Science.gov

Sample records for nmr structural study

  1. Structural Studies of Biological Solids Using NMR

    NASA Astrophysics Data System (ADS)

    Ramamoorthy, Ayyalusamy

    2011-03-01

    High-resolution structure and dynamics of biological molecules are important in understanding their function. While studies have been successful in solving the structures of water-soluble biomolecules, it has been proven difficult to determine the structures of membrane proteins and fibril systems. Recent studies have shown that solid-state NMR is a promising technique and could be highly valuable in studying such non-crystalline and non-soluble biosystems. I will present strategies to study the structures of such challenging systems and also about the applications of solid-state NMR to study the modes of membrane-peptide interactions for a better assessment of the prospects of antimicrobial peptides as substitutes to antibiotics in the control of human disease. Our studies on the mechanism of membrane disruption by LL-37 (a human antimicrobial peptide), analogs of the naturally occurring antimicrobial peptide magainin2 extracted from the skin of the African frog Xenopus Laevis, and pardaxin will be presented. Solid-state NMR experiments were used to determine the secondary structure, dynamics and topology of these peptides in lipid bilayers. Similarities and difference in the cell-lysing mechanism, and their dependence on the membrane composition, of these peptides will be discussed. Atomic-level resolution NMR structures of amyloidogenic proteins revealing the misfolding pathway and early intermediates that play key roles in amyloid toxicity will also be presented.

  2. NMR structural studies on antifreeze proteins.

    PubMed

    Sönnichsen, F D; Davies, P L; Sykes, B D

    1998-01-01

    Antifreeze proteins (AFPs) are a structurally diverse class of proteins that bind to ice and inhibit its growth in a noncolligative manner. This adsorption-inhibition mechanism operating at the ice surface results in a lowering of the (nonequilibrium) freezing point below the melting point. A lowering of approximately 1 degree C, which is sufficient to prevent fish from freezing in ice-laden seawater, requires millimolar AFP levels in the blood. The solubility of AFPs at these millimolar concentrations and the small size of the AFPs (typically 3-15 kDa) make them ideal subjects for NMR analysis. Although fish AFPs are naturally abundant, seasonal expression, restricted access to polar fishes, and difficulties in separating numerous similar isoforms have made protein expression the method of choice for producing AFPs for structural studies. Expression of recombinant AFPs has also facilitated NMR analysis by permitting isotopic labeling with 15N and 13C and has permitted mutations to be made to help with the interpretation of NMR data. NMR analysis has recently solved two AFP structures and provided valuable information about the disposition of ice-binding side chains in a third. The potential exists to solve other AFP structures, including the newly described insect AFPs, and to use solid-state NMR techniques to address fundamental questions about the nature of the interaction between AFPs and ice. PMID:9923697

  3. Isotope labeling for NMR studies of macromolecular structure and interactions

    SciTech Connect

    Wright, P.E.

    1994-12-01

    Implementation of biosynthetic methods for uniform or specific isotope labeling of proteins, coupled with the recent development of powerful heteronuclear multidimensional NMR methods, has led to a dramatic increase in the size and complexity of macromolecular systems that are now amenable to NMR structural analysis. In recent years, a new technology has emerged that combines uniform {sup 13}C, {sup 15}N labeling with heteronuclear multidimensional NMR methods to allow NMR structural studies of systems approaching 25 to 30 kDa in molecular weight. In addition, with the introduction of specific {sup 13}C and {sup 15}N labels into ligands, meaningful NMR studies of complexes of even higher molecular weight have become feasible. These advances usher in a new era in which the earlier, rather stringent molecular weight limitations have been greatly surpassed and NMR can begin to address many central biological problems that involve macromolecular structure, dynamics, and interactions.

  4. Two dimensional NMR and NMR relaxation studies of coal structure

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  5. NMR Studies of Enzyme Structure and Mechanism

    NASA Astrophysics Data System (ADS)

    Mildvan, Albert

    2006-03-01

    At least three NMR methodologies pioneered by Al Redfield, have greatly benefited enzymology: (1) the suppression of strong water signals without pre-saturation; (2) sequence specific NH/ND exchange; and (3) dynamic studies of mobile loops of proteins. Water suppression has enabled us to identify unusually short, strong H-bonds at the active sites of five enzymes (three isomerases and two esterases), and to measure their lengths from both the chemical shifts and D/H fractionation factors of the deshielded protons involved (J. Mol. Struct. 615, 163 (2002)). Backbone NH exchange studies were used to detect regions of an NTP pyrophosphohydrolase in which NH groups became selectively protected against exchange on Mg(2+) binding, and further protected on product (NMP) binding, thus locating binding sites as well as conformationally linked remote sites (Biochemistry 42, 10140 (2003)). Dynamic studies were used to elucidate the frequency of motion of a flexible loop of GDP-mannose hydrolase (66,000/sec) containing the catalytic base His-124, from exchange broadening of the side chain NH signals of His-124 in the free enzyme. The binding of Mg(2+) and GDP-mannose lock His-124 in position to deprotonate the entering water and complete the reaction.

  6. NMR techniques in the study of cardiovascular structure and functions

    SciTech Connect

    Osbakken, M.; Haselgrove, J.

    1987-01-01

    The chapter titles of this book are: Introduction to NMR Techniques;Theory of NMR Probe Design;Overview of Magnetic Resonance Imaging to Study the Cardiovascular System;Vascular Anatomy and Physiology Studied with NMR Techniques;Assessment of Myocardial Ischemia and Infarction by Nuclear Magnetic Resonance Imaging;The Use of MRI in Congenital Heart Disease;Cardiomyopathies and Myocarditis Studied with NMR Techniques;Determination of Myocardial Mechanical Function with Magnetic Resonance Imaging Techniques;Determination of Flow Using NMR Techniques;The Use of Contrast Agents in Cardiac MRI;Can Cardiovascular Disease Be Effectively Evaluated with NMR Spectroscopy. NMR Studies of ATP Synthesis Reactions in the Isolated Heart;Studies of Intermediary Metabolism in the Heart by 13C NMR Spectroscopy;23Na and 39K NMR Spectroscopic Studies of the Intact Beating Heart;and Evaluation of Skeletal Muscle Metabolism in Patients with Congestive Heart Failure Using Phosphorus Nuclear Magnetic Resonance.

  7. NMR studies of structure and dynamics in fruit cuticle polyesters.

    PubMed

    Stark, R E; Yan, B; Ray, A K; Chen, Z; Fang, X; Garbow, J R

    2000-05-01

    Cutin and suberin are support polymers involved in waterproofing the leaves and fruits of higher plants, regulating the flow of nutrients among various plant organs, and minimizing the deleterious impact of microbial pathogens. Despite the complexity and intractable nature of these plant biopolyesters, their molecular structure and development are amenable to study by suitable solid-state and solution-state NMR techniques. Interactions of tomato cutin with water were examined by solid-state 2H and 13C NMR, showing that water films enhance rapid segmental motions of the acyl chains and are associated with a fivefold increase in surface elasticity upon cutin hydration. The suberization of wounded potato tissues was studied by solid-state 13C NMR, revealing the likely phenylpropanoid structures that permit dense cross-linking of the suberin structure and their proximity to the cell-wall polysaccharides. Finally, two new approaches were developed to elucidate the molecular structures of these biopolymers: partial depolymerization followed by spectroscopic analysis of the soluble oligomers; and swelling of the intact materials followed by magic-angle spinning (MAS) NMR analysis. PMID:10811427

  8. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methane groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of coals, and their suitability for possible correlations with the oil sourcing potential of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples. In this report period we have focused our work on 1 segment of the program. Our last report outlined progress in using our NMR editing methods with higher field operation where higher magic angle spinning rates are required. Significant difficulties were identified, and these have been the main subject of study during the most recent granting period.

  9. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1998-03-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a detailed comparative analysis of the suite of spectral editing results obtained on the Argonne coals. We have extended our fitting procedure to include carbons of all types in the analysis.

  10. ADVANCED SOLIDS NMR STUDIES OF COAL STRUCTURE AND CHEMISTRY

    SciTech Connect

    1997-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. The main activity during this granting period was a completion of a detailed comparative analysis of the suite of spectral editing techniques developed in our laboratory for this purpose. The appended report is a manuscript being submitted to the Journal of Magnetic Resonance on this subject.

  11. Solid-State NMR Studies of Amyloid Fibril Structure

    NASA Astrophysics Data System (ADS)

    Tycko, Robert

    2011-05-01

    Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid-state nuclear magnetic resonance (NMR) methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid-state NMR to fibrils associated with Alzheimer's disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid-state NMR techniques and technology.

  12. Solid State NMR Studies of Amyloid Fibril Structure

    PubMed Central

    Tycko, Robert

    2011-01-01

    Current interest in amyloid fibrils stems from their involvement in neurodegenerative and other diseases and from their role as an alternative structural state for many peptides and proteins. Solid state NMR methods have the unique capability of providing detailed structural constraints for amyloid fibrils, sufficient for the development of full molecular models. In this article, recent progress in the application of solid state NMR to fibrils associated with Alzheimer’s disease, prion fibrils, and related systems is reviewed, along with relevant developments in solid state NMR techniques and technology. PMID:21219138

  13. Deuterium NMR Studies of the Structure and Dynamics of Gramicidin.

    NASA Astrophysics Data System (ADS)

    Hing, Andrew William

    1990-01-01

    The structure and dynamics of the membrane peptide gramicidin are investigated by deuterium NMR. A specific structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the alpha carbon of the third alanine residue. Deuterium NMR experiments performed on this analog in oriented lipid bilayers indicate that the c_alpha- ^2H bond makes an angle relative to the helical axis that is in agreement with the bond angle predicted by the beta^{6.3} helical model. A second structural and dynamical question about the peptide backbone of gramicidin is investigated by deuterating the formyl group of two different analogs. Deuterium NMR experiments performed on these analogs show that the spectra of the two analogs are very similar. However, the analog possessing D-leucine as the second residue also appears to exist in a second, minor conformation which does not seem to exist for the analog possessing glycine as the second residue.

  14. An NMR structural study of nickel-substituted rubredoxin.

    PubMed

    Goodfellow, Brian J; Duarte, Iven C N; Macedo, Anjos L; Volkman, Brian F; Nunes, Sofia G; Moura, I; Markley, John L; Moura, José J G

    2010-03-01

    The Ni(II) and Zn(II) derivatives of Desulfovibrio vulgaris rubredoxin (DvRd) have been studied by NMR spectroscopy to probe the structure at the metal centre. The beta CH(2) proton pairs from the cysteines that bind the Ni(II) atom have been identified using 1D nuclear Overhauser enhancement (NOE) difference spectra and sequence specifically assigned via NOE correlations to neighbouring protons and by comparison with the published X-ray crystal structure of a Ni(II) derivative of Clostridium pasteurianum rubredoxin. The solution structures of DvRd(Zn) and DvRd(Ni) have been determined and the paramagnetic form refined using pseudocontact shifts. The determination of the magnetic susceptibility anisotropy tensor allowed the contact and pseudocontact contributions to the observed chemical shifts to be obtained. Analysis of the pseudocontact and contact chemical shifts of the cysteine H beta protons and backbone protons close to the metal centre allowed conclusions to be drawn as to the geometry and hydrogen-bonding pattern at the metal binding site. The importance of NH-S hydrogen bonds at the metal centre for the delocalization of electron spin density is confirmed for rubredoxins and can be extrapolated to metal centres in Cu proteins: amicyanin, plastocyanin, stellacyanin, azurin and pseudoazurin. PMID:19997764

  15. Perspectives of solution NMR spectroscopy for structural and functional studies of integral membrane proteins

    NASA Astrophysics Data System (ADS)

    Reckel, Sina; Hiller, Sebastian

    2013-04-01

    This article discusses future perspectives of solution NMR spectroscopy to study structures and functions of integral membrane proteins at atomic resolution, based on a review of recent progress in this area. Several selected examples of structure determinations, as well as functional studies of integral membrane proteins are highlighted. We expect NMR spectroscopy to make future key scientific contributions to understanding membrane protein function, in particular for large membrane protein systems with known three-dimensional structure. Such situations can benefit from the fact that functional NMR studies have substantially less limitations by molecular size than a full de novo structure determination. Therefore, the general potential for NMR spectroscopy to solve biologic key questions associated with integral membrane proteins is very promising.

  16. NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR.

    PubMed

    Klein-Seetharaman, J; Getmanova, E V; Loewen, M C; Reeves, P J; Khorana, H G

    1999-11-23

    We report high resolution solution (19)F NMR spectra of fluorine-labeled rhodopsin mutants in detergent micelles. Single cysteine substitution mutants in the cytoplasmic face of rhodopsin were labeled by attachment of the trifluoroethylthio (TET), CF(3)-CH(2)-S, group through a disulfide linkage. TET-labeled cysteine mutants at amino acid positions 67, 140, 245, 248, 311, and 316 in rhodopsin were thus prepared. Purified mutant rhodopsins (6-10 mg), in dodecylmaltoside, were analyzed at 20 degrees C by solution (19)F NMR spectroscopy. The spectra recorded in the dark showed the following chemical shifts relative to trifluoroacetate: Cys-67, 9.8 ppm; Cys-140, 10.6 ppm; Cys-245, 9.9 ppm; Cys-248, 9.5 ppm; Cys-311, 9.9 ppm; and Cys-316, 10.0 ppm. Thus, all mutants showed chemical shifts downfield that of free TET (6.5 ppm). On illumination to form metarhodopsin II, upfield changes in chemical shift were observed for (19)F labels at positions 67 (-0.2 ppm) and 140 (-0.4 ppm) and downfield changes for positions 248 (+0.1 ppm) and 316 (+0.1 ppm) whereas little or no change was observed at positions 311 and 245. On decay of metarhodopsin II, the chemical shifts reverted largely to those originally observed in the dark. The results demonstrate the applicability of solution (19)F NMR spectroscopy to studies of the tertiary structures in the cytoplasmic face of intact rhodopsin in the dark and on light activation. PMID:10570143

  17. Improving NMR Protein Structure Quality by Rosetta Refinement: A Molecular Replacement Study

    PubMed Central

    Ramelot, Theresa A.; Raman, Srivatsan; Kuzin, Alexandre P.; Xiao, Rong; Ma, Li-Chung; Acton, Thomas B.; Hunt, John F.; Montelione, Gaetano T.; Baker, David; Kennedy, Michael A.

    2010-01-01

    The structure of human protein HSPC034 has been determined by both solution NMR spectroscopy and X-ray crystallography. Refinement of the NMR structure ensemble, using a Rosetta protocol in the absence of NMR restraints, resulted in significant improvements not only in structure quality, but also in molecular replacement (MR) performance with the raw X-ray diffraction data using MOLREP and Phaser. This method has recently been shown to be generally applicable with improved MR performance demonstrated for eight NMR structures refined using Rosetta.1 Additionally, NMR structures of HSPC034 calculated by standard methods that include NMR restraints, have improvements in the RMSD to the crystal structure and MR performance in the order DYANA, CYANA, XPLOR-NIH, and CNS with explicit water refinement (CNSw). Further Rosetta refinement of the CNSw structures, perhaps due to more thorough conformational sampling and/or a superior force field, was capable of finding alternative low energy protein conformations that were equally consistent with the NMR data according to the RPF scores. Upon further examination, the additional MR-performance shortfall for NMR refined structures as compared to the X-ray structure MR performance were attributed, in part, to crystal-packing effects, real structural differences, and inferior hydrogen bonding in the NMR structures. A good correlation between a decrease in the number of buried unsatisfied hydrogen-bond donors and improved MR performance demonstrates the importance of hydrogen-bond terms in the force field for improving NMR structures. The superior hydrogen-bond network in Rosetta-refined structures, demonstrates that correct identification of hydrogen bonds should be a critical goal of NMR structure refinement. Inclusion of non-bivalent hydrogen bonds identified from Rosetta structures as additional restraints in the structure calculation results in NMR structures with improved MR performance PMID:18816799

  18. Preparation of Protein Samples for NMR Structure, Function, and Small Molecule Screening Studies

    PubMed Central

    Acton, Thomas B.; Xiao, Rong; Anderson, Stephen; Aramini, James; Buchwald, William A.; Ciccosanti, Colleen; Conover, Ken; Everett, John; Hamilton, Keith; Huang, Yuanpeng Janet; Janjua, Haleema; Kornhaber, Gregory; Lau, Jessica; Lee, Dong Yup; Liu, Gaohua; Maglaqui, Melissa; Ma, Lichung; Mao, Lei; Patel, Dayaban; Rossi, Paolo; Sahdev, Seema; Shastry, Ritu; Swapna, G.V.T.; Tang, Yeufeng; Tong, Saichiu; Wang, Dongyan; Wang, Huang; Zhao, Li; Montelione, Gaetano T.

    2014-01-01

    In this chapter, we concentrate on the production of high quality protein samples for NMR studies. In particular, we provide an in-depth description of recent advances in the production of NMR samples and their synergistic use with recent advancements in NMR hardware. We describe the protein production platform of the Northeast Structural Genomics Consortium, and outline our high-throughput strategies for producing high quality protein samples for nuclear magnetic resonance (NMR) studies. Our strategy is based on the cloning, expression and purification of 6X-His-tagged proteins using T7-based Escherichia coli systems and isotope enrichment in minimal media. We describe 96-well ligation-independent cloning and analytical expression systems, parallel preparative scale fermentation, and high-throughput purification protocols. The 6X-His affinity tag allows for a similar two-step purification procedure implemented in a parallel high-throughput fashion that routinely results in purity levels sufficient for NMR studies (> 97% homogeneity). Using this platform, the protein open reading frames of over 17,500 different targeted proteins (or domains) have been cloned as over 28,000 constructs. Nearly 5,000 of these proteins have been purified to homogeneity in tens of milligram quantities (see Summary Statistics, http://nesg.org/statistics.html), resulting in more than 950 new protein structures, including more than 400 NMR structures, deposited in the Protein Data Bank. The Northeast Structural Genomics Consortium pipeline has been effective in producing protein samples of both prokaryotic and eukaryotic origin. Although this paper describes our entire pipeline for producing isotope-enriched protein samples, it focuses on the major updates introduced during the last 5 years (Phase 2 of the National Institute of General Medical Sciences Protein Structure Initiative). Our advanced automated and/or parallel cloning, expression, purification, and biophysical screening

  19. NMR Studies of Peroxidases.

    NASA Astrophysics Data System (ADS)

    Veitch, Nigel Charles

    Available from UMI in association with The British Library. Requires signed TDF. Peroxidases are a haem-containing group of enzymes with a wide diversity of function within biological systems. While a common characteristic is the ability to catalyse the conversion of hydrogen peroxide to water, it is the accompanying processes of hormone synthesis and degradation which have generated such a high level of interest. However, information at the molecular level is limited to a single well-resolved crystal structure, that of yeast cytochrome c peroxidase. This thesis presents a strategy for the investigation of peroxidase structure and function based on proton nuclear magnetic resonance spectroscopy, a technique which has the ability to address aspects of both protein structure and protein dynamics in solution. The application of one- and two-dimensional NMR techniques has been developed in the context of plant peroxidases, notably the isoenzyme HRP-C derived from the horseradish root. Characterisation of the proton NMR spectra of HRP -C in resting and ligated states provided new information enabling the structure of the binding site for aromatic donor molecules, such as indole-3-propionic, ferulic and benzhydroxamic acids, to be resolved. In order to overcome difficulties encountered with a protein of the complexity of peroxidase, additional information was obtained from chemical shift parameters and the use of peroxidase variants produced by site-directed mutagenesis. A comparative study using NMR spectroscopy was undertaken for wild-type recombinant HRP-C expressed in Escherichia coli, and two protein variants with substitutions made to residues located on the distal side of the haem pocket, Phe41 to Val and Arg38 to Lys. NMR analyses of a plant peroxidase from barley grains and the fungal peroxidase from Coprinus cinereus were also successful using methods conceived with HRP-C. Examination of three specifically constructed recombinant protein variants of C. cinereus

  20. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2014-11-01

    Titan has a thick atmosphere composed primarily of nitrogen and methane. Complex organic chemistry induced by solar ultraviolet radiation and energetic particles, takes place in Titan's upper atmosphere, producing an optically thick reddish brown carbon based haze encircling this moon. The chemistry in Titan's atmosphere and its resulting chemical structures are still not fully understood in spite of a great many efforts being made. In our previous work, we have investigated the structure of the 13C and 15N labeled, simulated Titan haze aerosols (tholin) by NMR and identified several dominant small molecules in the tholin. Here we report our expanded structural investigation of the bulk of the tholin by more comprehensive NMR study. The NMR results show that the tholin materials are dominated by heavily nitrogenated compounds, in which the macromolecular structures are highly branched polymeric or oligomeric compounds terminated in methyl, amine, and nitrile groups. The structural characteristic suggest that the tholin materials are formed via different copolymerization or incorporation mechanisms of small precursors, such as HCN, CH2dbnd NH, NH3 and C2H2. This study helps to understand the formation process of nitrogenated organic aerosols in Titan's atmosphere and their prebiotic implications.

  1. Solution structure of sialyl Lewis X mimics studied by two-dimensional NMR

    NASA Astrophysics Data System (ADS)

    Demura, Makoto; Noda, Masatoshi; Kajimoto, Tetsuya; Uchiyama, Taketo; Umemoto, Kimiko; Wong, Chi-Huey; Asakura, Tetsuo

    2002-01-01

    A structure of the peptidic mimic of sialyl Lewis X (Sle X) (α- N-acetyl-neuraminyl-(2,3)-β- D-galactopyranosyl-(1,4)-[α- L-fucopyranosyl-(1,3)-β- D- N-acetyl-glucosamine]) in an aqueous solution was studied using two-dimensional 1H NMR spectroscopy. Complete assignments of 1H NMR chemical shift of the SLe X mimic have been performed. The presence of three conformers of the SLe X mimic in a solution was proposed by using distance geometry calculation based on NOE constraints, which were obtained from NOESY experiments. In addition, intermolecular interaction between the mimic and the crystal structure of E-selectin was refined using molecular dynamics. This suggested the conformational rearrangement of the functional groups of the conformers to the active sites of E-selectin. The relationship between the binding activities toward E-selectin and the three-dimensional structures of other mimics was also discussed.

  2. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    PubMed Central

    Jaroniec, Christopher P.

    2015-01-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ~20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags. PMID:25797004

  3. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Jaroniec, Christopher P.

    2015-04-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags.

  4. Structural studies of proteins by paramagnetic solid-state NMR spectroscopy.

    PubMed

    Jaroniec, Christopher P

    2015-04-01

    Paramagnetism-based nuclear pseudocontact shifts and spin relaxation enhancements contain a wealth of information in solid-state NMR spectra about electron-nucleus distances on the ∼20 Å length scale, far beyond that normally probed through measurements of nuclear dipolar couplings. Such data are especially vital in the context of structural studies of proteins and other biological molecules that suffer from a sparse number of experimentally-accessible atomic distances constraining their three-dimensional fold or intermolecular interactions. This perspective provides a brief overview of the recent developments and applications of paramagnetic magic-angle spinning NMR to biological systems, with primary focus on the investigations of metalloproteins and natively diamagnetic proteins modified with covalent paramagnetic tags. PMID:25797004

  5. Structural studies of bacterial transcriptional regulatory proteins by multidimensional heteronuclear NMR

    SciTech Connect

    Volkman, B.F.

    1995-02-01

    Nuclear magnetic resonance spectroscopy was used to elucidate detailed structural information for peptide and protein molecules. A small peptide was designed and synthesized, and its three-dimensional structure was calculated using distance information derived from two-dimensional NMR measurements. The peptide was used to induce antibodies in mice, and the cross-reactivity of the antibodies with a related protein was analyzed with enzyme-linked immunosorbent assays. Two proteins which are involved in regulation of transcription in bacteria were also studied. The ferric uptake regulation (Fur) protein is a metal-dependent repressor which controls iron uptake in bacteria. Two- and three-dimensional NMR techniques, coupled with uniform and selective isotope labeling allowed the nearly complete assignment of the resonances of the metal-binding domain of the Fur protein. NTRC is a transcriptional enhancer binding protein whose N-terminal domain is a {open_quote}receiver domain{close_quote} in the family of {open_quote}two-component{close_quote} regulatory systems. Phosphorylation of the N-terminal domain of NTRC activates the initiation of transcription of aeries encoding proteins involved in nitrogen regulation. Three- and four-dimensional NMR spectroscopy methods have been used to complete the resonance assignments and determine the solution structure of the N-terminal receiver domain of the NTRC protein. Comparison of the solution structure of the NTRC receiver domain with the crystal structures of the homologous protein CheY reveals a very similar fold, with the only significant difference being the position of helix 4 relative to the rest of the protein. The determination of the structure of the NTRC receiver domain is the first step toward understanding a mechanism of signal transduction which is common to many bacterial regulatory systems.

  6. Structural analysis of molybdo-zinc-phosphate glasses: Neutron scattering, FTIR, Raman scattering, MAS NMR studies

    NASA Astrophysics Data System (ADS)

    Renuka, C.; Shinde, A. B.; Krishna, P. S. R.; Reddy, C. Narayana

    2016-08-01

    Vitreous samples were prepared in the xMoO3-17ZnO-(83-x) NaPO3 with 35 ≥ x ≥ 55 glass forming system by energy efficient microwave heating method. Structural evolution of the vitreous network was monitored as a function of composition by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), Raman scattering, Magic Angle Spin Nuclear magnetic resonance (MAS NMR) and Neutron scattering. Addition of MoO3 to the ZnO-NaPO3 glass leads to a pronounced increase in glass transition temperature (Tg) suggesting a significant increase in network connectivity and strength. In order to analyze FTIR and Raman scattering, a simple structural model is presented to rationalize the experimental observations. A number of structural units are formed due to network modification, and the resulting glass may be characterized by a network polyhedral with different numbers of unshared corners. 31P MAS NMR confirms a clear distinction between structural species having 3, 2, 1, 0 bridging oxygens (BOs). Further, Neutron scattering studies were used to probe the structure of these glasses. The result suggests that all the investigated glasses have structures based on chains of four coordinated phosphate and six coordinated molybdate units, besides, two different lengths of P-O bonds in tetrahedral phosphate units that are assigned to bonds of the P-atom with terminal and bridging oxygen atoms.

  7. [sup 31]P NMR study of immobilized artificial membrane surfaces. Structure and dynamics of immobilized phospholipids

    SciTech Connect

    Qiu, X.; Pidgeon, C. )

    1993-11-25

    Chromatography surfaces were prepared by immobilizing a single-chain ether phospholipid at approximately a monolayer density on silica particles. The chromatography particles are denoted as [sup ether]IAM.PC[sup C10/C3], and they are stable to all solvents. The structure and dynamics of the interphase created by immobilizing phospholipids on silica particles were studied by [sup 31]P NMR methods. [sup ether]IAM.PC[sup C10/C3] spontaneously wets when suspended in both aqueous and organic solvents, and [sup 31]P NMR spectra were obtained in water, methanol, chloroform, acetonitrile, and acetone. [sup 31]P NMR spectra were subjected to line-shape analysis. From line-shape analysis, the correlation times for rapid internal motion ([tau]-PLL) and wobbling ([tau]-PRP) of the phospholipid headgroup were calculated for each solvent. Immobilized phospholipid headgroups comprising the IAM interfacial region undergo rapid reorientation similar to the case of the phospholipids forming liposome membranes with [tau]-PLL approximately 1 ns. Phospholipids in liposome membranes exhibit slower wobbling motion ([tau]-PRP approximately 1 ms) in the plane of the membrane. However, the immobilized phospholipids on [sup ether]IAM.PC[sup C10/C3] surfaces wobble with correlation times [tau]-PRP that depend on the solvent bathing the [sup ether]IAM.PC[sup C10/C3] surface. 41 refs., 9 figs., 2 tabs.

  8. Structure and motion of phospholipids in human plasma lipoproteins. A sup 31 P NMR study

    SciTech Connect

    Fenske, D.B.; Chana, R.S.; Parmar, Y.I.; Treleaven, W.D.; Cushley, R.J. )

    1990-04-24

    The structure and motion of phospholipids in human plasma lipoproteins have been studied by using {sup 31}P NMR. Lateral diffusion coefficients, D{sub T}, obtained from the viscosity dependence of the {sup 31}P NMR line widths, were obtained for very low density lipoprotein (VLDL), low-density lipoprotein (LDL), high-density lipoproteins (HDL{sub 2}, HDL{sub 3}), and egg PC/TO microemulsions at 25{degree}C, for VLDL at 40{degree}C, and for LDL at 45{degree}C. In order to prove the orientation and/or order of the phospholipid head-group, estimates of the residual chemical shift anistropy, {Delta}{sigma}, have been obtained for all the lipoproteins and the microemulsions from the viscosity and field dependence for the {sup 31}P NMR line widths. These results suggest differences in the orientation and/or ordering of the head-group in the HDLs. The dynamic behavior of the phosphate moiety in LDL and HDL{sub 3} has been obtained from the temperature dependence of the {sup 31}P spin-lattice relaxation rates. Values of the correlation time for phosphate group reorientation and the activation energy for the motion are nearly identical in LDL and HDL{sub 3} and are similar to values obtained for phospholipid bilayers. This argues against long-lived protein-lipid interactions being the source of either the slow diffusion in LDL or the altered head-group orientation in the HDLs.

  9. Xenon-129 NMR study of the microporous structure of clays and pillared clays

    SciTech Connect

    Tsiao, C.; Carrado, K.A.

    1990-01-01

    {sup 129}Xe NMR studies have been carried out using xenon gas adsorbed in clays and pillared clays. Data from the measurements provide information on the pore structure of clays before and after pillaring. The results indicate that the effective pore diameter of montmorillonite increases, for example, from 5.4 {Angstrom} to 8.0 {Angstrom} after pillaring cheto-montmorillonite with aluminum polyoxohydroxy Keggin cations. The data are consistent with X-ray powder diffraction results, which show a corresponding increase in the interlamellar gallery height from 5.6 {Angstrom} to 8.4 {Angstrom}.

  10. Structural heterogeneity in microcrystalline ubiquitin studied by solid-state NMR

    PubMed Central

    Fasshuber, Hannes Klaus; Lakomek, Nils-Alexander; Habenstein, Birgit; Loquet, Antoine; Shi, Chaowei; Giller, Karin; Wolff, Sebastian; Becker, Stefan; Lange, Adam

    2015-01-01

    By applying [1-13C]- and [2-13C]-glucose labeling schemes to the folded globular protein ubiquitin, a strong reduction of spectral crowding and increase in resolution in solid-state NMR (ssNMR) spectra could be achieved. This allowed spectral resonance assignment in a straightforward manner and the collection of a wealth of long-range distance information. A high precision solid-state NMR structure of microcrystalline ubiquitin was calculated with a backbone rmsd of 1.57 to the X-ray structure and 1.32 Å to the solution NMR structure. Interestingly, we can resolve structural heterogeneity as the presence of three slightly different conformations. Structural heterogeneity is most significant for the loop region β1-β2 but also for β-strands β1, β2, β3, and β5 as well as for the loop connecting α1 and β3. This structural polymorphism observed in the solid-state NMR spectra coincides with regions that showed dynamics in solution NMR experiments on different timescales. PMID:25644665

  11. Structural studies of PCU-hydrazones: NMR spectroscopy, X-ray diffractions, and DFT calculations

    NASA Astrophysics Data System (ADS)

    Veljković, Jelena; Šekutor, Marina; Molčanov, Krešimir; Lo, Rabindranath; Ganguly, Bishwajit; Mlinarić-Majerski, Kata

    2011-06-01

    In this article we present a detailed structural investigation for the configurational isomers of PCU-hydrazones. The structural characterization of these hydrazones was performed using NMR spectroscopy, X-ray diffraction analysis and theoretical calculations. The single crystal X-ray structures of PCU-hydrazones 6B and 6C have been solved and used to conclusively confirm the characterization obtained via NMR spectra of a particular isomer. Nuclear magnetic shielding values calculated for 6A-C using DFT calculations were correlated with the experimentally determined chemical shifts. The computed results were found to be in good agreement with the observed 13C NMR values. The computed NMR results helped to ascertain the isomers of PCU-hydrazones 4A-C.

  12. Protein-Inhibitor Interaction Studies Using NMR

    PubMed Central

    Ishima, Rieko

    2015-01-01

    Solution-state NMR has been widely applied to determine the three-dimensional structure, dynamics, and molecular interactions of proteins. The designs of experiments used in protein NMR differ from those used for small-molecule NMR, primarily because the information available prior to an experiment, such as molecular mass and knowledge of the primary structure, is unique for proteins compared to small molecules. In this review article, protein NMR for structural biology is introduced with comparisons to small-molecule NMR, such as descriptions of labeling strategies and the effects of molecular dynamics on relaxation. Next, applications for protein NMR are reviewed, especially practical aspects for protein-observed ligand-protein interaction studies. Overall, the following topics are described: (1) characteristics of protein NMR, (2) methods to detect protein-ligand interactions by NMR, and (3) practical aspects of carrying out protein-observed inhibitor-protein interaction studies. PMID:26361636

  13. Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations

    NASA Astrophysics Data System (ADS)

    Sievänen, Elina; Toušek, Jaromír; Lunerová, Kamila; Marek, Jaromír; Jankovská, Dagmar; Dvorská, Margita; Marek, Radek

    2010-08-01

    In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometries and crystal packing determined by X-ray diffraction are used for characterizing the intermolecular interactions. Electron distribution is crucial for the stability of radicals and hence the antioxidant efficiency of flavonoid structures. The hydrogen bonding governs the formation of complexes of homoisoflavonoids with biological targets.

  14. Isotope-edited proton NMR study on the structure of a pepsin/inhibitor complex

    SciTech Connect

    Fesik, S.W.; Luly, J.R.; Erickson, J.W.; Abad-Zapatero, C.

    1988-11-01

    A general approach is illustrated for providing detailed structural information on large enzyme/inhibitor complexes using NMR spectroscopy. The method involves the use of isotopically labeled ligands to simplify two-dimensional NOE spectra of large molecular complexes by isotope-editing techniques. With this approach, the backbone and side-chain conformations (at the P/sub 2/ and P/sub 3/ sites) of a tightly bound inhibitor of porcine pepsin have bene determined. In addition, structural information on the active site of pepsin has been obtained. Due to the sequence homology between porcine pepsin and human renin, this structural information may prove useful for modeling renin/inhibitor complexes with the ultimate goal of designing more effective renin inhibitors. Moreover, this general approach can be applied to study other biological systems of interest such as other enzyme/inhibitor complexes, ligands bound to soluble receptors, and enzyme/substrate interactions.

  15. Comparative NMR study of copper-based intermetallics with ZrCuSiAs-type structure

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; ChangJen, W. J.; Su, T. H.

    2010-07-01

    The electronic characteristics of ZrCuGe2, ZrCuSi2, and HfCuSi2 are systematically investigated using C63u NMR spectroscopy. The quadrupole splittings, Knight shifts, and spin-lattice relaxation times on each individual compound have been identified. We found that the observed electric field gradient is consistent with the covalent bonding nature within the Cu atomic layers. The Knight shifts together with relaxation rates provide a measure of Cu d partial Fermi-level density of states, Nd(EF). Universally small Nd(EF) was found in all studied materials, suggests that the Cu d states are well below the Fermi energy and therefore the characteristic electronic structure near EF is primarily of sp type. We further pointed out that the low Nd(EF) value is an important factor for the lack of superconductivity in these Cu-based intermetallics within the ZrCuSiAs-type structure.

  16. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    SciTech Connect

    Nohaile, M J

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five {alpha}-helices and a five-stranded {beta}-sheet in a ({beta}/{alpha}){sub 5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  17. Improving NMR Structures of RNA.

