthalate metabolites with Chinese young adults. PMID:26575634

  12. Metabolite profiling reveals new insights into the regulation of serum urate in humans.

    PubMed

    Albrecht, Eva; Waldenberger, Melanie; Krumsiek, Jan; Evans, Anne M; Jeratsch, Ulli; Breier, Michaela; Adamski, Jerzy; Koenig, Wolfgang; Zeilinger, Sonja; Fuchs, Christiane; Klopp, Norman; Theis, Fabian J; Wichmann, H-Erich; Suhre, Karsten; Illig, Thomas; Strauch, Konstantin; Peters, Annette; Gieger, Christian; Kastenmüller, Gabi; Doering, Angela; Meisinger, Christa

    2014-01-01

    Serum urate, the final breakdown product of purine metabolism, is causally involved in the pathogenesis of gout, and implicated in cardiovascular disease and type 2 diabetes. Serum urate levels highly differ between men and women; however the underlying biological processes in its regulation are still not completely understood and are assumed to result from a complex interplay between genetic, environmental and lifestyle factors. In order to describe the metabolic vicinity of serum urate, we analyzed 355 metabolites in 1,764 individuals of the population-based KORA F4 study and constructed a metabolite network around serum urate using Gaussian Graphical Modeling in a hypothesis-free approach. We subsequently investigated the effect of sex and urate lowering medication on all 38 metabolites assigned to the network. Within the resulting network three main clusters could be detected around urate, including the well-known pathway of purine metabolism, as well as several dipeptides, a group of essential amino acids, and a group of steroids. Of the 38 assigned metabolites, 25 showed strong differences between sexes. Association with uricostatic medication intake was not only confined to purine metabolism but seen for seven metabolites within the network. Our findings highlight pathways that are important in the regulation of serum urate and suggest that dipeptides, amino acids, and steroid hormones are playing a role in its regulation. The findings might have an impact on the development of specific targets in the treatment and prevention of hyperuricemia. PMID:24482632

  13. High-Resolution α-Glucosidase Inhibition Profiling Combined with HPLC-HRMS-SPE-NMR for Identification of Antidiabetic Compounds in Eremanthus crotonoides (Asteraceae).

    PubMed

    Silva, Eder Lana E; Lobo, Jonathas Felipe Revoredo; Vinther, Joachim Møllesøe; Borges, Ricardo Moreira; Staerk, Dan

    2016-01-01

    α-Glucosidase inhibitors decrease the cleavage- and absorption rate of monosaccharides from complex dietary carbohydrates, and represent therefore an important class of drugs for management of type 2 diabetes. In this study, a defatted ethyl acetate extract of Eremanthus crotonoides leaves with an inhibitory concentration (IC50) of 34.5 μg/mL towards α-glucosidase was investigated by high-resolution α-glucosidase inhibition profiling combined with HPLC-HRMS-SPE-NMR. This led to identification of six α-glucosidase inhibitors, namely quercetin (16), trans-tiliroside (17), luteolin (19), quercetin-3-methyl ether (20), 3,5-di-O-caffeoylquinic acid n-butyl ester (26) and 4,5-di-O-caffeoylquinic acid n-butyl ester (29). In addition, nineteen other metabolites were identified. The most active compounds were the two regioisomeric di-O-caffeoylquinic acid derivatives 26 and 29, with IC50 values of 5.93 and 5.20 μM, respectively. This is the first report of the α-glucosidase inhibitory activity of compounds 20, 26, and 29, and the findings support the important role of Eremanthus species as novel sources of new drugs and/or herbal remedies for treatment of type 2 diabetes. PMID:27322221

  14. HdhQ111 Mice Exhibit Tissue Specific Metabolite Profiles that Include Striatal Lipid Accumulation

    PubMed Central

    Carroll, Jeffrey B.; Deik, Amy; Fossale, Elisa; Weston, Rory M.; Guide, Jolene R.; Arjomand, Jamshid; Kwak, Seung; Clish, Clary B.; MacDonald, Marcy E.

    2015-01-01

    The HTT CAG expansion mutation causes Huntington’s Disease and is associated with a wide range of cellular consequences, including altered metabolism. The mutant allele is expressed widely, in all tissues, but the striatum and cortex are especially vulnerable to its effects. To more fully understand this tissue-specificity, early in the disease process, we asked whether the metabolic impact of the mutant CAG expanded allele in heterozygous B6.HdhQ111/+ mice would be common across tissues, or whether tissues would have tissue-specific responses and whether such changes may be affected by diet. Specifically, we cross-sectionally examined steady state metabolite concentrations from a range of tissues (plasma, brown adipose tissue, cerebellum, striatum, liver, white adipose tissue), using an established liquid chromatography-mass spectrometry pipeline, from cohorts of 8 month old mutant and wild-type littermate mice that were fed one of two different high-fat diets. The differential response to diet highlighted a proportion of metabolites in all tissues, ranging from 3% (7/219) in the striatum to 12% (25/212) in white adipose tissue. By contrast, the mutant CAG-expanded allele primarily affected brain metabolites, with 14% (30/219) of metabolites significantly altered, compared to wild-type, in striatum and 11% (25/224) in the cerebellum. In general, diet and the CAG-expanded allele both elicited metabolite changes that were predominantly tissue-specific and non-overlapping, with evidence for mutation-by-diet interaction in peripheral tissues most affected by diet. Machine-learning approaches highlighted the accumulation of diverse lipid species as the most genotype-predictive metabolite changes in the striatum. Validation experiments in cell culture demonstrated that lipid accumulation was also a defining feature of mutant HdhQ111 striatal progenitor cells. Thus, metabolite-level responses to the CAG expansion mutation in vivo were tissue specific and most evident

  15. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses

    PubMed Central

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O.; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m-2s-1), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m-2s-1 under controlled condition. When LC–MS and GC–MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3′,5′ hydroxylase and flavonoid 3′ hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  16. Metabolite signatures in hydrophilic extracts of mouse lungs exposed to cigarette smoke revealed by 1H NMR metabolomics investigation

    SciTech Connect

    Hu, Jian Z.; Wang, Xuan; Feng, Ju; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Tilton, Susan C.; Pounds, Joel G.; Corley, Richard A.; Liu, Maili; Hu, Mary Y.

    2015-05-12

    Herein, 1H-NMR metabolomics are carried out to evaluate the changes of metabolites in lungs of mice exposed to cigarette smoke. It is found that the concentrations of adenosine derivatives (i.e. ATP, ADP and AMP), inosine and uridine are significantly fluctuated in the lungs of mice exposed to cigarette smoke compared with those of controls regardless the mouse is obese or regular weight. The decreased ATP, ADP, AMP and elevated inosine predict that the deaminases in charge of adenosine derivatives to inosine derivatives conversion are altered in lungs of mice exposed to cigarette smoke. Transcriptional analysis reveals that the concentrations of adenosine monophosphate deaminase and adenosine deaminase are different in the lungs of mice exposed to cigarette smoke, confirming the prediction from metabolomics studies. We also found, for the first time, that the ratio of glycerophosphocholine (GPC) to phosphocholine (PC) is significantly increased in the lungs of obese mice compared with regular weight mice. The ratio of GPC/PC is further elevated in the lungs of obese group by cigarette smoke exposure. Since GPC/PC ratio is a known biomarker for cancer, these results may suggest that obese group is more susceptible to lung cancer when exposed to cigarette smoke.

  17. Comprehensive quantum chemical and spectroscopic (FTIR, FT-Raman, 1H, 13C NMR) investigations of O-desmethyltramadol hydrochloride an active metabolite in tramadol - An analgesic drug

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Santhanam, R.; Marchewka, M. K.; Mohan, S.

    2014-03-01

    O-desmethyltramadol is one of the main metabolites of tramadol widely used clinically and has analgesic activity. The FTIR and FT-Raman spectra of O-desmethyl tramadol hydrochloride are recorded in the solid phase in the regions 4000-400 cm-1 and 4000-100 cm-1, respectively. The observed fundamentals are assigned to different normal modes of vibration. Theoretical studies have been performed as its hydrochloride salt. The structure of the compound has been optimised with B3LYP method using 6-31G** and cc-pVDZ basis sets. The optimised bond length and bond angles are correlated with the X-ray data. The experimental wavenumbers were compared with the scaled vibrational frequencies determined by DFT methods. The IR and Raman intensities are determined with B3LYP method using cc-pVDZ and 6-31G(d,p) basic sets. The total electron density and molecular electrostatic potential surfaces of the molecule are constructed by using B3LYP/cc-pVDZ method to display electrostatic potential (electron + nuclei) distribution. The electronic properties HOMO and LUMO energies were measured. Natural bond orbital analysis of O-desmethyltramadol hydrochloride has been performed to indicate the presence of intramolecular charge transfer. The 1H and 13C NMR chemical shifts of the molecule have been anlysed.

  18. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake

    PubMed Central

    Takahashi, Kei; Kohno, Hiromi

    2016-01-01

    Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054

  19. Urinary profile of methylprednisolone acetate metabolites in patients following intra-articular and intramuscular administration.

    PubMed

    Panusa, Alessia; Regazzoni, Luca; Aldini, Giancarlo; Orioli, Marica; Giombini, Arrigo; Minghetti, Paola; Tranquilli, Carlo; Carini, Marina

    2011-04-01

    A study on urinary metabolites of methylprednisolone acetate (MPA) has been performed by liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) in precursor ion scanning (PIS) and neutral loss (NL) modes. Patients suffering from joint inflammation have been treated with Depo-Medrol® (MPA marketed suspension, 40 mg) intra-articularly (IA) and after a wash-out period, intramuscularly (IM) at the same dose. Urine samples have been collected after both the administration routes. Metabolites were identified in PIS mode by setting the fragment ion at m/z 161 which is specific for MPA, methylprednisolone (MP), methylprednisolone hemisuccinate, and in NL mode by selecting the losses of 54, 72, 176 and 194 Da. The MP-related structure of each target ion detected in both the MS modes was then confirmed by MS/MS acquisitions, and by accurate mass experiments. By using this approach, 13 MPA metabolites (M1-M13) have been identified, nine already reported in the literature and four unknown and for which the chemical structures have been proposed. No differences in the metabolic pattern of MPA when administered IM or IA were observed. The relative abundances of metabolites compared with the internal standard (MP-D2) were monitored by multiple reaction monitoring analysis for 19 days after both the administration routes. PMID:21336796

  20. Focused Metabolite Profiling for Dissecting Cellular and Molecular Processes of Living Organisms in Space Environments

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Regulatory control in biological systems is exerted at all levels within the central dogma of biology. Metabolites are the end products of all cellular regulatory processes and reflect the ultimate outcome of potential changes suggested by genomics and proteomics caused by an environmental stimulus or genetic modification. Following on the heels of genomics, transcriptomics, and proteomics, metabolomics has become an inevitable part of complete-system biology because none of the lower "-omics" alone provide direct information about how changes in mRNA or protein are coupled to changes in biological function. The challenges are much greater than those encountered in genomics because of the greater number of metabolites and the greater diversity of their chemical structures and properties. To meet these challenges, much developmental work is needed, including (1) methodologies for unbiased extraction of metabolites and subsequent quantification, (2) algorithms for systematic identification of metabolites, (3) expertise and competency in handling a large amount of information (data set), and (4) integration of metabolomics with other "omics" and data mining (implication of the information). This article reviews the project accomplishments.

  1. Different Polar Metabolites and Protein Profiles between High- and Low-Quality Japanese Ginjo Sake.

    PubMed

    Takahashi, Kei; Kohno, Hiromi

    2016-01-01

    Japanese ginjo sake is a premium refined sake characterized by a pleasant fruity apple-like flavor and a sophisticated taste. Because of technical difficulties inherent in brewing ginjo sake, off-flavors sometimes occur. However, the metabolites responsible for off-flavors as well as those present or absent in higher quality ginjo sake remain uncertain. Here, the relationship between 202 polar chemical compounds in sake identified using capillary electrophoresis coupled with time-of-flight mass spectrometry and its organoleptic properties, such as quality and off-flavor, was examined. First, we found that some off-flavored sakes contained higher total amounts of metabolites than other sake samples. The results also identified that levels of 2-oxoglutaric acid and fumaric acid, metabolites in the tricarboxylic acid cycle, were highly but oppositely correlated with ginjo sake quality. Similarly, pyridoxine and pyridoxamine, co-enzymes for amino transferase, were also highly but oppositely correlated with ginjo sake quality. Additionally, pyruvic acid levels were associated with good quality as well. Compounds involved in the methionine salvage cycle, oxidative glutathione derivatives, and amino acid catabolites were correlated with low quality. Among off-flavors, an inharmonious bitter taste appeared attributable to polyamines. Furthermore, protein analysis displayed that a diversity of protein components and yeast protein (triosephosphate isomerase, TPI) leakage was linked to the overall metabolite intensity in ginjo sake. This research provides insight into the relationship between sake components and organoleptic properties. PMID:26939054

  2. Heterochromatin influences the secondary metabolite profile in the plant pathogen Fusarium graminearum

    PubMed Central

    Reyes-Dominguez, Yazmid; Boedi, Stefan; Sulyok, Michael; Wiesenberger, Gerlinde; Stoppacher, Norbert; Krska, Rudolf; Strauss, Joseph

    2012-01-01

    Chromatin modifications and heterochromatic marks have been shown to be involved in the regulation of secondary metabolism gene clusters in the fungal model system Aspergillus nidulans. We examine here the role of HEP1, the heterochromatin protein homolog of Fusarium graminearum, for the production of secondary metabolites. Deletion of Hep1 in a PH-1 background strongly influences expression of genes required for the production of aurofusarin and the main tricothecene metabolite DON. In the Hep1 deletion strains AUR genes are highly up-regulated and aurofusarin production is greatly enhanced suggesting a repressive role for heterochromatin on gene expression of this cluster. Unexpectedly, gene expression and metabolites are lower for the trichothecene cluster suggesting a positive function of Hep1 for DON biosynthesis. However, analysis of histone modifications in chromatin of AUR and DON gene promoters reveals that in both gene clusters the H3K9me3 heterochromatic mark is strongly reduced in the Hep1 deletion strain. This, and the finding that a DON-cluster flanking gene is up-regulated, suggests that the DON biosynthetic cluster is repressed by HEP1 directly and indirectly. Results from this study point to a conserved mode of secondary metabolite (SM) biosynthesis regulation in fungi by chromatin modifications and the formation of facultative heterochromatin. PMID:22100541

  3. The application of high-resolution mass spectrometry-based data-mining tools in tandem to metabolite profiling of a triple drug combination in humans.

    PubMed

    Xing, Jie; Zang, Meitong; Zhang, Haiying; Zhu, Mingshe

    2015-10-15

    Patients are usually exposed to multiple drugs, and metabolite profiling of each drug in complex biological matrices is a big challenge. This study presented a new application of an improved high resolution mass spectrometry (HRMS)-based data-mining tools in tandem to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was metronidazole-pantoprazole-clarithromycin (MET-PAN-CLAR), which is widely used in clinic to treat ulcers caused by Helicobacter pylori. First, mass defect filter (MDF), as a targeted data processing tool, was able to recover all relevant metabolites of MET-PAN-CLAR in human plasma and urine from the full-scan MS dataset when appropriate MDF templates for each drug were defined. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, worked effectively except for several trace metabolites, which were buried in the remaining background signals. Third, an integrated strategy, i.e., untargeted BS followed by improved MDF, was effective for metabolite identification of MET-PAN-CLAR. Most metabolites except for trace ones were found in the first step of BS-processed datasets, and the results led to the setup of appropriate metabolite MDF template for the subsequent MDF data processing. Trace metabolites were further recovered by MDF, which used both common MDF templates and the novel metabolite-based MDF templates. As a result, a total of 44 metabolites or related components were found for MET-PAN-CLAR in human plasma and urine using the integrated strategy. New metabolic pathways such as N-glucuronidation of PAN and dehydrogenation of CLAR were found. This study demonstrated that the combination of accurate mass-based multiple data-mining techniques in tandem, i.e., untargeted background subtraction followed by targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drugs in vivo. PMID:26515003

  4. Integrating Milk Metabolite Profile Information for the Prediction of Traditional Milk Traits Based on SNP Information for Holstein Cows

    PubMed Central

    Melzer, Nina; Wittenburg, Dörte; Repsilber, Dirk

    2013-01-01

    In this study the benefit of metabolome level analysis for the prediction of genetic value of three traditional milk traits was investigated. Our proposed approach consists of three steps: First, milk metabolite profiles are used to predict three traditional milk traits of 1,305 Holstein cows. Two regression methods, both enabling variable selection, are applied to identify important milk metabolites in this step. Second, the prediction of these important milk metabolite from single nucleotide polymorphisms (SNPs) enables the detection of SNPs with significant genetic effects. Finally, these SNPs are used to predict milk traits. The observed precision of predicted genetic values was compared to the results observed for the classical genotype-phenotype prediction using all SNPs or a reduced SNP subset (reduced classical approach). To enable a comparison between SNP subsets, a special invariable evaluation design was implemented. SNPs close to or within known quantitative trait loci (QTL) were determined. This enabled us to determine if detected important SNP subsets were enriched in these regions. The results show that our approach can lead to genetic value prediction, but requires less than 1% of the total amount of (40,317) SNPs., significantly more important SNPs in known QTL regions were detected using our approach compared to the reduced classical approach. Concluding, our approach allows a deeper insight into the associations between the different levels of the genotype-phenotype map (genotype-metabolome, metabolome-phenotype, genotype-phenotype). PMID:23990900

  5. Metabolite profiling of barley grain subjected to induced drought stress: responses of free amino acids in differently adapted cultivars.

    PubMed

    Lanzinger, Alexandra; Frank, Thomas; Reichenberger, Gabriela; Herz, Markus; Engel, Karl-Heinz

    2015-04-29

    To investigate cultivar-specific metabolite changes upon drought stress in barley grain, differently adapted cultivars were field-grown under drought conditions using a rain-out shelter and under normal weather conditions (2010-2012). The grain was subjected to a gas chromatography-mass spectrometry-based metabolite profiling approach allowing the analyses of a broad spectrum of lipophilic and hydrophilic low molecular weight constituents. Multi- and univariate analyses demonstrated that there are grain metabolites which were significantly changed upon drought stress, either decreased or increased in all cultivars. On the other hand, for proteinogenic free amino acids increased concentrations were consistently observed in all seasons only in cultivars for which no drought resistance/tolerance had been described. Consistent decreases were seen only in the group of stress tolerant/resistant cultivars. These cultivar-specific correlations were particularly pronounced for branched-chain amino acids. The results indicate that free amino acids may serve as potential markers for cultivars differently adapted to drought stress. PMID:25867895

  6. Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry).

    PubMed

    Rohloff, Jens; Kopka, Joachim; Erban, Alexander; Winge, Per; Wilson, Robert C; Bones, Atle M; Davik, Jahn; Randall, Stephen K; Alsheikh, Muath K

    2012-05-01

    Winter freezing damage is a crucial factor in overwintering crops such as the octoploid strawberry (Fragaria × ananassa Duch.) when grown in a perennial cultivation system. Our study aimed at assessing metabolic processes and regulatory mechanisms in the close-related diploid model woodland strawberry (Fragaria vescaL.) during a 10-days cold acclimation experiment. Based on gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS) metabolite profiling of three F. vesca genotypes, clear distinctions could be made between leaves and non-photosynthesizing roots, underscoring the evolvement of organ-dependent cold acclimation strategies. Carbohydrate and amino acid metabolism, photosynthetic acclimation, and antioxidant and detoxification systems (ascorbate pathway) were strongly affected. Metabolic changes in F. vesca included the strong modulation of central metabolism, and induction of osmotically-active sugars (fructose, glucose), amino acids (aspartic acid), and amines (putrescine). In contrast, a distinct impact on the amino acid proline, known to be cold-induced in other plant systems, was conspicuously absent. Levels of galactinol and raffinose, key metabolites of the cold-inducible raffinose pathway, were drastically enhanced in both leaves and roots throughout the cold acclimation period of 10 days. Furthermore, initial freezing tests and multifaceted GC/TOF-MS data processing (Venn diagrams, independent component analysis, hierarchical clustering) showed that changes in metabolite pools of cold-acclimated F. vesca were clearly influenced by genotype. PMID:22370221

  7. Dose-response to 3 months of quercetin-containing supplements on metabolite and quercetin conjugate profile in adults.

