Sample records for nod-like receptor nlr

  1. A genomic view of the NOD-like receptor family in teleost fish: Identification of a novel NLR subfamily in zebrafish

    USGS Publications Warehouse

    Laing, K.J.; Purcell, M.K.; Winton, J.R.; Hansen, J.D.

    2008-01-01

    Background. A large multigene family of NOD-like receptor (NLR) molecules have been described in mammals and implicated in immunity and apoptosis. Little information, however, exists concerning this gene family in non-mammalian taxa. This current study, therefore, provides an in-depth investigation of this gene family in lower vertebrates including extensive phylogenetic comparison of zebrafish NLRs with orthologs in tetrapods, and analysis of their tissue-specific expression. Results. Three distinct NLR subfamilies were identified by mining genome databases of various non-mammalian vertebrates; the first subfamily (NLR-A) resembles mammalian NODs, the second (NLR-B) resembles mammalian NALPs, while the third (NLR-C) appears to be unique to teleost fish. In zebrafish, NLR-A and NLR-B subfamilies contain five and six genes respectively. The third subfamily is large, containing several hundred NLR-C genes, many of which are predicted to encode a C-terminal B30.2 domain. This subfamily most likely evolved from a NOD3-like molecule. Gene predictions for zebrafish NLRs were verified using sequence derived from ESTs or direct sequencing of cDNA. Reverse-transcriptase (RT)-PCR analysis confirmed expression of representative genes from each subfamily in selected tissues. Conclusion. Our findings confirm the presence of multiple NLR gene orthologs, which form a large multigene family in teleostei. Although the functional significance of the three major NLR subfamilies is unclear, we speculate that conservation and abundance of NLR molecules in all teleostei genomes, reflects an essential role in cellular control, apoptosis or immunity throughout bony fish. ?? 2008 Laing et al; licensee BioMed Central Ltd.

  2. NOD-like receptor cooperativity in effector-triggered immunity.

    PubMed

    Griebel, Thomas; Maekawa, Takaki; Parker, Jane E

    2014-11-01

    Intracellular nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are basic elements of innate immunity in plants and animals. Whereas animal NLRs react to conserved microbe- or damage-associated molecular patterns, plant NLRs intercept the actions of diverse pathogen virulence factors (effectors). In this review, we discuss recent genetic and molecular evidence for functional NLR pairs, and discuss the significance of NLR self-association and heteromeric NLR assemblies in the triggering of downstream signaling pathways. We highlight the versatility and impact of cooperating NLR pairs that combine pathogen sensing with the initiation of defense signaling in both plant and animal immunity. We propose that different NLR receptor molecular configurations provide opportunities for fine-tuning resistance pathways and enhancing the host's pathogen recognition spectrum to keep pace with rapidly evolving microbial populations. Copyright © 2014. Published by Elsevier Ltd.

  3. What Do We Know About NOD-Like Receptors in Plant Immunity?

    PubMed

    Zhang, Xiaoxiao; Dodds, Peter N; Bernoux, Maud

    2017-08-04

    The first plant disease resistance (R) genes were identified and cloned more than two decades ago. Since then, many more R genes have been identified and characterized in numerous plant pathosystems. Most of these encode members of the large family of intracellular NLRs (NOD-like receptors), which also includes animal immune receptors. New discoveries in this expanding field of research provide new elements for our understanding of plant NLR function. But what do we know about plant NLR function today? Genetic, structural, and functional analyses have uncovered a number of commonalities and differences in pathogen recognition strategies as well as how NLRs are regulated and activate defense signaling, but many unknowns remain. This review gives an update on the latest discoveries and breakthroughs in this field, with an emphasis on structural findings and some comparison to animal NLRs, which can provide additional insights and paradigms in plant NLR function.

  4. NOD-Like Receptors: A Tail from Plants to Mammals Through Invertebrates.

    PubMed

    Pontillo, Alessandra; Crovella, Sergio

    2017-01-01

    NOD Like Receptors (NLRs) are the most abundant cytoplasmic immune receptors in plants and animals and they similarly act sensing pathogen invasion and activating immune response. Despite the fact that plant and mammals NLRs share homology.; with some protein structure differences.; for signalling pathway.; divergent evolution of the receptors has been hypothesized. Next generation genome sequencing has contributed to the description of NLRs in phyla others than plants and mammals and leads to new knowledge about NLRs evolution along phylogeny. Full comprehension of NLR-mediated immune response in plant could contribute to the understanding of animal NLRs physiology and/or pathology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Insights into the diversity of NOD-like receptors: Identification and expression analysis of NLRC3, NLRC5 and NLRX1 in rainbow trout.

    PubMed

    Álvarez, Claudio A; Ramírez-Cepeda, Felipe; Santana, Paula; Torres, Elisa; Cortés, Jimena; Guzmán, Fanny; Schmitt, Paulina; Mercado, Luis

    2017-07-01

    Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are efficient soluble intracellular sensors that activate defense mechanisms against pathogens. In teleost fish, the involvement of NLRs in the immune response is not well understood. However, recent work has evidenced the expression of different NLRs in response to some pathogen associated molecular patterns (PAMPs). In the present work, the cDNA sequence encoding three new NOD-like receptors were identified in Oncorhynchus mykiss, namely OmNLRC3, OmNLRC5 and OmNLRX1. Results showed that their sequences coded for proteins of 1135, 836 and 1010 amino acids, respectively. The deduced protein sequences of all receptors showed characteristic domains of this receptor family, such as leucine rich repeats and NACHT domain. Phylogenetic analysis revealed a high degree of identity with other NOD-like receptors and they are clustered into different families. Transcript expression analysis indicated that OmNLRs are constitutively expressed in liver, spleen, intestine, gill, skin and brain. OmNLR expression was upregulated in kidney and gills from rainbow trout in response to LPS. In order to give new insights into the function of these new NLR members, an in vitro model of immune stimulation was established using the rainbow trout cell line RTgill-W1. Expression analysis revealed that RTgill-W1 overexpressed proinflammatory cytokines in response to LPS and poly I:C alongside with a differential overexpression of OmNLRC3, OmNLRC5 and OmNLRX1. The expression of OmNLRC5 was further verified at the protein level by immunofluorescence. Finally, the effect of the overexpressed cytokines on the OmNLR expression by RTgill-W1 cells was assessed, suggesting a regulatory mechanism on OmNLRC3 expression. Overall, results suggest that O. mykiss NOD-like receptors could play a key role in the defense mechanisms of teleost through PAMP recognition. Future studies will focus on gills which could be related with a key

  6. Effects of Air Pollutants on Innate Immunity: The Role of Toll-like receptors and nucleotide-binding oligomerization domain-like receptors

    EPA Science Inventory

    Interactions between exposure to ambient air pollutants and respiratory pathogens have been shown to modify respiratory immune responses. Emerging data suggest key roles for toll-like receptor (TLR) and NOD-like receptor (NLR) signaling in pathogen-induced immune responses. Simil...

  7. Analysis of Post-transcriptional Gene Regulation of Nod-Like Receptors via the 3'UTR.

    PubMed

    Haneklaus, Moritz

    2016-01-01

    Innate immune signaling is the front line of defense against pathogens, leading to an appropriate response of immune cells upon activation of their pattern recognition receptors (PRRs) by microbial products, such as Toll-like receptors (TLRs). Apart from transcriptional control, gene expression in the innate immune system is also highly regulated at the post-transcriptional level. miRNA or RNA-binding protein can bind to the 3' untranslated region (UTR) of target mRNAs and affect their mRNA stability and translation efficiency, which ultimately affects the amount of protein that is produced. In recent years, a new group of PRRs, the Nod-like receptors (NLR) have been discovered. They often cooperate with TLR signaling to induce potent inflammatory responses. Many NLRs can form inflammasomes, which facilitate the production of the potent pro-inflammatory cytokine IL-1β and other inflammatory mediators. In contrast to TLRs, the importance of post-transcriptional regulators in the context of inflammasomes has not been well defined. This chapter describes a series of experimental approaches to determine the effect of post-transcriptional regulation for a gene of interest using the best-studied NLR, NLRP3, as an example. To start investigating post-transcriptional regulation, 3'UTR luciferase experiments can be performed to test if regulatory sequences in the 3'UTR are functional. An RNA pull-down approach followed by mass spectrometry provides an unbiased assay to identify RNA-binding proteins that target the 3'UTR. Candidate binding proteins can then be further validated by RNA immunoprecipitation (RNA-IP), where the candidate protein is isolated using a specific antibody and bound mRNAs are analyzed by qPCR.

  8. Signal Transduction by a Fungal NOD-Like Receptor Based on Propagation of a Prion Amyloid Fold

    PubMed Central

    Daskalov, Asen; Habenstein, Birgit; Martinez, Denis; Debets, Alfons J. M.; Sabaté, Raimon; Loquet, Antoine; Saupe, Sven J.

    2015-01-01

    In the fungus Podospora anserina, the [Het-s] prion induces programmed cell death by activating the HET-S pore-forming protein. The HET-s β-solenoid prion fold serves as a template for converting the HET-S prion-forming domain into the same fold. This conversion, in turn, activates the HET-S pore-forming domain. The gene immediately adjacent to het-S encodes NWD2, a Nod-like receptor (NLR) with an N-terminal motif similar to the elementary repeat unit of the β-solenoid fold. NLRs are immune receptors controlling cell death and host defense processes in animals, plants and fungi. We have proposed that, analogously to [Het-s], NWD2 can activate the HET-S pore-forming protein by converting its prion-forming region into the β-solenoid fold. Here, we analyze the ability of NWD2 to induce formation of the β-solenoid prion fold. We show that artificial NWD2 variants induce formation of the [Het-s] prion, specifically in presence of their cognate ligands. The N-terminal motif is responsible for this prion induction, and mutations predicted to affect the β-solenoid fold abolish templating activity. In vitro, the N-terminal motif assembles into infectious prion amyloids that display a structure resembling the β-solenoid fold. In vivo, the assembled form of the NWD2 N-terminal region activates the HET-S pore-forming protein. This study documenting the role of the β-solenoid fold in fungal NLR function further highlights the general importance of amyloid and prion-like signaling in immunity-related cell fate pathways. PMID:25671553

  9. Evolutionary Convergence and Divergence in NLR Function and Structure.

    PubMed

    Meunier, Etienne; Broz, Petr

    2017-10-01

    The recognition of cellular damage caused by either pathogens or abiotic stress is essential for host defense in all forms of life in the plant and animal kingdoms. The NOD-like receptors (NLRs) represent a large family of multidomain proteins that were initially discovered for their role in host defense in plants and vertebrates. Over recent years the wide distribution of NLRs among metazoans has become apparent and their origins have begun to emerge. Moreover, intense study of NLR function has shown that they play essential roles beyond pathogen recognition - in the regulation of antigen presentation, cell death, inflammation, and even in embryonic development. We summarize here the latest insights into NLR biology and discuss examples of converging and diverging evolution of NLR function and structure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. NLR Nod1 signaling promotes survival of BCR-engaged mature B cells through up-regulated Nod1 as a positive outcome

    PubMed Central

    Asano, Masanao; Li, Yue-Sheng; Núñez, Gabriel

    2017-01-01

    Although B cell development requires expression of the B cell antigen receptor (BCR), it remains unclear whether engagement of self-antigen provides a positive impact for most B cells. Here, we show that BCR engagement by self-ligand during development in vivo results in up-regulation of the Nod-like receptor member Nod1, which recognizes the products of intestinal commensal bacteria. In anti-thymocyte/Thy-1 autoreactive BCR knock-in mice lacking self–Thy-1 ligand, immunoglobulin light chain editing occurred, generating B cells with up-regulated Nod1, including follicular and marginal zone B cells with natural autoreactivity. This BCR editing with increased Nod1 resulted in preferential survival. In normal adult mice, most mature B cells are enriched for Nod1 up-regulated cells, and signaling through Nod1 promotes competitive survival of mature B cells. These findings demonstrate a role for microbial products in promoting survival of mature B cells through up-regulated Nod1, providing a positive effect of BCR engagement on development of most B cells. PMID:28878001

  11. Structure-informed insights for NLR functioning in plant immunity.

    PubMed

    Sukarta, Octavina C A; Slootweg, Erik J; Goverse, Aska

    2016-08-01

    To respond to foreign invaders, plants have evolved a cell autonomous multilayered immune system consisting of extra- and intracellular immune receptors. Nucleotide binding and oligomerization domain (NOD)-like receptors (NLRs) mediate recognition of pathogen effectors inside the cell and trigger a host specific defense response, often involving controlled cell death. NLRs consist of a central nucleotide-binding domain, which is flanked by an N-terminal CC or TIR domain and a C-terminal leucine-rich repeat domain (LRR). These multidomain proteins function as a molecular switch and their activity is tightly controlled by intra and inter-molecular interactions. In contrast to metazoan NLRs, the structural basis underlying NLR functioning as a pathogen sensor and activator of immune responses in plants is largely unknown. However, the first crystal structures of a number of plant NLR domains were recently obtained. In addition, biochemical and structure-informed analyses revealed novel insights in the cooperation between NLR domains and the formation of pre- and post activation complexes, including the coordinated activity of NLR pairs as pathogen sensor and executor of immune responses. Moreover, the discovery of novel integrated domains underscores the structural diversity of NLRs and provides alternative models for how these immune receptors function in plants. In this review, we will highlight these recent advances to provide novel insights in the structural, biochemical and molecular aspects involved in plant NLR functioning. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Hepatocytes express functional NOD1 and NOD2 receptors: A role for NOD1 in hepatocyte CC and CXC chemokine production

    PubMed Central

    Scott, Melanie J.; Chen, Christine; Sun, Qian; Billiar, Timothy R.

    2010-01-01

    Background & Aims NOD-like receptors are recently described cytosolic pattern recognition receptors. NOD1 and NOD2 are members of this family that recognize bacterial cell wall components, diaminopimelic acid and muramyl dipeptide, respectively. Both NOD1 and NOD2 have been associated with many inflammatory diseases, although their role in liver inflammation and infection has not been well studied. Materials and Methods We investigated the role of NOD receptors in mouse liver by assessing expression and activation of NOD1 and NOD2 in liver and primary isolated hepatocytes from C57BL/6 mice. Results Both NOD1 and NOD2 mRNA and protein were highly expressed in hepatocytes and liver. RIP2, the main signaling partner for NODs, was also expressed. Stimulation of hepatocytes with NOD1 ligand (C12-iEDAP) induced NFκB activation, activation of MAP kinases and expression of chemokines CCL5 (RANTES) and CXCL1 (KC). C12-iEDAP also synergized with interferon (IFN)γ to increase iNOS expression and production of nitric oxide. Despite activating NFκB, NOD1 ligand did not upregulate hepatocyte production of the acute phase proteins lipopolysaccharide binding protein, serum amyloid A, or soluble CD14 in cell culture supernatants, or upregulate mRNA expression of lipopolysaccharide binding protein, serum amyloid A, C-reactive protein, or serum amyloid P. NOD2 ligand (MDP) did not activate hepatocytes when given alone, but did synergize with Toll-like receptor ligands, lipopolysaccharide (LPS), and polyI:C to activate NFκB and MAPK. Conclusions All together these data suggest an important role for hepatocyte NOD1 in attracting leukocytes to the liver during infection and for hepatic NLRs to augment innate immune responses to pathogens. PMID:20615568

  13. Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2.

    PubMed

    Cario, E

    2005-08-01

    Toll-like receptors (TLR) and NOD2 are emerging as key mediators of innate host defence in the intestinal mucosa, crucially involved in maintaining mucosal as well as commensal homeostasis. Recent observations suggest new (patho-) physiological mechanisms of how functional versus dysfunctional TLRx/NOD2 pathways may oppose or favour inflammatory bowel disease (IBD). In health, TLRx signalling protects the intestinal epithelial barrier and confers commensal tolerance whereas NOD2 signalling exerts antimicrobial activity and prevents pathogenic invasion. In disease, aberrant TLRx and/or NOD2 signalling may stimulate diverse inflammatory responses leading to acute and chronic intestinal inflammation with many different clinical phenotypes.

  14. Coding variants in NOD-like receptors: An association study on risk and survival of colorectal cancer.

    PubMed

    Huhn, Stefanie; da Silva Filho, Miguel I; Sanmuganantham, Tharmila; Pichulik, Tica; Catalano, Calogerina; Pardini, Barbara; Naccarati, Alessio; Polakova-Vymetálkova, Veronika; Jiraskova, Katerina; Vodickova, Ludmila; Vodicka, Pavel; Löffler, Markus W; Courth, Lioba; Wehkamp, Jan; Din, Farhat V N; Timofeeva, Maria; Farrington, Susan M; Jansen, Lina; Hemminki, Kari; Chang-Claude, Jenny; Brenner, Hermann; Hoffmeister, Michael; Dunlop, Malcolm G; Weber, Alexander N R; Försti, Asta

    2018-01-01

    Nod-like receptors (NLRs) are important innate pattern recognition receptors and regulators of inflammation or play a role during development. We systematically analysed 41 non-synonymous single nucleotide polymorphisms (SNPs) in 21 NLR genes in a Czech discovery cohort of sporadic colorectal cancer (CRC) (1237 cases, 787 controls) for their association with CRC risk and survival. Five SNPs were found to be associated with CRC risk and eight with survival at 5% significance level. In a replication analysis using data of two large genome-wide association studies (GWASs) from Germany (DACHS: 1798 cases and 1810 controls) and Scotland (2210 cases and 9350 controls) the associations found in the Czech discovery set were not confirmed. However, expression analysis in human gut-related tissues and immune cells revealed that the NLRs associated with CRC risk or survival in the discovery set were expressed in primary human colon or rectum cells, CRC tissue and/or cell lines, providing preliminary evidence for a potential involvement of NLRs in general in CRC development and/or progression. Most interesting was the finding that the enigmatic development-related NLRP5 (also known as MATER) was not expressed in normal colon tissue but in colon cancer tissue and cell lines. Future studies may show whether regulatory variants instead of coding variants might affect the expression of NLRs and contribute to CRC risk and survival.

  15. Molecular cloning and functional characterization of duck nucleotide-binding oligomerization domain 1 (NOD1).

    PubMed

    Li, Huilin; Jin, Hui; Li, Yaqian; Liu, Dejian; Foda, Mohamed Frahat; Jiang, Yunbo; Luo, Rui

    2017-09-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an imperative cytoplasmic pattern recognition receptor (PRR) and considered as a key member of the NOD-like receptor (NLR) family which plays a critical role in innate immunity through sensing microbial components derived from bacterial peptidoglycan. In the current study, the full-length of duck NOD1 (duNOD1) cDNA from duck embryo fibroblasts (DEFs) was cloned. Multiple sequence alignment and phylogenetic analysis demonstrated that duNOD1 exhibited a strong evolutionary relationship with chicken and rock pigeon NOD1. Tissue-specific expression analysis showed that duNOD1 was widely distributed in various organs, with the highest expression observed in the liver. Furthermore, duNOD1 overexpression induced NF-κB activation in DEFs and the CARD domain is crucial for duNOD1-mediated NF-κB activation. In addition, silencing the duNOD1 decreased the activity of NF-κB in DEFs stimulated by iE-DAP. Overexpression of duNOD1 significantly increased the expression of TNF-α, IL-6, and RANTES in DEFs. These findings highlight the crucial role of duNOD1 as an intracellular sensor in duck innate immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pattern-Recognition Receptors and Gastric Cancer

    PubMed Central

    Castaño-Rodríguez, Natalia; Kaakoush, Nadeem O.; Mitchell, Hazel M.

    2014-01-01

    Chronic inflammation has been associated with an increased risk of several human malignancies, a classic example being gastric adenocarcinoma (GC). Development of GC is known to result from infection of the gastric mucosa by Helicobacter pylori, which initially induces acute inflammation and, in a subset of patients, progresses over time to chronic inflammation, gastric atrophy, intestinal metaplasia, dysplasia, and finally intestinal-type GC. Germ-line encoded receptors known as pattern-recognition receptors (PRRs) are critical for generating mature pro-inflammatory cytokines that are crucial for both Th1 and Th2 responses. Given that H. pylori is initially targeted by PRRs, it is conceivable that dysfunction within genes of this arm of the immune system could modulate the host response against H. pylori infection, and subsequently influence the emergence of GC. Current evidence suggests that Toll-like receptors (TLRs) (TLR2, TLR3, TLR4, TLR5, and TLR9), nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) (NOD1, NOD2, and NLRP3), a C-type lectin receptor (DC-SIGN), and retinoic acid-inducible gene (RIG)-I-like receptors (RIG-I and MDA-5), are involved in both the recognition of H. pylori and gastric carcinogenesis. In addition, polymorphisms in genes involved in the TLR (TLR1, TLR2, TLR4, TLR5, TLR9, and CD14) and NLR (NOD1, NOD2, NLRP3, NLRP12, NLRX1, CASP1, ASC, and CARD8) signaling pathways have been shown to modulate the risk of H. pylori infection, gastric precancerous lesions, and/or GC. Further, the modulation of PRRs has been suggested to suppress H. pylori-induced inflammation and enhance GC cell apoptosis, highlighting their potential relevance in GC therapeutics. In this review, we present current advances in our understanding of the role of the TLR and NLR signaling pathways in the pathogenesis of GC, address the involvement of other recently identified PRRs in GC, and discuss the potential implications of PRRs in GC immunotherapy

  17. An E3 Ligase Affects the NLR Receptor Stability and Immunity to Powdery Mildew1

    PubMed Central

    Chang, Cheng; Gu, Cheng; Tang, Sanyuan

    2016-01-01

    Following the detection of pathogen cognate effectors, plant Nod-like receptors (NLRs) trigger isolate-specific immunity that is generally associated with cell death. The regulation of NLR stability is important to ensure effective immunity. In barley (Hordeum vulgare), the allelic Mildew locus A (MLA) receptors mediate isolate-specific disease resistance against powdery mildew fungus (Blumeria graminis f. sp. hordei). Currently, how MLA stability is controlled remains unknown. Here, we identified an MLA-interacting RING-type E3 ligase, MIR1, that interacts with several MLAs. We showed that the carboxyl-terminal TPR domain of MIR1 mediates the interaction with the coiled-coil domain-containing region of functional MLAs, such as MLA1, MLA6, and MLA10, but not with that of the nonfunctional MLA18-1. MIR1 can ubiquitinate the amino-terminal region of MLAs in vitro and promotes the proteasomal degradation of MLAs in vitro and in planta. Both proteasome inhibitor treatment and virus-induced gene silencing-mediated MIR1 silencing significantly increased MLA abundance in barley transgenic lines. Furthermore, overexpression of MIR1 specifically compromised MLA-mediated disease resistance in barley, while coexpression of MIR1 and MLA10 attenuated MLA10-induced cell death signaling in Nicotiana benthamiana. Together, our data reveal a mechanism for the control of the stability of MLA immune receptors and for the attenuation of MLA-triggered defense signaling by a RING-type E3 ligase via the ubiquitin proteasome system. PMID:27780896

  18. Nod2 deficiency protects mice from cholestatic liver disease by increasing renal excretion of bile acids

    PubMed Central

    Wang, Lirui; Hartmann, Phillipp; Haimerl, Michael; Bathena, Sai P.; Sjöwall, Christopher; Almer, Sven; Alnouti, Yazen; Hofmann, Alan F.; Schnabl, Bernd

    2014-01-01

    Background & aims Chronic liver disease is characterized by fibrosis that may progress to cirrhosis. Nucleotide oligomerization domain 2 (Nod2), a member of the Nod-like receptor (NLR) family of intracellular immune receptors, plays an important role in the defense against bacterial infection through binding to the ligand muramyl dipeptide (MDP). Here, we investigated the role of Nod2 in the development of liver fibrosis. Methods We studied experimental cholestatic liver disease induced by bile duct ligation or toxic liver disease induced by carbon tetrachloride in wild type and Nod2−/− mice. Results Nod2 deficiency protected mice from cholestatic but not toxin-induced liver injury and fibrosis. Most notably, the hepatic bile acid concentration was lower in Nod2−/− mice than wild type mice following bile duct ligation for 3 weeks. In contrast to wild type mice, Nod2−/− mice had increased urinary excretion of bile acids, including sulfated bile acids, and an upregulation of the bile acid efflux transporters MRP2 and MRP4 in tubular epithelial cells of the kidney. MRP2 and MRP4 were downregulated by IL-1β in a Nod2 dependent fashion. Conclusions Our findings indicate that Nod2 deficiency protects mice from cholestatic liver injury and fibrosis through enhancing renal excretion of bile acids that in turn contributes to decreased concentration of bile acids in the hepatocyte. PMID:24560660

  19. NOD2 Receptor is Expressed in Platelets and Enhances Platelet Activation and Thrombosis

    PubMed Central

    Zhang, Si; Zhang, Shenghui; Hu, Liang; Zhai, Lili; Xue, Ruyi; Ye, Jianqin; Chen, Leilei; Cheng, Guanjun; Mruk, Jozef; Kunapuli, Satya P.; Ding, Zhongren

    2015-01-01

    Background Pattern recognition receptor NOD2 (nucleotide binding oligomerization domain 2) is well investigated in immunity, its expression and function in platelets has never been explored. Method and Results Using RT-PCR and Western blot we show that both human and mouse platelets express NOD2, and its agonist MDP induced NOD2 activation as evidenced by receptor dimerization. NOD2 activation potentiates platelet aggregation and secretion induced by low concentration of thrombin or collagen, as well as clot retraction. These potentiating effects of MDP were not seen in platelets from NOD2-deficient mice. Plasma from septic patients also potentiates platelet aggregation induced by thrombin or collagen NOD2-dependently. Using intravital microscopy, we found that MDP administration accelerated in vivo thrombosis in FeCl3-injured mesenteric arteriole thrombosis mouse model. Platelet depletion and transfusion experiments confirmed that NOD2 from platelets contributes to the in vivo thrombosis in mice. NOD2 activation also accelerates platelet-dependent hemostasis. We further found that platelets express RIP2 (receptor-interacting protein 2), and provided evidences suggesting that MAPK and NO/sGC/cGMP/PGK pathways downstream of RIP2 mediate the role of NOD2 in platelets. Finally, MDP stimulates proinflammatory cytokine IL-1β maturation and accumulation in human and mouse platelets NOD2-dependently. Conclusions NOD2 is expressed in platelets and functions in platelet activation and arterial thrombosis, possibly during infection. To our knowledge, this is the first study on NOD-like receptors in platelets which links thrombotic events to inflammation. PMID:25825396

  20. The Tandem CARDs of NOD2: Intramolecular Interactions and Recognition of RIP2

    PubMed Central

    Fridh, Veronica; Rittinger, Katrin

    2012-01-01

    Caspase recruitment domains (CARDs) are homotypic protein interaction modules that link the stimulus-dependent assembly of large signaling platforms such as inflammasomes to the activation of downstream effectors that often include caspases and kinases and thereby play an important role in the regulation of inflammatory and apoptotic signaling pathways. NOD2 belongs to the NOD-like (NLR) family of intracellular pattern recognition receptors (PRR) and induces activation of the NF-κB pathway in response to the recognition of bacterial components. This process requires the specific recognition of the CARD of the protein kinase RIP2 by the tandem CARDs of NOD2. Here we demonstrate that the tandem CARDs of NOD2 are engaged in an intramolecular interaction that is important for the structural stability of this region. Using a combination of ITC and pull-down experiments we identify distinct surface areas that are involved in the intramolecular tandem CARD interaction and the interaction with the downstream effector RIP2. Our findings indicate that while CARDa of NOD2 might be the primary binding partner of RIP2 the two CARDs of NOD2 do not act independently of one another but may cooperate to from a binding surface that is distinct from that of single CARDs. PMID:22470564

  1. Naloxone inhibits nod-like receptor protein 3 inflammasome.

    PubMed

    Lin, Han-Yu; Chang, Ya-Ying; Kao, Ming-Chang; Huang, Chun-Jen

    2017-11-01

    Naloxone, an opioid receptor antagonist, possesses potent anti-inflammation effects. We previously confirmed the effects of naloxone on inhibiting upregulation of inflammatory cytokine interleukin-1β (IL-1β). Production of mature form IL-1β is mediated by the nod-like receptor protein 3 (NLRP3) inflammasome, a multiprotein complex composed of NLRP3, and the adaptor protein apoptosis-associated speck-like protein contains a caspase recruitment domain (ASC). We elucidated whether naloxone could inhibit the activation of NLRP3 inflammasome. To induce IL-1β production and NLRP3 inflammasome activation, the human monocytic leukemia cell line THP-1 cells were first primed with lipopolysaccharide (LPS, 1 μg/mL) and then activated with adenosine triphosphate (ATP, 1 mM). For NLRP3 transcription, THP-1 cells were only treated with LPS priming. Enzyme-link immunosorbent assay data revealed that the concentration of IL-1β in THP-1 cells treated with LPS plus ATP was significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (0.1 μM) (P < 0.001). Real-time quantitative reverse transcription and polymerase chain reaction data also revealed that NLRP3 mRNA concentration in THP-1 cells treated with LPS was significantly higher than that in THP-1 cells treated with LPS plus naloxone (P = 0.001). ASC speck formation, that is, ASC assembles into a large protein complex, is an indicator for NLRP3 inflammasome activation. Our data revealed that the percentage of cells containing ASC specks in THP-1 cells treated with LPS plus ATP was also significantly higher than that in THP-1 cells treated with LPS plus ATP plus naloxone (P < 0.001). Naloxone inhibits NLRP3 inflammasome activation. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. NLR-Dependent Regulation of Inflammation in Multiple Sclerosis

    PubMed Central

    Gharagozloo, Marjan; Gris, Katsiaryna V.; Mahvelati, Tara; Amrani, Abdelaziz; Lukens, John R.; Gris, Denis

    2018-01-01

    Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) associated with inappropriate activation of lymphocytes, hyperinflammatory responses, demyelination, and neuronal damage. In the past decade, a number of biological immunomodulators have been developed that suppress the peripheral immune responses and slow down the progression of the disease. However, once the inflammation of the CNS has commenced, it can cause serious permanent neuronal damage. Therefore, there is a need for developing novel therapeutic approaches that control and regulate inflammatory responses within the CNS. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) are intracellular regulators of inflammation expressed by many cell types within the CNS. They redirect multiple signaling pathways initiated by pathogens and molecules released by injured tissues. NLR family members include positive regulators of inflammation, such as NLRP3 and NLRC4 and anti-inflammatory NLRs, such as NLRX1 and NLRP12. They exert immunomodulatory effect at the level of peripheral immune responses, including antigen recognition and lymphocyte activation and differentiation. Also, NLRs regulate tissue inflammatory responses. Understanding the molecular mechanisms that are placed at the crossroad of innate and adaptive immune responses, such as NLR-dependent pathways, could lead to the discovery of new therapeutic targets. In this review, we provide a summary of the role of NLRs in the pathogenesis of MS. We also summarize how anti-inflammatory NLRs regulate the immune response within the CNS. Finally, we speculate the therapeutic potential of targeting NLRs in MS. PMID:29403486

  3. Animal NLRs provide structural insights into plant NLR function.

    PubMed

    Bentham, Adam; Burdett, Hayden; Anderson, Peter A; Williams, Simon J; Kobe, Bostjan

    2017-03-01

    The plant immune system employs intracellular NLRs (nucleotide binding [NB], leucine-rich repeat [LRR]/nucleotide-binding oligomerization domain [NOD]-like receptors) to detect effector proteins secreted into the plant cell by potential pathogens. Activated plant NLRs trigger a range of immune responses, collectively known as the hypersensitive response (HR), which culminates in death of the infected cell. Plant NLRs show structural and functional resemblance to animal NLRs involved in inflammatory and innate immune responses. Therefore, knowledge of the activation and regulation of animal NLRs can help us understand the mechanism of action of plant NLRs, and vice versa. This review provides an overview of the innate immune pathways in plants and animals, focusing on the available structural and biochemical information available for both plant and animal NLRs. We highlight the gap in knowledge between the animal and plant systems, in particular the lack of structural information for plant NLRs, with crystal structures only available for the N-terminal domains of plant NLRs and an integrated decoy domain, in contrast to the more complete structures available for animal NLRs. We assess the similarities and differences between plant and animal NLRs, and use the structural information on the animal NLR pair NAIP/NLRC4 to derive a plausible model for plant NLR activation. Signalling by cooperative assembly formation (SCAF) appears to operate in most innate immunity pathways, including plant and animal NLRs. Our proposed model of plant NLR activation includes three key steps: (1) initially, the NLR exists in an inactive auto-inhibited state; (2) a combination of binding by activating elicitor and ATP leads to a structural rearrangement of the NLR; and (3) signalling occurs through cooperative assembly of the resistosome. Further studies, structural and biochemical in particular, will be required to provide additional evidence for the different features of this model and

  4. Toll-Like Receptor 3 Is Critical for Coxsackievirus B4-Induced Type 1 Diabetes in Female NOD Mice

    PubMed Central

    Thuma, Jean R.; Courreges, Maria C.; Benencia, Fabian; James, Calvin B.L.; Malgor, Ramiro; Kantake, Noriko; Mudd, William; Denlinger, Nathan; Nolan, Bret; Wen, Li; Schwartz, Frank L.

    2015-01-01

    Group B coxsackieviruses (CVBs) are involved in triggering some cases of type 1 diabetes mellitus (T1DM). However, the molecular mechanism(s) responsible for this remain elusive. Toll-like receptor 3 (TLR3), a receptor that recognizes viral double-stranded RNA, is hypothesized to play a role in virus-induced T1DM, although this hypothesis is yet to be substantiated. The objective of this study was to directly investigate the role of TLR3 in CVB-triggered T1DM in nonobese diabetic (NOD) mice, a mouse model of human T1DM that is widely used to study both spontaneous autoimmune and viral-induced T1DM. As such, we infected female wild-type (TLR3+/+) and TLR3 knockout (TLR3−/−) NOD mice with CVB4 and compared the incidence of diabetes in CVB4-infected mice with that of uninfected counterparts. We also evaluated the islets of uninfected and CVB4-infected wild-type and TLR3 knockout NOD mice by immunohistochemistry and insulitis scoring. TLR3 knockout mice were markedly protected from CVB4-induced diabetes compared with CVB4-infected wild-type mice. CVB4-induced T-lymphocyte-mediated insulitis was also significantly less severe in TLR3 knockout mice compared with wild-type mice. No differences in insulitis were observed between uninfected animals, either wild-type or TLR3 knockout mice. These data demonstrate for the first time that TLR3 is 1) critical for CVB4-induced T1DM, and 2) modulates CVB4-induced insulitis in genetically prone NOD mice. PMID:25422874

  5. The machinery of Nod-like receptors: refining the paths to immunity and cell death.

    PubMed

    Saleh, Maya

    2011-09-01

    One of the fundamental aspects of the innate immune system is its capacity to discriminate between self and non-self or altered self, and to quickly respond by eliciting effector mechanisms that act in concert to restore normalcy. This capacity is determined by a set of evolutionarily conserved pattern recognition receptors (PRRs) that sense the presence of microbial motifs or endogenous danger signals, including tissue damage, cellular transformation or metabolic perturbation, and orchestrate the nature, duration and intensity of the innate immune response. Nod-like receptors (NLRs), a group of intracellular PRRs, are particularly essential as evident by the high incidence of genetic variations in their genes in various diseases of homeostasis. Here, I overview the signaling mechanisms of NLRs and discuss the mounting evidence of evolutionary conservation between their pathways and the cell death machinery. I also describe their effector functions that link the sensing of danger to the induction of inflammation, autophagy or cell death. © 2011 John Wiley & Sons A/S.

  6. Constitutive and UV-B modulated transcription of Nod-like receptors and their functional partners in human corneal epithelial cells.

    PubMed

    Benko, Szilvia; Tozser, Jozsef; Miklossy, Gabriella; Varga, Aliz; Kadas, Janos; Csutak, Adrienne; Berta, Andras; Rajnavolgyi, Eva

    2008-08-29

    To determine the transcription pattern of Nod-like receptors (NLRs) and inflammasome components (apoptosis-associated speck-like protein containing a CARD [ASC], CARD inhibitor of NFkB-activating ligands [Cardinal], and caspase-1) in human corneal epithelial cells obtained from healthy individuals undergoing photorefractive keratectomy and in immortalized human corneal epithelial cells (HCE-T). Human corneal epithelial cells were taken from the eyes of healthy individuals by epithelial ablation for photorefractive keratectomy (PRK). The SV-40 immortalized human corneal epithelial cell line (HCE-T) was cultured. mRNA obtained from the cells was reverse transcribed and subjected to quantitative real-time polymerase chain reaction (PCR) measurements. Protein obtained from HCE-T cells was studied using the western blot technique. HCE-T cells were irradiated by UV-B light or treated with ultrapure peptidoglycan, and the effects were studied at the mRNA and protein level while the supernatant of the cells was tested for the presence of various cytokines by using enzyme-linked immunosorbent assay (ELISA) methods. mRNA levels of the studied proteins in the primary cells of the donors were similar in most cases. The transcription of Nod1, Nod2, NLRX1, Nalp1, and Cardinal was similar in the two cell types. While the expression of Nalp3 and Nalp10 was higher in HCE-T cells, ASC and caspase-1 showed higher transcription levels in the primary cells. NLRC5 and Nalp7 were hardly detectable in the studied cells. Functionality of the Nod1/Nod2 system was demonstrated by increased phosphorylation of IkB upon Nod1/Nod2 agonist ultrapure peptidoglycan treatment in HCE-T cells. While UV-B irradiation exerted a downregulation of both Nalp and Nod mRNAs as well as those of inflammasome components in HCE-T cells, longer incubation of the cells after exposure resulted in recovery or upregulation only of the Nalp sensors. At the protein level, we detected a short isoform of Nalp1 and its

  7. Apoptosis, Toll-like, RIG-I-like and NOD-like Receptors Are Pathways Jointly Induced by Diverse Respiratory Bacterial and Viral Pathogens

    PubMed Central

    Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.

    2017-01-01

    Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903

  8. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population

    PubMed Central

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2016-01-01

    Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat. PMID:27189991

  9. Functional diversification of structurally alike NLR proteins in plants.

    PubMed

    Chakraborty, Joydeep; Jain, Akansha; Mukherjee, Dibya; Ghosh, Suchismita; Das, Sampa

    2018-04-01

    In due course of evolution many pathogens alter their effector molecules to modulate the host plants' metabolism and immune responses triggered upon proper recognition by the intracellular nucleotide-binding oligomerization domain containing leucine-rich repeat (NLR) proteins. Likewise, host plants have also evolved with diversified NLR proteins as a survival strategy to win the battle against pathogen invasion. NLR protein indeed detects pathogen derived effector proteins leading to the activation of defense responses associated with programmed cell death (PCD). In this interactive process, genome structure and plasticity play pivotal role in the development of innate immunity. Despite being quite conserved with similar biological functions in all eukaryotes, the intracellular NLR immune receptor proteins happen to be structurally distinct. Recent studies have made progress in identifying transcriptional regulatory complexes activated by NLR proteins. In this review, we attempt to decipher the intracellular NLR proteins mediated surveillance across the evolutionarily diverse taxa, highlighting some of the recent updates on NLR protein compartmentalization, molecular interactions before and after activation along with insights into the finer role of these receptor proteins to combat invading pathogens upon their recognition. Latest information on NLR sensors, helpers and NLR proteins with integrated domains in the context of plant pathogen interactions are also discussed. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors.

    PubMed

    Vijayrajratnam, Sukhithasri; Pushkaran, Anju Choorakottayil; Balakrishnan, Aathira; Vasudevan, Anil Kumar; Biswas, Raja; Mohan, Chethampadi Gopi

    2017-07-27

    Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso -diaminopimelic acid ( meso DAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  11. Nod-like receptor protein 1 inflammasome mediates neuron injury under high glucose.

    PubMed

    Meng, Xian-Fang; Wang, Xiao-Lan; Tian, Xiu-Juan; Yang, Zhi-Hua; Chu, Guang-Pin; Zhang, Jing; Li, Man; Shi, Jing; Zhang, Chun

    2014-04-01

    Diabetic encephalopathy is one of the most common complications of diabetes. Inflammatory events during diabetes may be an important mechanism of diabetic encephalopathy. Inflammasome is a multiprotein complex consisting of Nod-like receptor proteins (NLRPs), apoptosis-associated speck-like protein (ASC), and caspase 1 or 5, which functions to switch on the inflammatory process and the release of inflammatory factors. The present study hypothesized that the formation and activation of NLRP1 inflammasome turns on neuroinflammation and neuron injury during hyperglycemia. The results demonstrated that the levels of interleukin-1 beta (IL-1β) were increased in the cortex of streptozocin (STZ)-induced diabetic rats. The levels of mature IL-1β and IL-18 were also elevated in culture medium of neurons treated with high glucose (50 mM). The expression of three essential components of the NLRP1 inflammasome complex, namely, NLRP1, ASC, and caspase 1, was also upregulated in vivo and in vitro under high glucose. Silencing the ASC gene prevented the caspase-1 activation, and inhibiting caspase 1 activity blocked hyperglycemia-induced release of inflammatory factors and neuron injury. Moreover, we found that pannexin 1 mediated the actvitation of NLRP1 inflammasome under high glucose. These results suggest that hyperglycemia induces neuroinflammation through activation of NLRP1 inflammasome, which represents a novel mechanism of diabetes-associated neuron injury.

  12. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population.

    PubMed

    Stam, Remco; Scheikl, Daniela; Tellier, Aurélien

    2016-06-02

    Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. Dancing with the Stars: An Asterid NLR Family.

    PubMed

    Rathjen, John P; Dodds, Peter N

    2017-12-01

    Wu and co-workers show how a network of sensor and helper NOD-like receptor proteins (NLRs) act together to confer robust resistance to diverse plant pathogens. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  14. NOD1 downregulates intestinal serotonin transporter and interacts with other pattern recognition receptors.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Plaza, Miguel A; Arias, Maykel; Alcalde, Ana I; Mesonero, José E

    2018-05-01

    Serotonin (5-HT) is an essential gastrointestinal modulator whose effects regulate the intestinal physiology. 5-HT effects depend on extracellular 5-HT bioavailability, which is controlled by the serotonin transporter (SERT) expressed in both the apical and basolateral membranes of enterocytes. SERT is a critical target for regulating 5-HT levels and consequently, modulating the intestinal physiology. The deregulation of innate immune receptors has been extensively studied in inflammatory bowel diseases (IBD), where an exacerbated defense response to commensal microbiota is observed. Interestingly, many innate immune receptors seem to affect the serotonergic system, demonstrating a new way in which microbiota could modulate the intestinal physiology. Therefore, our aim was to analyze the effects of NOD1 activation on SERT function, as well as NOD1's interaction with other immune receptors such as TLR2 and TLR4. Our results showed that NOD1 activation inhibits SERT activity and expression in Caco-2/TC7 cells through the extracellular signal-regulated kinase (ERK) signaling pathway. A negative feedback between 5-HT and NOD1 expression was also described. The results showed that TLR2 and TLR4 activation seems to regulate NOD1 expression in Caco-2/TC7 cells. To assess the extend of cross-talk between NOD1 and TLRs, NOD1 expression was measured in the intestinal tract (ileum and colon) of wild type mice and mice with individual knockouts of TLR2, and TLR4 as well as double knockout TLR2/TLR4 mice. Hence, we demonstrate that NOD1 acts on the serotonergic system decreasing SERT activity and molecular expression. Additionally, NOD1 expression seems to be modulated by 5-HT and other immune receptors as TLR2 and TLR4. This study could clarify the relation between both the intestinal serotonergic system and innate immune system, and their implications in intestinal inflammation. © 2017 Wiley Periodicals, Inc.

  15. Molecular characterization of nucleotide binding and oligomerization domain (NOD)-2, analysis of its inductive expression and down-stream signaling following ligands exposure and bacterial infection in rohu (Labeo rohita).

    PubMed

    Swain, B; Basu, M; Sahoo, B R; Maiti, N K; Routray, P; Eknath, A E; Samanta, M

    2012-01-01

    Nucleotide-binding and oligomerization domain (NOD)-2 is a cytoplasmic pattern recognition receptor (PRR) and is a member of NOD like receptor (NLR) family. It senses a wide range of bacteria and viruses or their products and is involved in innate immune responses. In this report, NOD-2 gene was cloned and characterized from rohu (Labeo rohita) which is highly commercially important fish species in the Indian subcontinent. The full length rohu NOD-2 (rNOD-2) cDNA comprised of 3176 bp with a single open reading frame (ORF) of 2949 bp encoding a polypeptide of 982 amino acids (aa) with an estimated molecular mass of 109.65 kDa. The rNOD-2 comprised two N-terminal CARD domains (at 4-91 aa and 111-200 aa), one NACHT domain (at 271-441 aa) and seven C-terminal leucine rich repeat (LRR) regions. Phylogenetically, rNOD-2 was closely related to grass carp NOD-2 (gcNOD2) and exhibited significant similarity (94.2%) and identity (88.6%) in their amino acids. Ontogeny analysis of rNOD-2 showed its constitutive expression across the developmental stages, and highlighted the embryonic innate defense system in fish. Tissue specific analysis of rNOD-2 by quantitative real-time PCR (qRT-PCR) revealed its wide distribution; highest expression was in liver followed by blood. In response to PGN and LTA stimulation, Aeromonas hydrophila and Edwardsiella tarda infection, and poly I:C treatment, expression of rNOD-2 and its associated downstream molecules RICK and IFN-γ were significantly enhanced in the treated fish compared to control. These findings suggested the key role of NOD-2 in augmenting innate immunity in fish in response to bacterial and viral infection. This study may be helpful for the development of preventive measures against infectious diseases in fish. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Evolution and Conservation of Plant NLR Functions

    PubMed Central

    Jacob, Florence; Vernaldi, Saskia; Maekawa, Takaki

    2013-01-01

    In plants and animals, nucleotide-binding domain and leucine-rich repeats (NLR)-containing proteins play pivotal roles in innate immunity. Despite their similar biological functions and protein architecture, comparative genome-wide analyses of NLRs and genes encoding NLR-like proteins suggest that plant and animal NLRs have independently arisen in evolution. Furthermore, the demonstration of interfamily transfer of plant NLR functions from their original species to phylogenetically distant species implies evolutionary conservation of the underlying immune principle across plant taxonomy. In this review we discuss plant NLR evolution and summarize recent insights into plant NLR-signaling mechanisms, which might constitute evolutionarily conserved NLR-mediated immune mechanisms. PMID:24093022

  17. Differential Regulation of Two-Tiered Plant Immunity and Sexual Reproduction by ANXUR Receptor-Like Kinases.

    PubMed

    Mang, Hyunggon; Feng, Baomin; Hu, Zhangjian; Boisson-Dernier, Aurélien; Franck, Christina M; Meng, Xiangzong; Huang, Yanyan; Zhou, Jinggeng; Xu, Guangyuan; Wang, Taotao; Shan, Libo; He, Ping

    2017-12-01

    Plants have evolved two tiers of immune receptors to detect infections: cell surface-resident pattern recognition receptors (PRRs) that sense microbial signatures and intracellular nucleotide binding domain leucine-rich repeat (NLR) proteins that recognize pathogen effectors. How PRRs and NLRs interconnect and activate the specific and overlapping plant immune responses remains elusive. A genetic screen for components controlling plant immunity identified ANXUR1 (ANX1), a malectin-like domain-containing receptor-like kinase, together with its homolog ANX2, as important negative regulators of both PRR- and NLR-mediated immunity in Arabidopsis thaliana ANX1 constitutively associates with the bacterial flagellin receptor FLAGELLIN-SENSING2 (FLS2) and its coreceptor BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1). Perception of flagellin by FLS2 promotes ANX1 association with BAK1, thereby interfering with FLS2-BAK1 complex formation to attenuate PRR signaling. In addition, ANX1 complexes with the NLR proteins RESISTANT TO PSEUDOMONAS SYRINGAE2 (RPS2) and RESISTANCE TO P. SYRINGAE PV MACULICOLA1. ANX1 promotes RPS2 degradation and attenuates RPS2-mediated cell death. Surprisingly, a mutation that affects ANX1 function in plant immunity does not disrupt its function in controlling pollen tube growth during fertilization. Our study thus reveals a molecular link between PRR and NLR protein complexes that both associate with cell surface-resident ANX1 and uncovers uncoupled functions of ANX1 and ANX2 during plant immunity and sexual reproduction. © 2017 American Society of Plant Biologists. All rights reserved.

  18. RIG-I Like Receptors and Their Signaling Crosstalk in the Regulation of Antiviral Immunity

    PubMed Central

    Ramos, Hilario J; Gale, Michael

    2011-01-01

    During virus infection, multiple immune signaling pathways are triggered, both within the host cell and bystander cells of an infected tissue. These pathways act in concert to mediate innate antiviral immunity and to initiate the inflammatory response against infection. The RIG-I-like receptor (RLR) family of pattern recognition receptors (PRRs) is a group of cytosolic RNA helicase proteins that can identify viral RNA as nonself via binding to pathogen associated molecular patter (PAMP) motifs within RNA ligands that accumulate during virus infection. This interaction then leads to triggering of an innate antiviral response within the infected cells through RLR induction of downstream effector molecules such as type I interferon (IFN) and other pro-inflammatory cytokines that serve to induce antiviral and inflammatory gene expression within the local tissue. Cellular regulation of RLR signaling is a critical process that can direct the outcome of infection and is essential for governance of the overall immune response and avoidance of immune toxicity. Mechanisms of positive and negative regulation of RLR signaling have been identified that include signaling crosstalk between RLR pathways and Nuclear Oligomerization Domain (NOD)-Like Receptor (NLR) pathways and Caspase networks. Furthermore, many viruses have evolved mechanisms to target these pathways to promote enhanced replication and spread within the host. These virus-host interactions therefore carry important consequences for host immunity and viral pathogenesis. Understanding the pivotal role of RLRs in immune regulation and signaling crosstalk in antiviral immunity may provide new insights into therapeutic strategies for the control of virus infection and immunity. PMID:21949557

  19. [Association of polymorphisms in toll-like receptor genes with atopic dermatitis in the Republic of Bashkortostan].

    PubMed

    Gimalova, G F; Karunas, A S; Fedorova, Iu Iu; Gumennaia, É R; Levasheva, S V; Khismatullina, Z R; Prans, E; Koks, S; Étkina, É I; Khusnutdinova, É K

    2014-01-01

    Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease developing as a result of the interaction between genetic predisposition and environmental factors. Considerable role in allergic diseases development is played by polymorphisms of genes of pattern-recognition receptors (PRR) which are capable of recognizing conservative standard molecular structures (patterns) unique for large pathogen groups. In this study polymorphic variants of PRR genes--Toll-like receptors (TLR1, TLR2, TLR4, TLR5, TLR6, TLR9, TLR10), NOD-like receptors (NOD1, NOD2), lipopolysaccharide receptor CD14 gene, and C11orf30 and LRRC32 genes, located in 11q13.5 region, have been investigated in AD patients and control subjects from the Republic of Bashkortostan. An association of TLR1 (rs5743571 and rs5743604), TLR6 (rs5743794) and TLR10 (rs11466617) with AD was found. Our results confirm an important role of the innate immune system in the pathogenesis of AD and the significance of polymorphisms within the Toll-like receptor 2 subfamily genes in AD development.