    PubMed

    Bermejo, Guillermo A; Clore, G Marius; Schwieters, Charles D

    2016-05-01

    Here, we show that modern solution nuclear magnetic resonance (NMR) structures of RNA exhibit more steric clashes and conformational ambiguities than their crystallographic X-ray counterparts. To tackle these issues, we developed RNA-ff1, a new force field for structure calculation with Xplor-NIH. Using seven published NMR datasets, RNA-ff1 improves covalent geometry and MolProbity validation criteria for clashes and backbone conformation in most cases, relative to both the previous Xplor-NIH force field and the original structures associated with the experimental data. In addition, with smaller base-pair step rises in helical stems, RNA-ff1 structures enjoy more favorable base stacking. Finally, structural accuracy improves in the majority of cases, as supported by complete residual dipolar coupling cross-validation. Thus, the reported advances show great promise in bridging the quality gap that separates NMR and X-ray structures of RNA. PMID:27066747

  18. Porous Structure of Pharmaceutical Tablets Studied Using PGSTE-NMR Technique

    NASA Astrophysics Data System (ADS)

    Porion, Patrice; Tchoreloff, Pierre; Busignies, Virginie; Leclerc, Bernard; Evesque, Pierre

    2009-06-01

    The compaction of pharmaceutical tablets at high pressure (250 MPa) is a complex process that depends on the nature of the chemical compound. The purpose of this work is to characterize the porous structure of tablets obtained by uniaxial compaction, the most used process in pharmaceutical technology. First, three pharmaceutical excipients (microcrystalline cellulose, lactose and anhydrous calcium phosphate) were compacted and their compressibility properties determined. Secondly, the study of the self-diffusion process of a molecular fluid inside the pore space was performed by using pulsed-gradient stimulated-echo (PGSTE) NMR method, for tablets compacted under various pressure, in the directions perpendicular and parallel to the compaction axis. The results are used to determine the tortuosity factor and the anisotropy of the porous space of such compacted materials.

  19. Effect of hydrogenated cardanol on the structure of model membranes studied by EPR and NMR.

    PubMed

    Santeusanio, Stefania; Attanasi, Orazio Antonio; Majer, Roberta; Cangiotti, Michela; Fattori, Alberto; Ottaviani, Maria Francesca

    2013-09-01

    Hydrogenated cardanol (HC) is known to act as an antiobesity, promising antioxidant, and eco-friendly brominating agent. In this respect, it is important to find the way to transport and protect HC into the body; a micellar structure works as the simplest membrane model and may be considered a suitable biocarrier for HC. Therefore, it is useful to analyze the impact of HC in the micellar structure and properties. This study reports a computer aided electron paramagnetic resonance (EPR) and (1)H NMR investigation of structural variations of cetyltrimetylammonium bromide (CTAB) micelles upon insertion of HC at different concentrations and pH variations. Surfactant spin probes inserted in the micelles allowed us to get information on the structure and dynamics of the micelles and the interactions between HC and CTAB. The formation of highly packed HC-CTAB mixed micelles were favored by the occurrence of both hydrophobic (chain-chain) and hydrophilic (between the polar and charged lipid heads) interactions. These interactions were enhanced by neutralization of the acidic HC heads. Different HC localizations into the micelles and micellar structures were identified by changing HC/CTAB relative concentrations and pH. The increase in HC concentration generated mixed micelles characterized by an increased surfactant packing. These results suggested a rod-like shape of the mixed micelles. The increase in pH promoted the insertion of deprotonated HC into less packed micelles, favored by the electrostatic head-head interactions between CTAB and deprotonated-HC surfactants. PMID:23915214

  20. The structure of an integral membrane peptide: a deuterium NMR study of gramicidin.

    PubMed Central

    Prosser, R S; Daleman, S I; Davis, J H

    1994-01-01

    Solid state deuterium NMR was employed on oriented multilamellar dispersions consisting of 1,2-dilauryl-sn-glycero-3-phosphatidylcholine and deuterium (2H) exchange-labeled gramicidin D, at a lipid to protein molar ratio (L/P) of 15:1, in order to study the dynamic structure of the channel conformation of gramicidin in a liquid crystalline phase. The corresponding spectra were used to discriminate between several structural models for the channel structure of gramicidin (based on the left- and right-handed beta 6.3 LD helix) and other models based on a structure obtained from high resolution NMR. The oriented spectrum is complicated by the fact that many of the doublets, corresponding to the 20 exchangeable sites, partially overlap. Furthermore, the asymmetry parameter, eta, of the electric field gradient tensor of the amide deuterons is large (approximately 0.2) and many of the amide groups are involved in hydrogen bonding, which is known to affect the quadrupole coupling constant. In order to account for these complications in simulating the spectra in the fast motional regime, an ab initio program called Gaussian 90 was employed, which permitted us to calculate, by quantum mechanical means, the complete electric field gradient tensor for each residue in gramicidin (using two structural models). Our results indicated that the left-handed helical models were inconsistent with our observed spectra, whereas a model based on the high-resolution structure derived by Arseniev and coworkers, but relaxed by a simple energy minimization procedure, was consistent with our observed spectra. The molecular order parameter was then estimated from the motional narrowing assuming the relaxed (right-handed) Arseniev structure. Our resultant order parameter of SZZ = 0.91 translates into an rms angle of 14 degrees, formed by the helix axis and the local bilayer normal. The strong resemblance between our spectra (and also those reported for gramicidin in 1,2-dipalmitoyl-sn-glycero-3

  1. 15N NMR study of nitrate ion structure and dynamics in hydrotalcite-like compounds

    USGS Publications Warehouse

    Hou, X.; James, Kirkpatrick R.; Yu, P.; Moore, D.; Kim, Y.

    2000-01-01

    We report here the first nuclear magnetic resonance (NMR) spectroscopic study of the dynamical and structural behavior of nitrate on the surface and in the interlayer of hydrotalcite-like compounds (15NO3--HT). Spectroscopically resolvable surface-absorbed and interlayer NO3- have dramatically different dynamical characteristics. The interlayer nitrate shows a well defined, temperature independent uniaxial chemical shift anisotropy (CS A) powder pattern. It is rigidly held or perhaps undergoes rotation about its threefold axis at all temperatures between -100 ??C and +80 ??C and relative humidities (R.H.) from 0 to 100% at room temperature. For surface nitrate, however, the dynamical behavior depends substantially on temperature and relative humidity. Analysis of the temperature and R.H. dependences of the peak width yields reorieritational frequencies which increase from essentially 0 at -100 ??C to 2.6 ?? 105 Hz at 60 ??C and an activation energy of 12.6 kJ/mol. For example, for samples at R.H. = 33%, the surface nitrate is isotropically mobile at frequencies greater than 105 Hz at room temperature, but it becomes rigid or only rotates on its threefold axis at -100 ??C. For dry samples and samples heated at 200 ??C (R.H. near 0%), the surface nitrate is not isotropically averaged at room temperature. In contrast to our previous results for 35Cl--containing hydrotalcite (35Cl--HT), no NMR detectable structural phase transition is observed for 15NO3--HT. The mobility of interlayer nitrate in HT is intermediate between that of carbonate and chloride.

  2. NMR Studies on the Internal Structure of High- T c Superconductors and Other Anorganic Compounds

    NASA Astrophysics Data System (ADS)

    Kumagai, K.; Kakuyanagi, K.; Saitoh, M.; Matsuda, Y.; Hasegawa, M.; Takashima, S.; Nohara, M.; Takagi, H.

    2004-12-01

    Spatially-resolved NMR is used to probe internal structures in highly correlated superconductors of optimally-doped {text{Tl}}2 {text{Ba}}2 {text{CuO}}_{{6 + δ }} ( T c = 85 K) and a heavy fermion superconductor CeCoIn5 ( T c = 2.3 K). The characteristic change of the properties of 205Tl-NMR in the vortex state provides a clear evidence of the antiferromagnetic order in the vortex cores below 20 K in {text{Tl}}2 {text{Ba}}2 {text{CuO}}_{{6 + δ }} . We also obtain anomalous 115In-NMR spectra of CeCoIn5, which provides a microscopic evidence for the occurrence of a spatially-modulated superconducting order parameter expected in a Fulde Ferrel Larkin Ovchinnkov (FFLO) state.

  3. Molecular structure of crude beeswax studied by solid-state 13C NMR

    PubMed Central

    Kameda, Tsunenori

    2004-01-01

    13C Solid-state NMR experiments were performed to investigate the structure of beeswax in the native state (crude beeswax) for the first time. From quantitative direct polarization 13C MAS NMR spectrum, it was found that the fraction of internal-chain methylene (int-(CH2)) component compared to other components of crude beeswax was over 95%. The line shape of the int-(CH2) carbon resonance region was comprehensively analyzed in terms of NMR chemical shift. The 13C broad peak component covering from 31 to 35ppm corresponds to int-(CH2) carbons with trans conformation in crystalline domains, whereas the sharp signal at 30.3 ppm corresponds to gauche conformation in the non-crystalline domain. From peak deconvolution of the aliphatic region, it was found that over 85% of the int-(CH2) has a crystal structure and several kinds of molecular packing for int-(CH2), at least three, exist in the crystalline domain. Abbreviation: NMR nuclear magnetic resonance int-(CH2) internal-chain methylene CP cross-polarization MAS magic angle spinning PMID:15861244

  4. Understanding the structural specificity of Tn antigen for its receptor: an NMR solution study.

    PubMed

    D'Amelio, Nicola; Coslovi, Anna; Rossi, Marco; Uggeri, Fulvio; Paoletti, Sergio

    2012-04-01

    The present work aims at understanding the structural basis of the biological recognition of Tn antigen (GalNAc-α-O-L-Ser), a specific epitope expressed by tumor cells, and the role of its amino acidic moiety in the interaction with its receptor (the isolectin B4 extracted from Vicia villosa). An NMR structural characterization of the α and β anomers, based on J couplings and molecular modeling revealed a structure in very good agreement with data reported in literature for variants of the same molecules. In order to demonstrate the involvement of the amino acid in the ligand-receptor recognition, also GalNAc-α-O-D-Ser was studied; the change in the stereochemistry is in fact expected to impact on the interaction only in case the serine is part of the epitope. Relaxation properties in the presence of the receptor clearly indicated a selective recognition of the natural L form, probably due to the formation of a water-mediated hydrogen bond with Asn 129 of the protein. PMID:22341503

  5. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, January 1, 1992--March 31, 1992

    SciTech Connect

    Zilm, K.W.

    1992-07-01

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  6. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, October 1, 1993--December 31, 1993

    SciTech Connect

    Zilm, K.W.

    1993-12-31

    Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  7. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, September 13, 1991--December 31, 1991

    SciTech Connect

    Zilm, K.W.

    1992-05-27

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed a delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  8. Two dimensional NMR and NMR relaxation studies of coal structure. Progress report, October 1, 1992--December 31, 1992

    SciTech Connect

    Zilm, K.W.

    1992-12-31

    This report covers the progress made on the title project for the project period. Four major areas of inquiry are being pursued. Advanced solid state NMR methods are being developed to assay the distribution of the various important functional groups that determine the reactivity of coals. Special attention is being paid to methods that are compatible with the very high magic angle sample spinning rates needed for operation at the high magnetic field strengths available today. Polarization inversion methods utilizing the difference in heat capacities of small groups of spins are particularly promising. Methods combining proton-proton spin diffusion with {sup 13}C CPMAS readout are being developed to determine the connectivity of functional groups in coals in a high sensitivity relay type of experiment. Additional work is aimed at delineating the role of methyl group rotation in the proton NMR relaxation behavior of coals.

  9. 224} studied by NMR

    SciTech Connect

    Furukawa, Y; Fang, X; Kögerler, P

    2014-05-14

    7Li nuclear magnetic resonance (NMR) studies have been performed to investigate magnetic properties and spin dynamics of Mn3+ (S = 2) spins in the giant polyoxometalate molecule {Mn40W224}. The 7Li-NMR line width is proportional to the external magnetic field H as expected in a paramagnetic state above 3 K. Below this temperature the line width shows a sudden increase and is almost independent of H, which indicates freezing of the local Mn3+ spins. The temperature dependence of T1 for both 1H and 7Li reveals slow spin dynamics at low temperatures, consistent with spin freezing. The slow spin dynamics is also evidenced by the observation of a peak of 1/T2 around 3 K, where the fluctuation frequency of spins is of the order of ~200 kHz. An explicit form of the temperature dependence of the fluctuation frequency of Mn3+ spins is derived from the nuclear relaxation data.

  10. NMR spectroscopy: structure elucidation of cycloelatanene A: a natural product case study.

    PubMed

    Urban, Sylvia; Dias, Daniel Anthony

    2013-01-01

    The structure elucidation of new secondary metabolites derived from marine and terrestrial sources is frequently a challenging task. The hurdles include the ability to isolate stable secondary metabolites of sufficient purity that are often present in <0.5 % of the dry weight of the sample. This usually involves a minimum of several chromatographic purification steps. The second issue is the stability of the compound isolated. It must always be assumed when dealing with the isolation of natural products that the compound may rapidly degrade during and/or after the isolation, due to sensitivity to light, air oxidation, and/or temperature. In this way, precautions need to be taken, as much as possible to avoid any such chemical inter-conversions and/or degradations. Immediately after purification, the next step is to rapidly acquire all analytical spectroscopic data in order to complete the characterization of the isolated secondary metabolite(s), prior to any possible decomposition. The final hurdle in this multiple step process, especially in the acquisition of the NMR spectroscopic and other analytical data (mass spectra, infrared and ultra-violet spectra, optical rotation, etc.), is to assemble the structural moieties/units in an effort to complete the structure elucidation. Often ambiguity with the elucidation of the final structure remains when structural fragments identified are difficult to piece together on the basis of the HMBC NMR correlations or when the relative configuration cannot be unequivocally identified on the basis of NOE NMR enhancements observed. Herein, we describe the methodology used to carry out the structure elucidation of a new C16 chamigrene, cycloelatanene A (5) which was isolated from the southern Australian marine alga Laurencia elata (Rhodomelaceae). The general approach and principles used in the structure determination of this compound can be applied to the structure elucidation of other small molecular weight compounds derived

  11. Layered structure of room-temperature ionic liquids in microemulsions by multinuclear NMR spectroscopic studies.

    PubMed

    Falcone, R Dario; Baruah, Bharat; Gaidamauskas, Ernestas; Rithner, Christopher D; Correa, N Mariano; Silber, Juana J; Crans, Debbie C; Levinger, Nancy E

    2011-06-01

    Microemulsions form in mixtures of polar, nonpolar, and amphiphilic molecules. Typical microemulsions employ water as the polar phase. However, microemulsions can form with a polar phase other than water, which hold promise to diversify the range of properties, and hence utility, of microemulsions. Here microemulsions formed by using a room-temperature ionic liquid (RTIL) as the polar phase were created and characterized by using multinuclear NMR spectroscopy. (1)H, (11)B, and (19)F NMR spectroscopy was applied to explore differences between microemulsions formed by using 1-butyl-3-methylimidazolium tetrafluoroborate ([bmim][BF(4)]) as the polar phase with a cationic surfactant, benzylhexadecyldimethylammonium chloride (BHDC), and a nonionic surfactant, Triton X-100 (TX-100). NMR spectroscopy showed distinct differences in the behavior of the RTIL as the charge of the surfactant head group varies in the different microemulsion environments. Minor changes in the chemical shifts were observed for [bmim](+) and [BF(4)](-) in the presence of TX-100 suggesting that the surfactant and the ionic liquid are separated in the microemulsion. The large changes in spectroscopic parameters observed are consistent with microstructure formation with layering of [bmim](+) and [BF(4)](-) and migration of Cl(-) within the BHDC microemulsions. Comparisons with NMR results for related ionic compounds in organic and aqueous environments as well as literature studies assisted the development of a simple organizational model for these microstructures. PMID:21547960

  12. High-resolution NMR studies of structure and dynamics of human ERp27 indicate extensive interdomain flexibility

    PubMed Central

    Amin, Nader T.; Wallis, A. Katrine; Wells, Stephen A.; Rowe, Michelle L.; Williamson, Richard A.; Howard, Mark J.; Freedman, Robert B.

    2012-01-01

    ERp27 (endoplasmic reticulum protein 27.7 kDa) is a homologue of PDI (protein disulfide-isomerase) localized to the endoplasmic reticulum. ERp27 is predicted to consist of two thioredoxin-fold domains homologous with the non-catalytic b and b′ domains of PDI. The structure in solution of the N-terminal b-like domain of ERp27 was solved using high-resolution NMR data. The structure confirms that it has the thioredoxin fold and that ERp27 is a member of the PDI family. 15N-NMR relaxation data were obtained and ModelFree analysis highlighted limited exchange contributions and slow internal motions, and indicated that the domain has an average order parameter S2 of 0.79. Comparison of the single-domain structure determined in the present study with the equivalent domain within full-length ERp27, determined independently by X-ray diffraction, indicated very close agreement. The domain interface inferred from NMR data in solution was much more extensive than that observed in the X-ray structure, suggesting that the domains flex independently and that crystallization selects one specific interdomain orientation. This led us to apply a new rapid method to simulate the flexibility of the full-length protein, establishing that the domains show considerable freedom to flex (tilt and twist) about the interdomain linker, consistent with the NMR data. PMID:23234573

  13. Aggregation properties and structural studies of anticancer drug Irinotecan in DMSO solution based on NMR measurements

    NASA Astrophysics Data System (ADS)

    D'Amelio, N.; Aroulmoji, V.; Toraldo, A.; Sundaraganesan, N.; Anbarasan, P. M.

    2012-04-01

    Irinotecan is an antitumor drug mostly used in the treatment of colorectal cancer. Its efficacy is influenced by the chemical state of the molecule undergoing chemical equilibria, metabolic changes and photodegradation. In this work, we describe the chemical equilibria of the drug in dimethyl sulfoxide (DMSO). The energetic barrier for hindered rotation around the bond connecting the piperidino—piperidino moiety with the camptothecin-like fragment was evaluated. Furthermore, we showed how the molecule aggregates in DMSO solution forming dimeric species able to prevent its degradation. The equilibrium constant for self-aggregation was determined by NMR based on the assumption of the isodesmic model. The formation of a dimer was highlighted by NMR diffusion ordered spectroscopy (NMR-DOSY) experiments at the concentrations used. Structural features of the complex were inferred by NOE and 13C chemical shift data. Molecular modelling of the complex driven by experimental data, lead to a structure implying the formation of two hydrogen bonds involving the lactone ring whose opening is one of the main causes of drug degradation. This species is probably responsible for the improved stability of the drug at concentrations higher than 1 mM.

  14. NMR studies of isotopically labeled RNA

    SciTech Connect

    Pardi, A.

    1994-12-01

    In summary, the ability to generate NMR quantities of {sup 15}N and {sup 13}C-labeled RNAs has led to the development of heteronuclear multi-dimensional NMR techniques for simplifying the resonance assignment and structure determination of RNAs. These methods for synthesizing isotopically labeled RNAs are only several years old, and thus there are still relatively few applications of heteronuclear multi-dimensional NMR techniques to RNA. However, given the critical role that RNAs play in cellular function, one can expect to see an increasing number of NMR structural studies of biologically active RNAs.

  15. Reconstitution of the Cytb5 -CytP450 Complex in Nanodiscs for Structural Studies using NMR Spectroscopy.

    PubMed

    Zhang, Meng; Huang, Rui; Ackermann, Rose; Im, Sang-Choul; Waskell, Lucy; Schwendeman, Anna; Ramamoorthy, Ayyalusamy

    2016-03-24

    Cytochrome P450s (P450s) are a superfamily of enzymes responsible for the catalysis of a wide range of substrates. Dynamic interactions between full-length membrane-bound P450 and its redox partner cytochrome b5 (cytb5 ) have been found to be important for the enzymatic activity of P450. However, the stability of the circa 70 kDa membrane-bound complex in model membranes renders high-resolution structural NMR studies particularly difficult. To overcome these challenges, reconstitution of the P450-cytb5 complex in peptide-based nanodiscs, containing no detergents, has been demonstrated, which are characterized by size exclusion chromatography and NMR spectroscopy. In addition, NMR experiments are used to identify the binding interface of the P450-cytb5 complex in the nanodisc. This is the first successful demonstration of a protein-protein complex in a nanodisc using NMR structural studies and should be useful to obtain valuable structural information on membrane-bound protein complexes. PMID:26924779

  16. A structural study of pyrazole-1-carboxamides by X-ray crystallography and 13C CPMAS NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Llamas-Saiz, Antonio L.; Foces-Foces, Concepción; Sobrados, Isabel; Jagerovic, Nadine; Elguero, José

    1999-03-01

    The crystal structures of the first two pyrazole N-substituted primary amides (3-methyl and 4-bromo) were determined. The amide groups from the R 22 (8) hydrogen-bond dimeric pattern in all cases, in accordance with the higher rate found for the formation of this pattern in monosubstituted benzamides (81%) compared with the whole group of primary amide structures (34%). These two compounds and four other N-CONH 2 pyrazoles were studied by solid state NMR (CPMAS technique).

  17. Structural studies of pravastatin and simvastatin and their complexes with SDS micelles by NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Rakhmatullin, I. Z.; Galiullina, L. F.; Klochkova, E. A.; Latfullin, I. A.; Aganov, A. V.; Klochkov, V. V.

    2016-02-01

    Conformational features of pravastatin and simvastatin molecules in solution and in their complexes with sodium dodecyl sulfate micelles (SDS) were studied by 2D NOESY NMR spectroscopy. On the basis of the nuclear magnetic resonance experiments it was established that pravastatin and simvastatin can form molecular complex with SDS micelles which were considered as the model of cell membrane. In addition, interatomic distances for studied compounds were calculated based on 2D NOESY NMR experiments. It was shown that pravastatin interacts only with a surface of model membrane. However, in contrast to pravastatin, simvastatin penetrates into the inner part of SDS micelles. Observed distinctions in the mechanisms of interaction of pravastatin and simvastatin with models of cell membranes could explain the differences in their pharmacological properties.

  18. Molecular dynamics studies on the NMR and X-ray structures of rabbit prion proteins.

    PubMed

    Zhang, Jiapu; Zhang, Yuanli

    2014-02-01

    Prion diseases, traditionally referred to as transmissible spongiform encephalopathies (TSEs), are invariably fatal and highly infectious neurodegenerative diseases that affect a wide variety of mammalian species, manifesting as scrapie in sheep and goats, bovine spongiform encephalopathy (BSE or mad-cow disease) in cattle, chronic wasting disease in deer and elk, and Creutzfeldt-Jakob diseases, Gerstmann-Sträussler-Scheinker syndrome, fatal familial insomnia, and kulu in humans, etc. These neurodegenerative diseases are caused by the conversion from a soluble normal cellular prion protein (PrP(C)) into insoluble abnormally folded infectious prions (PrP(Sc)), and the conversion of PrP(C) to PrP(Sc) is believed to involve conformational change from a predominantly α-helical protein to one rich in β-sheet structure. Such a conformational change may be amenable to study by molecular dynamics (MD) techniques. For rabbits, classical studies show that they have a low susceptibility to be infected by PrP(Sc), but recently it was reported that rabbit prions can be generated through saPMCA (serial automated Protein Misfolding Cyclic Amplification) in vitro and the rabbit prion is infectious and transmissible. In this paper, we first do a detailed survey on the research advances of rabbit prion protein (RaPrP) and then we perform MD simulations on the NMR and X-ray molecular structures of rabbit prion protein wild-type and mutants. The survey shows to us that rabbits were not challenged directly in vivo with other known prion strains and the saPMCA result did not pass the test of the known BSE strain of cattle. Thus, we might still look rabbits as a prion resistant species. MD results indicate that the three α-helices of the wild-type are stable under the neutral pH environment (but under low pH environment the three α-helices have been unfolded into β-sheets), and the three α-helices of the mutants (I214V and S173N) are unfolded into rich β-sheet structures under

  19. Advanced solids NMR studies of coal structure and chemistry. Progress report, September 1, 1995--February 28, 1996

    SciTech Connect

    Zilm, K.W.

    1996-09-01

    This report covers the progress made on the title project for the project period. The study of coal chemical structure is a vital component of research efforts to develop better chemical utilization of coals, and for furthering our basic understanding of coal geochemistry. In this grant we are addressing several structural questions pertaining to coals with advances in state of the art solids NMR methods. Our goals are twofold. First, we are interested in developing new methods that will enable us to measure important structural parameters in whole coals not directly accessible by other techniques. In parallel with these efforts we will apply these NMR methods in a study of the chemical differences between gas-sourcing and oil-sourcing coals. The NMR methods work will specifically focus on determination of the number and types of methylene groups, determination of the number and types of methine groups, identification of carbons adjacent to nitrogen and sites with exchangeable protons, and methods to more finely characterize the distribution of hydrogen in coals. We will also develop NMR methods for probing coal macropore structure using hyperpolarized {sup 129}Xe as a probe, and study the molecular dynamics of what appear to be mobile, CH{sub 2} rich, long chain hydrocarbons. The motivation for investigating these specific structural features of coals arises from their relevance to the chemical reactivity of some types of coals. The coals to be studied and contrasted include oil-prone coals from Australia and Indonesia, those comprising the Argonne Premium Coal Sample bank, and other relevant samples.

  20. NMR study on the network structure of a mixed gel of kappa and iota carrageenans.

    PubMed

    Hu, Bingjie; Du, Lei; Matsukawa, Shingo

    2016-10-01

    The temperature dependencies of the (1)H T2 and diffusion coefficient (D) of a mixed solution of kappa-carrageenan and iota-carrageenan were measured by NMR. Rheological and NMR measurements suggested an exponential formation of rigid aggregates of kappa-carrageenan and a gradual formation of fine aggregates of iota-carrageenan during two step increases of G'. The results also suggested that longer carrageenan chains are preferentially involved in aggregation, thus resulting in a decrease in the average Mw of solute carrageenans. The results of diffusion measurements for poly(ethylene oxide) (PEO) suggested that kappa-carrageenan formed thick aggregates that decreased hindrance to PEO diffusion by decreasing the solute kappa-carrageenan concentration in the voids of the aggregated chains, and that iota-carrageenan formed fine aggregates that decreased the solute iota-carrageenan concentration less. DPEO in a mixed solution of kappa-carrageenan and iota-carrageenan suggested two possibilities for the microscopic network structure: an interpenetrating network structure, or micro-phase separation. PMID:27312613

  1. A multinuclear solid state NMR spectroscopic study of the structural evolution of disordered calcium silicate sol-gel biomaterials.

    PubMed

    Lin, Zhongjie; Jones, Julian R; Hanna, John V; Smith, Mark E

    2015-01-28

    Disordered sol-gel prepared calcium silicate biomaterials show significant, composition dependent ability to bond with bone. Bone bonding is attributed to rapid hydroxycarbonate apatite (HCA) formation on the glass surface after immersion in body fluid (or implantation). Atomic scale details of the development of the structure of (CaO)x(SiO2)1-x (x = 0.2, 0.3 and 0.5) under heat treatment and subsequent dissolution in simulated body fluid (SBF) are revealed through a multinuclear solid state NMR approach using one-dimensional (17)O, (29)Si, (31)P and (1)H. Central to this study is the combination of conventional static and magic angle spinning (MAS) and two-dimensional (2D) triple quantum (3Q) (17)O NMR experiments that can readily distinguish and quantify the bridging (BOs) and non-bridging (NBOs) oxygens in the silicate network. Although soluble calcium is present in the sol, the (17)O NMR results reveal that the sol-gel produced network structure is initially dominated by BOs after gelation, aging and drying (e.g. at 120 °C), indicating a nanoscale mixture of the calcium salt and a predominantly silicate network. Only once the calcium salt is decomposed at elevated temperatures do the Ca(2+) ions become available to break BO. Apatite forming ability in SBF depends strongly on the surface OH and calcium content. The presence of calcium aids HCA formation via promotion of surface hydration and the ready availability of Ca(2+) ions. (17)O NMR shows the rapid loss of NBOs charge balanced by calcium as it is leached into the SBF. The formation of nanocrystalline, partially ordered HCA can be detected via(31)P NMR. This data indicates the importance of achieving the right balance of BO/NBO for optimal biochemical response and network properties. PMID:25494341

  2. The chemical structure of highly aromatic humic acids in three volcanic ash soils as determined by dipolar dephasing NMR studies

    USGS Publications Warehouse

    Hatcher, P.G.; Schnitzer, M.; Vassallo, A.M.; Wilson, M.A.

    1989-01-01

    Dipolar dephasing 13C NMR studies of three highly aromatic humic acids, one from a modern soil and two from paleosols, have permitted the determination of the degree of aromatic substitution. From these data and the normal solid-state 13C NMR data we have been able to develop a model for the average chemical structure of these humic acids that generally correlates well with permanganate oxidation data. The models depict these humic acids as benzene di- and tricarboxylic acids interconnected by biphenyl linkages. An increasing degree of substitution is observed with increasing geologic age. These structures may be characteristic of the resistant aromatic part of the "core" of humic substances that survives degradation. ?? 1989.

  3. Structural Biology by NMR: Structure, Dynamics, and Interactions

    PubMed Central

    Markwick, Phineus R. L.; Malliavin, Thérèse; Nilges, Michael

    2008-01-01

    The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR) spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data. PMID:18818721

  4. NMR cryoporometry characterisation studies of the relation between drug release profile and pore structural evolution of polymeric nanoparticles

    PubMed Central

    Gopinathan, Navin; Yang, Bin; Lowe, John P.; Edler, Karen J.; Rigby, Sean P.

    2014-01-01

    PLGA/PLA polymeric nanoparticles could potentially enhance the effectiveness of convective delivery of drugs, such as carboplatin, to the brain, by enabling a more sustained dosage over a longer time than otherwise possible. However, the link between the controlled release nanoparticle synthesis route, and the subsequent drug release profile obtained, is not well-understood, which hinders design of synthesis routes and availability of suitable nanoparticles. In particular, despite pore structure evolution often forming a key aspect of past theories of the physical mechanism by which a particular drug release profile is obtained, these theories have not been independently tested and validated against pore structural information. Such validation is required for intelligent synthesis design, and NMR cryoporometry can supply the requisite information. Unlike conventional pore characterisation techniques, NMR cryoporometry permits the investigation of porous particles in the wet state. NMR cryoporometry has thus enabled the detailed study of the evolving, nanoscale structure of nanoparticles during drug release, and thus related pore structure to drug release profile in a way not done previously for nanoparticles. Nanoparticles with different types of carboplatin drug release profiles were compared, including burst release, and various forms of delayed release. ESEM and TEM images of these nanoparticles also provided supporting data showing the rapid initial evolution of some nanoparticles. Different stages, within a complex, varying drug release profile, were found to be associated with particular types of changes in the nanostructure which could be distinguished by NMR. For a core-coat nanoparticle formulation, the development of smaller nanopores, following an extended induction period with no structural change, was associated with the onset of substantial drug release. This information could be used to independently validate the rationale for a particular synthesis

  5. Synthesis of a new quaternary phosphonium salt: NMR study of the conformational structure and dynamics.

    PubMed

    Aganova, Oksana V; Galiullina, Leysan F; Aganov, Albert V; Shtyrlin, Nikita V; Pugachev, Mikhail V; Strel'nik, Alexey D; Koshkin, Sergey A; Shtyrlin, Yurii G; Klochkov, Vladimir V

    2016-04-01

    A novel phosphonium salt based on pyridoxine was synthesized. Conformational analysis of the compound in solution was performed using dynamic NMR experiments and calculations. The obtained results revealed some differences in the conformational transitions and the energy parameters of the conformational exchange of the studied compound in comparison to previously reported data for other phosphorus-containing pyridoxine derivatives. It was shown that increasing the substituent at the C-11 carbon leads to greater differences in the populations of stable states and the corresponding equilibrium energies. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26661926

  6. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels.

    PubMed

    Duxson, Peter; Provis, John L; Lukey, Grant C; Separovic, Frances; van Deventer, Jannie S J

    2005-03-29

    A systematic series of aluminosilicate geopolymer gels was synthesized and then analyzed using 29Si magic-angle spinning nuclear magnetic resonance (MAS NMR) in combination with Gaussian peak deconvolution to characterize the short-range ordering in terms of T-O-T bonds (where T is Al or Si). The effect of nominal Na2O/(Na2O + K2O) and Si/Al ratios on short-range network ordering was quantified by deconvolution of the 29Si MAS NMR spectra into individual Gaussian peaks representing different Q4(mAl) silicon centers. The deconvolution procedure developed in this work is applicable to other aluminosilicate gel systems. The short-range ordering observed here indicates that Loewenstein's Rule of perfect aluminum avoidance may not apply strictly to geopolymeric gels, although further analyses are required to quantify the degree of aluminum avoidance. Potassium geopolymers appeared to exhibit a more random Si/Al distribution compared to that of mixed-alkali and sodium systems. This work provides a quantitative account of the silicon and aluminum ordering in geopolymers, which is essential for extending our understanding of the mechanical strength, chemical and thermal stability, and fundamental structure of these systems. PMID:15779981

  7. Molecular structure and spectroscopic analysis of homovanillic acid and its sodium salt - NMR, FT-IR and DFT studies

    NASA Astrophysics Data System (ADS)

    Samsonowicz, M.; Kowczyk-Sadowy, M.; Regulska, E.; Lewandowski, W.

    2014-01-01

    The estimation of the electronic charge distribution in metal complex or salt allows to predict what kind of deformation of the electronic system of ligand would undergo during complexation. It also permits to make more precise interpretation of mechanism by which metals affect the biochemical properties of ligands. The influence of sodium cation on the electronic system of homovanillic acid was studied in this paper. Optimized geometrical structures of studied compounds were calculated by B3LYP/6-311++G** method. Mulliken, MK and ChelpG atomic charges were analyzed. The theoretical NMR and IR spectra were obtained. 1H and 13C NMR as well as FT-IR and FT-Raman spectra of studied compounds were also recorded and analyzed. The calculated parameters are compared with experimental characteristics of these molecules.

  8. Protein Structure Determination Using Protein Threading and Sparse NMR Data

    SciTech Connect

    Crawford, O.H.; Einstein, J.R.; Xu, D.; Xu, Y.

    1999-11-14

    It is well known that the NMR method for protein structure determination applies to small proteins and that its effectiveness decreases very rapidly as the molecular weight increases beyond about 30 kD. We have recently developed a method for protein structure determination that can fully utilize partial NMR data as calculation constraints. The core of the method is a threading algorithm that guarantees to find a globally optimal alignment between a query sequence and a template structure, under distance constraints specified by NMR/NOE data. Our preliminary tests have demonstrated that a small number of NMR/NOE distance restraints can significantly improve threading performance in both fold recognition and threading-alignment accuracy, and can possibly extend threading's scope of applicability from structural homologs to structural analogs. An accurate backbone structure generated by NMR-constrained threading can then provide a significant amount of structural information, equivalent to that provided by the NMR method with many NMR/NOE restraints; and hence can greatly reduce the amount of NMR data typically required for accurate structure determination. Our preliminary study suggests that a small number of NMR/NOE restraints may suffice to determine adequately the all-atom structure when those restraints are incorporated in a procedure combining threading, modeling of loops and sidechains, and molecular dynamics simulation. Potentially, this new technique can expand NMR's capability to larger proteins.

  9. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Devi, L.; Subbalakshmi, R.; Rani, T.; Mohan, S.

    2014-09-01

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G∗∗ and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO’s, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated.

  10. Synthesis, vibrational, NMR, quantum chemical and structure-activity relation studies of 2-hydroxy-4-methoxyacetophenone.