    PubMed

    Cialdella-Kam, Lynn; Nieman, David C; Sha, Wei; Meaney, Mary Pat; Knab, Amy M; Shanely, R Andrew

    2013-06-01

    Quercetin, a flavonol in fruits and vegetables, has been demonstrated to have antioxidant, anti-inflammatory and immunomodulating influences. The purpose of the present study was to determine if quercetin, vitamin C and niacin supplements (Q-500 = 500 mg/d of quercetin, 125 mg/d of vitamin C and 5 mg/d of niacin; Q-1000 = 1000 mg/d of quercetin, 250 mg/d of vitamin C and 10 mg/d of niacin) would alter small-molecule metabolite profiles and serum quercetin conjugate levels in adults. Healthy adults (fifty-eight women and forty-two men; aged 40-83 years) were assigned using a randomised double-blinded placebo-controlled trial to one of three supplement groups (Q-1000, Q-500 or placebo). Overnight fasted blood samples were collected at 0, 1 and 3 months. Quercetin conjugate concentrations were measured using ultra-performance liquid chromatography (UPLC)-MS/MS, and metabolite profiles were measured using two MS platforms (UPLC-quadrupole time-of-flight MS (TOFMS) and GC-TOFMS). Statistical procedures included partial least square discriminant analysis (PLS-DA) and linear mixed model analysis with repeated measures. After accounting for age, sex and BMI, quercetin supplementation was associated with significant shifts in 163 metabolites/quercetin conjugates (false discovery rate, P<0·05). The top five metabolite shifts were an increase in serum guaiacol, 2-oxo-4-methylthiobutanoic acid, allocystathionine and two bile acids. Inflammatory and oxidative stress metabolites were not affected. PLS-DA revealed a clear separation only between the 1000 mg/d and placebo groups (Q(2)Y = 0·763). The quercetin conjugate, isorhamnetin-3-glucuronide, had the highest concentration at 3 months followed by quercetin-3-glucuronide, quercetin-3-sulphate and quercetin diglucuronide. In human subjects, long-term quercetin supplementation exerts disparate and wide-ranging metabolic effects and changes in quercetin conjugate concentrations. Metabolic shifts were apparent at the 1000 mg

  8. Long-Chain Fatty Acid Combustion Rate Is Associated with Unique Metabolite Profiles in Skeletal Muscle Mitochondria

    PubMed Central

    Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen

    2010-01-01

    Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat

  9. A multivariate statistical analysis coming from the NMR metabolic profile of cherry tomatoes (The Sicilian Pachino case)

    NASA Astrophysics Data System (ADS)

    Mallamace, Domenico; Corsaro, Carmelo; Salvo, Andrea; Cicero, Nicola; Macaluso, Andrea; Giangrosso, Giuseppe; Ferrantelli, Vincenzo; Dugo, Giacomo

    2014-05-01

    We have studied by means of High Resolution Magic Angle Spinning Nuclear Magnetic Resonance the metabolic profile of the famous Sicilian cherry tomato of Pachino. Thanks to its organoleptic and healthy properties, this particular foodstuff was the first tomato accredited by the European PGI (Protected Geographical Indication) certification of quality. Due to the relatively high price of the final product commercial frauds originated in the Italian and international markets. Hence, there is a growing interest to develop analytical techniques able to predict the origin of a tomato sample, indicating whether or not it originates from the area of Pachino, Sicily (Italy). In this paper we have determined the molar concentration of the metabolites constituent the PGI cherry tomato of Pachino. Furthermore, by means of a multivariate statistical analysis we have identified which metabolites are relevant for sample differentiation.

  10. Characterization of metabolite profiles of leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.).

    PubMed

    Liu, Pengzhan; Lindstedt, Anni; Markkinen, Niko; Sinkkonen, Jari; Suomela, Jukka-Pekka; Yang, Baoru

    2014-12-10

    Leaves of bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) are potential raw materials for food and health care products. Targeted (HPLC-DAD, HPLC-MS, and GC-FID) and nontargeted ((1)H NMR) approaches were applied to study the metabolomic profiles of these leaves. Chlorogenic acid was the major phenolic compound in bilberry leaves and arbutin in lingonberry leaves. Flavonol glycosides were another major group of phenolics in bilberry [5-28 mg/g DM (dry mass)] and lingonberry (15-20 mg/g DM) leaves. Contents of fatty acids were analyzed using GC-FID. The changes in the metabolomics profile during the season were apparent in bilberry but not lingonberry leaves. Negative correlation was found between the contents of lipids and phenolics. The consistency between the key results obtained by targeted and nontargeted analyses suggests nontargeted metabolomic analysis is an efficient tool for fast screening of various leaf materials. PMID:25408277

  11. Gender-Specific Metabolomic Profiling of Obesity in Leptin-Deficient ob/ob Mice by 1H NMR Spectroscopy

    PubMed Central

    Kim, Sang-Woo; Jung, Youngae; Bae, Hyun-Whee; Lee, Daeyoup; Park, Sung Goo; Lee, Chul-Ho; Hwang, Geum-Sook; Chi, Seung-Wook

    2013-01-01

    Despite the numerous metabolic studies on obesity, gender bias in obesity has rarely been investigated. Here, we report the metabolomic analysis of obesity by using leptin-deficient ob/ob mice based on the gender. Metabolomic analyses of urine and serum from ob/ob mice compared with those from C57BL/6J lean mice, based on the 1H NMR spectroscopy in combination with multivariate statistical analysis, revealed clear metabolic differences between obese and lean mice. We also identified 48 urine and 22 serum metabolites that were statistically significantly altered in obese mice compared to lean controls. These metabolites are involved in amino acid metabolism (leucine, alanine, ariginine, lysine, and methionine), tricarbocylic acid cycle and glucose metabolism (pyruvate, citrate, glycolate, acetoacetate, and acetone), lipid metabolism (cholesterol and carnitine), creatine metabolism (creatine and creatinine), and gut-microbiome-derived metabolism (choline, TMAO, hippurate, p-cresol, isobutyrate, 2-hydroxyisobutyrate, methylamine, and trigonelline). Notably, our metabolomic studies showed distinct gender variations. The obese male mice metabolism was specifically associated with insulin signaling, whereas the obese female mice metabolism was associated with lipid metabolism. Taken together, our study identifies the biomarker signature for obesity in ob/ob mice and provides biochemical insights into the metabolic alteration in obesity based on gender. PMID:24098417

  12. Metabolic profiling studies on the toxicological effects of realgar in rats by {sup 1}H NMR spectroscopy

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2009-02-01

    The toxicological effects of realgar after intragastrical administration (1 g/kg body weight) were investigated over a 21 day period in male Wistar rats using metabonomic analysis of {sup 1}H NMR spectra of urine, serum and liver tissue aqueous extracts. Liver and kidney histopathology examination and serum clinical chemistry analyses were also performed. {sup 1}H NMR spectra and pattern recognition analyses from realgar treated animals showed increased excretion of urinary Kreb's cycle intermediates, increased levels of ketone bodies in urine and serum, and decreased levels of hepatic glucose and glycogen, as well as hypoglycemia and hyperlipoidemia, suggesting the perturbation of energy metabolism. Elevated levels of choline containing metabolites and betaine in serum and liver tissue aqueous extracts and increased serum creatine indicated altered transmethylation. Decreased urinary levels of trimethylamine-N-oxide, phenylacetylglycine and hippurate suggested the effects on the gut microflora environment by realgar. Signs of impairment of amino acid metabolism were supported by increased hepatic glutamate levels, increased methionine and decreased alanine levels in serum, and hypertaurinuria. The observed increase in glutathione in liver tissue aqueous extracts could be a biomarker of realgar induced oxidative injury. Serum clinical chemistry analyses showed increased levels of lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase as well as increased levels of blood urea nitrogen and creatinine, indicating slight liver and kidney injury. The time-dependent biochemical variations induced by realgar were achieved using pattern recognition methods. This work illustrated the high reliability of NMR-based metabonomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  13. UPLC-MS metabolic profiling of second trimester amniotic fluid and maternal urine and comparison with NMR spectral profiling for the identification of pregnancy disorder biomarkers.

    PubMed

    Graça, Gonçalo; Goodfellow, Brian J; Barros, António S; Diaz, Sílvia; Duarte, Iola F; Spagou, Konstantina; Veselkov, Kirill; Want, Elizabeth J; Lindon, John C; Carreira, Isabel M; Galhano, Eulália; Pita, Cristina; Gil, Ana M

    2012-04-01

    We report on the first untargeted UPLC-MS study of 2nd trimester maternal urine and amniotic fluid (AF), to investigate the possible metabolic effects of fetal malformations (FM), gestational diabetes mellitus (GDM) and preterm delivery (PTD). For fetal malformations, considerable metabolite variations were identified in AF and, to a lesser extent, in urine. Using validated PLS-DA models and statistical correlations between UPLC-MS data and previously acquired NMR data, a metabolic picture of fetal hypoxia, enhanced gluconeogenesis, TCA activity and hindered kidney development affecting FM pregnancies was reinforced. Moreover, changes in carnitine, pyroglutamate and polyols were newly noted, respectively, reflecting lipid oxidation, altered placental amino acid transfer and alterations in polyol pathways. Higher excretion of conjugated products in maternal urine was seen suggesting alterations in conjugation reactions. For the pre-diagnostic GDM group, no significant changes were observed, either considering amniotic fluid or maternal urine, whereas, for the pre-PTD group, some newly observed changes were noted, namely, the decrease of particular amino acids and the increase of an hexose (possibly glucose), suggesting alteration in placental amino acid fluxes and a possible tendency for hyperglycemia. This work shows the potential of UPLC-MS for the study of fetal and maternal biofluids, particularly when used in tandem with comparable NMR data. The important roles played by sampling characteristics (e.g. group dimensions) and the specific experimental conditions chosen for MS methods are discussed. PMID:22294348

  14. Discrimination of Basal Cell Carcinoma from Normal Skin Tissue Using High-Resolution Magic Angle Spinning 1H NMR Spectroscopy

    PubMed Central

    Mun, Je-Ho; Lee, Heonho; Yoon, Dahye; Kim, Byung-Soo; Kim, Moon-Bum; Kim, Shukmann

    2016-01-01

    High-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy is a useful tool for investigating the metabolism of various cancers. Basal cell carcinoma (BCC) is the most common skin cancer. However, to our knowledge, data on metabolic profiling of BCC have not been reported in the literature. The objective of the present study was to investigate the metabolic profiling of cutaneous BCC using HR-MAS 1H NMR spectroscopy. HR-MAS 1H NMR spectroscopy was used to analyze the metabolite profile and metabolite intensity of histopathologically confirmed BCC tissues and normal skin tissue (NST) samples. The metabolic intensity normalized to the total spectral intensities in BCC and NST was compared, and multivariate analysis was performed with orthogonal partial least-squares discriminant analysis (OPLS-DA). P values < 0.05 were considered statistically significant. Univariate analysis revealed 9 metabolites that showed statistically significant difference between BCC and NST. In multivariate analysis, the OPLS-DA models built with the HR-MAS NMR metabolic profiles revealed a clear separation of BCC from NST. The receiver operating characteristic curve generated from the results revealed an excellent discrimination of BCC from NST with an area under the curve (AUC) value of 0.961. The present study demonstrated that the metabolite profile and metabolite intensity differ between BCC and NST, and that HR-MAS 1H NMR spectroscopy can be a valuable tool in the diagnosis of BCC. PMID:26934749

  15. Effect of Acinetobacter sp on metalaxyl degradation and metabolite profile of potato seedlings (Solanum tuberosum L.) alpha variety.

    PubMed

    Zuno-Floriano, Fabiola G; Miller, Marion G; Aldana-Madrid, Maria L; Hengel, Matt J; Gaikwad, Nilesh W; Tolstikov, Vladimir; Contreras-Cortés, Ana G

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC-TOF-MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  16. Effect of Acinetobacter sp on Metalaxyl Degradation and Metabolite Profile of Potato Seedlings (Solanum tuberosum L.) Alpha Variety

    PubMed Central

    Zuno-Floriano, Fabiola G.; Miller, Marion G.; Aldana-Madrid, Maria L.; Hengel, Matt J.; Gaikwad, Nilesh W.; Tolstikov, Vladimir; Contreras-Cortés, Ana G.

    2012-01-01

    One of the most serious diseases in potato cultivars is caused by the pathogen Phytophthora infestans, which affects leaves, stems and tubers. Metalaxyl is a fungicide that protects potato plants from Phytophthora infestans. In Mexico, farmers apply metalaxyl 35 times during the cycle of potato production and the last application is typically 15 days before harvest. There are no records related to the presence of metalaxyl in potato tubers in Mexico. In the present study, we evaluated the effect of Acinetobacter sp on metalaxyl degradation in potato seedlings. The effect of bacteria and metalaxyl on the growth of potato seedlings was also evaluated. A metabolite profile analysis was conducted to determine potential molecular biomarkers produced by potato seedlings in the presence of Acinetobacter sp and metalaxyl. Metalaxyl did not affect the growth of potato seedlings. However, Acinetobacter sp strongly affected the growth of inoculated seedlings, as confirmed by plant length and plant fresh weights which were lower in inoculated potato seedlings (40% and 27%, respectively) compared to the controls. Acinetobacter sp also affected root formation. Inoculated potato seedlings showed a decrease in root formation compared to the controls. LC-MS/MS analysis of metalaxyl residues in potato seedlings suggests that Acinetobacter sp did not degrade metalaxyl. GC–TOF–MS platform was used in metabolic profiling studies. Statistical data analysis and metabolic pathway analysis allowed suggesting the alteration of metabolic pathways by both Acinetobacter sp infection and metalaxyl treatment. Several hundred metabolites were detected, 137 metabolites were identified and 15 metabolic markers were suggested based on statistical change significance found with PLS-DA analysis. These results are important for better understanding the interactions of putative endophytic bacteria and pesticides on plants and their possible effects on plant metabolism. PMID:22363586

  17. Comparative Herbivory Rates and Secondary Metabolite Profiles in the Leaves of Native and Non-Native Lonicera Species.

    PubMed

    Lieurance, Deah; Chakraborty, Sourav; Whitehead, Susan R; Powell, Jeff R; Bonello, Pierluigi; Bowers, M Deane; Cipollini, Don

    2015-12-01

    Non-native plants introduced to new habitats can have significant ecological impact. In many cases, even though they interact with the same community of potential herbivores as their new native competitors, they regularly receive less damage. Plants produce secondary metabolites in their leaves that serve a range of defensive functions, including resistance to herbivores and pathogens. Abiotic factors such as nutrient availability can influence the expression of defensive traits, with some species exhibiting increased chemical defense in low-nutrient conditions. Plants in the genus Lonicera are known to produce a diverse array of these secondary metabolites, yet non-native Lonicera species sustain lower amounts of herbivore damage than co-occurring native Lonicera species in North America. In this study, we searched for evidence of biochemical novelty in non-native species, and quantified its association with resistance to herbivores. In order to achieve this, we evaluated the phenolic and iridoid glycoside profiles in leaves of native and non-native Lonicera species grown under high and low fertilization treatments in a common garden. We then related these profiles to naturally occurring herbivore damage on whole plants in the garden. Herbivore damage was greater on native Lonicera, and chemical profiles and concentrations of selected putative defense compounds varied by species. Geographic origin was an inconsistent predictor of chemical variation in detected phenolics and iridoid glycosides (IGs). Overall, fertilization did not affect herbivore damage or measures of phenolics or IGs, but there were some fertilization effects within species. While we cannot conclude that non-natives were more chemically novel than native Lonicera species, chemical defense profiles and concentrations of specific compounds varied by species. Reduced attraction or deterrence of oviposition, specific direct resistance traits, or a combination of both may contribute to reduced

  18. Transgenic modification of gai or rg/1 causes dwarfing and alters gibberellins, root growth, and metabolite profiles in Populus

    SciTech Connect

    Tschaplinski, Timothy J; Busov, V.; Meilan, R; Pearce, D; Rood, s; Ma, C; Strauss, S

    2006-01-01

    In Arabidopsis and other plants, gibberellin (GA)-regulated responses are mediated by proteins including GAI, RGA and RGL1-3 that contain a functional DELLA domain. Through transgenic modification, we found that DELLA-less versions of GAI (gai) and RGL1 (rgl1) in a Populus tree have profound, dominant effects on phenotype, producing pleiotropic changes in morphology and metabolic profiles. Shoots were dwarfed, likely via constitutive repression of GA-induced elongation, whereas root growth was promoted two- to threefold in vitro. Applied GA{sub 3} inhibited adventitious root production in wild-type poplar, but gai/rgl1 poplars were unaffected by the inhibition. The concentrations of bioactive GA{sub 1} and GA{sub 4} in leaves of gai- and rgl1-expressing plants increased 12- to 64-fold, while the C{sub 19} precursors of GA{sub 1} (GA{sub 53}, GA{sub 44} and GA{sub 19}) decreased three- to ninefold, consistent with feedback regulation of GA 20-oxidase in the transgenic plants. The transgenic modifications elicited significant metabolic changes. In roots, metabolic profiling suggested increased respiration as a possible mechanism of the increased root growth. In leaves, we found metabolite changes suggesting reduced carbon flux through the lignin biosynthetic pathway and a shift towards allocation of secondary storage and defense metabolites, including various phenols, phenolic glucosides, and phenolic acid conjugates.

  19. Diurnal profiles of melatonin synthesis-related indoles, catecholamines and their metabolites in the duck pineal organ.

    PubMed

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  20. Diurnal Profiles of Melatonin Synthesis-Related Indoles, Catecholamines and Their Metabolites in the Duck Pineal Organ

    PubMed Central

    Lewczuk, Bogdan; Ziółkowska, Natalia; Prusik, Magdalena; Przybylska-Gornowicz, Barbara

    2014-01-01

    This study characterizes the diurnal profiles of ten melatonin synthesis-related indoles, the quantitative relations between these compounds, and daily variations in the contents of catecholamines and their metabolites in the domestic duck pineal organ. Fourteen-week-old birds, which were reared under a 12L:12D cycle, were killed at two-hour intervals. The indole contents were measured using HPLC with fluorescence detection, whereas the levels of catecholamines and their metabolites were measured using HPLC with electrochemical detection. All indole contents, except for tryptophan, showed significant diurnal variations. The 5-hydroxytryptophan level was approximately two-fold higher during the scotophase than during the photophase. The serotonin content increased during the first half of the photophase, remained elevated for approximately 10 h and then rapidly decreased in the middle of the scotophase. N-acetylserotonin showed the most prominent changes, with a more than 15-fold increase at night. The melatonin cycle demonstrated only an approximately 5-fold difference between the peak and nadir. The 5-methoxytryptamine content was markedly elevated during the scotophase. The 5-hydroxyindole acetic acid, 5-hydroxytryptophol, 5-methoxyindole acetic acid and 5-methoxytryptophol profiles were analogous to the serotonin rhythm. The norepinephrine and dopamine contents showed no significant changes. The DOPA, DOPAC and homovanillic acid levels were higher during the scotophase than during the photophase. Vanillylmandelic acid showed the opposite rhythm, with an elevated level during the daytime. PMID:25032843

  1. Chromatographic methods for metabolite profiling of virus- and phytoplasma-infected plants of Echinacea purpurea.

    PubMed

    Pellati, Federica; Epifano, Francesco; Contaldo, Nicoletta; Orlandini, Giulia; Cavicchi, Lisa; Genovese, Salvatore; Bertelli, Davide; Benvenuti, Stefania; Curini, Massimo; Bertaccini, Assunta; Bellardi, Maria Grazia

    2011-10-12

    This study was focused on the effects of virus and phytoplasma infections on the production of Echinacea purpurea (L.) Moench secondary metabolites, such as caffeic acid derivatives, alkamides, and essential oil. The identification of caffeic acid derivatives and alkamides was carried out by means of high-performance liquid chromatography-diode array detection (HPLC-DAD), HPLC-electrospray ionization-mass spectrometry (ESI-MS), and MS(2). Quantitative analysis of these compounds was carried out using HPLC-DAD. The results indicated that the presence of the two pathogens significantly decreases (P < 0.05) the content of cichoric acid, the main caffeic acid derivative. Regarding the main alkamide, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamide, a significant decrease (P < 0.05) in the content of this secondary metabolite was observed in virus-infected plants in comparison with healthy plants, while in the phytoplasma-infected sample the variation of this secondary metabolite was not appreciable. The % relative area of the E/Z isomers of this alkamide was also found to change in infected samples. The gas chromatography (GC) and GC-MS analysis of E. purpurea essential oil enabled the identification of 30 compounds. The main significant differences (P < 0.05) in the semiquantitative composition were observed for three components: limonene, cis-verbenol, and verbenone. The results indicate that the presence of virus and phytoplasma has an appreciable influence on the content of E. purpurea secondary metabolites, which is an important issue in defining the commercial quality, market value, and therapeutic efficacy of this herbal drug. PMID:21830789

  2. Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling.