  20. New use for CETSA: monitoring innate immune receptor stability via post-translational modification by OGT.

    PubMed

    Drake, Walter R; Hou, Ching-Wen; Zachara, Natasha E; Grimes, Catherine Leimkuhler

    2018-06-01

    O-GlcNAcylation is a dynamic and functionally diverse post-translational modification shown to affect thousands of proteins, including the innate immune receptor nucleotide-binding oligomerization domain-containing protein 2 (Nod2). Mutations of Nod2 (R702W, G908R and 1007 fs) are associated with Crohn's disease and have lower stabilities compared to wild type. Cycloheximide (CHX)-chase half-life assays have been used to show that O-GlcNAcylation increases the stability and response of both wild type and Crohn's variant Nod2, R702W. A more rapid method to assess stability afforded by post-translational modifications is necessary to fully comprehend the correlation between NLR stability and O-GlcNAcylation. Here, a recently developed cellular thermal shift assay (CETSA) that is typically used to demonstrate protein-ligand binding was adapted to detect shifts in protein stabilization upon increasing O-GlcNAcylation levels in Nod2. This assay was used as a method to predict if other Crohn's associated Nod2 variants were O-GlcNAcylated, and also identified the modification on another NLR, Nod1. Classical immunoprecipitations and NF-κB transcriptional assays were used to confirm the presence and effect of this modification on these proteins. The results presented here demonstrate that CETSA is a convenient method that can be used to detect the stability effect of O-GlcNAcylation on O-GlcNAc-transferase (OGT) client proteins and will be a powerful tool in studying post-translational modification.

  1. Conservation of NLR-triggered immunity across plant lineages.

    PubMed

    Maekawa, Takaki; Kracher, Barbara; Vernaldi, Saskia; Ver Loren van Themaat, Emiel; Schulze-Lefert, Paul

    2012-12-04

    The nucleotide-binding domain and leucine-rich repeat (NLR) family of plant receptors detects pathogen-derived molecules, designated effectors, inside host cells and mediates innate immune responses to pathogenic invaders. Genetic evidence revealed species-specific coevolution of many NLRs with effectors from host-adapted pathogens, suggesting that the specificity of these NLRs is restricted to the host or closely related plant species. However, we report that an NLR immune receptor (MLA1) from monocotyledonous barley is fully functional in partially immunocompromised dicotyledonous Arabidopsis thaliana against the barley powdery mildew fungus, Blumeria graminis f. sp. hordei. This implies ~200 million years of evolutionary conservation of the underlying immune mechanism. A time-course RNA-seq analysis in transgenic Arabidopsis lines detected sustained expression of a large MLA1-dependent gene cluster. This cluster is greatly enriched in genes known to respond to the fungal cell wall-derived microbe-associated molecular pattern chitin. The MLA1-dependent sustained transcript accumulation could define a conserved function of the nuclear pool of MLA1 detected in barley and Arabidopsis. We also found that MLA1-triggered immunity was fully retained in mutant plants that are simultaneously depleted of ethylene, jasmonic acid, and salicylic acid signaling. This points to the existence of an evolutionarily conserved and phytohormone-independent MLA1-mediated resistance mechanism. This also suggests a conserved mechanism for internalization of B. graminis f. sp. hordei effectors into host cells of flowering plants. Furthermore, the deduced connectivity of the NLR to multiple branches of immune signaling pathways likely confers increased robustness against pathogen effector-mediated interception of host immune signaling and could have contributed to the evolutionary preservation of the immune mechanism.

  2. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to proinflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages.

    PubMed

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2015-02-15

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of nucleotide-binding oligomerization domain 2 (NOD2), the Crohn's disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl, and Mer (TAM) receptors in regulating chronic pattern recognition receptor stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and proinflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGF-β-dependent TAM upregulation in human macrophages, which, in turn, upregulated suppressor of cytokine signaling 3 expression. Restoring suppressor of cytokine signaling 3 expression under TAM knockdown conditions restored chronic NOD2-mediated proinflammatory cytokine downregulation. In contrast to the upregulated proinflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, musculoaponeurotic fibrosarcoma oncogene homolog K, and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for

  3. Homology modeling and in silico prediction of Ulcerative colitis associated polymorphisms of NOD1.

    PubMed

    Majumdar, Ishani; Nagpal, Isha; Paul, Jaishree

    2017-10-01

    Cytosolic pattern recognition receptors play key roles in innate immune response. Nucleotide binding and oligomerisation domain containing protein 1 (NOD1) belonging to the Nod-like receptor C (NLRC) sub-family of Nod-like receptors (NLRs) is important for detection and clearance of intra-cellular Gram negative bacteria. NOD1 is involved in activation of pro-inflammatory pathways. Limited structural data is available for NOD1. Using different templates for each domain of NOD1, we determined the full-length homology model of NOD1. ADP binding amino acids within the nucleotide binding domain (NBD) of NOD1 were also predicted. Key residues in inter-domain interaction were identified by sequence comparison with Oryctolagus cuniculus NOD2, a related protein. Interactions between NBD and winged helix domain (WHD) were found to be conserved in NOD1. Functional and structural effect of single nucleotide polymorphisms within the NOD1 NBD domain associated with susceptibility risk to Ulcerative colitis (UC), an inflammatory disorder of the colon was evaluated by in silico studies. Mutations W219R and L349P were predicted to be damaging and disease associated by prediction programs SIFT, PolyPhen2, PANTHER, SNP&GO, PhD SNP and SNAP2. We further validated the effect of W219R and L349P mutation on NOD1 function in vitro. Elevated mRNA expression of pro-inflammatory cytokines IL8 and IL-1β was seen as compared to the wild type NOD1 in intestinal epithelial cell line HT29 when stimulated with NOD1 ligand. Thus, these mutations may indeed have a bearing on pathogenesis of inflammation during UC. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.

    PubMed

    Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V

    2016-06-01

    Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens

    PubMed Central

    Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.

    2015-01-01

    SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212

  6. Ubiquitin Regulates Caspase Recruitment Domain-mediated Signaling by Nucleotide-binding Oligomerization Domain-containing Proteins NOD1 and NOD2*

    PubMed Central

    Ver Heul, Aaron M.; Fowler, C. Andrew; Ramaswamy, S.; Piper, Robert C.

    2013-01-01

    NOD1 and NOD2 (nucleotide-binding oligomerization domain-containing proteins) are intracellular pattern recognition receptors that activate inflammation and autophagy. These pathways rely on the caspase recruitment domains (CARDs) within the receptors, which serve as protein interaction platforms that coordinately regulate immune signaling. We show that NOD1 CARD binds ubiquitin (Ub), in addition to directly binding its downstream targets receptor-interacting protein kinase 2 (RIP2) and autophagy-related protein 16-1 (ATG16L1). NMR spectroscopy and structure-guided mutagenesis identified a small hydrophobic surface of NOD1 CARD that binds Ub. In vitro, Ub competes with RIP2 for association with NOD1 CARD. In vivo, we found that the ligand-stimulated activity of NOD1 with a mutant CARD lacking Ub binding but retaining ATG16L1 and RIP2 binding is increased relative to wild-type NOD1. Likewise, point mutations in the tandem NOD2 CARDs at positions analogous to the surface residues defining the Ub interface on NOD1 resulted in loss of Ub binding and increased ligand-stimulated NOD2 signaling. These data suggest that Ub binding provides a negative feedback loop upon NOD-dependent activation of RIP2. PMID:23300079

  7. TAM receptor-dependent regulation of SOCS3 and MAPKs contributes to pro-inflammatory cytokine downregulation following chronic NOD2 stimulation of human macrophages1

    PubMed Central

    Zheng, Shasha; Hedl, Matija; Abraham, Clara

    2014-01-01

    Microbial-induced cytokine regulation is critical to intestinal immune homeostasis. Acute stimulation of NOD2, the Crohn’s disease-associated sensor of bacterial peptidoglycan, induces cytokines. However, cytokines are attenuated after chronic NOD2 and pattern recognition receptor (PRR) stimulation of macrophages; similar attenuation is observed in intestinal macrophages. The role of Tyro3, Axl and Mer (TAM) receptors in regulating chronic PRR stimulation and NOD2-induced outcomes has not been examined. Moreover, TAM receptors have been relatively less investigated in human macrophages. Whereas TAM receptors did not downregulate acute NOD2-induced cytokines in primary human macrophages, they were essential for downregulating signaling and pro-inflammatory cytokine secretion after chronic NOD2 and TLR4 stimulation. Axl and Mer were similarly required in mice for cytokine downregulation after chronic NOD2 stimulation in vivo and in intestinal tissues. Consistently, TAM expression was increased in human intestinal myeloid-derived cells. Chronic NOD2 stimulation led to IL-10- and TGFβ-dependent TAM upregulation in human macrophages, which in turn, upregulated SOCS3 expression. Restoring SOCS3 expression under TAM knockdown conditions restored chronic NOD2-mediated pro-inflammatory cytokine downregulation. In contrast to the upregulated pro-inflammatory cytokines, attenuated IL-10 secretion was maintained in TAM-deficient macrophages upon chronic NOD2 stimulation. The level of MAPK activation in TAM-deficient macrophages after chronic NOD2 stimulation was insufficient to upregulate IL-10 secretion; however, full restoration of MAPK activation under these conditions restored c-Fos, c-Jun, MAFK and PU.1 binding to the IL-10 promoter and IL-10 secretion. Therefore, TAM receptors are critical for downregulating pro-inflammatory cytokines under the chronic NOD2 stimulation conditions observed in the intestinal environment. PMID:25567680

  8. The Brassicaceae Family Displays Divergent, Shoot-Skewed NLR Resistance Gene Expression.

    PubMed

    Munch, David; Gupta, Vikas; Bachmann, Asger; Busch, Wolfgang; Kelly, Simon; Mun, Terry; Andersen, Stig Uggerhøj

    2018-02-01

    Nucleotide-binding site leucine-rich repeat resistance genes (NLRs) allow plants to detect microbial effectors. We hypothesized that NLR expression patterns could reflect organ-specific differences in effector challenge and tested this by carrying out a meta-analysis of expression data for 1,235 NLRs from nine plant species. We found stable NLR root/shoot expression ratios within species, suggesting organ-specific hardwiring of NLR expression patterns in anticipation of distinct challenges. Most monocot and dicot plant species preferentially expressed NLRs in roots. In contrast, Brassicaceae species, including oilseed rape ( Brassica napus ) and the model plant Arabidopsis ( Arabidopsis thaliana ), were unique in showing NLR expression skewed toward the shoot across multiple phylogenetically distinct groups of NLRs. The Brassicaceae are also outliers in the sense that they have lost the common symbiosis signaling pathway, which enables intracellular infection by root symbionts. While it is unclear if these two events are related, the NLR expression shift identified here suggests that the Brassicaceae may have evolved unique pattern-recognition receptors and antimicrobial root metabolites to substitute for NLR protection. Such innovations in root protection could potentially be exploited in crop rotation schemes or for enhancing root defense systems of non-Brassicaceae crops. © 2018 American Society of Plant Biologists. All Rights Reserved.

  9. NOD2 and TLR2 ligands trigger the activation of basophils and eosinophils by interacting with dermal fibroblasts in atopic dermatitis-like skin inflammation

    PubMed Central

    Jiao, Delong; Wong, Chun-Kwok; Qiu, Huai-Na; Dong, Jie; Cai, Zhe; Chu, Man; Hon, Kam-Lun; Tsang, Miranda Sin-Man; Lam, Christopher Wai-Kei

    2016-01-01

    The skin of patients with atopic dermatitis (AD) has a unique predisposition for colonization by Staphylococcus aureus (S. aureus), which contributes to the inflammation and grim prognosis of AD. Although the mechanism underlying the S. aureus-induced exacerbation of AD remains unclear, recent studies have found a pivotal role for pattern recognition receptors in regulating the inflammatory responses in S. aureus infection. In the present study, we used a typical mouse model of AD-like skin inflammation and found that S. aureus-associated nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and toll-like receptor 2 (TLR2) ligands exacerbated AD-like symptoms, which were further deteriorated by the in vivo expansion of basophils and eosinophils. Subsequent histological analyses revealed that dermal fibroblasts were pervasive in the AD-like skin lesions. Co-culture of human dermal fibroblasts with basophils and eosinophils resulted in a vigorous cytokine/chemokine response to the NOD2/TLR2 ligands and the enhanced expression of intercellular adhesion molecule-1 on the dermal fibroblasts. Basophils and eosinophils were primarily responsible for the AD-related cytokine/chemokine expression in the co-cultures. Direct intercellular contact was necessary for the crosstalk between basophils and dermal fibroblasts, while soluble mediators were sufficient to mediate the eosinophil–fibroblast interactions. Moreover, the intracellular p38 mitogen-activated protein kinase, extracellular signal-regulated kinase, and nuclear factor-kappa B signaling pathways were essential for NOD2/TLR2 ligand-mediated activation of basophils, eosinophils, and dermal fibroblasts in AD-related inflammation. This study provides the evidence of NOD2/TLR2-mediated exacerbation of AD through activation of innate immune cells and therefore sheds light on a novel mechanistic pathway by which S. aureus contributes to the pathophysiology of AD. PMID:26388234

  10. Triggering through NOD-2 Differentiates Bone Marrow Precursors to Dendritic Cells with Potent Bactericidal activity

    PubMed Central

    Khan, Nargis; Aqdas, Mohammad; Vidyarthi, Aurobind; Negi, Shikha; Pahari, Susanta; Agnihotri, Tapan; Agrewala, Javed N.

    2016-01-01

    Dendritic cells (DCs) play a crucial role in bridging innate and adaptive immunity by activating naïve T cells. The role of pattern recognition receptors like Toll-Like Receptors and Nod-Like Receptors expressed on DCs is well-defined in the recognition of the pathogens. However, nothing is precisely studied regarding the impact of NOD-2 signaling during the differentiation of DCs. Consequently, we explored the role of NOD-2 signaling in the differentiation of DCs and therefore their capability to activate innate and adaptive immunity. Intriguingly, we observed that NOD-2 stimulated DCs (nDCs) acquired highly activated and matured phenotype and exhibited substantially greater bactericidal activity by robust production of nitric oxide. The mechanism involved in improving the functionality of nDCs was dependent on IFN-αβ signaling, leading to the activation of STAT pathways. Furthermore, we also observed that STAT-1 and STAT-4 dependent maturation and activation of DCs was under the feedback mechanism of SOCS-1 and SOCS-3 proteins. nDCs acquired enhanced potential to activate chiefly Th1 and Th17 immunity. Taken together, these results suggest that nDCs can be exploited as an immunotherapeutic agent in bolstering host immunity and imparting protection against the pathogens. PMID:27265209

  11. NOD2 Modulates Serotonin Transporter and Interacts with TLR2 and TLR4 in Intestinal Epithelial Cells.

    PubMed

    Layunta, Elena; Latorre, Eva; Forcén, Raquel; Grasa, Laura; Castro, Marta; Arias, Maykel A; Alcalde, Ana I; Mesonero, José Emilio

    2018-06-15

    Serotonin (5-HT) is a chief modulator of intestinal activity. The effects of 5-HT depend on its extracellular availability, which is mainly controlled by serotonin transporter (SERT), expressed in enterocytes. On the other hand, innate immunity, mediated by Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD)-like receptors (NLRs), is known to control intestinal microbiota and maintain intestinal homeostasis. The dysregulation of the intestinal serotonergic system and innate immunity has been observed in inflammatory bowel diseases (IBD), the incidence of which has severely increased all over the world. The aim of the present study, therefore, was to analyze the effect of NOD2 on intestinal SERT activity and expression, as well as to study the crosstalk of NOD2 with TLR2 and TLR4. Intestinal epithelial cell line Caco-2/TC7 was used to analyze SERT activity and SERT, NOD2, TLR2 and TLR4 molecular expression by real-time PCR and western blotting. Moreover, intestinal tract (ileum and colon) from mice deficient in TLR2, TLR4 or TLR2/4 receptors was used to test the interdependence of NOD2 with these TLR receptors. NOD2 activation inhibits SERT activity in Caco-2/TC7 cells, mainly due to the decrement of SERT molecular expression, with RIP2/RICK being the intracellular pathway involved in this effect. This inhibitory effect on SERT would yield an increment of extracellular 5-HT availability. In this sense, 5-HT strongly inhibits NOD2 expression. In addition, NOD2 showed greater interdependence with TLR2 than with TLR4. Indeed, NOD2 expression significantly increased in both cells treated with TLR2 agonists and the intestinal tract of Tlr2-/- mice. It may be inferred from our data that NOD2 could play a role in intestinal pathophysiology not only through its inherent innate immune role but also due to its interaction with other receptors as TLR2 and the modulation of the intestinal serotonergic system decreasing SERT activity and expression. © 2018

  12. Agmatine Reverses Sub-chronic Stress induced Nod-like Receptor Protein 3 (NLRP3) Activation and Cytokine Response in Rats.

    PubMed

    Sahin, Ceren; Albayrak, Ozgur; Akdeniz, Tuğba F; Akbulut, Zeynep; Yanikkaya Demirel, Gulderen; Aricioglu, Feyza

    2016-10-01

    The activation of Nod-like receptor protein 3 (NLRP3) has lately been implicated in stress and depression as an initiator mechanism required for the production of interleukin (IL)-1β and IL-18. Agmatine, an endogenous polyamine widely distributed in mammalian brain, is a novel neurotransmitter/neuromodulator, with antistress, anxiolytic and antidepressant-like effects. In this study, we examined the effect of exogenously administered agmatine on NLRP3 inflammasome pathway/cytokine responses in rats exposed to restraint stress for 7 days. The rats were divided into three groups: stress, stress+agmatine (40 mg/kg; i.p.) and control groups. Agmatine significantly down-regulated the gene expressions of all stress-induced NLRP3 inflammasome components (NLRP3, NF-κB, PYCARD, caspase-1, IL-1β and IL-18) in the hippocampus and prefrontal cortex (PFC) and reduced pro-inflammatory cytokine levels not only in both brain regions, but also in serum. Stress-reduced levels of IL-4 and IL-10, two major anti-inflammatory cytokines, were restored back to normal by agmatine treatment in the PFC. The findings of the present study suggest that stress-activated NLRP3 inflammasome and cytokine responses are reversed by an acute administration of agmatine. Whether antidepressant-like effect of agmatine can somehow, at least partially, be mediated by the inhibition of NLRP3 inflammasome cascade and relevant inflammatory responses requires further studies in animal models of depression. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn's Disease

    PubMed Central

    Strober, Warren; Watanabe, Tomohiro

    2013-01-01

    Nucleotide binding oligomerization domain 2 (NOD2) is an intracellular sensor for small peptides derived from the bacterial cell wall component, peptidoglycan. Recent studies have uncovered unexpected functions of NOD2 in innate immune responses such as induction of type I IFN and facilitation of autophagy; moreover, they have disclosed extensive cross-talk between NOD2 and Toll-like receptors which plays an indispensable role both in host defense against microbial infection and in the development of autoimmunity. Of particular interest, polymorphisms of CARD15 encoding NOD2 are associated with Crohn's disease and other autoimmune states such as graft versus host disease. In this review, we summarize recent findings regarding normal functions of NOD2 and discuss the mechanisms by which NOD2 polymorphisms associated with Crohn's disease lead to intestinal inflammation. PMID:21750585

  14. Resistin increases the expression of NOD2 in mouse monocytes.

    PubMed

    Ren, Yi; Wan, Taomei; Zuo, Zhicai; Cui, Hengmin; Peng, Xi; Fang, Jing; Deng, Junliang; Hu, Yanchun; Yu, Shuming; Shen, Liuhong; Ma, Xiaoping; Wang, Ya; Ren, Zhihua

    2017-05-01

    Previous studies have indicated that resistin, a type of adipokine, contributes to the development of insulin resistance and type 2 diabetes mellitus, and mediates inflammatory reactions. However, a specific receptor for resistin has not yet been identified. In this study, the relationship between resistin and nucleotide-binding oligomerization domain-like receptors, as well as resistin signal transduction, was examined through transfection, quantitative polymerase chain reaction, western blot analysis and ELISA. The mRNA expression of nucleotide-binding oligomerization domain-containing protein 2 (NOD2), a key immune receptor related to insulin resistance, was significantly increased by resistin treatment at concentrations of 100, 150 and 200 ng/ml (P<0.05, P<0.01 and P<0.01, respectively). The mRNA expression of downstream signaling molecules in the NOD2 signaling pathway, receptor-interacting serine/threonine-protein kinase 2 (RIP2; P<0.01 at 6, 12 and 24 h) and inhibitor of NF-κB kinase subunit beta (P<0.01 at 3, 6, 12 and 24 h) were significantly increased by resistin treatment compared with the control. The mRNA expression of key proinflammatory cytokines, tumor necrosis factor α, IL (interleukin)-6 and IL-1β, were also significantly increased by resistin treatment compared with the control (P<0.01). NOD2 knockdown by small interfering RNA (siRNA) significantly decreased the expression of NOD2 and RIP2 (P<0.01), and there was no significant increase in the levels of cytokines, as compared with treatment with control siRNA. These findings indicate that the inflammatory reaction induced by resistin involves the NOD2-nuclear factor (NF)-κB signaling pathway. The inhibition of NF-κB significantly decreased the secretion of key inflammatory cytokines (P<0.01), suggesting that NF-κB signaling mechanisms are essential to the resistin-induced inflammatory response.

  15. Inhibition of the NOD-Like Receptor Protein 3 Inflammasome Is Protective in Juvenile Influenza A Virus Infection

    PubMed Central

    Coates, Bria M.; Staricha, Kelly L.; Ravindran, Nandini; Koch, Clarissa M.; Cheng, Yuan; Davis, Jennifer M.; Shumaker, Dale K.; Ridge, Karen M.

    2017-01-01

    Influenza A virus (IAV) is a significant cause of life-threatening lower respiratory tract infections in children. Antiviral therapy is the mainstay of treatment, but its effectiveness in this age group has been questioned. In addition, damage inflicted on the lungs by the immune response to the virus may be as important to the development of severe lung injury during IAV infection as the cytotoxic effects of the virus itself. A crucial step in the immune response to IAV is activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the subsequent secretion of the inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The IAV matrix 2 proton channel (M2) has been shown to be an important activator of the NLRP3 inflammasome during IAV infection. We sought to interrupt this ion channel-mediated activation of the NLRP3 inflammasome through inhibition of NLRP3 or the cytokine downstream from its activation, IL-1β. Using our juvenile mouse model of IAV infection, we show that inhibition of the NLRP3 inflammasome with the small molecule inhibitor, MCC950, beginning 3 days after infection with IAV, improves survival in juvenile mice. Treatment with MCC950 reduces NLRP3 levels in lung homogenates, decreases IL-18 secretion into the alveolar space, and inhibits NLRP3 inflammasome activation in alveolar macrophages. Importantly, inhibition of the NLRP3 inflammasome with MCC950 does not impair viral clearance. In contrast, inhibition of IL-1β signaling with the IL-1 receptor antagonist, anakinra, is insufficient to protect juvenile mice from IAV. Our findings suggest that targeting the NLRP3 inflammasome in juvenile IAV infection may improve disease outcomes in this age group. PMID:28740490

  16. Inhibition of the NOD-Like Receptor Protein 3 Inflammasome Is Protective in Juvenile Influenza A Virus Infection.

    PubMed

    Coates, Bria M; Staricha, Kelly L; Ravindran, Nandini; Koch, Clarissa M; Cheng, Yuan; Davis, Jennifer M; Shumaker, Dale K; Ridge, Karen M

    2017-01-01

    Influenza A virus (IAV) is a significant cause of life-threatening lower respiratory tract infections in children. Antiviral therapy is the mainstay of treatment, but its effectiveness in this age group has been questioned. In addition, damage inflicted on the lungs by the immune response to the virus may be as important to the development of severe lung injury during IAV infection as the cytotoxic effects of the virus itself. A crucial step in the immune response to IAV is activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and the subsequent secretion of the inflammatory cytokines, interleukin-1β (IL-1β), and interleukin-18 (IL-18). The IAV matrix 2 proton channel (M2) has been shown to be an important activator of the NLRP3 inflammasome during IAV infection. We sought to interrupt this ion channel-mediated activation of the NLRP3 inflammasome through inhibition of NLRP3 or the cytokine downstream from its activation, IL-1β. Using our juvenile mouse model of IAV infection, we show that inhibition of the NLRP3 inflammasome with the small molecule inhibitor, MCC950, beginning 3 days after infection with IAV, improves survival in juvenile mice. Treatment with MCC950 reduces NLRP3 levels in lung homogenates, decreases IL-18 secretion into the alveolar space, and inhibits NLRP3 inflammasome activation in alveolar macrophages. Importantly, inhibition of the NLRP3 inflammasome with MCC950 does not impair viral clearance. In contrast, inhibition of IL-1β signaling with the IL-1 receptor antagonist, anakinra, is insufficient to protect juvenile mice from IAV. Our findings suggest that targeting the NLRP3 inflammasome in juvenile IAV infection may improve disease outcomes in this age group.

  17. The Goldilocks Conundrum: NLR Inflammasome Modulation of Gastrointestinal Inflammation during Inflammatory Bowel Disease

    PubMed Central

    Ringel-Scaia, Veronica M.; McDaniel, Dylan K.; Allen, Irving C.

    2017-01-01

    Recent advances have revealed significant insight into Inflammatory bowel disease (IBD) pathobiology. Ulcerative colitis and Crohn's disease, the chronic relapsing clinical manifestations of IBD, are complex disorders with genetic and environmental influences. These diseases are associated with the dysregulation of immune tolerance, excessive Inflammation, and damage to the epithelial cell barrier. Increasing evidence indicates that pattern recognition receptors, including Toll-like receptors (TLRs) and nucleotide-binding domain and leucine-rich repeat-containing proteins (NLRs), function to maintain immune system homeostasis, modulate the gastrointestinal microbiome, and promote proper intestinal epithelial cell regeneration and repair. New insights have revealed that NLR family members are essential components in maintaining this immune system homeostasis. To date, the vast majority of studies associated with NLRs have focused on family members that form a multiprotein signaling platform called the Inflammasome. These signaling complexes are responsible for the cleavage and activation of the potent pleotropic cytokines IL-1β and IL-18, and they facilitate a unique form of cell death defined as pyroptosis. In this review, we summarize the current paradigms associated with NLR Inflammasome maintenance of immune system homeostasis in the gastrointestinal system. New concepts related to canonical and noncanonical Inflammasome signaling, as well as the implications of classical and alternative Inflammasomes in IBD pathogenesis, are also reviewed. PMID:28322135

  18. Nucleotide-oligomerizing domain-1 (NOD1) receptor activation induces pro-inflammatory responses and autophagy in human alveolar macrophages.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; Loyola, Elva; Escobedo, Dante; León-Contreras, Juan Carlos; Hernández-Pando, Rogelio; Torres, Martha; Sada, Eduardo

    2014-09-25

    Nucleotide-binding oligomerizing domain-1 (NOD1) is a cytoplasmic receptor involved in recognizing bacterial peptidoglycan fragments that localize to the cytosol. NOD1 activation triggers inflammation, antimicrobial mechanisms and autophagy in both epithelial cells and murine macrophages. NOD1 mediates intracellular pathogen clearance in the lungs of mice; however, little is known about NOD1's role in human alveolar macrophages (AMs) or its involvement in Mycobacterium tuberculosis (Mtb) infection. AMs, monocytes (MNs), and monocyte-derived macrophages (MDMs) from healthy subjects were assayed for NOD1 expression. Cells were stimulated with the NOD1 ligand Tri-DAP and cytokine production and autophagy were assessed. Cells were infected with Mtb and treated with Tri-DAP post-infection. CFUs counting determined growth control, and autophagy protein recruitment to pathogen localization sites was analyzed by immunoelectron microscopy. NOD1 was expressed in AMs, MDMs and to a lesser extent MNs. Tri-DAP stimulation induced NOD1 up-regulation and a significant production of IL1β, IL6, IL8, and TNFα in AMs and MDMs; however, the level of NOD1-dependent response in MNs was limited. Autophagy activity determined by expression of proteins Atg9, LC3, IRGM and p62 degradation was induced in a NOD1-dependent manner in AMs and MDMs but not in MNs. Infected AMs could be activated by stimulation with Tri-DAP to control the intracellular growth of Mtb. In addition, recruitment of NOD1 and the autophagy proteins IRGM and LC3 to the Mtb localization site was observed in infected AMs after treatment with Tri-DAP. NOD1 is involved in AM and MDM innate responses, which include proinflammatory cytokines and autophagy, with potential implications in the killing of Mtb in humans.

  19. Invasive Streptococcus mutans induces inflammatory cytokine production in human aortic endothelial cells via regulation of intracellular toll-like receptor 2 and nucleotide-binding oligomerization domain 2.

    PubMed

    Nagata, E; Oho, T

    2017-04-01

    Streptococcus mutans, the primary etiologic agent of dental caries, can gain access to the bloodstream and has been associated with cardiovascular disease. However, the roles of S. mutans in inflammation in cardiovascular disease remain unclear. The aim of this study was to examine cytokine production induced by S. mutans in human aortic endothelial cells (HAECs) and to evaluate the participation of toll-like receptors (TLRs) and cytoplasmic nucleotide-binding oligomerization domain (NOD) -like receptors in HAECs. Cytokine production by HAECs was determined using enzyme-linked immunosorbent assays, and the expression of TLRs and NOD-like receptors was evaluated by real-time polymerase chain reaction, flow cytometry and immunocytochemistry. The involvement of TLR2 and NOD2 in cytokine production by invaded HAECs was examined using RNA interference. The invasion efficiencies of S. mutans strains were evaluated by means of antibiotic protection assays. Five of six strains of S. mutans of various serotypes induced interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production by HAECs. All S. mutans strains upregulated TLR2 and NOD2 mRNA levels in HAECs. Streptococcus mutans Xc upregulated the intracellular TLR2 and NOD2 protein levels in HAECs. Silencing of the TLR2 and NOD2 genes in HAECs invaded by S. mutans Xc led to a reduction in interleukin-6, interleukin-8 and monocyte chemoattractant protein-1 production. Cytokine production induced by invasive S. mutans via intracellular TLR2 and NOD2 in HAECs may be associated with inflammation in cardiovascular disease. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Emerging Bordetella pertussis Strains Induce Enhanced Signaling of Human Pattern Recognition Receptors TLR2, NOD2 and Secretion of IL-10 by Dendritic Cells

    PubMed Central

    Hovingh, Elise S.; van Gent, Marjolein; Hamstra, Hendrik-Jan; Demkes, Marc; Mooi, Frits R.; Pinelli, Elena

    2017-01-01

    Vaccines against pertussis have been available for more than 60 years. Nonetheless, this highly contagious disease is reemerging even in countries with high vaccination coverage. Genetic changes of Bordetella pertussis over time have been suggested to contribute to the resurgence of pertussis, as these changes may favor escape from vaccine-induced immunity. Nonetheless, studies on the effects of these bacterial changes on the immune response are limited. Here, we characterize innate immune recognition and activation by a collection of genetically diverse B. pertussis strains isolated from Dutch pertussis patients before and after the introduction of the pertussis vaccines. For this purpose, we used HEK-Blue cells transfected with human pattern recognition receptors TLR2, TLR4, NOD2 and NOD1 as a high throughput system for screening innate immune recognition of more than 90 bacterial strains. Physiologically relevant human monocyte derived dendritic cells (moDC), purified from peripheral blood of healthy donors were also used. Findings indicate that, in addition to inducing TLR2 and TLR4 signaling, all B. pertussis strains activate the NOD-like receptor NOD2 but not NOD1. Furthermore, we observed a significant increase in TLR2 and NOD2, but not TLR4, activation by strains circulating after the introduction of pertussis vaccines. When using moDC, we observed that the recently circulating strains induced increased activation of these cells with a dominant IL-10 production. In addition, we observed an increased expression of surface markers including the regulatory molecule PD-L1. Expression of PD-L1 was decreased upon blocking TLR2. These in vitro findings suggest that emerging B. pertussis strains have evolved to dampen the vaccine-induced inflammatory response, which would benefit survival and transmission of this pathogen. Understanding how this disease has resurged in a highly vaccinated population is crucial for the design of improved vaccines against pertussis

  1. Involvement of purinergic receptors and NOD-like receptor-family protein 3-inflammasome pathway in the adenosine triphosphate-induced cytokine release from macrophages.

    PubMed

    Gicquel, Thomas; Victoni, Tatiana; Fautrel, Alain; Robert, Sacha; Gleonnec, Florence; Guezingar, Marie; Couillin, Isabelle; Catros, Véronique; Boichot, Elisabeth; Lagente, Vincent

    2014-04-01

    Adenosine triphosphate (ATP) has been described as a danger signal activating the NOD-like receptor-family protein 3 (NLRP3)-inflammasome leading to the pro-inflammatory cytokine, interleukin (IL)-1β, release in the lung. The NLRP3-inflammasome pathway has been previously described to be involved in experimental collagen deposition and the development of pulmonary fibrosis. The aim of the present study was to investigate the role of the NLRP3 inflammasome pathway and P2X7 purinergic receptor in the activation of human macrophages in vitro by ATP. We showed that adenosine 5'-[γ-thio]triphosphate tetralithium salt (ATPγS) and 2',3'-O-(4-benzoylbenzoyl) adenosine 5'-triphosphate (BzATP), two stable analogs of ATP, are able to potentiate the release of IL-1β from human monocyte-derived macrophages induced by low concentration of lipopolysaccharide (LPS). However, in the same conditions no increase in IL-1α and IL-6 was observed. Immunochemistry has shown that human macrophages natively express NLRP3 and purinergic P2X7 receptors (P2X7 R). NLRP3 and IL-1β mRNA expression were induced from LPS-primed macrophages, but also after 5-h treatment of BzATP as analysed by reverse transcription quantitative polymerase chain reaction. However, other inflammasome pathways (NLRP1, NLRP2, NLRC4, NLRP6 and AIM2) and P2X7 R were not induced by BzATP. We observed that P2X7 R antagonists, A-438079 and A-740003, were able to reduce the release of IL-1β, but not of IL-1α and IL-6 from macrophages stimulated by ATPγS or BzATP. The present results showed the involvement of the P2X7 R-NLRP3 inflammasome pathway in the secretion of IL-1β from ATP-stimulated human macrophages, and suggest that P2X7 R were not involved in IL-1α and IL-6 release. This study also points out that repression of the P2X7 R represents a novel potential therapeutic approach to control fibrosis in lung injury. © 2014 Wiley Publishing Asia Pty Ltd.

  2. l-Homocarnosine attenuates inflammation in cerebral ischemia-reperfusion injury through inhibition of nod-like receptor protein 3 inflammasome.

    PubMed

    Huang, Jing; Wang, Tao; Yu, Daorui; Fang, Xingyue; Fan, Haofei; Liu, Qiang; Yi, Guohui; Yi, Xinan; Liu, Qibin

    2018-06-08

    We investigated the therapeutic effects of l-homocarnosine against inflammation in a rat model of cerebral ischemia-reperfusion injury. Rats were grouped into control, middle cerebral artery occlusion (MCAO), 0.5 mM l-homocarnosine + MCAO, and 1 mM l-homocarnosine + MCAO treatment groups. Superoxide dismutase (SOD), glutathione peroxidase (Gpx), catalase, lipid peroxidation, and reduced glutathione (GSH) levels were measured. Neurological scores were assessed, and histopathology, scanning electron microscopy (SEM), and fluorescence microscopy analyses were conducted. The mRNA expression levels of nod-like receptor protein 3 (NLRP3), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) and protein expression levels of NLRP3 were assessed. l-Homocarnosine supplementation substantially increased SOD, catalase, Gpx, and GSH levels, whereas it reduced the levels of lipid peroxidation relative to MCAO rats. l-Homocarnosine significantly reduced the infarct area and neurological deficit score, as well as histopathological alteration, apoptosis, and necrosis in brain tissue. The mRNA expression levels of NLRP3, TNF-α, and IL-6 were increased in MCAO rats, whereas l-homocarnosine supplementation reduced mRNA expression by >40%, and NLRP3 protein expression was reduced by >30% in 1 mM l-homocarnosine-treated MCAO rats. We propose that l-homocarnosine exerts a protective effect in cerebral ischemia-reperfusion injury-induced rats by downregulating NLRP3 expression. Copyright © 2017. Published by Elsevier B.V.

  3. NOD2 promotes renal injury by exacerbating inflammation and podocyte insulin resistance in diabetic nephropathy.

    PubMed

    Du, Pengchao; Fan, Baoxia; Han, Huirong; Zhen, Junhui; Shang, Jin; Wang, Xiaojie; Li, Xiang; Shi, Weichen; Tang, Wei; Bao, Chanchan; Wang, Ziying; Zhang, Yan; Zhang, Bin; Wei, Xinbing; Yi, Fan

    2013-08-01

    An increasing number of clinical and animal model studies indicate that activation of the innate immune system and inflammatory mechanisms are important in the pathogenesis of diabetic nephropathy. Nucleotide-binding oligomerization domain containing 2 (NOD2), a member of the NOD-like receptor family, plays an important role in innate immune response. Here we explore the contribution of NOD2 to the pathogenesis of diabetic nephropathy and found that it was upregulated in kidney biopsies from diabetic patients and high-fat diet/streptozotocin-induced diabetic mice. Further, NOD2 deficiency ameliorated renal injury in diabetic mice. In vitro, NOD2 induced proinflammatory response and impaired insulin signaling and insulin-induced glucose uptake in podocytes. Moreover, podocytes treated with high glucose, advanced glycation end-products, tumor necrosis factor-α, or transforming growth factor-β (common detrimental factors in diabetic nephropathy) significantly increased NOD2 expression. NOD2 knockout diabetic mice were protected from the hyperglycemia-induced reduction in nephrin expression. Further, knockdown of NOD2 expression attenuated high glucose-induced nephrin downregulation in vitro, supporting an essential role of NOD2 in mediating hyperglycemia-induced podocyte dysfunction. Thus, NOD2 is one of the critical components of a signal transduction pathway that links renal injury to inflammation and podocyte insulin resistance in diabetic nephropathy.

  4. NOD2 Down-Regulates Colonic Inflammation by IRF4-Mediated Inhibition of K63-Linked Polyubiquitination of RICK and TRAF6

    PubMed Central

    Watanabe, Tomohiro; Asano, Naoki; Meng, Guangxun; Yamashita, Kouhei; Arai, Yasuyuki; Sakurai, Toshiharu; Kudo, Masatoshi; Fuss, Ivan J; Kitani, Atsushi; Shimosegawa, Tooru; Chiba, Tsutomu; Strober, Warren

    2014-01-01

    It is well established that polymorphisms of the nucleotide-binding oligomerization domain 2 (NOD2) gene, a major risk factor in Crohn's disease (CD), lead to loss of NOD2 function. However, a molecular explanation of how such loss of function leads to increased susceptibility to CD has remained unclear. In a previous study exploring this question we reported that activation of NOD2 in human dendritic cells by its ligand, muramyl dipeptide (MDP) negatively regulates Toll-like receptor (TLR)-mediated inflammatory responses. Here we show that NOD2 activation results in increased interferon regulatory factor 4 (IRF4) expression and binding to TNF receptor associated factor 6 (TRAF6) and receptor interacting serine-threonine kinase (RICK). We then show that such binding leads to IRF4-mediated inhibition of Lys63-linked polyubiquitination of TRAF6 and RICK and thus to down-regulation of NF-κB activation. Finally, we demonstrate that protection of mice from the development of experimental colitis by MDP or IRF4 administration is accompanied by similar IRF4-mediated effects on polyubiquitination of TRAF6 and RICK in colonic lamina propria mononuclear cells. These findings thus define a mechanism of NOD2-mediated regulation of innate immune responses to intestinal microflora that could explain the relation of NOD2 polymorphisms and resultant NOD2 dysfunction to CD. PMID:24670424

  5. Nod-Like Receptor Protein-3 Inflammasome Plays an Important Role during Early Stages of Wound Healing

    PubMed Central

    Weinheimer-Haus, Eileen M.; Mirza, Rita E.; Koh, Timothy J.

    2015-01-01

    The Nod-like receptor protein (NLRP)-3 inflammasome/IL-1β pathway is involved in the pathogenesis of various inflammatory skin diseases, but its biological role in wound healing remains to be elucidated. Since inflammation is typically thought to impede healing, we hypothesized that loss of NLRP-3 activity would result in a downregulated inflammatory response and accelerated wound healing. NLRP-3 null mice, caspase-1 null mice and C57Bl/6 wild type control mice (WT) received four 8 mm excisional cutaneous wounds; inflammation and healing were assessed during the early stage of wound healing. Consistent with our hypothesis, wounds from NLRP-3 null and caspase-1 null mice contained lower levels of the pro-inflammatory cytokines IL-1β and TNF-α compared to WT mice and had reduced neutrophil and macrophage accumulation. Contrary to our hypothesis, re-epithelialization, granulation tissue formation, and angiogenesis were delayed in NLRP-3 null mice and caspase-1 null mice compared to WT mice, indicating that NLRP-3 signaling is important for early events in wound healing. Topical treatment of excisional wounds with recombinant IL-1β partially restored granulation tissue formation in wounds of NLRP-3 null mice, confirming the importance of NLRP-3-dependent IL-1β production during early wound healing. Despite the improvement in healing, angiogenesis and levels of the pro-angiogenic growth factor VEGF were further reduced in IL-1β treated wounds, suggesting that IL-1β has a negative effect on angiogenesis and that NLRP-3 promotes angiogenesis in an IL-1β-independent manner. These findings indicate that the NLRP-3 inflammasome contributes to the early inflammatory phase following skin wounding and is important for efficient healing. PMID:25793779

  6. Critical role of IFN-gamma in CFA-mediated protection of NOD mice from diabetes development.

    PubMed

    Mori, Yoshiko; Kodaka, Tetsuro; Kato, Takako; Kanagawa, Edith M; Kanagawa, Osami

    2009-11-01

    IFN-gamma signaling-deficient non-obese diabetic (NOD) mice develop diabetes with similar kinetics to those of wild-type NOD mice. However, the immunization of IFN-gamma signaling-deficient NOD mice with CFA failed to induce long-term protection, whereas wild-type NOD mice receiving CFA remained diabetes-free. CFA also failed to protect IFN-gamma receptor-deficient (IFN-gammaR(-/-)) NOD mice from the autoimmune rejection of transplanted islets, as it does in diabetic NOD mice, and from disease transfer by spleen cells from diabetic NOD mice. These data clearly show that the pro-inflammatory cytokine IFN-gamma is necessary for the CFA-mediated protection of NOD mice from diabetes. There is no difference in the T(h)1/T(h)17 balance between IFN-gammaR(-/-) NOD and wild-type NOD mice. There is also no difference in the total numbers and percentages of regulatory T (Treg) cells in the lymph node CD4(+) T-cell populations between IFN-gammaR(-/-) NOD and wild-type NOD mice. However, pathogenic T cells lacking IFN-gammaR are resistant to the suppressive effect of Treg cells, both in vivo and in vitro. Therefore, it is likely that CFA-mediated protection against diabetes development depends on a change in the balance between Treg cells and pathogenic T cells, and IFN-gamma signaling seems to control the susceptibility of pathogenic T cells to the inhibitory activity of Treg cells.

  7. Inhibition of Nod2 Signaling and Target Gene Expression by Curcumin

    PubMed Central

    Huang, Shurong; Zhao, Ling; Kim, Kihoon; Lee, Dong Seok; Hwang, Daniel H.

    2008-01-01

    Nod2 is an intracellular pattern recognition receptor that detects a conserved moiety of bacterial peptidoglycan and subsequently activates proinflammatory signaling pathways. Mutations in Nod2 have been implicated to be linked to inflammatory granulomatous disorders, such as Crohn's disease and Blau syndrome. Many phytochemicals possess anti-inflammatory properties. However, it is not known whether any of these phytochemicals might modulate Nod2-mediated immune responses and thus might be of therapeutic value for the intervention of these inflammatory diseases. In this report, we demonstrate that curcumin, a polyphenol found in the plant Curcuma longa, and parthenolide, a sesquiterpene lactone, suppress both ligand-induced and lauric acid-induced Nod2 signaling, leading to the suppression of nuclear factor-κB activation and target gene interleukin-8 expression. We provide molecular and biochemical evidence that the suppression is mediated through the inhibition of Nod2 oligomerization and subsequent inhibition of downstream signaling. These results demonstrate for the first time that curcumin and parthenolide can directly inhibit Nod2-mediated signaling pathways at the receptor level and suggest that Nod2-mediated inflammatory responses can be modulated by these phytochemicals. It remains to be determined whether these phytochemicals possess protective or therapeutic efficacy against Nod2-mediated inflammatory disorders. PMID:18413660

  8. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae

    PubMed Central

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W.; Brennan, Patrick J.; Belisle, John T.

    2016-01-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. PMID:27297389

  9. Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae.

    PubMed

    Schenk, Mirjam; Mahapatra, Sebabrata; Le, Phuonganh; Kim, Hee Jin; Choi, Aaron W; Brennan, Patrick J; Belisle, John T; Modlin, Robert L

    2016-09-01

    The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP. Copyright © 2016 Schenk et al.

  10. Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells

    PubMed Central

    Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.

    2014-01-01

    It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon

  11. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases

    PubMed Central

    Ried, Martina Katharina; Antolín-Llovera, Meritxell; Parniske, Martin

    2014-01-01

    Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development. DOI: http://dx.doi.org/10.7554/eLife.03891.001 PMID:25422918

  12. The HhH(2)/NDD Domain of the Drosophila Nod Chromokinesin-like Protein Is Required for Binding to Chromosomes in the Oocyte Nucleus

    PubMed Central

    Cui, Wei; Hawley, R. Scott

    2005-01-01

    Nod is a chromokinesin-like protein that plays a critical role in segregating achiasmate chromosomes during female meiosis. The C-terminal half of the Nod protein contains two putative DNA-binding domains. The first of these domains, known as the HMGN domain, consists of three tandemly repeated high-mobility group N motifs. This domain was previously shown to be both necessary and sufficient for binding of the C-terminal half of Nod to mitotic chromosomes in embryos. The second putative DNA-binding domain, denoted HhH(2)/NDD, is a helix-hairpin-helix(2)/Nod-like DNA-binding domain. Although the HhH(2)/NDD domain is not required or sufficient for chromosome binding in embryos, several well-characterized nod mutations have been mapped in this domain. To characterize the role of the HhH(2)/NDD domain in mediating Nod function, we created a series of UAS-driven transgene constructs capable of expressing either a wild-type Nod-GFP fusion protein or proteins in which the HhH(2)/NDD domain had been altered by site-directed mutagenesis. Although wild-type Nod-GFP localizes to the oocyte chromosomes and rescues the segregation defect in nod mutant oocytes, two of three proteins carrying mutants in the HhH(2)/NDD domain fail to either rescue the nod mutant phenotype or bind to oocyte chromosomes. However, these mutant proteins do bind to the polytene chromosomes in nurse-cell nuclei and enter the oocyte nucleus. Thus, even though the HhH(2)/NDD domain is not essential for chromosome binding in other cell types, it is required for chromosome binding in the oocyte. These HhH(2)/NDD mutants also block the localization of Nod to the posterior pole of stage 9–10A oocytes, a process that is thought to facilitate the interaction of Nod with the plus ends of microtubules (Cui et al. 2005). This observation suggests that the Nod HhH2/NDD domain may play other roles in addition to binding Nod to meiotic chromosomes. PMID:16143607

  13. Unsolved Mysteries in NLR Biology

    PubMed Central

    Lupfer, Christopher; Kanneganti, Thirumala-Devi

    2013-01-01

    NOD-like receptors (NLRs) are a class of cytoplasmic pattern-recognition receptors. Although most NLRs play some role in immunity, their functions range from regulating antigen presentation (NLRC5, CIITA) to pathogen/damage sensing (NLRP1, NLRP3, NLRC1/2, NLRC4) to suppression or modulation of inflammation (NLRC3, NLRP6, NLRP12, NLRX1). However, NLRP2, NLRP5, and NLRP7 are also involved in non-immune pathways such as embryonic development. In this review, we highlight some of the least well-understood aspects of NLRs, including the mechanisms by which they sense pathogens or damage. NLRP3 recognizes a diverse range of stimuli and numerous publications have presented potential unifying models for NLRP3 activation, but no single mechanism proposed thus far appears to account for all possible NLRP3 activators. Additionally, NLRC3, NLRP6, and NLRP12 inhibit NF-κB activation, but whether direct ligand sensing is a requirement for this function is not known. Herein, we review the various mechanisms of sensing and activation proposed for NLRP3 and other inflammasome activators. We also discuss the role of NLRC3, NLRP6, NLRP12, and NLRX1 as inhibitors and how they are activated and function in their roles to limit inflammation. Finally, we present an overview of the emerging roles that NLRP2, NLRP5, and NLRP7 play during embryonic development and postulate on the potential pathways involved. PMID:24062750

  14. NOD2: a potential target for regulating liver injury.

    PubMed

    Body-Malapel, Mathilde; Dharancy, Sébastien; Berrebi, Dominique; Louvet, Alexandre; Hugot, Jean-Pierre; Philpott, Dana J; Giovannini, Marco; Chareyre, Fabrice; Pages, Gilles; Gantier, Emilie; Girardin, Stephen E; Garcia, Irène; Hudault, Sylvie; Conti, Filoména; Sansonetti, Philippe J; Chamaillard, Mathias; Desreumaux, Pierre; Dubuquoy, Laurent; Mathurin, Philippe

    2008-03-01

    The recent discovery of bacterial receptors such as NOD2 that contribute to crosstalk between innate and adaptive immune systems in the digestive tract constitutes an important challenge in our understanding of liver injury mechanisms. The present study focuses on NOD2 functions during liver injury. NOD2, TNF-alpha and IFN-gamma mRNA were quantified using real-time PCR in liver samples from patients and mice with liver injury. We evaluated the susceptibility of concanavalin A (ConA) challenge in NOD2-deficient mice (Nod2-/-) compared to wild-type littermates. We tested the effect of muramyl dipeptide (MDP), the specific activator of NOD2, on ConA-induced liver injury in C57BL/6 mice. We studied the cellular distribution and the role of NOD2 in immune cells and hepatocytes. We demonstrated that NOD2, TNF-alpha and IFN-gamma were upregulated during liver injury in mice and humans. Nod2-/- mice were resistant to ConA-induced hepatitis compared to their wild-type littermates, through reduced IFN-gamma production by immune cells. Conversely, administration of MDP exacerbated ConA-induced liver injury. MDP was a strong inducer of IFN-gamma in freshly isolated human PBMC, splenocytes and hepatocytes. Our study supports the hypothesis that NOD2 contributes to liver injury via a regulatory mechanism affecting immune cells infiltrating the liver and hepatocytes. Taken together, our results indicate that NOD2 may represent a new therapeutic target in liver diseases.

  15. Muramyl peptides activate innate immunity conjointly via YB1 and NOD2.

    PubMed

    Laman, Alexander G; Lathe, Richard; Shepelyakovskaya, Anna O; Gartseva, Alexandra; Brovko, Feodor A; Guryanova, Svetlana; Alekseeva, Ludmila; Meshcheryakova, Elena A; Ivanov, Vadim T

    2016-11-01

    Bacterial cell wall muramyl dipeptide (MDP) and glucosaminyl-MDP (GMDP) are potent activators of innate immunity. Two receptor targets, NOD2 and YB1, have been reported; we investigated potential overlap of NOD2 and YB1 pathways. Separate knockdown of NOD2 and YB1 demonstrates that both contribute to GMDP induction of NF-κB expression, a marker of innate immunity, although excess YB1 led to induction in the absence of NOD2. YB1 and NOD2 co-migrated on sucrose gradient centrifugation, and GMDP addition led to the formation of higher molecular mass complexes containing both YB1 and NOD2. Co-immunoprecipitation demonstrated a direct interaction between YB1 and NOD2, a major recombinant fragment of NOD2 (NACHT-LRR) bound to YB1, and complex formation was stimulated by GMDP. We also report subcellular colocalization of NOD2 and YB1. Although YB1 may have other binding partners in addition to NOD2, maximal innate immunity activation by muramyl peptides is mediated via an interaction between YB1 and NOD2.

  16. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression

    PubMed Central

    Gresnigt, Mark S.; Jaeger, Martin; Subbarao Malireddi, R. K.; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J. G.; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L.