    PubMed

    Arjunan, V; Devi, L; Subbalakshmi, R; Rani, T; Mohan, S

    2014-09-15

    The stable geometry of 2-hydroxy-4-methoxyacetophenone is optimised by DFT/B3LYP method with 6-311++G(∗∗) and cc-pVTZ basis sets. The structural parameters, thermodynamic properties and vibrational frequencies of the optimised geometry have been determined. The effects of substituents (hydroxyl, methoxy and acetyl groups) on the benzene ring vibrational frequencies are analysed. The vibrational frequencies of the fundamental modes of 2-hydroxy-4-methoxyacetophenone have been precisely assigned and analysed and the theoretical results are compared with the experimental vibrations. 1H and 13C NMR isotropic chemical shifts are calculated and assignments made are compared with the experimental values. The energies of important MO's, the total electron density and electrostatic potential of the compound are determined. Various reactivity and selectivity descriptors such as chemical hardness, chemical potential, softness, electrophilicity, nucleophilicity and the appropriate local quantities are calculated. PMID:24792193

  11. Probing NMR parameters, structure and dynamics of 5-nitroimidazole derivatives. Density functional study of prototypical radiosensitizers.

    PubMed

    Ramalho, Teodorico C; Bühl, Michael

    2005-02-01

    The 15N chemical shifts of metronidazole (1), secnidazole (2), nimorazole (3) and tinidazole (4), radiosensitizers based on the 5-nitroimidazole motif, are reported. A detailed computational study of 1 is presented, calling special attention to the performance of various theoretical methods in reproducing the 13C and 15N data observed in solution. The most sophisticated approach involves density functional-based Car-Parrinello molecular dynamics simulations (CPMD) of 1 in aqueous solution (BP86 level) and averaging chemical shifts over snapshots from the trajectory. In the NMR calculations for these snapshots (performed at the B3LYP level), a small number of discrete water molecules are retained, and the remaining bulk solution effects are included via a polarizable continuum model (PCM). A similarly good accord with experiment is obtained from much less involved, static geometry optimization and NMR computation of pristine 1 employing a PCM approach. Solvent effects on delta(15N), which are of the order of up to 20 ppm, are not due to changes in geometric parameters upon solvation, but arise from the direct response of the electronic wavefunction to the presence of the solvent, which can be represented by discrete molecules and/or the dielectric bulk. PMID:15558660

  12. Structure and Dynamics of Cholesterol-Containing Polyunsaturated Lipid Membranes Studied by Neutron Diffraction and NMR

    PubMed Central

    Mihailescu, Mihaela; Soubias, Olivier; Worcester, David; White, Stephen H.

    2010-01-01

    A direct and quantitative analysis of the internal structure and dynamics of a polyunsaturated lipid bilayer composed of 1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine (18:0-22:6n3-PC) containing 29 mol% cholesterol was carried out by neutron diffraction, 2H-NMR and 13C-MAS NMR. Scattering length distribution functions of cholesterol segments as well as of the sn-1 and sn-2 hydrocarbon chains of 18:0-22:6n3-PC were obtained by conducting experiments with specifically deuterated cholesterol and lipids. Cholesterol orients parallel to the phospholipids, with the A-ring near the lipid glycerol and the terminal methyl groups 3 Å away from the bilayer center. Previously, we reported that the density of polyunsaturated docosahexaenoic acid (DHA, 22:6n3) chains was higher near the lipid–water interface. Addition of cholesterol partially redistributes DHA density from near the lipid–water interface to the center of the hydrocarbon region. Cholesterol raises chain-order parameters of both stearic acid and DHA chains. The fractional order increase for stearic acid methylene carbons C8–C18 is larger, reflecting the redistribution of DHA chain density toward the bilayer center. The correlation times of DHA chain isomerization are short and mostly unperturbed by the presence of cholesterol. The uneven distribution of saturated and polyunsaturated chain densities and the cholesterol-induced balancing of chain distributions may have important implications for the function and integrity of membrane receptors, such as rhodopsin. PMID:21161517

  13. Deuterium NMR study of structural and dynamic properties of horseradish peroxidase

    SciTech Connect

    La Mar, G.N.; Thanabal, V.; Johnson, R.D.; Smith, K.M.; Parish, D.W.

    1989-04-05

    High field deuterium NMR spectra have been recorded for various horseradish peroxidase complexes reconstituted with hemins possessing specific 2H labels. The line width of the 2H NMR signals of deuteroheme reconstituted-horseradish peroxidase (HRP) and its cyano complex for the immobilized skeletal 2-2H and 4-2H labels yield the overall protein rotational correlation time (22 ms at 55 degrees C), which is consistent with expectations based on molecular weight. Meso-2H4 labels yield broad (1.3 kHz) signals just upfield from the diamagnetic protein envelope for HRP, and in the central portion of the protein envelope for the CN- ligated resting state HRP. Meso-2H4-labeled mesohemin-reconstituted HRP exhibits a similar signal but shifted further upfield by approximately 10 ppm. The net upfield meso-H hyperfine shifts confirm a five-coordinate structure for resting state HRP. 2Ha resonances for essentially rotationally immobile vinyl groups were detected in both resting state HRP and CN- ligated resting state HRP. Heme methyl-2H-labeling yields relatively narrow lines (approximately 80 Hz) indicative of effective averaging of the quadrupolar relaxation by rapid methyl rotation. Thus the 2H line width of rapidly rotating methyls in hemoproteins can be used effectively to determine the overall protein tumbling rate. Preliminary 2H experiments in meso-2H4-labeled compound I do not support large pi spin density at these positions on the porphyrin cation radical, and argue for a a1u rather than a a2u orbital ground state.

  14. NMR solution structure of butantoxin.

    PubMed

    Holaday, S K; Martin, B M; Fletcher, P L; Krishna, N R

    2000-07-01

    The NMR structure of a new toxin, butantoxin (BuTX), which is present in the venoms of the three Brazilian scorpions Tityus serrulatus, Tityus bahiensis, and Tityus stigmurus, has been investigated. This toxin was shown to reversibly block the Shaker B potassium channels (K(d) approximately 660 nM) and inhibit the proliferation of T-cells and the interleukin-2 production of antigen-stimulated T-helper cells. BuTX is a 40 amino acid basic protein stabilized by the four disulfide bridges: Cys2-Cys5, Cys10-Cys31, Cys16-Cys36, and Cys20-Cys38. The latter three are conserved among all members of the short-chain scorpion toxin family, while the first is unique to BuTX. The three-dimensional structure of BuTX was determined using (1)H-NMR spectroscopy. NOESY, phase sensitive COSY (PH-COSY), and amide hydrogen exchange data were used to generate constraints for molecular modeling calculations. Distance geometry and simulated annealing calculations were performed to generate a family of 49 structures free of constraint violations. The secondary structure of BuTX consists of a short 2(1/2) turn alpha-helix (Glu15-Phe23) and a beta-sheet. The beta-sheet is composed of two well-defined antiparallel strands (Gly29-Met32 and Lys35-Cys38) connected by a type-I' beta-turn (Asn33-Asn34). Residues Cys5-Ala9 form a quasi-third strand of the beta-sheet. The N-terminal C2-C5 disulfide bridge unique to this toxin does not appear to confer stability to the protein. PMID:10864437

  15. Experimental and theoretical studies on compositions, structures, and IR and NMR spectra of functionalized protic ionic liquids.

    PubMed

    Cui, Yingna; Yin, Jingmei; Li, Changping; Li, Shenmin; Wang, Ailing; Yang, Guang; Jia, Yingping

    2016-07-20

    The compositions and structures of amine-based functionalized protic ionic liquids (PILs), namely N,N-dimethyl(cyanoethyl)ammonium propionate (DMCEAP) and N,N-dimethyl(hydroxyethyl)ammonium propionate (DMEOAP) have been investigated systematically by IR and (1)H NMR spectroscopy and density functional theory (DFT) calculations. Analysis of the IR spectra suggests that both DMCEAP and DMEOAP are composed of neutral and ionized species in the liquid phase, the former one mainly existing in the state of precursor molecules, and the latter mainly as ion-pairs. The ratio of precursor molecules to ion-pairs in the liquid phase depends on the types of precursors, especially the functional groups of cations. (1)H NMR spectra indicate that there is a dynamic equilibrium between the neutral and ionized species, probably due to the formation of some intermediates in the PILs. The DFT calculations have been carried out to reveal the conformation, and obtain the corresponding IR and (1)H NMR spectra of the neutral and ionized species, so that the theoretical support to the experimental results can be provided. The present study will help understand the properties of PILs and provide guidance for further applications of PILs. PMID:27385035

  16. Salt-dependent structure change and ion binding in cytochrome c studied by two-dimensional proton NMR

    SciTech Connect

    Feng, Yiqing; Englander, S.W. )

    1990-04-10

    To search for salt-dependent structure changes that might help to explain physicochemical differences observed in previous solution studies, two-dimensional proton NMR spectra of reduced and oxidized cytochrome c were recorded at relatively high and low salt concentrations. The results rule out substantial ionic strength dependent structure change in either redox form over the salt concentrations tested. Chemical shift changes were found for several residues within a limited segment of the oxidized protein, most prominently in the sequence Lys-86, Lys-87, Lys-88, Thr-89. A salt-dependent binding of phosphate anion(s) at this site, as observed earlier by others, is indicated. The binding of one or two phosphates at the cytochrome c surface can explain earlier small-angle X-ray scattering observations of an increase in the calculated radius of gyration of the oxidized protein at the same low-salt condition used here. The results obtained support the view that the absence of sizeable redox-dependent structure change observed in X-ray and NMR studies at varying salt conditions is characteristic of the protein at all salt conditions above the low millimolar range. Physicochemical differences between oxidized and reduced cytochrome c apparently represent differences in stability without patent structure change.

  17. Membrane Protein Structure and Dynamics from NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hong, Mei; Zhang, Yuan; Hu, Fanghao

    2012-05-01

    We review the current state of membrane protein structure determination using solid-state nuclear magnetic resonance (NMR) spectroscopy. Multidimensional magic-angle-spinning correlation NMR combined with oriented-sample experiments has made it possible to measure a full panel of structural constraints of membrane proteins directly in lipid bilayers. These constraints include torsion angles, interatomic distances, oligomeric structure, protein dynamics, ligand structure and dynamics, and protein orientation and depth of insertion in the lipid bilayer. Using solid-state NMR, researchers have studied potassium channels, proton channels, Ca2+ pumps, G protein-coupled receptors, bacterial outer membrane proteins, and viral fusion proteins to elucidate their mechanisms of action. Many of these membrane proteins have also been investigated in detergent micelles using solution NMR. Comparison of the solid-state and solution NMR structures provides important insights into the effects of the solubilizing environment on membrane protein structure and dynamics.

  18. Structure and dynamics of homoleptic beryllocenes: a solid-state 9Be and 13C NMR study.

    PubMed

    Hung, Ivan; Macdonald, Charles L B; Schurko, Robert W

    2004-11-19

    The correlation between anisotropic 9Be NMR (quadrupolar and chemical shielding) interactions and the structure and dynamics in [Cp2Be], [Cp2*Be], and [(C5Me4H)2Be] is examined by solid-state 9Be NMR spectroscopy, as well as by ab initio and hybrid density functional theory calculations. The 9Be quadrupole coupling constants in the three compounds correspond well to the relative degrees of spherical ground-state electronic symmetry of the environment about beryllium. Theoretical computations of NMR interaction tensors are in excellent agreement with experimental values and aid in understanding the origins of NMR interaction tensors and their correlation to molecular symmetry. Variable-temperature (VT) 9Be and 13C NMR experiments reveal a highly fluxional structure in the condensed phase of [Cp2Be]. In particular, the pathway by which the Cp rings of [Cp2Be] 'invert' coordination modes is examined in detail using hybrid density functional theory in order to inspect variations of the 9Be NMR interaction tensors. The activation energy for the 'inversion' process is found to be 36.9 kJ mol(-1) from chemical exchange analysis of 13C VT CP/MAS NMR spectra. The low-temperature (ca. -100 degrees C) X-ray crystal structures of all three compounds have been collected and refined, and are in agreement with previously reported structures. In addition, the structure of the same Cp2Be crystal was determined at 20 degrees C and displays features consistent with increased intramolecular motion, supporting observations by 9Be VT NMR spectroscopy. PMID:15484199

  19. Structure of 3-aminopyridine betaine hydrochloride studied by X-ray diffraction, DFT calculations, FTIR and NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Kowalczyk, I.; Katrusiak, A.; Szafran, M.

    2010-08-01

    The structure of 3-aminopyridine betaine hydrochloride (1-carboxymethyl-3-aminopyridinium chloride), 3-NH 2PBH·Cl, has been studied by X-ray diffraction, B3LYP/6-311G(d,p) calculations, FTIR and NMR spectra. The compound crystallized in monoclinic, space group P2 1/c in the crystal, the Cl - anion is connected with protonated betaine via the hydrogen bond O-H⋯Cl of 2.946(3) Å. Both protons of the NH 2 group are engaged in hydrogen bonds with the neighboring molecules: N(2)-H(2B)⋯O(2) of 2.905(6) Å and N(2)-H(2B)⋯Cl(1) of 3.324(3) Å. The Cl - ion interacts electrostatically with three neighboring molecules. The probable assignments of the anharmonic experimental solid state vibrational frequencies of the investigated compound, based on the calculated frequencies in vacuum at the same level of theory for optimized structure, have been made. Correlations between the experimental 13C and 1H NMR chemical shifts ( δexp) and the GIAO/B3LYP/6-311G(d,p) calculated magnetic isotropic shielding ( σcal) in DMSO and D 2O, δexp = a + b · σcalc, are reported.

  20. Local structure of spin Peierls compound TiPO4: 47/49Ti and 31P NMR study

    NASA Astrophysics Data System (ADS)

    Stern, Raivo; Heinmaa, Ivo; Leitmäe, Alexander; Joon, Enno; Tsirlin, Alexander; Kremer, Reinhard; Glaum, Robert

    TiPO4 structure is made of slightly corrugated TiO2 ribbon chains of edge-sharing TiO6 octahedra. The almost perfect 1D spin 1/2 Ti3 + chains are well separated by PO4 tetrahedra. By magnetic susceptibility and MAS-NMR measurements [1] it was shown that TiPO4 has nonmagnetic singlet ground state with remarkably high Spin-Peierls (SP) transition temperature. The high-T magnetic susceptibility of TiPO4 follows well that of a S =1/2 Heisenberg chain with very strong nearest-neighbor AF spin-exchange coupling constant of J =965K. On cooling TiPO4 shows two successive phase transitions at 111K and 74K, with incommensurate (IC) SP phase between them. We studied local structure and dynamics in TiPO4 single crystal using 47/49Ti and 31P NMR in the temperature range 40K to 300K, and determined the principal values and orientation of the magnetic shift tensors for 31P and 47,49Ti nuclei. Since 47,49Ti (S =5/2 and S =7/2, respectively) have quadrupolar moments, we also found the principal axis values and orientations of the electric field gradient (efg) tensor in SP phase and at 295K. In SP phase the structure contains 2 magnetically inequivalent P sites and only one Ti site. From the T-dependence of the relaxation rate of 31P and 47Ti nuclei we determined activation energy Ea = 550 K for spin excitations in SP phase. J. Law et al ., PRB 83, 180414(R) (2011).

  1. Dipolar-dephasing 13C NMR studies of decomposed wood and coalified xylem tissue: Evidence for chemical structural changes associated with defunctionalization of lignin structural units during coalification

    USGS Publications Warehouse

    Hatcher, P.G.

    1988-01-01

    A series of decomposed and coalified gymnosperm woods was examined by conventional solid-state 13C nuclear magnetic resonance (NMR) and by dipolar-dephasing NMR techniques. The results of these NMR studies for a histologically related series of samples provide clues as to the nature of codification reactions that lead to the defunctionalization of lignin-derived aromatic structures. These reactions sequentially involve the following: (1) loss of methoxyl carbons from guaiacyl structural units with replacement by hydroxyls and increased condensation; (2) loss of hydroxyls or aryl ethers with replacement by hydrogen as rank increases from lignin to high-volatile bituminous coal; (3) loss of alkyl groups with continued replacement by hydrogen. The dipolar-dephasing data show that the early stages of coalification in samples examined (lignin to lignite) involve a decreasing degree of protonation on aromatic rings and suggest that condensation is significant during coalification at this early stage. An increasing degree of protonation on aromatic rings is observed as the rank of the sample increases from lignite to anthracite.

  2. Use of NMR spectroscopy to study the effects of hydroprocessing on structure and thermo-oxidative stability of base oils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The hydroprocessing technologies such as hydrocracking, hydrofinishing provide an opportunity to modify the chemistry of hydrocarbons to improve the properties of petroleum base oils. Quantitative 1H and 13C NMR data has been used to generate average structural profile for a variety of base oil sam...

  3. NMR Studies of Heat-Induced Transitions in Structure and Cation Binding Environments of a Strontium-Saturated Swelling Mica

    SciTech Connect

    Bowers, Geoffrey M.; Davis, Michael C.; Ravella, Ramesh; Komarneni, S.; Mueller, Karl T.

    2007-12-03

    In this work we combined Al, Si, F, and Na magic-angle spinning (MAS) nuclear magnetic resonance (NMR) to characterize the structure and interlayer cation environments in a strontium-saturated member of the swelling mica family before and after a heat induced collapse of the interlayer space.

  4. Local structure and molecular motions in imidazolium hydrogen malonate crystal as studied by 2H and 13C NMR

    NASA Astrophysics Data System (ADS)

    Mizuno, M.; Chizuwa, M.; Umiyama, T.; Kumagai, Y.; Miyatou, T.; Ohashi, R.; Ida, T.; Tansho, M.; Shimizu, T.

    2015-04-01

    The local structure and molecular motion of the imidazolium hydrogen malonate crystal were investigated using solid-state 2H and 13C NMR. The imidazolium ion undergoes isotropic rotation, which is correlated with a defect in the crystal, as observed by 2H NMR broadline spectra above 263 K. A 180∘ flip of the imidazolium ion in the regular site was observed from 2H NMR quadrupole Carr-Purcell-Meiboom-Gill (QCPMG) spectra. The Grotthuss mechanism was accompanied by a 180∘ flip of the imidazolium ion in regular sites. Moreover, the proton transfer associated with the imidazolium ion of the defective crystal is important for proton conductivity of the imidazolium hydrogen malonate crystal.

  5. Insights into hERG K+ channel structure and function from NMR studies.

    PubMed

    Ng, Chai Ann; Torres, Allan M; Pagès, Guilhem; Kuchel, Philip W; Vandenberg, Jamie I

    2013-01-01

    The unique gating kinetics of hERG K(+) channels are critical for normal cardiac repolarization, and patients with mutations in hERG have a markedly increased risk of cardiac arrhythmias and sudden cardiac arrest. HERG K(+) channels are also remarkably promiscuous with respect to drug binding, which has been a very significant problem for the pharmaceutical industry. Here, we review the progress that has been made in understanding the structure and function of hERG K(+) channels with a particular focus on nuclear magnetic resonance studies of the domains of the hERG K(+) channel. PMID:22552870

  6. Real structure of formamide entrapped by AOT nonaqueous reverse micelles: FT-IR and 1H NMR studies.

    PubMed

    Correa, N Mariano; Pires, Paulo Augusto R; Silber, Juana J; El Seoud, Omar A

    2005-11-10

    Noninvasive techniques such as FT-IR and (1)H NMR spectroscopy have been employed to investigate the solubilization of formamide, FA, and its aqueous solution, FA-water, by sodium 1,4-bis(2-ethylhexyl)sulfosuccinate, AOT, in heptane or isooctane reverse micelles, respectively. Partially deuterated FA (FADH) was used in the FT-IR experiments and nu(OD), n(ND) were analyzed. Also, the nu(C=O) band of FA was investigated. For AOT, the changes of the SO(3)(-) group's symmetric, nu(s), and asymmetric, nu(a), bands were also studied. The results are showing that FA is interacting strongly with the Na+ counterions of the surfactant through electrostatic interactions maintaining their hydrogen bond network present in the FA bulk. Accordingly, partially deuterated FA is "frozen" inside the aggregates and it is possible to detect, by FT-IR technique, the cis and trans isomers. Curve fitting of the nu(OD) (in the FA-water mixture) band requires use of two peaks because the band is asymmetric, not because the solubilizate molecules are present in layers of different structure. The chemical shifts of the (1)H bound to N and C of FA were studied by (1)H NMR. The comparison of the chemical shift of AOT in reverse micelles with FA and the FA-water mixture in the polar core of the aggregate shows that there is a strong preferential solvation of Na+ by FA (through electrostatic interaction) and the AOT's sulfonate group by water (through hydrogen bond interaction). PMID:16853748

  7. sup 19 F NMR studies of the D-galactose chemosensory receptor. (1) Sugar binding yields a global structural change

    SciTech Connect

    Luck, L.A.; Falke, J.J. )

    1991-04-30

    The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enable docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, the authors have used {sup 19}F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting {sup 19}F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylaline. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via {sup 19}F NMR frequency shifts at 10 of the 12 labeled sites. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.

  8. Partial 13C isotopic enrichment of nucleoside monophosphates: useful reporters for NMR structural studies

    PubMed Central

    Kishore, Anita I.; Mayer, Michael R.; Prestegard, James H.

    2005-01-01

    Analysis of the 13C isotopic labeling patterns of nucleoside monophosphates (NMPs) extracted from Escherichia coli grown in a mixture of C-1 and C-2 glucose is presented. By comparing our results to previous observations on amino acids grown in similar media, we have been able to rationalize the labeling pattern based on the well-known biochemistry of nucleotide biosynthesis. Except for a few notable absences of label (C4 in purines and C3′ in ribose) and one highly enriched site (C1′ in ribose), most carbons are randomly enriched at a low level (an average of 13%). These sparsely labeled NMPs give less complex NMR spectra than their fully isotopically labeled analogs due to the elimination of most 13C–13C scalar couplings. The spectral simplicity is particularly advantageous when working in ordered systems, as illustrated with guanosine diphosphate (GDP) bound to ADP ribosylation factor 1 (ARF1) aligned in a liquid crystalline medium. In this system, the absence of scalar couplings and additional long-range dipolar couplings significantly enhances signal to noise and resolution. PMID:16254075

  9. Parallel β-Sheet Structure of Alanine Tetrapeptide in the Solid State As Studied by Solid-State NMR Spectroscopy.

    PubMed

    Asakura, Tetsuo; Horiguchi, Kumiko; Aoki, Akihiro; Tasei, Yugo; Naito, Akira

    2016-09-01

    The structural analysis of alanine oligopeptides is important for understanding the crystalline region in silks from spiders and wild silkworms and also the mechanism of cellular toxicity of human diseases arising from expansion in polyalanine sequences. The atomic-level structures of alanine tripeptide and tetrapeptide with antiparallel β-sheet structures (AP-Ala3 and AP-Ala4, respectively) together with alanine tripeptide with parallel β-sheet structures (P-Ala3) have been determined, but alanine tetrapeptide with a parallel β-sheet structure (P-Ala4) has not been reported yet. In this article, first, we established the preparation protocol of P-Ala4 from more stable AP-Ala4. Second, complete assignments of the (13)C, (15)N, and (1)H solid-state NMR spectra were performed with (13)C- and (15)N-labeled Ala4 samples using several solid-state NMR techniques. Then, the structural constraints were obtained, for example, the amide proton peaks of P-Ala4 in the (1)H double-quantum magic-angle spinning NMR spectrum were heavily overlapped and observed at about 7.4 ppm, which was a much higher field than that of 8.7-9.1 ppm observed for AP-Ala4, indicating that the intermolecular hydrogen-bond lengths across strands (N-H···O═C) were considerably longer for P-Ala4, that is, 2.21-2.34 Å, than those reported for AP-Ala4, that is, 1.8-1.9 Å. The structural model was proposed for P-Ala4 by NMR results and MD calculations. PMID:27482868

  10. Improving dipolar recoupling for site-specific structural and dynamics studies in biosolids NMR: windowed RN-symmetry sequences.

    PubMed

    Lu, Xingyu; Zhang, Huilan; Lu, Manman; Vega, Alexander J; Hou, Guangjin; Polenova, Tatyana

    2016-02-01

    Experimental characterization of one-bond heteronuclear dipolar couplings is essential for structural and dynamics characterization of molecules by solid-state NMR. Accurate measurement of heteronuclear dipolar tensor parameters in magic-angle spinning NMR requires that the recoupling sequences efficiently reintroduce the desired heteronuclear dipolar coupling term, fully suppress other interactions (such as chemical shift anisotropy and homonuclear dipolar couplings), and be insensitive to experimental imperfections, such as radio frequency (rf) field mismatch. In this study, we demonstrate that the introduction of window delays into the basic elements of a phase-alternating R-symmetry (PARS) sequence results in a greatly improved protocol, termed windowed PARS (wPARS), which yields clean dipolar lineshapes that are unaffected by other spin interactions and are largely insensitive to experimental imperfections. Higher dipolar scaling factors can be attained in this technique with respect to PARS, which is particularly useful for the measurement of relatively small dipolar couplings. The advantages of wPARS are verified experimentally on model molecules N-acetyl-valine (NAV) and a tripeptide Met-Leu-Phe (MLF). The incorporation of wPARS into 3D heteronuclear or homonuclear correlation experiments permits accurate site-specific determination of dipolar tensors in proteins, as demonstrated on dynein light chain 8 (LC8). Through 3D wPARS recoupling based spectroscopy we have determined both backbone and side chain dipolar tensors in LC8 in a residue-resolved manner. We discuss these in the context of conformational dynamics of LC8. We have addressed the effect of paramagnetic relaxant Cu(ii)-EDTA doping on the dipolar coupling parameters in LC8 and observed no significant differences with respect to the neat sample permitting fast data collection. Our results indicate that wPARS is advantageous with respect to the windowless version of the sequence and is applicable

  11. Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study.

    PubMed

    Zheng, M; Huang, X; Smith, G K; Yang, X; Gao, X

    1996-11-29

    Recent molecular genetics studies have revealed a correlation between spontaneous, progressive expansion of several DNA trinucleotide repeats and certain hereditary neurodegenerative diseases. Triplet repeat (TR) sequences may be present in structured forms that can mediate the processes interrupting normal cellular replication, transcription, or repair activities, eventually leading to gene mutation. Using high resolution NMR spectroscopy and other biophysical methods, we probed the solution structures and properties of single-stranded TR sequences. These studies have led to the discovery of a new duplex motif (e-motif), present in CCG repeats, and to the elucidation of the structure of the (CTG)3 duplex. In this paper we provide a global picture of the solution behavior of the human disease-related CXG (X = A, C, G, or T) and the comparison GXC (X = A, or T) TR sequences. All six triplet repeats form antiparallel duplexes. The mismatched bases in CAG and CGG repeat duplexes are rather flexible and they do not appear to form stable, paired conformations. By comparison, GAC repeat duplexes and their mismatched A residues are well-structured. Most interestingly, the structures of the disease-related CXG repeats exhibit a propensity for folding at chain lengths as short as 12 residues. Furthermore, the energy barrier for the formation of homo-duplexes from the corresponding complementary hetero-duplexes are much lower for the CXG TR sequences than for the GAC or GTC TR sequences. These results provide insights into the conformation and physiochemical properties of TR sequences. Thus, a basis is provided for further studies of the behavior of long TR sequences in an effort to elucidate the molecular mechanisms of in vivo expansion and function of TR sequences. PMID:8951379

  12. Mixing and Matching Detergents for Membrane Protein NMR Structure Determination

    SciTech Connect

    Columbus, Linda; Lipfert, Jan; Jambunathan, Kalyani; Fox, Daniel A.; Sim, Adelene Y.L.; Doniach, Sebastian; Lesley, Scott A.

    2009-10-21

    One major obstacle to membrane protein structure determination is the selection of a detergent micelle that mimics the native lipid bilayer. Currently, detergents are selected by exhaustive screening because the effects of protein-detergent interactions on protein structure are poorly understood. In this study, the structure and dynamics of an integral membrane protein in different detergents is investigated by nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy and small-angle X-ray scattering (SAXS). The results suggest that matching of the micelle dimensions to the protein's hydrophobic surface avoids exchange processes that reduce the completeness of the NMR observations. Based on these dimensions, several mixed micelles were designed that improved the completeness of NMR observations. These findings provide a basis for the rational design of mixed micelles that may advance membrane protein structure determination by NMR.

  13. Structural Requirements for Bisphosphonate Binding on Hydroxyapatite: NMR Study of Bisphosphonate Partial Esters

    PubMed Central

    2015-01-01

    Eighteen different bisphosphonates, including four clinically used bisphosphonate acids and their phosphoesters, were studied to evaluate how the bisphosphonate structure affects binding to bone. Bisphosphonates with weak bone affinity, such as clodronate, could not bind to hydroxyapatite after the addition of one ester group. Medronate retained its ability to bind after the addition of one ester group, and hydroxy-bisphosphonates could bind even after the addition of two ester groups. Thus, several bisphosphonate esters are clearly bone binding compounds. The following conclusions about bisphosphonate binding emerge: (1) a hydroxyl group in the geminal carbon takes part in the binding process and increases the bisphosphonate’s ability to bind to bone; (2) the bisphosphonate’s ability to bind decreases when the amount of ester groups increases; and (3) the location of the ester groups affects the bisphosphonate’s binding ability. PMID:25893039

  14. Two-dimensional sup 1 H NMR studies on HPr protein from Staphylococcus aureus: Complete sequential assignments and secondary structure

    SciTech Connect

    Kalbitzer, H.R.; Neidig, K.P. ); Hengstenberg, W. )

    1991-11-19

    Complete sequence-specific assignments of the {sup 1}H NMR spectrum of HPr protein from Staphylococcus aureus were obtained by two-dimensional NMR methods. Important secondary structure elements that can be derived from the observed nuclear Overhauser effects are a large antiparallel {beta}-pleated sheet consisting of four strands, A, B, C, D, a segment S{sub AB} consisting of an extended region around the active-center histidine (His-15) and an {alpha}-helix, a half-turn between strands B and C, a segment S{sub CD} which shows no typical secondary structure, and the {alpha}-helical, C-terminal segment S{sub term}. These general structural features are similar to those found earlier in HPr proteins from different microorganisms such as Escherichia coli, Bacillus subtilis, and Streptococcus faecalis.

  15. Study of electrostatic potential surface distribution of wild-type plastocyanin Synechocystis solution structure determined by homonuclear NMR.

    PubMed

    Monleón, Daniel; Celda, Bernardo

    2003-10-01

    Plastocyanin is a small (approximately 10 kDa), type I blue copper protein that works as an electron donor to photosystem I from cytochrome f in both chloroplast systems and in some strains of cyanobacteria. Comparative studies of the kinetic mechanisms of plastocyanins in different organisms show that the electron transfer from photosystem I happens by simple collision in cyanobacteria but through a intermediate transition complex in green algae and superior plants. Previous work has proved that this effect cannot be explained by structural variations across the different plastocyanins but it can be explained by differences in the electrostatic potential distribution at the protein surface. In that case, minor conformational errors at the amino acid side chain level may imply an important effect in the electrostatic potential distribution calculation. In this work we present a high resolution study of side chain conformation by homonuclear NMR for the reduced wild-type plastocyanin Synechocystis using intensity ratios for 2D-NOESY and 2D-H,H-TOCSY cross peaks at different mixing times. We also present the corresponding comparison with different plastocyanin structures and the effect in the electrostatic potential distribution at the protein surface. We discuss the importance of indirect J-coupling information from TOCSY-type experiments as complement for intraresidue distances derived from NOESY experiments in the determination of side chain orientation and stereo-specific assignments. PMID:14517909

  16. Theoretical NMR correlations based Structure Discussion

    PubMed Central

    2011-01-01

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The actual difficulty of the structure elucidation problem depends more on the type of the investigated molecule than on its size. The moment HMBC data is involved in the process or a large number of heteroatoms is present, a possibility of multiple solutions fitting the same data set exists. A structure elucidation software can be used to find such alternative constitutional assignments and help in the discussion in order to find the correct solution. But this is rarely done. This article describes the use of theoretical NMR correlation data in the structure elucidation process with WEBCOCON, not for the initial constitutional assignments, but to define how well a suggested molecule could have been described by NMR correlation data. The results of this analysis can be used to decide on further steps needed to assure the correctness of the structural assignment. As first step the analysis of the deviation of carbon chemical shifts is performed, comparing chemical shifts predicted for each possible solution with the experimental data. The application of this technique to three well known compounds is shown. Using NMR correlation data alone for the description of the constitutions is not always enough, even when including 13C chemical shift prediction. PMID:21797997

  17. An NMR Study of Microvoids in Polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattrix, Larry

    1996-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is most crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally not be found naturally in polymer or in NMR probe materials. There are two NMR active Xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb and Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe-129-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts in Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of Xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A series of spectra were obtained interspersed with applications of vacuum and heating to drive out the adsorbed Xe and determine the role of Xe-Xe interactions in the observed chemical shift.

  18. Structural studies of the 5'-phenazinium-tethered matched and G-A-mismatched DNA duplexes by NMR spectroscopy.

    PubMed

    Maltseva, T; Sandström, A; Ivanova, I M; Sergeyev, D S; Zarytova, V F; Chattopadhyaya, J

    1993-05-01

    The mechanism through which modified oligo-DNA analogues act as antisense repressors at the transcriptional and translational level of gene expression is based on the information content in the nucleotide sequence which is determined by the specific base pairing. The efficiency of such action is largely determined by the stability of the duplex formed between the oligonucleotide reagent and the target sequence and also by the mismatched base pairing, such as G-A, that occurs during replication or recombination. We herein report that the phenazinium (Pzn)-tethered matched duplex p(d(TGTTTGGC)):(Pzn)-p(d(CCAAACA)) (III) (Tm = 50 degrees C) has a much larger stability than the parent matched duplex p(d(TGTTTGGC)):p(d(CCAAACA)) (I) (Tm = 30 degrees C). On the other hand, the Pzn-tethered G-A-mismatched duplex p(d(TGTTTGGC)):(Pzn)-p(d(ACAAACA)) (IV) (Tm = 34 degrees C) is only slightly more stable than its parent mismatched duplex p(d(TGTTTGGC)):p(d(ACAAACA)) (Tm = 25 degrees C). A detailed 500 MHz NMR study and constrained MD refinements of NMR-derived structures have been undertaken for the DNA duplexes (I), (II), (III) and (IV) in order to understand the structural basis of stabilization of Pzn-tethered matched DNA duplex (delta Tm = 20 degrees C) compared to mismatched duplex (delta Tm = 9 degrees C). Assignment of the 1H-NMR (500 MHz) spectra of the duplexes has been carried out by 2D NOESY, HOHAHA and DQF-COSY experiments. The torsion angles have been extracted from the J-coupling constants obtained by simulation of most of the DQF-COSY cross-peaks using program SMART. The solution structure of the duplexes were assessed by an iterative hybride relaxation matrix method (MORASS) combined with NOESY distances and torsion angles restrained molecular dynamics (MD) using program Amber 4.0. The standard Amber 4.0 force-field parameters were used for the oligonucleotide in conjunction with the new parameters for Pzn residue which was obtained by full geometry

  19. Broadband cross-polarization-based heteronuclear dipolar recoupling for structural and dynamic NMR studies of rigid and soft solids.

    PubMed

    Kharkov, B B; Chizhik, V I; Dvinskikh, S V

    2016-01-21

    Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental data obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees. PMID:26801025

  20. NMR Studies of Structure-Reactivity Relationships in Carbonyl Reduction: A Collaborative Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Marincean, Simona; Smith, Sheila R.; Fritz, Michael; Lee, Byung Joo; Rizk, Zeinab

    2012-01-01

    An upper-division laboratory project has been developed as a collaborative investigation of a reaction routinely taught in organic chemistry courses: the reduction of carbonyl compounds by borohydride reagents. Determination of several trends regarding structure-activity relationship was possible because each student contributed his or her results…

  1. 13C, 2H NMR Studies of Structural and Dynamical Modifications of Glucose-Exposed Porcine Aortic Elastin

    PubMed Central

    Silverstein, Moshe C.; Bilici, Kübra; Morgan, Steven W.; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S.

    2015-01-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin—a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. 13C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the 13C-1H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The 13C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive force

  2. 13C, 2h NMR studies of structural and dynamical modifications of glucose-exposed porcine aortic elastin.