    PubMed

    Wang, Lijuan; Qu, Liangjian; Zhang, Liwei; Hu, Jianjun; Tang, Fang; Lu, Mengzhu

    2016-01-01

    Plants have developed biochemical responses to adapt to biotic stress. To characterize the resistance mechanisms in poplar tree against Apripona germari, comprehensive metabolomic changes of poplar bark and xylem in response to A. germari infection were examined by gas chromatography time-of-flight mass spectrometry (GC-TOF/MS). It was found that, four days after feeding (stage I), A. germari infection brought about changes in various metabolites, such as phenolics, amino acids and sugars in both bark and xylem. Quinic acid, epicatechin, epigallocatechin and salicin might play a role in resistance response in bark, while coniferyl alcohol, ferulic acid and salicin contribute resistance in xylem. At feeding stages II when the larvae fed for more than one month, fewer defensive metabolites were induced, but levels of many intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were reduced, especially in xylem. These results suggested that the defense strategies against A. germari might depend mainly on the early defense responses in poplar. In addition, it was found that bark and xylem in infected trees accumulated higher levels of salicylic acid and 4-aminobutyric acid, respectively, these tissues displaying a direct and systemic reaction against A. germari. However, the actual role of the two metabolites in A. germari-induced defense in poplar requires further investigation. PMID:27331808

  3. Metabolic Responses of Poplar to Apripona germari (Hope) as Revealed by Metabolite Profiling

    PubMed Central

    Wang, Lijuan; Qu, Liangjian; Zhang, Liwei; Hu, Jianjun; Tang, Fang; Lu, Mengzhu

    2016-01-01

    Plants have developed biochemical responses to adapt to biotic stress. To characterize the resistance mechanisms in poplar tree against Apripona germari, comprehensive metabolomic changes of poplar bark and xylem in response to A. germari infection were examined by gas chromatography time-of-flight mass spectrometry (GC–TOF/MS). It was found that, four days after feeding (stage I), A. germari infection brought about changes in various metabolites, such as phenolics, amino acids and sugars in both bark and xylem. Quinic acid, epicatechin, epigallocatechin and salicin might play a role in resistance response in bark, while coniferyl alcohol, ferulic acid and salicin contribute resistance in xylem. At feeding stages II when the larvae fed for more than one month, fewer defensive metabolites were induced, but levels of many intermediates of glycolysis and the tricarboxylic acid (TCA) cycle were reduced, especially in xylem. These results suggested that the defense strategies against A. germari might depend mainly on the early defense responses in poplar. In addition, it was found that bark and xylem in infected trees accumulated higher levels of salicylic acid and 4-aminobutyric acid, respectively, these tissues displaying a direct and systemic reaction against A. germari. However, the actual role of the two metabolites in A. germari-induced defense in poplar requires further investigation. PMID:27331808

  4. NMR-Based Multi Parametric Quality Control of Fruit Juices: SGF Profiling

    PubMed Central

    Spraul, Manfred; Schütz, Birk; Rinke, Peter; Koswig, Susanne; Humpfer, Eberhard; Schäfer, Hartmut; Mörtter, Monika; Fang, Fang; Marx, Ute C.; Minoja, Anna

    2009-01-01

    With SGF Profiling™ we introduce an NMR-based screening method for the quality control of fruit juices. This method has been developed in a joint effort by Bruker BioSpin GmbH and SGF International e.V. The system is fully automated with respect to sample transfer, measurement, data analysis and reporting and is set up on an Avance 400 MHz flow-injection NMR spectrometer. For each fruit juice a multitude of parameters related to quality and authenticity are evaluated simultaneously from a single data set acquired within a few minutes. This multimarker/multi-aspect NMR screening approach features low cost-per-sample and is highly competitive with conventional and targeted fruit juice quality control methods. PMID:22253974

  5. Saliva metabolomics by NMR for the evaluation of sport performance.

    PubMed

    Santone, C; Dinallo, V; Paci, M; D'Ottavio, S; Barbato, G; Bernardini, S

    2014-01-01

    The paper reports preliminary results of a study in order to verify that saliva is a bio-fluid sensitive to metabolite variations due to stress and fatigue in soccer athletes, and possibly, to identify potential markers of test of performance. Saliva samples of fourteen professional soccer players were collected before and after the stressful physical activity of the level 1 Yo-Yo intermittent recovery test and, also, physiological parameters were evaluated. The NMR spectra of saliva offer a metabolites profiling which was analyzed by Principal Component Analysis as a blind test. The results of NMR pre and post test shows that it was possible to cluster the best and the worst performing athletes and that the role of the actual player may be diagnosed by a different cluster of metabolites profile. Thus saliva can be considered a biofluid metabolically sensitive to the induced physical stress and, in the future, deeper investigated to monitor the performances in athletes. PMID:24176749

  6. Metabolite profiling of soy sauce using gas chromatography with time-of-flight mass spectrometry and analysis of correlation with quantitative descriptive analysis.

    PubMed

    Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro

    2012-08-01

    Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. PMID:22608993

  7. An integrated approach for profiling oxidative metabolites and glutathione adducts using liquid chromatography coupled with ultraviolet detection and triple quadrupole-linear ion trap mass spectrometry.

    PubMed

    Chen, Guiying; Cheng, Zhongzhe; Zhang, Kerong; Jiang, Hongliang; Zhu, Mingshe

    2016-09-10

    The use of liquid chromatography (LC) coupled with triple quadrupole linear ion trap (Qtrap) mass spectrometry (MS) for both quantitative and qualitative analysis in drug metabolism and pharmacokinetic studies is of great interest. Here, a new Qtrap-based analytical methodology for simultaneous detection, structural characterization and semi-quantitation of in vitro oxidative metabolites and glutathione trapped reactive metabolites was reported. In the current study, combined multiple ion monitoring and multiple reaction monitoring were served as surveying scans to trigger product ion spectral acquisition of oxidative metabolites and glutathione adduct, respectively. Then, detection of metabolites and recovery of their MS/MS spectra were accomplished using multiple data mining approaches. Additionally, on-line ultraviolet (UV) detection was employed to determine relative concentrations of major metabolites. Analyses of metabolites of clozapine and nomifensine in rat liver microsomes not only revealed multiple oxidative metabolites and glutathione adducts, but also identified their major oxidative metabolism and bioactivation pathways. The results demonstrated that the LC/UV/MS method enabled Qtrap to perform the comprehensive profiling of oxidative metabolites and glutathione adducts in vitro. PMID:27497649

  8. Accessing biological actions of Ganoderma secondary metabolites by in silico profiling

    PubMed Central

    Grienke, Ulrike; Kaserer, Teresa; Pfluger, Florian; Mair, Christina E.; Langer, Thierry; Schuster, Daniela; Rollinger, Judith M.

    2016-01-01

    The species complex around the medicinal fungus Ganoderma lucidum Karst. (Ganodermataceae) is widely known in traditional medicines as well as in modern applications such as functional food or nutraceuticals. A considerable number of publications reflects its abundance and variety in biological actions either provoked by primary metabolites such as polysaccharides or secondary metabolites such as lanostane-type triterpenes. However, due to this remarkable amount of information, a rationalization of the individual Ganoderma constituents to biological actions on a molecular level is quite challenging. To overcome this issue, a database was generated containing meta-information, i.e. chemical structures and biological actions of hitherto identified Ganoderma constituents (279). This was followed by a computational approach subjecting this 3D multi-conformational molecular dataset to in silico parallel screening against an in-house collection of validated structure- and ligand-based 3D pharmacophore models. The predictive power of the evaluated in silico tools and hints from traditional application fields served as criteria for the model selection. Thus, we focused on representative druggable targets in the field of viral infections (5) and diseases related to the metabolic syndrome (22). The results obtained from this in silico approach were compared to bioactivity data available from the literature to distinguish between true and false positives or negatives. 89 and 197 Ganoderma compounds were predicted as ligands of at least one of the selected pharmacological targets in the antiviral and the metabolic syndrome screening, respectively. Among them only a minority of individual compounds (around 10%) has ever been investigated on these targets or for the associated biological activity. Accordingly, this study discloses putative ligand target interactions for a plethora of Ganoderma constituents in the empirically manifested field of viral diseases and metabolic

  9. Metabolite profiling of the multiple tyrosine kinase inhibitor lenvatinib: a cross-species comparison.

    PubMed

    Dubbelman, Anne-Charlotte; Nijenhuis, Cynthia M; Jansen, Robert S; Rosing, Hilde; Mizuo, Hitoshi; Kawaguchi, Shinki; Critchley, David; Shumaker, Robert; Schellens, Jan H M; Beijnen, Jos H

    2016-06-01

    Lenvatinib is an oral, multiple receptor tyrosine kinase inhibitor. Preclinical drug metabolism studies showed unique metabolic pathways for lenvatinib in monkeys and rats. A human mass balance study demonstrated that lenvatinib related material is mainly excreted via feces with a small fraction as unchanged parent drug, but little is reported about its metabolic fate. The objective of the current study was to further elucidate the metabolic pathways of lenvatinib in humans and to compare these results to the metabolism in rats and monkeys. To this end, we used plasma, urine and feces collected in a human mass balance study after a single 24 mg (100 μCi) oral dose of (14)C-lenvatinib. Metabolites of (14)C-lenvatinib were identified using liquid chromatography (high resolution) mass spectrometry with off-line radioactivity detection. Close to 50 lenvatinib-related compounds were detected. In humans, unchanged lenvatinib accounted for 97 % of the radioactivity in plasma, and comprised 0.38 and 2.5 % of the administered dose excreted in urine and feces, respectively. The primary biotransformation pathways of lenvatinib were hydrolysis, oxidation and hydroxylation, N-oxidation, dealkylation and glucuronidation. Various combinations of these conversions with modifications, including hydrolysis, gluthathione/cysteine conjugation, intramolecular rearrangement and dimerization, were observed. Some metabolites seem to be unique to the investigated species (human, rat, monkey). Because all lenvatinib metabolites in human plasma were at very low levels compared to lenvatinib, only lenvatinib is expected to contribute to the pharmacological effects in humans. PMID:27018262

  10. Daily profiles of dehydroepiandrosterone and its hydroxylated metabolites with respect to food intake.

    PubMed

    Stárka, Luboslav; Rácz, Beata; Šrámková, Monika; Hill, Martin; Dušková, Michaela

    2015-01-01

    Eight women of reproductive age with normal body mass index were given 5 standardised meals, and their hormonal milieu was determined during the course of the day. Plasma from 12 withdrawals was analysed for dehydroepiandrosterone and its 7- and 16-hydroxylated metabolites. Overall, there was a maximum in the levels of steroid hormones in the morning, followed by decreases throughout the day. There was also an additional significant decrease found for dehydroepiandrosterone and its 7α-hydroxyderivative in association with the consumption of main meals, but not for the 7β-isomer or 16α-hydroxyderivative. PMID:25923969

  11. Application of mass spectrometry for metabolite identification.

    PubMed

    Ma, Shuguang; Chowdhury, Swapan K; Alton, Kevin B

    2006-06-01

    Metabolism studies play a pivotal role in drug discovery and development. Characterization of metabolic "hot-spots" as well as reactive and pharmacologically active metabolites is critical to designing new drug candidates with improved metabolic stability, toxicological profile and efficacy. Metabolite identification in the preclinical species used for safety evaluation is required in order to determine whether human metabolites have been adequately tested during non-clinical safety assessment. From an instrumental standpoint, high performance liquid chromatography (HPLC) coupled with mass spectrometry (MS) dominates all analytical tools used for metabolite identification. The general strategies employed for metabolite identification in both drug discovery and drug development settings together with sample preparation techniques are reviewed herein. These include a discussion of the various ionization methods, mass analyzers, and tandem mass spectrometry (MS/MS) techniques that are used for structural characterization in a modern drug metabolism laboratory. Mass spectrometry-based techniques, such as stable isotope labeling, on-line H/D exchange, accurate mass measurement to enhance metabolite identification and recent improvements in data acquisition and processing for accelerating metabolite identification are also described. Rounding out this review, we offer additional thoughts about the potential of alternative and less frequently used techniques such as LC-NMR/MS, CRIMS and ICPMS. PMID:16787159

  12. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  13. Genome-Wide Functional Profiling Reveals Genes Required for Tolerance to Benzene Metabolites in Yeast

    PubMed Central

    North, Matthew; Tandon, Vickram J.; Thomas, Reuben; Loguinov, Alex; Gerlovina, Inna; Hubbard, Alan E.; Zhang, Luoping; Smith, Martyn T.; Vulpe, Chris D.

    2011-01-01

    Benzene is a ubiquitous environmental contaminant and is widely used in industry. Exposure to benzene causes a number of serious health problems, including blood disorders and leukemia. Benzene undergoes complex metabolism in humans, making mechanistic determination of benzene toxicity difficult. We used a functional genomics approach to identify the genes that modulate the cellular toxicity of three of the phenolic metabolites of benzene, hydroquinone (HQ), catechol (CAT) and 1,2,4-benzenetriol (BT), in the model eukaryote Saccharomyces cerevisiae. Benzene metabolites generate oxidative and cytoskeletal stress, and tolerance requires correct regulation of iron homeostasis and the vacuolar ATPase. We have identified a conserved bZIP transcription factor, Yap3p, as important for a HQ-specific response pathway, as well as two genes that encode putative NAD(P)H:quinone oxidoreductases, PST2 and YCP4. Many of the yeast genes identified have human orthologs that may modulate human benzene toxicity in a similar manner and could play a role in benzene exposure-related disease. PMID:21912624

  14. Serum metabolite profiles of postoperative fatigue syndrome in rat following partial hepatectomy.

    PubMed

    Lu, Ye; Yang, Rui; Jiang, Xin; Yang, Yajuan; Peng, Fei; Yuan, Hongbin

    2016-05-01

    Postoperative fatigue syndrome is a general complication after surgery. However, there is no ''gold standard'' for fatigue assessment due to the lack of objective biomarkers. In this study, a rodent model of postoperative fatigue syndrome based on partial hepatectomy was firstly established and serum metabonomic method based on ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied. Partial least-squares discriminant analysis was used to identify the differential metabolites in 70% partial hepatectomy rats relative to sham rats and 30% partial hepatectomy rats, which showed 70% partial hepatectomy group was significantly distinguishable from 30% partial hepatectomy group and sham group. Eighteen serum metabolites responsible for the discrimination were identified. The levels of hypoxanthine, kynurenine, tryptophan, uric acid, phenylalanine, palmitic acid, arachidonic acid and oleic acid showed progressive elevation from sham group to 30% partial hepatectomy group to 70% partial hepatectomy group, and levels of valine, tyrosine, isoleucine, linoleyl carnitine, palmitoylcarnitine, lysophosphatidylcholine (16:0), lysophosphatidylcholine (20:3), citric acid, succinic acid and hippuric acid showed progressive declining trend from sham group to 30% partial hepatectomy group to 70% partial hepatectomy group. These potential biomarkers help to understand of etiology, pathophysiology and treatment of postoperative fatigue syndrome. PMID:27257346

  15. A profile of carbohydrate metabolites in the fasting northern elephant seal.

    PubMed

    Champagne, Cory D; Boaz, Segal M; Fowler, Melinda A; Houser, Dorian S; Costa, Daniel P; Crocker, Daniel E

    2013-06-01

    Northern elephant seals endure prolonged periods of food deprivation at multiple life-history stages and simultaneous with energetically costly activities-including reproduction and development. Most mammals decrease their energy expenditure while fasting, with simultaneous reductions in gluconeogenesis and circulating glucose concentration. Paradoxically, elephant seals maintain high rates of both energy expenditure and gluconeogenesis, and high blood glucose concentrations throughout fasting. We therefore characterized the suite of changes that occur in carbohydrate metabolites during fasting in northern elephant seals. Using a broad-based metabolomics platform we investigated fasting during two states-lactation in adult females and the post-weaning developmental period in pups. A total of 227 metabolites were detected in seal plasma; 31 associated with carbohydrate metabolism were analyzed in the present study. Several compounds showed similar responses during lactation and the post-weaning fast (e.g. glycerol and mesaconate) whereas other compounds displayed quite different abundances between groups (e.g. citrate and pyruvate). This work found that, while the changes that occur with fasting were frequently similar in lactating females and developing pups, the relative abundance of compounds often varied markedly. These differences suggest that the metabolic strategies used to endure prolonged fasts are influenced by life-history or nutrient constraints. PMID:23542762

  16. Serum metabolite profiles of postoperative fatigue syndrome in rat following partial hepatectomy

    PubMed Central

    Lu, Ye; Yang, Rui; Jiang, Xin; Yang, Yajuan; Peng, Fei; Yuan, Hongbin

    2016-01-01

    Postoperative fatigue syndrome is a general complication after surgery. However, there is no ‘‘gold standard’’ for fatigue assessment due to the lack of objective biomarkers. In this study, a rodent model of postoperative fatigue syndrome based on partial hepatectomy was firstly established and serum metabonomic method based on ultra-high performance liquid chromatography coupled with Q-TOF mass spectrometry was applied. Partial least-squares discriminant analysis was used to identify the differential metabolites in 70% partial hepatectomy rats relative to sham rats and 30% partial hepatectomy rats, which showed 70% partial hepatectomy group was significantly distinguishable from 30% partial hepatectomy group and sham group. Eighteen serum metabolites responsible for the discrimination were identified. The levels of hypoxanthine, kynurenine, tryptophan, uric acid, phenylalanine, palmitic acid, arachidonic acid and oleic acid showed progressive elevation from sham group to 30% partial hepatectomy group to 70% partial hepatectomy group, and levels of valine, tyrosine, isoleucine, linoleyl carnitine, palmitoylcarnitine, lysophosphatidylcholine (16:0), lysophosphatidylcholine (20:3), citric acid, succinic acid and hippuric acid showed progressive declining trend from sham group to 30% partial hepatectomy group to 70% partial hepatectomy group. These potential biomarkers help to understand of etiology, pathophysiology and treatment of postoperative fatigue syndrome. PMID:27257346

  17. Comparative analysis of essential collective dynamics and NMR-derived flexibility profiles in evolutionarily diverse prion proteins.

    PubMed

    Santo, Kolattukudy P; Berjanskii, Mark; Wishart, David S; Stepanova, Maria

    2011-01-01

    Collective motions on ns-μs time scales are known to have a major impact on protein folding, stability, binding and enzymatic efficiency. It is also believed that these motions may have an important role in the early stages of prion protein misfolding and prion disease. In an effort to accurately characterize these motions and their potential influence on the misfolding and prion disease transmissibility we have conducted a combined analysis of molecular dynamic simulations and NMR-derived flexibility measurements over a diverse range of prion proteins. Using a recently developed numerical formalism, we have analyzed the essential collective dynamics (ECD) for prion proteins from 8 different species including human, cow, elk, cat, hamster, chicken, turtle and frog. We also compared the numerical results with flexibility profiles generated by the random coil index (RCI) from NMR chemical shifts. Prion protein backbone flexibility derived from experimental NMR data and from theoretical computations show strong agreement with each other, demonstrating that it is possible to predict the observed RCI profiles employing the numerical ECD formalism. Interestingly, flexibility differences in the loop between second beta strand (S2) and the second alpha helix (HB) appear to distinguish prion proteins from species that are susceptible to prion disease and those that are resistant. Our results show that the different levels of flexibility in the S2-HB loop in various species are predictable via the ECD method, indicating that ECD may be used to identify disease resistant variants of prion proteins, as well as the influence of prion proteins mutations on disease susceptibility or misfolding propensity. PMID:21869604

  18. Microdialysis Sampling from Wound Fluids Enables Quantitative Assessment of Cytokines, Proteins, and Metabolites Reveals Bone Defect-Specific Molecular Profiles

    PubMed Central

    Wissenbach, Dirk K.; Pfeiffer, Susanne E. M.; Baumann, Sven; Hofbauer, Lorenz C.; von Bergen, Martin; Kalkhof, Stefan; Rammelt, Stefan

    2016-01-01

    Bone healing involves a variety of different cell types and biological processes. Although certain key molecules have been identified, the molecular interactions of the healing progress are not completely understood. Moreover, a clinical routine for predicting the quality of bone healing after a fracture in an early phase is missing. This is mainly due to a lack of techniques to comprehensively screen for cytokines, growth factors and metabolites at their local site of action. Since all soluble molecules of interest are present in the fracture hematoma, its in-depth assessment could reveal potential markers for the monitoring of bone healing. Here, we describe an approach for sampling and quantification of cytokines and metabolites by using microdialysis, combined with solid phase extractions of proteins from wound fluids. By using a control group with an isolated soft tissue wound, we could reveal several bone defect-specific molecular features. In bone defect dialysates the neutrophil chemoattractants CXCL1, CXCL2 and CXCL3 were quantified with either a higher or earlier response compared to dialysate from soft tissue wound. Moreover, by analyzing downstream adaptions of the cells on protein level and focusing on early immune response, several proteins involved in the immune cell migration and activity could be identified to be specific for the bone defect group, e.g. immune modulators, proteases and their corresponding inhibitors. Additionally, the metabolite screening revealed different profiles between the bone defect group and the control group. In summary, we identified potential biomarkers to indicate imbalanced healing progress on all levels of analysis. PMID:27441377

  19. (13)C NMR-based metabolomics for the classification of green coffee beans according to variety and origin.

    PubMed

    Wei, Feifei; Furihata, Kazuo; Koda, Masanori; Hu, Fangyu; Kato, Rieko; Miyakawa, Takuya; Tanokura, Masaru

    2012-10-10

    (13)C NMR-based metabolomics was demonstrated as a useful tool for distinguishing the species and origins of green coffee bean samples of arabica and robusta from six different geographic regions. By the application of information on (13)C signal assignment, significantly different levels of 14 metabolites of green coffee beans were identified in the classifications, including sucrose, caffeine, chlorogenic acids, choline, amino acids, organic acids, and trigonelline, as captured by multivariate analytical models. These studies demonstrate that the species and geographical origin can be quickly discriminated by evaluating the major metabolites of green coffee beans quantitatively using (13)C NMR-based metabolite profiling. PMID:22989016

  20. Capillary electrophoresis with UV detection and mass spectrometry in method development for profiling metabolites of steroid hormone metabolism.