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus. When exploring the role of NOD1 in an experimental mouse model, we found that Nod1−/− mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1−/− mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus. Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1−/− mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1−/− cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus. This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host

  17. The Absence of NOD1 Enhances Killing of Aspergillus fumigatus Through Modulation of Dectin-1 Expression.

    PubMed

    Gresnigt, Mark S; Jaeger, Martin; Subbarao Malireddi, R K; Rasid, Orhan; Jouvion, Grégory; Fitting, Catherine; Melchers, Willem J G; Kanneganti, Thirumala-Devi; Carvalho, Agostinho; Ibrahim-Granet, Oumaima; van de Veerdonk, Frank L

    2017-01-01

    One of the major life-threatening infections for which severely immunocompromised patients are at risk is invasive aspergillosis (IA). Despite the current treatment options, the increasing antifungal resistance and poor outcome highlight the need for novel therapeutic strategies to improve outcome of patients with IA. In the current study, we investigated whether and how the intracellular pattern recognition receptor NOD1 is involved in host defense against Aspergillus fumigatus . When exploring the role of NOD1 in an experimental mouse model, we found that Nod1 -/- mice were protected against IA and demonstrated reduced fungal outgrowth in the lungs. We found that macrophages derived from bone marrow of Nod1 -/- mice were more efficiently inducing reactive oxygen species and cytokines in response to Aspergillus . Most strikingly, these cells were highly potent in killing A. fumigatus compared with wild-type cells. In line, human macrophages in which NOD1 was silenced demonstrated augmented Aspergillus killing and NOD1 stimulation decreased fungal killing. The differentially altered killing capacity of NOD1 silencing versus NOD1 activation was associated with alterations in dectin-1 expression, with activation of NOD1 reducing dectin-1 expression. Furthermore, we were able to demonstrate that Nod1 -/- mice have elevated dectin-1 expression in the lung and bone marrow, and silencing of NOD1 gene expression in human macrophages increases dectin-1 expression. The enhanced dectin-1 expression may be the mechanism of enhanced fungal killing of Nod1 -/- cells and human cells in which NOD1 was silenced, since blockade of dectin-1 reversed the augmented killing in these cells. Collectively, our data demonstrate that NOD1 receptor plays an inhibitory role in the host defense against Aspergillus . This provides a rationale to develop novel immunotherapeutic strategies for treatment of aspergillosis that target the NOD1 receptor, to enhance the efficiency of host immune cells

  18. Regulation of contact sensitivity in non-obese diabetic (NOD) mice by innate immunity.

    PubMed

    Szczepanik, Marian; Majewska-Szczepanik, Monika; Wong, Florence S; Kowalczyk, Paulina; Pasare, Chandrashekhar; Wen, Li

    2018-06-25

    Genetic background influences allergic immune responses to environmental stimuli. Non-obese diabetic (NOD) mice are highly susceptible to environmental stimuli. Little is known about the interaction of autoimmune genetic factors with innate immunity in allergies, especially skin hypersensitivity. To study the interplay of innate immunity and autoimmune genetic factors in contact hypersensitivity (CHS) by using various innate immunity-deficient NOD mice. Toll-like receptor (TLR) 2-deficient, TLR9-deficient and MyD88-deficient NOD mice were used to investigate CHS. The cellular mechanism was determined by flow cytometry in vitro and adoptive cell transfer in vivo. To investigate the role of MyD88 in dendritic cells (DCs) in CHS, we also used CD11c MyD88+  MyD88 -/- NOD mice, in which MyD88 is expressed only in CD11c + cells. We found that innate immunity negatively regulates CHS, as innate immunity-deficient NOD mice developed exacerbated CHS accompanied by increased numbers of skin-migrating CD11c + DCs expressing higher levels of major histocompatibility complex II and CD80. Moreover, MyD88 -/- NOD mice had increased numbers of CD11c +  CD207 -  CD103 + DCs and activated T effector cells in the skin-draining lymph nodes. Strikingly, re-expression of MyD88 in CD11c + DCs (CD11c MyD88+  MyD88 -/- NOD mice) restored hyper-CHS to a normal level in MyD88 -/- NOD mice. Our results suggest that the autoimmune-prone NOD genetic background aggravates CHS regulated by innate immunity, through DCs and T effector cells. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. De Novo Transcriptome Analysis Shows That SAV-3 Infection Upregulates Pattern Recognition Receptors of the Endosomal Toll-Like and RIG-I-Like Receptor Signaling Pathways in Macrophage/Dendritic Like TO-Cells.

    PubMed

    Xu, Cheng; Evensen, Øystein; Munang'andu, Hetron

    2016-04-21

    A fundamental step in cellular defense mechanisms is the recognition of "danger signals" made of conserved pathogen associated molecular patterns (PAMPs) expressed by invading pathogens, by host cell germ line coded pattern recognition receptors (PRRs). In this study, we used RNA-seq and the Kyoto encyclopedia of genes and genomes (KEGG) to identify PRRs together with the network pathway of differentially expressed genes (DEGs) that recognize salmonid alphavirus subtype 3 (SAV-3) infection in macrophage/dendritic like TO-cells derived from Atlantic salmon (Salmo salar L) headkidney leukocytes. Our findings show that recognition of SAV-3 in TO-cells was restricted to endosomal Toll-like receptors (TLRs) 3 and 8 together with RIG-I-like receptors (RLRs) and not the nucleotide-binding oligomerization domain-like receptors NOD-like receptor (NLRs) genes. Among the RLRs, upregulated genes included the retinoic acid inducible gene I (RIG-I), melanoma differentiation association 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). The study points to possible involvement of the tripartite motif containing 25 (TRIM25) and mitochondrial antiviral signaling protein (MAVS) in modulating RIG-I signaling being the first report that links these genes to the RLR pathway in SAV-3 infection in TO-cells. Downstream signaling suggests that both the TLR and RLR pathways use interferon (IFN) regulatory factors (IRFs) 3 and 7 to produce IFN-a2. The validity of RNA-seq data generated in this study was confirmed by quantitative real time qRT-PCR showing that genes up- or downregulated by RNA-seq were also up- or downregulated by RT-PCR. Overall, this study shows that de novo transcriptome assembly identify key receptors of the TLR and RLR sensors engaged in host pathogen interaction at cellular level. We envisage that data presented here can open a road map for future intervention strategies in SAV infection of salmon.

  20. No evidence of association between NOD2/CARD15 gene polymorphism and atherosclerotic events after renal transplantation

    PubMed Central

    Courivaud, Cécile; Ferrand, Christophe; Deschamps, Marina; Tiberghien, Pierre; Chalopin, Jean-Marc; Duperrier, Anne; Saas, Philippe; Ducloux, Didier

    2006-01-01

    Stable renal transplant recipients (RTR) display high rates of atherosclerotic events (AE). Innate immunity and especially vascular inflammation play a role in the pathogenesis of atherosclerosis. It is illustrated both by an increased occurrence of post-renal transplant cardiovascular events in patients with elevated levels of C-reactive protein and by a correlation between post-transplant AE and Toll-like receptor-4 Asp299Gly polymorphism. Here, we analyze the influence NOD2/CARD15 gene polymorphism since NOD2 can modulate macrophage pro-inflammatory activity and macrophage is present in early atherosclerotic lesions. The incidence of single nucleotide polymorphism (SNP) in the three major polymorphic region of NOD2 gene (SNP8, SNP12 and SNP13) was assessed in 182 RTR and the correlation between such polymorphism and the development of AE was analyzed. No correlation was observed between NOD2 gene polymorphism and the occurrence of AE after renal transplantation. NOD2 gene polymorphism thus does not appear to influence cardiovascular complications in RTR. PMID:16641610

  1. The innate immune sensor NLRC3 attenuates Toll-like receptor signaling via modification of the signaling adaptor TRAF6 and transcription factor NF-κB.

    PubMed

    Schneider, Monika; Zimmermann, Albert G; Roberts, Reid A; Zhang, Lu; Swanson, Karen V; Wen, Haitao; Davis, Beckley K; Allen, Irving C; Holl, Eda K; Ye, Zhengmao; Rahman, Adeeb H; Conti, Brian J; Eitas, Timothy K; Koller, Beverly H; Ting, Jenny P-Y

    2012-09-01

    Several members of the NLR family of sensors activate innate immunity. In contrast, we found here that NLRC3 inhibited Toll-like receptor (TLR)-dependent activation of the transcription factor NF-κB by interacting with the TLR signaling adaptor TRAF6 to attenuate Lys63 (K63)-linked ubiquitination of TRAF6 and activation of NF-κB. We used bioinformatics to predict interactions between NLR and TRAF proteins, including interactions of TRAF with NLRC3. In vivo, macrophage expression of Nlrc3 mRNA was diminished by the administration of lipopolysaccharide (LPS) but was restored when cellular activation subsided. To assess biologic relevance, we generated Nlrc3(-/-) mice. LPS-treated Nlrc3(-/-) macrophages had more K63-ubiquitinated TRAF6, nuclear NF-κB and proinflammatory cytokines. Finally, LPS-treated Nlrc3(-/-) mice had more signs of inflammation. Thus, signaling via NLRC3 and TLR constitutes a negative feedback loop. Furthermore, prevalent NLR-TRAF interactions suggest the formation of a 'TRAFasome' complex.

  2. IL-27 Induced by Select Candida spp. via TLR7/NOD2 Signaling and IFN-β Production Inhibits Fungal Clearance

    PubMed Central

    Patin, Emmanuel C.; Jones, Adam V.; Thompson, Aiysha; Clement, Mathew; Liao, Chia-Te; Griffiths, James S.; Wallace, Leah E.; Bryant, Clare E.; Lang, Roland; Rosenstiel, Philip; Humphreys, Ian R.; Taylor, Philip R.

    2016-01-01

    Candida spp. elicit cytokine production downstream of various pathogen recognition receptors, including C-type lectin-like receptors, TLRs, and nucleotide oligomerization domain (NOD)–like receptors. IL-12 family members IL-12p70 and IL-23 are important for host immunity against Candida spp. In this article, we show that IL-27, another IL-12 family member, is produced by myeloid cells in response to selected Candida spp. We demonstrate a novel mechanism for Candida parapsilosis–mediated induction of IL-27 in a TLR7-, MyD88-, and NOD2-dependent manner. Our data revealed that IFN-β is induced by C. parapsilosis, which in turn signals through the IFN-α/β receptor and STAT1/2 to induce IL-27. Moreover, IL-27R (WSX-1)–deficient mice systemically infected with C. parapsilosis displayed enhanced pathogen clearance compared with wild-type mice. This was associated with increased levels of proinflammatory cytokines in the serum and increased IFN-γ and IL-17 responses in the spleens of IL-27R–deficient mice. Thus, our data define a novel link between C. parapsilosis, TLR7, NOD2, IFN-β, and IL-27, and we have identified an important role for IL-27 in the immune response against C. parapsilosis. Overall, these findings demonstrate an important mechanism for the suppression of protective immune responses during infection with C. parapsilosis, which has potential relevance for infections with other fungal pathogens. PMID:27259855

  3. Monomer/Dimer Transition of the Caspase-Recruitment Domain of Human Nod1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srimathi,T.; Robbins, S.; Dubas, R.

    2008-01-01

    Nod1 is an essential cytoplasmic sensor for bacterial peptidoglycans in the innate immune system. The caspase-recruitment domain of Nod1 (Nod1{_}CARD) is indispensable for recruiting a downstream kinase, receptor-interacting protein 2 (RIP2), that activates nuclear factor-?B (NF-?B). The crystal structure of human Nod1{_}CARD at 1.9 Angstroms resolution reveals a novel homodimeric conformation. Our structural and biochemical analysis shows that the homodimerization of Nod1{_}CARD is achieved by swapping the H6 helices at the carboxy termini and stabilized by forming an interchain disulfide bond between the Cys39 residues of the two monomers in solution and in the crystal. In addition, we present experimentalmore » evidence for a pH-sensitive conformational change of Nod1{_}CARD. Our results suggest that the pH-sensitive monomer/dimer transition is a unique molecular property of Nod1{_}CARD.« less

  4. Comparative Analysis of the Flax Immune Receptors L6 and L7 Suggests an Equilibrium-Based Switch Activation Model

    PubMed Central

    Chen, Chunhong; Newell, Kim; Lawrence, Gregory J.; Ellis, Jeffrey G.; Anderson, Peter A.; Dodds, Peter N.

    2016-01-01

    NOD-like receptors (NLRs) are central components of the plant immune system. L6 is a Toll/interleukin-1 receptor (TIR) domain-containing NLR from flax (Linum usitatissimum) conferring immunity to the flax rust fungus. Comparison of L6 to the weaker allele L7 identified two polymorphic regions in the TIR and the nucleotide binding (NB) domains that regulate both effector ligand-dependent and -independent cell death signaling as well as nucleotide binding to the receptor. This suggests that a negative functional interaction between the TIR and NB domains holds L7 in an inactive/ADP-bound state more tightly than L6, hence decreasing its capacity to adopt the active/ATP-bound state and explaining its weaker activity in planta. L6 and L7 variants with a more stable ADP-bound state failed to bind to AvrL567 in yeast two-hybrid assays, while binding was detected to the signaling active variants. This contrasts with current models predicting that effectors bind to inactive receptors to trigger activation. Based on the correlation between nucleotide binding, effector interaction, and immune signaling properties of L6/L7 variants, we propose that NLRs exist in an equilibrium between ON and OFF states and that effector binding to the ON state stabilizes this conformation, thereby shifting the equilibrium toward the active form of the receptor to trigger defense signaling. PMID:26744216

  5. Analysis of NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 genes in anal furunculosis of German shepherd dogs.

    PubMed

    House, A K; Binns, M M; Gregory, S P; Catchpole, B

    2009-03-01

    Anal furunculosis (AF) primarily affects German shepherd dogs (GSD) and is characterised by inflammation and ulceration of the perianal tissues with development of cutaneous sinuses or rectocutaneous fistulae. Investigation of pattern recognition receptor (PRR) function has suggested that defective responses might occur in AF-affected GSD. The aim of the current study was to investigate whether canine PRR genes are involved in determining susceptibility to AF in this breed. Chromosomal location and coding sequences for NOD1, NOD2, TLR1, TLR2, TLR4, TLR5, TLR6 and TLR9 were determined and microsatellite markers identified for each gene. Microsatellite genotyping of 100 control GSD and 47 AF-affected GSD showed restricted allelic variation for AHT H91 (associated with TLR5) and REN216 NO5 (associated with both TLR1 and TLR6) compared with non-GSD dogs. Genotyping of single nucleotide polymorphisms identified in canine TLR1, TLR5, TLR6 and NOD2 genes failed to show any significant associations between PRR polymorphisms and AF. The highly restricted PRR genotypes seen in GSD are likely to have resulted from selective breeding and might influence innate immune responses in this breed.

  6. Artificial Loading of ASC Specks with Cytosolic Antigens

    PubMed Central

    Sahillioğlu, Ali Can; Özören, Nesrin

    2015-01-01

    Inflammasome complexes form upon interaction of Nod Like Receptor (NLR) proteins with pathogen associated molecular patterns (PAPMS) inside the cytosol. Stimulation of a subset of inflammasome receptors including NLRP3, NLRC4 and AIM2 triggers formation of the micrometer-sized spherical supramolecular complex called the ASC speck. The ASC speck is thought to be the platform of inflammasome activity, but the reason why a supramolecular complex is preferred against oligomeric platforms remains elusive. We observed that a set of cytosolic proteins, including the model antigen ovalbumin, tend to co-aggregate on the ASC speck. We suggest that co-aggregation of antigenic proteins on the ASC speck during intracellular infection might be instrumental in antigen presentation. PMID:26258904

  7. A role for the pattern recognition receptor Nod2 in promoting recruitment of CD103+ Dendritic Cells to the colon in response to Trichuris muris infection

    PubMed Central

    Bowcutt, Rowann; Bramhall, Michael; Logunova, Larisa; Wilson, Jim; Booth, Cath; Carding, Simon R.; Grencis, Richard; Cruickshank, Sheena

    2014-01-01

    The ability of the colon to generate an immune response to pathogens, such as the model pathogen Trichuris muris, is a fundamental and critical defense mechanism. Resistance to T.muris infection is associated with the rapid recruitment of dendritic cells (DCs) to the colonic epithelium via epithelial chemokine production. However, the epithelial-pathogen interactions that drive chemokine production are not known. We addressed the role of the cytosolic pattern recognition receptor Nod2. In response to infection, there was a rapid influx of CD103+CD11c+ DCs into the colonic epithelium in wild type (WT) mice whereas this was absent in Nod2−/− animals. In vitro chemotaxis assays and in vivo experiments using bone marrow chimeras of WT mice reconstituted with Nod2−/− bone marrow and infected with T. muris demonstrated that the migratory function of Nod2−/− DCs was normal. Investigation of colonic epithelial cell (CEC) innate responses revealed a significant reduction in epithelial production of the chemokines CCL2 and CCL5 but not CCL20 by Nod2-deficient CEC. Collectively, these data demonstrate the importance of Nod2 in CEC responses to infection and the requirement for functional Nod2 in initiating host epithelial chemokine mediated responses and subsequent DC recruitment and T cell responses following infection. PMID:24448097

  8. Cathepsin B Contributes to Autophagy-related 7 (Atg7)-induced Nod-like Receptor 3 (NLRP3)-dependent Proinflammatory Response and Aggravates Lipotoxicity in Rat Insulinoma Cell Line

    PubMed Central

    Li, Shali; Du, Leilei; Zhang, Lu; Hu, Yue; Xia, Wenchun; Wu, Jia; Zhu, Jing; Chen, Lingling; Zhu, Fengqi; Li, Chunxian; Yang, SiJun

    2013-01-01

    Impairment of glucose-stimulated insulin secretion caused by the lipotoxicity of palmitate was found in β-cells. Recent studies have indicated that defects in autophagy contribute to pathogenesis in type 2 diabetes. Here, we report that autophagy-related 7 (Atg7) induced excessive autophagic activation in INS-1(823/13) cells exposed to saturated fatty acids. Atg7-induced cathepsin B (CTSB) overexpression resulted in an unexpected significant increase in proinflammatory chemokine and cytokine production levels of IL-1β, monocyte chemotactic protein-1, IL-6, and TNF-α. Inhibition of receptor-interacting protein did not affect the inflammatory response, ruling out involvement of necrosis. CTSB siRNA suppressed the inflammatory response but did not affect apoptosis significantly, suggesting that CTSB was a molecular linker between autophagy and the proinflammatory response. Blocking caspase-3 suppressed apoptosis but did not affect the inflammatory response, suggesting that CTSB induced inflammatory effects independently of apoptosis. Silencing of Nod-like receptor 3 (NLRP3) completely abolished both IL-1β secretion and the down-regulation effects of Atg7-induced CTSB overexpression on glucose-stimulated insulin secretion impairment, thus identifying the NLRP3 inflammasome as an autophagy-responsive element in the pancreatic INS-1(823/13) cell line. Combined together, our results indicate that CTSB contributed to the Atg7-induced NLRP3-dependent proinflammatory response, resulting in aggravation of lipotoxicity, independently of apoptosis in the pancreatic INS-1(823/13) cell line. PMID:23986436

  9. NLR-Associating Transcription Factor bHLH84 and Its Paralogs Function Redundantly in Plant Immunity

    PubMed Central

    Xu, Fang; Kapos, Paul; Cheng, Yu Ti; Li, Meng; Zhang, Yuelin; Li, Xin

    2014-01-01

    In plants and animals, nucleotide-binding and leucine-rich repeat domain containing (NLR) immune receptors are utilized to detect the presence or activities of pathogen-derived molecules. However, the mechanisms by which NLR proteins induce defense responses remain unclear. Here, we report the characterization of one basic Helix-loop-Helix (bHLH) type transcription factor (TF), bHLH84, identified from a reverse genetic screen. It functions as a transcriptional activator that enhances the autoimmunity of NLR mutant snc1 (suppressor of npr1-1, constitutive 1) and confers enhanced immunity in wild-type backgrounds when overexpressed. Simultaneously knocking out three closely related bHLH paralogs attenuates RPS4-mediated immunity and partially suppresses the autoimmune phenotypes of snc1, while overexpression of the other two close paralogs also renders strong autoimmunity, suggesting functional redundancy in the gene family. Intriguingly, the autoimmunity conferred by bHLH84 overexpression can be largely suppressed by the loss-of-function snc1-r1 mutation, suggesting that SNC1 is required for its proper function. In planta co-immunoprecipitation revealed interactions between not only bHLH84 and SNC1, but also bHLH84 and RPS4, indicating that bHLH84 associates with these NLRs. Together with previous finding that SNC1 associates with repressor TPR1 to repress negative regulators, we hypothesize that nuclear NLR proteins may interact with both transcriptional repressors and activators during immune responses, enabling potentially faster and more robust transcriptional reprogramming upon pathogen recognition. PMID:25144198

  10. The Molecular Chaperone HSP70 Binds to and Stabilizes NOD2, an Important Protein Involved in Crohn Disease*

    PubMed Central

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-01-01

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. PMID:24790089

  11. A NodD-like protein activates transcription of genes involved with naringenin degradation in a flavonoid-dependent manner in Herbaspirillum seropedicae.

    PubMed

    Wassem, R; Marin, A M; Daddaoua, A; Monteiro, R A; Chubatsu, L S; Ramos, J L; Deakin, W J; Broughton, W J; Pedrosa, F O; Souza, E M

    2017-03-01

    Herbaspirillum seropedicae is an associative, endophytic non-nodulating diazotrophic bacterium that colonises several grasses. An ORF encoding a LysR-type transcriptional regulator, very similar to NodD proteins of rhizobia, was identified in its genome. This nodD-like gene, named fdeR, is divergently transcribed from an operon encoding enzymes involved in flavonoid degradation (fde operon). Apigenin, chrysin, luteolin and naringenin strongly induce transcription of the fde operon, but not that of the fdeR, in an FdeR-dependent manner. The intergenic region between fdeR and fdeA contains several generic LysR consensus sequences (T-N 11 -A) and we propose a binding site for FdeR, which is conserved in other bacteria. DNase I foot-printing revealed that the interaction with the FdeR binding site is modified by the four flavonoids that stimulate transcription of the fde operon. Moreover, FdeR binds naringenin and chrysin as shown by isothermal titration calorimetry. Interestingly, FdeR also binds in vitro to the nod-box from the nodABC operon of Rhizobium sp. NGR234 and is able to activate its transcription in vivo. These results show that FdeR exhibits two features of rhizobial NodD proteins: nod-box recognition and flavonoid-dependent transcription activation, but its role in H. seropedicae and related organisms seems to have evolved to control flavonoid metabolism. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Leptospira Interrogans Induces Fibrosis in the Mouse Kidney through Inos-Dependent, TLR- and NLR-Independent Signaling Pathways

    PubMed Central

    Fanton d'Andon, Martine; Quellard, Nathalie; Fernandez, Béatrice; Ratet, Gwenn; Lacroix-Lamandé, Sonia; Vandewalle, Alain; Boneca, Ivo G.; Goujon, Jean-Michel; Werts, Catherine

    2014-01-01

    Background Leptospira (L.) interrogans are bacteria responsible for a worldwide reemerging zoonosis. Rodents carry L. interrogans asymptomatically in their kidneys and excrete bacteria in the urine, contaminating the environment. Humans get infected through skin contact and develop a mild or severe leptospirosis that may lead to renal failure and fibrosis. L. interrogans provoke an interstitial nephritis, but the induction of fibrosis caused by L. interrogans has not been studied in murine models. Innate immune receptors from the TLR and NLR families have recently been shown to play a role in the development and progression of tissue fibrosis in the lung, liver and kidneys under different pathophysiological situations. We recently showed that TLR2, TLR4, and NLRP3 receptors were crucial in the defense against leptospirosis. Moreover, infection of a human cell line with L. interrogans was shown to induce TLR2-dependent production of fibronectin, a component of the extracellular matrix. Therefore, we thought to assess the presence of renal fibrosis in L. interrogans infected mice and to analyze the contribution of some innate immune pathways in this process. Methodology/principal findings Here, we characterized by immunohistochemical studies and quantitative real-time PCR, a model of Leptospira-infected C57BL/6J mice, with chronic carriage of L. interrogans inducing mild renal fibrosis. Using various strains of transgenic mice, we determined that the renal infiltrates of T cells and, unexpectedly, TLR and NLR receptors, are not required to generate Leptospira-induced renal fibrosis. We also show that the iNOS enzyme, known to play a role in Leptospira-induced interstitial nephritis, also plays a role in the induction of renal fibrosis. Conclusion/significance To our knowledge, this work provides the first experimental murine model of sustained renal fibrosis induced by a chronic bacterial infection that may be peculiar, since it does not rely on TLR or NLR receptors

  13. Cutaneous Nod2 Expression Regulates the Skin Microbiome and Wound Healing in a Murine Model.

    PubMed

    Williams, Helen; Crompton, Rachel A; Thomason, Helen A; Campbell, Laura; Singh, Gurdeep; McBain, Andrew J; Cruickshank, Sheena M; Hardman, Matthew J

    2017-11-01

    The skin microbiome exists in dynamic equilibrium with the host, but when the skin is compromised, bacteria can colonize the wound and impair wound healing. Thus, the interplay between normal skin microbial interactions versus pathogenic microbial interactions in wound repair is important. Bacteria are recognized by innate host pattern recognition receptors, and we previously showed an important role for the pattern recognition receptor NOD2 in skin wound repair. NOD2 is implicated in changes in the composition of the intestinal microbiota in Crohn's disease, but its role on skin microbiota is unknown. Nod2-deficient (Nod2 -/- ) mice had an inherently altered skin microbiome compared with wild-type controls. Furthermore, we found that Nod2 -/- skin microbiome dominated and caused impaired healing, shown in cross-fostering experiments of wild-type pups with Nod2 -/- pups, which then acquired altered cutaneous bacteria and delayed healing. High-throughput sequencing and quantitative real-time PCR showed a significant compositional shift, specifically in the genus Pseudomonas in Nod2 -/- mice. To confirm whether Pseudomonas species directly impair wound healing, wild-type mice were infected with Pseudomonas aeruginosa biofilms and, akin to Nod2 -/- mice, were found to exhibit a significant delay in wound repair. Collectively, these studies show the importance of the microbial communities in skin wound healing outcome. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Nod2 is required for antigen-specific humoral responses against antigens orally delivered using a recombinant Lactobacillus vaccine platform

    PubMed Central

    Bumgardner, Sara A.; Zhang, Lin; LaVoy, Alora S.; Frank, Chad B.; Kajikawa, Akinobu; Klaenhammer, Todd R.

    2018-01-01

    Safe and efficacious orally-delivered mucosal vaccine platforms are desperately needed to combat the plethora of mucosally transmitted pathogens. Lactobacillus spp. have emerged as attractive candidates to meet this need and are known to activate the host innate immune response in a species- and strain-specific manner. For selected bacterial isolates and mutants, we investigated the role of key innate immune pathways required for induction of innate and subsequent adaptive immune responses. Co-culture of murine macrophages with L. gasseri (strain NCK1785), L. acidophilus (strain NCFM), or NCFM-derived mutants—NCK2025 and NCK2031—elicited an M2b-like phenotype associated with TH2 skewing and immune regulatory function. For NCFM, this M2b phenotype was dependent on expression of lipoteichoic acid and S layer proteins. Through the use of macrophage genetic knockouts, we identified Toll-like receptor 2 (TLR2), the cytosolic nucleotide-binding oligomerization domain containing 2 (NOD2) receptor, and the inflammasome-associated caspase-1 as contributors to macrophage activation, with NOD2 cooperating with caspase-1 to induce inflammasome derived interleukin (IL)-1β in a pyroptosis-independent fashion. Finally, utilizing an NCFM-based mucosal vaccine platform with surface expression of human immunodeficiency virus type 1 (HIV-1) Gag or membrane proximal external region (MPER), we demonstrated that NOD2 signaling is required for antigen-specific mucosal and systemic humoral responses. We show that lactobacilli differentially utilize innate immune pathways and highlight NOD2 as a key mediator of macrophage function and antigen-specific humoral responses to a Lactobacillus acidophilus mucosal vaccine platform. PMID:29734365

  15. Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation

    PubMed Central

    Wagener, Jeanette; Malireddi, R. K. Subbarao; Lenardon, Megan D.; Köberle, Martin; Vautier, Simon; MacCallum, Donna M.; Biedermann, Tilo; Schaller, Martin; Netea, Mihai G.; Kanneganti, Thirumala-Devi; Brown, Gordon D.; Brown, Alistair J. P.; Gow, Neil A. R.

    2014-01-01

    Chitin is an essential structural polysaccharide of fungal pathogens and parasites, but its role in human immune responses remains largely unknown. It is the second most abundant polysaccharide in nature after cellulose and its derivatives today are widely used for medical and industrial purposes. We analysed the immunological properties of purified chitin particles derived from the opportunistic human fungal pathogen Candida albicans, which led to the selective secretion of the anti-inflammatory cytokine IL-10. We identified NOD2, TLR9 and the mannose receptor as essential fungal chitin-recognition receptors for the induction of this response. Chitin reduced LPS-induced inflammation in vivo and may therefore contribute to the resolution of the immune response once the pathogen has been defeated. Fungal chitin also induced eosinophilia in vivo, underpinning its ability to induce asthma. Polymorphisms in the identified chitin receptors, NOD2 and TLR9, predispose individuals to inflammatory conditions and dysregulated expression of chitinases and chitinase-like binding proteins, whose activity is essential to generate IL-10-inducing fungal chitin particles in vitro, have also been linked to inflammatory conditions and asthma. Chitin recognition is therefore critical for immune homeostasis and is likely to have a significant role in infectious and allergic disease. Authors Summary Chitin is the second most abundant polysaccharide in nature after cellulose and an essential component of the cell wall of all fungal pathogens. The discovery of human chitinases and chitinase-like binding proteins indicates that fungal chitin is recognised by cells of the human immune system, shaping the immune response towards the invading pathogen. We show that three immune cell receptors– the mannose receptor, NOD2 and TLR9 recognise chitin and act together to mediate an anti-inflammatory response via secretion of the cytokine IL-10. This mechanism may prevent inflammation-based damage

  16. The molecular chaperone HSP70 binds to and stabilizes NOD2, an important protein involved in Crohn disease.

    PubMed

    Mohanan, Vishnu; Grimes, Catherine Leimkuhler

    2014-07-04

    Microbes are detected by the pathogen-associated molecular patterns through specific host pattern recognition receptors. Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is an intracellular pattern recognition receptor that recognizes fragments of the bacterial cell wall. NOD2 is important to human biology; when it is mutated it loses the ability to respond properly to bacterial cell wall fragments. To determine the mechanisms of misactivation in the NOD2 Crohn mutants, we developed a cell-based system to screen for protein-protein interactors of NOD2. We identified heat shock protein 70 (HSP70) as a protein interactor of both wild type and Crohn mutant NOD2. HSP70 has previously been linked to inflammation, especially in the regulation of anti-inflammatory molecules. Induced HSP70 expression in cells increased the response of NOD2 to bacterial cell wall fragments. In addition, an HSP70 inhibitor, KNK437, was capable of decreasing NOD2-mediated NF-κB activation in response to bacterial cell wall stimulation. We found HSP70 to regulate the half-life of NOD2, as increasing the HSP70 level in cells increased the half-life of NOD2, and down-regulating HSP70 decreased the half-life of NOD2. The expression levels of the Crohn-associated NOD2 variants were less compared with wild type. The overexpression of HSP70 significantly increased NOD2 levels as well as the signaling capacity of the mutants. Thus, our study shows that restoring the stability of the NOD2 Crohn mutants is sufficient for rescuing the ability of these mutations to signal the presence of a bacterial cell wall ligand. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. NOD2 enhances the innate response of alveolar macrophages to Mycobacterium tuberculosis in humans.

    PubMed

    Juárez, Esmeralda; Carranza, Claudia; Hernández-Sánchez, Fernando; León-Contreras, Juan C; Hernández-Pando, Rogelio; Escobedo, Dante; Torres, Martha; Sada, Eduardo

    2012-04-01

    A role for the nucleotide-binding oligomerization domain 2 (NOD2) receptor in pulmonary innate immune responses has recently been explored. In the present study, we investigated the role that NOD2 plays in human alveolar macrophage innate responses and determined its involvement in the response to infection with virulent Mycobacterium tuberculosis. Our results showed that NOD2 was expressed in human alveolar macrophages, and significant amounts of IL-1β, IL-6, and TNF-α were produced upon ligand recognition with muramyldipeptide (MDP). NOD2 ligation induced the transcription and protein expression of the antimicrobial peptide LL37 and the autophagy enzyme IRGM in alveolar macrophages, demonstrating a novel function for this receptor in these cells. MDP treatment of alveolar macrophages improved the intracellular growth control of virulent M. tuberculosis; this was associated with a significant release of TNF-α and IL-6 and overexpression of bactericidal LL37. In addition, the autophagy proteins IRGM, LC3 and ATG16L1 were recruited to the bacteria-containing autophagosome after treatment with MDP. In conclusion, our results suggest that NOD2 can modulate the innate immune response of alveolar macrophages and play a role in the initial control of respiratory M. tuberculosis infections. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Polyinosine-polycytidylic acid promotes excessive iodine intake induced thyroiditis in non-obese diabetic mice via Toll-like receptor 3 mediated inflammation.

    PubMed

    Shi, Ya-nan; Liu, Feng-hua; Yu, Xiu-jie; Liu, Ze-bing; Li, Qing-xin; Yuan, Ji-hong; Zang, Xiao-yi; Li, Lan-ying

    2013-02-01

    Excessive iodine intake and viral infection are recognized as both critical factors associated with autoimmune thyroid diseases. Toll-like receptors (TLRs) have been reported to play an important role in autoimmune and inflammatory disorders. In this study, we aimed to clarify the possible mechanism of TLR3 involved in polyinosine-polycytidylic acid (poly(I:C)) promoting excessive iodine intake induced thyroiditis in non-obese diabetic (NOD) mice. Both NOD and BALB/c mice were randomly assigned to four groups: control group (n = 5), high iodine intake (HI) group (n = 7), poly(I:C) group (n = 7) and combination of excessive iodine and poly(I:C) injection (HIP) group (n = 7). After 8 weeks, mice were weighed and blood samples were collected. All the mice were sacrificed before dissection of spleen and thyroid gland. Then, thyroid histology, thyroid secreted hormone, expression of CD3(+) cells and TLR3 as well as inflammatory mRNA level were evaluated. Both NOD and BALB/c mice from HI and HIP group represented goiter and increasing thyroid relative weight. Thyroid histology evidence indicated that only HIP group of NOD mice showed severe thyroiditis with lymphocytes infiltration in majority of thyroid tissue, severe damage of follicles and general fibrosis. Immunofluorescence staining results displayed a large number of CD3(+) cells in HIP NOD mice. Real-time polymerase chain reaction (PCR) results suggested interferon (IFN)-α increased over 30 folds and IFN-γ expression was doubled compared with control group, but interleukin (IL)-4 remained unchanged in HIP group of NOD mice thyroid. Meanwhile, over one third decrease of blood total thyroxine (TT4) and increased thyroid-stimulating hormone (TSH) was observed in HIP group of NOD mice. Only HIP group of NOD mice represented significantly elevation of TLR3 expression. Poly(I:C) enhanced excessive dietary iodine induced thyroiditis in NOD mice through increasing TLR3 mediated inflammation.

  19. Adverse effect on syngeneic islet transplantation by transgenic coexpression of decoy receptor 3 and heme oxygenase-1 in the islet of NOD mice.

    PubMed

    Huang, S-H; Lin, G-J; Chien, M-W; Chu, C-H; Yu, J-C; Chen, T-W; Hueng, D-Y; Liu, Y-L; Sytwu, H-K

    2013-03-01

    Decoy receptor 3 (DcR3) blocks both Fas ligand- and LIGHT-induced pancreatic β-cell damage in autoimmune diabetes. Heme oxygenase 1 (HO-1) possesses antiapoptotic, anti-inflammatory, and antioxidative effects that protect cells against various forms of attack by the immune system. Previously, we have demonstrated that transgenic islets overexpressing DcR3 or murine HO-1 (mHO-1) exhibit longer survival times than nontransgenic islets in syngeneic islet transplantation. In this study, we evaluated whether DcR3 and mHO-1 double-transgenic islets of NOD mice could provide better protective effects and achieve longer islet graft survival than DcR3 or mHO-1 single-transgenic islets after islet transplantation. We generated DcR3 and mHO-1 double-transgenic NOD mice that specifically overexpress DcR3 and HO-1 in islets. Seven hundred islets isolated from double-transgenic, single-transgenic, or nontransgenic NOD mice were syngeneically transplanted into the kidney capsules of newly diabetic female recipients. Unexpectedly, there was no significant difference in the survival time between double-transgenic or nontransgenic NOD islet grafts, and the survival times of double-transgenic NOD islet grafts were even shorter than those of DcR3 or mHO-1 single-transgenic islets. Our data indicate that transplantation of double-transgenic islets that coexpress HO-1 and DcR3 did not result in a better outcome. On the contrary, this strategy even caused an adverse effect in syngeneic islet transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Does Infection-Induced Immune Activation Contribute to Dementia?

    PubMed Central

    Barichello, Tatiana; Generoso, Jaqueline S; Goularte, Jessica A; Collodel, Allan; Pitcher, Meagan R; Simões, Lutiana R; Quevedo, João; Dal-Pizzol, Felipe

    2015-01-01

    The central nervous system (CNS) is protected by a complex blood-brain barrier system; however, a broad diversity of virus, bacteria, fungi, and protozoa can gain access and cause illness. As pathogens replicate, they release molecules that can be recognized by innate immune cells. These molecules are pathogen-associated molecular patterns (PAMP) and they are identified by pattern-recognition receptors (PRR) expressed on antigen-presenting cells. Examples of PRR include toll-like receptors (TLR), receptors for advanced glycation endproducts (RAGE), nucleotide binding oligomerisation domain (NOD)-like receptors (NLR), c-type lectin receptors (CLR), RIG-I-like receptors (RLR), and intra-cytosolic DNA sensors. The reciprocal action between PAMP and PRR triggers the release of inflammatory mediators that regulate the elimination of invasive pathogens. Damage-associated molecular patterns (DAMP) are endogenous constituents released from damaged cells that also have the ability to activate the innate immune response. An increase of RAGE expression levels on neurons, astrocytes, microglia, and endothelial cells could be responsible for the accumulation of αβ-amyloid in dementia and related to the chronic inflammatory state that is found in neurodegenerative disorders. PMID:26425389

  1. Candidatus Frankia Datiscae Dg1, the Actinobacterial Microsymbiont of Datisca glomerata, Expresses the Canonical nod Genes nodABC in Symbiosis with Its Host Plant

    PubMed Central

    Persson, Tomas; Battenberg, Kai; Demina, Irina V.; Vigil-Stenman, Theoden; Vanden Heuvel, Brian; Pujic, Petar; Facciotti, Marc T.; Wilbanks, Elizabeth G.; O'Brien, Anna; Fournier, Pascale; Cruz Hernandez, Maria Antonia; Mendoza Herrera, Alberto; Médigue, Claudine; Normand, Philippe; Pawlowski, Katharina; Berry, Alison M.

    2015-01-01

    Frankia strains are nitrogen-fixing soil actinobacteria that can form root symbioses with actinorhizal plants. Phylogenetically, symbiotic frankiae can be divided into three clusters, and this division also corresponds to host specificity groups. The strains of cluster II which form symbioses with actinorhizal Rosales and Cucurbitales, thus displaying a broad host range, show suprisingly low genetic diversity and to date can not be cultured. The genome of the first representative of this cluster, Candidatus Frankia datiscae Dg1 (Dg1), a microsymbiont of Datisca glomerata, was recently sequenced. A phylogenetic analysis of 50 different housekeeping genes of Dg1 and three published Frankia genomes showed that cluster II is basal among the symbiotic Frankia clusters. Detailed analysis showed that nodules of D. glomerata, independent of the origin of the inoculum, contain several closely related cluster II Frankia operational taxonomic units. Actinorhizal plants and legumes both belong to the nitrogen-fixing plant clade, and bacterial signaling in both groups involves the common symbiotic pathway also used by arbuscular mycorrhizal fungi. However, so far, no molecules resembling rhizobial Nod factors could be isolated from Frankia cultures. Alone among Frankia genomes available to date, the genome of Dg1 contains the canonical nod genes nodA, nodB and nodC known from rhizobia, and these genes are arranged in two operons which are expressed in D. glomerata nodules. Furthermore, Frankia Dg1 nodC was able to partially complement a Rhizobium leguminosarum A34 nodC::Tn5 mutant. Phylogenetic analysis showed that Dg1 Nod proteins are positioned at the root of both α- and β-rhizobial NodABC proteins. NodA-like acyl transferases were found across the phylum Actinobacteria, but among Proteobacteria only in nodulators. Taken together, our evidence indicates an Actinobacterial origin of rhizobial Nod factors. PMID:26020781

  2. Genetic deletion of the bacterial sensor NOD2 improves murine Crohn’s disease-like ileitis independent of functional dysbiosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Corridoni, D.; Rodriguez-Palacios, A.; Di Stefano, G.

    Although genetic polymorphisms in NOD2 (nucleotide-binding oligomerization domain-containing 2) have been associated with the pathogenesis of Crohn’s disease (CD), little is known regarding the role of wild-type (WT) NOD2 in the gut. To date, most murine studies addressing the role of WT Nod2 have been conducted using healthy (ileitis/colitis-free) mouse strains. Here, we evaluated the effects of Nod2 deletion in a murine model of spontaneous ileitis, i.e., the SAMP1Yit/Fc (SAMP) strain, which closely resembles CD. Remarkably, Nod2 deletion improved both chronic cobblestone ileitis (by 50% assessed, as the % of abnormal mucosa at 24 wks of age), as well asmore » acute dextran sodium sulfate (DSS) colitis. Mechanistically, Th2 cytokine production and Th2-transcription factor activation (i.e., STAT6 phosphorylation) were reduced. Microbiologically, the effects of Nod2 deletion appeared independent of fecal microbiota composition and function, assessed by 16S rRNA and metatranscriptomics. Our findings indicate that pharmacological blockade of NOD2 signaling in humans could improve health in Th2-driven chronic intestinal inflammation.« less

  3. Orphan Kinesin NOD Lacks Motile Properties But Does Possess a Microtubule-stimulated ATPase Activity

    PubMed Central

    Matthies, Heinrich J.G.; Baskin, Ronald J.; Hawley, R. Scott

    2001-01-01

    NOD is a Drosophila chromosome-associated kinesin-like protein that does not fall into the chromokinesin subfamily. Although NOD lacks residues known to be critical for kinesin function, we show that microtubules activate the ATPase activity of NOD >2000-fold. Biochemical and genetic analysis of two genetically identified mutations of NOD (NODDTW and NOD“DR2”) demonstrates that this allosteric activation is critical for the function of NOD in vivo. However, several lines of evidence indicate that this ATPase activity is not coupled to vectorial transport, including 1) NOD does not produce microtubule gliding; and 2) the substitution of a single amino acid in the Drosophila kinesin heavy chain with the analogous amino acid in NOD results in a drastic inhibition of motility. We suggest that the microtubule-activated ATPase activity of NOD provides transient attachments of chromosomes to microtubules rather than producing vectorial transport. PMID:11739796

  4. The NLR-related protein NWD1 is associated with prostate cancer and modulates androgen receptor signaling.

    PubMed

    Correa, Ricardo G; Krajewska, Maryla; Ware, Carl F; Gerlic, Motti; Reed, John C

    2014-03-30

    Prostate cancer (PCa) is among the leading causes of cancer-related death in men. Androgen receptor (AR) signaling plays a seminal role in prostate development and homeostasis, and dysregulation of this pathway is intimately linked to prostate cancer pathogenesis and progression. Here, we identify the cytosolic NLR-related protein NWD1 as a novel modulator of AR signaling. We determined that expression of NWD1 becomes elevated during prostate cancer progression, based on analysis of primary tumor specimens. Experiments with cultured cells showed that NWD1 expression is up-regulated by the sex-determining region Y (SRY) family proteins. Gene silencing procedures, in conjunction with transcriptional profiling, showed that NWD1 is required for expression of PDEF (prostate-derived Ets factor), which is known to bind and co-regulate AR. Of note, NWD1 modulates AR protein levels. Depleting NWD1 in PCa cell lines reduces AR levels and suppresses activity of androgen-driven reporter genes. NWD1 knockdown potently suppressed growth of androgen-dependent LNCaP prostate cancer cells, thus showing its functional importance in an AR-dependent tumor cell model. Proteomic analysis suggested that NWD1 associates with various molecular chaperones commonly related to AR complexes. Altogether, these data suggest a role for tumor-associated over-expression of NWD1 in dysregulation of AR signaling in PCa.

  5. Metastable Pluripotent States in NOD Mouse Derived ES Cells

    PubMed Central

    Hanna, Jacob; Markoulaki, Styliani; Mitalipova, Maisam; Cheng, Albert W.; Cassady, John P.; Staerk, Judith; Carey, Bryce W.; Lengner, Christopher J.; Foreman, Ruth; Love, Jennifer; Gao, Qing; Kim, Jongpil; Jaenisch, Rudolf

    2009-01-01

    Embryonic stem (ES) cells are isolated from the inner cell mass (ICM) of blastocysts, whereas epiblast stem cells (EpiSCs) are derived from the post-implantation epiblast and display a restricted developmental potential. Here we characterize pluripotent states in the non-obese diabetic (NOD) mouse strain, which prior to this study was considered “non-permissive” for ES cell derivation. We find that NOD stem cells can be stabilized by providing constitutive expression of Klf4 or c-Myc or small molecules that can replace these factors during in vitro reprogramming. The NOD ES and iPS cells appear “metastable”, as they acquire an alternative EpiSC-like identity after removal of the exogenous factors, while their reintroduction converts the cells back to ICM-like pluripotency. Our findings suggest that stem cells from different genetic backgrounds can assume distinct states of pluripotency in vitro, the stability of which is regulated by endogenous genetic determinants and can be modified by exogenous factors. PMID:19427283

  6. Crohn's Disease Variants of Nod2 Are Stabilized by the Critical Contact Region of Hsp70.

    PubMed

    Schaefer, Amy K; Wastyk, Hannah C; Mohanan, Vishnu; Hou, Ching-Wen; Lauro, Mackenzie L; Melnyk, James E; Burch, Jason M; Grimes, Catherine L

    2017-08-29

    Nod2 is a cytosolic, innate immune receptor responsible for binding to bacterial cell wall fragments such as muramyl dipeptide (MDP). Upon binding, subsequent downstream activation of the NF-κB pathway leads to an immune response. Nod2 mutations are correlated with an increased susceptibility to Crohn's disease (CD) and ultimately result in a misregulated immune response. Previous work had demonstrated that Nod2 interacts with and is stabilized by the molecular chaperone Hsp70. In this work, it is shown using purified protein and in vitro biochemical assays that the critical Nod2 CD mutations (G908R, R702W, and 1007fs) preserve the ability to bind bacterial ligands. A limited proteolysis assay and luciferase reporter assay reveal regions of Hsp70 that are capable of stabilizing Nod2 and rescuing CD mutant activity. A minimal 71-amino acid subset of Hsp70 that stabilizes the CD-associated variants of Nod2 and restores a proper immune response upon activation with MDP was identified. This work suggests that CD-associated Nod2 variants could be stabilized in vivo with a molecular chaperone.

  7. Combination of preoperative NLR, PLR and CEA could increase the diagnostic efficacy for I-III stage CRC.

    PubMed

    Peng, Hong-Xin; Yang, Lin; He, Bang-Shun; Pan, Yu-Qin; Ying, Hou-Qun; Sun, Hui-Ling; Lin, Kang; Hu, Xiu-Xiu; Xu, Tao; Wang, Shu-Kui

    2017-09-01

    Inflammation plays an important role in the development and progression of CRC. The members of inflammatory biomarkers, preoperative NLR and PLR, have been proved by numerous studies to be promising prognostic biomarkers for CRC. However, the diagnostic value of the two biomarkers in CRC remains unknown, and no study reported the combined diagnostic efficacy of NLR, PLR and CEA. Five hundred and fifty-nine patients with I-III stage CRC undergoing surgical resection and 559 gender- and age-matched healthy controls were enrolled in this retrospective study. NLR and PLR were calculated from preoperative peripheral blood cell count detected using white blood cell five classification by Sysmex XT-1800i Automated Hematology System and serum CEA were measured by electrochemiluminescence by ELECSYS 2010. The diagnostic performance of NLR, PLR and CEA for CRC was evaluated by ROC curve. Levels of NLR and PLR in the cases were significantly higher than them in the healthy controls. ROC curves comparison analyses showed that the diagnostic efficacy of NLR (AUC=.755, 95%CI=.728-.780) alone for CRC was significantly higher than PLR (AUC=.723, 95%CI=.696-.749, P=.037) and CEA (AUC=.690, 95%CI=.662-.717, P=.002) alone. In addition, the diagnostic efficacy of the combination of NLR, PLR and CEA(AUC=.831, 95%CI=.807-.852)for CRC was not only significantly higher than NLR alone but also higher than any combinations of the two of these three biomarkers (P<.05). Moreover, the NLR and PLR in the patients with TNM stage I/II was higher than that in the healthy controls, and patients with stage III had a higher NLR and PLR than those with stage I/II, but no significant difference was observed. Our study indicated that preoperative NLR could be a CRC diagnostic biomarker, even for early stage CRC, and the combination of NLR, PLR and CEA could significantly improve the diagnostic efficacy. © 2016 Wiley Periodicals, Inc.

  8. Graft-versus-host disease: regulation by microbe-associated molecules and innate immune receptors.

    PubMed

    Penack, Olaf; Holler, Ernst; van den Brink, Marcel R M

    2010-03-11

    Acute graft-versus-host disease (GVHD) remains the major obstacle to a more favorable therapeutic outcome of allogeneic hematopoietic stem cell transplantation (HSCT). GVHD is characterized by tissue damage in gut, liver, and skin, caused by donor T cells that are critical for antitumor and antimicrobial immunity after HSCT. One obstacle in combating GVHD used to be the lack of understanding the molecular mechanisms that are involved in the initiation phase of this syndrome. Recent research has demonstrated that interactions between microbial-associated molecules (pathogen-associated molecular patterns [PAMPs]) and innate immune receptors (pathogen recognition receptors [PRRs]), such as NOD-like receptors (NLRs) and Toll-like receptors (TLRs), control adaptive immune responses in inflammatory disorders. Polymorphisms of the genes encoding NOD2 and TLR4 are associated with a higher incidence of GVHD in HSC transplant recipients. Interestingly, NOD2 regulates GVHD through its inhibitory effect on antigen-presenting cell (APC) function. These insights identify important mechanisms regarding the induction of GVHD through the interplay of microbial molecules and innate immunity, thus opening a new area for future therapeutic approaches. This review covers current knowledge of the role of PAMPs and PRRs in the control of adaptive immune responses during inflammatory diseases, particularly GVHD.

  9. Ectopic activation of the rice NLR heteropair RGA4/RGA5 confers resistance to bacterial blight and bacterial leaf streak diseases.