    PubMed

    Silverstein, Moshe C; Bilici, Kübra; Morgan, Steven W; Wang, Yunjie; Zhang, Yanhang; Boutis, Gregory S

    2015-04-01

    Elastin, the principal component of the elastic fiber of the extracellular matrix, imparts to vertebrate tissues remarkable resilience and longevity. This work focuses on elucidating dynamical and structural modifications of porcine aortic elastin exposed to glucose by solid-state NMR spectroscopic and relaxation methodologies. Results from macroscopic stress-strain tests are also presented and indicate that glucose-treated elastin is mechanically stiffer than the same tissue without glucose treatment. These measurements show a large hysteresis in the stress-strain behavior of glucose-treated elastin-a well-known signature of viscoelasticity. Two-dimensional relaxation NMR methods were used to investigate the correlation time, distribution, and population of water in these samples. Differences are observed between the relative populations of water, whereas the measured correlation times of tumbling motion of water across the samples were similar. (13)C magic-angle-spinning NMR methods were applied to investigate structural and dynamical modifications after glucose treatment. Although some overall structure is preserved, the process of glucose exposure results in more heterogeneous structures and slower mobility. The correlation times of tumbling motion of the (13)C-(1)H internuclear vectors in the glucose-treated sample are larger than in untreated samples, pointing to their more rigid structure. The (13)C cross-polarization spectra reveal a notably increased α-helical character in the alanine motifs after glucose exposure. Results from molecular dynamics simulations are provided that add further insight into dynamical and structural changes of a short repeat, [VPGVG]5, an alanine pentamer, desmosine, and isodesmosine sites with and without glucose. The simulations point to changes in the entropic and energetic contributions in the retractive forces of VPGVG and AAAAA motifs. The most notable change is the increase of the energetic contribution in the retractive

  3. Study of molecular structure, vibrational, electronic and NMR spectra of oncocalyxone A using DFT and quantum chemical calculations

    NASA Astrophysics Data System (ADS)

    Joshi, Bhawani Datt; Srivastava, Anubha; Honorato, Sara Braga; Tandon, Poonam; Pessoa, Otília Deusdênia Loiola; Fechine, Pierre Basílio Almeida; Ayala, Alejandro Pedro

    2013-09-01

    Oncocalyxone A (C17H18O5) is the major secondary metabolite isolated from ethanol extract from the heartwood of Auxemma oncocalyx Taub popularly known as “pau branco”. Oncocalyxone A (Onco A) has many pharmaceutical uses such as: antitumor, analgesic, antioxidant and causative of inhibition of platelet activation. We have performed the optimized geometry, total energy, conformational study, molecular electrostatic potential mapping, frontier orbital energy gap and vibrational frequencies of Onco A employing ab initio Hartree-Fock (HF) and density functional theory (DFT/B3LYP) method with 6-311++G(d, p) basis set. Stability of the molecule arising from hyperconjugative interactions and/or charge delocalization has been analyzed using natural bond orbital (NBO) analysis. UV-vis spectrum of the compound was recorded in DMSO and MeOH solvent. The TD-DFT calculations have been performed to explore the influence of electronic absorption spectra in the gas phase, as well as in solution environment using IEF-PCM and 6-31G basis set. The 13C NMR chemical shifts have been calculated with the B3LYP/6-311++G(d, p) basis set and compared with the experimental values. These methods have been used as tools for structural characterization of Onco A.

  4. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER.

    PubMed

    Fontana, Carolina; Li, Shengyu; Yang, Zhennai; Widmalm, Göran

    2015-01-30

    Some lactic acid bacteria, such as those of the Lactobacillus genus, have the ability to produce exopolysaccharides (EPSs) that confer favorable physicochemical properties to food and/or beneficial physiological effects on human health. In particular, the EPS of Lactobacillus plantarum C88 has recently demonstrated in vitro antioxidant activity and, herein, its structure has been investigated using NMR spectroscopy and the computer program CASPER (Computer Assisted Spectrum Evaluation of Regular polysaccharides). The pentasaccharide repeating unit of the O-deacetylated EPS consists of a trisaccharide backbone, →4)-α-D-Galp-(1→2)-α-D-Glcp-(1→3)-β-D-Glcp-(1→, with terminal D-Glc and D-Gal residues (1.0 and 0.8 equiv per repeating unit, respectively) extending from O3 and O6, respectively, of the →4)-α-D-Galp-(1→ residue. In the native EPS an O-acetyl group is present, 0.85 equiv per repeating unit, at O2 of the α-linked galactose residue; thus the repeating unit of the EPS has the following structure: →4)[β-D-Glcp-(1→3)][β-D-Galp-(1→6)]α-D-Galp2Ac-(1→2)-α-D-Glcp-(1→3)-β-D-Glcp-(1→. These structural features, and the chain length (∼10(3) repeating units on average, determined in a previous study), are expected to play an important role in defining the physicochemical properties of the polymer. PMID:25497338

  5. Use of solid-state 13C NMR in structural studies of humic acids and humin from Holocene sediments

    USGS Publications Warehouse

    Hatcher, P.G.; VanderHart, D.L.; Earl, W.L.

    1980-01-01

    13C NMR spectra of solid humic substances in Holocene sediments have been obtained using cross polarization with magic-angle sample spinning techniques. The results demonstrate that this technique holds great promise for structural characterizations of complex macromolecular substances such as humin and humic acids. Quantifiable distinctions can be made between structural features of aquatic and terrestrial humic substances. The aliphatic carbons of the humic substances are dominant components suggestive of input from lipid-like materials. An interesting resemblance is also noted between terrestrial humic acid and humin spectra. ?? 1980.

  6. NMR studies on the structure and dynamics of lac operator DNA

    SciTech Connect

    Lee, S.C.

    1985-01-01

    Nuclear Magnetic Resonance spectroscopy was used to elucidate the relationships between structure, dynamics and function of the gene regulatory sequence corresponding to the lactose operon operator of Escherichia coli. The length of the DNA fragments examined varied from 13 to 36 base pair, containing all or part of the operator sequence. These DNA fragments are either derived genetically or synthesized chemically. Resonances of the imino protons were assigned by one dimensional inter-base pair nuclear Overhauser enhancement (NOE) measurements. Imino proton exchange rates were measured by saturation recovery methods. Results from the kinetic measurements show an interesting dynamic heterogeneity with a maximum opening rate centered about a GTG/CAC sequence which correlates with the biological function of the operator DNA. This particular three base pair sequence occurs frequently and often symmetrically in prokaryotic nd eukaryotic DNA sites where one anticipates specific protein interaction for gene regulation. The observed sequence dependent imino proton exchange rate may be a reflection of variation of the local structure of regulatory DNA. The results also indicate that the observed imino proton exchange rates are length dependent.

  7. Photoisomerization and structural dynamics of two nitrosylruthenium complexes: a joint study by NMR and nonlinear IR spectroscopies.

    PubMed

    Wang, Jianru; Yang, Fan; Zhao, Yan; Yu, Pengyun; Qiao, Xiaoyan; Wang, Jianping; Wang, Hongfei

    2014-11-21

    In this work, the photoisomerization and structural dynamics of two isomeric nitrosylruthenium(ii) complexes [Ru(OAc)(2cqn)2NO] (H2cqn = 2-chloro-8-quinolinol) in CDCl3 and DMSO are examined using NMR and IR spectroscopic methods. The two N atoms in the 2cqn ligand are in trans position in the synthesized cis-1 isomer, while they are in cis position in the cis-2 isomer. Kinetics monitored by NMR spectroscopy shows that the rate constant of photoisomerization from cis-2 to cis-1 isomer depends on the wavelength of irradiation and solvent polarity; it proceeds faster on irradiating near the absorption peak in the UV-Vis region, and also in more polar solvents (DMSO). Density functional theory computation indicates that the peculiarity of [Ru(ii)-NO(+)] group affects the structure and reactivity of the nitrosylruthenium complexes. Using the nitrosyl stretching (νNO) to be vibrational probe, the structural dynamics and structural distributions of the cis-1 and cis-2 isomers are examined by steady-state linear infrared and ultrafast two-dimensional infrared (2D IR) spectroscopies. The structural and photochemical aspects of the observed spectroscopic parameters are discussed in terms of solute-solvent interactions for the two nitrosylruthenium complexes. PMID:25285659

  8. Molecular structure of actein: 13C CPMAS NMR, IR, X-ray diffraction studies and theoretical DFT-GIAO calculations

    NASA Astrophysics Data System (ADS)

    Jamróz, Marta K.; Bąk, Joanna; Gliński, Jan A.; Koczorowska, Agnieszka; Wawer, Iwona

    2009-09-01

    Actein is a prominent triterpene glycoside occurring in Actaea racemosa. The triterpene glycosides are believed to be responsible for the estrogenic activity of an extract prepared from this herb. We determined in the crystal structure of actein by X-ray crystallography to be monoclinic P2(1) chiral space group. Refining the disorder, we determined 70% and 30% of contributions of ( S)- and ( R)-actein, respectively. The IR and Raman spectra suggest that actein forms at least four different types of hydrogen bonds. The 13C NMR spectra of actein were recorded both in solution and solid state. The 13C CPMAS spectrum of actein displays multiplet signals, in agreement with the crystallographic data. The NMR shielding constants were calculated for actein using GIAO approach and a variety of basis sets: 6-31G**, 6-311G**, 6-31+G**, cc-pVDZ, cc-pVDZ-su1 and 6-31G**-su1, as well as IGLO approach combined with the IGLO II basis set. The best results (RMSD of 1.6 ppm and maximum error of 3.4 ppm) were obtained with the 6-31G**-su1 basis set. The calculations of the shielding constants are helpful in the interpretation of the 13C CPMAS NMR spectra of actein and actein's analogues.

  9. DFT study of molecular structures and 13C NMR parameters of two fluorinated biphenyls and their η6-tricarbonylchromium complexes

    NASA Astrophysics Data System (ADS)

    Gryff-Keller, Adam; Szczeciński, Przemysław

    2015-07-01

    The molecular structures of 2,2‧-difluoro-6,6‧-dimethylbiphenyl, 4,5-difluoro-9,10-dihydrophenanthrene and of their η6-tricarbonylchromium complexes have been discussed in the light of the results of molecular energy calculations. Also the isotropic magnetic shielding constants and carbon-fluorine spin-spin coupling constants for these objects have been calculated and compared with the experimental values of 13C NMR chemical shifts and J constants. The calculational methods used were: DFT/BHandH/6-311++G(2d,p) and/or DFT/B3LYP/6-311++G(2d,p). It has been confirmed that experimental 13C NMR chemical shifts for η6-arene tricarbonylchromium complexes can be satisfactorily predicted using both methods, although the method exploiting BHandH functional is not able to reproduce the 13C NMR chemical shifts of Cr(CO)3 carbon atoms. On the other hand, this method provides the J(13C, 19F) values which are close to the experimental ones.

  10. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis

    SciTech Connect

    Zhao, Haibo; Kwak, Ja Hun; Zhang, Z. Conrad; Brown, Heather M.; Arey, Bruce W.; Holladay, John E.

    2007-03-21

    Cotton linters were partially hydrolyzed in dilute acid and the morphology of remaining macrofibrils studied with Scanning Electron Microscopy (SEM) under various magnifications. The crystal region (microfibril bundles) in the macrofibrils was not altered by hydrolysis, and only amorphous cellulose was hydrolyzed and leached out from the macrofibrils. The diameter of microfibril bundles was 20-30 nm after the amorphous cellulose was removed by hydrolysis. XRD experiments confirm the unaltered diameter of the microfibrils after hydrolysis. The strong stability of these microfibril bundles in hydrolysis limits both the total sugar monomer yield and the size of nano particles or rods produced in hydrolysis. The large surface potential on the remaining microfibril bundles drives the agglomeration of macrofibrils.

  11. An in-depth analysis of the biological functional studies based on the NMR M2 channel structure of influenza A virus

    SciTech Connect

    Huang Ribo; Du Qishi Wang Chenghua; Chou, K.-C.

    2008-12-26

    The long-sought three-dimensional structure of the M2 proton channel of influenza A virus was successfully determined recently by the high-resolution NMR [J.R. Schnell, J.J. Chou, Structure and mechanism of the M2 proton channel of influenza A virus, Nature 451 (2008) 591-595]. Such a milestone work has provided a solid structural basis for studying drug-resistance problems. However, the action mechanism revealed from the NMR structure is completely different from the traditional view and hence prone to be misinterpreted as 'conflicting' with some previous biological functional studies. To clarify this kind of confusion, an in-depth analysis was performed for these functional studies, particularly for the mutations D44N, D44A and N44D on position 44, and the mutations on positions 27-38. The analyzed results have provided not only compelling evidences to further validate the NMR structure but also very useful clues for dealing with the drug-resistance problems and developing new effective drugs against H5N1 avian influenza virus, an impending threat to human beings.

  12. Double threading through DNA: NMR structural study of a bis-naphthalene macrocycle bound to a thymine–thymine mismatch

    PubMed Central

    Jourdan, Muriel; Granzhan, Anton; Guillot, Regis; Dumy, Pascal; Teulade-Fichou, Marie-Paule

    2012-01-01

    The macrocyclic bis-naphthalene macrocycle (2,7-BisNP), belonging to the cyclobisintercalator family of DNA ligands, recognizes T–T mismatch sites in duplex DNA with high affinity and selectivity, as evidenced by thermal denaturation experiments and NMR titrations. The binding of this macrocycle to an 11-mer DNA oligonucleotide containing a T–T mismatch was studied using NMR spectroscopy and NMR-restrained molecular modeling. The ligand forms a single type of complex with the DNA, in which one of the naphthalene rings of the ligand occupies the place of one of the mismatched thymines, which is flipped out of the duplex. The second naphthalene unit of the ligand intercalates at the A-T base pair flanking the mismatch site, leading to encapsulation of its thymine residue via double stacking. The polyammonium linking chains of the macrocycle are located in the minor and the major grooves of the oligonucleotide and participate in the stabilization of the complex by formation of hydrogen bonds with the encapsulated thymine base and the mismatched thymine remaining inside the helix. The study highlights the uniqueness of this cyclobisintercalation binding mode and its importance for recognition of DNA lesion sites by small molecules. PMID:22362757

  13. An NMR study of microvoids in polymers

    NASA Technical Reports Server (NTRS)

    Toy, James; Mattix, Larry

    1995-01-01

    An understanding of polymer defect structures, like microvoids in polymeric matrices, is crucial to their fabrication and application potential. In this project guest atoms are introduced into the microvoids in PMR-15 and NMR is used to determine microvoid sizes and locations. Xenon is a relatively inert probe that would normally be found naturally in polymer or in NMR probe materials. There are two NMR active xenon isotopes, Xe-129 and Xe-131. The Xe atom has a very high polarizability, which makes it sensitive to the intracrystalline environment of polymers. Interactions between the Xe atoms and the host matrix perturb the Xe electron cloud, deshielding the nuclei, and thereby expanding the range of the observed NMR chemical shifts. This chemical shift range which may be as large as 5000 ppm, permits subtle structural and chemical effects to be studied with high sensitivity. The Xe(129)-NMR line shape has been found to vary in response to changes in the pore symmetry of the framework hosts line Zeolites and Clathrasil compounds. Before exposure to Xe gas, the PMR-15 samples were dried in a vacuum oven at 150 C for 48 hours. The samples were then exposed to Xe gas at 30 psi for 72 hours and sealed in glass tubes with 1 atmosphere of xenon gas. Xenon gas at 1 atmosphere was used to tune up the spectrometer and to set up the appropriate NMR parameters. A single Xe-129 line at 83.003498 Mhz (with protons at 300 Mhz) was observed for the gas. With the xenon charged PMR-15 samples, a second broader line is observed 190 ppm downfield from the gas line (also observed). The width of the NMR line from the Xe-129 absorbed in the polymer is at least partially due to the distribution of microvoid sizes. From the chemical shift (relative to the gas line) and the line width, we estimate the average void sizes to be 2.74 +/- 0.20 angstroms. Since Xe-129 has such a large chemical shift range (approximately 5000 ppm), we expect the chemical shift anisotropy to contribute to the

  14. Structure of hydrous aluminosilicate glasses along the diopside anorthite join: A comprehensive one- and two-dimensional 1H and 27Al NMR study

    NASA Astrophysics Data System (ADS)

    Xue, Xianyu; Kanzaki, Masami

    2008-05-01

    We have taken a systematic approach utilizing advanced solid-state NMR techniques to gain new insights into the controversial issue concerning the dissolution mechanisms of water in aluminosilicate melts (glasses). A series of quenched anhydrous and hydrous (˜2 wt% H 2O) glass samples along the diopside (Di, CaMgSi 2O 6)—anorthite (An, CaAl 2Si 2O 8) join with varying An components (0, 20, 38, 60, 80, and 100 mol %) have been studied. A variety of NMR techniques, including one-dimensional (1D) 1H and 27Al MAS NMR, and 27Al → 1H cross-polarization (CP) MAS NMR, as well as two-dimensional (2D) 1H double-quantum (DQ) MAS NMR, 27Al triple-quantum (3Q) MAS NMR, and 27Al → 1H heteronuclear correlation NMR (HETCOR) and 3QMAS/HETCOR NMR, have been applied. These data revealed the presence of SiOH, free OH ((Ca,Mg)OH) and AlOH species in the hydrous glasses, with the last mostly interconnected with Si and residing in the more polymerized parts of the structure. Thus, there are no fundamental differences in water dissolution mechanisms for Al-free and Al-bearing silicate melts (glasses), both involving two competing processes: the formation of SiOH/AlOH that is accompanied by the depolymerization of the network structure, and the formation of free OH that has an opposite effect. The latter is more important for depolymerized compositions corresponding to mafic and ultramafic magmas. Aluminum is dominantly present in four coordination (Al IV), but a small amount of five-coordinate Al (Al V) is also observed in all the anhydrous and hydrous glasses. Furthermore, six-coordinate Al (Al VI) is also present in most of the hydrous glasses. As Al of higher coordinations are favored by high pressure, Al VIOH and Al VOH may become major water species at higher pressures corresponding to those of the Earth's mantle.

  15. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    SciTech Connect

    Albright, Seth; Chen Bin; Holbrook, Kristen; Jain, Nitin U.

    2008-04-04

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a {sup 15}N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern of residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site.

  16. γ-(S)-Trifluoromethyl proline: evaluation as a structural substitute of proline for solid state (19)F-NMR peptide studies.

    PubMed

    Kubyshkin, Vladimir; Afonin, Sergii; Kara, Sezgin; Budisa, Nediljko; Mykhailiuk, Pavel K; Ulrich, Anne S

    2015-03-21

    γ-(4S)-Trifluoromethyl proline was synthesised according to a modified literature protocol with improved yield on a multigram scale. Conformational properties of the amide bond formed by the amino acid were characterised using N-acetyl methyl ester model. The amide populations (s-trans vs. s-cis) and thermodynamic parameters of the isomerization were found to be similar to the corresponding values for intact proline. Therefore, the γ-trifluoromethyl proline was suggested as a structurally low-disturbing proline substitution in peptides for their structural studies by (19)F-NMR. Indeed, the exchange of native proline for γ-trifluoromethyl proline in the peptide antibiotic gramicidin S was shown to preserve the overall amphipathic peptide structure. The utility of the amino acid as a selective (19)F-NMR label was demonstrated by observing the re-alignment of the labelled gramicidin S in oriented lipid bilayers. PMID:25703116

  17. Overview on the use of NMR to examine protein structure.

    PubMed

    Breukels, Vincent; Konijnenberg, Albert; Nabuurs, Sanne M; Doreleijers, Jurgen F; Kovalevskaya, Nadezda V; Vuister, Geerten W

    2011-04-01

    Any protein structure determination process contains several steps, starting from obtaining a suitable sample, then moving on to acquiring data and spectral assignment, and lastly to the final steps of structure determination and validation. This unit describes all of these steps, starting with the basic physical principles behind NMR and some of the most commonly measured and observed phenomena such as chemical shift, scalar and residual coupling, and the nuclear Overhauser effect. Then, in somewhat more detail, the process of spectral assignment and structure elucidation is explained. Furthermore, the use of NMR to study protein-ligand interaction, protein dynamics, or protein folding is described. PMID:21488042

  18. NMR studies of oriented molecules

    SciTech Connect

    Sinton, S.W.

    1981-11-01

    Deuterium and proton magnetic resonance are used in experiments on a number of compounds which either form liquid crystal mesophases themselves or are dissolved in a liquid crystal solvent. Proton multiple quantum NMR is used to simplify complicated spectra. The theory of nonselective multiple quantum NMR is briefly reviewed. Benzene dissolved in a liquid crystal are used to demonstrate several outcomes of the theory. Experimental studies include proton and deuterium single quantum (..delta..M = +-1) and proton multiple quantum spectra of several molecules which contain the biphenyl moiety. 4-Cyano-4'-n-pentyl-d/sub 11/-biphenyl (5CB-d/sub 11/) is studied as a pure compound in the nematic phase. The obtained chain order parameters and dipolar couplings agree closely with previous results. Models for the effective symmetry of the biphenyl group in 5CB-d/sub 11/ are tested against the experimental spectra. The dihedral angle, defined by the planes containing the rings of the biphenyl group, is found to be 30 +- 2/sup 0/ for 5DB-d/sub 11/. Experiments are also described for 4,4'-d/sub 2/-biphenyl, 4,4' - dibromo-biphenyl, and unsubstituted biphenyl.

  19. NMR structural studies of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes

    PubMed Central

    Mahalakshmi, Radhakrishnan; Franzin, Carla M.; Choi, Jungyuen; Marassi, Francesca M.

    2008-01-01

    SUMMARY The β-barrels found in the outer membranes of prokaryotic and eukaryotic organisms constitute an important functional class of proteins. Here we present solid-state NMR spectra of the bacterial outer membrane protein OmpX in oriented lipid bilayer membranes. We show that OmpX is folded in both glass-supported oriented lipid bilayers and in lipid bicelles that can be magnetically oriented with the membrane plane parallel or perpendicular to the direction of the magnetic field. The presence of resolved peaks in these spectra demonstrates that OmpX undergoes rotational diffusion around an axis perpendicular to the membrane surface. A tightly hydrogen-bonded domain of OmpX resists exchange with D2O for days and is assigned to the transmembrane β-barrel, while peaks at isotropic resonance frequencies that disappear rapidly in D2O are assigned to the extracellular and periplasmic loops. The two-dimensional 1H/15N separated local field spectra of OmpX have several resolved peaks, and agree well with the spectra calculated from the crystal structure of OmpX rotated with the barrel axis nearly parallel (5° tilt) to the direction of the magnetic field. The data indicate that it will be possible to obtain site-specific resonance assignments and to determine the structure, tilt, and rotation of OmpX in membranes using the solid-state NMR methods that are currently being applied to α-helical membrane proteins. PMID:17916325

  20. Structural studies of an arabinan from the stems of Ephedra sinica by methylation analysis and 1D and 2D NMR spectroscopy.

    PubMed

    Xia, Yong-Gang; Liang, Jun; Yang, Bing-You; Wang, Qiu-Hong; Kuang, Hai-Xue

    2015-05-01

    Plant arabinan has important biological activity. In this study, a water-soluble arabinan (Mw∼6.15kDa) isolated from the stems of Ephedra sinica was found to consist of (1→5)-Araƒ, (1→3,5)-Araƒ, T-Araƒ, (1→3)-Araƒ and (1→2,5)-Araƒ residues at proportions of 10:2:3:2:1. A tentative structure was proposed by methylation analysis, nuclear magnetic resonance (NMR) spectroscopy ((1)H NMR, (13)C NMR, DEPT-135, (1)H-(1)H COSY, HSQC, HMBC and ROESY) and literature. The structure proposed includes a branched (1→5)-α-Araf backbone where branching occurs at the O-2 and O-3 positions of the residues with 7.7% and 15.4% of the 1,5-linked α-Araf substituted at the O-2 and O-3 positions. The presence of a branched structure was further observed by atomic force microscopy. This polymer was characterized as having a much longer linear (1→5)-α-Araf backbone as a repeating unit. In particular, the presence of α-Araf→3)-α-Araf-(1→3)-α-Araf-(1→ attached at the O-2 is a new finding. This study may facilitate a deeper understanding of structure-activity relationships of biological polysaccharides from the stems of E. sinica. PMID:25659720

  1. Statistical filtering for NMR based structure generation

    PubMed Central

    2011-01-01

    The constitutional assignment of natural products by NMR spectroscopy is usually based on 2D NMR experiments like COSY, HSQC, and HMBC. The difficulty of a structure elucidation problem depends more on the type of the investigated molecule than on its size. Saturated compounds can usually be assigned unambiguously by hand using only COSY and 13C-HMBC data, whereas condensed heterocycles are problematic due to their lack of protons that could show interatomic connectivities. Different computer programs were developed to aid in the structural assignment process, one of them COCON. In the case of unsaturated and substituted molecules structure generators frequently will generate a very large number of possible solutions. This article presents a "statistical filter" for the reduction of the number of results. The filter works by generating 3D conformations using smi23d, a simple MD approach. All molecules for which the generation of constitutional restraints failed were eliminated from the result set. Some structural elements removed by the statistical filter were analyzed and checked against Beilstein. The automatic removal of molecules for which no MD parameter set could be created was included into WEBCOCON. The effect of this filter varies in dependence of the NMR data set used, but in no case the correct constitution was removed from the resulting set. PMID:21835037

  2. RNA structure determination by solid-state NMR spectroscopy

    PubMed Central

    Marchanka, Alexander; Simon, Bernd; Althoff-Ospelt, Gerhard; Carlomagno, Teresa

    2015-01-01

    Knowledge of the RNA three-dimensional structure, either in isolation or as part of RNP complexes, is fundamental to understand the mechanism of numerous cellular processes. Because of its flexibility, RNA represents a challenge for crystallization, while the large size of cellular complexes brings solution-state NMR to its limits. Here, we demonstrate an alternative approach on the basis of solid-state NMR spectroscopy. We develop a suite of experiments and RNA labeling schemes and demonstrate for the first time that ssNMR can yield a RNA structure at high-resolution. This methodology allows structural analysis of segmentally labelled RNA stretches in high-molecular weight cellular machines—independent of their ability to crystallize— and opens the way to mechanistic studies of currently difficult-to-access RNA-protein assemblies. PMID:25960310

  3. Effects of decreased pH on membrane structural organization of Escherichia coli grown in different fatty acid-supplemented media: a 31P NMR study.

    PubMed

    Ianzini, F; Guidoni, L; Simone, G; Viti, V; Yatvin, M B

    1990-04-01

    Total membranes from Escherichia coli cells grown in different fatty acid-supplemented media have been examined by 31P NMR at different pH values. The isolated inner and outer membranes were also studied and compared to the liposomes formed with the corresponding extracted lipids. While the liposomes show structures that are correlated with lipid composition, degree of fatty acid unsaturation, and pH, the membrane structure is mainly bilayer. The presence of two bilayer phases characterized by different chemical shift anisotropy values (delta nu csa) is detectable at neutral pH; a perturbation of the bilayer phase characterized by the smallest delta nu csa is produced by low pH. Moreover, an isotropic peak is always present in the membrane NMR spectra: its attribution to cardiolipin molecules is discussed on the basis of digestion experiments with phospholipase C. PMID:2181934

  4. NMR methodologies for studying mitochondrial bioenergetics.

    PubMed

    Alves, Tiago C; Jarak, Ivana; Carvalho, Rui A

    2012-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a technique with an increasing importance in the study of metabolic diseases. Its initial important role in the determination of chemical structures (1, 2) has been considerably overcome by its potential for the in vivo study of metabolism (3-5). The main characteristic that makes this technique so attractive is its noninvasiveness. Only nuclei capable of transitioning between energy states, in the presence of an intense and constant magnetic field, are studied. This includes abundant nuclei such as proton ((1)H) and phosphorous ((31)P), as well as stable isotopes such as deuterium ((2)H) and carbon 13 ((13)C). This allows a wide range of applications that vary from the determination of water distribution in tissues (as obtained in a magnetic resonance imaging scan) to the calculation of metabolic fluxes under ex vivo and in vivo conditions without the need to use radioactive tracers or tissue biopsies (as in a magnetic resonance spectroscopy (MRS) scan). In this chapter, some technical aspects of the methodology of an NMR/MRS experiment as well as how it can be used to study mitochondrial bioenergetics are overviewed. Advantages and disadvantages of in vivo MRS versus high-resolution NMR using proton high rotation magic angle spinning (HRMAS) of tissue biopsies and tissue extracts are also discussed. PMID:22057574

  5. Complete structure of the cell surface polysaccharide of Streptococcus oralis C104: A 600-MHz NMR study

    SciTech Connect

    Abeygunawardana, C.; Bush, C.A. ); Cisar, J.O. )

    1991-09-03

    Specific lectin-carbohydrate interactions between certain oral streptococci and actinomyces contribute to the microbial colonization of teeth. The receptor molecules of Streptococcus oralis, 34, ATCC 10557, and Streptococcus mitis J22 for the galactose and N-acetylgalactosamine reactive fimbrial lectins of Actinomyces viscosus and Actinomyces naeslundii are antigenically distinct polysaccharides, each formed by a different phosphodiester-linked oligosaccharide repeating unit. Receptor polysaccharide was isolated form S. oralis C104 cells and was shown to contain galactose, N-acetylgalactosamine, ribitol, and phosphate with molar ratios of 4:1:1:1. The {sup 1}H NMR spectrum of the polysaccharide shows that it contains a repeating structure. The individual sugars in the repeating unit were identified by {sup 1}H coupling constants observed in E-COSY and DQF-COSY spectra. NMR methods included complete resonance assignments ({sup 1}H and {sup 13}C) by various homonuclear and heteronuclear correlation experiments that utilize scalar couplings. Sequence and linkage assignments were obtained from the heteronuclear multiple-bond correlation (HMBC) spectrum. This analysis shows that the receptor polysaccharide of S. oralis C104 is a ribitol teichoic acid polymer composed of a linear hexasaccharide repeating unit containing two residues each of galactopyranose and galactofuranose and a residue each of GalNAc and ribitol joined end to end by phosphodiester linkages.

  6. Investigation of structure, vibrational and NMR spectra of oxycodone and naltrexone: A combined experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Tavakol, Hossein; Esfandyari, Maryam; Taheri, Salman; Heydari, Akbar

    2011-08-01

    In this work, two important opioid antagonists, naltrexone and oxycodone, were prepared from thebaine and were characterized by IR, 1H NMR and 13C NMR spectroscopy. Moreover, computational NMR and IR parameters were obtained using density functional theory (DFT) at B3LYP/6-311++G** level of theory. Complete NMR and vibrational assignment were carried out using the observed and calculated spectra. The IR frequencies and NMR chemical shifts, determined experimentally, were compared with those obtained theoretically from DFT calculations, showed good agreements. The RMS errors observed between experimental and calculated data for the IR absorptions are 85 and 105 cm -1, for the 1H NMR peaks are 0.87 and 0.17 ppm and for those of 13C NMR are 5.6 and 5.3 ppm, respectively for naltrexone and oxycodone.

  7. NMR-spectroscopic analysis of mixtures: from structure to function

    PubMed Central

    Forseth, Ry R.; Schroeder, Frank C.

    2010-01-01

    NMR spectroscopy as a particularly information-rich method offers unique opportunities for improving the structural and functional characterization of metabolomes, which will be essential for advancing the understanding of many biological processes. Whereas traditionally NMR spectroscopy was mostly relegated to the characterization of pure compounds, the last few years have seen a surge of interest in using NMR spectroscopic techniques for characterizing complex metabolite mixtures. Development of new methods was motivated partly by the realization that using NMR for the analysis of metabolite mixtures can help identify otherwise inaccessible small molecules, for example compounds that are prone to chemical decomposition and thus cannot be isolated. Furthermore, comparative metabolomics and statistical analyses of NMR-spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the range of NMR spectroscopic techniques recently developed for characterizing metabolite mixtures, including methods used in discovery-oriented natural product chemistry, in the study of metabolite biosynthesis and function, or for comparative analyses of entire metabolomes. PMID:21071261

  8. NMR Structures of Membrane Proteins in Phospholipid Bilayers

    PubMed Central

    Radoicic, Jasmina; Lu, George J.; Opella, Stanley J.

    2014-01-01

    Membrane proteins have always presented technical challenges for structural studies because of their requirement for a lipid environment. Multiple approaches exist including X-ray crystallography and electron microscopy that can give significant insights into their structure and function. However, nuclear magnetic resonance (NMR) is unique in that it offers the possibility of determining the structures of unmodified membrane proteins in their native environment of phospholipid bilayers under physiological conditions. Furthermore, NMR enables the characterization of the structure and dynamics of backbone and side chain sites of the proteins alone and in complexes with both small molecules and other biopolymers. The learning curve has been steep for the field as most initial studies were performed under non-native environments using modified proteins until ultimately progress in both techniques and instrumentation led to the possibility of examining unmodified membrane proteins in phospholipid bilayers under physiological conditions. This review aims to provide an overview of the development and application of NMR to membrane proteins. It highlights some of the most significant structural milestones that have been reached by NMR spectroscopy of membrane proteins; especially those accomplished with the proteins in phospholipid bilayer environments where they function. PMID:25032938

  9. Joint Experimental and Computational 17O and 1H Solid State NMR Study of Ba2In2O4(OH)2 Structure and Dynamics

    PubMed Central

    2015-01-01

    A structural characterization of the hydrated form of the brownmillerite-type phase Ba2In2O5, Ba2In2O4(OH)2, is reported using experimental multinuclear NMR spectroscopy and density functional theory (DFT) energy and GIPAW NMR calculations. When the oxygen ions from H2O fill the inherent O vacancies of the brownmillerite structure, one of the water protons remains in the same layer (O3) while the second proton is located in the neighboring layer (O2) in sites with partial occupancies, as previously demonstrated by Jayaraman et al. (Solid State Ionics2004, 170, 25−32) using X-ray and neutron studies. Calculations of possible proton arrangements within the partially occupied layer of Ba2In2O4(OH)2 yield a set of low energy structures; GIPAW NMR calculations on these configurations yield 1H and 17O chemical shifts and peak intensity ratios, which are then used to help assign the experimental MAS NMR spectra. Three distinct 1H resonances in a 2:1:1 ratio are obtained experimentally, the most intense resonance being assigned to the proton in the O3 layer. The two weaker signals are due to O2 layer protons, one set hydrogen bonding to the O3 layer and the other hydrogen bonding alternately toward the O3 and O1 layers. 1H magnetization exchange experiments reveal that all three resonances originate from protons in the same crystallographic phase, the protons exchanging with each other above approximately 150 °C. Three distinct types of oxygen atoms are evident from the DFT GIPAW calculations bare oxygens (O), oxygens directly bonded to a proton (H-donor O), and oxygen ions that are hydrogen bonded to a proton (H-acceptor O). The 17O calculated shifts and quadrupolar parameters are used to assign the experimental spectra, the assignments being confirmed by 1H–17O double resonance experiments. PMID:26321789

  10. NMR structure improvement: A structural bioinformatics & visualization approach

    NASA Astrophysics Data System (ADS)

    Block, Jeremy N.

    The overall goal of this project is to enhance the physical accuracy of individual models in macromolecular NMR (Nuclear Magnetic Resonance) structures and the realism of variation within NMR ensembles of models, while improving agreement with the experimental data. A secondary overall goal is to combine synergistically the best aspects of NMR and crystallographic methodologies to better illuminate the underlying joint molecular reality. This is accomplished by using the powerful method of all-atom contact analysis (describing detailed sterics between atoms, including hydrogens); new graphical representations and interactive tools in 3D and virtual reality; and structural bioinformatics approaches to the expanded and enhanced data now available. The resulting better descriptions of macromolecular structure and its dynamic variation enhances the effectiveness of the many biomedical applications that depend on detailed molecular structure, such as mutational analysis, homology modeling, molecular simulations, protein design, and drug design.