    PubMed

    Sirén, Heli; Seppänen-Laakso, Tuulikki; Oresic, Matej

    2008-08-15

    The aim of this study was to develop a method for comprehensive profiling of metabolites involved in mammalian steroid metabolism. The study was performed using the partial filling micellar electrokinetic chromatography (PF-MEKC) technique for determination of endogenous low-hydrophilic steroids. The detection techniques in capillary electrophoresis were UV absorption and electrospray mass spectrometry (ESI-MS). Thirteen steroids were included in the method development, and the selected were metabolites involved in major pathways of steroid biosynthesis. Although only eight of them could be separated and detected with UV, they could be identified by ESI-MS using selected ion monitoring (SIM) technique. Tandem MS spectra were also collected. UV detection was more sensitive than MS due to better separation of compounds and the selective signal sensitivity. The lowest limits of detection were 10-100 ng/mL for cortisone, corticosterone, hydrocortisone and testosterone. The other steroids could be detected at 500-1000 ng/mL. The identification of cortisone, corticosterone, hydrocortisone, estrogen and testosterone were made in patient urine samples and their concentrations were 1-40 microg/L. PMID:18585986

  1. Mass spectrometry-based metabolite profiling and antioxidant activity of Aloe vera ( Aloe barbadensis Miller) in different growth stages.

    PubMed

    Lee, Sarah; Do, Seon-Gil; Kim, Sun Yeou; Kim, Jinwan; Jin, Yoojeong; Lee, Choong Hwan

    2012-11-14

    Metabolite profiling of four different-sized Aloe vera plants was performed using gas chromatography-ion trap-mass spectrometry (GC-IT-MS) and ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-TOF-MS) with multivariate analysis. Amino acids, sugars, and organic acids related to growth and development were identified by sizes. In particular, the relative contents of glucose, fructose, alanine, valine, and aspartic acid increased gradually as the size of the aloe increased. Anthraquinone derivatives such as 7-hydroxy-8-O-methylaloin, 7-hydroxyaloin A, and 6'-malonylnataloins A and B increased gradually, whereas chromone derivatives decreased continuously as the size of the aloe increased. The A30 aloe (size = 20-30 cm) with relatively high contents of aloins A and B, was suggested to have antioxidant components showing the highest antioxidant activity among the four different sizes of aloe. These data suggested that MS-based metabolomic approaches can illuminate metabolite changes associated with growth and development and can explain their change of antioxidant activity. PMID:23050594

  2. Metabolic Profiling and Phenotyping of Central Nervous System Diseases: Metabolites Bring Insights into Brain Dysfunctions.

    PubMed

    Dumas, Marc-Emmanuel; Davidovic, Laetitia

    2015-09-01

    Metabolic phenotyping corresponds to the large-scale quantitative and qualitative analysis of the metabolome i.e., the low-molecular weight <1 KDa fraction in biological samples, and provides a key opportunity to advance neurosciences. Proton nuclear magnetic resonance and mass spectrometry are the main analytical platforms used for metabolic profiling, enabling detection and quantitation of a wide range of compounds of particular neuro-pharmacological and physiological relevance, including neurotransmitters, secondary messengers, structural lipids, as well as their precursors, intermediates and degradation products. Metabolic profiling is therefore particularly indicated for the study of central nervous system by probing metabolic and neurochemical profiles of the healthy or diseased brain, in preclinical models or in human samples. In this review, we introduce the analytical and statistical requirements for metabolic profiling. Then, we focus on key studies in the field of metabolic profiling applied to the characterization of animal models and human samples of central nervous system disorders. We highlight the potential of metabolic profiling for pharmacological and physiological evaluation, diagnosis and drug therapy monitoring of patients affected by brain disorders. Finally, we discuss the current challenges in the field, including the development of systems biology and pharmacology strategies improving our understanding of metabolic signatures and mechanisms of central nervous system diseases. PMID:25616565

  3. Structure Elucidation of the Metabolites of 2', 3', 5'-Tri-O-Acetyl-N6-(3-Hydroxyphenyl) Adenosine in Rat Urine by HPLC-DAD, ESI-MS and Off-Line Microprobe NMR

    PubMed Central

    Miao, Zhaoxia; Qu, Kai; Liu, Xia; Zhang, Peicheng; Qin, Hailin; Zhu, Haibo; Wang, Yinghong

    2015-01-01

    2', 3', 5'-tri-O-acetyl-N6-(3-hydroxyphenyl) adenosine (also known as WS070117) is a new adenosine analog that displays anti-hyperlipidemic activity both in vitro and in vivo experiments as shown in many preliminary studies. Due to its new structure, little is known about the metabolism of WS070117. Hence, the in vivo metabolites of WS070117 in rat urine following oral administration were investigated. Identification of the metabolites was conducted using the combination of high-performance liquid chromatography (HPLC) coupled with diode array detector (DAD), ion trap electrospray ionization-mass spectrometry (ESI-MS), and off-line microprobe nuclear magnetic resonance (NMR) measurements. Seven metabolites were obtained as pure compounds at the sub-milligram to milligram levels. Results of structure elucidation unambiguously revealed that the phase I metabolite, N6-(3-hydroxyphenyl) adenosine (M8), was a hydrolysate of WS070117 by hydrolysis on the three ester groups. N6-(3-hydr-oxyphenyl) adenine (M7), also one of the phase I metabolites, was the derivative of M8 by the loss of ribofuranose. In addition to two phase I metabolites, there were five phase II metabolites of WS070117 found in rat urine. 8-hydroxy-N6-(3-hydroxy-phenyl) adenosine (M6) was the product of M7 by hydrolysis at position 8. The other four were elucidated to be N6-(3-O-β-D-glucuronyphenyl) adenine (M2), N8-hydroxy-N6-(3-O-sulfophenyl) adenine (M3), N6-(3-O-β-D-glucuronyphenyl) adenosine (M4), and N6-(3-O- sulfophenyl) adenosine (M5). Phase II metabolic pathways were proven to consist of hydroxylation, glucuronidation and sulfation. This study provides new and valuable information on the metabolism of WS070117, and also demonstrates the HPLC/MS/off-line microprobe NMR approach as a robust means for rapid identification of metabolites. PMID:26029929

  4. Objective Definition of Monofloral and Polyfloral Honeys Based on NMR Metabolomic Profiling.

    PubMed

    Schievano, Elisabetta; Finotello, Claudia; Uddin, Jalal; Mammi, Stefano; Piana, Lucia

    2016-05-11

    In this paper, a remarkably precise, simple, and objective definition of monofloral and polyfloral honey based on NMR metabolomics is proposed. The spectra of organic extracts of 983 samples of 16 botanical origins were used to derive one-versus-all OPLS-DA classification models. The predictive components of the statistical models reveal not only the principal but also the secondary floral origins present in a sample of honey, a novel feature with respect to the methods present in the literature that are able to confirm the authenticity of monofloral honeys but not to characterize a mixture of honey types. This result descends from the peculiar features of the chloroform spectra that show diagnostic resonances for almost each botanical origin, making these NMR spectra suitable fingerprints. The reliability of the method was tested with an additional 120 samples, and the class assignments were compared with those obtained by traditional analysis. The two approaches are in excellent agreement in identifying the floral species present in honeys and in the botanical classification. Therefore, this NMR method may prove to be a valid solution to the huge limitations of traditional classification, which is very demanding and complex. PMID:27086991

  5. Metabolite Profiling of Soybean Seed Extracts from Near-Isogenic Low and Normal Phytate Lines Using Orthogonal Separation Strategies.

    PubMed

    Jervis, Judith; Kastl, Christin; Hildreth, Sherry B; Biyashev, Ruslan; Grabau, Elizabeth A; Saghai-Maroof, Mohammad A; Helm, Richard F

    2015-11-11

    Untargeted metabolomic profiling using liquid chromatography-mass spectrometry (LC-MS) was applied to lipid-depleted methanolic extracts of soybean seeds utilizing orthogonal chromatographic separations (reversed-phase and hydrophilic interaction) in both positive and negative ionization modes. Four near-isogenic lines (NILs) differing in mutations for two genes encoding highly homologous multidrug resistant proteins (MRPs) were evaluated. The double mutant exhibited a low phytate phenotype, whereas the other three NILs, the two single mutants and the wild type, did not. Principal component analysis (PCA) of the four LC-MS data sets fully separated the low phytate line from the other three. While the levels of neutral oligosaccharides were the same for all lines, there were significant metabolite differences residing in the levels of malonyl isoflavones, soyasaponins, and arginine. Two methanol-soluble polypeptides were also found as differing in abundance levels, one of which was identified as the allergen Gly m 1. PMID:26487475

  6. Physiological performance, secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera.

    PubMed

    Sanchita; Singh, Ruchi; Mishra, Anand; Dhawan, Sunita S; Shirke, Pramod A; Gupta, Madan M; Sharma, Ashok

    2015-11-01

    Physiological, biochemical, and gene expression responses under drought stress were studied in Withania somnifera. Photosynthesis rate, stomatal conductance, transpiration rate, relative water content, chlorophyll content, and quantum yield of photosystems I and II (PSI and PSII) decreased in response to drought stress. Comparative expression of genes involved in osmoregulation, detoxification, signal transduction, metabolism, and transcription factor was analyzed through quantitative RT-PCR. The genes encoding 1-pyrroline-5-carboxylate synthetase (P5CS), glutathione S-transferase (GST), superoxide dismutase (SOD), serine threonine-protein kinase (STK), serine threonine protein phosphatase (PSP), aldehyde dehydrogenase (AD), leucoanthocyanidin dioxygenase/anthocyanin synthase (LD/AS), HSP, MYB, and WRKY have shown upregulation in response to drought stress condition in leaf tissues. Enhanced detoxification and osmoregulation along with increased withanolides production were also observed under drought stress. The results of this study will be helpful in developing stress-tolerant and high secondary metabolite yielding genotypes. PMID:25691002

  7. Excretion Profiles and Half-Lives of Ten Urinary Polycyclic Aromatic Hydrocarbon Metabolites after Dietary Exposure

    PubMed Central

    Li, Zheng; Romanoff, Lovisa; Bartell, Scott; Pittman, Erin N.; Trinidad, Debra A.; McClean, Michael; Webster, Thomas F.; Sjödin, Andreas

    2015-01-01

    Human exposure to polycyclic aromatic hydrocarbons (PAHs) can be assessed by biomonitoring of their urinary mono-hydroxylated metabolites (OH-PAHs). Limited information exists on the human pharmacokinetics of OH-PAHs. This study aimed to investigate the excretion half-life of 1-hydroxypyrene (1-PYR), the most used biomarker for PAH exposure, and 9 other OH-PAHs following a dietary exposure in 9 non-smoking volunteers with no occupational exposure to PAHs. Each person avoided food with known high PAH-content during the study period, except for a high PAH-containing lunch (barbecued chicken) on the first day. Individual urine samples (n = 217) were collected from 15 hours before to 60 hours following the dietary exposure. Levels of all OH-PAHs in all subjects increased rapidly by 9–141 fold after the exposure, followed by a decrease consistent with first order kinetics, and returned to background levels 24–48 hours after the exposure. The average time to reach maximal concentration ranged from 3.1 h (1-naphthol) to 5.5 h (1-PYR). Creatinine-adjusted urine concentrations for each metabolite were analyzed using a non-linear mixed effects model including a term to estimate background exposure. The background-adjusted half-life estimate was 3.9 h for 1-PYR and ranged 2.5–6.1 h for the other 9 OH-PAHs, which in general, were shorter than those previously reported. The maximum concentrations after the barbecued chicken consumption were comparable to the levels found in reported occupational settings with known high PAH exposures. It is essential to consider the relatively short half-life, the timing of samples relative to exposures, and the effect of diet when conducting PAH exposure biomonitoring studies. PMID:22663094

  8. Decision tree supported substructure prediction of metabolites from GC-MS profiles.

    PubMed

    Hummel, Jan; Strehmel, Nadine; Selbig, Joachim; Walther, Dirk; Kopka, Joachim

    2010-06-01

    Gas chromatography coupled to mass spectrometry (GC-MS) is one of the most widespread routine technologies applied to the large scale screening and discovery of novel metabolic biomarkers. However, currently the majority of mass spectral tags (MSTs) remains unidentified due to the lack of authenticated pure reference substances required for compound identification by GC-MS. Here, we accessed the information on reference compounds stored in the Golm Metabolome Database (GMD) to apply supervised machine learning approaches to the classification and identification of unidentified MSTs without relying on library searches. Non-annotated MSTs with mass spectral and retention index (RI) information together with data of already identified metabolites and reference substances have been archived in the GMD. Structural feature extraction was applied to sub-divide the metabolite space contained in the GMD and to define the prediction target classes. Decision tree (DT)-based prediction of the most frequent substructures based on mass spectral features and RI information is demonstrated to result in highly sensitive and specific detections of sub-structures contained in the compounds. The underlying set of DTs can be inspected by the user and are made available for batch processing via SOAP (Simple Object Access Protocol)-based web services. The GMD mass spectral library with the integrated DTs is freely accessible for non-commercial use at http://gmd.mpimp-golm.mpg.de/. All matching and structure search functionalities are available as SOAP-based web services. A XML + HTTP interface, which follows Representational State Transfer (REST) principles, facilitates read-only access to data base entities. PMID:20526350

  9. Metabolite Profiling and Pharmacokinetic Evaluation of Hydrocortisone in a Perfused Three-Dimensional Human Liver Bioreactor

    PubMed Central

    Sarkar, Ujjal; Rivera-Burgos, Dinelia; Large, Emma M.; Hughes, David J.; Ravindra, Kodihalli C.; Dyer, Rachel L.; Ebrahimkhani, Mohammad R.; Griffith, Linda G.

    2015-01-01

    Endotoxin lipopolysaccharide (LPS) is known to cause liver injury primarily involving inflammatory cells such as Kupffer cells, but few in vitro culture models are applicable for investigation of inflammatory effects on drug metabolism. We have developed a three-dimensional human microphysiological hepatocyte–Kupffer cell coculture system and evaluated the anti-inflammatory effect of glucocorticoids on liver cultures. LPS was introduced to the cultures to elicit an inflammatory response and was assessed by the release of proinflammatory cytokines, interleukin 6 and tumor necrosis factor α. A sensitive and specific reversed-phase–ultra high-performance liquid chromatography–quadrupole time of flight–mass spectrometry method was used to evaluate hydrocortisone disappearance and metabolism at near physiologic levels. For this, the systems were dosed with 100 nM hydrocortisone and circulated for 2 days; hydrocortisone was depleted to approximately 30 nM, with first-order kinetics. Phase I metabolites, including tetrahydrocortisone and dihydrocortisol, accounted for 8–10% of the loss, and 45–52% consisted of phase II metabolites, including glucuronides of tetrahydrocortisol and tetrahydrocortisone. Pharmacokinetic parameters, i.e., half-life, rate of elimination, clearance, and area under the curve, were 23.03 hours, 0.03 hour−1, 6.6 × 10−5 l⋅hour−1, and 1.03 (mg/l)*h, respectively. The ability of the bioreactor to predict the in vivo clearance of hydrocortisone was characterized, and the obtained intrinsic clearance values correlated with human data. This system offers a physiologically relevant tool for investigating hepatic function in an inflamed liver. PMID:25926431

  10. Metabolite profiling and network analysis reveal coordinated changes in grapevine water stress response

    PubMed Central

    2013-01-01

    Background Grapevine metabolism in response to water deficit was studied in two cultivars, Shiraz and Cabernet Sauvignon, which were shown to have different hydraulic behaviors (Hochberg et al. Physiol. Plant. 147:443–453, 2012). Results Progressive water deficit was found to effect changes in leaf water potentials accompanied by metabolic changes. In both cultivars, but more intensively in Shiraz than Cabernet Sauvignon, water deficit caused a shift to higher osmolality and lower C/N ratios, the latter of which was also reflected in marked increases in amino acids, e.g., Pro, Val, Leu, Thr and Trp, reductions of most organic acids, and changes in the phenylpropanoid pathway. PCA analysis showed that changes in primary metabolism were mostly associated with water stress, while diversification of specialized metabolism was mostly linked to the cultivars. In the phloem sap, drought was characterized by higher ABA concentration and major changes in benzoate levels coinciding with lower stomatal conductance and suberinization of vascular bundles. Enhanced suberin biosynthesis in Shiraz was reflected by the higher abundance of sap hydroxybenzoate derivatives. Correlation-based network analysis revealed that compared to Cabernet Sauvignon, Shiraz had considerably larger and highly coordinated stress-related changes, reflected in its increased metabolic network connectivity under stress. Network analysis also highlighted the structural role of major stress related metabolites, e.g., Pro, quercetin and ascorbate, which drastically altered their connectedness in the Shiraz network under water deficit. Conclusions Taken together, the results showed that Vitis vinifera cultivars possess a common metabolic response to water deficit. Central metabolism, and specifically N metabolism, plays a significant role in stress response in vine. At the cultivar level, Cabernet Sauvignon was characterized by milder metabolic perturbations, likely due to a tighter regulation of stomata

  11. Dynamics of Cathode-Associated Microbial Communities and Metabolite Profiles in a Glycerol-Fed Bioelectrochemical System

    PubMed Central

    Dennis, Paul G.; Harnisch, Falk; Yeoh, Yun Kit; Tyson, Gene W.

    2013-01-01

    Electrical current can be used to supply reducing power to microbial metabolism. This phenomenon is typically studied in pure cultures with added redox mediators to transfer charge. Here, we investigate the development of a current-fed mixed microbial community fermenting glycerol at the cathode of a bioelectrochemical system in the absence of added mediators and identify correlations between microbial diversity and the respective product outcomes. Within 1 week of inoculation, a Citrobacter population represented 95 to 99% of the community and the metabolite profiles were dominated by 1,3-propanediol and ethanol. Over time, the Citrobacter population decreased in abundance while that of a Pectinatus population and the formation of propionate increased. After 6 weeks, several Clostridium populations and the production of valerate increased, which suggests that chain elongation was being performed. Current supply was stopped after 9 weeks and was associated with a decrease in glycerol degradation and alcohol formation. This decrease was reversed by resuming current supply; however, when hydrogen gas was bubbled through the reactor during open-circuit operation (open-circuit potential) as an alternative source of reducing power, glycerol degradation and metabolite production were unaffected. Cyclic voltammetry revealed that the community appeared to catalyze the hydrogen evolution reaction, leading to a +400-mV shift in its onset potential. Our results clearly demonstrate that current supply can alter fermentation profiles; however, further work is needed to determine the mechanisms behind this effect. In addition, operational conditions must be refined to gain greater control over community composition and metabolic outcomes. PMID:23603684

  12. Impact of storage conditions on metabolite profiles of sputum samples from persons with cystic fibrosis

    PubMed Central

    Zhao, Jiangchao; Evans, Charles R.; Carmody, Lisa A.; LiPuma, John J.

    2016-01-01

    Background Although recent studies have begun to elucidate how airway microbial community structure relates to lung disease in cystic fibrosis (CF), microbial community activity and the host’s response to changes in this activity are poorly understood. Metabolomic profiling provides a means to investigate microbial and human cell activity within diseased airways. However, variables in sample storage and shipping likely affect downstream analyses and standards for sample handling are lacking. Methods We assessed the impact of sample storage conditions on liquid chromatography mass spectrometry analysis of CF sputum samples. Results Significant changes in global metabolomic profiles occurred in samples stored at room temperature or at 4°C for longer than one day. Untargeted metabolomic profiles were stable in sputum samples stored at −20°C or −80°C for at least 28 days. Quorum sensing molecules and phenazines, both considered important to the in vivo activity of Pseudomonas during airway infection, were detected after sample storage at room temperature for five days. Conclusions Sputum samples can be stored at −20°C or −80°C for weeks with minimal effect on global metabolomic profiles. This observation provides guidance in designing metabolomic studies that have the potential to deepen our understanding of how airway microbial communities impact lung disease progression in CF. PMID:25725986

  13. Toxicological effects of cinnabar in rats by NMR-based metabolic profiling of urine and serum

    SciTech Connect

    Wei Lai; Liao Peiqiu; Wu Huifeng; Li Xiaojing Pei Fengkui Li Weisheng; Wu Yijie

    2008-03-15

    Cinnabar, an important traditional Chinese mineral medicine, has been widely used as a Chinese patent medicine ingredient for sedative therapy. However, the pharmaceutical and toxicological effects of cinnabar, especially in the whole organism, were subjected to few investigations. In this study, an NMR-based metabolomics approach has been applied to investigate the toxicological effects of cinnabar after intragastrical administration (dosed at 0.5, 2 and 5 g/kg body weight) on male Wistar rats. Liver and kidney histopathology examinations and serum clinical chemistry analyses were also performed. The {sup 1}H NMR spectra were analyzed using multivariate pattern recognition techniques to show the time- and dose-dependent biochemical variations induced by cinnabar. The metabolic signature of urinalysis from cinnabar-treated animals exhibited an increase in the levels of creatinine, acetate, acetoacetate, taurine, hippurate and phenylacetylglycine, together with a decrease in the levels of trimethyl-N-oxide, dimethylglycine and Kreb's cycle intermediates (citrate, 2-oxoglutarate and succinate). The metabolomics analyses of serum showed elevated concentrations of ketone bodies (3-D-hydroxybutyrate and acetoacetate), branched-chain amino acids (valine, leucine and isoleucine), choline and creatine as well as decreased glucose, lipids and lipoproteins from cinnabar-treated animals. These findings indicated cinnabar induced disturbance in energy metabolism, amino acid metabolism and gut microflora environment as well as slight injury in liver and kidney, which might indirectly result from cinnabar induced oxidative stress. This work illustrated the high reliability of NMR-based metabolomic approach on the study of the biochemical effects induced by traditional Chinese medicine.