    PubMed

    Hutin, Mathilde; Césari, Stella; Chalvon, Véronique; Michel, Corinne; Tran, Tuan Tu; Boch, Jens; Koebnik, Ralf; Szurek, Boris; Kroj, Thomas

    2016-10-01

    Bacterial blight (BB) and bacterial leaf streak (BLS) are important diseases in Oryza sativa caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively. In both bacteria, transcription activator-like (TAL) effectors are major virulence determinants that act by transactivating host genes downstream of effector-binding elements (EBEs) bound in a sequence-specific manner. Resistance to Xoo is mostly related to the action of TAL effectors, either by polymorphisms that prevent the induction of susceptibility (S) genes or by executor (R) genes with EBEs embedded in their promoter, and that induce cell death and resistance. For Xoc, no resistance sources are known in rice. Here, we investigated whether the recognition of effectors by nucleotide binding and leucine-rich repeat domain immune receptors (NLRs), the most widespread resistance mechanism in plants, is also able to stop BB and BLS. In one instance, transgenic rice lines harboring the AVR1-CO39 effector gene from the rice blast fungus Magnaporthe oryzae, under the control of an inducible promoter, were challenged with transgenic Xoo and Xoc strains carrying a TAL effector designed to transactivate the inducible promoter. This induced AVR1-CO39 expression and triggered BB and BLS resistance when the corresponding Pi-CO39 resistance locus was present. In a second example, the transactivation of an auto-active NLR by Xoo-delivered designer TAL effectors resulted in BB resistance, demonstrating that NLR-triggered immune responses efficiently control Xoo. This forms the foundation for future BB and BLS disease control strategies, whereupon endogenous TAL effectors will target synthetic promoter regions of Avr or NLR executor genes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  10. Nucleotide-binding oligomerization domain 2 (NOD2) activation induces apoptosis of human oral squamous cell carcinoma cells.

    PubMed

    Yoon, Hyo-Eun; Ahn, Mee-Young; Kwon, Seong-Min; Kim, Dong-Jae; Lee, Jun; Yoon, Jung-Hoon

    2016-04-01

    Microbial Pattern-recognition receptors (PRRs), such as nucleotide-binding oligomerization domains (NODs), are essential for mammalian innate immune response. This study was designed to determine the effect of NOD1 and NOD2 agonist on innate immune responses and antitumor activity in oral squamous cell carcinoma (OSCC) cells. NODs expression was examined by RT-PCR, and IL-8 production by NODs agonist was examined by ELISA. Western blot analysis was performed to determine the MAPK activation in response to their agonist. Cell proliferation was determined by MTT assay. Flow cytometry and Western blot analysis were performed to determine the MDP-induced cell death. The levels of NODs were apparently expressed in OSCC cells. NODs agonist, Tri-DAP and MDP, led to the production of IL-8 and MAPK activation. NOD2 agonist, MDP, inhibited the proliferation of YD-10B cells in a dose-dependent manner. Also, the ratio of Annexin V-positive cells and cleaved PARP was increased by MDP treatment in YD-10B cells, suggesting that MDP-induced cell death in YD-10B cells may be owing to apoptosis. Our results indicate that NODs are functionally expressed in OSCC cells and can trigger innate immune responses. In addition, NOD2 agonist inhibited cell proliferation and induced apoptosis. These findings provide the potential value of MDP as novel candidates for antitumor agents of OSCC. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  11. Germline TRAV5D-4 T-Cell Receptor Sequence Targets a Primary Insulin Peptide of NOD Mice

    PubMed Central

    Nakayama, Maki; Castoe, Todd; Sosinowski, Tomasz; He, XiangLing; Johnson, Kelly; Haskins, Kathryn; Vignali, Dario A.A.; Gapin, Laurent; Pollock, David; Eisenbarth, George S.

    2012-01-01

    There is accumulating evidence that autoimmunity to insulin B chain peptide, amino acids 9–23 (insulin B:9–23), is central to development of autoimmune diabetes of the NOD mouse model. We hypothesized that enhanced susceptibility to autoimmune diabetes is the result of targeting of insulin by a T-cell receptor (TCR) sequence commonly encoded in the germline. In this study, we aimed to demonstrate that a particular Vα gene TRAV5D-4 with multiple junction sequences is sufficient to induce anti-islet autoimmunity by studying retrogenic mouse lines expressing α-chains with different Vα TRAV genes. Retrogenic NOD strains expressing Vα TRAV5D-4 α-chains with many different complementarity determining region (CDR) 3 sequences, even those derived from TCRs recognizing islet-irrelevant molecules, developed anti-insulin autoimmunity. Induction of insulin autoantibodies by TRAV5D-4 α-chains was abrogated by the mutation of insulin peptide B:9–23 or that of two amino acid residues in CDR1 and 2 of the TRAV5D-4. TRAV13–1, the human ortholog of murine TRAV5D-4, was also capable of inducing in vivo anti-insulin autoimmunity when combined with different murine CDR3 sequences. Targeting primary autoantigenic peptides by simple germline-encoded TCR motifs may underlie enhanced susceptibility to the development of autoimmune diabetes. PMID:22315318

  12. Pattern-recognition receptors: signaling pathways and dysregulation in canine chronic enteropathies-brief review.

    PubMed

    Heilmann, Romy M; Allenspach, Karin

    2017-11-01

    Pattern-recognition receptors (PRRs) are expressed by innate immune cells and recognize pathogen-associated molecular patterns (PAMPs) as well as endogenous damage-associated molecular pattern (DAMP) molecules. With a large potential for synergism or convergence between their signaling pathways, PRRs orchestrate a complex interplay of cellular mediators and transcription factors, and thus play a central role in homeostasis and host defense. Aberrant activation of PRR signaling, mutations of the receptors and/or their downstream signaling molecules, and/or DAMP/PAMP complex-mediated receptor signaling can potentially lead to chronic auto-inflammatory diseases or development of cancer. PRR signaling pathways appear to also present an interesting new avenue for the modulation of inflammatory responses and to serve as potential novel therapeutic targets. Evidence for a dysregulation of the PRR toll-like receptor (TLR)2, TLR4, TLR5, and TLR9, nucleotide-binding oligomerization domain-containing protein (NOD)2, and the receptor of advanced glycation end products (RAGE) exists in dogs with chronic enteropathies. We describe the TLR, NOD2, and RAGE signaling pathways and evaluate the current veterinary literature-in comparison to human medicine-to determine the role of TLRs, NOD2, and RAGE in canine chronic enteropathies.

  13. Expression of Pattern Recognition Receptors in Epithelial Cells Around Clinically Healthy Implants and Healthy Teeth.

    PubMed

    Calcaterra, Roberta; Di Girolamo, Michele; Mirisola, Concetta; Baggi, Luigi

    2016-06-01

    Gingival epithelial cells have a pivotal role in the recognition of microorganisms and damage-associated molecular pattern molecules and in the regulation of the immune response. The investigation of the behavior of Toll-like receptors (TLRs) and nucleotide oligomerization domain (NOD) like receptors (NLRs) around a healthy implant may help to address the first step of periimplantitis pathogenesis. To investigate by quantitative real-time polymerase chain reaction, the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 from gingival epithelial cells of the sulcus around healthy implants and around healthy teeth. Two types of implant-abutment systems with tube-in-tube interface were tested. After 6 months of implant restoration, gingival epithelial cells were obtained from the gingival sulcus around the implants and around the adjacent teeth of 10 patients. Our results did not reach statistical significance among the mRNA expressions of TLR2, TLR3, TLR4, TLR5, TLR6, TLR9, NOD1, NOD2, and NLRP3 in epithelial cells around the implant versus around natural teeth. This study shows that the implant-abutment systems tested did not induce an immune response by the surrounding epithelial cells at 6 months since their positioning, as well as in the adjacent clincally healthy teeth.

  14. NOD2/CARD15: geographic differences in the Spanish population and clinical applications in Crohn's disease.

    PubMed

    Barreiro-de-Acosta, M; Mendoza, J L; Lana, R; Domínguez-Muñoz, J E; Díaz-Rubio, M

    2010-05-01

    Crohn's disease (CD) is a genetically complex disease in which both genetic susceptibility and environmental factors play key roles in the development of the disorder. NOD2/CARD15 mutations are associated with CD. NOD2 encodes for a protein that is an intracellular receptor for a bacterial product (muramyl dipeptide), though the exact functional consequences of these mutations remain the subject of debate. NOD2/CARD15 mutations are associated with ileal CD, with stricturing behavior, and possibly with a more complicated course of CD. NOD2/CARD15 mutations associated with CD have demonstrated heterogeneity across ethnicities and populations throughout the world, with regional variations across Europe and Spain. However, "NOD2/CARD15 testing" is not yet ready for use in the clinical setting. One of the reasons is that we know that these genetic variants increase the risk of disease only marginally, and many healthy individuals carry the risk alleles, at present it is not recommended to screen first-degree relatives, because we do not have the ability to prevent the disease at the present time.

  15. TNF{alpha} and IL-1{beta} are mediated by both TLR4 and Nod1 pathways in the cultured HAPI cells stimulated by LPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Wenwen; Zheng, Xuexing; Department of Anesthesiology, University of Miami Miller School of Medicine, Miami, FL 33136

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer LPS induces proinflammatory cytokine release in HAPI cells. Black-Right-Pointing-Pointer JNK pathway is dependent on TLR4 signaling to release cytokines. Black-Right-Pointing-Pointer NF-{kappa}B pathway is dependent on Nod1 signaling to release cytokines. -- Abstract: A growing body of evidence recently suggests that glial cell activation plays an important role in several neurodegenerative diseases and neuropathic pain. Microglia in the central nervous system express toll-like receptor 4 (TLR4) that is traditionally accepted as the primary receptor of lipopolysaccharide (LPS). LPS activates TLR4 signaling pathways to induce the production of proinflammatory molecules. In the present studies, we verified the LPS signaling pathwaysmore » using cultured highly aggressively proliferating immortalized (HAPI) microglial cells. We found that HAPI cells treated with LPS upregulated the expression of TLR4, phospho-JNK (pJNK) and phospho-NF-{kappa}B (pNF-{kappa}B), TNF{alpha} and IL-1{beta}. Silencing TLR4 with siRNA reduced the expression of pJNK, TNF{alpha} and IL-1{beta}, but not pNF-{kappa}B in the cells. Inhibition of JNK with SP600125 (a JNK inhibitor) decreased the expression of TNF{alpha} and IL-1{beta}. Unexpectedly, we found that inhibition of Nod1 with ML130 significantly reduced the expression of pNF-{kappa}B. Inhibition of NF-{kappa}B also reduced the expression of TNF{alpha} and IL-1{beta}. Nod1 ligand, DAP induced the upregulation of pNF-{kappa}B which was blocked by Nod1 inhibitor. These data indicate that LPS-induced pJNK is TLR4-dependent, and that pNF-{kappa}B is Nod1-dependent in HAPI cells treated with LPS. Either TLR4-JNK or Nod1-NF-{kappa}B pathways is involved in the expression of TNF{alpha} and IL-1{beta}.« less

  16. Reduction of T cell receptor diversity in NOD mice prevents development of type 1 diabetes but not Sjögren's syndrome.

    PubMed

    Kern, Joanna; Drutel, Robert; Leanhart, Silvia; Bogacz, Marek; Pacholczyk, Rafal

    2014-01-01

    Non-obese diabetic (NOD) mice are well-established models of independently developing spontaneous autoimmune diseases, Sjögren's syndrome (SS) and type 1 diabetes (T1D). The key determining factor for T1D is the strong association with particular MHCII molecule and recognition by diabetogenic T cell receptor (TCR) of an insulin peptide presented in the context of I-Ag7 molecule. For SS the association with MHCII polymorphism is weaker and TCR diversity involved in the onset of the autoimmune phase of SS remains poorly understood. To compare the impact of TCR diversity reduction on the development of both diseases we generated two lines of TCR transgenic NOD mice. One line expresses transgenic TCRβ chain originated from a pathogenically irrelevant TCR, and the second line additionally expresses transgenic TCRαmini locus. Analysis of TCR sequences on NOD background reveals lower TCR diversity on Treg cells not only in the thymus, but also in the periphery. This reduction in diversity does not affect conventional CD4+ T cells, as compared to the TCRmini repertoire on B6 background. Interestingly, neither transgenic TCRβ nor TCRmini mice develop diabetes, which we show is due to lack of insulin B:9-23 specific T cells in the periphery. Conversely SS develops in both lines, with full glandular infiltration, production of autoantibodies and hyposalivation. It shows that SS development is not as sensitive to limited availability of TCR specificities as T1D, which suggests wider range of possible TCR/peptide/MHC interactions driving autoimmunity in SS.

  17. The nodC, nodG, and glgX genes of Rhizobium tropici strain PRF 81.

    PubMed

    Oliveira, Luciana Ruano; Marcelino, Francismar Corrêa; Barcellos, Fernando Gomes; Rodrigues, Elisete Pains; Megías, Manuel; Hungria, Mariangela

    2010-08-01

    Rhizobium tropici is a diazotrophic microsymbiont of common bean (Phaseolus vulgaris L.) that encompasses important but still poorly studied tropical strains, and a recent significant contribution to the knowledge of the species was the publication of a genomic draft of strain PRF 81, which revealed several novel genes [Pinto et al. Funct Int Gen 9:263-270, 2009]. In this study, we investigated the transcription of nodC, nodG, and glgX genes, located in the nod operon of PRF 81 strain, by reverse-transcription quantitative PCR. All three genes showed low levels of transcription when the cells were grown until exponential growth phase in the presence of common-bean-seed exudates or of the root nod-gene inducer naringenin. However, when cells at the exponential phase of growth were incubated with seed exudates, transcription occurred after only 5 min, and nodC, nodG, and glgX were transcribed 121.97-, 14.86-, and 50.29-fold more than the control, respectively, followed by a rapid decrease in gene transcription. Much lower levels of transcription were observed in the presence of naringenin; furthermore, maximum transcription required 8 h of incubation for all three genes. In light of these results, the mechanisms of induction of the nodulation genes by flavonoids are discussed.

  18. Proteinase-activated receptors (PARs) – focus on receptor-receptor-interactions and their physiological and pathophysiological impact

    PubMed Central

    2013-01-01

    Proteinase-activated receptors (PARs) are a subfamily of G protein-coupled receptors (GPCRs) with four members, PAR1, PAR2, PAR3 and PAR4, playing critical functions in hemostasis, thrombosis, embryonic development, wound healing, inflammation and cancer progression. PARs are characterized by a unique activation mechanism involving receptor cleavage by different proteinases at specific sites within the extracellular amino-terminus and the exposure of amino-terminal “tethered ligand“ domains that bind to and activate the cleaved receptors. After activation, the PAR family members are able to stimulate complex intracellular signalling networks via classical G protein-mediated pathways and beta-arrestin signalling. In addition, different receptor crosstalk mechanisms critically contribute to a high diversity of PAR signal transduction and receptor-trafficking processes that result in multiple physiological effects. In this review, we summarize current information about PAR-initiated physical and functional receptor interactions and their physiological and pathological roles. We focus especially on PAR homo- and heterodimerization, transactivation of receptor tyrosine kinases (RTKs) and receptor serine/threonine kinases (RSTKs), communication with other GPCRs, toll-like receptors and NOD-like receptors, ion channel receptors, and on PAR association with cargo receptors. In addition, we discuss the suitability of these receptor interaction mechanisms as targets for modulating PAR signalling in disease. PMID:24215724

  19. Recent insights into the molecular mechanisms of the NLRP3 inflammasome activation

    PubMed Central

    Próchnicki, Tomasz; Mangan, Matthew S.; Latz, Eicke

    2016-01-01

    Inflammasomes are high-molecular-weight protein complexes that are formed in the cytosolic compartment in response to danger- or pathogen-associated molecular patterns. These complexes enable activation of an inflammatory protease caspase-1, leading to a cell death process called pyroptosis and to proteolytic cleavage and release of pro-inflammatory cytokines interleukin (IL)-1β and IL-18. Along with caspase-1, inflammasome components include an adaptor protein, ASC, and a sensor protein, which triggers the inflammasome assembly in response to a danger signal. The inflammasome sensor proteins are pattern recognition receptors belonging either to the NOD-like receptor (NLR) or to the AIM2-like receptor family. While the molecular agonists that induce inflammasome formation by AIM2 and by several other NLRs have been identified, it is not well understood how the NLR family member NLRP3 is activated. Given that NLRP3 activation is relevant to a range of human pathological conditions, significant attempts are being made to elucidate the molecular mechanism of this process. In this review, we summarize the current knowledge on the molecular events that lead to activation of the NLRP3 inflammasome in response to a range of K + efflux-inducing danger signals. We also comment on the reported involvement of cytosolic Ca 2+ fluxes on NLRP3 activation. We outline the recent advances in research on the physiological and pharmacological mechanisms of regulation of NLRP3 responses, and we point to several open questions regarding the current model of NLRP3 activation. PMID:27508077

  20. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes.

    PubMed

    Driver, John P; Chen, Yi-Guang; Mathews, Clayton E

    2012-01-01

    Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.

  1. NOD1 is required for Helicobacter pylori induction of IL-33 responses in gastric epithelial cells.

    PubMed

    Tran, Le Son; Tran, Darren; De Paoli, Amanda; D'Costa, Kimberley; Creed, Sarah J; Ng, Garrett Z; Le, Lena; Sutton, Philip; Silke, J; Nachbur, U; Ferrero, Richard L

    2018-05-01

    Helicobacter pylori (H. pylori) causes chronic inflammation which is a key precursor to gastric carcinogenesis. It has been suggested that H. pylori may limit this immunopathology by inducing the production of interleukin 33 (IL-33) in gastric epithelial cells, thus promoting T helper 2 immune responses. The molecular mechanism underlying IL-33 production in response to H. pylori infection, however, remains unknown. In this study, we demonstrate that H. pylori activates signalling via the pathogen recognition molecule Nucleotide-Binding Oligomerisation Domain-Containing Protein 1 (NOD1) and its adaptor protein receptor-interacting serine-threonine Kinase 2, to promote production of both full-length and processed IL-33 in gastric epithelial cells. Furthermore, IL-33 responses were dependent on the actions of the H. pylori Type IV secretion system, required for activation of the NOD1 pathway, as well as on the Type IV secretion system effector protein, CagA. Importantly, Nod1 +/+ mice with chronic H. pylori infection exhibited significantly increased gastric IL-33 and splenic IL-13 responses, but decreased IFN-γ responses, when compared with Nod1 -/- animals. Collectively, our data identify NOD1 as an important regulator of mucosal IL-33 responses in H. pylori infection. We suggest that NOD1 may play a role in protection against excessive inflammation. © 2018 John Wiley & Sons Ltd.

  2. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis.

    PubMed

    Wan, Jinrong; Zhang, Xue-Cheng; Neece, David; Ramonell, Katrina M; Clough, Steve; Kim, Sung-Yong; Stacey, Minviluz G; Stacey, Gary

    2008-02-01

    Chitin, a polymer of N-acetyl-d-glucosamine, is found in fungal cell walls but not in plants. Plant cells can perceive chitin fragments (chitooligosaccharides) leading to gene induction and defense responses. We identified a LysM receptor-like protein (LysM RLK1) required for chitin signaling in Arabidopsis thaliana. The mutation in this gene blocked the induction of almost all chitooligosaccharide-responsive genes and led to more susceptibility to fungal pathogens but had no effect on infection by a bacterial pathogen. Additionally, exogenously applied chitooligosaccharides enhanced resistance against both fungal and bacterial pathogens in the wild-type plants but not in the mutant. Together, our data indicate that LysM RLK1 is essential for chitin signaling in plants (likely as part of the receptor complex) and is involved in chitin-mediated plant innate immunity. The LysM RLK1-mediated chitin signaling pathway is unique, but it may share a conserved downstream pathway with the FLS2/flagellin- and EFR/EF-Tu-mediated signaling pathways. Additionally, our work suggests a possible evolutionary relationship between the chitin and Nod factor perception mechanisms due to the similarities between their potential receptors and between the signal molecules perceived by them.

  3. Discovery of Nanomolar Desmuramylpeptide Agonists of the Innate Immune Receptor Nucleotide-Binding Oligomerization Domain-Containing Protein 2 (NOD2) Possessing Immunostimulatory Properties.

    PubMed

    Gobec, Martina; Tomašič, Tihomir; Štimac, Adela; Frkanec, Ruža; Trontelj, Jurij; Anderluh, Marko; Mlinarič-Raščan, Irena; Jakopin, Žiga

    2018-04-12

    Muramyl dipeptide (MDP), a fragment of bacterial peptidoglycan, has long been known as the smallest fragment possessing adjuvant activity, on the basis of its agonistic action on the nucleotide-binding oligomerization domain-containing protein 2 (NOD2). There is a pressing need for novel adjuvants, and NOD2 agonists provide an untapped source of potential candidates. Here, we report the design, synthesis, and characterization of a series of novel acyl tripeptides. A pivotal structural element for molecular recognition by NOD2 has been identified, culminating in the discovery of compound 9, the most potent desmuramylpeptide NOD2 agonist to date. Compound 9 augmented pro-inflammatory cytokine release from human peripheral blood mononuclear cells in synergy with lipopolysaccharide. Furthermore, it was able to induce ovalbumin-specific IgG titers in a mouse model of adjuvancy. These findings provide deeper insights into the structural requirements of desmuramylpeptides for NOD2-activation and highlight the potential use of NOD2 agonists as adjuvants for vaccines.

  4. IGF-1 decreases collagen degradation in diabetic NOD mesangial cells: implications for diabetic nephropathy.

    PubMed

    Lupia, E; Elliot, S J; Lenz, O; Zheng, F; Hattori, M; Striker, G E; Striker, L J

    1999-08-01

    Nonobese diabetic (NOD) mice develop glomerulosclerosis shortly after the onset of diabetes. We showed that mesangial cells (MCs) from diabetic mice exhibited a stable phenotypic switch, consisting of both increased IGF-1 synthesis and proliferation (Elliot SJ, Striker LJ, Hattori M, Yang CW, He CJ, Peten EP, Striker GE: Mesangial cells from diabetic NOD mice constitutively secrete increased amounts of insulin-like growth factor-I. Endocrinology 133:1783-1788, 1993). Because the extracellular matrix (ECM) accumulation in diabetic glomerulosclerosis may be partly due to decreased degradation, we examined the effect of excess IGF-1 on collagen turnover and the activity of metalloproteinases (MMPs) and tissue inhibitors of metalloproteinase (TIMPs) in diabetic and nondiabetic NOD-MC. Total collagen degradation was reduced by 58 +/- 18% in diabetic NOD-MCs, which correlated with a constitutive decrease in MMP-2 activity and mRNA levels, and nearly undetectable MMP-9 activity and mRNA. TIMP levels were slightly decreased in diabetic NOD-MC. The addition of recombinant IGF-1 to nondiabetic NOD-MC resulted in a decrease in MMP-2 and TIMP activity. Furthermore, treatment of diabetic NOD-MC with a neutralizing antibody against IGF-1 increased the latent form, and restored the active form, of MMP-2. In conclusion, the excessive production of IGF-1 contributes to the altered ECM turnover in diabetic NOD-MC, largely through a reduction of MMP-2 activity. These data suggest that IGF-1 could be a major contributor to the development of diabetic glomerulosclerosis.

  5. The Chromatin Remodeler SPLAYED Negatively Regulates SNC1-Mediated Immunity.

    PubMed

    Johnson, Kaeli C M; Xia, Shitou; Feng, Xiaoqi; Li, Xin

    2015-08-01

    SNC1 (SUPPRESSOR OF NPR1, CONSTITUTIVE 1) is one of a suite of intracellular Arabidopsis NOD-like receptor (NLR) proteins which, upon activation, result in the induction of defense responses. However, the molecular mechanisms underlying NLR activation and the subsequent provocation of immune responses are only partially characterized. To identify negative regulators of NLR-mediated immunity, a forward genetic screen was undertaken to search for enhancers of the dwarf, autoimmune gain-of-function snc1 mutant. To avoid lethality resulting from severe dwarfism, the screen was conducted using mos4 (modifier of snc1, 4) snc1 plants, which display wild-type-like morphology and resistance. M2 progeny were screened for mutant, snc1-enhancing (muse) mutants displaying a reversion to snc1-like phenotypes. The muse9 mos4 snc1 triple mutant was found to exhibit dwarf morphology, elevated expression of the pPR2-GUS defense marker reporter gene and enhanced resistance to the oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Via map-based cloning and Illumina sequencing, it was determined that the muse9 mutation is in the gene encoding the SWI/SNF chromatin remodeler SYD (SPLAYED), and was thus renamed syd-10. The syd-10 single mutant has no observable alteration from wild-type-like resistance, although the syd-4 T-DNA insertion allele displays enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. maculicola ES4326. Transcription of SNC1 is increased in both syd-4 and syd-10. These data suggest that SYD plays a subtle, specific role in the regulation of SNC1 expression and SNC1-mediated immunity. SYD may work with other proteins at the chromatin level to repress SNC1 transcription; such regulation is important for fine-tuning the expression of NLR-encoding genes to prevent unpropitious autoimmunity. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please

  6. Prolonged antibiotic treatment induces a diabetogenic intestinal microbiome that accelerates diabetes in NOD mice.

    PubMed

    Brown, Kirsty; Godovannyi, Artem; Ma, Caixia; Zhang, YiQun; Ahmadi-Vand, Zahra; Dai, Chaunbin; Gorzelak, Monika A; Chan, YeeKwan; Chan, Justin M; Lochner, Arion; Dutz, Jan P; Vallance, Bruce A; Gibson, Deanna L

    2016-02-01

    Accumulating evidence supports that the intestinal microbiome is involved in Type 1 diabetes (T1D) pathogenesis through the gut-pancreas nexus. Our aim was to determine whether the intestinal microbiota in the non-obese diabetic (NOD) mouse model played a role in T1D through the gut. To examine the effect of the intestinal microbiota on T1D onset, we manipulated gut microbes by: (1) the fecal transplantation between non-obese diabetic (NOD) and resistant (NOR) mice and (2) the oral antibiotic and probiotic treatment of NOD mice. We monitored diabetes onset, quantified CD4+T cells in the Peyer's patches, profiled the microbiome and measured fecal short-chain fatty acids (SCFA). The gut microbiota from NOD mice harbored more pathobionts and fewer beneficial microbes in comparison with NOR mice. Fecal transplantation of NOD microbes induced insulitis in NOR hosts suggesting that the NOD microbiome is diabetogenic. Moreover, antibiotic exposure accelerated diabetes onset in NOD mice accompanied by increased T-helper type 1 (Th1) and reduced Th17 cells in the intestinal lymphoid tissues. The diabetogenic microbiome was characterized by a metagenome altered in several metabolic gene clusters. Furthermore, diabetes susceptibility correlated with reduced fecal SCFAs. In an attempt to correct the diabetogenic microbiome, we administered VLS#3 probiotics to NOD mice but found that VSL#3 colonized the intestine poorly and did not delay diabetes. We conclude that NOD mice harbor gut microbes that induce diabetes and that their diabetogenic microbiome can be amplified early in life through antibiotic exposure. Protective microbes like VSL#3 are insufficient to overcome the effects of a diabetogenic microbiome.

  7. Evolution and diversity of NLR proteins in sugar beets

    USDA-ARS?s Scientific Manuscript database

    Plants have developed several layers of immunity in order to defend against unrelenting pathogenic attacks. One of these layers is resistance genes. NLR genes are a type of resistance gene, and are involved in pathogen recognition and activation of a hypersensitive response. Genetic data and inferen...

  8. Quantitative analysis of protein and gene expression in salivary glands of Sjogren's-like disease NOD mice treated by bone marrow soup.

    PubMed

    Misuno, Kaori; Tran, Simon D; Khalili, Saeed; Huang, Junwei; Liu, Younan; Hu, Shen

    2014-01-01

    Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.

  9. NOD1CARD Might Be Using Multiple Interfaces for RIP2-Mediated CARD-CARD Interaction: Insights from Molecular Dynamics Simulation

    PubMed Central

    Pradhan, Sukanta Kumar; De, Sachinandan

    2017-01-01

    The nucleotide-binding and oligomerization domain (NOD)-containing protein 1 (NOD1) plays the pivotal role in host-pathogen interface of innate immunity and triggers immune signalling pathways for the maturation and release of pro-inflammatory cytokines. Upon the recognition of iE-DAP, NOD1 self-oligomerizes in an ATP-dependent fashion and interacts with adaptor molecule receptor-interacting protein 2 (RIP2) for the propagation of innate immune signalling and initiation of pro-inflammatory immune responses. This interaction (mediated by NOD1 and RIP2) helps in transmitting the downstream signals for the activation of NF-κB signalling pathway, and has been arbitrated by respective caspase-recruitment domains (CARDs). The so-called CARD-CARD interaction still remained contradictory due to inconsistent results. Henceforth, to understand the mode and the nature of the interaction, structural bioinformatics approaches were employed. MD simulation of modelled 1:1 heterodimeric complexes revealed that the type-Ia interface of NOD1CARD and the type-Ib interface of RIP2CARD might be the suitable interfaces for the said interaction. Moreover, we perceived three dynamically stable heterotrimeric complexes with an NOD1:RIP2 ratio of 1:2 (two numbers) and 2:1. Out of which, in the first trimeric complex, a type-I NOD1-RIP2 heterodimer was found interacting with an RIP2CARD using their type-IIa and IIIa interfaces. However, in the second and third heterotrimer, we observed type-I homodimers of NOD1 and RIP2 CARDs were interacting individually with RIP2CARD and NOD1CARD (in type-II and type-III interface), respectively. Overall, this study provides structural and dynamic insights into the NOD1-RIP2 oligomer formation, which will be crucial in understanding the molecular basis of NOD1-mediated CARD-CARD interaction in higher and lower eukaryotes. PMID:28114344

  10. Mincle suppresses Toll-like receptor 4 activation.

    PubMed

    Greco, Stephanie H; Mahmood, Syed Kashif; Vahle, Anne-Kristin; Ochi, Atsuo; Batel, Jennifer; Deutsch, Michael; Barilla, Rocky; Seifert, Lena; Pachter, H Leon; Daley, Donnele; Torres-Hernandez, Alejandro; Hundeyin, Mautin; Mani, Vishnu R; Miller, George

    2016-07-01

    Regulation of Toll-like receptor responses is critical for limiting tissue injury and autoimmunity in both sepsis and sterile inflammation. We found that Mincle, a C-type lectin receptor, regulates proinflammatory Toll-like receptor 4 signaling. Specifically, Mincle ligation diminishes Toll-like receptor 4-mediated inflammation, whereas Mincle deletion or knockdown results in marked hyperresponsiveness to lipopolysaccharide in vitro, as well as overwhelming lipopolysaccharide-mediated inflammation in vivo. Mechanistically, Mincle deletion does not up-regulate Toll-like receptor 4 expression or reduce interleukin 10 production after Toll-like receptor 4 ligation; however, Mincle deletion decreases production of the p38 mitogen-activated protein kinase-dependent inhibitory intermediate suppressor of cytokine signaling 1, A20, and ABIN3 and increases expression of the Toll-like receptor 4 coreceptor CD14. Blockade of CD14 mitigates the increased sensitivity of Mincle(-/-) leukocytes to Toll-like receptor 4 ligation. Collectively, we describe a major role for Mincle in suppressing Toll-like receptor 4 responses and implicate its importance in nonmycobacterial models of inflammation. © Society for Leukocyte Biology.

  11. Flaxseed Oil Attenuates Intestinal Damage and Inflammation by Regulating Necroptosis and TLR4/NOD Signaling Pathways Following Lipopolysaccharide Challenge in a Piglet Model.

    PubMed

    Zhu, Huiling; Wang, Haibo; Wang, Shuhui; Tu, Zhixiao; Zhang, Lin; Wang, Xiuying; Hou, Yongqing; Wang, Chunwei; Chen, Jie; Liu, Yulan

    2018-05-01

    Flaxseed oil is a rich source of α-linolenic acid (ALA), which is the precursor of the long-chain n-3 polyunsaturated fatty acids (PUFAs), including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA). This study investigates the protective effect of flaxseed oil against intestinal injury induced by lipopolysaccharide (LPS). Twenty-four weaned pigs were used in a 2 × 2 factorial experiment with dietary treatment (5% corn oil vs 5% flaxseed oil) and LPS challenge (saline vs LPS). On day 21 of the experiment, pigs were administrated with LPS or saline. At 2 h and 4 h post-administration, blood samples were collected. After the blood harvest at 4 h, all piglets were slaughtered and intestinal samples were collected. Flaxseed oil supplementation led to the enrichment of ALA, EPA, and total n-3 PUFAs in intestine. Flaxseed oil improved intestinal morphology, jejunal lactase activity, and claudin-1 protein expression. Flaxseed oil downregulated the mRNA expression of intestinal necroptotic signals. Flaxseed oil also downregulated the mRNA expression of intestinal toll-like receptors 4 (TLR4) and its downstream signals myeloid differentiation factor 88 (MyD88), nuclear factor kappa B (NF-κB), and nucleotide-binding oligomerization domain proteins 1, 2 (NOD1, NOD2) and its adapter molecule, receptor-interacting protein kinase 2 (RIPK2). These results suggest that dietary addition of flaxseed oil enhances intestinal integrity and barrier function, which is involved in modulating necroptosis and TLR4/NOD signaling pathways. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice.

    PubMed

    Hänninen, Arno; Toivonen, Raine; Pöysti, Sakari; Belzer, Clara; Plovier, Hubert; Ouwerkerk, Janneke P; Emani, Rohini; Cani, Patrice D; De Vos, Willem M

    2017-12-21

    Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ , outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly

  13. Mutual Regulation of NOD2 and RIG-I in Zebrafish Provides Insights into the Coordination between Innate Antibacterial and Antiviral Signaling Pathways.

    PubMed

    Nie, Li; Xu, Xiao-Xiao; Xiang, Li-Xin; Shao, Jian-Zhong; Chen, Jiong

    2017-05-27

    Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) and retinoic acid-inducible gene I (RIG-I) are two important cytosolic pattern recognition receptors (PRRs) in the recognition of pathogen-associated molecular patterns (PAMPs), initiating innate antibacterial and antiviral signaling pathways. However, the relationship between these PRRs, especially in teleost fish models, is rarely reported. In this article, we describe the mutual regulation of zebrafish NOD2 ( Dr NOD2) and RIG-I ( Dr RIG-I) in innate immune responses. Luciferase assays were conducted to determine the activation of NF-κB and interferon signaling. Morpholino-mediated knockdown and mRNA-mediated rescue were performed to further confirm the regulatory roles between Dr NOD2 and Dr RIG-I. Results showed that Dr NOD2 and Dr RIG-I shared conserved structural hallmarks with their mammalian counterparts, and activated Dr RIG-I signaling can induce Dr NOD2 production. Surprisingly, Dr NOD2-initiated signaling can also induce Dr RIG-I expression, indicating that a mutual regulatory mechanism may exist between them. Studies conducted using HEK293T cells and zebrafish embryos showed that Dr RIG-I could negatively regulate Dr NOD2-activated NF-κB signaling, and Dr NOD2 could inhibit Dr RIG-I-induced IFN signaling. Moreover, knocking down Dr RIG-I expression by morpholino could enhance Dr NOD2-initiated NF-κB activation, and vice versa, which could be rescued by their corresponding mRNAs. Results revealed a mutual feedback regulatory mechanism underlying NOD2 and RIG-I signaling pathways in teleosts. This mechanism reflects the coordination between cytosolic antibacterial and antiviral PRRs in the complex network of innate immunity.

  14. Restoration of the type I IFN–IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice

    PubMed Central

    Rahman, M. Jubayer; Quiel, Juan A.; Liu, Yi; Bhargava, Vipul; Zhao, Yongge; Hotta-Iwamura, Chie; Lau-Kilby, Annie W.; Malloy, Allison M.W.; Thoner, Timothy W.; Tarbell, Kristin V.

    2018-01-01

    Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1–associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity. PMID:29415894

  15. Restoration of the type I IFN-IL-1 balance through targeted blockade of PTGER4 inhibits autoimmunity in NOD mice.

    PubMed

    Rahman, M Jubayer; Rodrigues, Kameron B; Quiel, Juan A; Liu, Yi; Bhargava, Vipul; Zhao, Yongge; Hotta-Iwamura, Chie; Shih, Han-Yu; Lau-Kilby, Annie W; Malloy, Allison Mw; Thoner, Timothy W; Tarbell, Kristin V

    2018-02-08

    Type I IFN (IFN-I) dysregulation contributes to type 1 diabetes (T1D) development, and although increased IFN-I signals are pathogenic at the initiation of autoimmune diabetes, IFN-I dysregulation at later pathogenic stages more relevant for therapeutic intervention is not well understood. We discovered that 5 key antigen-presenting cell subsets from adult prediabetic NOD mice have reduced responsiveness to IFN-I that is dominated by a decrease in the tonic-sensitive subset of IFN-I response genes. Blockade of IFNAR1 in prediabetic NOD mice accelerated diabetes and increased Th1 responses. Therefore, IFN-I responses shift from pathogenic to protective as autoimmunity progresses, consistent with chronic IFN-I exposure. In contrast, IL-1-associated inflammatory pathways were elevated in prediabetic mice. These changes correlated with human T1D onset-associated gene expression. Prostaglandin E2 (PGE2) and prostaglandin receptor 4 (PTGER4), a receptor for PGE2 that mediates both inflammatory and regulatory eicosanoid signaling, were higher in NOD mice and drive innate immune dysregulation. Treating prediabetic NOD mice with a PTGER4 antagonist restored IFNAR signaling, decreased IL-1 signaling, and decreased infiltration of leukocytes into the islets. Therefore, innate cytokine alterations contribute to both T1D-associated inflammation and autoimmune pathogenesis. Modulating innate immune balance via signals such as PTGER4 may contribute to treatments for autoimmunity.

  16. Quantitative Analysis of Protein and Gene Expression in Salivary Glands of Sjogren’s-Like Disease NOD Mice Treated by Bone Marrow Soup

    PubMed Central

    Misuno, Kaori; Khalili, Saeed; Huang, Junwei; Liu, Younan

    2014-01-01

    Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment. PMID:24489858

  17. Arabidopsis thaliana DM2h (R8) within the Landsberg RPP1-like Resistance Locus Underlies Three Different Cases of EDS1-Conditioned Autoimmunity

    PubMed Central

    Garcia, Ana V.; Wagner, Christine; Choudhury, Sayan R.; Wang, Yiming; James, Geo Velikkakam; Griebel, Thomas; Alcázar, Ruben; Tsuda, Kenichi; Schneeberger, Korbinian; Parker, Jane E.

    2016-01-01

    Plants have a large panel of nucleotide-binding/leucine rich repeat (NLR) immune receptors which monitor host interference by diverse pathogen molecules (effectors) and trigger disease resistance pathways. NLR receptor systems are necessarily under tight control to mitigate the trade-off between induced defenses and growth. Hence, mis-regulated NLRs often cause autoimmunity associated with stunting and, in severe cases, necrosis. Nucleocytoplasmic ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1) is indispensable for effector-triggered and autoimmune responses governed by a family of Toll-Interleukin1-Receptor-related NLR receptors (TNLs). EDS1 operates coincidently or immediately downstream of TNL activation to transcriptionally reprogram cells for defense. We show here that low levels of nuclear-enforced EDS1 are sufficient for pathogen resistance in Arabidopsis thaliana, without causing negative effects. Plants expressing higher nuclear EDS1 amounts have the genetic, phenotypic and transcriptional hallmarks of TNL autoimmunity. In a screen for genetic suppressors of nuclear EDS1 autoimmunity, we map multiple, independent mutations to one gene, DM2h, lying within the polymorphic DANGEROUS MIX2 cluster of TNL RPP1-like genes from A. thaliana accession Landsberg erecta (Ler). The DM2 locus is a known hotspot for deleterious epistatic interactions leading to immune-related incompatibilities between A. thaliana natural accessions. We find that DM2hLer underlies two further genetic incompatibilities involving the RPP1-likeLer locus and EDS1. We conclude that the DM2hLer TNL protein and nuclear EDS1 cooperate, directly or indirectly, to drive cells into an immune response at the expense of growth. A further conclusion is that regulating the available EDS1 nuclear pool is fundamental for maintaining homeostatic control of TNL immune pathways. PMID:27082651

  18. Antidepressants Improve Negative Regulation of Toll-Like Receptor Signaling in Monocytes from Patients with Major Depression.

    PubMed

    Hung, Yi-Yung

    2018-06-13

    Changes in the brain's inflammatory status can lead to psychopathological responses, especially depression. Using animal models, recent studies have revealed that this pathology is due, in part, to innate immune responses of monocytes. We focus on the involvement of Toll-like receptors (TLRs) and expression of genes encoding their negative regulators, SOCS1, TOLLIP, SIGIRR, MyD88s, NOD2, and TNFAIP3, in CD14+ monocytes from 34 patients with major depressive disorder (MDD) and 33 healthy controls before and after treatment with antidepressants. We also seek to investigate their association with depression severity, measured by the 17-item Hamilton Depression Rating Scale (HAMD-17). mRNA expression of all TLRs, except TLR3 and -5, was significantly higher in monocytes from patients with MDD than in those from controls. Conversely, the "brakes" in TLR signaling, including TOLLIP, MyD88s, NOD2, and TNFAIP3, were downregulated. In clinical findings, the remission group showed higher baseline TLR4 and lower baseline IRAK3 mRNA levels but only baseline elevated SOCS1 mRNA levels, which were inversely correlated with HAMD-17 scores, predicting worsened outcome in MDD patients. In addition, TNFAIP3 mRNA levels were increased by antidepressant treatment. Collectively, our findings suggest a role for dysregulation of TLR signaling in monocytes in MDD and identify a balancing effect of antidepressants on this dysregulation. © 2018 S. Karger AG, Basel.

  19. Genomic evidence for genes encoding leucine-rich repeat receptors linked to resistance against the eukaryotic extra- and intracellular Brassica napus pathogens Leptosphaeria maculans and Plasmodiophora brassicae.

    PubMed

    Stotz, Henrik U; Harvey, Pascoe J; Haddadi, Parham; Mashanova, Alla; Kukol, Andreas; Larkan, Nicholas J; Borhan, M Hossein; Fitt, Bruce D L

    2018-01-01

    Genes coding for nucleotide-binding leucine-rich repeat (LRR) receptors (NLRs) control resistance against intracellular (cell-penetrating) pathogens. However, evidence for a role of genes coding for proteins with LRR domains in resistance against extracellular (apoplastic) fungal pathogens is limited. Here, the distribution of genes coding for proteins with eLRR domains but lacking kinase domains was determined for the Brassica napus genome. Predictions of signal peptide and transmembrane regions divided these genes into 184 coding for receptor-like proteins (RLPs) and 121 coding for secreted proteins (SPs). Together with previously annotated NLRs, a total of 720 LRR genes were found. Leptosphaeria maculans-induced expression during a compatible interaction with cultivar Topas differed between RLP, SP and NLR gene families; NLR genes were induced relatively late, during the necrotrophic phase of pathogen colonization. Seven RLP, one SP and two NLR genes were found in Rlm1 and Rlm3/Rlm4/Rlm7/Rlm9 loci for resistance against L. maculans on chromosome A07 of B. napus. One NLR gene at the Rlm9 locus was positively selected, as was the RLP gene on chromosome A10 with LepR3 and Rlm2 alleles conferring resistance against L. maculans races with corresponding effectors AvrLm1 and AvrLm2, respectively. Known loci for resistance against L. maculans (extracellular hemi-biotrophic fungus), Sclerotinia sclerotiorum (necrotrophic fungus) and Plasmodiophora brassicae (intracellular, obligate biotrophic protist) were examined for presence of RLPs, SPs and NLRs in these regions. Whereas loci for resistance against P. brassicae were enriched for NLRs, no such signature was observed for the other pathogens. These findings demonstrate involvement of (i) NLR genes in resistance against the intracellular pathogen P. brassicae and a putative NLR gene in Rlm9-mediated resistance against the extracellular pathogen L. maculans.

  20. Susceptibility to anthrax lethal toxin-induced rat death is controlled by a single chromosome 10 locus that includes rNlrp1.

    PubMed

    Newman, Zachary L; Printz, Morton P; Liu, Shihui; Crown, Devorah; Breen, Laura; Miller-Randolph, Sharmina; Flodman, Pamela; Leppla, Stephen H; Moayeri, Mahtab

    2010-05-20

    Anthrax lethal toxin (LT) is a bipartite protease-containing toxin and a key virulence determinant of Bacillus anthracis. In mice, LT causes the rapid lysis of macrophages isolated from certain inbred strains, but the correlation between murine macrophage sensitivity and mouse strain susceptibility to toxin challenge is poor. In rats, LT induces a rapid death in as little as 37 minutes through unknown mechanisms. We used a recombinant inbred (RI) rat panel of 19 strains generated from LT-sensitive and LT-resistant progenitors to map LT sensitivity in rats to a locus on chromosome 10 that includes the inflammasome NOD-like receptor (NLR) sensor, Nlrp1. This gene is the closest rat homolog of mouse Nlrp1b, which was previously shown to control murine macrophage sensitivity to LT. An absolute correlation between in vitro macrophage sensitivity to LT-induced lysis and animal susceptibility to the toxin was found for the 19 RI strains and 12 additional rat strains. Sequencing Nlrp1 from these strains identified five polymorphic alleles. Polymorphisms within the N-terminal 100 amino acids of the Nlrp1 protein were perfectly correlated with LT sensitivity. These data suggest that toxin-mediated lethality in rats as well as macrophage sensitivity in this animal model are controlled by a single locus on chromosome 10 that is likely to be the inflammasome NLR sensor, Nlrp1.

  1. Modification of Helicobacter pylori peptidoglycan enhances NOD1 activation and promotes cancer of the stomach

    DOE PAGES

    Suarez, Giovanni; Romero-Gallo, Judith; Piazuelo, M. Blanca; ...

    2015-03-02

    Helicobacter pylori is the strongest known risk factor for gastric carcinogenesis. One cancer-linked locus is the cag pathogenicity island, which translocates components of peptidoglycan (PGN) into host cells. NOD1 is an intracellular immune receptor that senses PGN from Gram-negative bacteria and responds by inducing autophagy and activating NF-κB, leading to inflammation-mediated bacterial clearance; however chronic pathogens can evade NOD1-mediated clearance by altering PGN structure. We previously demonstrated that the H. pylori cag+ strain 7.13 rapidly induces gastric cancer in Mongolian gerbils. Using 2D-DIGE and mass spectrometry, we identified a novel mutation within the gene encoding the peptidoglycan deacetylase PgdA; therefore,more » we sought to define the role of H. pylori PgdA in NOD1-dependent activation of NF-κB, inflammation, and cancer. Co-culture of H. pylori strain 7.13 or its pgdA$-$ isogenic mutant with AGS gastric epithelial cells or HEK293 epithelial cells expressing a NF-κB reporter revealed that pgdA inactivation significantly decreased NOD1-dependent NF-κB activation and autophagy. Infection of Mongolian gerbils with an H. pylori pgdA$-$ mutant strain led to significantly decreased levels of inflammation and malignant lesions in the stomach; however, pre-activation of NOD1 prior to bacterial challenge reciprocally suppressed inflammation and cancer in response to wild-type H. pylori. Expression of NOD1 differs in human gastric cancer specimens compared to non-cancer samples harvested from the same patients. In conclusion, these results indicate that PGN deacetylation plays an important role in modulating host inflammatory responses to H. pylori, allowing the bacteria to persist and induce carcinogenic consequences in the gastric niche.« less

  2. Neutrophil to lymphocyte ratio (NLR) improves the risk assessment of ISS staging in newly diagnosed MM patients treated upfront with novel agents.

    PubMed

    Romano, A; Parrinello, N L; Consoli, M L; Marchionni, L; Forte, S; Conticello, C; Pompa, A; Corso, A; Milone, G; Di Raimondo, F; Borrello, I

    2015-11-01

    Recent reports identify the ratio between absolute neutrophil count (ANC) and absolute lymphocyte count (ALC), called neutrophil to lymphocyte ratio (NLR), as a predictor of progression-free survival (PFS) and overall survival (OS) in various malignancies. We retrospectively examined the NLR in a cohort of 309 newly diagnosed multiple myeloma (MM) patients treated upfront with novel agents. NLR was calculated using data obtained from the complete blood count (CBC) at diagnosis and subsequently correlated with PFS and OS. The median NLR was 1.9 (range 0.4-15.9). Higher NLR was independent of international staging system (ISS) stage, plasma cell infiltration or cytogenetics. The 5-year PFS and OS estimates were, respectively, 18.2 and 36.4 % for patients with NLR ≥ 2 versus 25.5 and 66.6 % in patients with NLR < 2. Among younger patients (age <65 years, N = 179), NLR ≥ 2 had a negative prognostic impact on both PFS and OS, in all ISS stages. By combining ISS stage and NLR in a model limited to young patients, we found that 19 % of the patients were classified as very low risk, 70 % standard risk and 11 % very high risk. The 5-year estimates were 39.3, 19.4 and 10.9 % for PFS and 95.8, 50.9 and 23.6 % for OS for very low, standard-risk and very high-risk groups. We found NLR to be a predictor of PFS and OS in MM patients treated upfront with novel agents. NLR can be combined with ISS staging system to identify patients with dismal outcome. However, larger cohorts and prospective studies are needed to use NLR as additional parameter to personalise MM therapy in the era of novel agents.

  3. Hematopoietic stem cells from NOD mice exhibit autonomous behavior and a competitive advantage in allogeneic recipients.

    PubMed

    Chilton, Paula M; Rezzoug, Francine; Ratajczak, Mariusz Z; Fugier-Vivier, Isabelle; Ratajczak, Janina; Kucia, Magda; Huang, Yiming; Tanner, Michael K; Ildstad, Suzanne T

    2005-03-01

    Type 1 diabetes is a systemic autoimmune disease that can be cured by transplantation of hematopoietic stem cells (HSCs) from disease-resistant donors. Nonobese diabetic (NOD) mice have a number of features that distinguish them as bone marrow transplant recipients that must be understood prior to the clinical application of chimerism to induce tolerance. In the present studies, we characterized NOD HSCs, comparing their engraftment characteristics to HSCs from disease-resistant strains. Strikingly, NOD HSCs are significantly enhanced in engraftment potential compared with HSCs from disease-resistant donors. Unlike HSCs from disease-resistant strains, they do not require graft-facilitating cells to engraft in allogeneic recipients. Additionally, they exhibit a competitive advantage when coadministered with increasing numbers of syngeneic HSCs, produce significantly more spleen colony-forming units (CFU-Ss) in vivo in allogeneic recipients, and more granulocyte macrophage-colony-forming units (CFU-GMs) in vitro compared with HSCs from disease-resistant controls. NOD HSCs also exhibit significantly enhanced chemotaxis to a stromal cell-derived factor 1 (SDF-1) gradient and adhere significantly better on primary stroma. This enhanced engraftment potential maps to the insulin-dependent diabetes locus 9 (Idd9) locus, and as such the tumor necrosis factor (TNF) receptor family as well as ski/sno genes may be involved in the mechanism underlying the autonomy of NOD HSCs. These findings may have important implications to understand the evolution of autoimmune disease and impact on potential strategies for cure.