  11. Atomic Resolution Structure of a Protein Prepared by Non-Enzymatic His-Tag Removal. Crystallographic and NMR Study of GmSPI-2 Inhibitor

    PubMed Central

    Kopera, Edyta; Bal, Wojciech; Lenarčič Živkovič, Martina; Dvornyk, Angela; Kludkiewicz, Barbara; Grzelak, Krystyna; Zhukov, Igor; Zagórski-Ostoja, Włodzimierz; Jaskolski, Mariusz; Krzywda, Szymon

    2014-01-01

    Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the structure converged with R factor of 10.57% and Rfree of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are very similar to each other and reveal the same β2αβ fold characteristic for Kazal-family serine proteinase inhibitors. PMID:25233114

  12. Atomic resolution structure of a protein prepared by non-enzymatic His-tag removal. Crystallographic and NMR study of GmSPI-2 inhibitor.

    PubMed

    Kopera, Edyta; Bal, Wojciech; Lenarčič Živkovič, Martina; Dvornyk, Angela; Kludkiewicz, Barbara; Grzelak, Krystyna; Zhukov, Igor; Zagórski-Ostoja, Włodzimierz; Jaskolski, Mariusz; Krzywda, Szymon

    2014-01-01

    Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods. GmSPI-2 was purified using a new method consisting in non-enzymatic His-tag removal based on a highly specific peptide bond cleavage reaction assisted by Ni(II) ions. The X-ray crystal structure of GmSPI-2 was refined against diffraction data extending to 0.98 Å resolution measured at 100 K using synchrotron radiation. Anisotropic refinement with the removal of stereochemical restraints for the well-ordered parts of the structure converged with R factor of 10.57% and Rfree of 12.91%. The 3D structure of GmSPI-2 protein in solution was solved on the basis of 503 distance constraints, 10 hydrogen bonds and 26 torsion angle restraints. It exhibits good geometry and side-chain packing parameters. The models of the protein structure obtained by X-ray diffraction and NMR spectroscopy are very similar to each other and reveal the same β2αβ fold characteristic for Kazal-family serine proteinase inhibitors. PMID:25233114

  13. Reduced dimensionality (3,2)D NMR experiments and their automated analysis: implications to high-throughput structural studies on proteins.

    PubMed

    Reddy, Jithender G; Kumar, Dinesh; Hosur, Ramakrishna V

    2015-02-01

    Protein NMR spectroscopy has expanded dramatically over the last decade into a powerful tool for the study of their structure, dynamics, and interactions. The primary requirement for all such investigations is sequence-specific resonance assignment. The demand now is to obtain this information as rapidly as possible and in all types of protein systems, stable/unstable, soluble/insoluble, small/big, structured/unstructured, and so on. In this context, we introduce here two reduced dimensionality experiments – (3,2)D-hNCOcanH and (3,2)D-hNcoCAnH – which enhance the previously described 2D NMR-based assignment methods quite significantly. Both the experiments can be recorded in just about 2-3 h each and hence would be of immense value for high-throughput structural proteomics and drug discovery research. The applicability of the method has been demonstrated using alpha-helical bovine apo calbindin-D9k P43M mutant (75 aa) protein. Automated assignment of this data using AUTOBA has been presented, which enhances the utility of these experiments. The backbone resonance assignments so derived are utilized to estimate secondary structures and the backbone fold using Web-based algorithms. Taken together, we believe that the method and the protocol proposed here can be used for routine high-throughput structural studies of proteins. PMID:25178811

  14. Topological Constraints on Chain-Folding Structure of Semicrystalline Polymer as Studied by 13C-13C Double Quantum NMR

    NASA Astrophysics Data System (ADS)

    Hong, Youlee; Miyoshi, Toshikazu

    Chain-folding process is a prominent feature of long polymer chains during crystallization. Over the last half century, much effort has been paid to reveal the chain trajectory. Even though various chain-folding models as well as theories of crystallization at molecule levels have been proposed, they could be not reconciled due to the limited experimental evidences. Recent development of double quantum NMR with selective isotope labeling identified the chain-trajectory of 13C labeled isotactic poly(1-butene). The systematic experiments covered a wide range of parameters, i.e. kinetics, concentration, and molecular weight (Mw) . It was demonstrated that i) adjacent re-entry site was invariant as a function of crystallization temperature (Tc) , concentration, andMw, ii) long-range order of adjacent re-entry sequence is independence of kinetics at a given concentration while it decreased with increasing the polymer concentration at a given Tc due to the increased interruption between the chains, and iii) high Mw chains led to the multilayer folded structures in single crystals, but the melt state induced the identical short adjacent sequences of long and short polymer over a wide range of Tc due to the entanglements. The behaviors indicated that the topological restriction plays significant roles in the chain-folding process rather than the kinetics. The proposed framework to control the chain-folding structure presents a new perspective into the chain organization by either the intra- or inter-chain interaction. National Science Foundation Grants DMR-1105829 and 1408855.

  15. X-ray and DFT studies of the structure, vibrational and NMR spectra of 2-amino-pyridine betaine hydrochloride

    NASA Astrophysics Data System (ADS)

    Szafran, M.; Kowalczyk, I.; Koput, J.; Katrusiak, A.

    2005-06-01

    The effect of hydrogen bonding, inter- and intramolecular electrostatic interactions on the conformation of 2-amino-pyridine betaine hydrochloride (1-carboxymethyl-2-amino-pyridinium chloride), 2-NH 2PBH⋯Cl(c), in the crystal and its isolated molecules has been studied by X-ray diffraction, FT-IR, Raman, 1H and 13C NMR spectroscopies, and by DFT calculations. In the crystal, the Cl - anion is connected with protonated betaine via hydrogen bond, O-H⋯Cl -= 2.975(2) Å, two N(12)-H⋯Cl - hydrogen bonds and two N(1) H⋯Cl - intermolecular electrostatic interactions. Two minima are located in the potential energy surface at the B3LYP/6-31G(d,p) level, 2-NH 2PBH⋯Cl(t) and 2-NH 2PB⋯HCl(c), with the latter being 20,7 kcal/mol higher in energy. The optimized bond lengths and angles of 2-NH 2PBH⋯Cl(t) at B3LYP level of theory are in good agreement with X-ray data, except for the conformation of the COOH group, which is cis ( syn) in the crystal and trans ( anti) in the single molecule. The probable assignments for the anharmonic experimental solid state vibrational spectra of 2-NH 2PBH⋯Cl(c) and 2-ND 2PBD⋯Cl(c) based on the calculated B3LYP/6-31G(d,p) harmonic frequencies have been made. 1H and 13C NMR screening constants for both single molecules have been calculated in the GIAO/B3LYP/6-31G(d,p) approach. Linear correlation between the calculated and experimental 1H chemical shifts holds only for cis conformer. The lack of such a correlation for trans conformer indicates that it is absent in D 2O solution.

  16. 99Tc NMR as a promising technique for structural investigation of biomolecules: theoretical studies on the solvent and thermal effects of phenylbenzothiazole complex.

    PubMed

    Mancini, Daiana T; Souza, Eugenio F; Caetano, Melissa S; Ramalho, Teodorico C

    2014-04-01

    The phenylbenzothiazole compounds show antitumor properties and are highly selective. In this paper, the (99)Tc chemical shifts based on the ((99m)Tc)(CO)3 (NNO) complex conjugated to the antitumor agent 2-(4'-aminophenyl)benzothiazole are reported. Thermal and solvent effects were studied computationally by quantum-chemical methods, using the density functional theory (DFT) (DFT level BPW91/aug-cc-pVTZ for the Tc and BPW91/IGLO-II for the other atoms) to compute the NMR parameters for the complex. We have calculated the (99)Tc NMR chemical shifts of the complex in gas phase and solution using different solvation models (polarizable continuum model and explicit solvation). To evaluate the thermal effect, molecular dynamics simulations were carried, using the atom-centered density matrix propagation method at the DFT level (BP86/LanL2dz). The results highlight that the (99)Tc NMR spectroscopy can be a promising technique for structural investigation of biomolecules, at the molecular level, in different environments. PMID:24446055

  17. NMR study on the structural changes of cytochrome P450cam upon the complex formation with putidaredoxin. Functional significance of the putidaredoxin-induced structural changes.

    PubMed

    Tosha, Takehiko; Yoshioka, Shiro; Takahashi, Satoshi; Ishimori, Koichiro; Shimada, Hideo; Morishima, Isao

    2003-10-10

    We investigated putidaredoxin-induced structural changes in carbonmonoxy P450cam by using NMR spectroscopy. The resonance from the beta-proton of the axial cysteine was upfield shifted by 0.12 ppm upon the putidaredoxin binding, indicating that the axial cysteine approaches to the heme-iron by about 0.1 A. The approach of the axial cysteine to the heme-iron would enhance the electronic donation from the axial thiolate to the heme-iron, resulting in the enhanced heterolysis of the dioxygen bond. In addition to the structural perturbation on the axial ligand, the structural changes in the substrate and ligand binding site were observed. The resonances from the 5-exo- and 9-methyl-protons of d-camphor, which were newly identified in this study, were upfield shifted by 1.28 and 0.20 ppm, respectively, implying that d-camphor moves to the heme-iron by 0.15-0.7 A. Based on the radical rebound mechanism, the approach of d-camphor to the heme-iron could promote the oxygen transfer reaction. On the other hand, the downfield shift of the resonance from the gamma-methyl group of Thr-252 reflects the movement of the side chain away from the heme-iron by approximately 0.25 A. Because Thr-252 regulates the heterolysis of the dioxygen bond, the positional rearrangement of Thr-252 might assist the scission of the dioxygen bond. We, therefore, conclude that putidaredoxin induces the specific heme environmental changes of P450cam, which would facilitate the oxygen activation and the oxygen transfer reaction. PMID:12842870

  18. A theoretical study of the stationary structures of the methane surface with special emphasis on NMR properties

    NASA Astrophysics Data System (ADS)

    Alkorta, Ibon; Elguero, José

    2010-04-01

    The seven stationary points of the methane hypersurface were first explored concerning geometries and energies to check previous data. On these geometries, absolute 1H and 13C NMR shieldings as well as 1J(CH) and 2J(HH) coupling constants were calculated. The results show important variations in the NMR parameters depending on the stationary point considered. Relationships have been found between the 1H and 13C shieldings and between these NMR parameters and the relative energy of the different species.

  19. Protein structure by solid-state NMR of oriented systems

    SciTech Connect

    Stewart, P.L.

    1987-01-01

    A method for determining protein backbone structure from angular information obtainable by solid state NMR spectroscopy is presented. Various spin interactions including quadrupole, dipole, and chemical shift interactions and nuclei including /sup 14/N, /sup 15/N, /sup 13/C, and /sup 2/H may be observed. Angularly dependent measurements can be made when the sample has at least one direction of order along the externally applied magnetic field. Several NMR parameters are used to determine the orientation of each peptide plane with respect to the magnetic field vector, B/sub O/, to within a few symmetry related possibilities. The computer program Totlink can then be used to perform the necessary coordinate transformations and to evaluate the possible backbone structures and select for the most chemically reasonable. Experimental /sup 14/N NMR structural studies of the model peptides n-acetyl-d,l-valine, n-acetyl-l-valyl-l-leucine, and l-alanyl-glycyl-glycine and preliminary /sup 14/N NMR results on a large single crystal of orthorhombic lysozyme are presented.

  20. Comparative NMR study of hybridization effect and structural stability in D022 -type NbAl3 and NbGa3

    NASA Astrophysics Data System (ADS)

    Lue, C. S.; Su, T. H.; Xie, B. X.; Cheng, C.

    2006-09-01

    With the aim of providing experimental information for the correlation between p-d hybridization and phase stability in the D022 structure, we performed a comparative investigation on NbAl3 and NbGa3 using Nb93 NMR spectroscopy. The quadrupole splittings, Knight shifts, and spin-lattice relaxation times ( T1 ’s) for each individual compound have been identified. The larger quadrupole interaction and higher anisotropic Knight shift have been observed in NbAl3 , indicative of the stronger hybridization effect for this material, as compared with its isostructural compound NbGa3 . Results of experimental T1 together with theoretical band structure calculations provide a measure of d -character Fermi-level density of states Nd(EF) and an indication of orbital weights. In addition, we found evidence that Nd(EF) correlates with the structural stability of the studied materials. Our NMR measurements confirm that NbAl3 is more stable than NbGa3 with respect to the D022 structure, attributed to the stronger p-d hybridization in the former material.

  1. NMR and optical studies of piezoelectric polymers

    SciTech Connect

    Schmidt, V.H.; Tuthill, G.F.

    1993-01-01

    Progress is reported in several areas dealing with piezoelectric (electroactive) polymers (mostly vinylidene fluoride, trifluoroethylene, copolymers, PVF[sub 2]) and liquid crystals. Optical studies, neutron scattering, NMR, thermal, theory and modeling were done.

  2. Synthetic analogues of the histidine-chlorophyll complex: a NMR study to mimic structural features of the photosynthetic reaction center and the light-harvesting complex.

    PubMed

    van Gammeren, Adriaan J; Hulsbergen, Frans B; Erkelens, Cornelis; De Groot, Huub J M

    2004-01-01

    Mg(II)-porphyrin-ligand and (bacterio)chlorophyl-ligand coordination interactions have been studied by solution and solid-state MAS NMR spectroscopy. (1)H, (13)C and (15)N coordination shifts due to ring currents, electronic perturbations and structural effects are resolved for imidazole (Im) and 1-methylimidazole (1-MeIm) coordinated axially to Mg(II)-OEP and (B)Chl a. As a consequence of a single axial coordination of Im or 1-MeIm to the Mg(II) ion, 0.9-5.2 ppm (1)H, 0.2-5.5 ppm (13)C and 2.1-27.2 ppm (15)N coordination shifts were measured for selectively labeled [1,3-(15)N]-Im, [1,3-(15)N,2-(13)C]-Im and [1,3-(15)N,1,2-(13)C]-1-MeIm. The coordination shifts depend on the distance of the nuclei to the porphyrin plane and the perturbation of the electronic structure. The signal intensities in the (1)H NMR spectrum reveal a five-coordinated complex, and the isotropic chemical shift analysis shows a close analogy with the electronic structure of the BChl a-histidine in natural light harvesting 2 complexes. The line broadening of the ligand responses support the complementary IR data and provide evidence for a dynamic coordination bond in the complex. PMID:14663650

  3. X-ray, FT-IR, NMR and PM5 structural studies and antibacterial activity of unexpectedly stable salinomycin-benzotriazole intermediate ester

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Antoszczak, Michał; Stefańska, Joanna; Brzezinski, Bogumil

    2012-08-01

    The unexpectedly stable benzotriazole ester of salinomycin (SAL-HOBt) - an intermediate product of the amidation reaction of salinomycin has been isolated and structurally characterised (using a single crystal) by X-ray, FT-IR, NMR and semiempirical methods. The results of the X-ray and spectroscopic studies demonstrated that this intermediate ester exist in the solid state and in solution exclusively as the stable O-acyl form. The molecular structure of SAL-HOBt is stabilised by relatively weak intramolecular hydrogen bonds. The PM5 calculation of possible structures of SAL-HOBt has shown that the O-acyl form is more energetically favourable than its N-oxide-N-acyl isomers. The antimicrobial tests show that SAL-HOBt is active against Gram-positive bacteria and clinical isolates methicillin-resistant Staphylococcus aureus (MIC = 1-2 μg/ml).

  4. Probing the atomic structure of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1): Insights from high-resolution solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Lee, S. K.

    2015-12-01

    Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of

  5. Studies on silicon NMR characterization and kinetic modeling of the structural evolution of siloxane-based materials and their applications in drug delivery and adsorption

    NASA Astrophysics Data System (ADS)

    Ambati, Jyothirmai

    This dissertation presents studies of the synthetic processes and applications of siloxane-based materials. Kinetic investigations of bridged organoalkoxysilanes that are precursors to organic-inorganic hybrid polysilsesquioxanes are a primary focus. Quick gelation despite extensive cyclization is found during the polymerization of bridged silane precursors except for silanes with certain short bridges. This work is an attempt to characterize and understand some of the distinct features of bridged silanes using experimental characterization, kinetic modeling and simulation. In addition to this, the dissertation shows how the properties of siloxane-materials can be engineered for drug delivery and adsorption. The phase behavior of polymerizing mixtures is first investigated to identify the solutions that favor kinetic characterization. Microphase separation is found to cause gradual loss of NMR signal for certain initial compositions. Distortionless Enhancement by Polarization Transfer 29Si NMR is employed to identify the products of polymerization of some short-bridged silanes under no signal loss conditions. This technique requires knowing indirect 29Si-1H scalar coupling constants which sometimes cannot be measured due to second-order effects. However, the B3LYP density functional method with 6-31G basis set is found to predict accurate 29Si- 1H coupling constants of organoalkoxysilanes and siloxanes. The scalar coupling constants thus estimated are employed to resolve non-trivial coupled NMR spectra and quantitative kinetic modeling is performed using the DEPT Si NMR transients. In order to investigate the role of the organic bridging group, the structural evolution of bridged and non-bridged silanes are compared using Monte Carlo simulations. Kinetic and simulation models suggest that cyclization plays a key role right from the onset of polymerization for bridged silanes even more than in non-bridged silanes. The simulations indicate that the carbosiloxane

  6. Interfaces in polymer nanocomposites - An NMR study

    NASA Astrophysics Data System (ADS)

    Böhme, Ute; Scheler, Ulrich

    2016-03-01

    Nuclear Magnetic Resonance (NMR) is applied for the investigation of polymer nanocomposites. Solid-state NMR is applied to study the modification steps to compatibilize layered double hydroxides with non-polar polymers. 1H relaxation NMR gives insight on the polymer dynamics over a wide range of correlation times. For the polymer chain dynamics the transverse relaxation time T2 is most suited. In this presentation we report on two applications of T2 measurements under external mechanical stress. In a low-field system relaxation NMR studies are performed in-situ under uniaxial stress. High-temperature experiments in a Couette cell permit the investigation of the polymer dynamics in the melt under shear flow.

  7. Crystal structure, NMR study, dc-conductivity and dielectric relaxation studies of a new compound [C2H10N2]Cd(SCN)2Cl2

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. F.; Gargouri, M.

    2012-06-01

    The crystal structure, the solid NMR spectroscopy and the complex impedance study have been carried out on [C2H10N2]CdCl2(SCN)2. Characterization by single crystal X-ray crystallography shows that the cadmium atoms have à 2N2S2Cl hexa-coordination sphere, exhibiting pseudo-octahedral geometry. The cadmium atoms are bridged by two thiocyanate ions generating 1-D polymeric-chains. These chains are themselves interconnected by means of N-H…Cl(NCS) hydrogen bonds originating from the organic cation [(NH3)2(CH2)2]2+. 111Cd isotropic chemical shifts span a range of 268ppm. The cadmium atom exhibits multiplets that result from 111Cd-14N spin-spin coupling. Examination of 111Cd and 13C MAS line shapes shows direct measurement of the indirect spin-spin coupling constant 2J(111Cd, 14N) = 105Hz and the dipolar coupling constant of 1381Hz . Impedance spectroscopy measurements of [C2H10N2]CdCl2(SCN)2 have been studied from 209Hz to 5 MHz over the temperature range 300-370 K. The Cole-Cole (Z" versus Z') plots are fitted to two equivalent circuits models. The formalism of complex permittivity and impedance were employed to analyze the experimental data. The dc conductivity follows the Arrhenius relation with an activation energy Ea = 0.54 (3) eV.

  8. Cell-free expression of the APP transmembrane fragments with Alzheimer's disease mutations using algal amino acid mixture for structural NMR studies.

    PubMed

    Bocharova, Olga V; Urban, Anatoly S; Nadezhdin, Kirill D; Bocharov, Eduard V; Arseniev, Alexander S

    2016-07-01

    Structural investigations need ready supply of the isotope labeled proteins with inserted mutations n the quantities sufficient for the heteronuclear NMR. Though cell-free expression system has been widely used in the past years, high startup cost and complex compound composition prevent many researches from the developing this technique, especially for membrane protein production. Here we demonstrate the utility of a robust, cost-optimized cell-free expression technique for production of the physiologically important transmembrane fragment of amyloid precursor protein, APP686-726, containing Alzheimer's disease mutations in the juxtamembrane (E693G, Arctic form) and the transmembrane parts (V717G, London form, or L723P, Australian form). The protein cost was optimized by varying the FM/RM ratio as well as the amino acid concentration. We obtained the wild-type and mutant transmembrane fragments in the pellet mode of continuous exchange cell-free system consuming only commercial algal mixture of the (13)C,(15)N-labeled amino acids. Scaling up analytical tests, we achieved milligram quantity yields of isotope labeled wild-type and mutant APP686-726 for structural studies by high resolution NMR spectroscopy in membrane mimicking environment. The described approach has from 5 to 23-fold cost advantage over the bacterial expression methods described earlier and 1.5 times exceeds our previous result obtained with the longer APP671-726WT fragment. PMID:27071311

  9. NMR Methods to Study Dynamic Allostery

    PubMed Central

    Grutsch, Sarina; Brüschweiler, Sven; Tollinger, Martin

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a unique toolbox of experimental probes for studying dynamic processes on a wide range of timescales, ranging from picoseconds to milliseconds and beyond. Along with NMR hardware developments, recent methodological advancements have enabled the characterization of allosteric proteins at unprecedented detail, revealing intriguing aspects of allosteric mechanisms and increasing the proportion of the conformational ensemble that can be observed by experiment. Here, we present an overview of NMR spectroscopic methods for characterizing equilibrium fluctuations in free and bound states of allosteric proteins that have been most influential in the field. By combining NMR experimental approaches with molecular simulations, atomistic-level descriptions of the mechanisms by which allosteric phenomena take place are now within reach. PMID:26964042

  10. Protein folding on the ribosome studied using NMR spectroscopy

    PubMed Central

    Waudby, Christopher A.; Launay, Hélène; Cabrita, Lisa D.; Christodoulou, John

    2013-01-01

    NMR spectroscopy is a powerful tool for the investigation of protein folding and misfolding, providing a characterization of molecular structure, dynamics and exchange processes, across a very wide range of timescales and with near atomic resolution. In recent years NMR methods have also been developed to study protein folding as it might occur within the cell, in a de novo manner, by observing the folding of nascent polypeptides in the process of emerging from the ribosome during synthesis. Despite the 2.3 MDa molecular weight of the bacterial 70S ribosome, many nascent polypeptides, and some ribosomal proteins, have sufficient local flexibility that sharp resonances may be observed in solution-state NMR spectra. In providing information on dynamic regions of the structure, NMR spectroscopy is therefore highly complementary to alternative methods such as X-ray crystallography and cryo-electron microscopy, which have successfully characterized the rigid core of the ribosome particle. However, the low working concentrations and limited sample stability associated with ribosome–nascent chain complexes means that such studies still present significant technical challenges to the NMR spectroscopist. This review will discuss the progress that has been made in this area, surveying all NMR studies that have been published to date, and with a particular focus on strategies for improving experimental sensitivity. PMID:24083462

  11. Study of angiotensin-(1-7) vasoactive peptide and its beta-cyclodextrin inclusion complexes: complete sequence-specific NMR assignments and structural studies.

    PubMed

    Lula, Ivana; Denadai, Angelo L; Resende, Jarbas M; de Sousa, Frederico B; de Lima, Guilherme F; Pilo-Veloso, Dorila; Heine, Thomas; Duarte, Hélio A; Santos, Robson A S; Sinisterra, Rubén D

    2007-11-01

    We report the complete sequence-specific hydrogen NMR assignments of vasoactive peptide angiotensin-(1-7) (Ang-(1-7)). Assignments of the majority of the resonances were accomplished by COSY, TOCSY, and ROESY peak coordinates at 400MHz and 600MHz. Long-side-chain amino acid spin system identification was facilitated by long-range coherence transfer experiments (TOCSY). Problems with overlapped resonance signals were solved by analysis of heteronuclear 2D experiments (HSQC and HMBC). Nuclear Overhauser effects (NOE) results were used to probe peptide conformation. We show that the inclusion of the angiotensin-(1-7) tyrosine residue is favored in inclusion complexes with beta-cyclodextrin. QM/MM simulations at the DFTB/UFF level confirm the experimental NMR findings and provide detailed structural information on these compounds in aqueous solution. PMID:17904691

  12. Bulge-out structures in the single-stranded trimer AUA and in the duplex (CUGGUGCGG).(CCGCCCAG). A model-building and NMR study.

    PubMed Central

    van den Hoogen, Y T; van Beuzekom, A A; de Vroom, E; van der Marel, G A; van Boom, J H; Altona, C

    1988-01-01

    Model-building studies were carried out on the trimer AUA. Bulge-out structures which allow incorporation into a continuous RNA helix were generated and energy-minimized. All geometrical features obtained by previous NMR studies on purine-pyrimidine-purine sequences are accounted for in these models. One of the models was used to fit into a double helical fragment. Only minor changes were necessary to construct a central bulge-out in an otherwise intact duplex. NMR and model-building studies were performed on the duplex (CUGGUGCGG).(CCGCCCAG) which contains an unpaired uridine residue. NOE data, chemical-shift profiles and imino-proton resonances provided evidence that the extra U is bulged out of the duplex. The relatively small dispersion in 31P chemical shifts (approximately equal to 0.7 ppm) indicate the absence of t/g or g/t combinations for the phosphodiester angles zeta/alpha. An energy-minimized model of the duplex, which fits the present collection of data, is presented. PMID:3387215

  13. Synthesis, NMR spectral and structural studies on mixed ligand complexes of Pd(II) dithiocarbamates: First structural report on palladium(II) dithiocarbamate with SCN-ligand

    NASA Astrophysics Data System (ADS)

    Prakasam, Balasubramaniam Arul; Lahtinen, Manu; Peuronen, Anssi; Muruganandham, Manickavachagam; Kolehmainen, Erkki; Haapaniemi, Esa; Sillanpää, Mika

    2016-03-01

    Three new mixed ligand complexes of palladium(II) dithiocarbamates; [Pd(4-dpmpzdtc)(PPh3)(SCN)] (1), [Pd(4-dpmpzdtc)(PPh3)Cl] (2) and [Pd(bzbudtc)(PPh3)Cl] (3), (where, 4-dpmpzdtc = 4-(diphenylmethyl)piperazinecarbodithioato anion, bzbudtc = N-benzyl-N-butyldithiocarbamato anion and PPh3 = triphenylphosphine) have been synthesized from their respective parent dithiocarbamates by ligand exchange reactions and characterized by IR and NMR (1H, 13C and 31P) spectroscopy. IR and NMR spectral data support the isobidentate coordination of the dithiocarbamate ligands in all complexes (1-3) in solid and in solution, respectively. Single crystal diffraction analysis of complexes 1-3 evidences that all three complexes are exhibiting distorted square planar geometry. The Pd-S distances in 1-3 vary in accordance with the differences in trans influences of PPh3, SCN- and Cl- and it is in the order of PPh3 > SCN- > and Cl-. Interchange of the anionic auxiliary ligand (SCN- to Cl-) induces asymmetry to the dithiocarbamate-metal bonds. Thioureide C-N bond distances are short in 1-3, supporting a contribution of thioureide form to the structures. The observed distortions in the square planar geometry for 1-3, are in the order of 1 > 2 > 3.

  14. Structural and conformational study of the aluminum-thymulin complex using 1-D and 2-D NMR techniques

    SciTech Connect

    Laussac, J.P.; Lefrancier, P.; Dardenne, M.; Bach, J.F.; Marraud, M.; Cung, M.T.

    1988-11-16

    The interaction between aluminum and thymulin, a linear nonapeptide of thymic origin isolated from serum, was investigated by means of one- and two-dimensional NMR experiments. These experiments were performed in dimethyl-d/sub 6/ sulfoxide solution at different metal:peptide ratios. The results lead the following conclusions: (i) the Al(III) complexation corresponds to a fast exchange on the NMR time scale; (ii) the evolution of /sup 1/H and /sup 13/C NMR chemical shifts indicates the existence of one type of complex with a 1:2 stoichiometry, associating two peptide molecules and one Al(III) ion; (iii) analysis of the spectra suggests that Al(III) has a specific binding site involving the Asn/sup 9/COO/sup /minus// terminal group and the hydroxyl group of the Ser/sup 4/ residue; (iv) from the NOESY data a conformation has been proposed and compared to the biologically active Zn(II)-thymulin complex. 23 refs., 6 figs., 1 tab.

  15. Structure calculation, refinement and validation using CcpNmr Analysis

    PubMed Central

    Skinner, Simon P.; Goult, Benjamin T.; Fogh, Rasmus H.; Boucher, Wayne; Stevens, Tim J.; Laue, Ernest D.; Vuister, Geerten W.

    2015-01-01

    CcpNmr Analysis provides a streamlined pipeline for both NMR chemical shift assignment and structure determination of biological macromolecules. In addition, it encompasses tools to analyse the many additional experiments that make NMR such a pivotal technique for research into complex biological questions. This report describes how CcpNmr Analysis can seamlessly link together all of the tasks in the NMR structure-determination process. It details each of the stages from generating NMR restraints [distance, dihedral, hydrogen bonds and residual dipolar couplings (RDCs)], exporting these to and subsequently re-importing them from structure-calculation software (such as the programs CYANA or ARIA) and analysing and validating the results obtained from the structure calculation to, ultimately, the streamlined deposition of the completed assignments and the refined ensemble of structures into the PDBe repository. Until recently, such solution-structure determination by NMR has been quite a laborious task, requiring multiple stages and programs. However, with the new enhancements to CcpNmr Analysis described here, this process is now much more intuitive and efficient and less error-prone. PMID:25615869

  16. NMR studies of nucleic acid dynamics

    PubMed Central

    Al-Hashimi, Hashim M.

    2014-01-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner. PMID:24149218

  17. NMR studies of nucleic acid dynamics

    NASA Astrophysics Data System (ADS)

    Al-Hashimi, Hashim M.

    2013-12-01

    Nucleic acid structures have to satisfy two diametrically opposite requirements; on one hand they have to adopt well-defined 3D structures that can be specifically recognized by proteins; on the other hand, their structures must be sufficiently flexible to undergo very large conformational changes that are required during key biochemical processes, including replication, transcription, and translation. How do nucleic acids introduce flexibility into their 3D structure without losing biological specificity? Here, I describe the development and application of NMR spectroscopic techniques in my laboratory for characterizing the dynamic properties of nucleic acids that tightly integrate a broad set of NMR measurements, including residual dipolar couplings, spin relaxation, and relaxation dispersion with sample engineering and computational approaches. This approach allowed us to obtain fundamental new insights into directional flexibility in nucleic acids that enable their structures to change in a very specific functional manner.

  18. Combined experimental and quantum chemical studies on spectroscopic (FT-IR, FT-Raman, UV-Vis, and NMR) and structural characteristics of quinoline-5-carboxaldehyde

    NASA Astrophysics Data System (ADS)

    Kumru, Mustafa; Altun, Ahmet; Kocademir, Mustafa; Küçük, Vesile; Bardakçı, Tayyibe; Şaşmaz, İbrahim

    2016-12-01

    Comparative experimental and theoretical studies have been performed on the structure and spectral (FT-IR, FT-Raman, UV-Vis and NMR) features of quinoline-5-carboxaldehyde. Quantum chemical calculations have been carried out at Hartree-Fock and density functional B3LYP levels with the triple-zeta 6-311++G** basis set. Two stable conformers of quinoline-5-carboxaldehyde arising from the orientation of the carboxaldehyde moiety have been located at the room temperature. The energetic separation of these conformers is as small as 2.5 kcal/mol with a low transition barrier (around 9 kcal/mol). Therefore, these conformers are expected to coexist at the room temperature. Several molecular characteristics of quinoline-5-carboxaldehyde obtained through B3LYP and time-dependent B3LYP calculations, such as conformational stability, key geometry parameters, vibrational frequencies, IR and Raman intensities, UV-Vis vertical excitation energies and the corresponding oscillator strengths have been analyzed. The 1H and 13C NMR chemical shifts of quinoline-5-carboxaldehyde were also investigated.

  19. Structural characterization, solvent effects on nuclear magnetic shielding tensors, experimental and theoretical DFT studies on the vibrational and NMR spectra of 3-(acrylamido)phenylboronic acid

    NASA Astrophysics Data System (ADS)

    Alver, Özgür; Kaya, Mehmet Fatih; Dikmen, Gökhan

    2015-12-01

    Structural elucidation of 3-(acrylamido)phenylboronic acid (C9H10BNO3) was carried out with 1H, 13C and HETCOR NMR techniques. Solvent effects on nuclear magnetic shielding tensors were examined with deuterated dimethyl sulfoxide, acetone, methanol and water solvents. The correct order of appearance of carbon and hydrogen atoms on NMR scale from highest magnetic field region to the lowest one were investigated using different types of theoretical levels and the details of the levels were presented in this study. Stable structural conformers and vibrational band analysis of the title molecule (C9H10BNO3) were studied both experimental and theoretical viewpoints using FT-IR, Raman spectroscopic methods and density functional theory (DFT). FT-IR and Raman spectra were obtained in the region of 4000-400 cm-1, and 3700-10 cm-1, respectively. Becke-3-Lee-Yang-Parr (B3LYP) hybrid density functional theory method with 6-31++G(d, p) basis set was included in the search for optimized structures and vibrational wavenumbers. Experimental and theoretical results show that after application of a suitable scaling factor density functional B3LYP method resulted in acceptable results for predicting vibrational wavenumbers except OH and NH stretching modes which is most likely arising from increasing unharmonicity in the high wave number region and possible intra and inter molecular interaction at OH edges those of which are not fully taken into consideration in theoretical processes. To make a more quantitative vibrational assignments, potential energy distribution (PED) values were calculated using VEDA 4 (Vibrational Energy Distribution Analysis) program.

  20. NMR studies of cation transport across membranes

    SciTech Connect

    Shochet, N.R.

    1985-01-01

    /sup 23/Na NMR Studies of cation transport across membranes were conducted both on model and biological membranes. Two ionophores, the carrier monensin and the channel-former gramicidin, were chosen to induce cation transport in large unilamellar phosphatidylcholine vesicles. The distinction between the NMR signals arising from the two sides of the membrane was achieved by the addition of an anionic paramagnetic shift reagent to the outer solution. The kinetics of the cation transport across the membrane was observed simultaneously monitoring the changes in the /sup 23/Na NMR signals of both compartments. Two mathematical models were developed for the estimation of the transport parameters of the monensin- and gramicidin-induced cation transport. The models were able to fit the experimental data very well. A new method for the estimation of the volume trapped inside the vesicles was developed. The method uses the relative areas of the intra- and extravesicular NMR signals arising from a suspension of vesicles bathed in the same medium they contain, as a measure for the relative volumes of these compartments. Sodium transport across biological membranes was studied by /sup 23/ NMR, using suspensions of cultured nerve cells. The sodium influx through voltage-gated channels was studied using the channel modifier batrachotoxin in combination with scorpion toxin.

  1. Studies of Structure and Dynamics of Light Harvesting Complex 1 of R. Sphaeroides by Solid State NMR

    SciTech Connect

    McDermott, Ann E

    2014-11-14

    Studies of the structure and dynamics of a light harvesting complex from photosynthetic bacteria are described. Using Nuclear Magnetic Resonance methods, we explored the idea that optical properties are modulated via a conformational switch in the BChl chromophores, in a way that provides benefits for the efficiency of energy conversion.