  14. Metabolome profiling by HRMAS NMR spectroscopy of pheochromocytomas and paragangliomas detects SDH deficiency: clinical and pathophysiological implications.

    PubMed

    Imperiale, Alessio; Moussallieh, François-Marie; Roche, Philippe; Battini, Stéphanie; Cicek, A Ercument; Sebag, Frédéric; Brunaud, Laurent; Barlier, Anne; Elbayed, Karim; Loundou, Anderson; Bachellier, Philippe; Goichot, Bernard; Stratakis, Constantine A; Pacak, Karel; Namer, Izzie-Jacques; Taïeb, David

    2015-01-01

    Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of (1)H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy-based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2α), one SDHD variant of unknown significance, and two Carney triad (CTr)-related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non-SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate-low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of SDHx

  15. Metabolome Profiling by HRMAS NMR Spectroscopy of Pheochromocytomas and Paragangliomas Detects SDH Deficiency: Clinical and Pathophysiological Implications12

    PubMed Central

    Imperiale, Alessio; Moussallieh, François-Marie; Roche, Philippe; Battini, Stéphanie; Cicek, A. Ercument; Sebag, Frédéric; Brunaud, Laurent; Barlier, Anne; Elbayed, Karim; Loundou, Anderson; Bachellier, Philippe; Goichot, Bernard; Stratakis, Constantine A.; Pacak, Karel; Namer, Izzie-Jacques; Taïeb, David

    2015-01-01

    Succinate dehydrogenase gene (SDHx) mutations increase susceptibility to develop pheochromocytomas/paragangliomas (PHEOs/PGLs). In the present study, we evaluate the performance and clinical applications of 1H high-resolution magic angle spinning (HRMAS) nuclear magnetic resonance (NMR) spectroscopy–based global metabolomic profiling in a large series of PHEOs/PGLs of different genetic backgrounds. Eighty-seven PHEOs/PGLs (48 sporadic/23 SDHx/7 von Hippel-Lindau/5 REarranged during Transfection/3 neurofibromatosis type 1/1 hypoxia-inducible factor 2α), one SDHD variant of unknown significance, and two Carney triad (CTr)–related tumors were analyzed by HRMAS-NMR spectroscopy. Compared to sporadic, SDHx-related PHEOs/PGLs exhibit a specific metabolic signature characterized by increased levels of succinate (P < .0001), methionine (P = .002), glutamine (P = .002), and myoinositol (P < .0007) and decreased levels of glutamate (P < .0007), regardless of their location and catecholamine levels. Uniquely, ATP/ascorbate/glutathione was found to be associated with the secretory phenotype of PHEOs/PGLs, regardless of their genotype (P < .0007). The use of succinate as a single screening test retained excellent accuracy in distinguishing SDHx versus non–SDHx-related tumors (sensitivity/specificity: 100/100%). Moreover, the quantification of succinate could be considered a diagnostic alternative for assessing SDHx-related mutations of unknown pathogenicity. We were also able, for the first time, to uncover an SDH-like pattern in the two CTr-related PGLs. The present study demonstrates that HRMAS-NMR provides important information for SDHx-related PHEO/PGL characterization. Besides the high succinate–low glutamate hallmark, SDHx tumors also exhibit high values of methionine, a finding consistent with the hypermethylation pattern of these tumors. We also found important levels of glutamine, suggesting that glutamine metabolism might be involved in the pathogenesis of

  16. Profiling of spatial metabolite distributions in wheat leaves under normal and nitrate limiting conditions

    PubMed Central

    Allwood, J. William; Chandra, Surya; Xu, Yun; Dunn, Warwick B.; Correa, Elon; Hopkins, Laura; Goodacre, Royston; Tobin, Alyson K.; Bowsher, Caroline G.

    2015-01-01

    The control and interaction between nitrogen and carbon assimilatory pathways is essential in both photosynthetic and non-photosynthetic tissue in order to support metabolic processes without compromising growth. Physiological differences between the basal and mature region of wheat (Triticum aestivum) primary leaves confirmed that there was a change from heterotrophic to autotrophic metabolism. Fourier Transform Infrared (FT-IR) spectroscopy confirmed the suitability and phenotypic reproducibility of the leaf growth conditions. Principal Component–Discriminant Function Analysis (PC–DFA) revealed distinct clustering between base, and tip sections of the developing wheat leaf, and from plants grown in the presence or absence of nitrate. Gas Chromatography-Time of Flight/Mass Spectrometry (GC-TOF/MS) combined with multivariate and univariate analyses, and Bayesian network (BN) analysis, distinguished different tissues and confirmed the physiological switch from high rates of respiration to photosynthesis along the leaf. The operation of nitrogen metabolism impacted on the levels and distribution of amino acids, organic acids and carbohydrates within the wheat leaf. In plants grown in the presence of nitrate there was reduced levels of a number of sugar metabolites in the leaf base and an increase in maltose levels, possibly reflecting an increase in starch turnover. The value of using this combined metabolomics analysis for further functional investigations in the future are discussed. PMID:25680480

  17. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus.

    PubMed

    Devi, Kamalakshi; Mishra, Surajit K; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  18. Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

    PubMed Central

    Devi, Kamalakshi; Mishra, Surajit K.; Sahu, Jagajjit; Panda, Debashis; Modi, Mahendra K.; Sen, Priyabrata

    2016-01-01

    Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop. PMID:26877149

  19. Secondary metabolite profiles of leaves of healthy and huanglongbing-infected orange (Citrus sinensis L.) seedlings measured by HPLC-fluorescence detection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Leaves of greenhouse-grown ‘Hamlin’ and ‘Valencia’ orange (Citrus sinensis L.) seedlings were analyzed by high performance liquid chromatography in a study of the progression of changes in secondary metabolite profiles resulting from infection by Candidatus Liberibacter asiaticus (CLas), the Huanglo...

  20. Metabolic Profiling of Major Vitamin D Metabolites Using Diels-Alder Derivatization and Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biologically active forms of vitamin D are important analytical targets both in research and in clinical practice. Typically, each of the vitamin D metabolites is best analyzed by individual assay. However, current LC-MS technologies allow simultaneous metabolic profiling of entire biochemical pathw...

  1. Correlation-based network analysis of metabolite and enzyme profiles reveals a role of citrate biosynthesis in modulating N and C metabolism in zea mays

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their ...

  2. Erratum: Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry.

    PubMed

    2016-01-01

    A correction was made to: Transcript and Metabolite Profiling for the Evaluation of Tobacco Tree and Poplar as Feedstock for the Bio-based Industry. There was a spelling error in one of the authors' surname. The author's name was corrected from: Juan Pedro Navarro to: Juan Navarro-Aviñó. PMID:27387492

  3. Impacts of an Anti-androgen and an Androgen/anti-androgen Mixture on the Metabolite Profile of Male Fathead Minnow Urine

    EPA Science Inventory

    Male and female fathead minnows (FHM) were exposed via the water to cyproterone acetate (CA), a model androgen receptor (AR) antagonist. FHM were also exposed to 517b-trenbolone (TB), a model AR agonist, and to mixtures of TB with CA. The urine metabolite profile of male FHM ex...

  4. Plasma metabolite profiles following trauma-hemorrhage: effect of posttreatment with resveratrol.

    PubMed

    Wang, Yu-Ren; Tsai, Yung-Fong; Lau, Ying-Tung; Yu, Huang-Ping

    2015-02-01

    Resveratrol (RSV) has been shown to inhibit the inflammatory reaction and ameliorate the organ damage resulting from trauma-hemorrhage (TH). However, the effects of RSV on the metabolomic profiles under these conditions remain unclear. The aim of this study was to determine the metabolomic profiles of plasma in TH rats and to evaluate the therapeutic effects of RSV using high-performance liquid chromatography-mass spectrometry. Thirty male Sprague-Dawley rats were divided into sham operation (n = 10), sham-operation plus RSV treatment (n = 10), TH (n = 10), and TH plus RSV treatment (n = 10) groups. Plasma samples were obtained at 24 h after surgery. Electrospray ionization-tandem mass spectrometry was used to characterize the plasma metabolomes. The systemic analyses of plasma metabolomes and their targets were determined using a number of computational approaches, including principal component analysis, partial least squares discriminant analysis, and heat map analysis. Using these methods, the effects of RSV on the metabolomic profiles in animals that underwent trauma-hemorrhagic injury were determined. These approaches allowed a clear discrimination of the pathophysiological characteristics among the groups. The results demonstrate RSV treatment significantly reduced the metabolic derangements caused by TH. Compared with the sham-operated rats, the plasma levels of carnitine in the TH rats were relatively lower, but the levels of acetylcarnitine and butyrylcarnitine were higher, suggesting that RSV ameliorated the deranged carnitine metabolism in TH rats. There was a statistically significant increase in carnitine. In addition, RSV treatment reduced ketoacidosis and protein degradation, as evidenced by the attenuation of the elevated plasma branched-chain amino acid levels in the TH rats. Our study showed that the alterations of the metabolomic profiles in the rats subjected to trauma-hemorrhagic shock were attenuated by RSV treatment. In view of the

  5. Metabolite profiles of rats in repeated dose toxicological studies after oral and inhalative exposure.

    PubMed

    Fabian, E; Bordag, N; Herold, M; Kamp, H; Krennrich, G; Looser, R; Ma-Hock, L; Mellert, W; Montoya, G; Peter, E; Prokudin, A; Spitzer, M; Strauss, V; Walk, T; Zbranek, R; van Ravenzwaay, B

    2016-07-25

    The MetaMap(®)-Tox database contains plasma-metabolome and toxicity data of rats obtained from oral administration of 550 reference compounds following a standardized adapted OECD 407 protocol. Here, metabolic profiles for aniline (A), chloroform (CL), ethylbenzene (EB), 2-methoxyethanol (ME), N,N-dimethylformamide (DMF) and tetrahydrofurane (THF), dosed inhalatively for six hours/day, five days a week for 4 weeks were compared to oral dosing performed daily for 4 weeks. To investigate if the oral and inhalative metabolome would be comparable statistical analyses were performed. Best correlations for metabolome changes via both routes of exposure were observed for toxicants that induced profound metabolome changes. e.g. CL and ME. Liver and testes were correctly identified as target organs. In contrast, route of exposure dependent differences in metabolic profiles were noted for low profile strength e.g. female rats dosed inhalatively with A or THF. Taken together, the current investigations demonstrate that plasma metabolome changes are generally comparable for systemic effects after oral and inhalation exposure. Differences may result from kinetics and first pass effects. For compounds inducing only weak changes, the differences between both routes of exposure are visible in the metabolome. PMID:27153797

  6. Evaluation of glycosylation and malonylation patterns in flavonoid glycosides during LC/MS/MS metabolite profiling.

    PubMed

    Kachlicki, P; Einhorn, J; Muth, D; Kerhoas, L; Stobiecki, M

    2008-05-01

    Flavonoid conjugates constitute several classes of plant phenolic secondary metabolites including many isomeric compounds differing in the hydroxylation pattern and substitution of their rings with different groups such as alkyls, acyls or sugars. These compounds occur in plant tissues mainly as glycosides and in many cases it is necessary to have reliable and detailed information concerning the structure of these natural products. Our results were obtained using leaf extracts of Arabidopsis thaliana and Lupinus angustifolius in which different glycosides of flavones, flavonols and isoflavones are present. Analysis of collision-induced dissociation (CID)/MS/MS spectra of protonated [M + H](+), sodiated [M + Na](+) or deprotonated [M - H](-) molecules recorded during HPLC runs may bring needed information in this respect. However, registration of mass spectra of [M + Na](+) ions with a good efficiency is possible only after post-column addition of a sodium acetate solution to the LC column eluate. The retention of sodium cation on the saccharidic parts of the molecule is observed after the CID fragmentation. In many cases, the location of this cation on the glycan attached to C-3 hydroxyl group of flavonol led to assignment of its structure. Additionally, the determination of the structure of the aglycone and of the sequence of the glycan part was made possible through the CID data obtained from the [M + H](+) and [M - H](-) ions. CID spectra show a different order of sugar elimination from hydroxyl groups at C-3 and C-7 in flavonol glycosides isolated from A. thaliana leaves and give sufficient information to discriminate flavonoid O-diglycosides from flavonoid di-O-glycosides. PMID:18074333

  7. Capitate glandular trichomes in Aldama discolor (Heliantheae - Asteraceae): morphology, metabolite profile and sesquiterpene biosynthesis.

    PubMed

    Bombo, A B; Appezzato-da-Glória, B; Aschenbrenner, A-K; Spring, O

    2016-05-01

    The capitate glandular trichome is the most common type described in Asteraceae species. It is known for its ability to produce various plant metabolites of ecological and economic importance, among which sesquiterpene lactones are predominant. In this paper, we applied microscopy, phytochemical and molecular genetics techniques to characterise the capitate glandular trichome in Aldama discolor, a native Brazilian species of Asteraceae, with pharmacological potential. It was found that formation of trichomes on leaf primordia of germinating seeds starts between 24 h and 48 h after radicle growth indicates germination. The start of metabolic activity of trichomes was indicated by separation of the cuticle from the cell wall of secretory cells at the trichome tip after 72 h. This coincided with the accumulation of budlein A, the major sesquiterpene lactone of A. discolor capitate glandular trichomes, in extracts of leaf primordia after 96 h. In the same timeframe of 72-96 h post-germination, gene expression studies showed up-regulation of the putative germacrene A synthase (pGAS2) and putative germacrene A oxidase (pGAO) of A. discolor in the transcriptome of these samples, indicating the start of sesquiterpene lactone biosynthesis. Sequencing of the two genes revealed high similarity to HaGAS and HaGAO from sunflower, which shows that key steps of this pathway are highly conserved. The processes of trichome differentiation, metabolic activity and genetic regulation in A. discolor and in sunflower appear to be typical for other species of the subtribe Helianthinae. PMID:26642998

  8. Postprandial metabolite profiles reveal differential nutrient handling after bariatric surgery compared to matched caloric restriction

    PubMed Central

    Khoo, Chin Meng; Muehlbauer, Michael J.; Stevens, Robert D.; Pamuklar, Zehra; Chen, Jiegen; Newgard, Christopher B.; Torquati, Alfonso

    2013-01-01

    Background Roux-en-Y gastric bypass (RYGB) surgery results in exaggerated postprandial insulin and incretin responses, and increased susceptibility to hypoglycemia. We examined whether these features are due to caloric restriction (CR) or altered nutrient handling. Methods We performed comprehensive analysis of postprandial metabolite responses during a 2-hour mixed-meal challenge test (MMT) in twenty morbidly obese subjects with type 2 diabetes who underwent RYGB surgery or matched CR. Acylcarnitines and amino acids was measured using targeted mass spectrometry. Linear mixed model was used to determine the main effect of interventions, and interaction term to assess the effect of interventions on postprandial kinetics. Results Two-weeks after these interventions, several gut hormones (insulin, GIP and GLP-1), glucose, and multiple amino acids, including branched-chain and aromatic species, exhibited a more rapid rate of appearance and clearance in RYGB subjects compared to CR during the MMT. In the RYGB group, changes in leucine/isoleucine, methionine, phenylalanine and GLP-1 responses were associated with changes in insulin response. Levels of alanine, pyruvate, and lactate decreased significantly at the later stages of meal challenge in RYGB subjects, but increased with CR. Conclusions RYGB surgery results in improved metabolic flexibility (i.e. greater disposal of glucose and amino acids, and more complete β-oxidation of fatty acids) compared to CR. The changes in the amino acid kinetics may augment the hormonal responses seen after RYGB surgery. The reduction in key gluconeogenic substrates in the postprandial state may contribute to increased susceptibility to hypoglycemic symptoms in RYGB subjects. PMID:23787216

  9. Glucocorticoid Clearance and Metabolite Profiling in an In Vitro Human Airway Epithelium Lung Model.

    PubMed

    Rivera-Burgos, Dinelia; Sarkar, Ujjal; Lever, Amanda R; Avram, Michael J; Coppeta, Jonathan R; Wishnok, John S; Borenstein, Jeffrey T; Tannenbaum, Steven R

    2016-02-01

    The emergence of microphysiologic epithelial lung models using human cells in a physiologically relevant microenvironment has the potential to be a powerful tool for preclinical drug development and to improve predictive power regarding in vivo drug clearance. In this study, an in vitro model of the airway comprising human primary lung epithelial cells cultured in a microfluidic platform was used to establish a physiologic state and to observe metabolic changes as a function of glucocorticoid exposure. Evaluation of mucus production rate and barrier function, along with lung-specific markers, demonstrated that the lungs maintained a differentiated phenotype. Initial concentrations of 100 nM hydrocortisone (HC) and 30 nM cortisone (C) were used to evaluate drug clearance and metabolite production. Measurements made using ultra-high-performance liquid chromatography and high-mass-accuracy mass spectrometry indicated that HC metabolism resulted in the production of C and dihydrocortisone (diHC). When the airway model was exposed to C, diHC was identified; however, no conversion to HC was observed. Multicompartmental modeling was used to characterize the lung bioreactor data, and pharmacokinetic parameters, including elimination clearance and elimination half-life, were estimated. Polymerse chain reaction data confirmed overexpression of 11-β hydroxysteroid dehydrogenase 2 (11βHSD2) over 11βHSD1, which is biologically relevant to human lung. Faster metabolism was observed relative to a static model on elevated rates of C and diHC formation. Overall, our results demonstrate that this lung airway model has been successfully developed and could interact with other human tissues in vitro to better predict in vivo drug behavior. PMID:26586376

  10. Accumulation profiles of parabens and their metabolites in fish, black bear, and birds, including bald eagles and albatrosses.

    PubMed

    Xue, Jingchuan; Kannan, Kurunthachalam

    2016-09-01

    Although several studies have reported the ubiquitous occurrence of parabens in human specimens and the environment, little is known about the accumulation of these estrogenic chemicals in fish and birds. In this study, accumulation profiles of six parabens and their metabolites were determined in 254 tissue (including liver, kidney, egg, and plasma) samples from 12 species of fish and seven species of birds collected from inland, coastal, and remote aquatic ecosystems. In addition, liver and kidney tissues from black bears were analyzed. Methyl paraben (MeP) was found in a majority of the tissues, with the highest concentration (796ng/g (wet weight [wet wt])) found in the liver of a bald eagle from Michigan. 4-Hydroxy benzoate (HB) was the major metabolite, found in 91% of the tissue samples analyzed at concentrations as high as 68,600ng/g, wet wt, which was found in the liver of a white-tailed sea eagle from the Baltic Sea coast. The accumulation pattern of MeP and 4-HB varied, depending on the species. The mean concentrations of MeP measured in fishes from Michigan, New York, and Florida waters were <2.01 (fillet), 152 (liver), and 32.0 (liver) ng/g, wet wt, respectively, and the corresponding 4-HB concentrations were 39.5, 10,500, and 642ng/g, wet wt. The mean hepatic and renal concentrations of 4-HB in black bears were 1,720 and 1,330ng/g, wet wt, respectively. The concentrations of MeP and 4-HB were significantly positively correlated with each other in various tissues and species, which suggested a common source of exposure to these compounds in fish and birds. Trace concentrations of MeP and 4-HB also were found in the tissues of albatrosses from Midway Atoll, Northwestern Pacific Ocean, which suggested widespread distribution of these compounds in the marine environment. PMID:27329692

  11. Metabolite profiling of symbiont and host during thermal stress and bleaching in a model cnidarian-dinoflagellate symbiosis.

    PubMed

    Hillyer, Katie E; Tumanov, Sergey; Villas-Bôas, Silas; Davy, Simon K

    2016-02-01

    Bleaching (dinoflagellate symbiont loss) is one of the greatest threats facing coral reefs. The functional cnidarian-dinoflagellate symbiosis, which forms coral reefs, is based on the bi-directional exchange of nutrients. During thermal stress this exchange breaks down; however, major gaps remain in our understanding of the roles of free metabolite pools in symbiosis and homeostasis. In this study we applied gas chromatography-mass spectrometry (GC-MS) to explore thermally induced changes in intracellular pools of amino and non-amino organic acids in each partner of the model sea anemone Aiptasia sp. and its dinoflagellate symbiont. Elevated temperatures (32 °C for 6 days) resulted in symbiont photoinhibition and bleaching. Thermal stress induced distinct changes in the metabolite profiles of both partners, associated with alterations to central metabolism, oxidative state, cell structure, biosynthesis and signalling. Principally, we detected elevated pools of polyunsaturated fatty acids (PUFAs) in the symbiont, indicative of modifications to lipogenesis/lysis, membrane structure and nitrogen assimilation. In contrast, reductions of multiple PUFAs were detected in host pools, indicative of increased metabolism, peroxidation and/or reduced translocation of these groups. Accumulations of glycolysis intermediates were also observed in both partners, associated with photoinhibition and downstream reductions in carbohydrate metabolism. Correspondingly, we detected accumulations of amino acids and intermediate groups in both partners, with roles in gluconeogenesis and acclimation responses to oxidative stress. These data further our understanding of cellular responses to thermal stress in the symbiosis and generate hypotheses relating to the secondary roles of a number of compounds in homeostasis and heat-stress resistance. PMID:26685173

  12. Pharmacokinetic profiles of netobimin metabolites after oral administration of zwitterion and trisamine formulations of netobimin to cattle.