  4. Evidence that MHC I-E dampens thyroid autoantibodies and prevents spreading to a second thyroid autoantigen in I-Ak NOD mice

    PubMed Central

    Pelletier, Adam-Nicolas; Aliesky, Holly A.; Banuelos, Bianca; Chabot-Roy, Geneviève; Rapoport, Basil; Lesage, Sylvie; McLachlan, Sandra M

    2015-01-01

    NOD.H2k and NOD.H2h4 mice carry the MHC class II molecule I-Ak associated with susceptibility to experimentally-induced thyroiditis. Dietary iodine enhanced spontaneous thyroid autoimmunity, well known in NOD.H2h4 mice, has not been investigated in NOD.H2k mice. We compared NOD.H2h4 and NOD.H2k strains for thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) without or with dietary sodium iodide (NaI) for up to 32 weeks. TgAb levels were significantly higher in NOD.H2h4 than NOD.H2k mice on NaI and TPOAb developed in NOD.H2h4 but not NOD.H2k mice. DNA exome analysis revealed, in addition to the differences in the chromosome (Chr) 17 MHC regions, that NOD.H2k and particularly NOD.H2h4 mice have substantial non-MHC parental DNA. KEGG pathway-analysis highlighted thyroid autoimmunity and immune-response genes on Chr 17 but not on Chr 7 and 15 parental B10.A4R DNA. Studies of parental strains provided no evidence for non-MHC gene contributions. The exon 10 thyroglobulin haplotype, associated with experimentally-induced thyroiditis, is absent in NOD.H2h4 and NOD.H2k mice and is not a marker for spontaneous murine thyroid autoimmunity. In conclusion, the absence of I-E is a likely explanation for the difference between NOD.H2h4 and NOD.H2k mice in TgAb levels and, as in humans, autoantibody spreading to TPO. PMID:25811933

  5. Effect of Sulforaphane on NOD2 via NF-κB: implications for Crohn's disease.

    PubMed

    Folkard, Danielle L; Marlow, Gareth; Mithen, Richard F; Ferguson, Lynnette R

    2015-01-01

    Sulforaphane has well established anti-cancer properties and more recently anti-inflammatory properties have also been determined. Sulforaphane has been shown to inhibit PRR-mediated pro-inflammatory signalling by either directly targeting the receptor or their downstream signalling molecules such as the transcription factor, NF-κB. These results raise the possibility that PRR-mediated inflammation could be suppressed by specific dietary bioactives. We examined whether sulforaphane could suppress NF-κB via the NOD2 pathway. Human embryonic kidney 293T (HEK293T) cells were stably transfected with NOD2 variants and the NF-κB reporter, pNifty2-SEAP. The cells were co-treated with sulforaphane and MDP and secreted alkaline phosphatase (SEAP) production was determined. We found that sulforaphane was able to significantly suppress the ligand-induced NF-κB activity at physiologically relevant concentrations, achievable via the consumption of broccoli within the diet. These results demonstrate that the anti-inflammatory role of sulforaphane is not restricted to LPS-induced inflammatory signalling. These data add to the growing evidence that PRR activation can be inhibited by specific phytochemicals and thus suggests that diet could be a way of controlling inflammation. This is particularly important for a disease like Crohn's disease where diet can play a key role in relieving or exacerbating symptoms.

  6. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling.

    PubMed

    Zhang, Xiaowei; Dong, Wentao; Sun, Jongho; Feng, Feng; Deng, Yiwen; He, Zuhua; Oldroyd, Giles E D; Wang, Ertao

    2015-01-01

    The establishment of symbiotic interactions between mycorrhizal fungi, rhizobial bacteria and their legume hosts involves a common symbiosis signalling pathway. This signalling pathway is activated by Nod factors produced by rhizobia and these are recognised by the Nod factor receptors NFR1/LYK3 and NFR5/NFP. Mycorrhizal fungi produce lipochitooligosaccharides (LCOs) similar to Nod factors, as well as short-chain chitin oligomers (CO4/5), implying commonalities in signalling during mycorrhizal and rhizobial associations. Here we show that NFR1/LYK3, but not NFR5/NFP, is required for the establishment of the mycorrhizal interaction in legumes. NFR1/LYK3 is necessary for the recognition of mycorrhizal fungi and the activation of the symbiosis signalling pathway leading to induction of calcium oscillations and gene expression. Chitin oligosaccharides also act as microbe associated molecular patterns that promote plant immunity via similar LysM receptor-like kinases. CERK1 in rice has the highest homology to NFR1 and we show that this gene is also necessary for the establishment of the mycorrhizal interaction as well as for resistance to the rice blast fungus. Our results demonstrate that NFR1/LYK3/OsCERK1 represents a common receptor for chitooligosaccharide-based signals produced by mycorrhizal fungi, rhizobial bacteria (in legumes) and fungal pathogens. It would appear that mycorrhizal recognition has been conserved in multiple receptors across plant species, but additional diversification in certain plant species has defined other signals that this class of receptors can perceive. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  7. Signal transduction of Helicobacter pylori during interaction with host cell protein receptors of epithelial and immune cells

    PubMed Central

    Pachathundikandi, Suneesh Kumar; Tegtmeyer, Nicole; Backert, Steffen

    2013-01-01

    Helicobacter pylori infections can induce pathologies ranging from chronic gastritis, peptic ulceration to gastric cancer. Bacterial isolates harbor numerous well-known adhesins, vacuolating cytotoxin VacA, protease HtrA, urease, peptidoglycan, and type IV secretion systems (T4SS). It appears that H. pylori targets more than 40 known host protein receptors on epithelial or immune cells. A series of T4SS components such as CagL, CagI, CagY, and CagA can bind to the integrin α5β1 receptor. Other targeted membrane-based receptors include the integrins αvβ3, αvβ5, and β2 (CD18), RPTP-α/β, GP130, E-cadherin, fibronectin, laminin, CD46, CD74, ICAM1/LFA1, T-cell receptor, Toll-like receptors, and receptor tyrosine kinases EGFR, ErbB2, ErbB3, and c-Met. In addition, H. pylori is able to activate the intracellular receptors NOD1, NOD2, and NLRP3 with important roles in innate immunity. Here we review the interplay of various bacterial factors with host protein receptors. The contribution of these interactions to signal transduction and pathogenesis is discussed. PMID:24280762

  8. Toll-like receptor 4 gene polymorphism modulates phenotypic expression in patients with hereditary hemochromatosis.

    PubMed

    Krayenbuehl, Pierre-Alexandre; Hersberger, Martin; Truninger, Kaspar; Müllhaupt, Beat; Maly, Friedrich E; Bargetzi, Mario; Schulthess, Georg

    2010-07-01

    Clinical penetrance of hereditary hemochromatosis is highly variable. We hypothesized that it might be modified by factors involved in the cellular immune response, such as toll-like receptors (TLRs) or nucleotide oligomerization domain proteins (NODs). Clinical expression of hemochromatosis was assessed as a function of TLR4, TLR9, and NOD2 polymorphisms in 99 homozygous carriers of the HFE C282Y mutation with mild-to-severe iron overload. Thirteen (13%) of the 99 hemochromatosis patients were heterozygous for a TLR4 Asp299Gly polymorphism and 86 (87%) were TLR4 wild-type-only carriers. Clinical expression of hemochromatosis was observed more frequently in carriers of the TLR4 polymorphism (100%) than in TLR4 wild-type carriers (56%, P = 0.002). This was based on higher prevalences of liver disease (92 vs. 45%, P = 0.002) and arthropathy of metacarpophalangeal joints (69 vs. 35%, P = 0.018) in TLR4 polymorphism carriers. The finding was strengthened by the strong association of TLR4 polymorphism with liver fibrosis in the subgroup of 52 patients who underwent a liver biopsy (P = 0.011). The TLR4 polymorphism did, however, not correlate with body iron overload. The study results remained significant in multiple regression analyses after excluding possible confounding effects, such as age, sex, alcohol, or meat intake, and in the subgroup of 84 patients presenting as the first members of their families. TLR4 Asp299Gly polymorphism modulates clinical expression in patients with hereditary hemochromatosis. The polymorphism does not correlate with iron overload suggesting that TLR4 plays a role in an inflammatory process arising from toxic effects of iron accumulation.

  9. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells.

    PubMed

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B; Flavell, Richard A

    2017-06-29

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens.

  10. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells

    PubMed Central

    Zhu, Shu; Ding, Siyuan; Wang, Penghua; Wei, Zheng; Pan, Wen; Palm, Noah W; Yang, Yi; Yu, Hua; Li, Hua-Bing; Wang, Geng; Lei, Xuqiu; de Zoete, Marcel R.; Zhao, Jun; Zheng, Yunjiang; Chen, Haiwei; Zhao, Yujiao; Jurado, Kellie A.; Feng, Ningguo; Shan, Liang; Kluger, Yuval; Lu, Jun; Abraham, Clara; Fikrig, Erol; Greenberg, Harry B.; Flavell, Richard A.

    2018-01-01

    Rotavirus, a leading cause of severe gastroenteritis and diarrhoea in young children, accounts for around 215,000 deaths annually worldwide1. Rotavirus specifically infects the intestinal epithelial cells in the host small intestine and has evolved strategies to antagonize interferon and NF-κB signalling2–5, raising the question as to whether other host factors participate in antiviral responses in intestinal mucosa. The mechanism by which enteric viruses are sensed and restricted in vivo, especially by NOD-like receptor (NLR) inflammasomes, is largely unknown. Here we uncover and mechanistically characterize the NLR Nlrp9b that is specifically expressed in intestinal epithelial cells and restricts rotavirus infection. Our data show that, via RNA helicase Dhx9, Nlrp9b recognizes short double-stranded RNA stretches and forms inflammasome complexes with the adaptor proteins Asc and caspase-1 to promote the maturation of interleukin (Il)-18 and gasdermin D (Gsdmd)-induced pyroptosis. Conditional depletion of Nlrp9b or other inflammasome components in the intestine in vivo resulted in enhanced susceptibility of mice to rotavirus replication. Our study highlights an important innate immune signalling pathway that functions in intestinal epithelial cells and may present useful targets in the modulation of host defences against viral pathogens. PMID:28636595

  11. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice

    PubMed Central

    Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A.; Rapoport, Basil

    2017-01-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease–like phenotype of NOD.H2h4 mice. PMID:28323998

  12. Genes Outside the Major Histocompatibility Complex Locus Are Linked to the Development of Thyroid Autoantibodies and Thyroiditis in NOD.H2h4 Mice.

    PubMed

    McLachlan, Sandra M; Lesage, Sylvie; Collin, Roxanne; Banuelos, Bianca; Aliesky, Holly A; Rapoport, Basil

    2017-04-01

    Thyroiditis and autoantibodies to thyroglobulin (TgAb) and thyroid peroxidase (TPOAb) develop spontaneously in NOD.H2h4 mice, a phenotype enhanced by dietary iodine. NOD.H2h4 mice were derived by introducing the major histocompatibility class (MHC) molecule I-Ak from B10.A(4R) mice to nonobese diabetic (NOD) mice. Apart from I-Ak, the genes responsible for the NOD.H2h4 phenotype are unknown. Extending serendipitous observations from crossing BALB/c to NOD.H2h4 mice, thyroid autoimmunity was investigated in both genders of the F1, F2, and the second-generation backcross of F1 to NOD.H2h4 (N2). Medium-density linkage analysis was performed on thyroid autoimmunity traits in F2 and N2 progeny. TgAb develop before TPOAb and were measured after 8 and 16 weeks of iodide exposure; TPOAb and thyroiditis were studied at 16 weeks. TgAb, TPOAb, and thyroiditis, absent in BALB/c and F1 mice, developed in most NOD.H2h4 and in more N2 than F2 progeny. No linkages were observed in F2 progeny, probably because of the small number of autoantibody-positive mice. In N2 progeny (equal numbers of males and females), a chromosome 17 locus is linked to thyroiditis and TgAb and is suggestively linked to TPOAb. This locus includes MHC region genes from B10.A(4R) mice (such as I-Ak and Tnf, the latter involved in thyrocyte apoptosis) and genes from NOD mice such as Satb1, which most likely plays a role in immune tolerance. In conclusion, MHC and non-MHC genes, encoded within the chromosome 17 locus from both B10.A(4R) and NOD strains, are most likely responsible for the Hashimoto disease-like phenotype of NOD.H2h4 mice. Copyright © 2017 Endocrine Society.

  13. Integration of decoy domains derived from protein targets of pathogen effectors into plant immune receptors is widespread.

    PubMed

    Kroj, Thomas; Chanclud, Emilie; Michel-Romiti, Corinne; Grand, Xavier; Morel, Jean-Benoit

    2016-04-01

    Plant immune receptors of the class of nucleotide-binding and leucine-rich repeat domain (NLR) proteins can contain additional domains besides canonical NB-ARC (nucleotide-binding adaptor shared by APAF-1, R proteins, and CED-4 (NB-ARC)) and leucine-rich repeat (LRR) domains. Recent research suggests that these additional domains act as integrated decoys recognizing effectors from pathogens. Proteins homologous to integrated decoys are suspected to be effector targets and involved in disease or resistance. Here, we scrutinized 31 entire plant genomes to identify putative integrated decoy domains in NLR proteins using the Interpro search. The involvement of the Zinc Finger-BED type (ZBED) protein containing a putative decoy domain, called BED, in rice (Oryza sativa) resistance was investigated by evaluating susceptibility to the blast fungus Magnaporthe oryzae in rice over-expression and knock-out mutants. This analysis showed that all plants tested had integrated various atypical protein domains into their NLR proteins (on average 3.5% of all NLR proteins). We also demonstrated that modifying the expression of the ZBED gene modified disease susceptibility. This study suggests that integration of decoy domains in NLR immune receptors is widespread and frequent in plants. The integrated decoy model is therefore a powerful concept to identify new proteins involved in disease resistance. Further in-depth examination of additional domains in NLR proteins promises to unravel many new proteins of the plant immune system. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  14. Increased Expression of the NOD-like Receptor Family, Pyrin Domain Containing 3 Inflammasome in Dermatomyositis and Polymyositis is a Potential Contributor to Their Pathogenesis

    PubMed Central

    Yin, Xi; Han, Gen-Cheng; Jiang, Xing-Wei; Shi, Qiang; Pu, Chuan-Qiang

    2016-01-01

    Background: Dermatomyositis (DM) and polymyositis (PM) are common inflammatory myopathies whose immunopathogenic mechanisms remain poorly understood. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is a type of cytoplasmic multiprotein inflammasome and is responsible for the activation of inflammatory reactivations. Responding to a wide range of exogenous and endogenous microbial or sterile stimuli, NLRP3 inflammasomes can cleave pro-caspase-1 into active caspase-1, which processes the pro-inflammatory cytokines pro-interleukin (IL)-1β and pro-IL-18 into active and secreted IL-1β and IL-18. The NLRP3 inflammasome is implicated in infectious and sterile inflammatory diseases. However, it remains unclear whether it is involved in the pathogenesis of DM/PM, which we aim to address in our research. Methods: In this study, 22 DM/PM patients and 24 controls were recruited. The protein and RNA expression of IL-1β, IL-18, NLRP3, and caspase-1 in serum and muscle samples were tested and compared between the two groups. Results: The serum IL-1β and IL-18 levels were significantly higher in DM/PM patients than those in the controls by enzyme linked immunosorbent assay (ELISA, DM vs. control, 25.02 ± 8.29 ng/ml vs. 16.49 ± 3.30 ng/ml, P < 0.001; PM vs. control, 26.49 ± 7.79 ng/ml vs. 16.49 ± 3.30 ng/ml, P < 0.001). Moreover, the real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) showed that DM/PM patients exhibited higher RNA expression of IL-1β, IL-18, and NLRP3 in the muscle (for IL-1β, DM vs. control, P = 0.0012, PM vs. control, P = 0.0021; for IL-18, DM vs. control, P = 0.0045, PM vs. control, P = 0.0031; for NLRP3, DM vs. control, P = 0.0017, PM vs. control, P = 0.0006). Moreover, the protein expression of NLRP3 and caspase-1 in muscle samples of DM/PM patients were also significantly elevated compared to that in the muscles of the controls. Conclusions: Our findings demonstrate that the NLRP3

  15. Caring to Care: Applying Noddings' Philosophy to Medical Education.

    PubMed

    Balmer, Dorene F; Hirsh, David A; Monie, Daphne; Weil, Henry; Richards, Boyd F

    2016-12-01

    The authors argue that Nel Noddings' philosophy, "an ethic of caring," may illuminate how students learn to be caring physicians from their experience of being in a caring, reciprocal relationship with teaching faculty. In her philosophy, Noddings acknowledges two important contextual continuities: duration and space, which the authors speculate exist within longitudinal integrated clerkships. In this Perspective, the authors highlight core features of Noddings' philosophy and explore its applicability to medical education. They apply Noddings' philosophy to a subset of data from a previously published longitudinal case study to explore its "goodness of fit" with the experience of eight students in the 2012 cohort of the Columbia-Bassett longitudinal integrated clerkship. In line with Noddings' philosophy, the authors' supplementary analysis suggests that students (1) recognized caring when they talked about "being known" by teaching faculty who "cared for" and "trusted" them; (2) responded to caring by demonstrating enthusiasm, action, and responsibility toward patients; and (3) acknowledged that duration and space facilitated caring relations with teaching faculty. The authors discuss how Noddings' philosophy provides a useful conceptual framework to apply to medical education design and to future research on caring-oriented clinical training, such as longitudinal integrated clerkships.

  16. Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding

    PubMed Central

    Broghammer, Angelique; Krusell, Lene; Blaise, Mickaël; Sauer, Jørgen; Sullivan, John T.; Maolanon, Nicolai; Vinther, Maria; Lorentzen, Andrea; Madsen, Esben B.; Jensen, Knud J.; Roepstorff, Peter; Thirup, Søren; Ronson, Clive W.; Thygesen, Mikkel B.; Stougaard, Jens

    2012-01-01

    Lipochitin oligosaccharides called Nod factors function as primary rhizobial signal molecules triggering legumes to develop new plant organs: root nodules that host the bacteria as nitrogen-fixing bacteroids. Here, we show that the Lotus japonicus Nod factor receptor 5 (NFR5) and Nod factor receptor 1 (NFR1) bind Nod factor directly at high-affinity binding sites. Both receptor proteins were posttranslationally processed when expressed as fusion proteins and extracted from purified membrane fractions of Nicotiana benthamiana or Arabidopsis thaliana. The N-terminal signal peptides were cleaved, and NFR1 protein retained its in vitro kinase activity. Processing of NFR5 protein was characterized by determining the N-glycosylation patterns of the ectodomain. Two different glycan structures with identical composition, Man3XylFucGlcNAc4, were identified by mass spectrometry and located at amino acid positions N68 and N198. Receptor–ligand interaction was measured by using ligands that were labeled or immobilized by application of chemoselective chemistry at the anomeric center. High-affinity ligand binding was demonstrated with both solid-phase and free solution techniques. The Kd values obtained for Nod factor binding were in the nanomolar range and comparable to the concentration range sufficient for biological activity. Structure-dependent ligand specificity was shown by using chitin oligosaccharides. Taken together, our results suggest that ligand recognition through direct ligand binding is a key step in the receptor-mediated activation mechanism leading to root nodule development in legumes. PMID:22859506

  17. Nodding syndrome in Tanzania may not be associated with circulating anti-NMDA-and anti-VGKC receptor antibodies or decreased pyridoxal phosphate serum levels-a pilot study.

    PubMed

    Dietmann, Anelia; Wallner, Bernd; König, Rebekka; Friedrich, Katrin; Pfausler, Bettina; Deisenhammer, Florian; Griesmacher, Andrea; Seger, Christoph; Matuja, William; JilekAall, Louise; Winkler, Andrea S; Schmutzhard, Erich

    2014-06-01

    Nodding syndrome (NS) is a seemingly progressive epilepsy disorder of unknown underlying cause. We investigated association of pyridoxal-phosphate serum levels and occurrence of anti-neuronal antibodies against N-methyl-D-aspartate (NMDA) receptor and voltage gated potassium channel (VGKC) complex in NS patients. Sera of a Tanzanian cohort of epilepsy and NS patients and community controls were tested for the presence of anti-NMDA-receptor and anti-VGKC complex antibodies by indirect immunofluorescence assay. Furthermore pyridoxal-phosphate levels were measured. Auto-antibodies against NMDA receptor or VGKC (LG1 or Caspr2) complex were not detected in sera of patients suffering from NS (n=6), NS plus other seizure types (n=16), primary generalized epilepsy (n=1) and community controls without epilepsy (n=7). Median Pyridoxal-phosphate levels in patients with NS compared to patients with primary generalized seizures and community controls were not significantly different. However, these median pyridoxal-phosphate levels are significantly lower compared to the range considered normal in Europeans. In this pilot study NS was not associated with serum anti-NMDA receptor or anti-VGKC complex antibodies and no association to pyridoxal-phosphate serum levels was found.

  18. Implication of TLR- but Not of NOD2-Signaling Pathways in Dendritic Cell Activation by Group B Streptococcus Serotypes III and V

    PubMed Central

    Lemire, Paul; Roy, David; Fittipaldi, Nahuel; Okura, Masatoshi; Takamatsu, Daisuke; Bergman, Eugenia; Segura, Mariela

    2014-01-01

    Group B Streptococcus (GBS) is an important agent of life-threatening invasive infection. It has been previously shown that encapsulated type III GBS is easily internalized by dendritic cells (DCs), and that this internalization had an impact on cytokine production. The receptors underlying these processes are poorly characterized. Knowledge on the mechanisms used by type V GBS to activate DCs is minimal. In this work, we investigated the role of Toll-like receptor (TLR)/MyD88 signaling pathway, the particular involvement of TLR2, and that of the intracellular sensing receptor NOD2 in the activation of DCs by types III and V GBS. The role of capsular polysaccharide (CPS, one of the most important GBS virulence factors) in bacterial-DC interactions was evaluated using non-encapsulated mutants. Despite differences in the role of CPS between types III and V GBS in bacterial internalization and intracellular survival, no major differences were observed in their capacity to modulate release of cytokines by DC. For both serotypes, CPS had a minor role in this response. Production of cytokines by DCs was shown to strongly rely on MyD88-dependent signaling pathways, suggesting that DCs recognize GBS and become activated mostly through TLR signaling. Yet, GBS-infected TLR2-/- DCs only showed a partial reduction in the production of IL-6 and CXCL1 compared to control DCs. Surprisingly, CXCL10 release by type III or type V GBS-infected DCs was MyD88-independent. No differences in DC activation were observed between NOD2-/- and control DCs. These results demonstrate the involvement of various receptors and the complexity of the cytokine production pathways activated by GBS upon DC infection. PMID:25436906

  19. Guillain Barré Syndrome is induced in Non-Obese Diabetic (NOD) mice following Campylobacter jejuni infection and is exacerbated by antibiotics.

    PubMed

    St Charles, J L; Bell, J A; Gadsden, B J; Malik, A; Cooke, H; Van de Grift, L K; Kim, H Y; Smith, E J; Mansfield, L S

    2017-02-01

    inflammatory demyelinating polyneuropathy (AIDP)-like model, 2) NOD IL-10 -/- mice as an acute motor axonal neuropathy (AMAN)-like model best employed over a limited time frame, and 3) NOD WT mice as an AMAN model with mild clinical signs and lesions. Taken together these data demonstrate that C. jejuni strain genotype, host genotype and antibiotic treatment affect GBS disease outcomes in mice and that many disease phenotypes are possible. Copyright © 2016. Published by Elsevier Ltd.

  20. Evolutionarily Conserved nodE, nodO, T1SS, and Hydrogenase System in Rhizobia of Astragalus membranaceus and Caragana intermedia.

    PubMed

    Yan, Hui; Xie, Jian Bo; Ji, Zhao Jun; Yuan, Na; Tian, Chang Fu; Ji, Shou Kun; Wu, Zhong Yu; Zhong, Liang; Chen, Wen Xin; Du, Zheng Lin; Wang, En Tao; Chen, Wen Feng

    2017-01-01

    Mesorhizobium species are the main microsymbionts associated with the medicinal or sand-fixation plants Astragalus membranaceus and Caragana intermedia (AC) in temperate regions of China, while all the Mesorhizobium strains isolated from each of these plants could nodulate both of them. However, Rhizobium yanglingense strain CCBAU01603 could nodulate AC plants and it's a high efficiency symbiotic and competitive strain with Caragana . Therefore, the common features shared by these symbiotic rhizobia in genera of Mesorhizobium and Rhizobium still remained undiscovered. In order to study the genomic background influencing the host preference of these AC symbiotic strains, the whole genomes of two ( M. silamurunense CCBAU01550, M. silamurunense CCBAU45272) and five representative strains ( M. septentrionale CCBAU01583, M. amorphae CCBAU01570, M. caraganae CCBAU01502, M. temperatum CCBAU01399, and R. yanglingense CCBAU01603) originally isolated from AC plants were sequenced, respectively. As results, type III secretion systems (T3SS) of AC rhizobia evolved in an irregular pattern, while an evolutionarily specific region including nodE, nodO , T1SS, and a hydrogenase system was detected to be conserved in all these AC rhizobia. Moreover, nodO was verified to be prevalently distributed in other AC rhizobia and was presumed as a factor affecting the nodule formation process. In conclusion, this research interpreted the multifactorial features of the AC rhizobia that may be associated with their host specificity at cross-nodulation group, including nodE, nodZ , T1SS as the possible main determinants; and nodO , hydrogenase system, and T3SS as factors regulating the bacteroid formation or nitrogen fixation efficiency.

  1. Maize homologs of HCT, a key enzyme in lignin biosynthesis, bind the NLR Rp1 proteins to modulate the defense response

    USDA-ARS?s Scientific Manuscript database

    In plants, most disease resistance (R) genes encode nucleotide binding leucine-rich-repeat 42 (NLR) proteins that trigger a rapid localized cell death called a hypersensitive response (HR) 43 upon pathogen recognition. The maize NLR protein Rp1-D21 derives from an intragenic 44 recombination between...

  2. Protein-protein interactions in the RPS4/RRS1 immune receptor complex

    PubMed Central

    Sarris, Panagiotis F.

    2017-01-01

    Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation. PMID:28475615

  3. Specific destruction of islet transplants in NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation chimeras irrespective of allelic differences in beta-cell antigens.

    PubMed

    Leijon, K; Hillörn, V; Bergqvist, I; Holmberg, D

    1995-06-01

    We have tested the hypothesis that allelic differences in the antigens expressed by the beta-cells of the islets of Langerhans influence the development of insulitis in the non-obese diabetic (NOD) mouse. Islets of Langerhans from NOD, C57BL/6 and C3H/Tif mice were transplanted under the kidney capsule of NOD<-->C57BL/6 and NOD<-->C3H/Tif embryo aggregation (EA) chimeras and the infiltration was scored 5-7 weeks later. Mononuclear cell infiltration of pancreatic islets was observed in 60% of the NOD<-->C57BL/6 and in 55% of the NOD<-->C3H/Tif EA chimeras. All transplanted EA chimeras that developed insulitis also displayed mononuclear cell infiltrates in the transplants, irrespective of the origin of the transplanted islets. In contrast, no infiltration of transplants was detected in EA chimeras scoring negative for insulitis. These results demonstrate that the specific destruction of islet transplants does not require the expression of NOD specific antigens by the islets. Moreover, the beta-cell destruction appears not to be restricted to NOD-MHC. The correlation between insulitis and transplant beta-cell destruction suggests the possibility that the development of insulitis is a prerequisite for transplant specific destruction. MHC restricted destruction may, therefore, precede the beta-cell destruction of transplanted islets. The chimerism among the mononuclear cells infiltrating the islet transplants was found to correlate with the overall haematopoetic chimerism in each of the individual EA chimeras. This observation suggests that NOD bone marrow, as well as non-NOD bone marrow, generates cells contributing to the beta-cell destruction process.

  4. Anti-FcεR1 antibody injections activate basophils and mast cells and delay Type I diabetes onset in NOD mice

    PubMed Central

    Larson, David; Torrero, Marina N.; Mueller, Ellen; Shi, Yinghui; Killoran, Kristin

    2012-01-01

    Mounting evidence suggests that helminth infections protect against autoimmune diseases. As helminths cause chronic IgE-mediated activation of basophils and mast cells we hypothesized that continuous activation of these cells could prevents diabetes onset in nonobese diabetic (NOD) mice in the absence of infection. Anti-FcεR1 activated basophils and mast cells and resulted in the release of IL-4 and histamine into the bloodstream. Anti-FcεR1-treated NOD mice showed a type 2 shift in insulin-specific antibody production and exhibited significant delays in diabetes onset. IL-4 responses played a partial role as the protective effect of anti-FcεR1 therapy was diminished in IL-4-deficient NOD mice. In contrast, histamine signaling was not required as anti-FcεR1-mediated protection was not reduced in mice treated with histamine receptor blockers. These results demonstrate that anti-FcεR1 therapy delays diabetes onset in NOD mice and suggest that chronic basophil and mast cell activation may represent a new avenue of therapy for Th1-associated autoimmune diseases. PMID:21920822

  5. The NALP3/NLRP3 Inflammasome Instigates Obesity-Induced Autoinflammation and Insulin Resistance

    PubMed Central

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E.; Stadler, Krisztian; Mynatt, Randall L.; Ravussin, Eric; Stephens, Jacqueline M.; Dixit, Vishwa Deep

    2010-01-01

    Emergence of chronic ‘sterile’ inflammation during obesity in absence of overt infection or autoimmune process is a puzzling phenomenon. The Nod Like Receptor (NLR) family of innate immune cell sensors like the Nlrp3 inflammasome are implicated in recognizing certain non-microbial origin ‘danger–signals’ leading to caspase-1 activation and subsequent IL-1β and IL-18 secretion. We show that reduction in adipose tissue expression of Nlrp3 is coupled with decreased inflammation and improved insulin–sensitivity in obese type-2 diabetic patients. The Nlrp3 inflammasome senses the lipotoxicity–associated ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 prevented the obesity–induced inflammasome activation in fat depots and liver together with enhanced insulin–signalling. Furthermore, elimination of Nlrp3 in obesity reduced IL-18 and adipose tissue IFNγ along with an increase in naïve and reduction in effector adipose tissue T cells. Collectively, these data establish that Nlrp3 inflammasome senses obesity–associated ‘danger–signals’ and contributes to obesity–induced inflammation and insulin–resistance. PMID:21217695

  6. The Mitochondrial Protein NLRX1 Controls the Balance between Extrinsic and Intrinsic Apoptosis*

    PubMed Central

    Soares, Fraser; Tattoli, Ivan; Rahman, Muhammed A.; Robertson, Susan J.; Belcheva, Antoaneta; Liu, Daniel; Streutker, Catherine; Winer, Shawn; Winer, Daniel A.; Martin, Alberto; Philpott, Dana J.; Arnoult, Damien; Girardin, Stephen E.

    2014-01-01

    NLRX1 is a mitochondrial Nod-like receptor (NLR) protein whose function remains enigmatic. Here, we observed that NLRX1 expression was glucose-regulated and blunted by SV40 transformation. In transformed but not primary murine embryonic fibroblasts, NLRX1 expression mediated resistance to an extrinsic apoptotic signal, whereas conferring susceptibility to intrinsic apoptotic signals, such as glycolysis inhibition, increased cytosolic calcium and endoplasmic reticulum stress. In a murine model of colorectal cancer induced by azoxymethane, NLRX1−/− mice developed fewer tumors than wild type mice. In contrast, in a colitis-associated cancer model combining azoxymethane and dextran sulfate sodium, NLRX1−/− mice developed a more severe pathology likely due to the increased sensitivity to dextran sulfate sodium colitis. Together, these results identify NLRX1 as a critical mitochondrial protein implicated in the regulation of apoptosis in cancer cells. The unique capacity of NLRX1 to regulate the cellular sensitivity toward intrinsic versus extrinsic apoptotic signals suggests a critical role for this protein in numerous physiological processes and pathological conditions. PMID:24867956

  7. Inflammasomes in cancer: a double-edged sword.

    PubMed

    Kolb, Ryan; Liu, Guang-Hui; Janowski, Ann M; Sutterwala, Fayyaz S; Zhang, Weizhou

    2014-01-01

    Chronic inflammatory responses have long been observed to be associated with various types of cancer and play decisive roles at different stages of cancer development. Inflammasomes, which are potent inducers of interleukin (IL)-1β and IL-18 during inflammation, are large protein complexes typically consisting of a Nod-like receptor (NLR), the adapter protein ASC, and Caspase-1. During malignant transformation or cancer therapy, the inflammasomes are postulated to become activated in response to danger signals arising from the tumors or from therapy-induced damage to the tumor or healthy tissue. The activation of inflammasomes plays diverse and sometimes contrasting roles in cancer promotion and therapy depending on the specific context. Here we summarize the role of different inflammasome complexes in cancer progression and therapy. Inflammasome components and pathways may provide novel targets to treat certain types of cancer; however, using such agents should be cautiously evaluated due to the complex roles that inflammasomes and pro-inflammatory cytokines play in immunity.

  8. A Discrete Ubiquitin-Mediated Network Regulates the Strength of NOD2 Signaling

    PubMed Central

    Tigno-Aranjuez, Justine T.; Bai, Xiaodong

    2013-01-01

    Dysregulation of NOD2 signaling is implicated in the pathology of various inflammatory diseases, including Crohn's disease, asthma, and sarcoidosis, making signaling proteins downstream of NOD2 potential therapeutic targets. Inhibitor-of-apoptosis (IAP) proteins, particularly cIAP1, are essential mediators of NOD2 signaling, and in this work, we describe a molecular mechanism for cIAP1's regulation in the NOD2 signaling pathway. While cIAP1 promotes RIP2's tyrosine phosphorylation and subsequent NOD2 signaling, this positive regulation is countered by another E3 ubiquitin ligase, ITCH, through direct ubiquitination of cIAP1. This ITCH-mediated ubiquitination leads to cIAP1's lysosomal degradation. Pharmacologic inhibition of cIAP1 expression in ITCH−/− macrophages attenuates heightened ITCH−/− macrophage muramyl dipeptide-induced responses. Transcriptome analysis, combined with pharmacologic inhibition of cIAP1, further defines specific pathways within the NOD2 signaling pathway that are targeted by cIAP1. This information provides genetic signatures that may be useful in repurposing cIAP1-targeted therapies to correct NOD2-hyperactive states and identifies a ubiquitin-regulated signaling network centered on ITCH and cIAP1 that controls the strength of NOD2 signaling. PMID:23109427

  9. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity.

    PubMed

    Pinheiro, Anderson S; Proell, Martina; Eibl, Clarissa; Page, Rebecca; Schwarzenbacher, Robert; Peti, Wolfgang

    2010-08-27

    The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.

  10. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg; Zhu Congju; Wong Yinling

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival,more » {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  11. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    PubMed

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  12. NOD2/RICK-Dependent β-Defensin 2 Regulation Is Protective for Nontypeable Haemophilus influenzae-Induced Middle Ear Infection

    PubMed Central

    Woo, Jeong-Im; Oh, Sejo; Webster, Paul; Lee, Yoo Jin; Lim, David J.; Moon, Sung K.

    2014-01-01

    Middle ear infection, otitis media (OM), is clinically important due to the high incidence in children and its impact on the development of language and motor coordination. Previously, we have demonstrated that the human middle ear epithelial cells up-regulate β-defensin 2, a model innate immune molecule, in response to nontypeable Haemophilus influenzae (NTHi), the most common OM pathogen, via TLR2 signaling. NTHi does internalize into the epithelial cells, but its intracellular trafficking and host responses to the internalized NTHi are poorly understood. Here we aimed to determine a role of cytoplasmic pathogen recognition receptors in NTHi-induced β-defensin 2 regulation and NTHi clearance from the middle ear. Notably, we observed that the internalized NTHi is able to exist freely in the cytoplasm of the human epithelial cells after rupturing the surrounding membrane. The human middle ear epithelial cells inhibited NTHi-induced β-defensin 2 production by NOD2 silencing but augmented it by NOD2 over-expression. NTHi-induced β-defensin 2 up-regulation was attenuated by cytochalasin D, an inhibitor of actin polymerization and was enhanced by α-hemolysin, a pore-forming toxin. NOD2 silencing was found to block α-hemolysin-mediated enhancement of NTHi-induced β-defensin 2 up-regulation. NOD2 deficiency appeared to reduce inflammatory reactions in response to intratympanic inoculation of NTHi and inhibit NTHi clearance from the middle ear. Taken together, our findings suggest that a cytoplasmic release of internalized NTHi is involved in the pathogenesis of NTHi infections, and NOD2-mediated β-defensin 2 regulation contributes to the protection against NTHi-induced otitis media. PMID:24625812

  13. Upregulating CD4+CD25+FOXP3+ regulatory T cells in pancreatic lymph nodes in diabetic NOD mice by adjuvant immunotherapy.

    PubMed

    Tian, Bole; Hao, Jianqiang; Zhang, Yu; Tian, Lei; Yi, Huimin; O'Brien, Timothy D; Sutherland, David E R; Hering, Bernhard J; Guo, Zhiguang

    2009-01-27

    Immunotherapy with Complete Freund's adjuvant (CFA) is effective in ameliorating autoimmunity in diabetic nonobese diabetic (NOD) mice. We investigated whether CFA treatment up-regulates CD4+CD25+Foxp3+ regulatory T cells and increases transforming growth factor (TGF)-beta1 production in diabetic NOD mice. New-onset diabetic NOD mice were treated with CFA and exendin-4, a potent analog of glucagon-like peptide-1. Reversal of diabetes was determined by monitoring blood glucose level. Ameliorating autoimmunity through immunoregulation was assessed by adoptive transfer. Regulatory T cells in the peripheral blood, spleen, thymus, and pancreatic nodes were measured. TGF-beta1 in plasma and the insulin content in the pancreas were also measured. Immunostainings for insulin and BrdU were performed. New-onset diabetes could be reversed in 38% of NOD mice treated with CFA alone and in 86% of NOD mice treated with both CFA and exendin-4. Diabetes adoptive transfer by splenocytes from CFA-treated NOD mice was delayed. The percentage of CD4+CD25+Foxp3+ regulatory T cells in the pancreatic lymph nodes of CFA-treated NOD mice was significantly increased at 1, 5, and 15 to 17 weeks after treatment. TGF-beta1 in the plasma of CFA-treated NOD mice was also significantly increased. Combining CFA with exendin-4 treatment significantly increased the insulin content and the numbers of insulin and BrdU double-labeled beta cells in the islets. Our results demonstrated that CFA treatment ameliorates autoimmunity in diabetic NOD mice by up-regulating CD4=CD25+Foxp3+ regulatory T cells and increasing TGF-beta1 production. Exendin-4 enhanced the effect of CFA on reversing diabetes in NOD mice by stimulating beta-cell replication.

  14. Innate Immune Regulation by Toll-Like Receptors in the Brain

    PubMed Central

    Mallard, Carina

    2012-01-01

    The innate immune system plays an important role in cerebral health and disease. In recent years the role of innate immune regulation by toll-like receptors in the brain has been highlighted. In this paper the expression of toll-like receptors and endogenous toll-like receptor ligands in the brain and their role in cerebral ischemia will be discussed. Further, the ability of systemic toll-like receptor ligands to induce cerebral inflammation will be reviewed. Finally, the capacity of toll-like receptors to both increase (sensitization) and decrease (preconditioning/tolerance) the vulnerability of the brain to damage will be disclosed. Studies investigating the role of toll-like receptors in the developing brain will be emphasized. PMID:23097717

  15. Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice.

    PubMed

    Shultz, L D; Schweitzer, P A; Christianson, S W; Gott, B; Schweitzer, I B; Tennent, B; McKenna, S; Mobraaten, L; Rajan, T V; Greiner, D L

    1995-01-01

    The scid mutation was backcrossed ten generations onto the NOD/Lt strain background, resulting in an immunodeficient stock (NOD/LtSz-scid/scid) with multiple defects in adaptive as well as nonadaptive immunologic function. NOD/LtSz-scid/scid mice lack functional lymphoid cells and show little or no serum Ig with age. Although NOD/(Lt-)+/+ mice develop T cell-mediated autoimmune, insulin-dependent diabetes mellitus, NOD/LtSz-scid/scid mice are both insulitis- and diabetes-free throughout life. However, because of a high incidence of thymic lymphomas, the mean lifespan of this congenic stock is only 8.5 mo under specific pathogen-free conditions. After i.v. injection of human CEM T-lymphoblastoid cells, splenic engraftment of these cells was fourfold greater in NOD/LtSz-scid/scid mice than in C.B17/Sz-scid/scid mice. Although C.B-17Sz-scid/scid mice exhibit robust NK cell activity, this activity is markedly reduced in both NOD/(Lt-)+/+ and NOD/LtSz-scid/scid mice. Presence of a functionally less mature macrophage population in NOD/LtSz-scid/scid vs C.B-17Sz-scid/scid mice is indicated by persistence in the former of the NOD/Lt strain-specific defect in LPS-stimulated IL-1 secretion by marrow-derived macrophages. Although C.B-17Sz-scid/scid and C57BL/6Sz-scid/scid mice have elevated serum hemolytic complement activity compared with their respective +/+ controls, both NOD/(LtSz-)+/+ and NOD/LtSz-scid/scid mice lack this activity. Age-dependent increases in serum Ig levels (> 1 micrograms/ml) were observed in only 2 of 30 NOD/LtSz-scid/scid mice vs 21 of 29 C.B-17/Sz-scid/scid animals. The multiple defects in innate and adaptive immunity unique to the NOD/LtSz-scid/scid mouse provide an excellent in vivo environment for reconstitution with human hematopoietic cells.

  16. Dopamine D2-like receptor signaling suppresses human osteoclastogenesis.

    PubMed

    Hanami, Kentaro; Nakano, Kazuhisa; Saito, Kazuyoshi; Okada, Yosuke; Yamaoka, Kunihiro; Kubo, Satoshi; Kondo, Masahiro; Tanaka, Yoshiya

    2013-09-01

    Dopamine, a major neurotransmitter, transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1 to D5. Although the relevance of neuroendocrine system to bone metabolism has been emerging, the precise effects of dopaminergic signaling upon osteoclastogenesis remain unknown. Here, we demonstrate that human monocyte-derived osteoclast precursor cells express all dopamine-receptor subtypes. Dopamine and dopamine D2-like receptor agonists such as pramipexole and quinpirole reduced the formation of TRAP-positive multi-nucleated cells, cathepsin K mRNA expression, and pit formation area in vitro. These inhibitory effects were reversed by pre-treatment with a D2-like receptor antagonist haloperidol or a Gαi inhibitor pertussis toxin, but not with the D1-like receptor antagonist SCH-23390. Dopamine and dopamine D2-like receptor agonists, but not a D1-like receptor agonist, suppressed intracellular cAMP concentration as well as RANKL-meditated induction of c-Fos and NFATc1 mRNA expression in human osteoclast precursor cells. Finally, the dopamine D2-like receptor agonist suppressed LPS-induced osteoclast formation in murine bone marrow culture ex vivo. These findings indicate that dopaminergic signaling plays an important role in bone homeostasis via direct effects upon osteoclast differentiation and further suggest that the clinical use of neuroleptics is likely to affect bone mass. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Receptor-like kinases in plant innate immunity.

    PubMed

    Wu, Ying; Zhou, Jian-Min

    2013-12-01

    Plants employ a highly effective surveillance system to detect potential pathogens, which is critical for the success of land plants in an environment surrounded by numerous microbes. Recent efforts have led to the identification of a number of immune receptors and components of immune receptor complexes. It is now clear that receptor-like kinases (RLKs) and receptor-like proteins (RLPs) are key pattern-recognition receptors (PRRs) for microbe- and plant-derived molecular patterns that are associated with pathogen invasion. RLKs and RLPs involved in immune signaling belong to large gene families in plants and have undergone lineage specific expansion. Molecular evolution and population studies on phytopathogenic molecular signatures and their receptors have provided crucial insight into the co-evolution between plants and pathogens. [Figure: see text] Jian-Min Zhou (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.

  18. Role of pattern recognition receptors of the neurovascular unit in inflamm-aging.

    PubMed

    Wilhelm, Imola; Nyúl-Tóth, Ádám; Kozma, Mihály; Farkas, Attila E; Krizbai, István A

    2017-11-01

    Aging is associated with chronic inflammation partly mediated by increased levels of damage-associated molecular patterns, which activate pattern recognition receptors (PRRs) of the innate immune system. Furthermore, many aging-related disorders are associated with inflammation. PRRs, such as Toll-like receptors (TLRs) and nucleotide-binding oligomerization domain-like receptors (NLRs), are expressed not only in cells of the innate immune system but also in other cells, including cells of the neurovascular unit and cerebral vasculature forming the blood-brain barrier. In this review, we summarize our present knowledge about the relationship between activation of PRRs expressed by cells of the neurovascular unit-blood-brain barrier, chronic inflammation, and aging-related pathologies of the brain. The most important damage-associated molecular pattern-sensing PRRs in the brain are TLR2, TLR4, and NLR family pyrin domain-containing protein-1 and pyrin domain-containing protein-3, which are activated during physiological and pathological aging in microglia, neurons, astrocytes, and possibly endothelial cells and pericytes. Copyright © 2017 the American Physiological Society.

  19. Receptor-like kinase SOBIR1/EVR interacts with receptor-like proteins in plant immunity against fungal infection.

    PubMed

    Liebrand, Thomas W H; van den Berg, Grardy C M; Zhang, Zhao; Smit, Patrick; Cordewener, Jan H G; America, Antoine H P; America, Antione H P; Sklenar, Jan; Jones, Alexandra M E; Tameling, Wladimir I L; Robatzek, Silke; Thomma, Bart P H J; Joosten, Matthieu H A J

    2013-06-11

    The plant immune system is activated by microbial patterns that are detected as nonself molecules. Such patterns are recognized by immune receptors that are cytoplasmic or localized at the plasma membrane. Cell surface receptors are represented by receptor-like kinases (RLKs) that frequently contain extracellular leucine-rich repeats and an intracellular kinase domain for activation of downstream signaling, as well as receptor-like proteins (RLPs) that lack this signaling domain. It is therefore hypothesized that RLKs are required for RLPs to activate downstream signaling. The RLPs Cf-4 and Ve1 of tomato (Solanum lycopersicum) mediate resistance to the fungal pathogens Cladosporium fulvum and Verticillium dahliae, respectively. Despite their importance, the mechanism by which these immune receptors mediate downstream signaling upon recognition of their matching ligand, Avr4 and Ave1, remained enigmatic. Here we show that the tomato ortholog of the Arabidopsis thaliana RLK Suppressor Of BIR1-1/Evershed (SOBIR1/EVR) and its close homolog S. lycopersicum (Sl)SOBIR1-like interact in planta with both Cf-4 and Ve1 and are required for the Cf-4- and Ve1-mediated hypersensitive response and immunity. Tomato SOBIR1/EVR interacts with most of the tested RLPs, but not with the RLKs FLS2, SERK1, SERK3a, BAK1, and CLV1. SOBIR1/EVR is required for stability of the Cf-4 and Ve1 receptors, supporting our observation that these RLPs are present in a complex with SOBIR1/EVR in planta. We show that SOBIR1/EVR is essential for RLP-mediated immunity and propose that the protein functions as a regulatory RLK of this type of cell-surface receptors.

  20. Microbial host interactions and impaired wound healing in mice and humans: defining a role for BD14 and NOD2.

    PubMed

    Williams, Helen; Campbell, Laura; Crompton, Rachel A; Singh, Gurdeep; McHugh, Brian J; Davidson, Donald J; McBain, Andrew J; Cruickshank, Sheena M; Hardman, Matthew J

    2018-04-30

    Chronic wounds cause significant patient morbidity and mortality. A key factor in their etiology is microbial infection, yet skin host-microbiota interactions during wound repair remain poorly understood. Microbiome profiles of non-infected human chronic wounds are associated with subsequent healing outcome. Furthermore, poor clinical healing outcome was associated with increased local expression of the pattern recognition receptor NOD2. To investigate NOD2 function in the context of cutaneous healing, we treated mice with the NOD2 ligand muramyl dipeptide (MDP) and analyzed wound repair parameters and expression of anti-microbial peptides. MDP treatment of littermate controls significantly delayed wound repair associated with reduced re-epithelialization, heightened inflammation and upregulation of murine β-Defensins (mBD) 1, 3 and particularly 14. We postulated that although BD14 might impact on local skin microbial communities it may further impact other healing parameters. Indeed, exogenously administered mBD14 directly delayed mouse primary keratinocyte scratch wound closure in vitro. To further explore the role of mBD14 in wound repair, we employed Defb14 -/- mice, and showed they had a global delay in healing in vivo, associated with alterations in wound microbiota. Taken together these studies suggest a key role for NOD2-mediated regulation of local skin microbiota which in turn impacts on chronic wound etiology. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Age-dependent divergent effects of OX40L treatment on the development of diabetes in NOD mice

    PubMed Central

    Haddad, Christine S.; Bhattacharya, Palash; Alharshawi, Khaled; Marinelarena, Alejandra; Kumar, Prabhakaran; El-Sayed, Osama; Elshabrawy, Hatem A.; Epstein, Alan L.; Prabhakar, Bellur S.

    2016-01-01

    Earlier, we have shown that GM-CSF derived bone marrow dendritic cells (G-BMDCs) can expand Foxp3+ regulatory T-cells (Tregs) through a TCR-independent, but IL-2 dependent mechanism that required OX40L/OX40 interaction. While some reports have shown suppression of autoimmunity upon treatment with an OX40 agonist, others have shown exacerbation of autoimmune disease instead. To better understand the basis for these differing outcomes, we compared the effects of OX40L treatment in 6-week-old pre-diabetic and 12-week-old near diabetic NOD mice. Upon treatment with OX40L, 6-week-old NOD mice remained normoglycemic and showed a significant increase in Tregs in their spleen and lymph nodes, while 12-week-old NOD mice very rapidly developed hyperglycemia and failed to show Treg increase in spleen or LN. Interestingly, OX40L treatment increased Tregs in the thymus of both age groups. However, it induced Foxp3+CD103+CD38− stable-phenotype Tregs in the thymus and reduced the frequency of autoreactive Teff cells in 6-week-old mice; while it induced Foxp3+CD103−CD38+ labile-phenotype Tregs in the thymus and increased autoreactive CD4+ T cells in the periphery of 12-week-old mice. This increase in autoreactive CD4+ T cells was likely due to either a poor suppressive function or conversion of labile Tregs into Teff cells. Using ex vivo cultures, we found that the reduction in Treg numbers in 12-week-old mice was likely due to IL-2 deficit, and their numbers could be increased upon addition of exogenous IL-2. The observed divergent effects of OX40L treatment were likely due to differences in the ability of 6- and 12-week-old NOD mice to produce IL-2. PMID:27245356

  2. CP-25 Alleviates Experimental Sjögren's Syndrome Features in NOD/Ltj Mice and Modulates T Lymphocyte Subsets.

    PubMed

    Gu, Fang; Xu, Shixia; Zhang, Pengying; Chen, Xiaoyun; Wu, Yujing; Wang, Chun; Gao, Mei; Si, Min; Wang, Xinming; Heinrich, Korner; Wu, Huaxun; Wei, Wei

    2018-04-17

    Primary Sjögren's syndrome (pSS) is a chronic inflammatory autoimmune illness of the moisture-producing glands such as salivary glands that is characterized by various immune abnormalities. The aetiology of pSS remains unclear and there is no curative agent. In this study, we investigated the putative therapeutic effects on a NOD/Ltj mouse model of Sjögren's syndrome-like disorders of an ester derivative of paeoniflorin, paeoniflorin-6'O-benzene (termed CP-25). Our study showed that CP-25 alleviated effectively clinical manifestations in NOD/Ltj mice resulting, for example, in increased salivary flow and reduced histopathological scores. Furthermore, CP-25 decreased lymphocyte viability in NOD/Ltj mice and attenuated the infiltration of Th1 cells and Th2 cells into the salivary glands of NOD/Ltj mice. In the spleen on NOD/Ltj mice, CP-25 skewed the ratio of Th17 and regulatory T cells towards regulatory T cells. After treatment, concentrations of anti-La/SSB and IgG antibodies were reduced and the titre of the inflammatory cytokines IFN-γ, IL-4, IL-6 and IL-17A in the serum on NOD/Ltj mice was alleviated. Thus, we define CP-25 as a novel compound that is a potent therapeutic agent for pSS by modulating T lymphocyte subsets. Future studies will validate the use of CP-25 as a therapeutic strategy for the treatment of pSS. © 2018 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  3. Comparative expression profile of NOD1/2 and certain acute inflammatory cytokines in thermal-stressed cell culture model of native and crossbred cattle

    NASA Astrophysics Data System (ADS)

    Bhanuprakash, V.; Singh, Umesh; Sengar, Gyanendra Singh; Raja, T. V.; Sajjanar, Basavraj; Alex, Rani; Kumar, Sushil; Alyethodi, R. R.; Kumar, Ashish; Sharma, Ankur; Kumar, Suresh; Bhusan, Bharat; Deb, Rajib

    2017-05-01

    Thermotolerance depends mainly on the health and immune status of the animals. The variation in the immune status of the animals may alter the level of tolerance of animals exposed to heat or cold stress. The present study was conducted to investigate the expression profile of two important nucleotide binding and oligomerization domain receptors (NLRs) (NOD1 and NOD2) and their central signalling molecule RIP2 gene during in vitro thermal-stressed bovine peripheral blood mononuclear cells (PBMCs) of native (Sahiwal) and crossbred (Sahiwal X HF) cattle. We also examined the differential expression profile of certain acute inflammatory cytokines in in vitro thermal-stressed PBMC culture among native and its crossbred counterparts. Results revealed that the expression profile of NOD1/2 positively correlates with the thermal stress, signalling molecule and cytokines. Present findings also highlighted that the expression patterns during thermal stress were comparatively superior among indigenous compared to crossbred cattle which may add references regarding the better immune adaptability of Zebu cattle.