  2. Multidimensional solid-state NMR studies of the structure and dynamics of pectic polysaccharides in uniformly 13C-labeled Arabidopsis primary cell walls

    SciTech Connect

    Dick-Perez, Marilu; Wang, Tuo; Salazar, Andre; Zabotina, Olga A.; Hong, Mei

    2012-07-08

    Plant cell wall (CW) polysaccharides are responsible for the mechanical strength and growth of plant cells; however, the high-resolution structure and dynamics of the CW polysaccharides are still poorly understood because of the insoluble nature of these molecules. Here, we use 2D and 3D magic-angle-spinning (MAS) solid-state NMR (SSNMR) to investigate the structural role of pectins in the plant CW. Intact and partially depectinated primary CWs of Arabidopsis thaliana were uniformly labeled with 13C and their NMR spectra were compared. Recent 13C resonance assignment of the major polysaccharides in Arabidopsis thaliana CWs allowed us to determine the effects of depectination on the intermolecular packing and dynamics of the remaining wall polysaccharides. 2D and 3D correlation spectra show the suppression of pectin signals, confirming partial pectin removal by chelating agents and sodium carbonate. Importantly, higher cross peaks are observed in 2D and 3D 13C spectra of the depectinated CW, suggesting higher rigidity and denser packing of the remaining wall polysaccharides compared with the intact CW. 13C spin–lattice relaxation times and 1H rotating-frame spin–lattice relaxation times indicate that the polysaccharides are more rigid on both the nanosecond and microsecond timescales in the depectinated CW. Taken together, these results indicate that pectic polysaccharides are highly dynamic and endow the polysaccharide network of the primary CW with mobility and flexibility, which may be important for pectin functions. This study demonstrates the capability of multidimensional SSNMR to determine the intermolecular interactions and dynamic structures of complex plant materials under near-native conditions. Copyright © 2012 John Wiley & Sons, Ltd.

  3. Structural Polymorphism of Alzheimer's β-Amyloid Fibrils as Controlled by an E22 Switch: A Solid-State NMR Study.

    PubMed

    Elkins, Matthew R; Wang, Tuo; Nick, Mimi; Jo, Hyunil; Lemmin, Thomas; Prusiner, Stanley B; DeGrado, William F; Stöhr, Jan; Hong, Mei

    2016-08-10

    The amyloid-β (Aβ) peptide of Alzheimer's disease (AD) forms polymorphic fibrils on the micrometer and molecular scales. Various fibril growth conditions have been identified to cause polymorphism, but the intrinsic amino acid sequence basis for this polymorphism has been unclear. Several single-site mutations in the center of the Aβ sequence cause different disease phenotypes and fibrillization properties. The E22G (Arctic) mutant is found in familial AD and forms protofibrils more rapidly than wild-type Aβ. Here, we use solid-state NMR spectroscopy to investigate the structure, dynamics, hydration and morphology of Arctic E22G Aβ40 fibrils. (13)C, (15)N-labeled synthetic E22G Aβ40 peptides are studied and compared with wild-type and Osaka E22Δ Aβ40 fibrils. Under the same fibrillization conditions, Arctic Aβ40 exhibits a high degree of polymorphism, showing at least four sets of NMR chemical shifts for various residues, while the Osaka and wild-type Aβ40 fibrils show a single or a predominant set of chemical shifts. Thus, structural polymorphism is intrinsic to the Arctic E22G Aβ40 sequence. Chemical shifts and inter-residue contacts obtained from 2D correlation spectra indicate that one of the major Arctic conformers has surprisingly high structural similarity with wild-type Aβ42. (13)C-(1)H dipolar order parameters, (1)H rotating-frame spin-lattice relaxation times and water-to-protein spin diffusion experiments reveal substantial differences in the dynamics and hydration of Arctic, Osaka and wild-type Aβ40 fibrils. Together, these results strongly suggest that electrostatic interactions in the center of the Aβ peptide sequence play a crucial role in the three-dimensional fold of the fibrils, and by inference, fibril-induced neuronal toxicity and AD pathogenesis. PMID:27414264

  4. Isoxazole derivatives of alpha-pinene isomers: Synthesis, crystal structure, spectroscopic characterization (FT-IR/NMR/GC-MS) and DFT studies

    NASA Astrophysics Data System (ADS)

    Eryılmaz, Serpil; Gül, Melek; İnkaya, Ersin; Taş, Murat

    2016-03-01

    In this paper, the alpha-pinene isoxazole derivatives (3a-b-c, 4a-b) were synthesized via 1,3-dipolar cycloaddition and characterized with FT-IR, 1H NMR, 13C NMR and GC-MS. Isoxazole (C21H23NO) compound (4a) 6,6,7a,-trimethyl-3-(naphthalen-2-yl)-3a,4,5,6,7,7a-hexahydro-5,7-methanobenzo[d] was characterized by X-ray single crystal diffraction technique. The compound crystallizes in the monoclinic space group P 212121, with Z = 4. The molecular geometry of the compound was optimized by applying Density Functional Theory (DFT/B3LYP) method with 6-31G(d,p) and 6-311 + G(d,p) basis sets in the ground state and geometric parameters were compared with the X-ray analysis results of the structure. Results of the experimental FT-IR and NMR spectral analysis were examined in order to determine the compliance with vibrational frequencies, 1H NMR and 13C NMR chemical shifts values by using the Gauge-Independent Atomic Orbital (GIAO) method calculated over the optimized structure. Besides molecular electrostatic potential (MEP), frontier molecular orbitals (FMOs), some global reactivity descriptors, thermodynamic properties, non-linear optical (NLO) behaviour and Mulliken charge analysis of the (4a) compound were computed with the same method in gas phase, theoretically.

  5. (17)O NMR Investigation of Water Structure and Dynamics.

    PubMed

    Keeler, Eric G; Michaelis, Vladimir K; Griffin, Robert G

    2016-08-18

    The structure and dynamics of the bound water in barium chlorate monohydrate were studied with (17)O nuclear magnetic resonance (NMR) spectroscopy in samples that are stationary and spinning at the magic-angle in magnetic fields ranging from 14.1 to 21.1 T. (17)O NMR parameters of the water were determined, and the effects of torsional oscillations of the water molecule on the (17)O quadrupolar coupling constant (CQ) were delineated with variable temperature MAS NMR. With decreasing temperature and reduction of the librational motion, we observe an increase in the experimentally measured CQ explaining the discrepancy between experiments and predictions from density functional theory. In addition, at low temperatures and in the absence of (1)H decoupling, we observe a well-resolved (1)H-(17)O dipole splitting in the spectra, which provides information on the structure of the H2O molecule. The splitting arises because of the homogeneous nature of the coupling between the two (1)H-(17)O dipoles and the (1)H-(1)H dipole. PMID:27454747

  6. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score.

    PubMed

    Huang, Yuanpeng Janet; Mao, Binchen; Xu, Fei; Montelione, Gaetano T

    2015-08-01

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD-NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases (15)N-(1)H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD-NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta. PMID:26081575

  7. NMR and protein folding: equilibrium and stopped-flow studies.

    PubMed Central

    Frieden, C.; Hoeltzli, S. D.; Ropson, I. J.

    1993-01-01

    NMR studies are now unraveling the structure of intermediates of protein folding using hydrogen-deuterium exchange methodologies. These studies provide information about the time dependence of formation of secondary structure. They require the ability to assign specific resonances in the NMR spectra to specific amide protons of a protein followed by experiments involving competition between folding and exchange reactions. Another approach is to use 19F-substituted amino acids to follow changes in side-chain environment upon folding. Current techniques of molecular biology allow assignments of 19F resonances to specific amino acids by site-directed mutagenesis. It is possible to follow changes and to analyze results from 19F spectra in real time using a stopped-flow device incorporated into the NMR spectrometer. PMID:8298453

  8. Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM-b-PEG-b-PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies.

    PubMed

    Filippov, Sergey K; Bogomolova, Anna; Kaberov, Leonid; Velychkivska, Nadiia; Starovoytova, Larisa; Cernochova, Zulfiya; Rogers, Sarah E; Lau, Wing Man; Khutoryanskiy, Vitaliy V; Cook, Michael T

    2016-05-31

    In this study, we report detailed information on the internal structure of PNIPAM-b-PEG-b-PNIPAM nanoparticles formed from self-assembly in aqueous solutions upon increase in temperature. NMR spectroscopy, light scattering, and small-angle neutron scattering (SANS) were used to monitor different stages of nanoparticle formation as a function of temperature, providing insight into the fundamental processes involved. The presence of PEG in a copolymer structure significantly affects the formation of nanoparticles, making their transition to occur over a broader temperature range. The crucial parameter that controls the transition is the ratio of PEG/PNIPAM. For pure PNIPAM, the transition is sharp; the higher the PEG/PNIPAM ratio results in a broader transition. This behavior is explained by different mechanisms of PNIPAM block incorporation during nanoparticle formation at different PEG/PNIPAM ratios. Contrast variation experiments using SANS show that the structure of nanoparticles above cloud point temperatures for PNIPAM-b-PEG-b-PNIPAM copolymers is drastically different from the structure of PNIPAM mesoglobules. In contrast with pure PNIPAM mesoglobules, where solidlike particles and chain network with a mesh size of 1-3 nm are present, nanoparticles formed from PNIPAM-b-PEG-b-PNIPAM copolymers have nonuniform structure with "frozen" areas interconnected by single chains in Gaussian conformation. SANS data with deuterated "invisible" PEG blocks imply that PEG is uniformly distributed inside of a nanoparticle. It is kinetically flexible PEG blocks which affect the nanoparticle formation by prevention of PNIPAM microphase separation. PMID:27159129

  9. Impact of reduction on the properties of metal bisdithiolenes: multinuclear solid-state NMR and structural studies on Pt(tfd)2 and its reduced forms.

    PubMed

    Tang, Joel A; Kogut, Elzbieta; Norton, Danielle; Lough, Alan J; McGarvey, Bruce R; Fekl, Ulrich; Schurko, Robert W

    2009-03-19

    Transition-metal dithiolene complexes have interesting structures and fascinating redox properties, making them promising candidates for a number of applications, including superconductors, photonic devices, chemical sensors, and catalysts. However, not enough is known about the molecular electronic origins of these properties. Multinuclear solid-state NMR spectroscopy and first-principles calculations are used to examine the molecular and electronic structures of the redox series [Pt(tfd)(2)](z-) (tfd = S(2)C(2)(CF(3))(2); z = 0, 1, 2; the anionic species have [NEt(4)](+) countercations). Single-crystal X-ray structures for the neutral (z = 0) and the fully reduced forms (z = 2) were obtained. The two species have very similar structures but differ slightly in their intraligand bond lengths. (19)F-(195)Pt CP/CPMG and (195)Pt magic-angle spinning (MAS) NMR experiments are used to probe the diamagnetic (z = 0, 2) species, revealing large platinum chemical shielding anisotropies (CSA) with distinct CS tensor properties, despite the very similar structural features of these species. Density functional theory (DFT) calculations are used to rationalize the large platinum CSAs and CS tensor orientations of the diamagnetic species using molecular orbital (MO) analysis, and are used to explain their distinct molecular electronic structures in the context of the NMR data. The paramagnetic species (z = 1) is examined using both EPR spectroscopy and (13)C and (19)F MAS NMR spectroscopy. Platinum g-tensor components were determined by using solid-state EPR experiments. The unpaired electron spin densities at (13)C and (19)F nuclei were measured by employing variable-temperature (13)C and (19)F NMR experiments. DFT and ab initio calculations are able to qualitatively reproduce the experimentally measured g-tensor components and spin densities. The combination of experimental and theoretical data confirm localization of unpaired electron density in the pi-system of the

  10. Inter-cage dynamics in structure I, II, and H fluoromethane hydrates as studied by NMR and molecular dynamics simulations

    SciTech Connect

    Trueba, Alondra Torres; Kroon, Maaike C.; Peters, Cor J.; Moudrakovski, Igor L.; Ratcliffe, Christopher I.; Ripmeester, John A.; Alavi, Saman

    2014-06-07

    Prospective industrial applications of clathrate hydrates as materials for gas separation require further knowledge of cavity distortion, cavity selectivity, and defects induction by guest-host interactions. The results presented in this contribution show that under certain temperature conditions the guest combination of CH{sub 3}F and a large polar molecule induces defects on the clathrate hydrate framework that allow intercage guest dynamics. {sup 13}C NMR chemical shifts of a CH{sub 3}F/CH{sub 4}/TBME sH hydrate and a temperature analysis of the {sup 2}H NMR powder lineshapes of a CD{sub 3}F/THF sII and CD{sub 3}F/TBME sH hydrate, displayed evidence that the populations of CH{sub 4} and CH{sub 3}F in the D and D{sup ′} cages were in a state of rapid exchange. A hydrogen bonding analysis using molecular dynamics simulations on the TBME/CH{sub 3}F and TBME/CH{sub 4} sH hydrates showed that the presence of CH{sub 3}F enhances the hydrogen bonding probability of the TBME molecule with the water molecules of the cavity. Similar results were obtained for THF/CH{sub 3}F and THF/CH{sub 4} sII hydrates. The enhanced hydrogen bond formation leads to the formation of defects in the water hydrogen bonding lattice and this can enhance the migration of CH{sub 3}F molecules between adjacent small cages.

  11. Natural abundance 17O, 6Li NMR and molecular modeling studies of the solvation structures of lithium bis(fluorosulfonyl)imide/1,2-dimethoxyethane liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Wan, Chuan; Hu, Mary Y.; Borodin, Oleg; Qian, Jiangfeng; Qin, Zhaohai; Zhang, Ji-Guang; Hu, Jian Zhi

    2016-03-01

    Natural abundance 17O and 6Li NMR experiments, quantum chemistry and molecular dynamics studies were employed to investigate the solvation structures of Li+ at various concentrations of LiFSI in DME electrolytes. It was found that the chemical shifts of both 17O and 6Li changed with the concentration of LiFSI, indicating the changes of solvation structures with concentration. For the quantum chemistry calculations, the coordinated cluster LiFSI(DME)2 forms at first, and its relative ratio increases with increasing LiFSI concentration to 1 M. Then the solvation structure LiFSI(DME) become the dominant component. As a result, the coordination of forming contact ion pairs between Li+ and FSI- ion increases, but the association between Li+ and DME molecule decreases. Furthermore, at LiFSI concentration of 4 M the solvation structures associated with Li+(FSI-)2(DME), Li+2(FSI-)(DME)4 and (LiFSI)2(DME)3 become the dominant components. For the molecular dynamics simulation, with increasing concentration, the association between DME and Li+ decreases, and the coordinated number of FSI- increases, which is in perfect accord with the DFT results.

  12. NMR solution structure of the neurotrypsin Kringle domain.

    PubMed

    Ozhogina, Olga A; Grishaev, Alexander; Bominaar, Emile L; Patthy, László; Trexler, Maria; Llinás, Miguel

    2008-11-25

    Neurotrypsin is a multidomain protein that serves as a brain-specific serine protease. Here we report the NMR structure of its kringle domain, NT/K. The data analysis was performed with the BACUS (Bayesian analysis of coupled unassigned spins) algorithm. This study presents the first application of BACUS to the structure determination of a 13C unenriched protein for which no prior experimental 3D structure was available. NT/K adopts the kringle fold, consisting of an antiparallel beta-sheet bridged by an overlapping pair of disulfides. The structure reveals the presence of a surface-exposed left-handed polyproline II helix that is closely packed to the core beta-structure. This feature distinguishes NT/K from other members of the kringle fold and points toward a novel functional role for a kringle domain. Functional divergence among kringle domains is discussed on the basis of their surface and electrostatic characteristics. PMID:18956887

  13. Solid-state NMR studies of supercapacitors.

    PubMed

    Griffin, John M; Forse, Alexander C; Grey, Clare P

    2016-01-01

    Electrochemical double-layer capacitors, or 'supercapacitors' are attracting increasing attention as high-power energy storage devices for a wide range of technological applications. These devices store charge through electrostatic interactions between liquid electrolyte ions and the surfaces of porous carbon electrodes. However, many aspects of the fundamental mechanism of supercapacitance are still not well understood, and there is a lack of experimental techniques which are capable of studying working devices. Recently, solid-state NMR has emerged as a powerful tool for studying the local environments and behaviour of electrolyte ions in supercapacitor electrodes. In this Trends article, we review these recent developments and applications. We first discuss the basic principles underlying the mechanism of supercapacitance, as well as the key NMR observables that are relevant to the study of supercapacitor electrodes. We then review some practical aspects of the study of working devices using ex situ and in situ methodologies and explain the key advances that these techniques have allowed on the study of supercapacitor charging mechanisms. NMR experiments have revealed that the pores of the carbon electrodes contain a significant number of electrolyte ions in the absence of any charging potential. This has important implications for the molecular mechanisms of supercapacitance, as charge can be stored by different ion adsorption/desorption processes. Crucially, we show how in situ NMR experiments can be used to quantitatively study and characterise the charging mechanism, with the experiments providing the most detailed picture of charge storage to date, offering the opportunity to design enhanced devices. Finally, an outlook for future directions for solid-state NMR in supercapacitor research is offered. PMID:26974032

  14. NMR Structure of a Viral Peptide Inserted in Artificial Membranes

    PubMed Central

    Galloux, Marie; Libersou, Sonia; Alves, Isabel D.; Marquant, Rodrigue; Salgado, Gilmar F.; Rezaei, Human; Lepault, Jean; Delmas, Bernard; Bouaziz, Serge; Morellet, Nelly

    2010-01-01

    Nonenveloped virus must penetrate the cellular membrane to access the cytoplasm without the benefit of membrane fusion. For birnavirus, one of the peptides present in the virus capsid, pep46 for infectious bursal disease virus, is able to induce pores into membranes as an intermediate step of the birnavirus-penetration pathway. Using osmotic protection experiments, we demonstrate here that pep46 and its pore-forming N-terminal moiety (pep22) form pores of different diameters, 5–8 and 2–4 nm, respectively, showing that both pep46 moieties participate to pore formation. The solution structures of pep46, pep22, and pep24 (the pep46 C-terminal moiety) in different hydrophobic environments and micelles determined by 1H NMR studies provide structural insights of the pep46 domain interaction. In CDCl3/CD3OH mixture and in dodecylphosphocholine micelles, the N-terminal domain of pep46 is structured in a long kinked helix, although the C terminus is structured in one or two helices depending upon the solvents used. We also show that the folding and the proline isomerization status of pep46 depend on the type of hydrophobic environment. NMR spectroscopy with labeled phospholipid micelles, differential scanning calorimetry, and plasmon waveguide resonance studies show the peptides lie parallel to the lipid-water interface, perturbing the fatty acid chain packing. All these data lead to a model in which the two domains of pep46 interact with the membrane to form pores. PMID:20385550

  15. A multinuclear static NMR study of geopolymerisation

    SciTech Connect

    Favier, Aurélie; Habert, Guillaume; Roussel, Nicolas; D'Espinose de Lacaillerie, Jean-Baptiste

    2015-09-15

    Geopolymers are inorganic binders obtained by alkali activation of aluminosilicates. While the structure of geopolymers is now well understood, the details of the geopolymerisation reaction and their impact on the rheology of the paste remain uncertain. In this work, we follow the elastic properties of a paste made with metakaolin and sodium silicate solution. After the first sharp increase of elastic modulus occurring a few hundred of seconds after mixing and related to the heterogeneous formation of an alumina–silicate gel with a molar ratio Si/Al < 4 located at the grains boundaries, we focus on the progressive increase in elastic modulus on a period of few hours during the setting of the geopolymer. In this study, we combine the study of rheological properties of the paste with {sup 23}Na, {sup 27}Al and {sup 29}Si static NMR measurement in order to better understand the origin of this second increase in elastic modulus. Our results show that, after a few hours, Al and Na evolution in the liquid phase are concomitant. This suggests the precipitation of an aluminosilicate phase where Al is in tetrahedral position and Na compensates the charge. Furthermore, Si speciation confirms this result and allows us to identify the precipitation of a product, which has a chemical composition close to the final composition of geopolymer. This study provides strong evidence for a heterogeneous formation of an aluminosilicate glass directly from the first gel and the silicate solution without the need for a reorganisation of Gel 1 into Gel 2.

  16. Structural biology applications of solid state MAS DNP NMR.

    PubMed

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance. PMID:27095695

  17. Structural biology applications of solid state MAS DNP NMR

    NASA Astrophysics Data System (ADS)

    Akbey, Ümit; Oschkinat, Hartmut

    2016-08-01

    Dynamic Nuclear Polarization (DNP) has long been an aim for increasing sensitivity of nuclear magnetic resonance (NMR) spectroscopy, delivering spectra in shorter experiment times or of smaller sample amounts. In recent years, it has been applied in magic angle spinning (MAS) solid-state NMR to a large range of samples, including biological macromolecules and functional materials. New research directions in structural biology can be envisaged by DNP, facilitating investigations on very large complexes or very heterogeneous samples. Here we present a summary of state of the art DNP MAS NMR spectroscopy and its applications to structural biology, discussing the technical challenges and factors affecting DNP performance.

  18. Sequence dependent structure and thermodynamics of DNA oligonucleotides and polynucleotides: uv melting and NMR (nuclear magnetic resonance) studies

    SciTech Connect

    Aboul-ela, F.M.

    1987-12-01

    Thermodynamic parameters for double strand formation have been measured for the twenty-five DNA double helices made by mixing deoxyoligonucleotides of the sequence dCA/sub 3/XA/sub 3/G with the complement dCT/sub 3/YT/sub 3/G. Each of the bases A, C, G, T, and I (I = hypoxanthine) have been substituted at the positions labeled X and Y. The results are analyzed in terms of nearest neighbors. At higher temperatures the sequences containing a G)centerreverse arrowdot)C base pair become more stable than those containing only A)centerreverse arrowdot)T. All molecules containing mismatcher are destabilized with respect to those with only Watson-Crick pairing, but there is a wide range of destabilization. Large neighboring base effects upon stability were observed. For example, when (X, Y) = (I, A), the duplex is eightfold more stable than when (X, Y) = (A, I). Independent of sequence effects the order of stabilities is: I)centerreverse arrowdot)C )succ) I)centerreverse arrowdot) A)succ) I)centerreverse arrowdot)T approx. I)centerreverse arrowdot)G. All of these results are discussed within the context of models for sequence dependent DNA secondary structure, replication fidelity and mechanisms of mismatch repair, and implications for probe design. The duplex deoxyoligonucleotide d(GGATGGGAG))centerreverse arrowdot)d(CTCCCATCC) is a portion of the gene recognition sequence of the protein transcription factor IIIA. The crystal structure of this oligonucleotide was shown to be A-form The present study employs Nuclear Magnetic Resonance, optical, chemical and enzymatic techniques to investigate the solution structure of this DNA 9-mer. (157 refs., 19 figs., 10 tabs.

  19. A combined solid-state NMR and synchrotron x-ray diffraction powder study on the structure of the antioxidant(+)-catechin 4.5 hydrate.

    SciTech Connect

    Harper, J. K.; Doebbler, J. A.; Jaccques, E.; Grant, D. M.; Von Dreele, R. B.; Univ. of Utah

    2010-03-10

    Analyses combining X-ray powder diffraction (XRD) and solid-state NMR (SSNMR) data can now provide crystal structures in challenging powders that are inaccessible by traditional methods. The flavonoid catechin is an ideal candidate for these methods, as it has eluded crystallographic characterization despite extensive study. Catechin was first described nearly two centuries ago, and its powders exhibit numerous levels of hydration. Here, synchrotron XRD data provide all heavy-atom positions in (+)-catechin 4.5-hydrate and establish the space group as C2. SSNMR data ({sup 13}C tensor and {sup 1}H/{sup 13}C correlation) complete the conformation by providing catechin's five OH hydrogen orientations. Since 1903, this phase has been erroneously identified as a 4.0 hydrate, but XRD and density data establish that this discrepancy is due to the facile loss of the water molecule located at a Wyckoff special position in the unit cell. A final improvement to heavy-atom positions is provided by a geometry optimization of bond lengths and valence angles with XRD torsion angles held constant. The structural enhancement in this final structure is confirmed by the significantly improved fit of computed {sup 13}C tensors to experimental data.

  20. High-Resolution 3D Structure Determination of Kaliotoxin by Solid-State NMR Spectroscopy

    PubMed Central

    Korukottu, Jegannath; Schneider, Robert; Vijayan, Vinesh; Lange, Adam; Pongs, Olaf; Becker, Stefan; Baldus, Marc; Zweckstetter, Markus

    2008-01-01

    High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from 1H/1H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 Å and 1.3 Å for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins. PMID:18523586

  1. Structural, conformational, and theoretical binding studies of antitumor antibiotic porfiromycin (N-methylmitomycin C), a covalent binder of DNA, by X-ray, NMR, and molecular mechanics.

    PubMed

    Arora, S K; Cox, M B; Arjunan, P

    1990-11-01

    X-ray, NMR, and molecular mechanics studies on antitumor antibiotic porfiromycin (C16H20N4O5), a covalent binder of DNA, have been carried out to study the structure, conformation, and theoretical interactions with DNA. The crystal structure was solved by direct methods and refined to an R value of 0.052. The configurations at C(9), C(9a), C(1), and C(2) are S, R, S, and S, except for the orientation of the aziridine ring and (carbamoyloxy)methyl side chain. The five-membered ring attached to the aziridine ring adopts an envelope conformation. The solution conformation is similar to that observed in the solid state except for the (carbamoyloxy)methyl side chain. Monovalent and cross-linked models of the drug bound to DNA have been energetically refined by using molecular mechanics. The results indicate that, in the case of monocovalent binding, the drug clearly prefers a d(CpG) sequence rather than a d(GpC) sequence. In the case of the cross-linked model there is no clear-cut preference of d(CpG) over d(GpC), indicating that the binding preference of the drug may be kinetic rather than thermodynamic. PMID:2231597

  2. Electrochemical and NMR spectroscopic studies of distal pocket mutants of nitrophorin 2: Stability, structure, and dynamics of axial ligand complexes

    PubMed Central

    Shokhireva, Tatjana Kh.; Berry, Robert E.; Uno, Elizabeth; Balfour, Celia A.; Zhang, Hongjun; Walker, F. Ann

    2003-01-01

    WT and leucine → valine distal pocket mutants of nitrophorin 2 (NP2) and their NO complexes have been investigated by spectroelectrochemistry. NO complexes of two of the mutants exhibit more positive reduction potential shifts than does the WT protein, thus indicating stabilization of the Fe(II)–NO state. This more positive reduction potential for NP2-L132V and the double mutant is consistent with the hypothesis that smaller valine residues may allow the heme to regain planarity instead of being significantly ruffled, as in WT NP2. Thus, ruffling may stabilize the Fe(III)–NO state, which is required for facile NO dissociation. NMR spectroscopic investigations show that the sterically demanding 2-methylimidazole ligand readily binds to all three distal pocket mutants to create low-spin Fe(III) complexes having axial ligands in nearly perpendicular planes; it also binds to the WT protein in the presence of higher concentrations of 2-methylimidazole, but yields a different ligand plane orientation than is present in any of the three distal pocket mutants. NOESY spectra of NP2–ImH mutants exhibit chemical exchange cross peaks, whereas WT NP2–ImH shows no chemical exchange. Chemical exchange in the case of the distal leucine → valine mutants is caused by ImH ligand orientational dynamics. The two angular orientations of the ImH ligand could be determined from the 1H chemical shifts of the heme methyls, and the rate of interconversion of the two forms could be estimated from the NOESY diagonal and cross peak intensities. Keq is 100 or larger and favors an orientation similar to that found for the WT NP2–ImH complex. PMID:12642672

  3. Application of Roof-Shape Amines as Chiral Solvating Agents for Discrimination of Optically Active Acids by NMR Spectroscopy: Study of Match-Mismatch Effect and Crystal Structure of the Diastereomeric Salts.

    PubMed

    Gupta, Riddhi; Gonnade, Rajesh G; Bedekar, Ashutosh V

    2016-09-01

    Optically active roof-shape amines were prepared and scanned as chiral solvating agents to study molecular recognition of acids by NMR analysis. Three types of amines were studied to establish a match-mismatch effect for structurally diverse acid analytes. Single-crystal X-ray diffraction analysis was performed on the diastereomeric salts of roof-shape amines and both isomers of mandelic acid to establish molecular conformation and correlate the absolute configuration with the observed NMR shift. The present system also recognizes the two isomers of weakly acidic BINOL and its derivatives. PMID:27484455

  4. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    SciTech Connect

    Perras, Frederic A.

    2015-12-15

    Here, nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities.

  5. Quantitative structure parameters from the NMR spectroscopy of quadrupolar nuclei

    DOE PAGESBeta

    Perras, Frédéric A.

    2016-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most important characterization tools in chemistry, however, 3/4 of the NMR active nuclei are underutilized due to their quadrupolar nature. This short review centers on the development of methods that use solid-state NMR of quadrupolar nuclei for obtaining quantitative structural information. Namely, techniques using dipolar recoupling as well as the resolution afforded by double-rotation are presented for the measurement of spin–spin coupling between quadrupoles, enabling the measurement of internuclear distances and connectivities. Two-dimensional

  6. High-Field NMR Studies of Molecular Recognition and Structure-Function Relationships in Antimicrobial Piscidins at the Water-Lipid Bilayer Interface

    SciTech Connect

    Chekmenev, Eduard Y.; Jones, Shiela M.; Nikolayeva, Yelena; Vollmar, Breanna S.; Wagner, Timothy J.; Gorkov, Peter L.; Brey, William W.; Manion, Mckenna N.; Daugherty, Kenneth C.; Cotten, Myriam L.

    2006-04-26

    Piscidins are the first amphipathic, cationic, antimicrobial peptides (ACAPs) to be found in the mast cells of fish, and they are believed to play a crucial role in the fight against many aquatic infections.1 Many ACAPs have been characterized functionally, and some models for their mechanism of action exist, including the barrel-stave model, the wormhole model, the carpet mechanism, and the intracellular activation of fatal pathways.2-9 Much information remains to be learned about the details of their structure, initial interactions with membranes, and the ultimate mechanism for disrupting cellular function. To this end, we employed solid-state NMR (ssNMR) to probe the structure and topology of isotopically labeled piscidins in the membrane-bound state.

  7. Local structures of polar wurtzites Zn1-xMgxO studied by raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering

    SciTech Connect

    Proffen, Thomas E; Kim, Yiung- Il; Cadars, Sylvian; Shayib, Ramzy; Feigerle, Charles S; Chmelka, Bradley F; Seshadri, Ram

    2008-01-01

    Research in the area of polar semiconductor heterostructures has been growing rapidly, driven in large part by interest in two-dimensional electron gas (2DEG) systems. 2DEGs are known to form at heterojunction interfaces that bear polarization gradients. They can display extremely high electron mobilities, especially at low temperatures, owing to spatial confinement of carrier motions. Recent reports of 2DEG behaviors in Ga{sub 1-x}Al{sub x}N/GaN and Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have great significance for the development of quantum Hall devices and novel high-electron-mobility transistors (HEMTs). 2DEG structures are usually designed by interfacing a polar semiconductor with its less or more polar alloys in an epitaxial manner. Since the quality of the 2DEG depends critically on interface perfection, as well as the polarization gradient at the heterojunction, understanding compositional and structural details of the parent and alloy semiconductors is an important component in 2DEG design and fabrication. Zn{sub 1-x}Mg{sub x}O/ZnO is one of the most promising heterostructure types for studies of 2DEGs, due to the large polarization of ZnO, the relatively small lattice mismatch, and the large conduction band offsets in the Zn{sub 1-x}Mg{sub x}O/ZnO heterointerface. Although 2DEG formation in Zn{sub 1-x}Mg{sub x}O/ZnO heterostructures have been researched for some time, a clear understanding of the alloy structure of Zn{sub 1-x}Mg{sub x}O is currently lacking. Here, we conduct a detailed and more precise study of the local structure of Zn{sub 1-x}Mg{sub x}O alloys using Raman and solid-state nuclear magnetic resonance (NMR), in conjunction with neutron diffraction techniques.

  8. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P.; Brinker, C.J.

    1988-01-01

    In this paper, the application of low-field NMR to both surface area and pore structure analysis of catalyst supports will be presented. Low-field (20 MHz) spin-lattice relaxation (T/sub 1/) experiments are performed on fluids contained in alumina and silica catalyst supports. Pore size distributions (PSD) calculated from these NMR experiments are compared to those obtained from mercury porosimetry and nitrogen condensation. 18 refs., 4 figs., 2 tabs.

  9. In-Cell Protein Structures from 2D NMR Experiments.

    PubMed

    Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier

    2016-07-21

    In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949

  10. Liquid structure of acetic acid-water and trifluoroacetic acid-water mixtures studied by large-angle X-ray scattering and NMR.

    PubMed

    Takamuku, Toshiyuki; Kyoshoin, Yasuhiro; Noguchi, Hiroshi; Kusano, Shoji; Yamaguchi, Toshio

    2007-08-01

    The structures of acetic acid (AA), trifluoroacetic acid (TFA), and their aqueous mixtures over the entire range of acid mole fraction xA have been investigated by using large-angle X-ray scattering (LAXS) and NMR techniques. The results from the LAXS experiments have shown that acetic acid molecules mainly form a chain structure via hydrogen bonding in the pure liquid. In acetic acid-water mixtures hydrogen bonds of acetic acid-water and water-water gradually increase with decreasing xA, while the chain structure of acetic acid molecules is moderately ruptured. Hydrogen bonds among water molecules are remarkably formed in acetic acid-water mixtures at xAstructure but cyclic dimers through hydrogen bonding in the pure liquid. In TFA-water mixtures O...O hydrogen bonds among water molecules gradually increase when xA decreases, and hydrogen bonds among water molecules are significantly formed in the mixtures at xANMR chemical shifts of acetic acid and TFA molecules for acetic acid-water and TFA-water mixtures have indicated strong relationships between a structural change of the mixtures and the acid mole fraction. On the basis of both LAXS and NMR results, the structural changes of acetic acid-water and TFA-water mixtures with decreasing acid mole fraction and the effects of fluorination of the methyl group on the structure are discussed at the molecular level. PMID:17628099

  11. Rhodopsin-lipid interactions studied by NMR.

    PubMed

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. PMID:23374188

  12. Pore structure characterization of catalyst supports via low field NMR

    SciTech Connect

    Smith, D.M.; Glaves, C.L.; Gallegos, D.P. )

    1988-09-01

    The pore structures of two types of catalyst support material were studied: {gamma}-alumina and silica aerogel. The alumina samples were commercial catalyst supports made in 1/8 inch diameter pellet form by Harshaw Chemical. Aerogels were prepared by forming a gel in a two-step, base-catalyzed process using TEOS, followed by supercritical drying to form the aerogel. Two different aerogels were made, one undergoing the drying process immediately after gel formation (non-aged), and the other being aged in the gel state for two weeks in a basic solution of 0.1 molar NH{sub 4}OH at 323 K before being supercritically dried (aged). The aging process is believed to alter the aerogel pore structure. The pore size distribution of the alumina material was determined via NMR and compared to results obtained by mercury intrusion and nitrogen adsorption/condensation techniques. The pore size distributions of the two aerogel samples were measured via NMR and nitrogen adsorption/condensation; the material was too compressible for porosimetry.