    PubMed

    Lanusse, C E; Trudeau, C; Ranjan, S; Prichard, R K

    1991-03-01

    Pharmacokinetic profiles of the major metabolites of netobimin were investigated in calves after oral administration of the compound (20 mg/kg) as a zwitterion suspension and trisamine salt solution in a two-way cross-over design. Blood samples were taken serially over a 72-h period and plasma was analysed by HPLC for netobimin (NTB) and its metabolites, including albendazole (ABZ), albendazole sulphoxide (ABZSO) and albendazole sulphone (ABZSO2). NTB was occasionally detected in plasma between 0.5 and 1.0 h post-treatment. ABZ was not detectable at any time. ABZSO was detected from 0.5-0.75 h up to 32 h post-administration, with a Cmax for the zwitterion suspension of 1.21 +/- 0.13 micrograms/ml and AUC of 18.55 +/- 1.45 micrograms.h/ml, respectively, which were significantly higher (P less than 0.01) than the Cmax (0.67 +/- 0.12 micrograms/ml) and AUC (8.57 +/- 0.91 micrograms.h/ml) for the trisamine solution. ABZSO2 was detected in plasma between 0.75 and 48 h post-administration. The zwitterion suspension resulted in a Cmax (2.91 +/- 0.10 micrograms/ml) and AUC (51.67 +/- 1.95 micrograms.h/ml) for ABZSO2, which were significantly higher (P less than 0.01) than those obtained for the trisamine solution (Cmax = 1.67 +/- 0.11 micrograms/ml and AUC = 22.77 +/- 1.09 micrograms.h/ml). The ratio of AUC for ABZSO2/ABZSO was 2.92 +/- 0.26 (zwitterion) and 2.80 +/- 0.20 (trisamine). The MRT for ABZSO2 was significantly longer (P less than 0.01) after treatment with the zwitterion suspension than after treatment with the trisamine solution.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2038091

  13. Metabolite profiling of licorice (Glycyrrhiza glabra) from different locations using comprehensive two-dimensional liquid chromatography coupled to diode array and tandem mass spectrometry detection.

    PubMed

    Montero, Lidia; Ibáñez, Elena; Russo, Mariateresa; di Sanzo, Rosa; Rastrelli, Luca; Piccinelli, Anna Lisa; Celano, Rita; Cifuentes, Alejandro; Herrero, Miguel

    2016-03-24

    Profiling of the main metabolites from several licorice (Glycyrrhiza glabra) samples collected at different locations is carried out in this work by using comprehensive two-dimensional liquid chromatography (LC × LC) coupled to diode array (DAD) and mass spectrometry (MS) detectors. The optimized method was based on the application of a HILIC-based separation in the first dimension combined with fast RP-based second dimension separation. This set-up was shown to possess powerful separation capabilities allowing separating as much as 89 different metabolites in a single sample. Identification and grouping of metabolites according to their chemical class were achieved using the DAD, MS and MS/MS data. Triterpene saponins were the most abundant metabolites followed by glycosylated flavanones and chalcones, whereas glycyrrhizic acid, as expected, was confirmed as the main component in all the studied samples. LC × LC-DAD-MS/MS was able to resolve these complex licorice samples providing with specific metabolite profiles to the different licorice samples depending on their geographical origin. Namely, from 19 to 50 specific compounds were exclusively determined in the 2D-chromatograms from the different licorice samples depending on their geographical origin, which can be used as a typical pattern that could potentially be related to their geographical location and authentication. PMID:26944999

  14. Metabolic Profiling of Alpine and Ecuadorian Lichens.

    PubMed

    Mittermeier, Verena K; Schmitt, Nicola; Volk, Lukas P M; Suárez, Juan Pablo; Beck, Andreas; Eisenreich, Wolfgang

    2015-01-01

    Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis. PMID:26437395

  15. Metabolomic Characterization of Knockout Mutants in Arabidopsis: Development of a Metabolite Profiling Database for Knockout Mutants in Arabidopsis1[W][OPEN

    PubMed Central

    Fukushima, Atsushi; Kusano, Miyako; Mejia, Ramon Francisco; Iwasa, Mami; Kobayashi, Makoto; Hayashi, Naomi; Watanabe-Takahashi, Akiko; Narisawa, Tomoko; Tohge, Takayuki; Hur, Manhoi; Wurtele, Eve Syrkin; Nikolau, Basil J.; Saito, Kazuki

    2014-01-01

    Despite recent intensive research efforts in functional genomics, the functions of only a limited number of Arabidopsis (Arabidopsis thaliana) genes have been determined experimentally, and improving gene annotation remains a major challenge in plant science. As metabolite profiling can characterize the metabolomic phenotype of a genetic perturbation in the plant metabolism, it provides clues to the function(s) of genes of interest. We chose 50 Arabidopsis mutants, including a set of characterized and uncharacterized mutants, that resemble wild-type plants. We performed metabolite profiling of the plants using gas chromatography-mass spectrometry. To make the data set available as an efficient public functional genomics tool for hypothesis generation, we developed the Metabolite Profiling Database for Knock-Out Mutants in Arabidopsis (MeKO). It allows the evaluation of whether a mutation affects metabolism during normal plant growth and contains images of mutants, data on differences in metabolite accumulation, and interactive analysis tools. Nonprocessed data, including chromatograms, mass spectra, and experimental metadata, follow the guidelines set by the Metabolomics Standards Initiative and are freely downloadable. Proof-of-concept analysis suggests that MeKO is highly useful for the generation of hypotheses for genes of interest and for improving gene annotation. MeKO is publicly available at http://prime.psc.riken.jp/meko/. PMID:24828308

  16. Low-gradient single-sided NMR sensor for one-shot profiling of human skin.

    PubMed

    Van Landeghem, Maxime; Danieli, Ernesto; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2012-02-01

    This paper describes a shimming approach useful to reduce the gradient strength of the magnetic field generated by single-sided sensors simultaneously maximizing its uniformity along the lateral directions of the magnet. In this way, the thickness of the excited sensitive volume can be increased without compromising the depth resolution of the sensor. By implementing this method on a standard U-shaped magnet, the gradient strength was reduced one order of magnitude. In the presence of a gradient of about 2 T/m, slices of 2mm could be profiled with a resolution that ranges from 25 μm at the center of the slice to 50 μm at the borders. This sensor is of particular advantage for applications, where the scanning range is of the order of the excited slice. In those cases, the full profile is measured in a single excitation experiment, eliminating the need for repositioning the excited slice across the depth range to complete the profile as occurs with standard high gradient sensors. Besides simplifying the experimental setup, the possibility to move from a point-by-point measurement to the simultaneous acquisition of the full profile led to the shortening of the experimental time. A further advantage of performing the experiment under a smaller static gradient is a reduction of the diffusion attenuation affecting the signal decay measured with a CPMG sequence, making it possible to measure the T(2) of samples with high diffusivity (comparable to the water diffusivity). The performance of the sensor in terms of resolution and sensitivity is first evaluated and compared with conventional singled-sided sensors of higher gradient strength using phantoms of known geometry and relaxation times. Then, the device is used to profile the structure of human skin in vivo. To understand the contrast between the different skin layers, the distribution of relaxation times T(2) and diffusion coefficients is spatially resolved along the depth direction. PMID:22244451

  17. Low-gradient single-sided NMR sensor for one-shot profiling of human skin

    NASA Astrophysics Data System (ADS)

    Van Landeghem, Maxime; Danieli, Ernesto; Perlo, Juan; Blümich, Bernhard; Casanova, Federico

    2012-02-01

    This paper describes a shimming approach useful to reduce the gradient strength of the magnetic field generated by single-sided sensors simultaneously maximizing its uniformity along the lateral directions of the magnet. In this way, the thickness of the excited sensitive volume can be increased without compromising the depth resolution of the sensor. By implementing this method on a standard U-shaped magnet, the gradient strength was reduced one order of magnitude. In the presence of a gradient of about 2 T/m, slices of 2 mm could be profiled with a resolution that ranges from 25 μm at the center of the slice to 50 μm at the borders. This sensor is of particular advantage for applications, where the scanning range is of the order of the excited slice. In those cases, the full profile is measured in a single excitation experiment, eliminating the need for repositioning the excited slice across the depth range to complete the profile as occurs with standard high gradient sensors. Besides simplifying the experimental setup, the possibility to move from a point-by-point measurement to the simultaneous acquisition of the full profile led to the shortening of the experimental time. A further advantage of performing the experiment under a smaller static gradient is a reduction of the diffusion attenuation affecting the signal decay measured with a CPMG sequence, making it possible to measure the T2 of samples with high diffusivity (comparable to the water diffusivity). The performance of the sensor in terms of resolution and sensitivity is first evaluated and compared with conventional singled-sided sensors of higher gradient strength using phantoms of known geometry and relaxation times. Then, the device is used to profile the structure of human skin in vivo. To understand the contrast between the different skin layers, the distribution of relaxation times T2 and diffusion coefficients is spatially resolved along the depth direction.

  18. High throughput volatile fatty acid skin metabolite profiling by thermal desorption secondary electrospray ionisation mass spectrometry.

    PubMed

    Martin, Helen J; Reynolds, James C; Riazanskaia, Svetlana; Thomas, C L Paul

    2014-09-01

    The non-invasive nature of volatile organic compound (VOC) sampling from skin makes this a priority in the development of new screening and diagnostic assays. Evaluation of recent literature highlights the tension between the analytical utility of ambient ionisation approaches for skin profiling and the practicality of undertaking larger campaigns (higher statistical power), or undertaking research in remote locations. This study describes how VOC may be sampled from skin and recovered from a polydimethylsilicone sampling coupon and analysed by thermal desorption (TD) interfaced to secondary electrospray ionisation (SESI) time-of-flight mass spectrometry (MS) for the high throughput screening of volatile fatty acids (VFAs) from human skin. Analysis times were reduced by 79% compared to gas chromatography-mass spectrometry methods (GC-MS) and limits of detection in the range 300 to 900 pg cm(-2) for VFA skin concentrations were obtained. Using body odour as a surrogate model for clinical testing 10 Filipino participants, 5 high and 5 low odour, were sampled in Manilla and the samples returned to the UK and screened by TD-SESI-MS and TD-GC-MS for malodour precursors with greater than >95% agreement between the two analytical techniques. Eight additional VFAs were also identified by both techniques with chains 4 to 15 carbons long being observed. TD-SESI-MS appears to have significant potential for the high throughput targeted screening of volatile biomarkers in human skin. PMID:24992564

  19. Rapid LC-MS Drug Metabolite Profiling Using Microsomal Enzyme Bioreactors in a Parallel Processing Format

    PubMed Central

    Bajrami, Besnik; Zhao, Linlin; Schenkman, John B.; Rusling, James F.

    2009-01-01

    Silica nanoparticle bioreactors featuring thin films of enzymes and polyions were utilized in a novel high-throughput 96-well plate format for drug metabolism profiling. The utility of the approach was illustrated by investigating the metabolism of the drugs diclofenac (DCF), troglitazone (TGZ) and raloxifene, for which we observed known metabolic oxidation and bioconjugation pathways and turnover rates. A broad range of enzymes was included by utilizing human liver (HLM), rat liver (RLM) and bicistronic human-cyt P450 3A4 (bicis.-3A4) microsomes as enzyme sources. This parallel approach significantly shortens sample preparation steps compared to an earlier manual processing with nanoparticle bioreactors, allowing a range of significant enzyme reactions to be processed simultaneously. Enzyme turnover rates using the microsomal bioreactors were 2-3 fold larger compared to using conventional microsomal dispersions, most likely because of better accessibility of the enzymes. Ketoconazole (KET) and quinidine (QIN), substrates specific to cyt P450 3A enzymes, were used to demonstrate applicability to establish potentially toxic drug-drug interactions involving enzyme inhibition and acceleration. PMID:19904994

  20. Extraction of alkaloids for NMR-based profiling: exploratory analysis of an archaic Cinchona bark collection.

    PubMed

    Yilmaz, Ali; Nyberg, Nils T; Jaroszewski, Jerzy W

    2012-11-01

    A museum collection of Cinchonae cortex samples (n = 117), from the period 1850-1950, was extracted with a mixture of chloroform-d1, methanol-d4, water-d2, and perchloric acid in the ratios 5 : 5 : 1 : 1. The extracts were directly analyzed using 1H NMR spectroscopy (600 MHz) and the spectra evaluated using principal component analysis (PCA) and total statistical correlation spectroscopy (STOCSY). A new method called STOCSY-CA, where CA stands for component analysis, is described, and an analysis using this method is presented. It was found that the samples had a rather homogenous content of the well-known cinchona alkaloids quinine, cinchonine, and cinchonidine without any apparent clustering. Signals from analogues were detected but not in substantial amounts. The main variation was related to the absolute amounts of extracted alkaloids, which was attributed to the evolution of the Cinchona tree cultivation during the period in which the samples were collected. PMID:23059630

  1. (31)P NMR phospholipid profiling of soybean emulsion recovered from aqueous extraction.

    PubMed

    Yao, Linxing; Jung, Stephanie

    2010-04-28

    The quantity and composition of phospholipids in full-fat soybean flour, flakes, and extruded flakes and in the cream fraction recovered after aqueous extraction (AEP) and enzyme-assisted aqueous extraction (EAEP) of these substrates were studied with (31)P NMR. Extruded flakes had significantly more phosphatidic acid (PA) than flakes and flour prior to aqueous extraction. The PA content of the cream recovered after AEP and EAEP of extruded flakes was similar to that of the starting material, whereas the PA content of the creams from flour and flakes significantly increased. Changes in the PA content could be explained by the action of phospholipase D during the processing step and aqueous extraction. Total phospholipids in the oil recovered from the creams varied from 0.09 to 0.75%, and free oil yield, which is an indicator of cream stability, varied from 6 to 78%. Total phospholipid did not correlate with emulsion stability when it was lower than 0.20%. Inactivation of phospholipase D prior to aqueous extraction of flour resulted in a cream emulsion less stable toward enzymatic demulsification and containing less PA and total phospholipids than untreated flour. The phospholipid distributions in the cream, skim, and insolubles obtained from AEP flour were 7, 51, and 42%, respectively. PMID:20329795

  2. Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds

    PubMed Central

    Price, Elliott J.; Wilkin, Paul; Sarasan, Viswambharan; Fraser, Paul D.

    2016-01-01

    Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds. PMID:27385275

  3. Metabolite profile, antioxidant capacity, and inhibition of digestive enzymes in infusions of peppermint (Mentha piperita) grown under drought stress.

    PubMed

    Figueroa-Pérez, Marely G; Rocha-Guzmán, Nuria Elizabeth; Pérez-Ramírez, Iza F; Mercado-Silva, Edmundo; Reynoso-Camacho, Rosalía

    2014-12-10

    Peppermint (Mentha piperita) infusions represent an important source of antioxidants, which can be enhanced by inducing abiotic stress in plants. The aim of this study was to evaluate the effect of drought stress on peppermint cultivation as well as the metabolite profile, antioxidant capacity, and inhibition of digestive enzymes of resulting infusions. At 45 days after planting, irrigation was suppressed until 85 (control), 65, 35, 24, and 12% soil moisture (SM) was reached. The results showed that 35, 24, and 12% SM decreased fresh (20%) and dry (5%) weight. The 35 and 24% SM treatments significantly increased total phenolic and flavonoid contents as well as antioxidant capacity. Coumaric acid, quercetin, luteolin, and naringenin were detected only in some drought treatments; however, in these infusions, fewer amino acids and unsaturated fatty acids were identified. The 24 and 12% SM treatments slightly improved inhibition of pancreatic lipase and α-amylase activity. Therefore, induction of moderate water stress in peppermint is recommended to enhance its biological properties. PMID:25439559

  4. LC/MS-based polar metabolite profiling reveals gender differences in serum from patients with myocardial infarction.

    PubMed

    Lee, Jueun; Jung, Youngae; Park, Ju Yeon; Lee, Sang-Hak; Ryu, Do Hyun; Hwang, Geum-Sook

    2015-11-10

    Myocardial infarction (MI), a leading cause of death worldwide, results from prolonged myocardial ischemia with necrosis of myocytes due to a blood supply obstruction to an area of the heart. Many studies have reported gender-related differences in the clinical features of MI, but the reasons for these differences remain unclear. In this study, we applied ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) and various statistical methods-such as multivariate, pathway, and correlation analyses-to identify gender-specific metabolic patterns in polar metabolites in serum from healthy individuals and patients with MI. Patients with diagnosed MI (n=68), and age- and body mass index-matched healthy individuals (n=68), were included in this study. The partial least-squares discriminant analysis (PLS-DA) model was generated from metabolic profiling data, and the score plots showed a significant gender-related difference in patients with MI. Many pathways were associated with amino acids and purines; amino acids, acylcarnitines, and purines differed significantly between male and female patients with MI. This approach could be utilized to observe gender-specific metabolic pattern differences between healthy controls and patients with MI. PMID:26299524

  5. Metabolite profiling of Dioscorea (yam) species reveals underutilised biodiversity and renewable sources for high-value compounds.

    PubMed

    Price, Elliott J; Wilkin, Paul; Sarasan, Viswambharan; Fraser, Paul D

    2016-01-01

    Yams (Dioscorea spp.) are a multispecies crop with production in over 50 countries generating ~50 MT of edible tubers annually. The long-term storage potential of these tubers is vital for food security in developing countries. Furthermore, many species are important sources of pharmaceutical precursors. Despite these attributes as staple food crops and sources of high-value chemicals, Dioscorea spp. remain largely neglected in comparison to other staple tuber crops of tropical agricultural systems such as cassava (Manihot esculenta) and sweet potato (Ipomoea batatas). To date, studies have focussed on the tubers or rhizomes of Dioscorea, neglecting the foliage as waste. In the present study metabolite profiling procedures, using GC-MS approaches, have been established to assess biochemical diversity across species. The robustness of the procedures was shown using material from the phylogenetic clades. The resultant data allowed separation of the genotypes into clades, species and morphological traits with a putative geographical origin. Additionally, we show the potential of foliage material as a renewable source of high-value compounds. PMID:27385275

  6. Metabolite profiling of mizuna ( Brassica rapa L. var. Nipponsinica) to evaluate the effects of organic matter amendments.

    PubMed

    Watanabe, Ayano; Okazaki, Keiki; Watanabe, Toshihiro; Osaki, Mitsuru; Shinano, Takuro

    2013-02-01

    Organic matter amendment is an essential agricultural protocol to improve soil function and carbon sequestration. However, the effect of organic matter amendments on crop quality has not been well-defined. This study applied gas chromatography-mass spectrometry to investigate the metabolite profiling of mizuna ( Brassica rapa L. var. Nipponsinica) with different organic matter amendments with respect to quality and quantity. Principal component analysis showed that 33.4, 15.6, and 6.6% of the total variance was attributable to the plant N concentration, fast-release organic fertilizer (fish cake), chicken droppings), and rapeseed cake), and manure application (fresh and dried), respectively. The peak areas of 18 and 15 compounds were significantly altered under organic fertilizer and manure amendment, respectively, compared with pure chemical fertilizer amendment. The compounds altered with manure amendment were similar to those reported in previous studies using other species. This study is the first to show clear metabolic alterations in plants through the amendment of fast-release organic fertilizer. Mizuna is a unique plant species that responds to both organic fertilizer and manure. These observations are useful to clarify the effect of organic matter amendment and quality control in farming systems using organic matter. PMID:23244647

  7. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between Cabernet Sauvignon and Shiraz cultivars at branching points in the polyphenol pathway

    PubMed Central

    2014-01-01

    Background Grapevine berries undergo complex biochemical changes during fruit maturation, many of which are dependent upon the variety and its environment. In order to elucidate the varietal dependent developmental regulation of primary and specialized metabolism, berry skins of Cabernet Sauvignon and Shiraz were subjected to gas chromatography–mass spectrometry (GC-MS) and liquid chromatography–mass spectrometry (LC-MS) based metabolite profiling from pre-veraison to harvest. The generated dataset was augmented with transcript profiling using RNAseq. Results The analysis of the metabolite data revealed similar developmental patterns of change in primary metabolites between the two cultivars. Nevertheless, towards maturity the extent of change in the major organic acid and sugars (i.e. sucrose, trehalose, malate) and precursors of aromatic and phenolic compounds such as quinate and shikimate was greater in Shiraz compared to Cabernet Sauvignon. In contrast, distinct directional projections on the PCA plot of the two cultivars samples towards maturation when using the specialized metabolite profiles were apparent, suggesting a cultivar-dependent regulation of the specialized metabolism. Generally, Shiraz displayed greater upregulation of the entire polyphenol pathway and specifically higher accumulation of piceid and coumaroyl anthocyanin forms than Cabernet Sauvignon from veraison onwards. Transcript profiling revealed coordinated increased transcript abundance for genes encoding enzymes of committing steps in the phenylpropanoid pathway. The anthocyanin metabolite profile showed F3′5′H-mediated delphinidin-type anthocyanin enrichment in both varieties towards maturation, consistent with the transcript data, indicating that the F3′5′H-governed branching step dominates the anthocyanin profile at late berry development. Correlation analysis confirmed the tightly coordinated metabolic changes during development, and suggested a source-sink relation between

  8. HPLC-DAD and HPLC-ESI-MS/MS methods for metabolite profiling of propolis extracts.

    PubMed

    Pellati, Federica; Orlandini, Giulia; Pinetti, Diego; Benvenuti, Stefania

    2011-07-15

    In this study, the composition of polyphenols (phenolic acids and flavonoids) in propolis extracts was investigated by HPLC-DAD and HPLC-ESI-MS/MS by comparing the performance of ion trap and triple quadrupole mass analyzers. The analyses were carried out on an Ascentis C(18) column (250mm×4.6mm I.D., 5μm), with a mobile phase composed by 0.1% formic acid in water and acetonitrile. Overall, the UV spectra, the MS and MS/MS data allowed the identification of 40 compounds. In the case of flavonoids, the triple quadrupole mass analyzer provided more collision energy if compared with the ion trap, originating product ions at best sensitivity. The HPLC method was validated in agreement with ICH guidelines: the correlation coefficients were >0.998; the limit of detection was in the range 1.6-4.6μg/ml; the recovery range was 96-105%; the intra- and inter-day %RSD values for retention times and peak areas were found to be <0.3 and 1.9%, respectively. The developed technique was applied to the analysis of hydroalcoholic extracts of propolis available on the Italian market. Although the chromatographic profile of the analyzed samples was similar, the quantitative analysis indicated that there is a great variability in the amount of the active compounds: the content of total phenolic acids ranged from 0.17 to 16.67mg/ml and the level of total flavonoids from 2.48 to 41.10mg/ml. The proposed method can be considered suitable for the phytochemical analysis of propolis extracts used in phytotherapy. PMID:21497475

  9. In Vivo Profiling and Distribution of Known and Novel Phase I and Phase II Metabolites of Efavirenz in Plasma, Urine, and Cerebrospinal Fluid.