  4. The Nucleotide Synthesis Enzyme CAD Inhibits NOD2 Antibacterial Function in Human Intestinal Epithelial Cells

    PubMed Central

    Richmond, Amy L.; Kabi, Amrita; Homer, Craig R.; García, Noemí Marina; Nickerson, Kourtney P.; NesvizhskiI, Alexey I.; Sreekumar, Arun; Chinnaiyan, Arul M.; Nuñez, Gabriel; McDonald, Christine

    2013-01-01

    BACKGROUND & AIMS Polymorphisms that reduce the function of nucleotide-binding oligomerization domain (NOD)2, a bacterial sensor, have been associated with Crohn’s disease (CD). No proteins that regulate NOD2 activity have been identified as selective pharmacologic targets. We sought to discover regulators of NOD2 that might be pharmacologic targets for CD therapies. METHODS Carbamoyl phosphate synthetase/ aspartate transcarbamylase/dihydroorotase (CAD) is an enzyme required for de novo pyrimidine nucleotide synthesis; it was identified as a NOD2-interacting protein by immunoprecipitation-coupled mass spectrometry. CAD expression was assessed in colon tissues from individuals with and without inflammatory bowel disease by immunohistochemistry. The interaction between CAD and NOD2 was assessed in human HCT116 intestinal epithelial cells by immunoprecipitation, immunoblot, reporter gene, and gentamicin protection assays. We also analyzed human cell lines that express variants of NOD2 and the effects of RNA interference, overexpression and CAD inhibitors. RESULTS CAD was identified as a NOD2-interacting protein expressed at increased levels in the intestinal epithelium of patients with CD compared with controls. Overexpression of CAD inhibited NOD2-dependent activation of nuclear factor κB and p38 mitogen-activated protein kinase, as well as intracellular killing of Salmonella. Reduction of CAD expression or administration of CAD inhibitors increased NOD2-dependent signaling and antibacterial functions of NOD2 variants that are and are not associated with CD. CONCLUSIONS The nucleotide synthesis enzyme CAD is a negative regulator of NOD2. The antibacterial function of NOD2 variants that have been associated with CD increased in response to pharmacologic inhibition of CAD. CAD is a potential therapeutic target for CD. PMID:22387394

  5. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda.

    PubMed

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus ( OV ). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus . Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis , some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with ( OV infection (using positive skin snips), we observe that ( OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda.

  6. Nodding syndrome (NS) and Onchocerca Volvulus (OV) in Northern Uganda

    PubMed Central

    Lagoro, David Kitara; Arony, Denis Anywar

    2017-01-01

    Nodding Syndrome (NS) is a childhood neurological disorder characterized by atonic seizures, cognitive decline, school dropout, muscle weakness, thermal dysfunction, wasting and stunted growth. There are recent published information suggesting associations between Nodding Syndrome (NS) with cerebrospinal fluid (CSF) VGKC antibodies and serum leiomidin-1 antibody cross reacting with Onchocerca Volvulus (OV). These findings suggest a neuro-inflammatory cause of NS and they are important findings in the search for the cause of Nodding Syndrome. These observations perhaps provide further, the unique explanation for the association between Nodding Syndrome and Onchocerca Volvulus. Many clinical and epidemiological studies had shown a significant correlation between NS and infestation with a nematode, Onchocerca volvulus which causes a disease, Onchocerciasis, some of which when left untreated can develop visual defect ("River Blindness"). While these studies conducted in Northern Uganda and Southern Sudan indicate a statistically significant association with (OV infection (using positive skin snips), we observe that (OV is generally endemic in many parts of Sub Saharan Africa and Latin America and that to date, no NS cases have been recorded in those regions. This letter to the Editor is to provide additional information on the current view about the relationship between Nodding Syndrome and Onchocerca Volvulus as seen in Northern Uganda. PMID:29138647

  7. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival.

    PubMed

    Cruickshank, Sheena-M; Wakenshaw, Louise; Cardone, John; Howdle, Peter-D; Murray, Peter-J; Carding, Simon-R

    2008-10-14

    To investigate the function of NOD2 in colonic epithelial cells (CEC). A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2(-/-) mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation.

  8. Evidence for the involvement of NOD2 in regulating colonic epithelial cell growth and survival

    PubMed Central

    Cruickshank, Sheena M; Wakenshaw, Louise; Cardone, John; Howdle, Peter D; Murray, Peter J; Carding, Simon R

    2008-01-01

    AIM: To investigate the function of NOD2 in colonic epithelial cells (CEC). METHODS: A combination of in vivo and in vitro analyses of epithelial cell turnover in the presence and absence of a functional NOD2 protein and, in response to enteric Salmonella typhimurium infection, were used. shRNA interference was also used to investigate the consequences of knocking down NOD2 gene expression on the growth and survival of colorectal carcinoma cell lines. RESULTS: In the colonic mucosa the highest levels of NOD2 expression were in proliferating crypt epithelial cells. Muramyl dipeptide (MDP), that is recognized by NOD2, promoted CEC growth in vitro. By contrast, the growth of NOD2-deficient CECs was impaired. In vivo CEC proliferation was also reduced and apoptosis increased in Nod2-/- mice, which were also evident following enteric Salmonella infection. Furthermore, neutralization of NOD2 mRNA expression in human colonic carcinoma cells by shRNA interference resulted in decreased survival due to increased levels of apoptosis. CONCLUSION: These findings are consistent with the involvement of NOD2 protein in promoting CEC growth and survival. Defects in proliferation by CECs in cases of CD may contribute to the underlying pathology of disrupted intestinal homeostasis and excessive inflammation. PMID:18855982

  9. Circulatory and Renal Consequences of Pregnancy in Diabetic NOD Mice

    PubMed Central

    Burke, S.D.; Barrette, V.F.; David, S.; Khankin, E. V.; Adams, M.A.; Croy, B.A.

    2011-01-01

    Objectives Women with diabetes have elevated gestational risks for severe hemodynamic complications, including preeclampsia in mid- to late pregnancy. This study employed continuous, chronic radiotelemetry to compare the hemodynamic patterns in non-obese diabetic (NOD) mice who were overtly diabetic or normoglycemic throughout gestation. We hypothesized that overtly diabetic, pregnant NOD mice would develop gestational hypertension and provide understanding of mechanisms in progression of this pathology. Study Design Telemeter-implanted, age-matched NOD females with and without diabetes were assessed for six hemodynamic parameters (mean, systolic, diastolic, pulse pressures, heart rate and activity) prior to mating, over pregnancy and over a 72 hr post-partum interval. Urinalysis, serum biochemistry and renal histopathology were also conducted. Results Pregnant, normoglycemic NOD mice had a hemodynamic profile similar to other inbred strains, despite insulitis. This pattern was characterized by an interval of pre-implantation stability, post implantation decline in arterial pressure to mid gestation, and then a rebound to pre-pregnancy baseline during later gestation. Overtly diabetic NOD mice had a blood pressure profile that was normal until mid-gestation then become mildly hypotensive (−7mmHg, P<0.05), severely bradycardic (−80bpm, P<0.01) and showed signs of acute kidney injury. Pups born to diabetic dams were viable but growth restricted, despite their mothers’ failing health, which did not rebound post-partum (−10% pre-pregnancy pressure and HR, P<0.05). Conclusions Pregnancy accelerates circulatory and renal pathologies in overtly diabetic NOD mice and is characterized by depressed arterial pressure from mid-gestation and birth of growth 45 restricted offspring. PMID:22014504

  10. Four Genes of Medicago truncatula Controlling Components of a Nod Factor Transduction Pathway

    PubMed Central

    Catoira, Romy; Galera, Christine; de Billy, Francoise; Penmetsa, R. Varma; Journet, Etienne-Pascal; Maillet, Fabienne; Rosenberg, Charles; Cook, Douglas; Gough, Clare; Dénarié, Jean

    2000-01-01

    Rhizobium nodulation (Nod) factors are lipo-chitooligosaccharides that act as symbiotic signals, eliciting several key developmental responses in the roots of legume hosts. Using nodulation-defective mutants of Medicago truncatula, we have started to dissect the genetic control of Nod factor transduction. Mutants in four genes (DMI1, DMI2, DMI3, and NSP) were pleiotropically affected in Nod factor responses, indicating that these genes are required for a Nod factor–activated signal transduction pathway that leads to symbiotic responses such as root hair deformations, expressions of nodulin genes, and cortical cell divisions. Mutant analysis also provides evidence that Nod factors have a dual effect on the growth of root hair: inhibition of endogenous (plant) tip growth, and elicitation of a novel tip growth dependent on (bacterial) Nod factors. dmi1, dmi2, and dmi3 mutants are also unable to establish a symbiotic association with endomycorrhizal fungi, indicating that there are at least three common steps to nodulation and endomycorrhization in M. truncatula and providing further evidence for a common signaling pathway between nodulation and mycorrhization. PMID:11006338

  11. NOD1 contributes to mouse host defense against Helicobacter pylori via induction of type I IFN and activation of the ISGF3 signaling pathway

    PubMed Central

    Watanabe, Tomohiro; Asano, Naoki; Fichtner-Feigl, Stefan; Gorelick, Peter L.; Tsuji, Yoshihisa; Matsumoto, Yuko; Chiba, Tsutomu; Fuss, Ivan J.; Kitani, Atsushi; Strober, Warren

    2010-01-01

    Nucleotide-binding oligomerization domain 1 (NOD1) is an intracellular epithelial cell protein known to play a role in host defense at mucosal surfaces. Here we show that a ligand specific for NOD1, a peptide derived from peptidoglycan, initiates an unexpected signaling pathway in human epithelial cell lines that results in the production of type I IFN. Detailed analysis revealed the components of the signaling pathway. NOD1 binding to its ligand triggered activation of the serine-threonine kinase RICK, which was then able to bind TNF receptor–associated factor 3 (TRAF3). This in turn led to activation of TANK-binding kinase 1 (TBK1) and IκB kinase ε (IKKε) and the subsequent activation of IFN regulatory factor 7 (IRF7). IRF7 induced IFN-β production, which led to activation of a heterotrimeric transcription factor complex known as IFN-stimulated gene factor 3 (ISGF3) and the subsequent production of CXCL10 and additional type I IFN. In vivo studies showed that mice lacking the receptor for IFN-β or subjected to gene silencing of the ISGF3 component Stat1 exhibited decreased CXCL10 responses and increased susceptibility to Helicobacter pylori infection, phenotypes observed in NOD1-deficient mice. These studies thus establish that NOD1 can activate the ISGF3 signaling pathway that is usually associated with protection against viral infection to provide mice with robust type I IFN–mediated protection from H. pylori and possibly other mucosal infections. PMID:20389019

  12. The Pathogenesis of Obesity-Associated Adipose Tissue Inflammation.

    PubMed

    Engin, Atilla

    2017-01-01

    Obesity is characterized by a state of chronic, low-grade inflammation. However, excessive fatty acid release may worsen adipose tissue inflammation and contributes to insulin resistance. In this case, several novel and highly active molecules are released abundantly by adipocytes like leptin, resistin, adiponectin or visfatin, as well as some more classical cytokines. Most likely cytokines that are released by inflammatory cells infiltrating obese adipose tissue are such as tumor necrosis factor-alpha (TNF-alpha), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2) and IL-1. All of those molecules may act on immune cells leading to local and generalized inflammation. In this process, toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, the unfolded protein response (UPR) due to endoplasmic reticulum (ER) stress through hyperactivation of c-Jun N-terminal Kinase (JNK) -Activator Protein 1 (AP1) and inhibitor of nuclear factor kappa-B kinase beta (IKKbeta)-nuclear factor kappa B (NF-kappaB) pathways play an important role, and may also affect vascular endothelial function by modulating vascular nitric oxide and superoxide release. Additionally, systemic oxidative stress, macrophage recruitment, increase in the expression of NOD-like receptor (NLR) family protein (NLRP3) inflammasone and adipocyte death are predominant determinants in the pathogenesis of obesity-associated adipose tissue inflammation. In this chapter potential involvement of these factors that contribute to the adverse effects of obesity are reviewed.

  13. Muramyl dipeptide (MDP) induces reactive oxygen species (ROS) generation via the NOD2/COX-2/NOX4 signaling pathway in human umbilical vein endothelial cells (HUVECs).

    PubMed

    Kong, Ling-Jun; Liu, Xiao-Qian; Xue, Ying; Gao, Wei; Lv, Qian-Zhou

    2018-03-20

    Vascular endothelium dysfunction caused by oxidative stress accelerates the pathologic process of cardiovascular diseases. NOD2, an essential receptor of innate immune system, has been demonstrated to play a critical role in atherosclerosis. Here, the aim of our study was to investigate the effect and underlying molecular mechanism of muramyl dipeptide (MDP) on NOX4-mediated ROS generation in human umbilical vein endothelial cells (HUVECs). 2,7-dichlorofluorescein diacetate staining was to measure the intracellular ROS level and showed MDP promoted ROS production in a time- and dose-dependent manner. The mRNA and protein levels of NOX4 and COX-2 were detected by real-time PCR and western blot. Small interfering RNA (siRNA) was used to silence NOD2 or COX-2 gene expression and investigate the mechanism of NOD2-mediated signaling pathway in HUVECs. Data showed that MDP induced NOX4 and COX-2 expression in a time- and dose-dependent manner. NOD2 knock-down suppressed up-regulation of COX-2 and NOX4 in HUVECs treated with MDP. Furthermore, silence of COX-2 in HUVECs down-regulated the NOX4 expression after MDP stimulation. Collectively, we indicated that NOD2 played a leading role in MDP-induced COX-2/NOX4/ROS signaling pathway in HUVECs, which was a novel regulatory mechanism in the progress of ROS generation.

  14. Daintain/AIF-1 (Allograft Inflammatory Factor-1) accelerates type 1 diabetes in NOD mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Yan-Ying, E-mail: biozyy@163.com; Huang, Xin-Yuan; Chen, Zheng-Wang

    Highlights: Black-Right-Pointing-Pointer Daintain/AIF-1 is over-expressed in the blood of NOD mice suffering from insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 stimulates white blood cell proliferation in NOD mice. Black-Right-Pointing-Pointer Daintain/AIF-1 increases blood glucose levels and triggers type 1 diabetes. Black-Right-Pointing-Pointer Daintain/AIF-1 accelerates insulitis, while its antibody prevents insulitis. Black-Right-Pointing-Pointer Daintain/AIF-1 enhances the levels of nitric oxide in the pancreases of NOD mice. -- Abstract: A large body of experimental evidence suggests that cytokines trigger pancreatic {beta}-cell death in type 1 diabetes mellitus. Daintain/AIF-1 (Allograft Inflammatory Factor-1), a specific marker for activated macrophages, is accumulated in the pancreatic islets of pre-diabetic BB rats. In themore » present study, we demonstrate that daintain/AIF-1 is released into blood and the levels of daintain/AIF-1 in the blood of type 1 diabetes-prone non-obese diabetic (NOD) mice suffering from insulitis are significantly higher than that in healthy NOD mice. When injected intravenously into NOD mice, daintain/AIF-1 stimulates white blood cell proliferation, increases the concentrations of blood glucose, impairs insulin expression, up-regulates nitric oxide (NO) production in pancreases and accelerates diabetes in NOD mice, while the antibody against daintain/AIF-1 delays or prevents insulitis in NOD mice. These results imply daintain/AIF-1 triggers type 1 diabetes probably via arousing immune cells activation and induction of NO production in pancreas of NOD mice.« less

  15. Bradyrhizobium japonicum mutants with enhanced sensitivity to genistein resulting in altered nod gene regulation.

    PubMed

    Ip, H; D'Aoust, F; Begum, A A; Zhang, H; Smith, D L; Driscoll, B T; Charles, T C

    2001-12-01

    Bradyrhizobium japonicum mutants with altered nod gene induction characteristics were isolated by screening mutants for genistein-independent nod gene expression. Plasmid pZB32, carrying a nodY::lacZ transcriptional gene fusion, was introduced into B. japonicum cells that had been subjected to UV mutagenesis. Ten independent transformants producing a blue color on plates containing 5bromo-4chloro-3indolyl-beta-D-galactopyranoside but lacking genistein, indicative of constitutive expression of the nodY::lacZ reporter gene, were isolated. Beta-galactosidase activity assays revealed that while all of the 10 strains were sensitive to low concentrations of genistein, none exhibited truly constitutive nodY::lacZ expression in liquid culture. Soybean plants inoculated with three of the mutants were chlorotic and stunted, with shoot dry weights close to those of the uninoculated plants, indicating the absence of nitrogen fixation. Differences in the kinetics of nodY::lacZ expression and lipochitin oligosaccharide Nod signal production suggested that the strains carried different mutations. Some of these strains may be useful in mitigating the low root zone temperature-associated delay in soybean nodulation at the northern extent of soybean cultivation.

  16. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rouge, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical {alpha}-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution ofmore » electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH{sub 4}{sup +}) and gas (NH{sub 3}) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.« less

  17. A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants.

    PubMed

    Rougé, Pierre; Barre, Annick

    2008-02-29

    The three-dimensional models built for the Nod26-like aquaporins all exhibit the typical alpha-helical fold of other aquaporins containing the two ar/R and NPA constriction filters along the central water channel. Besides these structural homologies, they readily differ with respect to the amino acid residues forming the ar/R selective filter. According to these discrepancies in both the hydrophilicity and pore size of the ar/R filter, Nod26-like aquaporins can be distributed in three subgroups corresponding to NIP-1, NIP-II and a third subgroup of Nod26-like aquaporins exhibiting a highly hydrophilic and widely open filter. However, all Nod26-like aquaporins display a bipartite distribution of electrostatic charges along the water channel with an electropositive extracellular vestibular portion followed by an electronegative cytosolic vestibular portion. The specific transport of water, non-ionic solutes (glycerol, urea, ammoniac), ions (NH4+) and gas (NH(3)) across the Nod26-like obviously depends on the electrostatic and conformational properties of their central water channel.

  18. Impact of clinical parameters and systemic inflammatory status on epidermal growth factor receptor-mutant non-small cell lung cancer patients readministration with epidermal growth factor receptor tyrosine kinase inhibitors.

    PubMed

    Chen, Yu-Mu; Lai, Chien-Hao; Rau, Kun-Ming; Huang, Cheng-Hua; Chang, Huang-Chih; Chao, Tung-Ying; Tseng, Chia-Cheng; Fang, Wen-Feng; Chung, Yu-Hsiu; Wang, Yi-Hsi; Su, Mao-Chang; Huang, Kuo-Tung; Liu, Shih-Feng; Chen, Hung-Chen; Chang, Ya-Chun; Chang, Yu-Ping; Wang, Chin-Chou; Lin, Meng-Chih

    2016-11-08

    Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) readministration to lung cancer patients is common owing to the few options available. Impact of clinical factors on prognosis of EGFR-mutant non-small cell lung cancer (NSCLC) patients receiving EGFR-TKI readministration after first-line EGFR-TKI failure and a period of TKI holiday remains unclear. Through this retrospective study, we aimed to understand the impact of clinical factors in such patients. Of 1386 cases diagnosed between December 2010 and December 2013, 80 EGFR-mutant NSCLC patients who were readministered TKIs after failure of first-line TKIs and intercalated with at least one cycle of cytotoxic agent were included. We evaluated clinical factors that may influence prognosis of TKI readministration as well as systemic inflammatory status in terms of neutrophil-to-lymphocyte ratio (NLR) and lymphocyte-to-monocyte ratio (LMR). Baseline NLR and LMR were estimated at the beginning of TKI readministration and trends of NLR and LMR were change amount from patients receiving first-Line TKIs to TKIs readministration. Median survival time since TKI readministration was 7.0 months. In the univariable analysis, progression free survival (PFS) of first-line TKIs, baseline NLR and LMR, and trend of LMR were prognostic factors in patients receiving TKIs readministration. In the multivariate analysis, only PFS of first-line TKIs (p < 0.001), baseline NLR (p = 0.037), and trend of LMR (p = 0.004) were prognostic factors. Longer PFS of first-line TKIs, low baseline NLR, and high trend of LMR were good prognostic factors in EGFR-mutant NSCLC patients receiving TKI readministration.

  19. Viral immune surveillance: Toward a TH17/TH9 gate to the central nervous system.

    PubMed

    Barkhordarian, Andre; Thames, April D; Du, Angela M; Jan, Allison L; Nahcivan, Melissa; Nguyen, Mia T; Sama, Nateli; Chiappelli, Francesco

    2015-01-01

    virus, EBOV - Ebola virus, ESCRT - endosomal sorting complex required for transport-I, HepC - Hepatitis C virus, HIV - human immunodeficiency virus, IFN - interferon, ILn - interleukin-n, IRF-n - interferon regulatory factor-n, MAVS - mitochondrial antiviral-signaling, MBGV - Marburg virus, M-CSF - macrophage colony-stimulating factor, MCP-1 - monocyte chemotactic protein 1 (aka CCL2), MHC - major histocompatibility complex, MIP-α β - macrophage inflammatory protein-1 α β (aka CCL3 & CCL4), MIF - macrophage migration inhibitory factor, NVE - Nipah virus encephalitis, NK - natural killer cell, NLR - NLR, NOD - like receptor, NOD - nucleotide oligomerization domain, PAMP - pathogen-associated molecular patterns, PtdIns - phosphoinositides, PV - Poliovirus, RIG-I - retinoic acid-inducible gene I, RIP - Receptor-interacting protein (RIP) kinase, RLR - RIG-I-like receptor, sICAM1 - soluble intracellular adhesion molecule 1, STAT-3 - signal tranducer and activator of transcription-3, sVCAM1 - soluble vascular cell adhesion molecule 1, TANK - TRAF family member-associated NF- . B activator, TBK1 - TANK-binding kinase 1, TLR - Toll-like receptor, TNF - tumor necrosis factor, TNFR - TNF receptor, TNFRSF21 - tumor necrosis factor receptor superfamily member 21, TRADD TNFR-SF1A - associated via death domain, TRAF TNFR - associated factor, Tregs - regulatory T cellsubpopulation (CD4/8+CD25+FoxP3+), VHF - viral hemorrhagic fever.

  20. The pea Sym37 receptor kinase gene controls infection-thread initiation and nodule development.

    PubMed

    Zhukov, Vladimir; Radutoiu, Simona; Madsen, Lene H; Rychagova, Tamara; Ovchinnikova, Evgenia; Borisov, Alex; Tikhonovich, Igor; Stougaard, Jens

    2008-12-01

    Phenotypic characterization of pea symbiotic mutants has provided a detailed description of the symbiosis with Rhizobium leguminosarum bv. viciae strains. We show here that two allelic non-nodulating pea mutants, RisNod4 and K24, are affected in the PsSym37 gene, encoding a LysM receptor kinase similar to Lotus japonicus NFR1 and Medicago truncatula LYK3. Phenotypic analysis of RisNod4 and K24 suggests a role for the SYM37 in regulation of infection-thread initiation and nodule development from cortical-cell division foci. We show that RisNod4 plants carrying an L to F substitution in the LysM1 domain display a restrictive symbiotic phenotype comparable to the PsSym2(A) lines that distinguish 'European' and 'Middle East' Rhizobium leguminosarum bv. viciae strains. RisNod4 mutants develop nodules only in the presence of a 'Middle East' Rhizobium strain producing O-acetylated Nod factors indicating the SYM37 involvement in Nod-factor recognition. Along with the PsSym37, a homologous LysM receptor kinase gene, PsK1, was isolated and characterized. We show that PsK1 and PsSym37 are genetically linked to each other and to the PsSym2 locus. Allelic complementation analyses and sequencing of the extracellular regions of PsSym37 and PsK1 in several 'European' and 'Afghan' pea cultivars point towards PsK1 as possible candidate for the elusive PsSym2 gene.

  1. Calcitonin and calcitonin receptor-like receptors: common themes with family B GPCRs?

    PubMed

    Barwell, James; Gingell, Joseph J; Watkins, Harriet A; Archbold, Julia K; Poyner, David R; Hay, Debbie L

    2012-05-01

    The calcitonin receptor (CTR) and calcitonin receptor-like receptor (CLR) are two of the 15 human family B (or Secretin-like) GPCRs. CTR and CLR are of considerable biological interest as their pharmacology is moulded by interactions with receptor activity-modifying proteins. They also have therapeutic relevance for many conditions, such as osteoporosis, diabetes, obesity, lymphatic insufficiency, migraine and cardiovascular disease. In light of recent advances in understanding ligand docking and receptor activation in both the family as a whole and in CLR and CTR specifically, this review reflects how applicable general family B GPCR themes are to these two idiosyncratic receptors. We review the main functional domains of the receptors; the N-terminal extracellular domain, the juxtamembrane domain and ligand interface, the transmembrane domain and the intracellular C-terminal domain. Structural and functional findings from the CLR and CTR along with other family B GPCRs are critically appraised to gain insight into how these domains may function. The ability for CTR and CLR to interact with receptor activity-modifying proteins adds another level of sophistication to these receptor systems but means careful consideration is needed when trying to apply generic GPCR principles. This review encapsulates current thinking in the realm of family B GPCR research by highlighting both conflicting and recurring themes and how such findings relate to two unusual but important receptors, CTR and CLR. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  2. Diabetes Associated Metabolomic Perturbations in NOD Mice

    PubMed Central

    Hwang, Jessica; Poudel, Ananta; Jo, Junghyo; Periwal, Vipul; Fiehn, Oliver; Hara, Manami

    2014-01-01

    Non-obese diabetic (NOD) mice are a widely-used model oftype1 diabetes (T1D). However, not all animals develop overt diabetes. This study examined the circulating metabolomic profiles of NOD mice progressing or not progressing to T1D. Total beta-cell mass was quantified in the intact pancreas using transgenic NOD mice expressinggreen fluorescent protein under the control of mouse insulin I promoter.While both progressor and non-progressor animals displayed lymphocyte infiltration and endoplasmic reticulum stress in the pancreas tissue;overt T1D did not develop until animals lost ~70% of the total beta-cell mass.Gas chromatography time of flight mass spectrometry (GC-TOF) was used to measure >470 circulating metabolites in male and female progressor and non-progressor animals (n=76) across a wide range of ages (neonates to >40-wk).Statistical and multivariate analyses were used to identify age and sex independent metabolic markers which best differentiated progressor and non-progressor animals’ metabolic profiles. Key T1D-associated perturbations were related with: (1) increased plasma glucose and reduced 1,5-anhydroglucitol markers of glycemic control; (2) increased allantoin, gluconic acid and nitric oxide-derived saccharic acid markers of oxidative stress; (3) reduced lysine, an insulin secretagogue; (4) increased branched-chain amino acids, isoleucine and valine; (5) reduced unsaturated fatty acids including arachidonic acid; and (6)perturbations in urea cycle intermediates suggesting increased arginine-dependent NO synthesis. Together these findings highlight the strength of the unique approach of comparing progressor and non-progressor NOD mice to identify metabolic perturbations involved in T1D progression. PMID:25755629

  3. The NOD2 Single Nucleotide Polymorphism rs72796353 (IVS4+10 A>C) Is a Predictor for Perianal Fistulas in Patients with Crohn's Disease in the Absence of Other NOD2 Mutations.

    PubMed

    Schnitzler, Fabian; Friedrich, Matthias; Wolf, Christiane; Stallhofer, Johannes; Angelberger, Marianne; Diegelmann, Julia; Olszak, Torsten; Tillack, Cornelia; Beigel, Florian; Göke, Burkhard; Glas, Jürgen; Lohse, Peter; Brand, Stephan

    2015-01-01

    A previous study suggested an association of the single nucleotide polymorphism (SNP) rs72796353 (IVS4+10 A>C) in the NOD2 gene with susceptibility to Crohn's disease (CD). However, this finding has not been confirmed. Given that NOD2 variants still represent the most important predictors for CD susceptibility and phenotype, we evaluated the association of rs72796353 with inflammatory bowel disease (IBD) susceptibility and the IBD phenotype. Genomic DNA from 2256 Caucasians, including 1073 CD patients, 464 patients with ulcerative colitis (UC), and 719 healthy controls, was genotyped for the NOD2 SNP rs72796353 and the three main CD-associated NOD2 mutations rs2066844, rs2066845, and rs2066847. Subsequently, IBD association and genotype-phenotype analyses were conducted. In contrast to the strong associations of the NOD2 SNPs rs2066844 (p=3.51 x 10(-3)), rs2066845 (p=1.54 x 10(-2)), and rs2066847 (p=1.61 x 10(-20)) with CD susceptibility, no significant association of rs72796353 with CD or UC susceptibility was found. However, in CD patients without the three main CD-associated NOD2 mutations, rs72796353 was significantly associated with the development of perianal fistulas (p=2.78 x 10(-7), OR 5.27, [95% CI 2.75-10.12] vs. NOD2 wild-type carriers). Currently, this study represents the largest genotype-phenotype analysis of the impact of the NOD2 variant rs72796353 on the disease phenotype in IBD. Our data demonstrate that in CD patients the IVS4+10 A>C variant is strongly associated with the development of perianal fistulas. This association is particularly pronounced in patients who are not carriers of the three main CD-associated NOD2 mutations, suggesting rs72796353 as additional genetic marker for the CD disease behaviour.

  4. Nucleotide-binding oligomerization domain containing 1 (NOD1) haplotypes and single nucleotide polymorphisms modify susceptibility to inflammatory bowel diseases in a New Zealand caucasian population: a case-control study

    PubMed Central

    Huebner, Claudia; Ferguson, Lynnette R; Han, Dug Yeo; Philpott, Martin; Barclay, Murray L; Gearry, Richard B; McCulloch, Alan; Demmers, Pieter S; Browning, Brian L

    2009-01-01

    Background The nucleotide-binding oligomerization domain containing 1 (NOD1) gene encodes a pattern recognition receptor that senses pathogens, leading to downstream responses characteristic of innate immunity. We investigated the role of NOD1 single nucleotide polymorphisms (SNPs) on IBD risk in a New Zealand Caucasian population, and studied Nod1 expression in response to bacterial invasion in the Caco2 cell line. Findings DNA samples from 388 Crohn's disease (CD), 405 ulcerative colitis (UC), 27 indeterminate colitis patients and 201 randomly selected controls, from Canterbury, New Zealand were screened for 3 common SNPs in NOD1, using the MassARRAY® iPLEX Gold assay. Transcriptional activation of the protein produced by NOD1 (Nod1) was studied after infection of Caco2 cells with Escherichia coli LF82. Carrying the rs2075818 G allele decreased the risk of CD (OR = 0.66, 95% CI = 0.50–0.88, p < 0.002) but not UC. There was an increased frequency of the three SNP (rs2075818, rs2075822, rs2907748) haplotype, CTG (p = 0.004) and a decreased frequency of the GTG haplotype (p = 0.02).in CD. The rs2075822 CT or TT genotypes were at an increased frequency (genotype p value = 0.02), while the rs2907748 AA or AG genotypes showed decreased frequencies in UC (p = 0.04), but not in CD. Functional assays showed that Nod1 is produced 6 hours after bacterial invasion of the Caco2 cell line. Conclusion The NOD1 gene is important in signalling invasion of colonic cells by pathogenic bacteria, indicative of its' key role in innate immunity. Carrying specific SNPs in this gene significantly modifies the risk of CD and/or UC in a New Zealand Caucasian population. PMID:19327158

  5. Symbiotic activity of pea (Pisum sativum) after application of Nod factors under field conditions.

    PubMed

    Siczek, Anna; Lipiec, Jerzy; Wielbo, Jerzy; Kidaj, Dominika; Szarlip, Paweł

    2014-04-29

    Growth and symbiotic activity of legumes are mediated by Nod factors (LCO, lipo-chitooligosaccharides). To assess the effects of application of Nod factors on symbiotic activity and yield of pea, a two-year field experiment was conducted on a Haplic Luvisol developed from loess. Nod factors were isolated from Rhizobium leguminosarum bv. viciae strain GR09. Pea seeds were treated with the Nod factors (10⁻¹¹ M) or water (control) before planting. Symbiotic activity was evaluated by measurements of nitrogenase activity (acetylene reduction assay), nodule number and mass, and top growth by shoot mass, leaf area, and seed and protein yield. Nod factors generally improved pea yield and nitrogenase activity in the relatively dry growing season 2012, but not in the wet growing season in 2013 due to different weather conditions.

  6. The importance of the Non Obese Diabetic (NOD) mouse model in autoimmune diabetes

    PubMed Central

    Pearson, James A; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 Diabetes (T1D) is an autoimmune disease characterized by the pancreatic infiltration of immune cells resulting in T cell-mediated destruction of the insulin-producing beta cells. The successes of the Non Obese Diabetic (NOD) mouse model have come in multiple forms including identifying key genetic and environmental risk factors e.g. Idd loci and effects of microorganisms including the gut microbiota, respectively, and how they may contribute to disease susceptibility and pathogenesis. Furthermore, the NOD model also provides insights into the roles of the innate immune cells as well as the B cells in contributing to the T cell-mediated disease. Unlike many autoimmune disease models, the NOD mouse develops spontaneous disease and has many similarities to human T1D. Through exploiting these similarities many targets have been identified for immune-intervention strategies. Although many of these immunotherapies did not have a significant impact on human T1D, they have been shown to be effective in the NOD mouse in early stage disease, which is not equivalent to trials in newly-diagnosed patients with diabetes. However, the continued development of humanized NOD mice would enable further clinical developments, bringing T1D research to a new translational level. Therefore, it is the aim of this review to discuss the importance of the NOD model in identifying the roles of the innate immune system and the interaction with the gut microbiota in modifying diabetes susceptibility. In addition, the role of the B cells will also be discussed with new insights gained through B cell depletion experiments and the impact on translational developments. Finally, this review will also discuss the future of the NOD mice and the development of humanized NOD mice, providing novel insights into human T1D. PMID:26403950

  7. Inflammatory Cell signaling following Exposures to Particulate Matter and Ozone

    EPA Science Inventory

    This review mainly focuses on major inflammatory cell signaling pathways triggered byexposure to PM and 03. The receptors covered in this review include the EGF receptor, toll like receptor,and NOD-like receptor. Intracellular signaling protein kinases depicted in this review are...

  8. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice.

    PubMed

    Homs, Judit; Ariza, Lorena; Pagès, Gemma; Verdú, Enrique; Casals, Laura; Udina, Esther; Chillón, Miguel; Bosch, Assumpció; Navarro, Xavier

    2011-09-01

    The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice. © 2011 Peripheral Nerve Society.

  9. A Novel Clinically Relevant Strategy to Abrogate Autoimmunity and Regulate Alloimmunity in NOD Mice

    PubMed Central

    Vergani, Andrea; D'Addio, Francesca; Jurewicz, Mollie; Petrelli, Alessandra; Watanabe, Toshihiko; Liu, Kaifeng; Law, Kenneth; Schuetz, Christian; Carvello, Michele; Orsenigo, Elena; Deng, Shaoping; Rodig, Scott J.; Ansari, Javeed M.; Staudacher, Carlo; Abdi, Reza; Williams, John; Markmann, James; Atkinson, Mark; Sayegh, Mohamed H.; Fiorina, Paolo

    2010-01-01

    OBJECTIVE To investigate a new clinically relevant immunoregulatory strategy based on treatment with murine Thymoglobulin mATG Genzyme and CTLA4-Ig in NOD mice to prevent allo- and autoimmune activation using a stringent model of islet transplantation and diabetes reversal. RESEARCH DESIGN AND METHODS Using allogeneic islet transplantation models as well as NOD mice with recent onset type 1 diabetes, we addressed the therapeutic efficacy and immunomodulatory mechanisms associated with a new immunoregulatory protocol based on prolonged low-dose mATG plus CTLA4-Ig. RESULTS BALB/c islets transplanted into hyperglycemic NOD mice under prolonged mATG+CTLA4-Ig treatment showed a pronounced delay in allograft rejection compared with untreated mice (mean survival time: 54 vs. 8 days, P < 0.0001). Immunologic analysis of mice receiving transplants revealed a complete abrogation of autoimmune responses and severe downregulation of alloimmunity in response to treatment. The striking effect on autoimmunity was confirmed by 100% diabetes reversal in newly hyperglycemic NOD mice and 100% indefinite survival of syngeneic islet transplantation (NOD.SCID into NOD mice). CONCLUSIONS The capacity to regulate alloimmunity and to abrogate the autoimmune response in NOD mice in different settings confirmed that prolonged mATG+CTLA4-Ig treatment is a clinically relevant strategy to translate to humans with type 1 diabetes. PMID:20805386

  10. Type 1 diabetes in NOD mice unaffected by mast cell deficiency.

    PubMed

    Gutierrez, Dario A; Fu, Wenxian; Schonefeldt, Susann; Feyerabend, Thorsten B; Ortiz-Lopez, Adriana; Lampi, Yulia; Liston, Adrian; Mathis, Diane; Rodewald, Hans-Reimer

    2014-11-01

    Mast cells have been invoked as important players in immune responses associated with autoimmune diseases. Based on in vitro studies, or in vivo through the use of Kit mutant mice, mast cells have been suggested to play immunological roles in direct antigen presentation to both CD4(+) and CD8(+) T cells, in the regulation of T-cell and dendritic cell migration to lymph nodes, and in Th1 versus Th2 polarization, all of which could significantly impact the immune response against self-antigens in autoimmune disease, including type 1 diabetes (T1D). Until now, the role of mast cells in the onset and incidence of T1D has only been indirectly tested through the use of low-specificity mast cell inhibitors and activators, and published studies reported contrasting results. Our three laboratories have generated independently two strains of mast cell-deficient nonobese diabetic (NOD) mice, NOD.Cpa3(Cre/+) (Heidelberg) and NOD.Kit(W-sh/W-sh) (Leuven and Boston), to address the effects of mast cell deficiency on the development of T1D in the NOD strain. Our collective data demonstrate that both incidence and progression of T1D in NOD mice are independent of mast cells. Moreover, analysis of pancreatic lymph node cells indicated that lack of mast cells has no discernible effect on the autoimmune response, which involves both innate and adaptive immune components. Our results demonstrate that mast cells are not involved in T1D in the NOD strain, making their role in this process nonessential and excluding them as potential therapeutic targets. © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  11. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration

    PubMed Central

    Sidenius, Ulrik; Heegaard, Niels H.

    2016-01-01

    Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes. PMID:27795959

  12. Allelic Variation of Ets1 Does Not Contribute to NK and NKT Cell Deficiencies in Type 1 Diabetes Susceptible NOD Mice

    PubMed Central

    Jordan, Margaret A.; Poulton, Lynn D.; Fletcher, Julie M.; Baxter, Alan G.

    2009-01-01

    The NOD mouse is a well characterized model of type 1 diabetes that shares several of the characteristics of Ets1-deficient targeted mutant mice, viz: defects in TCR allelic exclusion, susceptibility to a lupus like disease characterized by IgM and IgG autoantibodies and immune complex-mediated glomerulonephritis, and deficiencies of NK and NKT cells. Here, we sought evidence for allelic variation of Ets1 in mice contributing to the NK and NKT cell phenotypes of the NOD strain. ETS1 expression in NK and NKT cells was reduced in NOD mice, compared to C57BL/6 mice. Although NKT cells numbers were significantly correlated with ETS1 expression in both strains, NKT cell numbers were not linked to the Ets1 gene in a first backcross from NOD to C57BL/6 mice. These results indicate that allelic variation of Ets1 did not contribute to variation in NKT cell numbers in these mice. It remains possible that a third factor not linked to the Ets1 locus controls both ETS1 expression and subsequently NK and NKT cell phenotypes. PMID:19806240

  13. Nakalanga Syndrome: Clinical Characteristics, Potential Causes, and Its Relationship with Recently Described Nodding Syndrome

    PubMed Central

    Föger, Kathrin; Gora-Stahlberg, Gina; Sejvar, James; Ovuga, Emilio; Jilek-Aall, Louise; Schmutzhard, Erich

    2017-01-01

    Nakalanga syndrome is a condition that was described in Uganda and various other African countries decades ago. Its features include growth retardation, physical deformities, endocrine dysfunction, mental impairment, and epilepsy, amongst others. Its cause remains obscure. Nodding syndrome is a neurological disorder with some features in common with Nakalanga syndrome, which has been described mainly in Uganda, South Sudan, and Tanzania. It has been considered an encephalopathy affecting children who, besides head nodding attacks, can also present with stunted growth, delayed puberty, and mental impairment, amongst other symptoms. Despite active research over the last years on the pathogenesis of Nodding syndrome, to date, no convincing single cause of Nodding syndrome has been reported. In this review, by means of a thorough literature search, we compare features of both disorders. We conclude that Nakalanga and Nodding syndromes are closely related and may represent the same condition. Our findings may provide new directions in research on the cause underlying this neurological disorder. PMID:28182652

  14. Toll-like receptor-2 deficiency induces schizophrenia-like behaviors in mice

    PubMed Central

    Park, Se Jin; Lee, Jee Youn; Kim, Sang Jeong; Choi, Se-Young; Yune, Tae Young; Ryu, Jong Hoon

    2015-01-01

    Dysregulation of the immune system contributes to the pathogenesis of neuropsychiatric disorders including schizophrenia. Here, we demonstrated that toll-like receptor (TLR)-2, a family of pattern-recognition receptors, is involved in the pathogenesis of schizophrenia-like symptoms. Psychotic symptoms such as hyperlocomotion, anxiolytic-like behaviors, prepulse inhibition deficits, social withdrawal, and cognitive impairments were observed in TLR-2 knock-out (KO) mice. Ventricle enlargement, a hallmark of schizophrenia, was also observed in TLR-2 KO mouse brains. Levels of p-Akt and p-GSK-3α/β were markedly higher in the brain of TLR-2 KO than wild-type (WT) mice. Antipsychotic drugs such as haloperidol or clozapine reversed behavioral and biochemical alterations in TLR-2 KO mice. Furthermore, p-Akt and p-GSK-3α/β were decreased by treatment with a TLR-2 ligand, lipoteichoic acid, in WT mice. Thus, our data suggest that the dysregulation of the innate immune system by a TLR-2 deficiency may contribute to the development and/or pathophysiology of schizophrenia-like behaviors via Akt-GSK-3α/β signaling. PMID:25687169

  15. Noddings's caring ethics theory applied in a paediatric setting.

    PubMed

    Lundqvist, Anita; Nilstun, Tore

    2009-04-01

    Since the 1990s, numerous studies on the relationship between parents and their children have been reported on in the literature and implemented as a philosophy of care in most paediatric units. The purpose of this article is to understand the process of nurses' care for children in a paediatric setting by using Noddings's caring ethics theory. Noddings's theory is in part described from a theoretical perspective outlining the basic idea of the theory followed by a critique of her work. Important conceptions in her theory are natural caring (reception, relation, engrossment, motivational displacement, reciprocity) and ethical caring (physical self, ethical self, and ethical ideal). As a nurse one holds a duty of care to patients and, in exercising this duty, the nurse must be able to develop a relationship with the patient including giving the patient total authenticity in a 'feeling with' the patient. Noddings's theory is analysed and described in three examples from the paediatrics. In the first example, the nurse cared for the patient in natural caring while in the second situation, the nurse strived for the ethical caring of the patient. In the third example, the nurse rejected the impulse to care and deliberately turned her back to ethics and abandoned her ethical caring. According to the Noddings's theory, caring for the patient enables the nurse to obtain ethical insights from the specific type of nursing care which forms an important contribution to an overall increase of an ethical consciousness in the nurse.

  16. Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells through the Toll-like receptor 4/nuclear factor-κB pathway.

    PubMed

    Jiang, Ninghong; Xie, Feng; Guo, Qisang; Li, Ming-Qing; Xiao, Jingjing; Sui, Long

    2017-06-01

    Toll-like receptor 4 is overexpressed in various tumors, including cervical carcinoma. However, the role of Toll-like receptor 4 in cervical cancer remains controversial, and the underlying mechanisms are largely elusive. Therefore, Toll-like receptor 4 in cervical cancer and related mechanisms were investigated in this study. Quantitative reverse transcription polymerase chain reaction and western blot analyses were used to detect messenger RNA and protein levels in HeLa, Caski, and C33A cells with different treatments. Proliferation was quantified using Cell Counting Kit-8. Cell cycle distribution and apoptosis were assessed by flow cytometry. Higher levels of Toll-like receptor 4 expression were found in human papillomavirus-positive cells compared to human papillomavirus-negative cells. Proliferation of HeLa and Caski cells was promoted in lipopolysaccharide-stimulated groups but suppressed in short hairpin RNA-transfected groups. Apoptosis rates were lower in lipopolysaccharide-stimulated groups relative to short hairpin RNA-transfected groups. In addition, G2-phase distribution was enhanced when Toll-like receptor 4 was downregulated. Moreover, the pNF-κBp65 level was positively correlated with the Toll-like receptor 4 level in HeLa and Caski cells, though when an nuclear factor-κB inhibitor was applied to lipopolysaccharide-stimulated groups, the patterns of proliferation and apoptosis were opposite to those of the lipopolysaccharide-stimulated groups without inhibitor treatment. In conclusion, these data suggest that Toll-like receptor 4 promotes proliferation and apoptosis resistance in human papillomavirus-related cervical cancer cells at least in part through the Toll-like receptor 4/nuclear factor-κB pathway, which may be correlated with the occurrence and development of cervical carcinoma.

  17. Plant recognition of Bradyrhizobium japonicum nod factors. Final report, September 15, 1992--March 14, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stacey, G.

    1998-01-01

    This grant had three objectives: (1) isolate and identify the unique nod factor metabolites made by different wild-type B. japonicum strains; (2) investigate the biological activity of these unique nod factors, especially as it relates to host range; and (3) initiate studies to define the mechanism of plant recognition of the nod factors. This report summarizes the results of this research.

  18. Innate immune recognition and inflammation in Neisseria meningitidis infection.

    PubMed

    Johswich, Kay

    2017-03-01

    Neisseria meningitidis (Nme) can cause meningitis and sepsis, diseases which are characterised by an overwhelming inflammatory response. Inflammation is triggered by host pattern recognition receptors (PRRs) which are activated by pathogen-associated molecular patterns (PAMPs). Nme contains multiple PAMPs including lipooligosaccharide, peptidoglycan, proteins and metabolites. Various classes of PRRs including Toll-like receptors, NOD-like receptors, C-type lectins, scavenger receptors, pentraxins and others are expressed by the host to respond to any given microbe. While Toll-like receptors and NOD-like receptors are pivotal in triggering inflammation, other PRRs act as modulators of inflammation or aid in functional antimicrobial responses such as phagocytosis or complement activation. This review aims to give an overview of the various Nme PAMPs reported to date, the PRRs they activate and their implications during the inflammatory response to infection. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. ITCH directly K63-ubiquitinates the NOD2 binding protein, RIP2, to influence inflammatory signaling pathways

    PubMed Central

    Tao, MingFang; Scacheri, Peter C.; Marinis, Jill M.; Harhaj, Edward W.; Matesic, Lydia E.; Abbott, Derek W.

    2009-01-01

    Background: The inability to coordinate the signaling pathways that lead to proper cytokine responses characterizes the pathogenesis of inflammatory diseases such as Crohn's Disease. The Crohn's Disease susceptibility protein, NOD2, helps coordinate cytokine responses upon intracellular exposure to bacteria, and this signal coordination by NOD2 is accomplished, in part, through K63-linked polyubiquitin chains that create binding surfaces for the scaffolding of signaling complexes. Results: In this work, we show that the NOD2 signaling partner, RIP2, is directly K63 polyubiquitinated by ITCH, an E3 ubiquitin ligase which when lost genetically, causes widespread inflammatory disease at mucosal surfaces. We show that ITCH is responsible for RIP2 polyubiquitination in response to infection with listeria monocytogenes. We further show that NOD2 can bind polyubiquitinated RIP2, and while ITCH E3 ligase activity is required for optimal NOD2:RIP2-induced p38 and JNK activation, ITCH inhibits NOD2:RIP2-induced NFκB activation. This effect can be seen independently at the whole genome level by microarray analysis of MDP-treated Itch−/− primary macrophages. Conclusions: These findings suggest that ITCH helps regulate NOD2-dependent signal transduction pathways and as such, may be involved in the pathogenesis of NOD2-mediated inflammatory disease. PMID:19592251

  20. NOD2/CARD15 mutations and the risk of reoperation in patients with Crohns disease.

    PubMed

    Martínek, L; Kupka, T; Simova, J; Klvaňa, P; Bojková, M; Uvírová, M; Dítě, P; Dvorackova, J; Hoch, J; Zonca, P

    2015-06-01

    Three NOD2/CARD15 gene variants (3020insC, R702W, G908R) have been identified as genetic risk factors for Crohns disease patients. However the diagnostic and therapeutic relevance for clinical practice remains limited. The aim of this study was to evaluate the association between these variants, the risk of reoperation and disease phenotype. In 76 Crohns disease patients (41 female, 35 male) with a minimum 5 year follow-up, three polymorphisms of the NOD2/CARD15 gene (R702W, G908R, 3020insC) were tested. Detailed clinical and medical history including surgical procedures and reoperations were obtained by reviewing the medical charts and completed prospectively. Association between the need for reoperation, disease phenotypes and gene variants were analyzed. 24 patients (32%) showed at least one NOD2/CARD15 mutation. 25 patients (33%) required reoperation, 51 (67%) represented the control group. The expected trend that patients with NOD2/CARD15 variants have a higher frequency of reoperations was not confirmed to a level of statistical significance (p=0.2688). Two of the four patients (50%) with the 3020insC variant required further surgery. We did not confirm any association between NOD2/CARD15 mutations and age at diagnosis (p=0.4356), behavior (p=0.6610), or localization (p=0.4747) according to the Montreal classification. NOD2/CARD15 polymorphisms did not significantly affect the reoperation rate. Homozygosity for the 3020insC variant in the NOD2/CARD15 gene is associated with a high risk of reoperation. NOD2/CARD15 gene variants are not significantly associated with specific disease phenotypes.

  1. Cytosolic activation of cell death and stem rust resistance by cereal MLA-family CC-NLR proteins.

    PubMed

    Cesari, Stella; Moore, John; Chen, Chunhong; Webb, Daryl; Periyannan, Sambasivam; Mago, Rohit; Bernoux, Maud; Lagudah, Evans S; Dodds, Peter N

    2016-09-06

    Plants possess intracellular immune receptors designated "nucleotide-binding domain and leucine-rich repeat" (NLR) proteins that translate pathogen-specific recognition into disease-resistance signaling. The wheat immune receptors Sr33 and Sr50 belong to the class of coiled-coil (CC) NLRs. They confer resistance against a broad spectrum of field isolates of Puccinia graminis f. sp. tritici, including the Ug99 lineage, and are homologs of the barley powdery mildew-resistance protein MLA10. Here, we show that, similarly to MLA10, the Sr33 and Sr50 CC domains are sufficient to induce cell death in Nicotiana benthamiana Autoactive CC domains and full-length Sr33 and Sr50 proteins self-associate in planta In contrast, truncated CC domains equivalent in size to an MLA10 fragment for which a crystal structure was previously determined fail to induce cell death and do not self-associate. Mutations in the truncated region also abolish self-association and cell-death signaling. Analysis of Sr33 and Sr50 CC domains fused to YFP and either nuclear localization or nuclear export signals in N benthamiana showed that cell-death induction occurs in the cytosol. In stable transgenic wheat plants, full-length Sr33 proteins targeted to the cytosol provided rust resistance, whereas nuclear-targeted Sr33 was not functional. These data are consistent with CC-mediated induction of both cell-death signaling and stem rust resistance in the cytosolic compartment, whereas previous research had suggested that MLA10-mediated cell-death and disease resistance signaling occur independently, in the cytosol and nucleus, respectively.