  13. Solid-state NMR: An emerging technique in structural biology of self-assemblies.

    PubMed

    Habenstein, Birgit; Loquet, Antoine

    2016-03-01

    Protein self-assemblies are ubiquitous biological systems involved in many cellular processes, ranging from bacterial and viral infection to the propagation of neurodegenerative disorders. Studying the atomic three-dimensional structures of protein self-assemblies is a particularly demanding task, as these systems are usually insoluble, non-crystalline and of large size. Solid-state NMR (ssNMR) is an emerging method that can provide atomic-level structural data on intact macromolecular assemblies. We here present recent progress in magic-angle spinning ssNMR to study protein assemblies and give an overview on its combination with complementary techniques such as cryo-EM, mass-per-length measurements, SAXS and X-ray diffraction. Applications of ssNMR on its own and in hybrid approaches have revealed precious atomic details and first high-resolution structures of complex biological assemblies, including amyloid fibrils, bacterial filaments, phages or virus capsids. PMID:26234527

  14. Hydrogen motion and local structure of metals in β-Ti1-yVyHx as studied by 1H NMR

    NASA Astrophysics Data System (ADS)

    Ueda, Takahiro; Hayashi, Shigenobu; Hayamizu, Kikuko

    1993-09-01

    Hydrogen motion in β-Ti1-yVyHx (y=0.2, 0.4, 0.6, and 0.8; x~1) alloys was studied by 1H NMR, with which the temperature and frequency dependences of proton spin-lattice relaxation times (T1) were measured over the temperature range 105-400 K and at frequencies 9, 22.5, 52, and 90 MHz. The temperature dependences of T1 change systematically with the metal composition; with a decrease in the concentration of V, the minimum value of T1 increases and the temperature at which T1 is minimized shifts to the higher-temperature side. These results are analyzed with two-site jumps of a proton between unequal potential wells, in which Brouwer's model is assumed to describe local structure of the alloys. Good agreement between the experimental and calculated T1 values is given by this treatment, unlike the isotropic diffusion model. The following three parameters are used for the calculation: activation energies for Ti and V are ETi=16 and EV=9.5 kJ/mol, respectively, and the frequency prefactor is τ0=1.5×10-11 s for 0.4<=y<=0.8. The obtained ETi and EV values agree with those of pure metal hydrides such as TiHx and VHx, respectively.

  15. NMR studies of bond arrangements in alkali phosphate glasses

    SciTech Connect

    Alam, T.M.; Brow, R.K.

    1998-01-01

    Solid-state magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy has become a powerful tool for the investigation of local structure and medium range order in glasses. Previous {sup 31}P MAS NMR studies have detailed the local structure for a series of phosphate glasses. Phosphate tetrahedra within the glass network are commonly described using the Q{sup n} notation, where n = 0, 1, 2, 3 and represents the number of bridging oxygens attached to the phosphate. Using {sup 31}P MAS NMR different phosphate environments are readily identified and quantified. In this paper, the authors present a brief description of recent one dimensional (1D) {sup 6}Li, {sup 7}Li and {sup 31}P MAS experiments along with two-dimensional (2D) {sup 31}P exchange NMR experiments for a series of lithium ultraphosphate glasses. From the 2D exchange experiments the connectivities between different Q{sup n} phosphate tetrahedra were directly measured, while the 1D experiments provided a measure of the P-O-P bond angle distribution and lithium coordination number as a function of Li{sub 2}O concentration.

  16. Time-resolved NMR studies of RNA folding.

    PubMed

    Fürtig, Boris; Buck, Janina; Manoharan, Vijayalaxmi; Bermel, Wolfgang; Jäschke, Andres; Wenter, Philipp; Pitsch, Stefan; Schwalbe, Harald

    The application of real-time NMR experiments to the study of RNA folding, as reviewed in this article, is relatively new. For many RNA folding events, current investigations suggest that the time scales are in the second to minute regime. In addition, the initial investigations suggest that different folding rates are observed for one structural transition may be due to the hierarchical folding units of RNA. Many of the experiments developed in the field of NMR of protein folding cannot directly be transferred to RNA: hydrogen exchange experiments outside the spectrometer cannot be applied since the intrinsic exchange rates are too fast in RNA, relaxation dispersion experiments on the other require faster structural transitions than those observed in RNA. On the other hand, information derived from time-resolved NMR experiments, namely the acquisition of native chemical shifts, can be readily interpreted in light of formation of a single long-range hydrogen bonding interaction. Together with mutational data that can readily be obtained for RNA and new ligation technologies that enhance site resolution even further, time-resolved NMR may become a powerful tool to decipher RNA folding. Such understanding will be of importance to understand the functions of coding and non-coding RNAs in cells. PMID:17595685

  17. In situ microscopic studies on the structures and phase behaviors of SF/PEG films using solid-state NMR and Raman imaging.

    PubMed

    Chen, Congheng; Yao, Ting; Tu, Sidong; Xu, Weijie; Han, Yi; Zhou, Ping

    2016-06-28

    In order to overcome the drawbacks of silk fibroin (SF)-based materials, SF has been blended with some polymers. Before using the blend material, understanding of the structures and phase behaviors of the blend is thought to be essential. In this study, solid-state (13)C CP-MAS NMR and Raman imaging techniques were used to study the structures and phase behaviors of blends of SF with polyethylene glycol (PEG) at a molecular weight that varied from 2 to 20 kDa and a blend ratio of SF/PEG from 95/5 to 70/30 (w/w%) at the molecular and microscopic levels. It is found that the conformational transition of SF to the β-sheet increased as the PEG content increased, while the amount of the formed β-sheet conformers was decreased as the PEG molecular weight increased for a given content. It is also observed that SF was incompatible with PEG to some extent. The phase separation into "sea" and "island" domains took place in the SF/PEG blend films. SF was dominantly present in the "sea" domain, while PEG in the "island" domains. The conformation of SF in the interface between SF and PEG was changed to the β-sheet, while that in the protein-rich domain remained in the random coil and/or helix conformation. These observations suggest that the specifically expected materials, for example, the silk-based microspheres or scaffold materials can be manufactured by controlling the molecular weight and content of PEG in the blend system. PMID:27255417

  18. Glyphosate complexation to aluminium(III). An equilibrium and structural study in solution using potentiometry, multinuclear NMR, ATR-FTIR, ESI-MS and DFT calculations.

    PubMed

    Purgel, Mihály; Takács, Zoltán; Jonsson, Caroline M; Nagy, Lajos; Andersson, Ingegärd; Bányai, István; Pápai, Imre; Persson, Per; Sjöberg, Staffan; Tóth, Imre

    2009-11-01

    The stoichiometries and stability constants of a series of Al(3+)-N-phosponomethyl glycine (PMG/H(3)L) complexes have been determined in acidic aqueous solution using a combination of precise potentiometric titration data, quantitative (27)Al and (31)P NMR spectra, ATR-FTIR spectrum and ESI-MS measurements (0.6M NaCl, 25 degrees C). Besides the mononuclear AlH(2)L(2+), Al(H(2)L)(HL), Al(HL)(2)(-) and Al(HL)L(2-), dimeric Al(2)(HL)L(+) and trinuclear Al(3)H(5)L(4)(2+) complexes have been postulated. (1)H and (31)P NMR data show that different isomers co-exist in solution and the isomerization reactions are slow on the (31)P NMR time scale. The geometries of monomeric and dimeric complexes likely double hydroxo bridged and double phosphonate bridged isomers have been optimized using DFT ab initio calculations starting from rational structural proposals. Energy calculations using the PCM solvation method also support the co-existence of isomers in solutions. PMID:19766319

  19. Synthetic, structural, NMR, and computational study of a geminally bis(peri-substituted) tridentate phosphine and its chalcogenides and transition-metal complexes.

    PubMed

    Ray, Matthew J; Randall, Rebecca A M; Arachchige, Kasun S Athukorala; Slawin, Alexandra M Z; Bühl, Michael; Lebl, Tomas; Kilian, Petr

    2013-04-15

    Coupling of two acenaphthene backbones through a phosphorus atom in a geminal fashion gives the first geminally bis(peri-substituted) tridentate phosphine 1. The rigid nature of the aromatic backbone and overall crowding of the molecule result in a rather inflexible ligand, with the three phosphorus atoms forming a relatively compact triangular cluster. Phosphine 1 displays restricted dynamics on an NMR time scale, which leads to the anisochronicity of all three phosphorus nuclei at low temperatures. Strained bis- and tris(sulfides) 2 and 3 and the bis(selenide) 4 have been isolated from the reaction of 1 with sulfur and selenium, respectively. These chalcogeno derivatives display pronounced in-plane and out-of-plane distortions of the aromatic backbones, indicating the limits of their angular distortions. In addition, we report metal complexes with tetrahedral [(1)Cu(MeCN)][BF4] (5), square planar [(1)PtCl][Cl] (6), trigonal bipyramidal [(1)FeCl2] (7), and octahedral fac-[(1)Mo(CO)3] (8) geometries. In all of these complexes the tris(phosphine) backbone is distorted, however to a significantly smaller extent than that in the mentioned chalcogenides 2-4. Complexes 5 and 8 show fluxionality in (31)P and (1)H NMR. All new compounds 1-8 were fully characterized, and their crystal structures are reported. Conclusions from dynamic NMR observations were augmented by DFT calculations. PMID:23534381

  20. Crystal structure, NMR study, dielectric relaxation and AC conductivity of a new compound [Cd3(SCN)2Br6(C2H9N2)2]n

    NASA Astrophysics Data System (ADS)

    Saidi, K.; Kamoun, S.; Ayedi, H. Ferid; Arous, M.

    2013-11-01

    The crystal structure, the 13C NMR spectroscopy and the complex impedance have been carried out on [Cd3(SCN)2Br6(C2H9N2)2]n. Crystal structure shows a 2D polymeric network built up of two crystallographically independent cadmium atoms with two different octahedral coordinations. This compound exhibits a phase transition at (T=355±2 K) which has been characterized by differential scanning calorimetry (DSC), X-rays powder diffraction, AC conductivity and dielectric measurements. Examination of 13C CP/MAS line shapes shows indirect spin-spin coupling (14N and 13C) with a dipolar coupling constant of 1339 Hz. The AC conductivity of this compound has been carried out in the temperature range 325-376 K and the frequency range from 10-2 Hz to 10 MHz. The impedance data were well fitted to two equivalent electrical circuits. The results of the modulus study reveal the presence of two distinct relaxation processes. One, at low frequency side, is thermally activated due to the ionic conduction of the crystal and the other, at higher frequency side, gradually disappears when temperature reaches 355 K which is attributed to the localized dipoles in the crystal. Moreover, the temperature dependence of DC-conductivity in both phases follows the Arrhenius law and the frequency dependence of σ(ω,T) follows Jonscher's universal law. The near values of activation energies obtained from the conductivity data and impedance confirm that the transport is through the ion hopping mechanism.

  1. Lanthanide complexes of new nonadentate imino-phosphonate ligands derived from 1,4,7-triazacyclononane: synthesis, structural characterisation and NMR studies.

    PubMed

    Tei, Lorenzo; Blake, Alexander J; Wilson, Claire; Schröder, Martin

    2004-07-01

    The polyamino ligand 1,4,7-tris(2-aminoethyl)-1,4,7-triazacyclononane (1) has been used to synthesise two new ligands by Schiff-base condensation with methyl sodium acetyl phosphonate to give ligand L and methyl sodium 4-methoxybenzoyl phosphonate to give ligand L1 in the presence of lanthanide ion as templating agent to form the complexes [Ln(L)] and [Ln(L1)](Ln = Y, La, Gd, Yb). Both ligands L and L1 have nine donor atoms comprising three amine and three imine N-donors and three phosphonate O-donors and form Ln(III) complexes in which the three pendant arms of the ligands wrap around the nine-coordinate Ln(III) centres. Complexes with Y(III), La(III), Gd(III) and Yb(III) have been synthesised and the complexes [Y(L)], [Gd(L)] and [Gd(L1)] have been structurally characterised. In all the complexes the coordination polyhedron about the lanthanide centre is slightly distorted tricapped trigonal prismatic with the two triangular faces of the prism formed by the macrocyclic N-donors and the phosphonate O-donors. Interestingly, given the three chiral phosphorus centres present in [Ln(L)] and [Ln(L1)] complexes, the three crystal structures reported show the presence of only one diastereomer of the four possible. 1H, 13C and 31P NMR spectroscopic studies on diamagnetic [Y(L)] and [La(L)] and on paramagnetic [Yb(L)] complexes indicate the presence in solution of all the four different diastereomers in varying proportions. The stability of complexes [Y(L)] and [Y(L1)] in D2O in both neutral and acidic media, and the relaxivity of the Gd(III) complexes, have also been investigated. PMID:15252581

  2. Determination of Membrane Protein Structure by Rotational Resonance NMR: Bacteriorhodopsin

    NASA Astrophysics Data System (ADS)

    Creuzet, F.; McDermott, A.; Gebhard, R.; van der Hoef, K.; Spijker-Assink, M. B.; Herzfeld, J.; Lugtenburg, J.; Levitt, M. H.; Griffin, R. G.

    1991-02-01

    Rotationally resonant magnetization exchange, a new nuclear magnetic resonance (NMR) technique for measuring internuclear distances between like spins in solids, was used to determine the distance between the C-8 and C-18 carbons of retinal in two model compounds and in the membrane protein bacteriorhodopsin. Magnetization transfer between inequivalent spins with an isotropic shift separation, δ, is driven by magic angle spinning at a speed ω_r that matches the rotational resonance condition δ = nω_r, where n is a small integer. The distances measured in this way for both the 6-s-cis- and 6-s-trans-retinoic acid model compounds agreed well with crystallographically known distances. In bacteriorhodopsin the exchange trajectory between C-8 and C-18 was in good agreement with the internuclear distance for a 6-s-trans configuration [4.2 angstroms (overset{circ}{mathrm A})] and inconsistent with that for a 6-s-cis configuration (3.1 overset{circ}{mathrm A}). The results illustrate that rotational resonance can be used for structural studies in membrane proteins and in other situations where diffraction and solution NMR techniques yield limited information.

  3. The structure of the aggregate form of bacteriochlorophyll c showing the Q y absorption above 740 nm: a 1H-NMR study

    NASA Astrophysics Data System (ADS)

    Mizoguchi, Tadashi; Matsuura, Katsumi; Shimada, Keizo; Koyama, Yasushi

    1996-09-01

    Bacteriochlorophyll c (3 1S, 8-isobutyl-12-ethyl, farnesyl) was dissolved in a mixture of methylene chloride and carbon tetrachloride (1 : 3), and changes in the 1H-NMR spectrum caused by the titration of methanol were traced. On the basis of the changes in chemical shift due to the ring-current effect of the neighboring macrocycles and in peak intensity (broadening) due to their stacking, the structure of the aggregate form showing the Q y absorption band above 740 nm is proposed: the macrocycles are stacked to form a one-dimensional inclined column, the y axis of each macrocycle being parallel to the long axis of the column.

  4. Correlation between local structural dynamics of proteins inferred from NMR ensembles and evolutionary dynamics of homologues of known structure.

    PubMed

    Mahajan, Swapnil; de Brevern, Alexandre G; Offmann, Bernard; Srinivasan, Narayanaswamy

    2014-01-01

    Conformational changes in proteins are extremely important for their biochemical functions. Correlation between inherent conformational variations in a protein and conformational differences in its homologues of known structure is still unclear. In this study, we have used a structural alphabet called Protein Blocks (PBs). PBs are used to perform abstraction of protein 3-D structures into a 1-D strings of 16 alphabets (a-p) based on dihedral angles of overlapping pentapeptides. We have analyzed the variations in local conformations in terms of PBs represented in the ensembles of 801 protein structures determined using NMR spectroscopy. In the analysis of concatenated data over all the residues in all the NMR ensembles, we observe that the overall nature of inherent local structural variations in NMR ensembles is similar to the nature of local structural differences in homologous proteins with a high correlation coefficient of .94. High correlation at the alignment positions corresponding to helical and β-sheet regions is only expected. However, the correlation coefficient by considering only the loop regions is also quite high (.91). Surprisingly, segregated position-wise analysis shows that this high correlation does not hold true to loop regions at the structurally equivalent positions in NMR ensembles and their homologues of known structure. This suggests that the general nature of local structural changes is unique; however most of the local structural variations in loop regions of NMR ensembles do not correlate to their local structural differences at structurally equivalent positions in homologues. PMID:23730714

  5. sup 1 H NMR studies of plastocyanin from Scenedesmus obliquus: Complete sequence-specific assignment, secondary structure analysis, and global fold

    SciTech Connect

    Moore, J.M.; Chazin, W.J.; Wright, P.E. ); Powls, R. )

    1988-10-04

    Two-dimensional {sup 1}H NMR methods have been used to make sequence-specific resonance assignments for the 97 amino acid residues of the plastocyanin from the green alga Scenedesmus obliquus. Assignments were obtained for all backbone protons and the majority of the side-chain protons. Spin system identification relied heavily on the observation of relayed connectivities to the backbone amide proton. Sequence-specific assignments were made by using the sequential assignment procedure. During this process, an extra valine residue was identified that had not been detected in the original amino acid sequence. Elements of regular secondary structure were identified from characteristic NOE connectivities between backbone protons, coupling constant values, and the observation of slowly exchanging amide protons. The protein in solution contains eight {beta}-strands, one short segment of helix, five reverse turns, and five loops. The {beta}-strands may be arranged into two {beta}sheets on the basis of extensive cross-strand NOE connectivities. The chain-folding topology determined from the NMR experiments is that of a Greek key {beta}-barrel and is similar to that observed for French bean plastocyanin in solution and poplar plastocyanin in the crystalline state. While the overall structures are similar, several differences in local structure between the S. obliquus and higher plant plastocyanins have been identified.

  6. Solid state NMR strategy for characterizing native membrane protein structures.

    PubMed

    Murray, Dylan T; Das, Nabanita; Cross, Timothy A

    2013-09-17

    Unlike water soluble proteins, the structures of helical transmembrane proteins depend on a very complex environment. These proteins sit in the midst of dramatic electrical and chemical gradients and are often subject to variations in the lateral pressure profile, order parameters, dielectric constant, and other properties. Solid state NMR is a collection of tools that can characterize high resolution membrane protein structure in this environment. Indeed, prior work has shown that this complex environment significantly influences transmembrane protein structure. Therefore, it is important to characterize such structures under conditions that closely resemble its native environment. Researchers have used two approaches to gain protein structural restraints via solid state NMR spectroscopy. The more traditional approach uses magic angle sample spinning to generate isotropic chemical shifts, much like solution NMR. As with solution NMR, researchers can analyze the backbone chemical shifts to obtain torsional restraints. They can also examine nuclear spin interactions between nearby atoms to obtain distances between atomic sites. Unfortunately, for membrane proteins in lipid preparations, the spectral resolution is not adequate to obtain complete resonance assignments. Researchers have developed another approach for gaining structural restraints from membrane proteins: the use of uniformly oriented lipid bilayers, which provides a method for obtaining high resolution orientational restraints. When the bilayers are aligned with respect to the magnetic field of the NMR spectrometer, researchers can obtain orientational restraints in which atomic sites in the protein are restrained relative to the alignment axis. However, this approach does not allow researchers to determine the relative packing between helices. By combining the two approaches, we can take advantage of the information acquired from each technique to minimize the challenges and maximize the quality of the

  7. MOTOR: model assisted software for NMR structure determination.

    PubMed

    Schieborr, Ulrich; Sreeramulu, Sridhar; Elshorst, Bettina; Maurer, Marcus; Saxena, Krishna; Stehle, Tanja; Kudlinzki, Denis; Gande, Santosh Lakshmi; Schwalbe, Harald

    2013-11-01

    Eukaryotic proteins with important biological function can be partially unstructured, conformational flexible, or heterogenic. Crystallization trials often fail for such proteins. In NMR spectroscopy, parts of the polypeptide chain undergoing dynamics in unfavorable time regimes cannot be observed. De novo NMR structure determination is seriously hampered when missing signals lead to an incomplete chemical shift assignment resulting in an information content of the NOE data insufficient to determine the structure ab initio. We developed a new protein structure determination strategy for such cases based on a novel NOE assignment strategy utilizing a number of model structures but no explicit reference structure as it is used for bootstrapping like algorithms. The software distinguishes in detail between consistent and mutually exclusive pairs of possible NOE assignments on the basis of different precision levels of measured chemical shifts searching for a set of maximum number of consistent NOE assignments in agreement with 3D space. Validation of the method using the structure of the low molecular-weight-protein tyrosine phosphatase A (MptpA) showed robust results utilizing protein structures with 30-45% sequence identity and 70% of the chemical shift assignments. About 60% of the resonance assignments are sufficient to identify those structural models with highest conformational similarity to the real structure. The software was benchmarked by de novo solution structures of fibroblast growth factor 21 (FGF21) and the extracellular fibroblast growth factor receptor domain FGFR4 D2, which both failed in crystallization trials and in classical NMR structure determination. PMID:23852655

  8. Overcoming the Solubility Limit with Solubility-Enhancement Tags: Successful Applications in Biomolecular NMR Studies

    PubMed Central

    Zhou, Pei; Wagner, Gerhard

    2010-01-01

    Although the rapid progress of NMR technology has significantly expanded the range of NMR-trackable systems, preparation of NMR-suitable samples that are highly soluble and stable remains a bottleneck for studies of many biological systems. The application of solubility-enhancement tags (SETs) has been highly effective in overcoming solubility and sample stability issues and has enabled structural studies of important biological systems previously deemed unapproachable by solution NMR techniques. In this review, we provide a brief survey of the development and successful applications of the SET strategy in biomolecular NMR. We also comment on the criteria for choosing optimal SETs, such as for differently charged target proteins, and recent new developments on NMR-invisible SETs. PMID:19731047

  9. NMR structural analysis of Sleeping Beauty transposase binding to DNA

    PubMed Central

    E Carpentier, Claire; Schreifels, Jeffrey M; Aronovich, Elena L; Carlson, Daniel F; Hackett, Perry B; Nesmelova, Irina V

    2014-01-01

    The Sleeping Beauty (SB) transposon is the most widely used DNA transposon in genetic applications and is the only DNA transposon thus far in clinical trials for human gene therapy. In the absence of atomic level structural information, the development of SB transposon relied primarily on the biochemical and genetic homology data. While these studies were successful and have yielded hyperactive transposases, structural information is needed to gain a mechanistic understanding of transposase activity and guides to further improvement. We have initiated a structural study of SB transposase using Nuclear Magnetic Resonance (NMR) and Circular Dichroism (CD) spectroscopy to investigate the properties of the DNA-binding domain of SB transposase in solution. We show that at physiologic salt concentrations, the SB DNA-binding domain remains mostly unstructured but its N-terminal PAI subdomain forms a compact, three-helical structure with a helix-turn-helix motif at higher concentrations of NaCl. Furthermore, we show that the full-length SB DNA-binding domain associates differently with inner and outer binding sites of the transposon DNA. We also show that the PAI subdomain of SB DNA-binding domain has a dominant role in transposase's attachment to the inverted terminal repeats of the transposon DNA. Overall, our data validate several earlier predictions and provide new insights on how SB transposase recognizes transposon DNA. PMID:24243759

  10. X-ray and 1H-NMR spectroscopic studies of the structures and conformations of the new nootropic agents RU-35929, RU-47010 and RU-35965

    NASA Astrophysics Data System (ADS)

    Amato, Maria E.; Bandoli, Giuliano; Casellato, Umberto; Pappalardo, Giuseppe C.; Toja, Emilio

    1990-10-01

    The crystal and molecular structures of the nootropics (±)1-benzenesulphonyl-2-oxo-5-ethoxypyrrolidine ( 1), (±)1-(3-pyridinylsulphonyl)-2-oxo-5-ethoxypyrrolidine ( 2) and (±)1-benzenesulphonyl-2-oxo-5-isopropyloxypyrrolidine ( 3) have been determined by X-ray analysis. The solution conformation of 1, 2 and 3 has been investigated by 1H NMR spectroscopy. In the solid state, the main feature consists of the similar structural parameters and conformations, with the exception of the conformation adopted by the 5-ethoxy moiety which changes on passing from 1 to 2. The solid state overall enveloped conformation of the 2-pyrrolidinone ring for the three nootropics is found to be retained in solution on the basis of NMR evidence. Comparison between calculated and experimental coupling constant values shows that one of the two possible puckered opposite conformational isomers (half-chair shapes) occurs in solution. The relative pharmacological potencies of 1, 2 and 3 cannot therefore be interpreted in terms of the different conformation features presently detectable by available experimental methods.

  11. NMR structural studies reveal a novel protein fold for MerB, the organomercurial lyase involved in the bacterial mercury resistance system.

    PubMed

    Di Lello, Paola; Benison, Gregory C; Valafar, Homayoun; Pitts, Keith E; Summers, Anne O; Legault, Pascale; Omichinski, James G

    2004-07-01

    Mercury resistant bacteria have developed a system of two enzymes (MerA and MerB), which allows them to efficiently detoxify both ionic and organomercurial compounds. The organomercurial lyase (MerB) catalyzes the protonolysis of the carbon-mercury bond resulting in the formation of ionic mercury and a reduced hydrocarbon. The ionic mercury [Hg(II)] is subsequently reduced to the less reactive elemental mercury [Hg(0)] by a specific mercuric reductase (MerA). To better understand MerB's unique enzymatic activity, we used nuclear magnetic resonance (NMR) spectroscopy to determine the structure of the free enzyme. MerB is characterized by a novel protein fold consisting of three noninteracting antiparallel beta-sheets surrounded by six alpha-helices. By comparing the NMR data of free MerB and the MerB/Hg/DTT complex, we identified a set of residues that likely define a Hg/DTT binding site. These residues cluster around two cysteines (C(96) and C(159)) that are crucial to MerB's catalytic activity. A detailed analysis of the structure revealed the presence of an extensive hydrophobic groove adjacent to this Hg/DTT binding site. This extensive hydrophobic groove has the potential to interact with the hydrocarbon moiety of a wide variety of substrates and may explain the broad substrate specificity of MerB. PMID:15222745

  12. Structural NMR of Protein Oligomers using Hybrid Methods

    PubMed Central

    Wang, Xu; Lee, Hsiau-Wei; Liu, Yizhou; Prestegard, James H.

    2010-01-01

    Solving structures of native oligomeric protein complexes using traditional high resolution NMR techniques remains challenging. However, increased utilization of computational platforms, and integration of information from less traditional NMR techniques with data from other complementary biophysical methods, promises to extend the boundary of NMR-applicable targets. This article reviews several of the techniques capable of providing less traditional and complementary structural information. In particular, the use of orientational constraints coming from residual dipolar couplings and residual chemical shift anisotropy offsets are shown to simplify the construction of models for oligomeric complexes, especially in cases of weak homo-dimers. Combining this orientational information with interaction site information supplied by computation, chemical shift perturbation, paramagnetic surface perturbation, cross-saturation and mass spectrometry allows high resolution models of the complexes to be constructed with relative ease. Non-NMR techniques, such as mass spectrometry, EPR and small angle X-ray scattering, are also expected to play increasingly important roles by offering alternative methods of probing the overall shape of the complex. Computational platforms capable of integrating information from multiple sources in the modeling process are also discussed in the article. And finally a new, detailed example on the determination of a chemokine tetramer structure will be used to illustrate how a non-traditional approach to oligomeric structure determination works in practice. PMID:21074622

  13. Two- and three-dimensional sup 1 H NMR studies of a wheat phospholipid transfer protein: Sequential resonance assignments and secondary structure

    SciTech Connect

    Simorre, J.P.; Caille, A. ); Marion, D. ); Marion, D. ); Ptak, M. Univ. d'Orleans )

    1991-12-10

    Two- and three-dimensional {sup 1}H NMR experiments have been used to sequentially assign nearly all proton resonances of the 90 residues of wheat phospholipid transfer protein. Only a few side-chain protons were not identified because of degeneracy or overlapping. The identification of spin systems and the sequential assignment were made at the same time by combining the data of the two- and three-dimensional experiments. The classical two-dimensional COSY, HOHAHA, and NOESY experiments benefit from both good resolution and high sensitivity, allowing the detection of long-range dipolar connectivities. The three-dimensional HOHAHA-NOESY experiment offers the advantage of a faster and unambiguous assignment. As a matter of fact, homonuclear three-dimensional NMR spectroscopy prove to be a very efficient method for resonance assignments of protein {sup 1}H NMR spectra which cannot be unraveled by 2D methods. An assignment strategy which overcomes most of the ambiguities has been proposed, in which each individual assignment toward the C-terminal end is supported by another in the opposite direction originating from a completely different part of the spectrum. Location of secondary structures of the phospholipid transfer protein was determined by using the method of analysis introduced here and was confirmed by {sup 3}J{sub {alpha}NH} coupling and NH exchange rates. Except for the C-terminal part, the polypeptide chain appears to be organized mainly as helical fragments connected by disulfide bridges. Further modeling will display the overall folding of the protein and should provide a better understanding of its interactions with lipids.

  14. Proton NMR studies of functionalized nanoparticles in aqueous environments

    NASA Astrophysics Data System (ADS)

    Tataurova, Yulia Nikolaevna

    Nanoscience is an emerging field that can provide potential routes towards addressing critical issues such as clean and sustainable energy, environmental remediation and human health. Specifically, porous nanomaterials, such as zeolites and mesoporous silica, are found in a wide range of applications including catalysis, drug delivery, imaging, environmental protection, and sensing. The characterization of the physical and chemical properties of nanocrystalline materials is essential to the realization of these innovative applications. The great advantage of porous nanocrystals is their increased external surface area that can control their biological, chemical and catalytic activities. Specific functional groups synthesized on the surface of nanoparticles are able to absorb heavy metals from the solution or target disease cells, such as cancer cells. In these studies, three main issues related to functionalized nanomaterials will be addressed through the application of nuclear magnetic resonance (NMR) techniques including: 1) surface composition and structure of functionalized nanocrystalline particles; 2) chemical properties of the guest molecules on the surface of nanomaterials, and 3) adsorption and reactivity of surface bound functional groups. Nuclear magnetic resonance (NMR) is one of the major spectroscopic techniques available for the characterization of molecular structure and conformational dynamics with atomic level detail. This thesis deals with the application of 1H solution state NMR to porous nanomaterial in an aqueous environment. Understanding the aqueous phase behavior of functionalized nanomaterials is a key factor in the design and development of safe nanomaterials because their interactions with living systems are always mediated through the aqueous phase. This is often due to a lack of fundamental knowledge in interfacial chemical and physical phenomena that occur on the surface of nanoparticles. The use of solution NMR spectroscopy results

  15. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving.

    PubMed

    Pauli, Guido F; Niemitz, Matthias; Bisson, Jonathan; Lodewyk, Michael W; Soldi, Cristian; Shaw, Jared T; Tantillo, Dean J; Saya, Jordy M; Vos, Klaas; Kleinnijenhuis, Roel A; Hiemstra, Henk; Chen, Shao-Nong; McAlpine, James B; Lankin, David C; Friesen, J Brent

    2016-02-01

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of "structural correctness" depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D (1)H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D (1)H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by (1)H iterative full spin analysis (HiFSA). Fully characterized 1D (1)H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication. PMID:26812443

  16. Toward Structural Correctness: Aquatolide and the Importance of 1D Proton NMR FID Archiving

    PubMed Central

    2016-01-01

    The revision of the structure of the sesquiterpene aquatolide from a bicyclo[2.2.0]hexane to a bicyclo[2.1.1]hexane structure using compelling NMR data, X-ray crystallography, and the recent confirmation via full synthesis exemplify that the achievement of “structural correctness” depends on the completeness of the experimental evidence. Archived FIDs and newly acquired aquatolide spectra demonstrate that archiving and rigorous interpretation of 1D 1H NMR data may enhance the reproducibility of (bio)chemical research and curb the growing trend of structural misassignments. Despite being the most accessible NMR experiment, 1D 1H spectra encode a wealth of information about bonds and molecular geometry that may be fully mined by 1H iterative full spin analysis (HiFSA). Fully characterized 1D 1H spectra are unideterminant for a given structure. The corresponding FIDs may be readily submitted with publications and collected in databases. Proton NMR spectra are indispensable for structural characterization even in conjunction with 2D data. Quantum interaction and linkage tables (QuILTs) are introduced for a more intuitive visualization of 1D J-coupling relationships, NOESY correlations, and heteronuclear experiments. Overall, this study represents a significant contribution to best practices in NMR-based structural analysis and dereplication. PMID:26812443

  17. Structural, NMR, and EPR studies of S = (1)/(2) and S = (3)/(2) Fe(III) bis(4-cyanopyridine) complexes of dodecasubstituted porphyrins.

    PubMed

    Yatsunyk, Liliya A; Walker, F Ann

    2004-01-26

    The NMR and EPR spectra for three complexes, iron(III) octamethyltetraphenylporphyrin bis(4-cyanopyridine) perchlorate, [FeOMTPP(4-CNPy)(2)]ClO(4), and its octaethyl- and tetra-beta,beta'-tetramethylenetetraphenylporphyrin analogues, [FeOETPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4), are presented. The crystal structures of two different forms of [FeOETPP(4-CNPy)(2)]ClO(4) and one form of [FeOMTPP(4-CNPy)(2)]ClO(4) are also reported. Attempts to crystallize [FeTC(6)TPP(4-CNPy)(2)]ClO(4) were not successful. The crystal structure of [FeOMTPP(4-CNPy)(2)]ClO(4) reveals a saddled porphyrin core, a small dihedral angle between the axial ligand planes, 64.3 degrees, and an unusually large tilt angle (24.4 degrees ) of one of the axial 4-cyanopyridine ligands with respect to the normal to the porphyrin mean plane. There are 4 and 2 independent molecules in the asymmetric units of [FeOETPP(4-CNPy)(2)]ClO(4) crystallized from CD(2)Cl(2)/dodecane (1-4) and CDCl(3)/cyclohexane (5-6), respectively. The geometries of the porphyrin cores in 1-6 vary from purely saddled to saddled with 15% ruffling admixture. In all structures, the Fe-N(p) distances (1.958-1.976 A) are very short due to strong nonplanar distortion of the porphyrin cores, while the Fe-N(ax) distances are relatively long ( approximately 2.2 A) compared to the same distances in S = (1)/(2) bis(pyridine)iron(III) porphyrin complexes. An axial EPR signal is observed (g( perpendicular ) = 2.49, g( parallel ) = 1.6) in frozen solutions of both [FeOMTPP(4-CNPy)(2)]ClO(4) and [FeTC(6)TPP(4-CNPy)(2)]ClO(4) at 4.2 K, indicative of the low spin (LS, S = (1)/(2)), (d(yz)d(xz))(4)(d(xy))(1) electronic ground state for these two complexes. In agreement with a recent publication (Ikeue, T.; Ohgo, Y.; Ongayi, O.; Vicente, M. G. H.; Nakamura, M. Inorg. Chem. 2003, 42, 5560-5571), the EPR spectra of [FeOETPP(4-CNPy)(2)]ClO(4) are typical of the S = (3)/(2) state, with g values of 5.21, 4.25, and 2.07. A small amount of

  18. Study on molecular structure, spectroscopic investigation (IR, Raman and NMR), vibrational assignments and HOMO-LUMO analysis of L-sodium folinate using DFT: a combined experimental and quantum chemical approach.