    PubMed

    Aouri, Manel; Barcelo, Catalina; Ternon, Béatrice; Cavassini, Matthias; Anagnostopoulos, Alexia; Yerly, Sabine; Hugues, Henry; Vernazza, Pietro; Günthard, Huldrych F; Buclin, Thierry; Telenti, Amalio; Rotger, Margalida; Decosterd, Laurent A

    2016-01-01

    Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies. PMID:26553012

  10. Uniform procedure of (1)H NMR analysis of rat urine and toxicometabonomics Part II: comparison of NMR profiles for classification of hepatotoxicity.

    PubMed

    Schoonen, Willem G E J; Kloks, Cathelijne P A M; Ploemen, Jan-Peter H T M; Smit, Martin J; Zandberg, Pieter; Horbach, G Jean; Mellema, Jan-Remt; Thijssen-Vanzuylen, Carol; Tas, Albert C; van Nesselrooij, Joop H J; Vogels, Jack T W E

    2007-07-01

    A procedure of nuclear magnetic resonance (NMR) urinalysis using pattern recognition is proposed for early detection of toxicity of investigational compounds in rats. The method is applied to detect toxicity upon administration of 13 toxic reference compounds and one nontoxic control compound (mianserine) in rats. The toxic compounds are expected to induce necrosis (bromobenzene, paracetamol, carbon tetrachloride, iproniazid, isoniazid, thioacetamide), cholestasis (alpha-naphthylisothiocyanate (ANIT), chlorpromazine, ethinylestradiol, methyltestosterone, ibuprofen), or steatosis (phenobarbital, tetracycline). Animals were treated daily for 2 or 4 days except for paracetamol and bromobenzene (1 and 2 days) and carbon tetrachloride (1 day only). Urine was collected 24 h after the first and second treatment. The animals were sacrificed 24 h after the last treatment, and NMR data were compared with liver histopathology as well as blood and urine biochemistry. Pathology and biochemistry showed marked toxicity in the liver at high doses of bromobenzene, paracetamol, carbon tetrachloride, ANIT, and ibuprofen. Thioacetamide and chlorpromazine showed less extensive changes, while the influences of iproniazid, isoniazid, phenobarbital, ethinylestradiol, and tetracycline on the toxic parameters were marginal or for methyltestosterone and mianserine negligible. NMR spectroscopy revealed significant changes upon dosing in 88 NMR biomarker signals preselected with the Procrustus Rotation method on principal component discriminant analysis (PCDA) plots. Further evaluation of the specific changes led to the identification of biomarker patterns for the specific types of liver toxicity. Comparison of our rat NMR PCDA data with histopathological changes reported in humans and/or rats suggests that rat NMR urinalysis can be used to predict hepatotoxicity. PMID:17420222

  11. Nuclear magnetic resonance-based study reveals the metabolomics profile of nasopharyngeal carcinoma.

    PubMed

    Wang, Y; Luo, X; Zhang, G H; Li, S L

    2016-01-01

    Proton nuclear magnetic resonance ([(1)H]-NMR) spectroscopy has been used to investigate metabolites in serum and several types of tissue. We used NMR spectroscopy to explore the differential metabolic profiles in serum from nasopharyngeal carcinoma (NPC) patients. Moreover, metabolites with potential as biomarkers for identifying NPC patients were primarily identified. Serum samples were collected from 40 enrolled participants comprising 20 healthy subjects and 20 NPC patients. Samples were analyzed using a 600-MHz NMR spectrometer. The [(1)H]-NMR spectra were further analyzed with partial least squares-discriminant analysis for screening differential metabolites. NMR spectroscopy identified a total of eight metabolites that were present at different levels when the sera of NPC patients were compared with those of healthy individuals. Methionine, taurine (P < 0.05), and choline-like metabolites (P < 0.05) were mostly elevated in the sera of NPC patients. In contrast, the levels of lipids (P < 0.01), isoleucine (P < 0.05), unsaturated lipids (P < 0.01), trimethylamine oxidase (P < 0.05), and carbohydrates (P < 0.05) were lower in the sera of the NPC patients than in the healthy controls. We explored the differential metabolic profiles in sera from NPC patients. [(1)H]-NMR spectroscopy can be used to identify specific metabolites, and is capable of distinguishing between NPC patients and healthy individuals. PMID:27323073

  12. Urinary Metabolite Profiling Offers Potential for Differentiation of Liver-Kidney Yin Deficiency and Dampness-Heat Internal Smoldering Syndromes in Posthepatitis B Cirrhosis Patients

    PubMed Central

    Wang, Xiaoyan; Zhou, Mingmei; Yu, Huan; Lin, Yan; Du, Guangli; Luo, Guoan

    2015-01-01

    Zheng is the basic theory and essence of traditional Chinese medicine (TCM) in diagnosing diseases. However, there are no biological evidences to support TCM Zheng differentiation. In this study we elucidated the biological alteration of cirrhosis with TCM “Liver-Kidney Yin Deficiency (YX)” or “Dampness-Heat Internal Smoldering (SR)” Zheng and the potential of urine metabonomics in TCM Zheng differentiation. Differential metabolites contributing to the intergroup variation between healthy controls and liver cirrhosis patients were investigated, respectively, and mainly participated in energy metabolism, gut microbiota metabolism, oxidative stress, and bile acid metabolism. Three metabolites, aconitate, citrate, and 2-pentendioate, altered significantly in YX Zheng only, representing the abnormal energy metabolism. Contrarily, hippurate and 4-pyridinecarboxylate altered significantly in SR Zheng only, representing the abnormalities of gut microbiota metabolism. Moreover, there were significant differences between two TCM Zhengs in three metabolites, glycoursodeoxycholate, cortolone-3-glucuronide, and L-aspartyl-4-phosphate, among all differential metabolites. Metabonomic profiling, as a powerful approach, provides support to the understanding of biological mechanisms of TCM Zheng stratification. The altered urinary metabolites constitute a panel of reliable biological evidence for TCM Zheng differentiation in patients with posthepatitis B cirrhosis and may be used for the potential biomarkers of TCM Zheng stratification. PMID:25667596

  13. Metabolic profile of mephedrone: Identification of nor-mephedrone conjugates with dicarboxylic acids as a new type of xenobiotic phase II metabolites.

    PubMed

    Linhart, Igor; Himl, Michal; Židková, Monika; Balíková, Marie; Lhotková, Eva; Páleníček, Tomáš

    2016-01-01

    Metabolic profile of mephedrone (4-methylmethcathinone, 4-MMC), a frequently abused recreational drug, was determined in rats in vivo. The urine of rats dosed with a subcutaneous bolus dose of 20mg 4-MMC/kg was analysed by LC/MS. Ten phase I and five phase II metabolites were identified by comparison of their retention times and MS(2) spectra with those of authentic reference standards and/or with the MS(2) spectra of previously identified metabolites. The main metabolic pathway was N-demethylation leading to normephedrone (4-methylcathinone, 4-MC) which was further conjugated with succinic, glutaric and adipic acid. Other phase I metabolic pathways included oxidation of the 4-methyl group, carbonyl reduction leading to dihydro-metabolites and ω-oxidation at the position 3'. Five of the metabolites detected, namely, 4-carboxynormephedrone (4-carboxycathinone, 4-CC), 4-carboxydihydronormephedrone (4-carboxynorephedrine, 4-CNE), hydroxytolyldihydro-normephedrone (4-hydroxymethylnorephedrine, 4-OH-MNE) and conjugates of 4-MC with glutaric and adipic acid, have not been reported as yet. The last two conjugates represent a novel, hitherto unexploited, type of phase II metabolites in mammals together with an analogous succinic acid conjugate of 4-MC identified by Pozo et al. (2015). These conjugates might be potentially of great importance in the metabolism of other psychoactive amines. PMID:26541208

  14. Dissection of Trichoderma longibrachiatum-induced defense in onion (Allium cepa L.) against Fusarium oxysporum f. sp. cepa by target metabolite profiling.

    PubMed

    Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-ichi; Tran, Lam-Son Phan

    2016-05-01

    Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC. PMID:26993243

  15. The First Insight into the Metabolite Profiling of Grapes from Three Vitis vinifera L. Cultivars of Two Controlled Appellation (DOC) Regions

    PubMed Central

    Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni

    2014-01-01

    The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde. PMID:24619195

  16. Metabolite profiling of plasma and urine from rats with TNBS-induced acute colitis using UPLC-ESI-QTOF-MS-based metabonomics--a pilot study.

    PubMed

    Zhang, Xiaojun; Choi, Franky F K; Zhou, Yan; Leung, Feung P; Tan, Shun; Lin, Shuhai; Xu, Hongxi; Jia, Wei; Sung, Joseph J Y; Cai, Zongwei; Bian, Zhaoxiang

    2012-07-01

    The incidence of inflammatory bowel disease, a relapsing intestinal condition whose precise etiology is still unclear, has continually increased over recent years. Metabolic profiling is an effective method with high sample throughput that can detect and identify potential biomarkers, and thus may be useful in investigating the pathogenesis of inflammatory bowel disease. In this study, using a metabonomics approach, a pilot study based on ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) was performed to characterize the metabolic profile of plasma and urine samples of rats with experimental colitis induced by 2,4,6-trinitrobenzene sulfonic acid. Acquired metabolic profile data were processed by multivariate data analysis for differentiation and screening of potential biomarkers. Five metabolites were identified in urine: two tryptophan metabolites [4-(2-aminophenyl)-2,4-dioxobutanoic acid and 4,6-cihydroxyquinoline], two gut microbial metabolites (phenyl-acetylglycine and p-cresol glucuronide), and the bile acid 12α-hydroxy-3-oxocholadienic acid. Seven metabolites were identified in plasma: three members of the bile acid/alcohol group (cholic acid, 12α-hydroxy-3-oxocholadienic acid and cholestane-3,7,12,24,25-pentol) and four lysophosphatidylcholines [LysoPC(20:4), LysoPC(16:0), LysoPC(18:1) and LysoPC(18:0)]. These metabolites are associated with damage of the intestinal barrier function, microbiota homeostasis, immune modulation and the inflammatory response, and play important roles in the pathogenesis of inflammatory bowel disease. Our results positively support application of the metabonomic approach in study of the pathophysiological mechanism of inflammatory bowel disease. PMID:22520047

  17. Secondary metabolite profiles and antifungal drug susceptibility of Aspergillus fumigatus and closely related species, Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans.

    PubMed

    Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko

    2015-05-01

    The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. PMID:25737146

  18. A Simple Approach for Obtaining High Resolution, High Sensitivity ¹H NMR Metabolite Spectra of Biofluids with Limited Mass Supply

    SciTech Connect

    Hu, Jian Zhi; Rommereim, Donald N.; Wind, Robert A.; Minard, Kevin R.; Sears, Jesse A.

    2006-11-01

    A simple approach is reported that yields high resolution, high sensitivity ¹H NMR spectra of biofluids with limited mass supply. This is achieved by spinning a capillary sample tube containing a biofluid at the magic angle at a frequency of about 80Hz. A 2D pulse sequence called ¹H PASS is then used to produce a high-resolution ¹H NMR spectrum that is free from magnetic susceptibility induced line broadening. With this new approach a high resolution ¹H NMR spectrum of biofluids with a volume less than 1.0 µl can be easily achieved at a magnetic field strength as low as 7.05T. Furthermore, the methodology facilitates easy sample handling, i.e., the samples can be directly collected into inexpensive and disposable capillary tubes at the site of collection and subsequently used for NMR measurements. In addition, slow magic angle spinning improves magnetic field shimming and is especially suitable for high throughput investigations. In this paper first results are shown obtained in a magnetic field of 7.05T on urine samples collected from mice using a modified commercial NMR probe.

  19. Pyrosequencing-based analysis of bacterial community and metabolites profiles in Korean traditional seafood fermentation: a flatfish-fermented seafood.

    PubMed

    Jung, Jaejoon; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok; Park, Woojun

    2014-01-01

    Bacterial community and metabolites were analyzed in a flatfish jeotgal, a Korean fermented seafood. Inverse relationship of pH and 16S rRNA gene copy number was identified during fermentation. Lactobacillus was the predominant bacterial genus. Increase of Firmicutes was a common characteristic shared by other fermented seafood. Fructose, glucose, and maltose were the major metabolites. PMID:25035997

  20. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy

    SciTech Connect

    Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.; Cort, John R.; Ahring, Birgitte K.

    2013-04-03

    Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmed with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.

  1. Profiling of Arabidopsis Secondary Metabolites by Capillary Liquid Chromatography Coupled to Electrospray Ionization Quadrupole Time-of-Flight Mass Spectrometry1

    PubMed Central

    von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan

    2004-01-01

    Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2,000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling. PMID:14966245

  2. ¹H NMR and HPLC/DAD for Cannabis sativa L. chemotype distinction, extract profiling and specification.

    PubMed

    Peschel, Wieland; Politi, Matteo

    2015-08-01

    The medicinal use of different chemovars and extracts of Cannabis sativa L. requires standardization beyond ∆9-tetrahydrocannabinol (THC) with complementing methods. We investigated the suitability of (1)H NMR key signals for distinction of four chemotypes measured in deuterated dimethylsulfoxide together with two new validated HPLC/DAD methods used for identification and extract profiling based on the main pattern of cannabinoids and other phenolics alongside the assayed content of THC, cannabidiol (CBD), cannabigerol (CBG) their acidic counterparts (THCA, CBDA, CBGA), cannabinol (CBN) and cannflavin A and B. Effects on cell viability (MTT assay, HeLa) were tested. The dominant cannabinoid pairs allowed chemotype recognition via assignment of selective proton signals and via HPLC even in cannabinoid-low extracts from the THC, CBD and CBG type. Substantial concentrations of cannabinoid acids in non-heated extracts suggest their consideration for total values in chemotype distinction and specifications of herbal drugs and extracts. Cannflavin A/B are extracted and detected together with cannabinoids but always subordinated, while other phenolics can be accumulated via fractionation and detected in a wide fingerprint but may equally serve as qualitative marker only. Cell viability reduction in HeLa was more determined by the total cannabinoid content than by the specific cannabinoid profile. Therefore the analysis and labeling of total cannabinoids together with the content of THC and 2-4 lead cannabinoids are considered essential. The suitability of analytical methods and the range of compound groups summarized in group and ratio markers are discussed regarding plant classification and pharmaceutical specification. PMID:26048837

  3. Single-Cell Metabolite Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure Probe Electrospray Ionization Mass Spectrometry.

    PubMed

    Nakashima, Taiken; Wada, Hiroshi; Morita, Satoshi; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2016-03-15

    In this report, we developed the pressure probe electrospray ionization-mass spectrometry with internal electrode capillary (IEC-PPESI-MS) which enables high spatial-resolution cell sampling, precise postsampling manipulation, and high detection sensitivity. Using this technique, a comparative in situ single-cell metabolite profiling of stalk and glandular cells, the two adjacent cell types comprising a trichome unit in tomato plants (Solanum lycopersicum L.), were performed to clarify the extent of metabolic differentiation between two cell types as well as among different types of trichomes. Owing to high sensitivity of the system, less than a picoliter cell sap from a single stalk cell sufficiently yielded a number of peaks of amino acids, organic acids, carbohydrates, and flavonoids. The minimal cell sap removal from a stalk cell without severe disturbance of trichome structure enabled sequential analysis of adjacent glandular cell on the same trichome, which showed the presence of striking differences in metabolite compositions between two adjacent cell types. Comparison among different types of trichome also revealed significant variations in metabolite profiles, particularly in flavonoids and acyl sugars compositions. Some metabolites were found only in specific cell types or particular trichome types. Although extensive metabolomics analysis of glandular cells of tomato trichomes has been previously documented, this is the first report describing cell-to-cell variations in metabolite compositions of stalk and glandular cells as well as in different trichome types. Further application of this technique may provide new insights into distinct metabolism in plant cells displaying variations in shape, size, function and physicochemical properties. PMID:26845634

  4. Mass Balance and Metabolite Profiling of Steady-State Faldaprevir, a Hepatitis C Virus NS3/4 Protease Inhibitor, in Healthy Male Subjects

    PubMed Central

    Rose, Peter; Mao, Yanping; Yong, Chan-Loi; St. George, Roger; Huang, Fenglei; Latli, Bachir; Mandarino, Debra; Li, Yongmei

    2014-01-01

    The pharmacokinetics, mass balance, and metabolite profiles of faldaprevir, a selective peptide-mimetic hepatitis C virus NS3/NS4 protease inhibitor, were assessed at steady state in 7 healthy male subjects. Subjects received oral doses of 480 mg faldaprevir on day 1, followed by 240 mg faldaprevir on days 2 to 8 and 10 to 15. [14C]faldaprevir (240 mg containing 100 μCi) was administered on day 9. Blood, urine, feces, and saliva samples were collected at intervals throughout the study. Metabolite profiling was performed using radiochromatography, and metabolite identification was conducted using liquid chromatography-tandem mass spectrometry. The overall recovery of radioactivity was high (98.8%), with the majority recovered from feces (98.7%). There was minimal radioactivity in urine (0.113%) and saliva. Circulating radioactivity was predominantly confined to plasma with minimal partitioning into red blood cells. The terminal half-life of radioactivity in plasma was approximately 23 h with no evidence of any long-lasting metabolites. Faldaprevir was the predominant circulating form, accounting for 98 to 100% of plasma radioactivity from each subject. Faldaprevir was the only drug-related component detected in urine. Faldaprevir was also the major drug-related component in feces, representing 49.8% of the radioactive dose. The majority of the remainder of radioactivity in feces (41% of the dose) was accounted for in almost equal quantities by 2 hydroxylated metabolites. The most common adverse events were nausea, diarrhea, and constipation, all of which were related to study drug. In conclusion, faldaprevir is predominantly excreted in feces with negligible urinary excretion. PMID:24514093

  5. A metabolite-profiling approach to assess the uptake and metabolism of phenolic compounds from olive leaves in SKBR3 cells by HPLC-ESI-QTOF-MS.