  2. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice

    PubMed Central

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-01-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4+ T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4+ T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation. PMID:27686408

  3. Impact of T-cell-specific Smad4 deficiency on the development of autoimmune diabetes in NOD mice.

    PubMed

    Kim, Donghee; Lee, Song Mi; Jun, Hee-Sook

    2017-03-01

    Type 1 diabetes results from autoimmune-mediated pancreatic beta-cell destruction and transforming growth factor-beta (TGF-β) is known to play a preventive role in type 1 diabetes in non-obese diabetic (NOD) mice. In this study, we investigated the role of Smad4, a key molecule for Smad-dependent TGF-β signaling, in T cells of NOD mice in the pathogenesis of autoimmune diabetes. We generated T-cell-specific Smad4 knockout (Smad4 tKO) NOD mice and assessed the pathological and immunological changes. Smad4 tKO showed earlier onset and increased incidence of diabetes than wild type (WT) NOD mice. Pathological features such as insulitis, anti-glutamic acid decarboxylase auto-antibody levels and serum IFN-γ levels were significantly increased in Smad4 tKO compared with WT NOD mice. Proportion and number of activated/memory CD4 + T cell were significantly increased in pancreatic lymph nodes of Smad4 tKO compared with WT NOD mice. However, the proportion and function of regulatory T cells was not different. Effector CD4 + T cells from Smad4 tKO were more resistant to suppression by regulatory T cells than effector cells from WT NOD mice. The proliferative potential of effector T cells from Smad4 tKO was significantly elevated compared with WT NOD mice, and activation of sterol regulatory element binding protein-1c (SREBP-1c) in T cells of Smad4 tKO NOD mice was correlated with this proliferative activity. We conclude that Smad4 deletion in T cells of NOD mice accelerated the development of autoimmune diabetes and increased the incidence of the disease by dysregulation of T cell activation at least in part via SREBP-1c activation.

  4. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement

    PubMed Central

    Landis, Jesa L; Palmer, Valerie S; Spencer, Peter S

    2014-01-01

    Objectives To test for any temporal association of Nodding syndrome with wartime conflict, casualties and household displacement in Kitgum District, northern Uganda. Methods Data were obtained from publicly available information reported by the Ugandan Ministry of Health (MOH), the Armed Conflict Location & Event Data (ACLED) Project of the University of Sussex in the UK, peer-reviewed publications in professional journals and other sources. Results Reports of Nodding syndrome began to appear in 1997, with the first recorded cases in Kitgum District in 1998. Cases rapidly increased annually beginning in 2001, with peaks in 2003–2005 and 2008, 5–6 years after peaks in the number of wartime conflicts and deaths. Additionally, peaks of Nodding syndrome cases followed peak influxes 5–7 years earlier of households into internal displacement camps. Conclusions Peaks of Nodding syndrome reported by the MOH are associated with, but temporally displaced from, peaks of wartime conflicts, deaths and household internment, where infectious disease was rampant and food insecurity rife. PMID:25371417

  5. Targeting Anti-Insulin B Cell Receptors Improves Receptor Editing in Type 1 Diabetes-Prone Mice1, 2, 3

    PubMed Central

    Bonami, Rachel H.; Thomas, James W.

    2015-01-01

    Autoreactive B lymphocytes that commonly arise in the developing repertoire can be salvaged by receptor editing, a central tolerance mechanism that alters BCR specificity through continued L chain rearrangement. It is unknown whether autoantigens with weak cross-linking potential, such as insulin, elicit receptor editing, or if this process is dysregulated in related autoimmunity. To resolve these issues, an editing-competent model was developed in which anti-insulin Vκ125 was targeted to the Igκ locus and paired with anti-insulin VH125Tg. Physiologic, circulating insulin increased RAG-2 expression and was associated with BCR replacement that eliminated autoantigen recognition in a proportion of developing anti-insulin B lymphocytes. The proportion of anti-insulin B cells that underwent receptor editing was reduced in the type 1 diabetes-prone NOD strain relative to a non-autoimmune strain. Resistance to editing was associated with increased surface IgM expression on immature (but not transitional or mature) anti-insulin B cells in the NOD strain. The actions of mAb123 on central tolerance were also investigated, as selective targeting of insulin-occupied BCR by mAb123 eliminates anti-insulin B lymphocytes and prevents type 1 diabetes. Autoantigen-targeting by mAb123 increased RAG-2 expression and dramatically enhanced BCR replacement in newly developed B lymphocytes. Administering F(ab’)2123 induced IgM downregulation and reduced the frequency of anti-insulin B lymphocytes within the polyclonal repertoire of VH125Tg/NOD mice, suggesting enhanced central tolerance by direct BCR interaction. These findings indicate that weak or faulty checkpoints for central tolerance can be overcome by autoantigen-specific immunomodulatory therapy. PMID:26432895

  6. PUFA diets alter the microRNA expression profiles in an inflammation rat model

    PubMed Central

    ZHENG, ZHENG; GE, YINLIN; ZHANG, JINYU; XUE, MEILAN; LI, QUAN; LIN, DONGLIANG; MA, WENHUI

    2015-01-01

    Omega-3 and -6 polyunsaturated fatty acids (PUFAs) can directly or indirectly regulate immune homeostasis via inflammatory pathways, and components of these pathways are crucial targets of microRNAs (miRNAs). However, no study has examined the changes in the miRNA transcriptome during PUFA-regulated inflammatory processes. Here, we established PUFA diet-induced autoimmune-prone (AP) and autoimmune-averse (AA) rat models, and studied their physical characteristics and immune status. Additionally, miRNA expression patterns in the rat models were compared using microarray assays and bioinformatic methods. A total of 54 miRNAs were differentially expressed in common between the AP and the AA rats, and the changes in rno-miR-19b-3p, -146b-5p and -183-5p expression were validated using stem-loop reverse transcription-quantitative polymerase chain reaction. To better understand the mechanisms underlying PUFA-regulated miRNA changes during inflammation, computational algorithms and biological databases were used to identify the target genes of the three validated miRNAs. Furthermore, Gene Ontology (GO) term annotation and KEGG pathway analyses of the miRNA targets further allowed to explore the potential implication of the miRNAs in inflammatory pathways. The predicted PUFA-regulated inflammatory pathways included the Toll-like receptor (TLR), T cell receptor (TCR), NOD-like receptor (NLR), RIG-I-like receptor (RLR), mitogen-activated protein kinase (MAPK) and the transforming growth factor-β (TGF-β) pathway. This study is the first report, to the best of our knowledge, on in vivo comparative profiling of miRNA transcriptomes in PUFA diet-induced inflammatory rat models using a microarray approach. The results provide a useful resource for future investigation of the role of PUFA-regulated miRNAs in immune homeostasis. PMID:25672643

  7. Sodium meta-arsenite prevents the development of autoimmune diabetes in NOD mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Y.S.; Kim, D.; Lee, E.K.

    Sodium meta-arsenite (SA) is an orally available arsenic compound. We investigated the effects of SA on the development of autoimmune type 1 diabetes. Female non-obese diabetic (NOD) mice were orally intubated with SA (5 mg/kg/day) from 8 weeks of age for 8 weeks. The cumulative incidence of diabetes was monitored until 30 weeks of age, islet histology was examined, and lymphocytes including T cells, B cells, CD4+ IFN-γ+ cells, CD8+ IFN-γ+ cells, CD4+ IL-4+ cells, and regulatory T cells were analyzed. We also investigated the diabetogenic ability of splenocytes using an adoptive transfer model and the effect of SA onmore » the proliferation, activation, and expression of glucose transporter 1 (Glut1) in splenocytes treated with SA in vitro and splenocytes isolated from SA-treated mice. SA treatment decreased the incidence of diabetes and delayed disease onset. SA treatment reduced the infiltration of immunocytes in islets, and splenocytes from SA-treated mice showed a reduced ability to transfer diabetes. The number of total splenocytes and T cells and both the number and the proportion of CD4+ IFN-γ+ and CD8+ IFN-γ+ T cells in the spleen were significantly reduced in SA-treated NOD mice compared with controls. The number, but not the proportion, of regulatory T cells was decreased in SA-treated NOD mice. Treatment with SA either in vitro or in vivo inhibited proliferation of splenocytes. In addition, the expression of Glut1 and phosphorylated ERK1/2 was decreased by SA treatment. These results suggest that SA reduces proliferation and activation of T cells, thus preventing autoimmune diabetes in NOD mice. - Highlights: • SA prevents the development of diabetes and delays the age of onset in NOD mice. • SA decreases the number but not the proportion of T lymphocytes in NOD mice. • SA reduces IFN-γ-producing T lymphocytes in NOD mice. • SA reduces proliferation and activation of T lymphocytes in vitro and in vivo. • SA reduces the expression of

  8. Congenital Head Nodding and Nystagmus with Cerebrocerebellar Degeneration

    ERIC Educational Resources Information Center

    Kalyanaraman, K.; And Others

    1973-01-01

    Reported are three case histories of children with congenital head nodding and nystagmus (rhytmic oscillation of the eyeballs) associated with brain degeneration and motor and mental retardation. (DB)

  9. Association of Nucleotide-binding Oligomerization Domain Receptors with Peptic Ulcer and Gastric Cancer.

    PubMed

    Mohammadian Amiri, Rajeeh; Tehrani, Mohsen; Taghizadeh, Shirin; Shokri-Shirvani, Javad; Fakheri, Hafez; Ajami, Abolghasem

    2016-10-01

    Host innate immunity can affect the clinical outcomes of Helicobacter pylori infection, including gastritis, gastric ulcer, gastric adenocarcinoma, and MALT lymphoma. Nucleotide binding oligomerization domain (NOD)-1 and -2 are two molecules of innate immunity which are involved in the host defense against H. pylori. This study aimed to evaluate the effect of the expression level of NOD1 and NOD2 on the susceptibility to gastric cancer as well as peptic ulcer in individuals with H. pylori infection. The gene expression levels of these molecules were compared in three groups of non-ulcer dyspepsia (NUD) as a control group (n=52); peptic ulcer disease (PUD), (n=53); and gastric cancer (GC), (n=39). Relative expression levels of NOD1 in patients with GC were higher than those of NUD and PUD (p<0.001 and P<0.001, respectively). Similarly in case of NOD1, PUD group showed higher level of expression than NUD group (p<0.01). However, there was no significant difference between H. pylori -positive and -negative patients in NUD, PUD, or GC groups. Moreover, the expression levels of NOD2 showed no significant difference among NUD, PUD, or GC groups, while among H. pylori-positive patients, it was higher in GC group than NUD  and PUD groups (p<0.05 and p<0.01, respectively). In addition, positive correlation coefficients were attained between NOD1 and NOD2 expressions in patients with NUD (R2 Linear=0.349, p<0.001), PUD (R2 Linear=0.695, p<0.001), and GC (R2 Linear=0.385, p<0.001). Collectively, the results suggest that the chronic activation of NOD1 and NOD2 receptors might play a role in the development of gastric cancer.

  10. The CCK(-like) receptor in the animal kingdom: functions, evolution and structures.

    PubMed

    Staljanssens, Dorien; Azari, Elnaz Karimian; Christiaens, Olivier; Beaufays, Jérôme; Lins, Laurence; Van Camp, John; Smagghe, Guy

    2011-03-01

    In this review, the cholecystokinin (CCK)(-like) receptors throughout the animal kingdom are compared on the level of physiological functions, evolutionary basis and molecular structure. In vertebrates, the CCK receptor is an important member of the G-protein coupled receptors as it is involved in the regulation of many physiological functions like satiety, gastrointestinal motility, gastric acid secretion, gall bladder contraction, pancreatic secretion, panic, anxiety and memory and learning processes. A homolog for this receptor is also found in nematodes and arthropods, called CK receptor and sulfakinin (SK) receptor, respectively. These receptors seem to have evolved from a common ancestor which is probably still closely related to the nematode CK receptor. The SK receptor is more closely related to the CCK receptor and seems to have similar functions. A molecular 3D-model for the CCK receptor type 1 has been built together with the docking of the natural ligands for the CCK and SK receptors in the CCK receptor type 1. These molecular models can help to study ligand-receptor interactions, that can in turn be useful in the development of new CCK(-like) receptor agonists and antagonists with beneficial health effects in humans or potential for pest control. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Involvement of sigma-1 receptors in the antidepressant-like effects of dextromethorphan.

    PubMed

    Nguyen, Linda; Robson, Matthew J; Healy, Jason R; Scandinaro, Anna L; Matsumoto, Rae R

    2014-01-01

    Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [(3)H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors.

  12. Concurrent Host-Pathogen Transcriptional Responses in a Clostridium perfringens Murine Myonecrosis Infection

    PubMed Central

    2018-01-01

    ABSTRACT To obtain an insight into host-pathogen interactions in clostridial myonecrosis, we carried out comparative transcriptome analysis of both the bacterium and the host in a murine Clostridium perfringens infection model, which is the first time that such an investigation has been conducted. Analysis of the host transcriptome from infected muscle tissues indicated that many genes were upregulated compared to the results seen with mock-infected mice. These genes were enriched for host defense pathways, including Toll-like receptor (TLR) and Nod-like receptor (NLR) signaling components. Real-time PCR confirmed that host TLR2 and NLRP3 inflammasome genes were induced in response to C. perfringens infection. Comparison of the transcriptome of C. perfringens cells from the infected tissues with that from broth cultures showed that host selective pressure induced a global change in C. perfringens gene expression. A total of 33% (923) of C. perfringens genes were differentially regulated, including 10 potential virulence genes that were upregulated relative to their expression in vitro. These genes encoded putative proteins that may be involved in the synthesis of cell wall-associated macromolecules, in adhesion to host cells, or in protection from host cationic antimicrobial peptides. This report presents the first successful expression profiling of coregulated transcriptomes of bacterial and host genes during a clostridial myonecrosis infection and provides new insights into disease pathogenesis and host-pathogen interactions. PMID:29588405

  13. B-Lymphocytes Expressing an Ig Specificity Recognizing the Pancreatic β-Cell Autoantigen Peripherin Are Potent Contributors to Type 1 Diabetes Development in NOD Mice

    PubMed Central

    Leeth, Caroline M.; Racine, Jeremy; Chapman, Harold D.; Arpa, Berta; Carrillo, Jorge; Carrascal, Jorge; Wang, Qiming; Ratiu, Jeremy; Egia-Mendikute, Leire; Rosell-Mases, Estela; Stratmann, Thomas

    2016-01-01

    Although the autoimmune destruction of pancreatic β-cells underlying type 1 diabetes (T1D) development is ultimately mediated by T cells in NOD mice and also likely in humans, B cells play an additional key pathogenic role. It appears that the expression of plasma membrane–bound Ig molecules that efficiently capture β-cell antigens allows autoreactive B cells that bypass normal tolerance induction processes to be the subset of antigen-presenting cells most efficiently activating diabetogenic T cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or are not (hen egg lysozyme [HEL]) expressed by β-cells have proven useful in dissecting the developmental basis of diabetogenic B cells. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B cells in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin-autoreactive B cells infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach. PMID:26961115

  14. Estrogen Receptors Modulation of Anxiety-Like Behavior

    PubMed Central

    Borrow, A.P.; Handa, R.J.

    2018-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens’ effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic–pituitary–adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. PMID:28061972

  15. Ixodes scapularis saliva mitigates inflammatory cytokine secretion during Anaplasma phagocytophilum stimulation of immune cells

    PubMed Central

    2012-01-01

    Background Ixodes scapularis saliva enables the transmission of infectious agents to the mammalian host due to its immunomodulatory, anesthetic and anti-coagulant properties. However, how I. scapularis saliva influences host cytokine secretion in the presence of the obligate intracellular rickettsial pathogen Anaplasma phagocytophilum remains elusive. Methods Bone marrow derived macrophages (BMDMs) were stimulated with pathogen associated molecular patterns (PAMPs) and A. phagocytophilum. Cytokine secretion was measured in the presence and absence of I. scapularis saliva. Human peripheral blood mononuclear cells (PBMCs) were also stimulated with Tumor Necrosis Factor (TNF)-α in the presence and absence of I. scapularis saliva and interleukin (IL)-8 was measured. Results I. scapularis saliva inhibits inflammatory cytokine secretion by macrophages during stimulation of Toll-like (TLR) and Nod-like receptor (NLR) signaling pathways. The effect of I. scapularis saliva on immune cells is not restricted to murine macrophages because decreasing levels of interleukin (IL)-8 were observed after TNF-α stimulation of human peripheral blood mononuclear cells. I. scapularis saliva also mitigates pro-inflammatory cytokine response by murine macrophages during challenge with A. phagocytophilum. Conclusions These findings suggest that I. scapularis may inhibit inflammatory cytokine secretion during rickettsial transmission at the vector-host interface. PMID:23050849

  16. Involvement of Sigma-1 Receptors in the Antidepressant-like Effects of Dextromethorphan

    PubMed Central

    Nguyen, Linda; Robson, Matthew J.; Healy, Jason R.; Scandinaro, Anna L.; Matsumoto, Rae R.

    2014-01-01

    Dextromethorphan is an antitussive with a high margin of safety that has been hypothesized to display rapid-acting antidepressant activity based on pharmacodynamic similarities to the N-methyl-D-aspartate (NMDA) receptor antagonist ketamine. In addition to binding to NMDA receptors, dextromethorphan binds to sigma-1 (σ1) receptors, which are believed to be protein targets for a potential new class of antidepressant medications. The purpose of this study was to determine whether dextromethorphan elicits antidepressant-like effects and the involvement of σ1 receptors in mediating its antidepressant-like actions. The antidepressant-like effects of dextromethorphan were assessed in male, Swiss Webster mice using the forced swim test. Next, σ1 receptor antagonists (BD1063 and BD1047) were evaluated in conjunction with dextromethorphan to determine the involvement of σ receptors in its antidepressant-like effects. Quinidine, a cytochrome P450 (CYP) 2D6 inhibitor, was also evaluated in conjunction with dextromethorphan to increase the bioavailability of dextromethorphan and reduce exposure to additional metabolites. Finally, saturation binding assays were performed to assess the manner in which dextromethorphan interacts at the σ1 receptor. Our results revealed dextromethorphan displays antidepressant-like effects in the forced swim test that can be attenuated by pretreatment with σ1 receptor antagonists, with BD1063 causing a shift to the right in the dextromethorphan dose response curve. Concomitant administration of quinidine potentiated the antidepressant-like effects of dextromethorphan. Saturation binding assays revealed that a Ki concentration of dextromethorphan reduces both the Kd and the Bmax of [3H](+)-pentazocine binding to σ1 receptors. Taken together, these data suggest that dextromethorphan exerts some of its antidepressant actions through σ1 receptors. PMID:24587167

  17. Nodding syndrome in Kitgum District, Uganda: association with conflict and internal displacement.

    PubMed

    Landis, Jesa L; Palmer, Valerie S; Spencer, Peter S

    2014-11-04

    To test for any temporal association of Nodding syndrome with wartime conflict, casualties and household displacement in Kitgum District, northern Uganda. Data were obtained from publicly available information reported by the Ugandan Ministry of Health (MOH), the Armed Conflict Location & Event Data (ACLED) Project of the University of Sussex in the UK, peer-reviewed publications in professional journals and other sources. Reports of Nodding syndrome began to appear in 1997, with the first recorded cases in Kitgum District in 1998. Cases rapidly increased annually beginning in 2001, with peaks in 2003-2005 and 2008, 5-6 years after peaks in the number of wartime conflicts and deaths. Additionally, peaks of Nodding syndrome cases followed peak influxes 5-7 years earlier of households into internal displacement camps. Peaks of Nodding syndrome reported by the MOH are associated with, but temporally displaced from, peaks of wartime conflicts, deaths and household internment, where infectious disease was rampant and food insecurity rife. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Nonobese Diabetic (NOD) Mice Congenic for a Targeted Deletion of 12/15-Lipoxygenase Are Protected From Autoimmune Diabetes

    PubMed Central

    McDuffie, Marcia; Maybee, Nelly A.; Keller, Susanna R.; Stevens, Brian K.; Garmey, James C.; Morris, Margaret A.; Kropf, Elizabeth; Rival, Claudia; Ma, Kaiwen; Carter, Jeffrey D.; Tersey, Sarah A.; Nunemaker, Craig S.; Nadler, Jerry L.

    2010-01-01

    OBJECTIVE 12/15-lipoxygenase (12/15-LO), one of a family of fatty acid oxidoreductase enzymes, reacts with polyenoic fatty acids to produce proinflammatory lipids. 12/15-LO is expressed in macrophages and pancreatic β-cells. It enhances interleukin 12 production by macrophages, and several of its products induce apoptosis of β-cells at nanomolar concentrations in vitro. We had previously demonstrated a role for 12/15-LO in β-cell damage in the streptozotocin model of diabetes. Since the gene encoding 12/15-LO (gene designation Alox15) lies within the Idd4 diabetes susceptibility interval in NOD mice, we hypothesized that 12/15-LO is also a key regulator of diabetes susceptibility in the NOD mouse. RESEARCH DESIGN AND METHODS We developed NOD mice carrying an inactivated 12/15-LO locus (NOD-Alox15null) using a “speed congenic” protocol, and the mice were monitored for development of insulitis and diabetes. RESULTS NOD mice deficient in 12/15-LO develop diabetes at a markedly reduced rate compared with NOD mice (2.5 vs. >60% in females by 30 weeks). Nondiabetic female NOD-Alox15null mice demonstrate improved glucose tolerance, as well as significantly reduced severity of insulitis and improved β-cell mass, when compared with age-matched nondiabetic NOD females. Disease resistance is associated with decreased numbers of islet-infiltrating activated macrophages at 4 weeks of age in NOD-Alox15null mice, preceding the development of insulitis. Subsequently, islet-associated infiltrates are characterized by decreased numbers of CD4+ T cells and increased Foxp3+ cells. CONCLUSIONS These results suggest an important role for 12/15-LO in conferring susceptibility to autoimmune diabetes in NOD mice through its effects on macrophage recruitment or activation. PMID:17940120

  19. Bombesin-like peptide receptors in human bronchial epithelial cells.

    PubMed

    Kane, M A; Toi-Scott, M; Johnson, G L; Kelley, K K; Boose, D; Escobedo-Morse, A

    1996-01-01

    Northern blot and RNAse protection assays previously failed to detect bombesin-like peptide (BLP) receptors in normal human lung tissue, but by RT/PCR cultured human bronchial epithelial (HBE) cells expressed all three BLP receptor subtypes, predominantly neuromedin B (NMB) receptor. By RT/PCR, we found expression of all three BLP receptor subtypes by human lung tissue and confirmed NMB receptor expression in six out of six HBE samples. However, transformed HBE BEAS B2B cells expressed only gastrin-releasing peptide (GRP) receptors; saturable, high-affinity (Kd = 3.5 nM) specific [125I]GRP binding confirmed functional GRP receptor, with M(r) = 75 kDa and immunologic cross-reactivity with GRP receptor from human small-cell lung carcinoma (SCLC) NCI-H345 cells. Altered regulation of BLP receptors may accompany transformation of normal lung cells to cancer.

  20. The Inhibitory G Protein α-Subunit, Gαz, Promotes Type 1 Diabetes-Like Pathophysiology in NOD Mice.

    PubMed

    Fenske, Rachel J; Cadena, Mark T; Harenda, Quincy E; Wienkes, Haley N; Carbajal, Kathryn; Schaid, Michael D; Laundre, Erin; Brill, Allison L; Truchan, Nathan A; Brar, Harpreet; Wisinski, Jaclyn; Cai, Jinjin; Graham, Timothy E; Engin, Feyza; Kimple, Michelle E

    2017-06-01

    The α-subunit of the heterotrimeric Gz protein, Gαz, promotes β-cell death and inhibits β-cell replication when pancreatic islets are challenged by stressors. Thus, we hypothesized that loss of Gαz protein would preserve functional β-cell mass in the nonobese diabetic (NOD) model, protecting from overt diabetes. We saw that protection from diabetes was robust and durable up to 35 weeks of age in Gαz knockout mice. By 17 weeks of age, Gαz-null NOD mice had significantly higher diabetes-free survival than wild-type littermates. Islets from these mice had reduced markers of proinflammatory immune cell infiltration on both the histological and transcript levels and secreted more insulin in response to glucose. Further analyses of pancreas sections revealed significantly fewer terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL)-positive β-cells in Gαz-null islets despite similar immune infiltration in control mice. Islets from Gαz-null mice also exhibited a higher percentage of Ki-67-positive β-cells, a measure of proliferation, even in the presence of immune infiltration. Finally, β-cell-specific Gαz-null mice phenocopy whole-body Gαz-null mice in their protection from developing hyperglycemia after streptozotocin administration, supporting a β-cell-centric role for Gαz in diabetes pathophysiology. We propose that Gαz plays a key role in β-cell signaling that becomes dysfunctional in the type 1 diabetes setting, accelerating the death of β-cells, which promotes further accumulation of immune cells in the pancreatic islets, and inhibiting a restorative proliferative response. Copyright © 2017 Endocrine Society.

  1. miR-122 targets NOD2 to decrease intestinal epithelial cell injury in Crohn’s disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yu; Wang, Chengxiao; Liu, Ying

    2013-08-16

    Highlights: •NOD2 is a target gene of miR-122. •miR-122 inhibits LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. •miR-122 reduces the expression of pro-inflammatory cytokines (TNF-α and IFN-γ). •miR-122 promotes the release of anti-inflammatory cytokines (IL-4 and IL-10). •NF-κB signaling pathway is involved in inflammatory response induced by LPS. -- Abstract: Crohn’s disease (CD) is one of the two major types of inflammatory bowel disease (IBD) thought to be caused by genetic and environmental factors. Recently, miR-122 was found to be deregulated in association with CD progression. However, the underlying molecular mechanisms remain unclear. In the present study, the genemore » nucleotide-binding oligomerization domain 2 (NOD2/CARD15), which is strongly associated with susceptibility to CD, was identified as a functional target of miR-122. MiR-122 inhibited LPS-induced apoptosis by suppressing NOD2 in HT-29 cells. NOD2 interaction with LPS initiates signal transduction mechanisms resulting in the activation of nuclear factor κB (NF-κB) and the stimulation of downstream pro-inflammatory events. The activation of NF-κB was inhibited in LPS-stimulated HT-29 cells pretreated with miR-122 precursor or NOD2 shRNA. The expression of the pro-inflammatory cytokines TNF-α and IFN-γ was significantly decreased, whereas therelease of the anti-inflammatory cytokines IL-4 and IL-10 was increased in LPS-stimulated HT-29 cells pretreated with miR-122 precursor, NOD2 shRNA or the NF-κB inhibitor QNZ. Taken together, these results indicate that miR-122 and its target gene NOD2 may play an important role in the injury of intestinal epithelial cells induced by LPS.« less

  2. The relevance of Noddings' ethics of care to the moral education of nurses.

    PubMed

    Crowley, M A

    1994-02-01

    Noddings' ethics of care is proposed as a model for moral education in nursing. A discussion of Noddings' moral theory is followed by a review of significant criticisms of her theory and her response to these criticisms. Finally, the usefulness of her moral theory as a guide to moral education in nursing is explored.

  3. Reevaluation of the major histocompatibility complex genes of the NOD-progenitor CTS/Shi strain.

    PubMed

    Mathews, C E; Graser, R T; Serreze, D V; Leiter, E H

    2000-01-01

    The common Kd and/or Db alleles of NOD mice contribute to the development of autoimmune diabetes, but their respective contributions are unresolved. The major histocompatibility complex (MHC) of the CTS/Shi mouse, originally designated as H2ct, shares MHC class II region identity with the H2g7 haplotype of NOD mice. However, CTS mice were reported to express distinct but undefined MHC class I gene products. Because diabetes frequency was reduced 56% in females of a NOD stock congenic for H2ct, this partial resistance may have derived from the MHC class I allelic differences. In the present report, we use a combination of serologic analysis and sequencing of MHC class I cDNAs to establish that NOD/Lt and CTS/Shi share a common H2-Kd allele but differ at the H2-D end of the MHC complex. The H2-D allele of CTS/Shi was identified as the rare H2-Ddx recently described in ALR/Lt, another NOD-related strain. These results in mouse model systems show that multiple MHC genes confer diabetes resistance and suggest that at least one of the protective MHC or MHC-linked genes in CTS mice may be at the H2-D end of the complex.

  4. MHC-mismatched mixed chimerism restores peripheral tolerance of noncross-reactive autoreactive T cells in NOD mice

    PubMed Central

    Zhang, Mingfeng; Racine, Jeremy J.; Lin, Qing; Liu, Yuqing; Tang, Shanshan; Qin, Qi; Qi, Tong; Riggs, Arthur D.; Zeng, Defu

    2018-01-01

    Autoimmune type 1 diabetes (T1D) and other autoimmune diseases are associated with particular MHC haplotypes and expansion of autoreactive T cells. Induction of MHC-mismatched but not -matched mixed chimerism by hematopoietic cell transplantation effectively reverses autoimmunity in diabetic nonobese diabetic (NOD) mice, even those with established diabetes. As expected, MHC-mismatched mixed chimerism mediates deletion in the thymus of host-type autoreactive T cells that have T-cell receptor (TCR) recognizing (cross-reacting with) donor-type antigen presenting cells (APCs), which have come to reside in the thymus. However, how MHC-mismatched mixed chimerism tolerizes host autoreactive T cells that recognize only self-MHC–peptide complexes remains unknown. Here, using NOD.Rag1−/−.BDC2.5 or NOD.Rag1−/−.BDC12-4.1 mice that have only noncross-reactive transgenic autoreactive T cells, we show that induction of MHC-mismatched but not -matched mixed chimerism restores immune tolerance of peripheral noncross-reactive autoreactive T cells. MHC-mismatched mixed chimerism results in increased percentages of both donor- and host-type Foxp3+ Treg cells and up-regulated expression of programmed death-ligand 1 (PD-L1) by host-type plasmacytoid dendritic cells (pDCs). Furthermore, adoptive transfer experiments showed that engraftment of donor-type dendritic cells (DCs) and expansion of donor-type Treg cells are required for tolerizing the noncross-reactive autoreactive T cells in the periphery, which are in association with up-regulation of host-type DC expression of PD-L1 and increased percentage of host-type Treg cells. Thus, induction of MHC-mismatched mixed chimerism may establish a peripheral tolerogenic DC and Treg network that actively tolerizes autoreactive T cells, even those with no TCR recognition of the donor APCs. PMID:29463744

  5. Prognostic meaning of neutrophil to lymphocyte ratio (NLR) and lymphocyte to monocyte ration (LMR) in newly diagnosed Hodgkin lymphoma patients treated upfront with a PET-2 based strategy.

    PubMed

    Romano, Alessandra; Parrinello, Nunziatina Laura; Vetro, Calogero; Chiarenza, Annalisa; Cerchione, Claudio; Ippolito, Massimo; Palumbo, Giuseppe Alberto; Di Raimondo, Francesco

    2018-06-01

    Recent reports identify NLR (the ratio between absolute neutrophils counts, ANC, and absolute lymphocyte count, ALC), as predictor of progression-free survival (PFS) and overall survival (OS) in cancer patients. We retrospectively tested NLR and LMR (the ratio between absolute lymphocyte and monocyte counts) in newly diagnosed Hodgkin lymphoma (HL) patients treated upfront with a PET-2 risk-adapted strategy. NLR and LMR were calculated using records obtained from the complete blood count (CBC) from 180 newly diagnosed HL patients. PFS was evaluated accordingly to Kaplan-Meier method. Higher NLR was associated to advanced stage, increased absolute counts of neutrophils and reduced count of lymphocytes, and markers of systemic inflammation. After a median follow-up of 68 months, PFS at 60 months was 86.6% versus 70.1%, respectively, in patients with NLR ≥ 6 or NLR < 6. Predictors of PFS at 60 months were PET-2 scan (p < 0.0001), NLR ≥ 6.0 (p = 0.02), LMR < 2 (p = 0.048), and ANC (p = 0.0059) in univariate analysis, but only PET-2 was an independent predictor of PFS in multivariate analysis. Advanced-stage patients (N = 119) were treated according to a PET-2 risk-adapted protocol, with an early switch to BEACOPP regimen in case of PET-2 positivity. Despite this strategy, patients with positive PET-2 still had an inferior outcome, with PFS at 60 months of 84.7% versus 40.1% (negative and positive PET-2 patients, respectively, p < 0.0001). Independent predictors of PFS by multivariate analysis were PET-2 status and to a lesser extend NLR in advanced stage, while LMR maintained its significance in early stage. By focusing on PET-2 negative patients, we found that patients with NLR ≥ 6.0 or LMR < 2 had an inferior outcome compared to patients with both ratios above the cutoff (78.7 versus 91.9 months, p = 0.01). We confirm NLR as predictor of PFS in HL patients independently from stage at diagnosis

  6. [NOD2 gene mutation in Moroccan patients with Crohn's disease: prevalence, genotypic study and correlation of NOD2 gene mutation with the phenotype of Crohn's disease].

    PubMed

    Tamzaourte, Mouna; Errabih, Ikram; Krami, Hayat; Maha, Fadlouallah; Maria, Lahmiri; Benzzoubeir, Nadia; Ouazzani, Laaziza; Sefiani, Ahmed; Ouazzani, Houria

    2017-01-01

    The aim of this study was to determine the prevalence of NOD2/CARD15 gene mutations in a group of Moroccan patients with Crohn's disease and to study its correlation with genotype-phenotypic expression. We conducted a cross-sectional case-control study over a period of 16 months. 101 patients with Crohn's disease were enrolled between January 2012 and April 2013 as well as a control group of 107 patients. We performed a genetic analysis to identify 3 NOD2 gene variants: p.Arg702Trp, p.Gly908Arg and p.Leu1007fsins. Then we conducted a study of the correlation between genotype and phenotypic expression. The genetic analysis of patients with Crohn's disease highlighted the presence of NOD2 mutation in 14 patients (13.77%) versus 7 patients (6.53%) in the control group. The study of the frequency of different alleles showed p.Gly908Arg mutation in 6.43%, p.Leu1007fsins in 0.99% and p.Arg702Trp in 0.49% versus 2.80%, 0% and 0.46% in the control group respectively. The study of the correlation between genotype and phenotypic expression showed that CARD15 mutation is associated with ileocecal Crohn's disease, with fistulizing and stenosing behavior in Crohn's disease as well as with severe evolution and frequent recourse to surgery and immunosuppressants. The prevalence of NOD2/ CARD15 mutation in our case series is low. This mutation is correlated with severe Crohn's disease.

  7. NLRP3 recruitment by NLRC4 during Salmonella infection

    PubMed Central

    Qu, Yan; Misaghi, Shahram; Newton, Kim; Maltzman, Allie; Izrael-Tomasevic, Anita; Arnott, David

    2016-01-01

    NLRC4 and NLRP3, of the NOD-like receptor (NLR) family of intracellular proteins, are expressed in innate immune cells and are thought to nucleate distinct inflammasome complexes that promote caspase-1 activation, secretion of the proinflammatory cytokines IL-1β and IL-18, and a form of cell death termed pyroptosis. We show that NLRP3 associates with NLRC4 in macrophages infected with Salmonella typhimurium or transfected with flagellin. The significance of the interaction between the NLRC4 NACHT domain and NLRP3 was revealed when Nlrc4S533A/S533A bone marrow–derived macrophages (BMDMs) expressing phosphorylation site mutant NLRC4 S533A had only a mild defect in caspase-1 activation when compared with NLRC4-deficient BMDMs. NLRC4 S533A activated caspase-1 by recruiting NLRP3 and its adaptor protein ASC. Thus, Nlrc4S533A/S533A Nlrp3−/− BMDMs more closely resembled Nlrc4−/− BMDMs in their response to S. typhimurium or flagellin. The interplay between NLRP3 and NLRC4 reveals an unexpected overlap between what had been considered distinct inflammasome scaffolds. PMID:27139490

  8. A small-molecule inhibitor of the NLRP3 inflammasome for the treatment of inflammatory diseases.

    PubMed

    Coll, Rebecca C; Robertson, Avril A B; Chae, Jae Jin; Higgins, Sarah C; Muñoz-Planillo, Raúl; Inserra, Marco C; Vetter, Irina; Dungan, Lara S; Monks, Brian G; Stutz, Andrea; Croker, Daniel E; Butler, Mark S; Haneklaus, Moritz; Sutton, Caroline E; Núñez, Gabriel; Latz, Eicke; Kastner, Daniel L; Mills, Kingston H G; Masters, Seth L; Schroder, Kate; Cooper, Matthew A; O'Neill, Luke A J

    2015-03-01

    The NOD-like receptor (NLR) family, pyrin domain-containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process, and its aberrant activation is pathogenic in inherited disorders such as cryopyrin-associated periodic syndrome (CAPS) and complex diseases such as multiple sclerosis, type 2 diabetes, Alzheimer's disease and atherosclerosis. We describe the development of MCC950, a potent, selective, small-molecule inhibitor of NLRP3. MCC950 blocked canonical and noncanonical NLRP3 activation at nanomolar concentrations. MCC950 specifically inhibited activation of NLRP3 but not the AIM2, NLRC4 or NLRP1 inflammasomes. MCC950 reduced interleukin-1β (IL-1β) production in vivo and attenuated the severity of experimental autoimmune encephalomyelitis (EAE), a disease model of multiple sclerosis. Furthermore, MCC950 treatment rescued neonatal lethality in a mouse model of CAPS and was active in ex vivo samples from individuals with Muckle-Wells syndrome. MCC950 is thus a potential therapeutic for NLRP3-associated syndromes, including autoinflammatory and autoimmune diseases, and a tool for further study of the NLRP3 inflammasome in human health and disease.

  9. Antibiotic-associated Manipulation of the Gut Microbiota and Phenotypic Restoration in NOD Mice

    PubMed Central

    Fahey, James R; Lyons, Bonnie L; Olekszak, Haiyan L; Mourino, Anthony J; Ratiu, Jeremy J; Racine, Jeremy J; Chapman, Harold D; Serreze, David V; Baker, Dina L; Hendrix, N Ken

    2017-01-01

    Segmented filamentous bacterium (SFB) a gram-positive, anaerobic, and intestinal commensal organism directly influences the development of Th17 helper cells in the small intestine of mice. In NOD mice, SFB colonization interferes with the development of type 1 diabetes (T1D), a T-cell–mediated autoimmune disease, suggesting that SFB may influence Th17 cells to inhibit Th1 populations associated with the anti-β-cell immune response. This effect is a serious concern for investigators who use NOD mice for diabetes research because the expected incidence of disease decreases markedly when they are colonized by SFB. A room housing mice for T1D studies at The Jackson Laboratory was determined by fecal PCR testing to have widespread SFB colonization of multiple NOD strains after a steady decline in the incidence of T1D was noted. Rederivation of all NOD-related mouse strains was not feasible; therefore an alternative treatment using antibiotics to eliminate SFB from colonized mice was undertaken. After antibiotic treatment, soiled bedding from NOD mouse strains housed in SFB-free high-health–status production barrier rooms was used to reintroduce the gastrointestinal microbiota. Over the past 16 mo since treating the mice and disinfecting the mouse room, regular PCR testing has shown that no additional SFB colonization of mice has occurred, and the expected incidence of T1D has been reestablished in the offspring of treated mice. PMID:28830580

  10. β-cell-specific IL-2 therapy increases islet Foxp3+Treg and suppresses type 1 diabetes in NOD mice.

    PubMed

    Johnson, Mark C; Garland, Alaina L; Nicolson, Sarah C; Li, Chengwen; Samulski, R Jude; Wang, Bo; Tisch, Roland

    2013-11-01

    Interleukin-2 (IL-2) is a critical cytokine for the homeostasis and function of forkhead box p3-expressing regulatory T cells (Foxp3(+)Tregs). Dysregulation of the IL-2-IL-2 receptor axis is associated with aberrant Foxp3(+)Tregs and T cell-mediated autoimmune diseases such as type 1 diabetes. Treatment with recombinant IL-2 has been reported to enhance Foxp3(+)Tregs and suppress different models of autoimmunity. However, efficacy of IL-2 therapy is dependent on achieving sufficient levels of IL-2 to boost tissue-resident Foxp3(+)Tregs while avoiding the potential toxic effects of systemic IL-2. With this in mind, adeno-associated virus (AAV) vector gene delivery was used to localize IL-2 expression to the islets of NOD mice. Injection of a double-stranded AAV vector encoding IL-2 driven by a mouse insulin promoter (dsAAVmIP-IL2) increased Foxp3(+)Tregs in the islets but not the draining pancreatic lymph nodes. Islet Foxp3(+)Tregs in dsAAVmIP-IL2-treated NOD mice exhibited enhanced fitness marked by increased expression of Bcl-2, proliferation, and suppressor function. In contrast, ectopic IL-2 had no significant effect on conventional islet-infiltrating effector T cells. Notably, β-cell-specific IL-2 expression suppressed late preclinical type 1 diabetes in NOD mice. Collectively, these findings demonstrate that β-cell-specific IL-2 expands an islet-resident Foxp3(+)Tregs pool that effectively suppresses ongoing type 1 diabetes long term.

  11. Estrogen Receptors Modulation of Anxiety-Like Behavior.

    PubMed

    Borrow, A P; Handa, R J

    2017-01-01

    Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems. © 2017 Elsevier Inc. All rights reserved.

  12. Application of SGT1-Hsp90 chaperone complex for soluble expression of NOD1 LRR domain in E. coli

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Tae-Joon; Hahn, Ji-Sook

    NOD1 is an intracellular sensor of innate immunity which is related to a number of inflammatory diseases. NOD1 is known to be difficult to express and purify for structural and biochemical studies. Based on the fact that Hsp90 and its cochaperone SGT1 are necessary for the stabilization and activation of NOD1 in mammals, SGT1 was chosen as a fusion partner of the leucine-rich repeat (LRR) domain of NOD1 for its soluble expression in Escherichia coli. Fusion of human SGT1 (hSGT1) to NOD1 LRR significantly enhanced the solubility, and the fusion protein was stabilized by coexpression of mouse Hsp90α. The expressionmore » level of hSGT1-NOD1 LRR was further enhanced by supplementation of rare codon tRNAs and exchange of antibiotic marker genes. - Highlights: • The NOD1 LRR domain was solubilized by SGT1 fusion in E. coli. • The coexpression of HSP90 stabilized the SGT1-NOD1 LRR fusion protein. • Several optimizations could enhance the expression level of the fusion protein.« less

  13. A unique mouse strain that develops spontaneous, iodine-accelerated, pathogenic antibodies to the human thyrotrophin receptor 1

    PubMed Central

    Rapoport, Basil; Aliesky, Holly A.; Banuelos, Bianca; Chen, Chun-Rong; McLachlan, Sandra M.

    2015-01-01

    Antibodies that stimulate the thyrotropin receptor (TSHR), the cause of Graves’ hyperthyroidism, only develop in humans. TSHR antibodies can be induced in mice by immunization but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2h4 mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, antibodies. We hypothesized that transferring the human (h)TSHR A-subunit to NOD.H2h4 mice would result in loss of tolerance to this protein. BALB/c hTSHR A-subunit mice were bred to NOD.H2h4 mice and transgenic offspring were repeatedly backcrossed to NOD.H2h4 mice. All offspring developed antibodies to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2h4 mice (TSHR/NOD.H2h4) developed pathogenic TSHR antibodies as detected using clinical Graves’ disease assays. As in humans, TSHR/NOD.H2h4 females were more prone than males to developing pathogenic TSHR antibodies. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic (h)TSHR antibodies cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2h4 mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR antibodies in females, providing a unique model to investigate disease pathogenesis and test novel TSHR-antigen specific immunotherapies aimed at curing Graves’ disease in humans. PMID:25825442

  14. Activation of the mGlu7 receptor elicits antidepressant-like effects in mice.

    PubMed

    Palucha, Agnieszka; Klak, Kinga; Branski, Piotr; van der Putten, Herman; Flor, Peter J; Pilc, Andrzej

    2007-11-01

    Broad evidence indicates that modulation of the glutamatergic system could be an efficient way to achieve antidepressant activity. Metabotropic glutamate receptor (mGlu receptor) ligands seem to be promising agents to treat several central nervous system disorders, including psychiatric ones. The aim of our study was to investigate potential antidepressant-like activity of the first, selective, and bio-available mGlu7 receptor agonist, AMN082 (N,N'-dibenzyhydryl-ethane-1,2-diamine dihydrochloride), in wild-type (WT) and mGlu7 receptor knock-out (KO) mice. The forced swim test (FST) and the tail suspension test (TST) in mice were used to assess antidepressant-like activity of AMN082. We found that AMN082, administered IP, induced a dose-dependent decrease in the immobility time of WT animals in the FST and TST, suggesting antidepressant-like potency of an mGlu7 receptor agonist. Moreover, AMN082 did not change the behaviour of mGlu7 receptor KO mice compared to WT littermates in the TST, while imipramine, used as a reference control, significantly reduced their immobility, indicating an mGlu7 receptor-dependent mechanism of the antidepressant-like activity of AMN082. However, at high doses, AMN082 significantly decreased spontaneous locomotor activity of both mGlu7 receptor KO mice and WT control animals, suggesting off-target activity of AMN082 resulting in hypo-locomotion. These results strongly suggest that activation of the mGlu7 receptor elicits antidepressant-like effects.

  15. Genome-wide analysis of lectin receptor-like kinases in Populus

    DOE PAGES

    Yang, Yongil; Labbé, Jessy; Muchero, Wellington; ...

    2016-09-01

    Receptor-like kinases (RLKs) belong to a large protein family with over 600 members in Arabidopsis and over 1000 in rice. Among RLKs, the lectin receptor-like kinases (LecRLKs) possess a characteristic extracellular carbohydrate-binding lectin domain and play important roles in plant development and innate immunity. In addition, there are 75 and 173 LecRLKs in Arabidopsis and rice, respectively. However, little is known about LecRLKs in perennial woody plants.

  16. Immune signaling by RIG-I-like receptors

    PubMed Central

    Loo, Yueh-Ming; Gale, Michael

    2011-01-01

    The RIG-I-like receptors (RLRs) RIG-I, MDA5, and LGP2 play a major role in pathogen sensing of RNA virus infection to initiate and modulate antiviral immunity. The RLRs detect viral RNA ligands or processed self RNA in the cytoplasm to triggers innate immunity and inflammation and to impart gene expression that serves to control infection. Importantly, RLRs cooperate in signaling crosstalk networks with Toll-like receptors and other factors to impart innate immunity and to modulate the adaptive immune response. RLR regulation occurs at a variety of levels ranging from autoregulation to ligand and co-factor interactions and post-translational modifications. Abberant RLR signaling or dysregulation of RLR expression is now implicated in the development of autoimmune diseases. Understanding the processes of RLR signaling and response will provide insights to guide RLR-targeted therapeutics for antiviral and immune modifying applications. PMID:21616437

  17. CCR7 directs the recruitment of T cells into inflamed pancreatic islets of nonobese diabetic (NOD) mice.

    PubMed

    Shan, Zhongyan; Xu, Baohui; Mikulowska-Mennis, Anna; Michie, Sara A

    2014-05-01

    Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease characterized by the destruction of insulin-producing β cells in the pancreatic islets. The migration of T cells from blood vessels into pancreas is critical for the development of islet inflammation and β cell destruction in T1D. To define the roles of C-C chemokine receptor type 7 (CCR7) in recruitment of T cells into islets, we used laser capture microdissection to isolate tissue from inflamed islets of nonobese diabetic (NOD) mice and uninflamed islets of BALB/c and young NOD mice. RT-PCR analyses detected mRNAs for CCR7 and its chemokine ligands CCL19 (ELC; MIP-3β) and CCL21 (SLC) in captures from inflamed, but not from uninflamed, islets. Immunohistology studies revealed that high endothelial venules in inflamed islets co-express CCL21 protein and MAdCAM-1 (an adhesion molecule that recruits lymphocytes into islets). Desensitization of lymphocyte CCR7 blocked about 75 % of T cell migration from the bloodstream into inflamed islets, but had no effect on B cell migration into islets. These results indicate that CCR7 and its ligands are important in the recruitment of T cells into inflamed islets and thus in the pathogenesis of T1D.

  18. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor.

    PubMed

    Freeman, Spencer A; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E; Wong, Harikesh S; Abraham, Libin; Graves, Marcia L; Coombs, Daniel; Roskelley, Calvin D; Das, Raibatak; Grinstein, Sergio; Gold, Michael R

    2015-02-03

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection.

  19. Toll-like receptor ligands sensitize B-cell receptor signalling by reducing actin-dependent spatial confinement of the receptor

    PubMed Central

    Freeman, Spencer A.; Jaumouillé, Valentin; Choi, Kate; Hsu, Brian E.; Wong, Harikesh S.; Abraham, Libin; Graves, Marcia L.; Coombs, Daniel; Roskelley, Calvin D.; Das, Raibatak; Grinstein, Sergio; Gold, Michael R.

    2015-01-01

    Integrating signals from multiple receptors allows cells to interpret the physiological context in which a signal is received. Here we describe a mechanism for receptor crosstalk in which receptor-induced increases in actin dynamics lower the threshold for signalling by another receptor. We show that the Toll-like receptor ligands lipopolysaccharide and CpG DNA, which are conserved microbial molecules, enhance signalling by the B-cell antigen receptor (BCR) by activating the actin-severing protein cofilin. Single-particle tracking reveals that increased severing of actin filaments reduces the spatial confinement of the BCR within the plasma membrane and increases BCR mobility. This allows more frequent collisions between BCRs and greater signalling in response to low densities of membrane-bound antigen. These findings implicate actin dynamics as a means of tuning receptor signalling and as a mechanism by which B cells distinguish inert antigens from those that are accompanied by indicators of microbial infection. PMID:25644899

  20. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews.

    PubMed

    Ward, Alexander H; Siegwart, John T; Frost, Michael R; Norton, Thomas T

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 µL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development.

  1. Intravitreally-administered dopamine D2-like (and D4), but not D1-like, receptor agonists reduce form-deprivation myopia in tree shrews

    PubMed Central

    Ward, Alexander H.; Siegwart, John T.; Frost, Michael R.; Norton, Thomas T.