    PubMed

    Li, Linwei; Cai, Tiancheng; Wang, Zhiqiang; Zhou, Zhixu; Geng, Yiding; Sun, Tiemin

    2014-01-01

    In the present work, an exhaustive conformational search of N-[4-[[(2-amino-5-formyl-(6S)-3,4,5,6,7,8-hexahydro-4-oxo-6-pteridinyl)methyl]amino]benzoyl]-L-glutamic acid disodium salt (L-SF) has been preformed. The optimized structure of the molecule, vibrational frequencies and NMR spectra studies have been calculated by density functional theory (DFT) using B3LYP method with the 6-311++G (d, p) basis set. IR and FT-Raman spectra for L-SF have been recorded in the region of 400-4000 cm(-1) and 100-3500 cm(-1), respectively. 13C and 1H NMR spectra were recorded and 13C and 1H nuclear magnetic resonance chemical shifts of the molecule were calculated based on the gauge-independent atomic orbital (GIAO) method. Finally all of the calculation results were applied to simulate IR, Raman, 1H NMR and 13C NMR spectrum of the title compound which showed excellent agreement with observed spectrum. Furthermore, reliable vibrational assignments which have been made on the basis of potential energy distribution (PED) and characteristic vibratinonal absorption bands of the title compound in IR and Raman have been figured out. HOMO-LUMO energy and Mulliken atomic charges have been evaluated, either. PMID:24177877

  19. Solid state NMR studies of gels derived from low molecular mass gelators.

    PubMed

    Nonappa; Kolehmainen, E

    2016-07-13

    Since its invention more than six decades ago, nuclear magnetic resonance (NMR) spectroscopy has evolved as an inevitable part of chemical as well as structural analysis of small molecules, polymers, biomaterials and hybrid materials. In the solution state, due to the increased viscosity of complex viscoelastic fluids such as gels, liquid crystals and other soft materials, the rate of molecular tumbling is reduced, which in turn affects the chemical shift anisotropy, dipolar and quadrupolar interactions. As a consequence the solution state NMR spectra show broad lines, and therefore, extracting detailed structural information is a challenging task. In this context, solid state (SS) NMR has the ability to distinguish between a minute amount of polymorphic forms, conformational changes, and the number of non-equivalent molecules in an asymmetric unit of a crystal lattice, and to provide both qualitative as well as quantitative analytical data with a short-range order. Therefore, SS NMR has continued to evolve as an indispensable tool for structural analysis and gave birth to a new field called NMR crystallography. Solid state cross polarization (CP) and high resolution (HR) magic angle spinning (MAS) NMR spectroscopy has been used to study weak interactions in polymer gels. However, the application of SS NMR spectroscopy to study gels derived from low molecular weight gelators has been limited until recently. In this review, we will focus on the importance of solid state NMR spectroscopy in understanding and elucidating the structure of supramolecular gels derived from low molecular weight gelators with selected examples. PMID:27374054

  20. Double rotation NMR studies of zeolites and aluminophosphate molecular sieves

    SciTech Connect

    Jelinek, R. |

    1993-07-01

    Goal is to study the organization and structures of guest atoms and molecules and their reactions on internal surfaces within pores of zeolites and aluminophosphate molecular sieves. {sup 27}Al and {sup 23}Na double rotation NMR (DOR) is used since it removes the anisotropic broadening in NMR spectra of quadrupolar nuclei, thus increasing resolution. This work concentrates on probing aluminum framework atoms in aluminophosphate molecular sieves and sodium extra framework cations in porous aluminosilicates. In aluminophosphates, ordering and electronic environments of the framework {sup 27}Al nuclei are modified upon adsorption of water molecules within the channels; a relation is sought between the sieve channel topology and the organization of adsorbed water, as well as the interaction between the Al nuclei and the water molecules. Extra framework Na{sup +} cations are directly involved in adsorption processes and reactions in zeolite cavities.

  1. Solution NMR studies of recombinant Aβ(1-42): from the presence of a micellar entity to residual β-sheet structure in the soluble species.

    PubMed

    Wälti, Marielle Aulikki; Orts, Julien; Vögeli, Beat; Campioni, Silvia; Riek, Roland

    2015-03-01

    Amyloid-β (Aβ) peptide is the major component found in senile plaques of Alzheimer's disease patients. The 42-residue fragment Aβ(1-42) is proposed to be one of the most pathogenic species therein. Here, the soluble Aβ(1-42) species were analyzed by various liquid-state NMR methods. Transient formation of a micelle species was observed at the onset of the aggregation kinetics. This micelle is dissolved after approximately one day. Subsequent loss of this species and the formation of protofibrils are proposed to be the route of fibril formation. Consequently, the observed micelle species is suggested to be on an off-pathway mechanism. Furthermore, characterization of the NMR-observable soluble species shows that it is a random-coil-like entity with low propensities for four β-strands. These β-strands correlate with the β-strand segments observed in Aβ fibrils. This finding indicates that the 3D structure of the fibrils might already be predisposed in the soluble species. PMID:25676345

  2. Crystal structure and theoretical study of IR and 1H and 13C NMR spectra of cordatin, a natural product with antiulcerogenic activity

    NASA Astrophysics Data System (ADS)

    Brasil, Davi S. B.; Alves, Cláudio N.; Guilhon, Giselle M. S. P.; Muller, Adolfo H.; Secco, Ricardo De S.; Peris, Gabriel; Llusar, Rosa

    Cordatin is a furan diterpenoid with a clerodane skeleton isolated from Croton palanostigma Klotzsch (Euphorbiaceae). This natural product shows significant antiulcerogenic activity, similar to cimetidine (Tagamet®), a compound used for the treatment of peptic ulcers. The crystal structure of cordatin was obtained by X-ray diffraction and its geometrical parameters were compared with theoretical calculations at the B3LYP theory level. The IR and NMR (1H and 13C chemical shifts and coupling constants) spectra were obtained and compared with the theoretical calculations. The B3LYP theory level, with the 6-31G(d,p) and 6-311G(d,p) basis set, provided IR absorption values close to the experimental data. Moreover, theoretical NMR parameters obtained in both gas phase and chloroform solvent at the B3PW91/DGDZVP, B3LYP/6-311+G(2d,p), and B3PW91/6-311+G(2d,p) levels showed good correlations with the experimental results.

  3. NMR spectroscopic study of organic phosphate esters coprecipitated with calcite

    NASA Astrophysics Data System (ADS)

    Phillips, Brian L.; Zhang, Zelong; Kubista, Laura; Frisia, Silvia; Borsato, Andrea

    2016-06-01

    Organic phosphorus incorporated in calcite during laboratory precipitation experiments and in natural cave deposits was investigated by solid-state NMR spectroscopy. For calcite precipitated in the presence of organic phosphoesters of varying size and functionality, solid-state 31P{1H} CP/MAS NMR shows that the phosphoesters were incorporated intact into the solid. Systematic changes in the 31P NMR chemical shift of the phosphate group were observed between the solid phosphoester and that incorporated in the solid precipitate, yielding 31P NMR chemical shifts of the coprecipitates in the range of +1.8 to -2.2 ppm. These chemical shifts are distinct from that of similarly prepared calcite coprecipitated with inorganic phosphate, 3.5 ppm. Only minor changes were noted in the phosphoester 31P chemical shift anisotropy (CSA) which suggests no significant change in the local structure of the phosphate group, which is dominated by C-O-P bonding. Close spatial proximity of the organic phosphate group to calcite structural components was revealed by 31P/13C rotational echo double resonance (REDOR) experiments for coprecipitates prepared with 13C-labeled carbonate. All coprecipitates showed significant 31P dephasing effects upon 13C-irradiation, signaling atomic-scale proximity to carbonate carbon. The dephasing rate for smaller organophosphate molecules is similar to that observed for inorganic phosphate, whereas much slower dephasing was observed for larger molecules having long and/or bulky side-chains. This result suggests that small organic molecules can be tightly enclosed within the calcite structure, whereas significant structural disruption required to accommodate the larger organic molecules leads to longer phosphate-carbonate distances. Comparison of 31P NMR spectroscopic data from the synthetic coprecipitates with those from calcite moonmilk speleothems indicates that phosphorus occurs mainly as inorganic orthophosphate in the natural deposits, although small

  4. High-Temperature NMR Studies of Quasicrystals and Polymers

    NASA Astrophysics Data System (ADS)

    Hill, Edward Arthur

    1995-01-01

    Icosahedral alloys such as rm Al _{65}Cu_{20}Ru_ {15}, Al_{62.5}Cu_ {24.5}Fe_{13}, and rm Al_{70}Pd_{20}Re _{10} have motivated a great deal of experimental and theoretical effort to understand fundamental issues such as the electronic structure, "lattice" dynamics, and thermodynamic stability of quasicrystalline materials. It has been shown here that Nuclear Magnetic Resonance (NMR) is a useful tool for exploring many of the essential properties of quasicrystal alloys and the so-called approximant phase alloys. Specifically, the ^{27 }Al Knight shift has been used here to study the electronic density of states in these alloys up to temperatures of 1200 K. Furthermore, ^{27}Al nuclear spin-lattice and spin-spin relaxation measurements across a wide temperature range have been used to show that the dynamic processes found in quasicrystals are quite different from those found in some crystalline alloys of similar compositions. In addition, two-dimensional exchange experiments have been employed to study the dynamics of these materials. Finally, the semiconducting alloy rm Al_2Ru has also been studied by the techniques mentioned above. It has also been demonstrated here that high temperature NMR techniques are useful in the study of organic polymers. These experiments focus on determining the timescales and other aspects of molecular motion for several specific samples. ^2H NMR measurements, including the ^2H two-dimensional exchange technique, on the high temperature polymer polybenzamidazole (PBI) are described here. ^2H NMR results for high melting temperature copolyester liquid crystals of the PCnNBB family will also be discussed. An assessment of the high temperature motion in these samples is relevant to an understanding of the physical properties that influence their high temperature applications and high temperature processing.

  5. Hydrothermal synthesis, X-ray structure refinement, 31P NMR spectra and vibrational study of NaLa(HPO4)2

    NASA Astrophysics Data System (ADS)

    Ben Hassen, C.; Boujelbene, M.; Mhiri, T.

    2013-10-01

    NaLa(HPO4)2 was obtained by hydrothermal synthesis. The structure of NaLa(HPO4)2 was determined by X-ray powder diffraction methods. The results of Rietveld refinement revealed a space group P21/c (No. 14), with lattice parameters of a = 9.7151(17) Å, b = 8.320(12) Å, c = 9.83(2) Å, beta = 114.65(17)°, V = 722 (8) Å3 and Z = 4. Final refinement led to RF = 4.86% and RB = 12.35%.The existence of bound O-H and bound P-O in the structure has been confirmed by IR and Raman spectroscopy. The existence of two crystallographically independent phosphorus atoms in the structure has been confirmed by NMR spectrum. The structure is characterized by LaO6 octahedra which are solely connected to six adjacent HPO4 tetrahedra via common O-corners. This structure contains twelve- and four-membered rings forming channels along [1 1¯ 1]. The cross sections of the channels are given by twelve-membered rings consisting of four lanthanum coordination octahedral and eight hydrogenphosphate groups as well as four-membered rings consisting of two lanthanum coordination octahedra and two hydrogenphosphate tetrahedra. Sodium ions are located within those channels of the twelve-membered rings.

  6. NMR studies of DOXP reductoisomerase and its inhibitor complex.

    PubMed

    Englert, Nadine E; Richter, Christian; Wiesner, Jochen; Hintz, Martin; Jomaa, Hassan; Schwalbe, Harald

    2011-02-11

    1-Deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase (EC1.1.1.267) catalyses the second step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway of isoprenoid biosynthesis. The enzyme is used by most bacteria, apicomplexan parasites and the plastids of plants, but not by humans, and therefore represents an attractive target for antibacterial, antiparasitic and herbicidal compounds. Fosmidomycin, an inhibitor of DXR, has been found to be active against bacterial infections and malaria in early clinical studies. Here, we report sample optimisation, partial backbone assignment and secondary-structure prediction of E. coli DXR by heteronuclear NMR analysis for further NMR-aided drug discovery. Perdeuterated (15)N,(13)C-labelled samples were prepared under oxygen exclusion in the presence of Mg(2+), NADPH and the inhibitor FR-900098, a close derivative of fosmidomycin. (1)H and (15)N backbone assignment was achieved for 44 % of the primary structure, and (13)C backbone assignment was achieved for 50 % of the primary structure. Comparison with previously solved crystal structures revealed that the assigned fragments were located mainly in helical regions on the solvent-exposed surface of the enzyme. Torsion angle likelihood obtained from shift and sequence similarity (TALOS) was used for secondary structure prediction, resulting in agreement with eight available crystal structures; deviations could be observed for the catalytic loop region. PMID:21290548

  7. X-ray structure, NMR and stability-in-solution study of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine - A new active compound for cosmetology

    NASA Astrophysics Data System (ADS)

    Walla, Jan; Szüčová, Lucie; Císařová, Ivana; Gucký, Tomáš; Zatloukal, Marek; Doležal, Karel; Greplová, Jarmila; Massino, Frank J.; Strnad, Miroslav

    2010-06-01

    The crystal and molecular structure of 6-(furfurylamino)-9-(tetrahydropyran-2-yl)purine ( 1) was determined at 150(2) K. The compound crystallizes in monoclinic P2 1/ c space group with a = 10.5642(2), b = 13.6174(3), c = 10.3742(2) Å, V = 1460.78(5) Å 3, Z = 4, R( F) = for 3344 unique reflections. The purine moiety and furfuryl ring are planar and the tetrahydropyran-2-yl is disordered in the ratio 1:3, probably due to the chiral carbon atom C(17). The individual 1H and 13C NMR signals were assigned by 2D correlation experiments such as 1H- 1H COSY and ge-2D HSQC. Stability-in-solution was determined in methanol/water in acidic pH (3-7).

  8. NMR Structure of the Myristylated Feline Immunodeficiency Virus Matrix Protein

    PubMed Central

    Brown, Lola A.; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G.; Kuo, Lillian; Freed, Eric O.; Summers, Michael F.

    2015-01-01

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag’s N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly. PMID:25941825

  9. NMR structure of the myristylated feline immunodeficiency virus matrix protein.

    PubMed

    Brown, Lola A; Cox, Cassiah; Baptiste, Janae; Summers, Holly; Button, Ryan; Bahlow, Kennedy; Spurrier, Vaughn; Kyser, Jenna; Luttge, Benjamin G; Kuo, Lillian; Freed, Eric O; Summers, Michael F

    2015-05-01

    Membrane targeting by the Gag proteins of the human immunodeficiency viruses (HIV types-1 and -2) is mediated by Gag's N-terminally myristylated matrix (MA) domain and is dependent on cellular phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. To determine if other lentiviruses employ a similar membrane targeting mechanism, we initiated studies of the feline immunodeficiency virus (FIV), a widespread feline pathogen with potential utility for development of human therapeutics. Bacterial co-translational myristylation was facilitated by mutation of two amino acids near the amino-terminus of the protein (Q5A/G6S; myrMAQ5A/G6S). These substitutions did not affect virus assembly or release from transfected cells. NMR studies revealed that the myristyl group is buried within a hydrophobic pocket in a manner that is structurally similar to that observed for the myristylated HIV-1 protein. Comparisons with a recent crystal structure of the unmyristylated FIV protein [myr(-)MA] indicate that only small changes in helix orientation are required to accommodate the sequestered myr group. Depletion of PI(4,5)P2 from the plasma membrane of FIV-infected CRFK cells inhibited production of FIV particles, indicating that, like HIV, FIV hijacks the PI(4,5)P2 cellular signaling system to direct intracellular Gag trafficking during virus assembly. PMID:25941825

  10. NMR-Metabolic Methodology in the Study of GM Foods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The 1H NMR methodology used in the study of genetically modified (GM) foodstuff is discussed. The study of transgenic lettuce (Lactuca sativa cv "Luxor") over-expressing the KNAT1 gene from Arabidopsis is presented as a novel study-case. The 1H NMR metabolic profiling was carried out. Twenty-two wat...

  11. Magic-angle-spinning NMR studies of zeolite SAPO-5

    NASA Astrophysics Data System (ADS)

    Freude, D.; Ernst, H.; Hunger, M.; Pfeifer, H.; Jahn, E.

    1988-01-01

    SAPO-5 was synthesized using triethylamine as template. Magic-angle-spinning (MAS) NMR of 1H, 27Al, 29Si and 31P was used to study the silicon incorporation into the framework and the nature of the Brønsted sites. 1H MAS NMR shows two types of bridging hydroxyl groups. 29Si MAS NMR indicates that silicon substitutes mostly for phosphorus and that there is a small amount of crystalline SiO 2 in the zeolite powder.

  12. Structural Aspects of Several Oxide Glasses as Elucidated by Multinuclear NMR.

    NASA Astrophysics Data System (ADS)

    Zhong, Jianhui

    1988-03-01

    NMR is sensitive to many interactions that the nucleus experiences with its environment. Included among these interactions are two that were heavily exploited in this thesis. They are the electric quadrupole interaction and the chemical shift interaction. These interactions yield structural information on short-range order and atom coordinations, which are very valuable and important to the understanding of properties and microstructures of glasses. Both the static or MASS NMR at high field and low field CW NMR were utilized to obtain information concerning the coordinations and local environments of several oxide glasses. For some systems, other spectroscopic methods (thermal analysis, X-ray and IR spectroscopies) were also used to assist NMR studies. In Chapter I relevant NMR theory and detection techniques used for this work are introduced. In Chapters 2-4, some structural aspects of alkali borate, borosilicate or alkali boroaluminate glasses are studied. In particular, boron coordinations in these glasses are carefully reinvestigated. The relationship between the change in boron coordinations and the changes in macroscopic characteristics of the glasses (such as electric conductivity and the mixed alkali effects) are studied. In mixed alkali glasses, the postulated alkali -pairing model provides a reasonable explanation for the structural changes. Chapter 5 is dedicated to the ^{71}Ga and ^{69 }Ga NMR studies of alkali gallate glasses. The glassforming range is explored and the gallium atom coordinations are studied. A structural model for the glass systems is suggested based on the distribution of galliums of different coordinations and structural parameters (quadrupole coupling constants, asymmetry parameters, and isotropic chemical shifts, etc.). A study of ^{31} P spectra in lead-iron-phosphate nuclear waste glasses is presented in Chapter 6. By subjecting the samples to various magnetic field strengths and different temperatures, information on the local

  13. Comprehensive multiphase NMR: a promising technology to study plants in their native state.

    PubMed

    Wheeler, Heather L; Soong, Ronald; Courtier-Murias, Denis; Botana, Adolfo; Fortier-Mcgill, Blythe; Maas, Werner E; Fey, Michael; Hutchins, Howard; Krishnamurthy, Sridevi; Kumar, Rajeev; Monette, Martine; Stronks, Henry J; Campbell, Malcolm M; Simpson, Andre

    2015-09-01

    Nuclear magnetic resonance (NMR) spectroscopy is arguably one the most powerful tools to study the interactions and molecular structure within plants. Traditionally, however, NMR has developed as two separate fields, one dealing with liquids and the other dealing with solids. Plants in their native state contain components that are soluble, swollen, and true solids. Here, a new form of NMR spectroscopy, developed in 2012, termed comprehensive multiphase (CMP)-NMR is applied for plant analysis. The technology composes all aspects of solution, gel, and solid-state NMR into a single NMR probe such that all components in all phases in native unaltered samples can be studied and differentiated in situ. The technology is evaluated using wild-type Arabidopsis thaliana and the cellulose-deficient mutant ectopic lignification1 (eli1) as examples. Using CMP-NMR to study intact samples eliminated the bias introduced by extraction methods and enabled the acquisition of a more complete structural and metabolic profile; thus, CMP-NMR revealed molecular differences between wild type (WT) and eli1 that could be overlooked by conventional methods. Methanol, fatty acids and/or lipids, glutamine, phenylalanine, starch, and nucleic acids were more abundant in eli1 than in WT. Pentaglycine was present in A. thaliana seedlings and more abundant in eli1 than in WT. PMID:25855560

  14. Chemical structure and heterogeneity differences of two lignins from loblolly pine as investigated by advanced solid-state NMR spectroscopy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Advanced solid-state NMR was employed to investigate differences in chemical structure and heterogeneity between milled wood lignin (MWL) and residual enzyme lignin (REL). Wiley and conventional milled woods were also studied. The advanced NMR techniques included 13C quantitative direct polarization...

  15. Using NMR to Determine Protein Structure in Solution

    NASA Astrophysics Data System (ADS)

    Cavagnero, Silvia

    2003-02-01

    Nuclear magnetic resonance (NMR) is a marvelous spectroscopic technique that chemists, physicists, and biochemists routinely employ for their research around the world. This year half of the Nobel Prize for chemistry went to Kurt Wüthrich, who was recognized for the development of NMR-based techniques that lead to the structure determination of biomolecules in solution. In addition to implementing novel pulse sequences and software packages, Wüthrich also applied his methods to several biological systems of key importance to human health. These include the prion protein, which is heavily involved in the spongiform encephalopathy (best known as 'mad cow disease'), which recently caused numerous human deaths, particularly in the UK, due to ingestion of contaminated meat. Transverse relaxation optimized spectroscopy (TROSY) is the most intriguing new NMR method recently developed by Wüthrich and coworkers. This and other closely related pulse sequences promise to play a pivotal role in the extension of NMR to the conformational analysis of very large (up to the megadalton range) macromolecules and macromolecular complexes. More exciting new developments are expected in the near future.

  16. A 13C-NMR study of azacryptand complexes.

    PubMed

    Wild, Aljoscha A C; Fennell, Kevin; Morgan, Grace G; Hewage, Chandralal M; Malthouse, J Paul G

    2014-09-28

    An azacryptand has been solubilised in aqueous media containing 50% (v/v) dimethyl sulphoxide. (13)C-NMR has been used to determine how the azacryptand is affected by zinc binding at pH 10. Using (13)C-NMR and (13)C-enriched bicarbonate we have been able to observe the formation of 4 different carbamate derivatives of the azacryptand at pH 10. The azacryptand was shown to solubilise zinc or cadmium at alkaline pHs. Two moles of zinc are bound per mole of azacryptand and this complex binds 1 mole of carbonate. By replacing the zinc with cadmium-113 we have shown that the (13)C-NMR signal of the (13)C-enriched carbon of the bound carbonate is split into two triplets at 2.2 °C. This shows that two cadmium complexes are formed and in each of these complexes the carbonate group is bound by two magnetically equivalent metal ions. It also demonstrates that these cadmium complexes are not in fast exchange. From temperature studies we show that in the zinc complexes both complexes are in fast exchange with each other but are in slow exchange with free bicarbonate. HOESY is used to determine the position of the carbonate carbon in the complex. The solution and crystal structures of the zinc-carbonate-azacryptand complexes are compared. PMID:25091182

  17. NMR study of new ruthenates with high magnetic ordering

    NASA Astrophysics Data System (ADS)

    Paulose, P. L.; Chakrabarty, Tanmoy

    The Ru based compounds, Ca3LiRuO6 and Ca3NaRuO6 show unusually high magnetic ordering temperature. Extended super exchange model is invoked to explain the magnetic behavior in the isostructural compound Ca3LiOsO6. We have carried out NMR investigation on these two Ru-based compounds. Ca3LiRuO6 is a weak ferromagnet with a magnetic ordering temperature (TC) of 115 K which is explored by the temperature dependence of 7Li NMR line shift, line-width and spin-lattice relaxation rate (1/T1) . Above TC, a broad maximum is observed in the evolution of line-width of the spectra. We speculate that this feature might be attributed to some low-dimensional magnetic behavior. Contrastingly, Ca3NaRuO6 with similar structure and local geometry of the Ru5+ ions is a conventional antiferromagnet with a transition temperature of 90 K. The temperature dependence of 23Na NMR line shift and 1/T1 is studied across magnetic transition in Ca3NaRuO6. The temperature variation of line-width is found to be different compared to Ca3LiRuO6. In both these systems, 1/T1 decreases significantly below ordering temperature, characteristic of many antiferromagnetic systems.

  18. Molecular structure by two-dimensional NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Freeman, R.

    Two examples are presented of the use of two-dimensional NMR spectroscopy to solve molecular structure problems. The first is called correlation spectroscopy (COSY) and it allows us to disentangle a complex network of spin-spin couplings. By dispersing the NMR information in two frequency dimensions, it facilitates the analysis of very complex spectra of organic and biochemical molecules, normally too crowded to be tractable. The second application exploits the special properties of multiple-quantum coherence to explore the molecular framework one CC linkage at a time. The natural product panamine is used as a test example; with some supplementary evidence, the structure of this six-ringed heterocyclic molecule is elucidated from the double-quantum filtered two-dimensional spectrum.

  19. Chemical Equilibrium in Supramolecular Systems as Studied by NMR Spectrometry

    ERIC Educational Resources Information Center

    Gonzalez-Gaitano, Gustavo; Tardajos, Gloria

    2004-01-01

    Undergraduate students are required to study the chemical balance in supramolecular assemblies constituting two or more interacting species, by using proton NMR spectrometry. A good knowledge of physical chemistry, fundamentals of chemical balance, and NMR are pre-requisites for conducting this study.

  20. Molecular organization in the native state of woody tissue: Studies of tertiary structure using the Raman microprobe Solid State [sup 13]C NMR and biomimetic tertiary aggregates

    SciTech Connect

    Atalla, R.H.

    1992-01-01

    A number of new approaches to the study of native wood tissue complementary to our earlier Raman spectroscopy including solid state [sup 13]C NMR and X-ray diffractometry. A wide variety of native cellulosic tissues were examined which led to the generation of biomimetic tertiary aggregates which simulate states of aggregation characteristic of cell walls. We have also explored charge transport characteristics of lignified tissue. Our Raman spectroscopic studies have advanced our understanding of key spectral features and confirmed the variability of the patterns of orientation of lignin reported earlier. A major effort was dedicated to assessing the contributions of electronic factors such as conjugation and the resonance Raman effect to enhancement of the spectra features associated with lignin. We have now established a solid foundation for spectral mapping of different regions in cell walls.

  1. Effect of iron content on the structure and disorder of iron-bearing sodium silicate glasses: A high-resolution 29Si and 17O solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Im; Sur, Jung Chul; Lee, Sung Keun

    2016-01-01

    increase with iron content and that Fe3+ is predominantly a network-former. The 17O NMR spectra suggest a moderate degree of preferential partitioning of iron between NBO and BO clusters. The present results bear strong promise for studying iron-bearing silicate glasses using solid-state NMR techniques, constraining the effect of iron content on the degree of polymerization. The observed changes in atomic structures of iron-bearing sodium silicate glasses will be helpful for unraveling atomic origins of the properties of natural silicate melts.

  2. NMR studies of multiphase flows II

    SciTech Connect

    Altobelli, S.A.; Caprihan, A.; Fukushima, E.

    1995-12-31

    NMR techniques for measurements of spatial distribution of material phase, velocity and velocity fluctuation are being developed and refined. Versions of these techniques which provide time average liquid fraction and fluid phase velocity have been applied to several concentrated suspension systems which will not be discussed extensively here. Technical developments required to further extend the use of NMR to the multi-phase flow arena and to provide measurements of previously unobtainable parameters are the focus of this report.

  3. Application of NMR techniques for studying coking of FCC catalysts

    SciTech Connect

    Bonardet, J.J.; Barrage, M.C.; Fraissard, J.

    1995-12-31

    NMR occupies an important place in the study of the deactivation of zeolites by coking. Indeed, association of the resonances of several nuclei has shown that it is possible to investigate: the nature of the, carbonaceous; deposits; under certain conditions, the coke content; the mode of zeolite deactivation; the exact location of the internal coke and the evolution of its distribution with the coke content, the presence of carbonaceous; residues at the crystallite surface; the effect of zeolite structure and the nature of the reactant on coking and regeneration. It also reveals the role of extra framework aluminium species and that of certain lattice Al atoms in the coking process.

  4. New methods of structure refinement for macromolecular structure determination by NMR

    PubMed Central

    Clore, G. Marius; Gronenborn, Angela M.

    1998-01-01

    Recent advances in multidimensional NMR methodology have permitted solution structures of proteins in excess of 250 residues to be solved. In this paper, we discuss several methods of structure refinement that promise to increase the accuracy of macromolecular structures determined by NMR. These methods include the use of a conformational database potential and direct refinement against three-bond coupling constants, secondary 13C shifts, 1H shifts, T1/T2 ratios, and residual dipolar couplings. The latter two measurements provide long range restraints that are not accessible by other solution NMR parameters. PMID:9600889

  5. An experimental study of the structural and vibrational properties of sesquiterpene lactone cnicin using FT-IR, FT-Raman, UV-visible and NMR spectroscopies

    NASA Astrophysics Data System (ADS)

    Chain, Fernando; Romano, Elida; Leyton, Patricio; Paipa, Carolina; Catalán, César Atilio Nazareno; Fortuna, Mario Antonio; Brandán, Silvia Antonia

    2014-05-01

    An experimental and theoretical investigation of cnicin is presented, combining the use of infrared, Raman, NMR and UV-visible spectroscopies with density functional theory (DFT) that employs hybrid B3LYP exchange correlation functional and a 6-31G∗ basis set. The molecular electrostatic potentials, atomic charges, bond orders, stabilization energies, topological properties and energy gap are presented by performing NBO, AIM and HOMO-LUMO calculations at the same level of theory as cnicin. A complete vibrational compound assignment was performed by employing internal coordinate analysis and a scaled quantum mechanical force field (SQMFF) methodology. Comparisons between the theoretical and experimental vibrational and ultraviolet-visible spectra show a strong concordance. The geometrical parameters and NBO studies suggest a probable negative Cotton effect for cnicin, which can be attributed to the π → π∗ transition for an α,β-unsaturated γ-lactone, as reported in the literature.

  6. NMR studies of two spliced leader RNAs using isotope labeling

    SciTech Connect

    Lapham, J.; Crothers, D.M.

    1994-12-01

    Spliced leader RNAs are a class of RNA molecules (<200 nts) involved in the trans splicing of messenger RNA found in trypanosomes, nematodes, and other lower eukaryotes. The spliced leader RNA from the trypanosome Leptomonas Collosoma exists in two alternate structural forms with similar thermal stabilities. The 54 nucleotides on the 5{prime} end of the SL molecule is structurally independent from the 3{prime} half of the RNA, and displays the two structural forms. Furthermore, the favored of the two structures was shown to contain anomalous nuclease sensitivity and thermal stability features, which suggests that there may be tertiary interactions between the splice site and other nucleotides in the 5{prime} end. Multidimensional NMR studies are underway to elucidate the structural elements present in the SL RNAs that give rise to their physical properties. Two spliced leader sequences have been studied. The first, the 54 nucleotides on the 5{prime} end of the L. Collosoma sequence, was selected because of earlier studies in our laboratory. The second sequence is the 5{prime} end of the trypanosome Crithidia Fasciculata, which was chosen because of its greater sequence homology to other SL sequences. Given the complexity of the NMR spectra for RNA molecules of this size, we have incorporated {sup 15}N/{sup 13}C-labeled nucleotides into the RNA. One of the techniques we have developed to simplify the spectra of these RNA molecules is isotope labeling of specific regions of the RNA. This has been especially helpful in assigning the secondary structure of molecules that may be able to adopt multiple conformations. Using this technique one can examine a part of the molecule without spectral interference from the unlabeled portion. We hope this approach will promote an avenue for studying the structure of larger RNAs in their native surroundings.

  7. Assessment of structural changes of human teeth by low-field nuclear magnetic resonance (NMR)

    NASA Astrophysics Data System (ADS)

    Ni, Qingwen; Chen, Shuo

    2010-01-01

    A technique of low-field pulsed proton nuclear magnetic resonance (NMR) spin relaxation is described for assessment of age-related structural changes (dentin and pulp) of human teeth in vitro. The technique involves spin-spin relaxation measurement and inversion spin-spin spectral analysis methods. The spin-spin relaxation decay curve is converted into a T2 distribution spectrum by a sum of single exponential decays. The NMR spectra from the extracted dentin-portion-only and dental pulp-cells-only were compared with the whole extracted teeth spectra, for the dentin and pulp peak assignments. While dentin and pulp are highly significant parameters in determining tooth quality, variations in these parameters with age can be used as an effective tool for estimating tooth quality. Here we propose an NMR calibration method—the ratio of the amount of dentin to the amount of pulp obtained from NMR T2 distribution spectra can be used for measuring the age-related structural changes in teeth while eliminating any variations in size of teeth. Eight teeth (third molars) extracted from humans, aged among 17-67 years old, were tested in this study. It is found that the intensity ratio of dentin to pulp sensitively changes from 0.48 to 3.2 approaching a linear growth with age. This indicates that age-related structural changes in human teeth can be detected using the low-field NMR technique.

  8. Protein NMR Structure Refinement based on Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Ikeya, Teppei; Ikeda, Shiro; Kigawa, Takanori; Ito, Yutaka; Güntert, Peter

    2016-03-01

    Nuclear Magnetic Resonance (NMR) spectroscopy is a tool to investigate threedimensional (3D) structures and dynamics of biomacromolecules at atomic resolution in solution or more natural environments such as living cells. Since NMR data are principally only spectra with peak signals, it is required to properly deduce structural information from the sparse experimental data with their imperfections and uncertainty, and to visualize 3D conformations by NMR structure calculation. In order to efficiently analyse the data, Rieping et al. proposed a new structure calculation method based on Bayes’ theorem. We implemented a similar approach into the program CYANA with some modifications. It allows us to handle automatic NOE cross peak assignments in unambiguous and ambiguous usages, and to create a prior distribution based on a physical force field with the generalized Born implicit water model. The sampling scheme for obtaining the posterior is performed by a hybrid Monte Carlo algorithm combined with Markov chain Monte Carlo (MCMC) by the Gibbs sampler, and molecular dynamics simulation (MD) for obtaining a canonical ensemble of conformations. Since it is not trivial to search the entire function space particularly for exploring the conformational prior due to the extraordinarily large conformation space of proteins, the replica exchange method is performed, in which several MCMC calculations with different temperatures run in parallel as replicas. It is shown with simulated data or randomly deleted experimental peaks that the new structure calculation method can provide accurate structures even with less peaks, especially compared with the conventional method. In particular, it dramatically improves in-cell structures of the proteins GB1 and TTHA1718 using exclusively information obtained in living Escherichia coli (E. coli) cells.

  9. Sensitivity-enhanced NMR reveals alterations in protein structure by cellular milieus.

    PubMed

    Frederick, Kendra K; Michaelis, Vladimir K; Corzilius, Björn; Ong, Ta-Chung; Jacavone, Angela C; Griffin, Robert G; Lindquist, Susan

    2015-10-22

    Biological processes occur in complex environments containing a myriad of potential interactors. Unfortunately, limitations on the sensitivity of biophysical techniques normally restrict structural investigations to purified systems, at concentrations that are orders of magnitude above endogenous levels. Dynamic nuclear polarization (DNP) can dramatically enhance the sensitivity of nuclear magnetic resonance (NMR) spectroscopy and enable structural studies in biologically complex environments. Here, we applied DNP NMR to investigate the structure of a protein containing both an environmentally sensitive folding pathway and an intrinsically disordered region, the yeast prion protein Sup35. We added an exogenously prepared isotopically labeled protein to deuterated lysates, rendering the biological environment "invisible" and enabling highly efficient polarization transfer for DNP. In this environment, structural changes occurred in a region known to influence biological activity but intrinsically disordered in purified samples. Thus, DNP makes structural studies of proteins at endogenous levels in biological contexts possible, and such contexts can influence protein structure. PMID:26456111

  10. NMR relaxation times of trabecular bone—reproducibility, relationships to tissue structure and effects of sample freezing

    NASA Astrophysics Data System (ADS)

    Prantner, Viktória; Isaksson, Hanna; Närväinen, Johanna; Lammentausta, Eveliina; Nissi, Mikko J.; Avela, Janne; Gröhn, Olli H. J.; Jurvelin, Jukka S.

    2010-12-01

    Nuclear magnetic resonance (NMR) spectroscopy provides a potential tool for non-invasive evaluation of the trabecular bone structure. The objective of this study was to determine the reproducibility of the NMR relaxation parameters (T2, Carr-Purcel-T2, T1ρ) for fat and water and relate those to the structural parameters obtained by micro-computed tomography (μCT). Especially, we aimed to evaluate the effect of freezing on the relaxation parameters. For storing bone samples, freezing is the standard procedure during which the biochemical and cellular organization of the bone marrow may be affected. Bovine trabecular bone samples were stored at -20 °C for 7 days and measured by NMR spectroscopy before and after freezing. The reproducibility of NMR relaxation parameters, as expressed by the coefficient of variation, ranged from 3.1% to 27.9%. In fresh samples, some correlations between NMR and structural parameters (Tb.N, Tb.Sp) were significant (e.g. the relaxation rate for T2 of fat versus Tb.Sp: r = -0.716, p < 0.01). Freezing did not significantly change the NMR relaxation times but the correlations between relaxation parameters and the μCT structural parameters were not statistically significant after freezing, suggesting some nonsystematic alterations of the marrow structure. Therefore, the use of frozen bone samples for NMR relaxation studies may provide inferior information about the trabecular bone structure.