    PubMed

    Quirantes-Piné, R; Zurek, G; Barrajón-Catalán, E; Bäßmann, C; Micol, V; Segura-Carretero, A; Fernández-Gutiérrez, A

    2013-01-01

    Olive leaves, an easily available natural low-cost material, constitute a source of extracts with significant antitumor activity that inhibits cell proliferation in several breast-cancer-cell models. In this work, a metabolite-profiling approach has been used to assess the uptake and metabolism of phenolic compounds from an olive-leaf extract in the breast-cancer-cell line SKBR3 to evaluate the compound or compounds responsible for the cytotoxic activity. For this, the extract was firstly characterized quantitatively by high-performance liquid chromatography coupled to electrospray ionization-quadrupole time-of-flight mass spectrometry (HPLC-ESI-QTOF-MS). Then, SKBR3 cells were incubated with 200 μg/mL of the olive-leaf extract at different times (15 min, 1, 2, 24, and 48 h). A metabolite-profiling approach based on HPLC-ESI-QTOF-MS was used to determine the intracellular phenolic compounds, enabling the identification of 16 intact phenolic compounds from the extract and four metabolites derived from these compounds in the cell cytoplasm. The major compounds found within the cells were oleuropein, luteolin-7-O-glucoside and its metabolites luteolin aglycone and methyl-luteolin glucoside, as well as apigenin, and verbascoside. Neither hydroxytyrosol nor any of its metabolites were found within the cells at any incubation time. It is proposed that the major compounds responsible for the cytotoxic activity of the olive-leaf extract in SKBR3 cells are oleuropein and the flavones luteolin and apigenin, since these compounds showed high uptake and their antitumor activity has been previously reported. PMID:23146235

  6. Metabolic Profiling of Developing Pear Fruits Reveals Dynamic Variation in Primary and Secondary Metabolites, Including Plant Hormones

    PubMed Central

    Oikawa, Akira; Otsuka, Takao; Nakabayashi, Ryo; Jikumaru, Yusuke; Isuzugawa, Kanji; Murayama, Hideki; Saito, Kazuki; Shiratake, Katsuhiro

    2015-01-01

    Metabolites in the fruits of edible plants include sweet sugars, visually appealing pigments, various products with human nutritional value, and biologically active plant hormones. Although quantities of these metabolites vary during fruit development and ripening because of cell division and enlargement, there are few reports describing the actual dynamics of these changes. Therefore, we applied multiple metabolomic techniques to identify the changes in metabolite levels during the development and ripening of pear fruits (Pyrus communis L. ‘La France’). We quantified and classified over 250 metabolites into six groups depending on their specific patterns of variation during development and ripening. Approximately half the total number of metabolites, including histidine and malate, accumulated transiently around the blooming period, during which cells are actively dividing, and then decreased either rapidly or slowly. Furthermore, the amounts of sulfur-containing amino acids also increased in pear fruits around 3–4 months after the blooming period, when fruit cells are enlarging, but virtually disappeared from ripened fruits. Some metabolites, including the plant hormone abscisic acid, accumulated particularly in the receptacle prior to blooming and/or fruit ripening. Our results show several patterns of variation in metabolite levels in developing and ripening pear fruits, and provide fundamental metabolomic data that is useful for understanding pear fruit physiology and enhancing the nutritional traits of new cultivars. PMID:26168247

  7. Untargeted Profiling of Tracer-Derived Metabolites Using Stable Isotopic Labeling and Fast Polarity-Switching LC–ESI-HRMS

    PubMed Central

    2014-01-01

    An untargeted metabolomics workflow for the detection of metabolites derived from endogenous or exogenous tracer substances is presented. To this end, a recently developed stable isotope-assisted LC–HRMS-based metabolomics workflow for the global annotation of biological samples has been further developed and extended. For untargeted detection of metabolites arising from labeled tracer substances, isotope pattern recognition has been adjusted to account for nonlabeled moieties conjugated to the native and labeled tracer molecules. Furthermore, the workflow has been extended by (i) an optional ion intensity ratio check, (ii) the automated combination of positive and negative ionization mode mass spectra derived from fast polarity switching, and (iii) metabolic feature annotation. These extensions enable the automated, unbiased, and global detection of tracer-derived metabolites in complex biological samples. The workflow is demonstrated with the metabolism of 13C9-phenylalanine in wheat cell suspension cultures in the presence of the mycotoxin deoxynivalenol (DON). In total, 341 metabolic features (150 in positive and 191 in negative ionization mode) corresponding to 139 metabolites were detected. The benefit of fast polarity switching was evident, with 32 and 58 of these metabolites having exclusively been detected in the positive and negative modes, respectively. Moreover, for 19 of the remaining 49 phenylalanine-derived metabolites, the assignment of ion species and, thus, molecular weight was possible only by the use of complementary features of the two ion polarity modes. Statistical evaluation showed that treatment with DON increased or decreased the abundances of many detected metabolites. PMID:25372979

  8. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  9. Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays.

    PubMed

    Toubiana, David; Xue, Wentao; Zhang, Nengyi; Kremling, Karl; Gur, Amit; Pilosof, Shai; Gibon, Yves; Stitt, Mark; Buckler, Edward S; Fernie, Alisdair R; Fait, Aaron

    2016-01-01

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H(2) tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H(2) scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2' is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase. PMID:27462343

  10. Correlation-Based Network Analysis of Metabolite and Enzyme Profiles Reveals a Role of Citrate Biosynthesis in Modulating N and C Metabolism in Zea mays

    PubMed Central

    Toubiana, David; Xue, Wentao; Zhang, Nengyi; Kremling, Karl; Gur, Amit; Pilosof, Shai; Gibon, Yves; Stitt, Mark; Buckler, Edward S.; Fernie, Alisdair R.; Fait, Aaron

    2016-01-01

    To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their variance within the population, consistently with their related enzymes. The overall higher CV values for metabolites as compared to the tested enzymes are indicative for their greater phenotypic plasticity. H2 tests revealed galactinol (1) and asparagine (0.91) as the highest scorers among metabolites and nitrate reductase (0.73), NAD-glutamate dehydrogenase (0.52), and phosphoglucomutase (0.51) among enzymes. The overall low H2 scores for metabolites and enzymes are suggestive for a great environmental impact or gene-environment interaction. Correlation-based network generation followed by community detection analysis, partitioned the network into three main communities and one dyad, (i) reflecting the different levels of phenotypic plasticity of the two molecular classes as observed for the CV values and (ii) highlighting the concerted changes between classes of chemically related metabolites. Community 1 is composed mainly of enzymes and specialized metabolites, community 2′ is enriched in N-containing compounds and phosphorylated-intermediates. The third community contains mainly organic acids and sugars. Cross-community linkages are supported by aspartate, by the photorespiration amino acids glycine and serine, by the metabolically related GABA and putrescine, and by citrate. The latter displayed the strongest node-betweenness value (185.25) of all nodes highlighting its fundamental structural role in the connectivity of the network by linking between different communities and to the also strongly connected enzyme aldolase. PMID:27462343

  11. Metabolomic quality control of commercial Asian ginseng, and cultivated and wild American ginseng using (1)H NMR and multi-step PCA.

    PubMed

    Zhao, Huiying; Xu, Jin; Ghebrezadik, Helen; Hylands, Peter J

    2015-10-10

    Ginseng, mainly Asian ginseng and American ginseng, is the most widely consumed herbal product in the world . However, the existing quality control method is not adequate: adulteration is often seen in the market. In this study, 31 batches of ginseng from Chinese stores were analyzed using (1)H NMR metabolite profiles together with multi-step principal component analysis. The most abundant metabolites, sugars, were excluded from the NMR spectra after the first principal component analysis, in order to reveal differences contributed by less abundant metabolites. For the first time, robust, distinctive and representative differences of Asian ginseng from American ginseng were found and the key metabolites responsible were identified as sucrose, glucose, arginine, choline, and 2-oxoglutarate and malate. Differences between wild and cultivated ginseng were identified as ginsenosides. A substitute cultivated American ginseng was noticed. These results demonstrated that the combination of (1)H NMR and PCA is effective in quality control of ginseng. PMID:26037159

  12. 1H-NMR Spectroscopy Revealed Mycobacterium tuberculosis Caused Abnormal Serum Metabolic Profile of Cattle

    PubMed Central

    Xiong, Xuekai; Hu, Xidan; Huang, Jiong; Xu, Zhiguang; Zhang, Xiansong; Hu, Changmin; Hu, Xueying; Guo, Aizhen; Wang, Yulan; Chen, Huanchun

    2013-01-01

    To re-evaluate virulence of Mycobacterium tuberculosis (M. tb) in cattle, we experimentally infected calves with M. tb andMycobacterium bovisvia intratracheal injection at a dose of 2.0×107 CFU and observed the animals for 33 weeks. The intradermal tuberculin test and IFN-γin vitro release assay showed that both M. tb and M. bovis induced similar responses. Immunohistochemical staining of pulmonary lymph nodes indicated that the antigen MPB83 of both M. tb and M. bovis were similarly distributed in the tissue samples. Histological examinations showed all of the infected groups exhibited neutrophil infiltration to similar extents. Although the infected cattle did not develop granulomatous inflammation, the metabolic profiles changed significantly, which were characterized by a change in energy production pathways and increased concentrations of N-acetyl glycoproteins. Glycolysis was induced in the infected cattle by decreased glucose and increased lactate content, and enhanced fatty acid β-oxidation was induced by decreased TG content, and decreased gluconeogenesis indicated by the decreased concentration of glucogenic and ketogenic amino acids promoted utilization of substances other than glucose as energy sources. In addition, an increase in acute phase reactive serum glycoproteins, together with neutrophil infiltration and increased of IL-1β production indicated an early inflammatory response before granuloma formation. In conclusion, this study indicated that both M. tb and M.bovis were virulent to cattle. Therefore, it is likely that cattle with M. tb infections would be critical to tuberculosis transmission from cattle to humans. Nuclear magnetic resonance was demonstrated to be an efficient method to systematically evaluate M. tb and M. bovi sinfection in cattle. PMID:24098654

  13. LC-MS and GC-MS metabolite profiling of nickel(II) complexes in the latex of the nickel-hyperaccumulating tree Sebertia acuminata and identification of methylated aldaric acid as a new nickel(II) ligand.

    PubMed

    Callahan, Damien L; Roessner, Ute; Dumontet, Vincent; Perrier, Nicolas; Wedd, Anthony G; O'Hair, Richard A J; Baker, Alan J M; Kolev, Spas D

    2008-01-01

    Targeted liquid chromatography-mass spectrometry (LC-MS) technology using size exclusion chromatography and metabolite profiling based on gas chromatography-mass spectrometry (GC-MS) were used to study the nickel-rich latex of the hyperaccumulating tree Sebertia acuminata. More than 120 compounds were detected, 57 of these were subsequently identified. A methylated aldaric acid (2,4,5-trihydroxy-3-methoxy-1,6-hexan-dioic acid) was identified for the first time in biological extracts and its structure was confirmed by 1D and 2D nuclear magnetic resonance (NMR) spectroscopy. After citric acid, it appears to be one of the most abundant small organic molecules present in the latex studied. Nickel(II) complexes of stoichiometry NiII:acid=1:2 were detected for these two acids as well as for malic, itaconic, erythronic, galacturonic, tartaric, aconitic and saccharic acids. These results provide further evidence that organic acids may play an important role in the transport and possibly in the storage of metal ions in hyperaccumulating plants. PMID:17765935

  14. Gender-dependent associations of metabolite profiles and body fat distribution in a healthy population with central obesity: towards metabolomics diagnostics.

    PubMed

    Szymańska, Ewa; Bouwman, Jildau; Strassburg, Katrin; Vervoort, Jacques; Kangas, Antti J; Soininen, Pasi; Ala-Korpela, Mika; Westerhuis, Johan; van Duynhoven, John P M; Mela, David J; Macdonald, Ian A; Vreeken, Rob J; Smilde, Age K; Jacobs, Doris M

    2012-12-01

    Obesity is a risk factor for cardiovascular diseases and type 2 diabetes especially when the fat is accumulated to central depots. Novel biomarkers are crucial to develop diagnostics for obesity and related metabolic disorders. We evaluated the associations between metabolite profiles (136 lipid components, 12 lipoprotein subclasses, 17 low-molecular-weight metabolites, 12 clinical markers) and 28 phenotype parameters (including different body fat distribution parameters such as android (A), gynoid (G), abdominal visceral (VAT), subcutaneous (SAT) fat) in 215 plasma/serum samples from healthy overweight men (n=32) and women (n=83) with central obesity. (Partial) correlation analysis and partial least squares (PLS) regression analysis showed that only specific metabolites were associated to A:G ratio, VAT, and SAT, respectively. These association patterns were gender dependent. For example, insulin, cholesterol, VLDL, and certain triacylglycerols (TG 54:1-3) correlated to VAT in women, while in men VAT was associated with TG 50:1-5, TG 55:1, phosphatidylcholine (PC 32:0), and VLDL ((X)L). Moreover, multiple regression analysis revealed that waist circumference and total fat were sufficient to predict VAT and SAT in women. In contrast, only VAT but not SAT could be predicted in men and only when plasma metabolites were included, with PC 32:0 being most strongly associated with VAT. These findings collectively highlight the potential of metabolomics in obesity and that gender differences need to be taken into account for novel biomarker and diagnostic discovery for obesity and metabolic disorders. PMID:23215804

  15. NMR-based investigation of the Drosophila melanogaster metabolome under the influence of daily cycles of light and temperature.

    PubMed

    Gogna, Navdeep; Singh, Viveka Jagdish; Sheeba, Vasu; Dorai, Kavita

    2015-12-01

    We utilized an NMR-based metabolomic approach to profile the metabolites in Drosophila melanogaster that cycle with a daily rhythm. 1H 1D and 2D NMR experiments were performed on whole-body extracts sampled from flies that experienced strong time cues in the form of both light and temperature cycles. Multivariate and univariate statistical analysis was used to identify those metabolites whose concentrations oscillate diurnally. We compared metabolite levels at two time points twelve hours apart, one close to the end of the day and the other close to the end of the night, and identified metabolites that differed significantly in their relative concentrations. We were able to identify 14 such metabolites whose concentrations differed significantly between the two time points. The concentrations of metabolites such as sterols, fatty acids, amino acids such as leucine, valine, isoleucine, alanine and lysine as well as other metabolites such as creatine, glucose, AMP and NAD were higher close to the end of the night, whereas the levels of lactic acid, and a few amino acids such as histidine and tryptophan were higher close to the end of the day. We compared signal intensities across 12 equally spaced time points for these 14 metabolites, in order to profile the changes in their levels across the day, since the NMR metabolite peak intensity is directly proportional to its molar concentration. Through this report we establish NMR-based metabolomics combined with multivariate statistical analysis as a useful method for future studies on the interactions between circadian clocks and metabolic processes. PMID:26422411

  16. Kinetic studies on the intramolecular acyl migration of beta-1-O-acyl glucuronides: application to the glucuronides of (R)- and (S)-ketoprofen, (R)- and (S)-hydroxy-ketoprofen metabolites, and tolmetin by 1H-NMR spectroscopy.

    PubMed

    Skordi, E; Wilson, I D; Lindon, J C; Nicholson, J K

    2005-07-01

    Conjugation of carboxylate drugs with D-glucuronic acid is of considerable interest because of the inherent reactivity of the resulting beta-1-O-acyl glucuronides. These conjugates can degrade by spontaneous hydrolysis and internal acyl migration. beta-1-O-acyl glucuronides and their acyl migration products can also react covalently with macromolecules with potential toxicological consequences. The spontaneous degradation of the diastereoisomeric beta-1-O-acyl glucuronide metabolites of the racemic drug ketoprofen, two of its ring-hydroxylated metabolites and of tolmetin beta-1-O-acyl glucuronide was investigated by (1)H-NMR spectroscopy in buffer solutions, at pH 7.4 and 37 degrees C. A plot of the logarithm of the peak integrals against time revealed first-order kinetics. Degradation rates and half-lives were calculated for each glucuronide using first-order reaction equations. Tolmetin glucuronide had the fastest degradation rate, whilst all of the ketoprofen-related glucuronides had similar degradation rates. The degradation of the diastereoisomeric glucuronides was stereoselective, with the rate for the (S)-isomer always slower compared with the (R)-isomer by approximately a factor of 2. PMID:16316930

  17. Advances in metabolite identification.

    PubMed

    Wishart, David S

    2011-08-01

    One of the central challenges to metabolomics is metabolite identification. Regardless of whether one uses so-called 'targeted' or 'untargeted' metabolomics, eventually all paths lead to the requirement of identifying (and quantifying) certain key metabolites. Indeed, without metabolite identification, the results of any metabolomic analysis are biologically and chemically uninterpretable. Given the chemical diversity of most metabolomes and the character of most metabolomic data, metabolite identification is intrinsically difficult. Consequently a great deal of effort in metabolomics over the past decade has been focused on making metabolite identification better, faster and cheaper. This review describes some of the newly emerging techniques or technologies in metabolomics that are making metabolite identification easier and more robust. In particular, it focuses on advances in metabolite identification that have occurred over the past 2 to 3 years concerning the technologies, methodologies and software as applied to NMR, MS and separation science. The strengths and limitations of some of these approaches are discussed along with some of the important trends in metabolite identification. PMID:21827274

  18. Metabolomic differentiation of maca (Lepidium meyenii) accessions cultivated under different conditions using NMR and chemometric analysis.

    PubMed

    Zhao, Jianping; Avula, Bharathi; Chan, Michael; Clément, Céline; Kreuzer, Michael; Khan, Ikhlas A

    2012-01-01

    To gain insights on the effects of color type, cultivation history, and growing site on the composition alterations of maca (Lepidium meyenii Walpers) hypocotyls, NMR profiling combined with chemometric analysis was applied to investigate the metabolite variability in different maca accessions. Maca hypocotyls with different colors (yellow, pink, violet, and lead-colored) cultivated at different geographic sites and different areas were examined for differences in metabolite expression. Differentiations of the maca accessions grown under the different cultivation conditions were determined by principle component analyses (PCAs) which were performed on the datasets derived from their ¹H NMR spectra. A total of 16 metabolites were identified by NMR analysis, and the changes in metabolite levels in relation to the color types and growing conditions of maca hypocotyls were evaluated using univariate statistical analysis. In addition, the changes of the correlation pattern among the metabolites identified in the maca accessions planted at the two different sites were examined. The results from both multivariate and univariate analysis indicated that the planting site was the major determining factor with regards to metabolite variations in maca hypocotyls, while the color of maca accession seems to be of minor importance in this respect. PMID:21858755

  19. Metabolite profile of a mouse model of Charcot-Marie-Tooth type 2D neuropathy: implications for disease mechanisms and interventions.

    PubMed

    Bais, Preeti; Beebe, Kirk; Morelli, Kathryn H; Currie, Meagan E; Norberg, Sara N; Evsikov, Alexei V; Miers, Kathy E; Seburn, Kevin L; Guergueltcheva, Velina; Kremensky, Ivo; Jordanova, Albena; Bult, Carol J; Burgess, Robert W

    2016-01-01

    Charcot-Marie-Tooth disease encompasses a genetically heterogeneous class of heritable polyneuropathies that result in axonal degeneration in the peripheral nervous system. Charcot-Marie-Tooth type 2D neuropathy (CMT2D) is caused by dominant mutations in glycyl tRNA synthetase (GARS). Mutations in the mouse Gars gene result in a genetically and phenotypically valid animal model of CMT2D. How mutations in GARS lead to peripheral neuropathy remains controversial. To identify putative disease mechanisms, we compared metabolites isolated from the spinal cord of Gars mutant mice and their littermate controls. A profile of altered metabolites that distinguish the affected and unaffected tissue was determined. Ascorbic acid was decreased fourfold in the spinal cord of CMT2D mice, but was not altered in serum. Carnitine and its derivatives were also significantly reduced in spinal cord tissue of mutant mice, whereas glycine was elevated. Dietary supplementation with acetyl-L-carnitine improved gross motor performance of CMT2D mice, but neither acetyl-L-carnitine nor glycine supplementation altered the parameters directly assessing neuropathy. Other metabolite changes suggestive of liver and kidney dysfunction in the CMT2D mice were validated using clinical blood chemistry. These effects were not secondary to the neuromuscular phenotype, as determined by comparison with another, genetically unrelated mouse strain with similar neuromuscular dysfunction. However, these changes do not seem to be causative or consistent metabolites of CMT2D, because they were not observed in a second mouse Gars allele or in serum samples from CMT2D patients. Therefore, the metabolite 'fingerprint' we have identified for CMT2D improves our understanding of cellular biochemical changes associated with GARS mutations, but identification of efficacious treatment strategies and elucidation of the disease mechanism will require additional studies. PMID:27288508

  20. Metabolite Profiles of Maize Leaves in Drought, Heat, and Combined Stress Field Trials Reveal the Relationship between Metabolism and Grain Yield.

    PubMed

    Obata, Toshihiro; Witt, Sandra; Lisec, Jan; Palacios-Rojas, Natalia; Florez-Sarasa, Igor; Yousfi, Salima; Araus, Jose Luis; Cairns, Jill E; Fernie, Alisdair R

    2015-12-01

    The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize. PMID:26424159

  1. Metabolite profile of a mouse model of Charcot–Marie–Tooth type 2D neuropathy: implications for disease mechanisms and interventions

    PubMed Central

    Bais, Preeti; Beebe, Kirk; Morelli, Kathryn H.; Currie, Meagan E.; Norberg, Sara N.; Evsikov, Alexei V.; Miers, Kathy E.; Seburn, Kevin L.; Guergueltcheva, Velina; Kremensky, Ivo; Jordanova, Albena; Bult, Carol J.

    2016-01-01

    ABSTRACT Charcot–Marie–Tooth disease encompasses a genetically heterogeneous class of heritable polyneuropathies that result in axonal degeneration in the peripheral nervous system. Charcot–Marie–Tooth type 2D neuropathy (CMT2D) is caused by dominant mutations in glycyl tRNA synthetase (GARS). Mutations in the mouse Gars gene result in a genetically and phenotypically valid animal model of CMT2D. How mutations in GARS lead to peripheral neuropathy remains controversial. To identify putative disease mechanisms, we compared metabolites isolated from the spinal cord of Gars mutant mice and their littermate controls. A profile of altered metabolites that distinguish the affected and unaffected tissue was determined. Ascorbic acid was decreased fourfold in the spinal cord of CMT2D mice, but was not altered in serum. Carnitine and its derivatives were also significantly reduced in spinal cord tissue of mutant mice, whereas glycine was elevated. Dietary supplementation with acetyl-L-c