    2017-01-01

    We examined the effect of intravitreal injections of D1-like and D2-like dopamine receptor agonists and antagonists and D4 receptor drugs on form-deprivation myopia (FDM) in tree shrews, mammals closely related to primates. In eleven groups (n = 7 per group), we measured the amount of FDM produced by monocular form deprivation (FD) over an 11-day treatment period. The untreated fellow eye served as a control. Animals also received daily 5 μL intravitreal injections in the FD eye. The reference group received 0.85% NaCl vehicle. Four groups received a higher, or lower, dose of a D1-like receptor agonist (SKF38393) or antagonist (SCH23390). Four groups received a higher, or lower, dose of a D2-like receptor agonist (quinpirole) or antagonist (spiperone). Two groups received the D4 receptor agonist (PD168077) or antagonist (PD168568). Refractions were measured daily; axial component dimensions were measured on day 1 (before treatment) and day 12. We found that in groups receiving the D1-like receptor agonist or antagonist, the development of FDM and altered ocular component dimensions did not differ from the NaCl group. Groups receiving the D2-like receptor agonist or antagonist at the higher dose developed significantly less FDM and had shorter vitreous chambers than the NaCl group. The D4 receptor agonist, but not the antagonist, was nearly as effective as the D2-like agonist in reducing FDM. Thus, using intravitreally-administered agents, we did not find evidence supporting a role for the D1-like receptor pathway in reducing FDM in tree shrews. The reduction of FDM by the dopamine D2-like agonist supported a role for the D2-like receptor pathway in the control of FDM. The reduction of FDM by the D4 receptor agonist, but not the D4 antagonist, suggests an important role for activation of the dopamine D4 receptor in the control of axial elongation and refractive development. PMID:28304244

  2. 'You sit in fear': understanding perceptions of nodding syndrome in post-conflict northern Uganda.

    PubMed

    Buchmann, Kristine

    2014-01-01

    Nodding syndrome, a disabling epidemic epileptic encephalopathy, has affected an estimated 1,834 children in northern Uganda, with reports of as many as 3,000. Etiology is unknown and children are being treated symptomatically but inconsistently with anti-epileptic drugs. This qualitative study comprised 10 semi-structured interviews with caregivers of affected children and five focus group discussions with 23 participants; relatives, teachers, and religious leaders. Data collection and participant observation were carried out from July to September 2012 in Kitgum and Pader districts. The material was coded through inductive thematic analysis. Nodding syndrome has brought signs of discrimination in school admission procedures, founded in a fear of transmission. The suffering and loss caused by nodding syndrome is collective, and participants felt that nodding syndrome was viewed as a threat to the Acholi only, and that interventions had therefore been delayed. Multiple theories of causation exist, most commonly that the disease is caused by chemicals from bombs or that food aid distributed in IDP camps had expired or been poisoned.A feeling of uncertainty was present in all focus group discussions, fueled by the fact that results of investigations were not being shared with the communities. It was especially agonizing that CDC results had been given to the Ugandan government in 2010 but not to the public. The definitive fear is that the disease will be the end of the Acholi. This study provided insight into the perceptions of communities affected by an unknown emerging disease. Families of affected children are grieving not only their child's illness; it is a loss of social value and of lineage. The loss and suffering involved with nodding syndrome should be seen in the context of the wider suffering of a society disrupted by violent conflict. The memory of war is omnipresent and is also how nodding syndrome is understood.

  3. Thyroid epithelial cell hyperplasia in IFN-gamma deficient NOD.H-2h4 mice.

    PubMed

    Yu, Shiguang; Sharp, Gordon C; Braley-Mullen, Helen

    2006-01-01

    The role of inflammatory cells in thyroid epithelial cell (thyrocyte) hyperplasia is unknown. Here, we demonstrate that thyrocyte hyperplasia in IFN-gamma-/- NOD.H-2h4 mice has an autoimmune basis. After chronic exposure to increased dietary iodine, 60% of IFN-gamma-/- mice had severe thyrocyte hyperplasia with minimal or moderate lymphocyte infiltration, and thyroid dysfunction with reduced serum T4. All mice produced anti-thyroglobulin autoantibody. Some wild-type NOD.H-2h4 mice had isolated areas of thyrocyte hyperplasia with predominantly lymphocytic infiltration, whereas IL-4-/- and 50% of wild-type NOD.H-2h4 mice developed lymphocytic thyroiditis but no thyrocyte hyperplasia. Both thyroid infiltrating inflammatory cells and environmental factors (iodine) were required to induce thyrocyte hyperplasia. Splenocytes from IFN-gamma-/- mice with thyrocyte hyperplasia, but not splenocytes from naïve IFN-gamma-/- mice, induced hyperplasia in IFN-gamma-/- NOD.H-2h4.SCID mice. These results may provide clues for understanding the mechanisms underlying development of epithelial cell hyperplasia not only in thyroids but also in other tissues and organs.

  4. NLRP1 deficiency attenuates diabetic retinopathy (DR) in mice through suppressing inflammation response.

    PubMed

    Li, Yan; Liu, Chang; Wan, Xin-Shun; Li, Shao-Wei

    2018-06-22

    Diabetic retinopathy (DR) is the common cause of diabetic vascular complications. The NOD-like receptor (NLR) family, pyrin domain containing 1 (NLRP1), also known as NALP1, inflammasome is the first member of the NLR family to be discovered, playing an important role in inflammatory response. However, its effect on DR development has not been reported. In the study, the wild type (WT) and NLRP1 -/- mice were injected with streptozotocin (STZ) to induce DR. The results indicated that NLRP1 -/- significantly increased bodyweight reduction and decreased blood glucose levels induced by STZ. WT/DR mice exhibited higher levels of NLRP1 in retinas. NLRP1 -/- ameliorated retinal abnormalities in DR mice using H&E staining. In addition, attenuated avascular areas and neovascular tufts were also observed in NLRP1 -/- /DR mice. The levels of pro-inflammatory cytokines in serum and retinas were highly induced in WT/DR mice, whereas being markedly reduced by NLRP1 -/- . In addition, vascular endothelial growth factor (VEGF) and Iba1 expressions induced by STZ in serum or retinas were significantly down-regulated in NLRP1 -/- /DR mice. Consistently, NLRP1 -/- attenuated ASC and Caspase-1 expressions in retinas of DR mice. Compared to WT/DR group, NLRP1 -/- markedly decreased retina p-nuclear factor-κB (NF-κB), interleukin-1β (IL-1β) and IL-18 levels. And similar results were confirmed in vitro that suppressing NLRP1/ASC inflammasome ameliorated inflammatory response in fructose-treated retinal ganglion cells. The results above indicated that the modulation of NLRP1 inflammasome might be a promising strategy for DR therapy. Copyright © 2018. Published by Elsevier Inc.

  5. Inflammasomes are important mediators of cyclophosphamide-induced bladder inflammation

    PubMed Central

    Vivar, Nivardo P.; Kennis, James G.; Pratt-Thomas, Jeffery D.; Lowe, Danielle W.; Shaner, Brooke E.; Nietert, Paul J.; Spruill, Laura S.; Purves, J. Todd

    2013-01-01

    Bladder inflammation (cystitis) underlies numerous bladder pathologies and is elicited by a plethora of agents such as urinary tract infections, bladder outlet obstruction, chemotherapies, and catheters. Pattern recognition receptors [Toll-like receptors (TLRs) and Nod-like receptors (NLRs)] that recognize pathogen- and/or damage-associated molecular patterns (PAMPs and/or DAMPs, respectively) are key components of the innate immune system that coordinates the production (TLRs) and maturation (NLRs) of proinflammatory IL-1β. Despite multiple studies of TLRs in the bladder, none have investigated NLRs beyond one small survey. We now demonstrate that NLRP3 and NLRC4, and their binding partners apoptosis-associated speck-like protein containing a COOH-terminal caspase recruitment domain (ASC) and NLR family apoptosis inhibitory protein (NAIP), are expressed in the bladder and localized predominantly to the urothelia. Activated NLRs form inflammasomes that activate caspase-1. Placement of a NLRP3- or NLRC4-activating PAMP or NLRP3-activating DAMPs into the lumen of the bladder stimulated caspase-1 activity. To investigate inflammasomes in vivo, we induced cystitis with cyclophosphamide (CP, 150 mg/kg ip) in the presence or absence of the inflammasome inhibitor glyburide. Glyburide completely blocked CP-induced activation of caspase-1 and the production of IL-1β at 4 h. At 24 h, glyburide reduced two markers of inflammation by 30–50% and reversed much of the inflammatory morphology. Furthermore, glyburide reversed changes in bladder physiology (cystometry) induced by CP. In conclusion, NLRs/inflammasomes are present in the bladder urothelia and respond to DAMPs and PAMPs, whereas NLRP3 inhibition blocks bladder dysfunction in the CP model. The coordinated response of NLRs and TLRs in the urothelia represents a first-line innate defense that may provide an important target for pharmacological intervention. PMID:24285499

  6. Heat shock proteins and toll-like receptors.

    PubMed

    Asea, Alexzander

    2008-01-01

    Researchers have only just begun to elucidate the relationship between heat shock proteins (HSP) and Toll-like receptors (TLR). HSP were originally described as an intracellular molecular chaperone of naïve, aberrantly folded, or mutated proteins and primarily implicated as a cytoprotective protein when cells are exposed to stressful stimuli. However, recent studies have ascribed novel functions to the Hsp70 protein depending on its localization: Surface-bound Hsp70 specifically activate natural killer (NK) cells, while Hsp70 released into the extracellular milieu specifically bind to Toll-like receptors (TLR) 2 and 4 on antigen-presenting cells (APC) and exerts immunoregulatory effects, including upregulation of adhesion molecules, co-stimulatory molecule expression, and cytokine and chemokine release-a process known as the chaperokine activity of Hsp70. This chapter discusses the most recent advances in the understanding of heat shock protein (HSP) and TLR interactions in general and highlights recent findings that demonstrate Hsp70 is a ligand for TLR and its biological significance.

  7. Reply to Noddings, Darwall, Wren, and Fullinwider

    ERIC Educational Resources Information Center

    Slote, Michael

    2010-01-01

    I respond to Noddings with further clarification of the notion of empathy and also argue that previous care ethics has put too much of an exclusive emphasis on relationships. I respond to Darwall by pointing out some implausible implications of his own and Kantian views about respect and by showing how a sentimentalist approach can avoid those…

  8. A cluster of coregulated genes determines TGF-beta-induced regulatory T-cell (Treg) dysfunction in NOD mice.

    PubMed

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A; Mathis, Diane; Benoist, Christophe

    2011-05-24

    Foxp3(+) regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4(+) T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility.

  9. LOCALIZATION OF CALCITONIN RECEPTOR-LIKE RECEPTOR (CLR) AND RECEPTOR ACTIVITY-MODIFYING PROTEIN 1 (RAMP1) IN HUMAN GASTROINTESTINAL TRACT

    PubMed Central

    Cottrell, Graeme S.; Alemi, Farzad; Kirkland, Jacob G.; Grady, Eileen F.; Corvera, Carlos U.; Bhargava, Aditi

    2012-01-01

    Calcitonin gene-related peptide (CGRP) exerts its diverse effects on vasodilation, nociception, secretion, and motor function through a heterodimeric receptor comprising of calcitonin receptor-like receptor (CLR) and receptor activity-modifying protein 1 (RAMP1). Despite the importance of CLR•RAMP1 in human disease, little is known about its distribution in the human gastrointestinal (GI) tract, where it participates in inflammation and pain. In this study, we determined that CLR and RAMP1 mRNAs are expressed in normal human stomach, ileum and colon by RT-PCR. We next characterized antibodies that we generated to rat CLR and RAMP1 in transfected HEK cells. Having characterized these antibodies in vitro, we then localized CLR-, RAMP1-, CGRP- and intermedin-immunoreactivity (IMD-IR) in various human GI segments. In the stomach, nerve bundles in the myenteric plexus and nerve fibers throughout the circular and longitudinal muscle had prominent CLR-IR. In the proximal colon and ileum, CLR was found in nerve varicosities of the myenteric plexus and surrounding submucosal neurons. Interestingly, CGRP expressing fibers did not co-localize, but were in close proximity to CLR. However, CLR and RAMP1, the two subunits of a functional CGRP receptor were clearly localized in myenteric plexus, where they may form functional cell-surface receptors. IMD, another member of calcitonin peptide family was also found in close proximity to CLR, and like CGRP, did not co-localize with either CLR or RAMP1 receptors. Thus, CGRP and IMD appear to be released locally, where they can mediate their effect on their receptors regulating diverse functions such as inflammation, pain and motility. PMID:22484227

  10. The role of the innate immune system in destruction of pancreatic beta cells in NOD mice and humans with type I diabetes

    PubMed Central

    Tai, Ningwen; Wong, F. Susan; Wen, Li

    2016-01-01

    Type 1 diabetes (T1D) is an organ-specific autoimmune disease characterized by T cell-mediated destruction of the insulin-producing pancreatic β cells. A combination of genetic and environmental factors eventually leads to the loss of functional β cells mass and hyperglycemia. Both innate and adaptive immunity are involved in the development of T1D. In this review, we have highlighted the most recent findings on the role of innate immunity, especially the pattern recognition receptors (PRRs), in disease development. In murine models and human studies, different PRRs, such as toll-like receptors (TLRs) and nucleotide-binding domain, leucine-rich repeat-containing (or NOD-like) receptors (NLRs), have different roles in the pathogenesis of T1D. These PRRs play a critical role in defending against infection by sensing specific ligands derived from exogenous microorganisms to induce innate immune responses and shape adaptive immunity. Animal studies have shown that TLR7, TLR9, MyD88 and NLPR3 play a disease-predisposing role in T1D, while controversial results have been found with other PRRs, such as TLR2, TLR3, TLR4, TLR5 and others. Human studies also shown that TLR2, TLR3 and TLR4 are expressed in either islet β cells or infiltrated immune cells, indicating the innate immunity plays a role in β cell autoimmunity. Furthermore, some human genetic studies showed a possible association of TLR3, TLR7, TLR8 or NLRP3 genes, at single nucleotide polymorphism (SNP) level, with human T1D. Increasing evidence suggest that the innate immunity modulates β cell autoimmunity. Thus, targeting pathways of innate immunity may provide novel therapeutic strategies to fight this disease. PMID:27021275

  11. Maize Homologs of CCoAOMT and HCT, Two Key Enzymes in Lignin Biosynthesis, Form Complexes with the NLR Rp1 Protein to Modulate the Defense Response1

    PubMed Central

    2016-01-01

    Disease resistance (R) genes encode nucleotide binding Leu-rich-repeat (NLR) proteins that confer resistance to specific pathogens. Upon pathogen recognition they trigger a defense response that usually includes a so-called hypersensitive response (HR), a rapid localized cell death at the site of pathogen infection. Intragenic recombination between two maize (Zea mays) NLRs, Rp1-D and Rp1-dp2, resulted in the formation of a hybrid NLR, Rp1-D21, which confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified genes encoding two key enzymes in lignin biosynthesis, hydroxycinnamoyltransferase (HCT) and caffeoyl CoA O-methyltransferase (CCoAOMT), adjacent to the nucleotide polymorphisms that were highly associated with variation in the severity of Rp1-D21-induced HR. We have previously shown that the two maize HCT homologs suppress the HR conferred by Rp1-D21 in a heterologous system, very likely through physical interaction. Here, we show, similarly, that CCoAOMT2 suppresses the HR induced by either the full-length or by the N-terminal coiled-coil domain of Rp1-D21 also likely via physical interaction and that the metabolic activity of CCoAOMT2 is unlikely to be necessary for its role in suppressing HR. We also demonstrate that CCoAOMT2, HCTs, and Rp1 proteins can form in the same complexes. A model is derived to explain the roles of CCoAOMT and HCT in Rp1-mediated defense resistance. PMID:27208251

  12. Overlapping Podospora anserina Transcriptional Responses to Bacterial and Fungal Non Self Indicate a Multilayered Innate Immune Response

    PubMed Central

    Lamacchia, Marina; Dyrka, Witold; Breton, Annick; Saupe, Sven J.; Paoletti, Mathieu

    2016-01-01

    Recognition and response to non self is essential to development and survival of all organisms. It can occur between individuals of the same species or between different organisms. Fungi are established models for conspecific non self recognition in the form of vegetative incompatibility (VI), a genetically controlled process initiating a programmed cell death (PCD) leading to the rejection of a fusion cell between genetically different isolates of the same species. In Podospora anserina VI is controlled by members of the hnwd gene family encoding for proteins analogous to NOD Like Receptors (NLR) immune receptors in eukaryotes. It was hypothesized that the hnwd controlled VI reaction was derived from the fungal innate immune response. Here we analyze the P. anserina transcriptional responses to two bacterial species, Serratia fonticola to which P. anserina survives and S. marcescens to which P. anserina succumbs, and compare these to the transcriptional response induced under VI conditions. Transcriptional responses to both bacteria largely overlap, however the number of genes regulated and magnitude of regulation is more important when P. anserina survives. Transcriptional responses to bacteria also overlap with the VI reaction for both up or down regulated gene sets. Genes up regulated tend to be clustered in the genome, and display limited phylogenetic distribution. In all three responses we observed genes related to autophagy to be up-regulated. Autophagy contributes to the fungal survival in all three conditions. Genes encoding for secondary metabolites and histidine kinase signaling are also up regulated in all three conditions. Transcriptional responses also display differences. Genes involved in response to oxidative stress, or encoding small secreted proteins are essentially expressed in response to bacteria, while genes encoding NLR proteins are expressed during VI. Most functions encoded in response to bacteria favor survival of the fungus while most

  13. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors

    PubMed Central

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L.; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E.; Cuny, Gregory D.; Uhlig, Holm H.; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N.

    2015-01-01

    Summary RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. PMID:26320862

  14. Regulation of GPR119 receptor activity with endocannabinoid-like lipids.

    PubMed

    Syed, Samreen K; Bui, Hai Hoang; Beavers, Lisa S; Farb, Thomas B; Ficorilli, James; Chesterfield, Amy K; Kuo, Ming-Shang; Bokvist, Krister; Barrett, David G; Efanov, Alexander M

    2012-12-15

    The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119. Another lipid, 2-oleoylglycerol (2-OG), also activated GPR119 receptor but with significantly lower potency. Endogenous levels of endocannabinoid-like lipids were measured in intestine in fasted and refed mice. Of the lipid GPR119 agonists studied, the intestinal levels of only OEA, LEA, and 2-OG increased significantly upon refeeding. Intestinal levels of OEA and LEA in the fasted mice were low. In the fed state, OEA levels only moderately increased, whereas LEA levels rose drastically. 2-OG was the most abundant of the three GPR119 agonists in intestine, and its levels were radically elevated in fed mice. Our data suggest that, in lean mice, 2-OG and LEA may serve as physiologically relevant endogenous GPR119 agonists that mediate receptor activation upon nutrient uptake.

  15. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells

    PubMed Central

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N.; Melo, Rómulo; Oyarzún, Carlos; Martín, Rody San; Quezada, Claudia

    2016-01-01

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs. PMID:27634913

  16. Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells.

    PubMed

    Torres, Angelo; Vargas, Yosselyn; Uribe, Daniel; Jaramillo, Catherine; Gleisner, Alejandra; Salazar-Onfray, Flavio; López, Mercedes N; Melo, Rómulo; Oyarzún, Carlos; San Martín, Rody; Quezada, Claudia

    2016-10-11

    MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.

  17. G908R NOD2 variant in a family with sarcoidosis.

    PubMed

    Besnard, Valérie; Calender, Alain; Bouvry, Diane; Pacheco, Yves; Chapelon-Abric, Catherine; Jeny, Florence; Nunes, Hilario; Planès, Carole; Valeyre, Dominique

    2018-03-20

    Sarcoidosis is a systemic disease characterized by the formation of immune granulomas in various organs, mainly the lungs and the lymphatic system. Exaggerated granulomatous reaction might be triggered in response to unidentified antigens in individuals with genetic susceptibility. The present study aimed to determine the genetic variants implicated in a familial case of sarcoidosis. Sarcoidosis presentation and history, NOD2 profile, NF-κB and cytokine production in blood monocytes/macrophages were evaluated in individuals from a family with late appearance of sarcoidosis. In the present study, we report a case of familial sarcoidosis with typical thoracic sarcoidosis and carrying the NOD2 2722G > C variant. This variant is associated with the presence of three additional SNPs for the IL17RA, KALRN and EPHA2 genes, which discriminate patients expressing the disease from others. Despite a decrease in NF-κB activity, IL-8 and TNF-A mRNA levels were increased at baseline and in stimulated conditions. Combination of polymorphisms in the NOD2, IL17RA, EPHA2 and KALRN genes could play a significant role in the development of sarcoidosis by maintaining a chronic pro-inflammatory status in macrophages.

  18. Concurrent synthesis and release of nod-gene-inducing flavonoids from alfalfa roots. [Medicago sativa L. ; Rhizobium meliloti

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maxwell, C.A.; Phillips, D.A.

    Flavonoid signals from alfalfa (Medicago sativa L.) induce transcription of nodulation (nod) genes in Rhizobium meliloti. Alfalfa roots release three major nod-gene inducers: 4{prime},7-dihydroxyflavanone, 4{prime},7-dihydroxyflavone, and 4,4{prime}-dihydroxy-2{prime}-methoxychalcone. The objective of the present study was to define temporal relationships between synthesis and exudation for those flavonoids. Requirements for concurrent flavonoid biosynthesis were assessed by treating roots of intact alfalfa seedlings with (U-{sup 14}C)-L-phenylalanine in the presence or absence of the phenylalanine ammonia-lyase inhibitor L-2-aminoxy-3-phenylpropionic acid (AOPP). In the absence of AOPP, each of the three flavonoids in exudates contained {sup 14}C. In the presence of AOPP, {sup 14}C labeling and releasemore » of all the exuded nod-gene inducers were reduced significantly. AOPP inhibited labeling and release of the strongest nod-gene inducer, methoxychalcone, by more than 90%. The release process responsible for exudation of nod-gene inducers appears to be specific rather than a general phenomenon such as a sloughing off of cells during root growth.« less

  19. Human umbilical cord blood mesenchymal stem cells reduce colitis in mice by activating NOD2 signaling to COX2.

    PubMed

    Kim, Hyung-Sik; Shin, Tae-Hoon; Lee, Byung-Chul; Yu, Kyung-Rok; Seo, Yoojin; Lee, Seunghee; Seo, Min-Soo; Hong, In-Sun; Choi, Soon Won; Seo, Kwang-Won; Núñez, Gabriel; Park, Jong-Hwan; Kang, Kyung-Sun

    2013-12-01

    Decreased levels or function of nucleotide-binding oligomerization domain 2 (NOD2) are associated with Crohn's disease. NOD2 regulates intestinal inflammation, and also is expressed by human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs), to regulate their differentiation. We investigated whether NOD2 is required for the anti-inflammatory activities of MSCs in mice with colitis. Colitis was induced in mice by administration of dextran sulfate sodium or trinitrobenzene sulfonic acid. Mice then were given intraperitoneal injections of NOD2-activated hUCB-MSCs; colon tissues and mesenteric lymph nodes were collected for histologic analyses. A bromodeoxyuridine assay was used to determine the ability of hUCB-MSCs to inhibit proliferation of human mononuclear cells in culture. Administration of hUCB-MSCs reduced the severity of colitis in mice. The anti-inflammatory effects of hUCB-MSCs were greatly increased by activation of NOD2 by its ligand, muramyl dipeptide (MDP). Administration of NOD2-activated hUCB-MSCs increased anti-inflammatory responses in colons of mice, such as production of interleukin (IL)-10 and infiltration by T regulatory cells, and reduced production of inflammatory cytokines. Proliferation of mononuclear cells was inhibited significantly by co-culture with hUCB-MSCs that had been stimulated with MDP. MDP induced prolonged production of prostaglandin (PG)E2 in hUCB-MSCs via the NOD2-RIP2 pathway, which suppressed proliferation of mononuclear cells derived from hUCB. PGE2 produced by hUCB-MSCs in response to MDP increased production of IL-10 and T regulatory cells. In mice, production of PGE2 by MSCs and subsequent production of IL-10 were required to reduce the severity of colitis. Activation of NOD2 is required for the ability of hUCB-MSCs to reduce the severity of colitis in mice. NOD2 signaling increases the ability of these cells to suppress mononuclear cell proliferation by inducing production of PGE2. Copyright © 2013 AGA

  20. Maize Homologs of CCoAOMT and HCT, Two Key Enzymes in Lignin Biosynthesis, Form Complexes with the NLR Rp1 Protein to Modulate the Defense Response.

    PubMed

    Wang, Guan-Feng; Balint-Kurti, Peter J

    2016-07-01

    Disease resistance (R) genes encode nucleotide binding Leu-rich-repeat (NLR) proteins that confer resistance to specific pathogens. Upon pathogen recognition they trigger a defense response that usually includes a so-called hypersensitive response (HR), a rapid localized cell death at the site of pathogen infection. Intragenic recombination between two maize (Zea mays) NLRs, Rp1-D and Rp1-dp2, resulted in the formation of a hybrid NLR, Rp1-D21, which confers an autoactive HR in the absence of pathogen infection. From a previous quantitative trait loci and genome-wide association study, we identified genes encoding two key enzymes in lignin biosynthesis, hydroxycinnamoyltransferase (HCT) and caffeoyl CoA O-methyltransferase (CCoAOMT), adjacent to the nucleotide polymorphisms that were highly associated with variation in the severity of Rp1-D21-induced HR We have previously shown that the two maize HCT homologs suppress the HR conferred by Rp1-D21 in a heterologous system, very likely through physical interaction. Here, we show, similarly, that CCoAOMT2 suppresses the HR induced by either the full-length or by the N-terminal coiled-coil domain of Rp1-D21 also likely via physical interaction and that the metabolic activity of CCoAOMT2 is unlikely to be necessary for its role in suppressing HR. We also demonstrate that CCoAOMT2, HCTs, and Rp1 proteins can form in the same complexes. A model is derived to explain the roles of CCoAOMT and HCT in Rp1-mediated defense resistance. © 2016 American Society of Plant Biologists. All Rights Reserved.

  1. First description of NOD2 variant associated with defective neutrophil responses in a woman with granulomatous mastitis related to corynebacteria.

    PubMed

    Bercot, Béatrice; Kannengiesser, Caroline; Oudin, Claire; Grandchamp, Bernard; Sanson-le Pors, Marie-José; Mouly, Stéphane; Elbim, Carole

    2009-09-01

    We report the first case of granulomatous mastitis due to Corynebacterium kroppenstedtii linked to strongly impaired neutrophil responses to Nod2 agonist and a single nucleotide polymorphism within the NOD2 gene (SNP13 [Leu1007fsinsC]) in a heterozygous state. These findings provided the first demonstration of impaired Nod2 function associated with corynebacterial infection.

  2. Molecular and biochemical analysis of symbiotic plant receptor kinase complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Douglas R; Riely, Brendan K

    DE-FG02-01ER15200 was a 36-month project, initiated on Sept 1, 2005 and extended with a one-year no cost extension to August 31, 2009. During the project period we published seven manuscripts (2 in review). Including the prior project period (2002-2005) we published 12 manuscripts in journals that include Science, PNAS, The Plant Cell, Plant Journal, Plant Physiology, and MPMI. The primary focus of this work was to further elucidate the function of the Nod factor signaling pathway that is involved in initiation of the legume-rhizobium symbiosis and in particular to explore the relationship between receptor kinase-like proteins and downstream effectors ofmore » symbiotic development. During the project period we have map-base cloned two additional players in symbiotic development, including an ERF transcription factor and an ethylene pathway gene (EIN2) that negatively regulates symbiotic signaling; we have also further characterized the subcellular distribution and function of a nuclear-localized symbiosis-specific ion channel, DMI1. The major outcome of the work has been the development of systems for exploring and validating protein-protein interactions that connect symbiotic receptor-like proteins to downstream responses. In this regard, we have developed both homologous (i.e., in planta) and heterologous (i.e., in yeast) systems to test protein interactions. Using yeast 2-hybrid screens we isolated the only known interactor of the nuclear-localized calcium-responsive kinase DMI3. We have also used yeast 2-hybrid methodology to identify interactions between symbiotic signaling proteins and certain RopGTPase/RopGEF proteins that regulate root hair polar growth. More important to the long-term goals of our work, we have established a TAP tagging system that identifies in planta interactions based on co-immuno precipitation and mass spectrometry. The validity of this approach has been shown using known interactors that either co-iummnoprecipate (i.e., remorin) or

  3. RIP2 Is a Critical Regulator for NLRs Signaling and MHC Antigen Presentation but Not for MAPK and PI3K/Akt Pathways.

    PubMed

    Wu, Xiao Man; Chen, Wen Qin; Hu, Yi Wei; Cao, Lu; Nie, Pin; Chang, Ming Xian

    2018-01-01

    RIP2 is an adaptor protein which is essential for the activation of NF-κB and NOD1- and NOD2-dependent signaling. Although NOD-RIP2 axis conservatively existed in the teleost, the function of RIP2 was only reported in zebrafish, goldfish, and rainbow trout in vitro . Very little is known about the role and mechanisms of piscine NOD-RIP2 axis in vivo . Our previous study showed the protective role of zebrafish NOD1 in larval survival through CD44a-mediated activation of PI3K-Akt signaling. In this study, we examined whether RIP2 was required for larval survival with or without pathogen infection, and determined the signaling pathways modulated by RIP2. Based on our previous report and the present study, our data demonstrated that NOD1-RIP2 axis was important for larval survival in the early ontogenesis. Similar to NOD1, RIP2 deficiency significantly affected immune system processes. The significantly enriched pathways were mainly involved in immune system, such as "Antigen processing and presentation" and "NOD-like receptor signaling pathway" and so on. Furthermore, both transcriptome analysis and qRT-PCR revealed that RIP2 was a critical regulator for expression of NLRs (NOD-like receptors) and those genes involved in MHC antigen presentation. Different from NOD1, the present study showed that NOD1, but not RIP2 deficiency significantly impaired protein levels of MAPK pathways. Although RIP2 deficiency also significantly impaired the expression of CD44a, the downstream signaling of CD44a-Lck-PI3K-Akt pathway remained unchanged. Collectively, our works highlight the similarity and discrepancy of NOD1 and RIP2 in the regulation of immune signaling pathways in the zebrafish early ontogenesis, and confirm the crucial role of RIP2 in NLRs signaling and MHC antigen presentation, but not for MAPK and PI3K/Akt pathways.

  4. Lymphotoxin-beta receptor blockade reduces CXCL13 in lacrimal glands and improves corneal integrity in the NOD model of Sjögren's syndrome

    PubMed Central

    2011-01-01

    Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than

  5. MCC950, the Selective Inhibitor of Nucleotide Oligomerization Domain-Like Receptor Protein-3 Inflammasome, Protects Mice against Traumatic Brain Injury.

    PubMed

    Ismael, Saifudeen; Nasoohi, Sanaz; Ishrat, Tauheed

    2018-06-01

    Nucleotide oligomerization domain (NOD)-like receptor protein-3 (NLRP3) inflammasome may intimately contribute to sustaining damage after traumatic brain injury (TBI). This study aims to examine whether specific modulation of NLPR3 inflammasome by MCC950, a novel selective NLRP3 inhibitor, confers protection after experimental TBI. Unilateral cortical impact injury was induced in young adult C57BL/6 mice. MCC950 (50 mg/kg, intraperitoneally) or saline was administration at 1 and 3 h post-TBI. Animals were tested for neurological function and then sacrificed at 24 or 72 h post-TBI. Immunoblotting and histological analysis were performed to identify markers of NLRP3 inflammasome and proapoptotic activity in pericontusional areas of the brains at 24 or 72 h post-TBI. MCC950 treatment provided a significant improvement in neurological function and reduced cerebral edema in TBI animals. TBI upregulated NLRP3, apoptosis-associated speck-like adapter protein (ASC), cleaved caspase-1, and interlukein-1β (IL-1β) in the perilesional area. MCC950 efficiently repressed caspase-1 and IL-1β with a transient effect on ASC and NLRP3 post-TBI. MCC950 treatment also provided protection against proapoptotic activation of poly (ADP-ribose) polymerase and caspase-3 associated with TBI. A concurrent inhibition of inflammasome priming was also detectable at the nuclear factor kappa B/p65 and caspase-1 level. Our findings support the implication of NLRP3 inflammasome in the pathogenesis of TBI and further suggests the therapeutic potential of MCC950.

  6. Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene.

    PubMed

    Hanin, M; Jabbouri, S; Quesada-Vincens, D; Freiberg, C; Perret, X; Promé, J C; Broughton, W J; Fellay, R

    1997-06-01

    Rhizobia secrete specific lipo-chitooligosaccharide signals (LCOs) called Nod factors that are required for infection and nodulation of legumes. In Rhizobium sp. NGR234, the reducing N-acetyl-D-glucosamine of LCOs is substituted at C6 with 2-O-methyl-L-fucose which can be acetylated or sulphated. We identified a flavonoid-inducible locus on the symbiotic plasmid pNGR234a that contains a new nodulation gene, noeE, which is required for the sulphation of NGR234 Nod factors (NodNGR). noeE was identified by conjugation into the closely related Rhizobium fredii strain USDA257, which produces fucosylated but non-sulphated Nod factors (NodUSDA). R. fredii transconjugants producing sulphated LCOs acquire the capacity to nodulate Calopogonium caeruleum. Furthermore, mutation of noeE (NGRdelta noeE) abolishes the production of sulphated LCOs and prevents nodulation of Pachyrhizus tuberosus. The sulphotransferase activity linked to NoeE is specific for fucose. In contrast, the sulphotransferase NodH of Rhizobium meliloti seems to be less specific than NoeE, because its introduction into NGRdelta noeE leads to the production of a mixture of LCOs that are sulphated on C6 of the reducing terminus and sulphated on the 2-O-methylfucose residue. Together, these findings show that noeE is a host-specificity gene which probably encodes a fucose-specific sulphotransferase.

  7. A cluster of coregulated genes determines TGF-β–induced regulatory T-cell (Treg) dysfunction in NOD mice

    PubMed Central

    D'Alise, Anna Morena; Ergun, Ayla; Hill, Jonathan A.; Mathis, Diane; Benoist, Christophe

    2011-01-01

    Foxp3+ regulatory T cells (Tregs) originate in the thymus, but the Treg phenotype can also be induced in peripheral lymphoid organs or in vitro by stimulation of conventional CD4+ T cells with IL-2 and TGF-β. There have been divergent reports on the suppressive capacity of these TGF-Treg cells. We find that TGF-Tregs derived from diabetes-prone NOD mice, although expressing normal Foxp3 levels, are uniquely defective in suppressive activity, whereas TGF-Tregs from control strains (B6g7) or ex vivo Tregs from NOD mice all function normally. Most Treg-typical transcripts were shared by NOD or B6g7 TGF-Tregs, except for a small group of differentially expressed genes, including genes relevant for suppressive activity (Lrrc32, Ctla4, and Cd73). Many of these transcripts form a coregulated cluster in a broader analysis of T-cell differentiation. The defect does not map to idd3 or idd5 regions. Whereas Treg cells from NOD mice are normal in spleen and lymph nodes, the NOD defect is observed in locations that have been tied to pathogenesis of diabetes (small intestine lamina propria and pancreatic lymph node). Thus, a genetic defect uniquely affects a specific Treg subpopulation in NOD mice, in a manner consistent with a role in determining diabetes susceptibility. PMID:21543717

  8. Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells.

    PubMed

    Serreze, D V; Leiter, E H; Hanson, M S; Christianson, S W; Shultz, L D; Hesselton, R M; Greiner, D L

    1995-12-01

    When used as hosts in passive transfer experiments, a stock of NOD/Lt mice congenic for the severe combined immunodeficiency (scid) mutation have provided great insight to the contributions of various T-cell populations in the pathogenesis of autoimmune insulin-dependent diabetes mellitus (IDDM). Moreover, NOD-scid mice support higher levels of human lymphohematopoietic cell growth than the C.B-17-scid strain in which the mutation originated. However, the ability to perform long-term lymphohematopoietic repopulation studies in the NOD-scid stock has been limited by the fact that most of these mice develop lethal thymic lymphomas beginning at 20 weeks of age. These thymic lymphomas are characterized by activation and subsequent genomic reintegrations of Emv30, an endogenous murine ecotropic retrovirus unique to the NOD genome. To test the role of this endogenous retrovirus in thymomagenesis, we produced a stock of Emv30null NOD-scid mice by congenic replacement of the proximal end of chromosome 11 with genetic material derived from the closely related NOR/Lt strain. Thymic lymphomas still initiate in Emv30null NOD-scid females, but their rate of progression is significantly retarded since the frequency of tumors weighing between 170 and 910 mg at 25 weeks of age was reduced to 20.8% vs. 76.2% in Emv30% segregants. The thymic lymphomas that did develop in Emv30null NOD-scid mice were not characterized by a compensatory increase in mink cell focus-forming proviral integrations, which initiate thymomagenesis in other susceptible mouse strains. Significantly, the ability of standard NOD T-cells to transfer IDDM to the Emv30null NOD-scid stock was not impaired.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Detection of Inflammasome Activation and Pyroptotic Cell Death in Murine Bone Marrow-derived Macrophages.

    PubMed

    den Hartigh, Andreas B; Fink, Susan L

    2018-05-21

    Inflammasomes are innate immune signaling platforms that are required for the successful control of many pathogenic organisms, but also promote inflammatory and autoinflammatory diseases. Inflammasomes are activated by cytosolic pattern recognition receptors, including members of the NOD-like receptor (NLR) family. These receptors oligomerize upon the detection of microbial or damage-associated stimuli. Subsequent recruitment of the adaptor protein ASC forms a microscopically visible inflammasome complex, which activates caspase-1 through proximity-induced auto-activation. Following the activation, caspase-1 cleaves pro-IL-1β and pro-IL-18, leading to the activation and secretion of these pro-inflammatory cytokines. Caspase-1 also mediates the inflammatory form of cell death termed pyroptosis, which features the loss of membrane integrity and cell lysis. Caspase-1 cleaves gasdermin D, releasing the N-terminal fragment which forms plasma membrane pores, leading to osmotic lysis. In vitro, the activation of caspase-1 can be determined by labeling bone marrow-derived macrophages with the caspase-1 activity probe FAM-YVAD-FMK and by labeling the cells with antibodies against the adaptor protein ASC. This technique allows the identification of inflammasome formation and caspase-1 activation in individual cells using fluorescence microscopy. Pyroptotic cell death can be detected by measuring the release of cytosolic lactate dehydrogenase into the medium. This procedure is simple, cost effective and performed in a 96-well plate format, allowing adaptation for screening. In this manuscript, we show that activation of the NLRP3 inflammasome by nigericin leads to the co-localization of the adaptor protein ASC and active caspase-1, leading to pyroptosis.

  10. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen

    PubMed Central

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M. L.; Bauer, Saskia; Ellwood, Simon R.; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-01-01

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVRa gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVRa genes and identified AVRa1 and AVRa13, encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVRa1 and AVRa13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVRA1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVRA1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVRA1. Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation. PMID:27702901

  11. Allelic barley MLA immune receptors recognize sequence-unrelated avirulence effectors of the powdery mildew pathogen.

    PubMed

    Lu, Xunli; Kracher, Barbara; Saur, Isabel M L; Bauer, Saskia; Ellwood, Simon R; Wise, Roger; Yaeno, Takashi; Maekawa, Takaki; Schulze-Lefert, Paul

    2016-10-18

    Disease-resistance genes encoding intracellular nucleotide-binding domain and leucine-rich repeat proteins (NLRs) are key components of the plant innate immune system and typically detect the presence of isolate-specific avirulence (AVR) effectors from pathogens. NLR genes define the fastest-evolving gene family of flowering plants and are often arranged in gene clusters containing multiple paralogs, contributing to copy number and allele-specific NLR variation within a host species. Barley mildew resistance locus a (Mla) has been subject to extensive functional diversification, resulting in allelic resistance specificities each recognizing a cognate, but largely unidentified, AVR a gene of the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). We applied a transcriptome-wide association study among 17 Bgh isolates containing different AVR a genes and identified AVR a1 and AVR a13 , encoding candidate-secreted effectors recognized by Mla1 and Mla13 alleles, respectively. Transient expression of the effector genes in barley leaves or protoplasts was sufficient to trigger Mla1 or Mla13 allele-specific cell death, a hallmark of NLR receptor-mediated immunity. AVR a1 and AVR a13 are phylogenetically unrelated, demonstrating that certain allelic MLA receptors evolved to recognize sequence-unrelated effectors. They are ancient effectors because corresponding loci are present in wheat powdery mildew. AVR A1 recognition by barley MLA1 is retained in transgenic Arabidopsis, indicating that AVR A1 directly binds MLA1 or that its recognition involves an evolutionarily conserved host target of AVR A1 Furthermore, analysis of transcriptome-wide sequence variation among the Bgh isolates provides evidence for Bgh population structure that is partially linked to geographic isolation.

  12. Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis.

    PubMed

    Shiu, Shin Han; Bleecker, Anthony B

    2003-06-01

    Receptor-like kinases (RLKs) are a family of transmembrane proteins with versatile N-terminal extracellular domains and C-terminal intracellular kinases. They control a wide range of physiological responses in plants and belong to one of the largest gene families in the Arabidopsis genome with more than 600 members. Interestingly, this gene family constitutes 60% of all kinases in Arabidopsis and accounts for nearly all transmembrane kinases in Arabidopsis. Analysis of four fungal, six metazoan, and two Plasmodium sp. genomes indicates that the family was represented in all but fungal genomes, indicating an ancient origin for the family with a more recent expansion only in the plant lineages. The RLK/Pelle family can be divided into several subfamilies based on three independent criteria: the phylogeny based on kinase domain sequences, the extracellular domain identities, and intron locations and phases. A large number of receptor-like proteins (RLPs) resembling the extracellular domains of RLKs are also found in the Arabidopsis genome. However, not all RLK subfamilies have corresponding RLPs. Several RLK/Pelle subfamilies have undergone differential expansions. More than 33% of the RLK/Pelle members are found in tandem clusters, substantially higher than the genome average. In addition, 470 of the RLK/Pelle family members are located within the segmentally duplicated regions in the Arabidopsis genome and 268 of them have a close relative in the corresponding regions. Therefore, tandem duplications and segmental/whole-genome duplications represent two of the major mechanisms for the expansion of the RLK/Pelle family in Arabidopsis.

  13. Activation of RIG-I-like Receptor Signal Transduction

    PubMed Central

    Bruns, Annie; Horvath, Curt M.

    2011-01-01

    Mammalian cells have the ability to recognize virus infection and mount a powerful antiviral response. Pattern recognition receptor proteins detect molecular signatures of virus infection and activate antiviral signaling cascades. The RIG-I-like receptors are cytoplasmic DExD/H box proteins that can specifically recognize virus-derived RNA species as a molecular feature discriminating the pathogen from the host. The RIG-I-like receptor family is composed of three homologous proteins, RIG-I, MDA5, and LGP2. All of these proteins can bind double-stranded RNA species with varying affinities via their conserved DExD/H box RNA helicase domains and C-terminal regulatory domains. The recognition of foreign RNA by the RLRs activates enzymatic functions and initiates signal transduction pathways resulting in the production of antiviral cytokines and the establishment of a broadly effective cellular antiviral state that protects neighboring cells from infection and triggers innate and adaptive immune systems. The propagation of this signal via the interferon antiviral system has been studied extensively, while the precise roles for enzymatic activities of the RNA helicase domain in antiviral responses are only beginning to be elucidated. Here, current models for RLR ligand recognition and signaling are reviewed. PMID:22066529

  14. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors.

    PubMed

    Canning, Peter; Ruan, Qui; Schwerd, Tobias; Hrdinka, Matous; Maki, Jenny L; Saleh, Danish; Suebsuwong, Chalada; Ray, Soumya; Brennan, Paul E; Cuny, Gregory D; Uhlig, Holm H; Gyrd-Hansen, Mads; Degterev, Alexei; Bullock, Alex N

    2015-09-17

    RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Toll-Like Receptors in Secondary Obstructive Cholangiopathy

    PubMed Central

    Miranda-Díaz, A. G.; Alonso-Martínez, H.; Hernández-Ojeda, J.; Arias-Carvajal, O.; Rodríguez-Carrizalez, A. D.; Román-Pintos, L. M.

    2011-01-01

    Secondary obstructive cholangiopathy is characterized by intra- or extrahepatic bile tract obstruction. Liver inflammation and structural alterations develop due to progressive bile stagnation. Most frequent etiologies are biliary atresia in children, and hepatolithiasis, postcholecystectomy bile duct injury, and biliary primary cirrhosis in adults, which causes chronic biliary cholangitis. Bile ectasia predisposes to multiple pathogens: viral infections in biliary atresia; Gram-positive and/or Gram-negative bacteria cholangitis found in hepatolithiasis and postcholecystectomy bile duct injury. Transmembrane toll-like receptors (TLRs) are activated by virus, bacteria, fungi, and parasite stimuli. Even though TLR-2 and TLR-4 are the most studied receptors related to liver infectious diseases, other TLRs play an important role in response to microorganism damage. Acquired immune response is not vertically transmitted and reflects the infectious diseases history of individuals; in contrast, innate immunity is based on antigen recognition by specific receptors designated as pattern recognition receptors and is transmitted vertically through the germ cells. Understanding the mechanisms for bile duct inflammation is essential for the future development of therapeutic alternatives in order to avoid immune-mediated destruction on secondary obstructive cholangiopathy. The role of TLRs in biliary atresia, hepatolithiasis, bile duct injury, and primary biliary cirrhosis is described in this paper. PMID:22114589

  16. Aberrant dopamine D2-like receptor function in a rodent model of schizophrenia.

    PubMed

    Perez, Stephanie M; Lodge, Daniel J

    2012-11-01

    Based on the observation that antipsychotic medications display antagonist properties at dopamine D2-like receptors, aberrant dopamine signaling has been proposed to underlie psychosis in patients with schizophrenia. Thus, it is not surprising that considerable research has been devoted to understanding the mechanisms involved in the antipsychotic action of these compounds. It is important to note that the majority of these studies have been performed in "normal" experimental animals. Given that these animals do not possess the aberrant neuronal information processing typically associated with schizophrenia, the aim of the current study was to examine the dopamine D2 receptor system in a rodent model of schizophrenia. Here, we demonstrate that methylazoxymethanol acetate (MAM)-treated rats display an enhanced effect of quinpirole on dopamine neuron activity and an aberrant locomotor response to D2-like receptor activation, suggesting changes in postsynaptic D2-like receptor function. To better understand the mechanisms underlying the enhanced response to D2-like ligands in MAM-treated rats, we examined the expression of D2, D3, and dopamine transporter mRNA in the nucleus accumbens and ventral tegmental area by quantitative reverse transcription-polymerase chain reaction. MAM-treated rats displayed a significant increase in dopamine D3 receptor mRNA expression in the nucleus accumbens with no significant changes in the expression of the D2 receptor. Taken together, these data demonstrate robust alterations in dopamine D2-like receptor function in a rodent model of schizophrenia and provide evidence that preclinical studies examining the mechanisms of antipsychotic drug action should be performed in animal models that mirror aspects of the abnormal neuronal transmission thought to underlie symptoms of schizophrenia.

  17. ‘You sit in fear’: understanding perceptions of nodding syndrome in post-conflict northern Uganda

    PubMed Central

    Buchmann, Kristine

    2014-01-01

    Background Nodding syndrome, a disabling epidemic epileptic encephalopathy, has affected an estimated 1,834 children in northern Uganda, with reports of as many as 3,000. Etiology is unknown and children are being treated symptomatically but inconsistently with anti-epileptic drugs. Design This qualitative study comprised 10 semi-structured interviews with caregivers of affected children and five focus group discussions with 23 participants; relatives, teachers, and religious leaders. Data collection and participant observation were carried out from July to September 2012 in Kitgum and Pader districts. The material was coded through inductive thematic analysis. Results Nodding syndrome has brought signs of discrimination in school admission procedures, founded in a fear of transmission. The suffering and loss caused by nodding syndrome is collective, and participants felt that nodding syndrome was viewed as a threat to the Acholi only, and that interventions had therefore been delayed. Multiple theories of causation exist, most commonly that the disease is caused by chemicals from bombs or that food aid distributed in IDP camps had expired or been poisoned. A feeling of uncertainty was present in all focus group discussions, fueled by the fact that results of investigations were not being shared with the communities. It was especially agonizing that CDC results had been given to the Ugandan government in 2010 but not to the public. The definitive fear is that the disease will be the end of the Acholi. Conclusions This study provided insight into the perceptions of communities affected by an unknown emerging disease. Families of affected children are grieving not only their child's illness; it is a loss of social value and of lineage. The loss and suffering involved with nodding syndrome should be seen in the context of the wider suffering of a society disrupted by violent conflict. The memory of war is omnipresent and is also how nodding syndrome is understood

  18. Inflammation in Alzheimer's disease: amyloid-beta oligomers trigger innate immunity defence via pattern recognition receptors.

    PubMed

    Salminen, Antero; Ojala, Johanna; Kauppinen, Anu; Kaarniranta, Kai; Suuronen, Tiina

    2009-02-01

    The inflammatory process has a fundamental role in the pathogenesis of Alzheimer's disease (AD). Recent studies indicate that inflammation is not merely a bystander in neurodegeneration but a powerful pathogenetic force in the disease process. Increased production of amyloid-beta peptide species can activate the innate immunity system via pattern recognition receptors (PRRs) and evoke Alzheimer's pathology. We will focus on the role of innate immunity system of brain in the initiation and the propagation of inflammatory process in AD. We examine here in detail the significance of amyloid-beta oligomers and fibrils as danger-associated molecular patterns (DAMPs) in the activation of a wide array of PRRs in glial cells and neurons, such as Toll-like, NOD-like, formyl peptide, RAGE and scavenger receptors along with complement and pentraxin systems. We also characterize the signaling pathways triggered by different PRRs in evoking inflammatory responses. In addition, we will discuss whether AD pathology could be the outcome of chronic activation of the innate immunity defence in the brain of AD patients.

  19. Assessment of Benzene-Induced Hematotoxicity Using a Human-Like Hematopoietic Lineage in NOD/Shi-scid/IL-2Rγnull Mice

    PubMed Central

    Takahashi, Masayuki; Tsujimura, Noriyuki; Yoshino, Tomoko; Hosokawa, Masahito; Otsuka, Kensuke; Matsunaga, Tadashi; Nakasono, Satoshi

    2012-01-01

    Despite recent advancements, it is still difficult to evaluate in vivo responses to toxicants in humans. Development of a system that can mimic the in vivo responses of human cells will enable more accurate health risk assessments. A surrogate human hematopoietic lineage can be established in NOD/Shi-scid/IL-2Rγnull (NOG) mice by transplanting human hematopoietic stem/progenitor cells (Hu-NOG mice). Here, we first evaluated the toxic response of human-like hematopoietic lineage in NOG mice to a representative toxic agent, benzene. Flow cytometric analysis showed that benzene caused a significant decrease in the number of human hematopoietic stem/progenitor cells in the bone marrow and the number of human leukocytes in the peripheral blood and hematopoietic organs. Next, we established chimeric mice by transplanting C57BL/6 mouse-derived bone marrow cells into NOG mice (Mo-NOG mice). A comparison of the degree of benzene-induced hematotoxicity in donor-derived hematopoietic lineage cells within Mo-NOG mice indicated that the toxic response of Hu-NOG mice reflected interspecies differences in susceptibilities to benzene. Responses to the toxic effects of benzene were greater in lymphoid cells than in myeloid cells in Mo-NOG and Hu-NOG mice. These findings suggested that Hu-NOG mice may be a powerful in vivo tool for assessing hematotoxicity in humans, while accounting for interspecies differences. PMID:23226520

  20. Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets

    PubMed Central

    Naumov, Yuri N.; Bahjat, Keith S.; Gausling, Rudolph; Abraham, Roshini; Exley, Mark A.; Koezuka, Yasuhiko; Balk, Steven B.; Strominger, Jack L.; Clare-Salzer, Michael; Wilson, S. Brian

    2001-01-01

    CD1d-restricted invariant NKT (iNKT) cells are immunoregulatory cells whose loss exacerbates diabetes in nonobese diabetic (NOD) female mice. Here, we show that the relative numbers of iNKT cells from the pancreatic islets of NOD mice decrease at the time of conversion from peri-insulitis to invasive insulitis and diabetes. Conversely, NOD male mice who have a low incidence of diabetes showed an increased frequency of iNKT cells. Moreover, administration of α-galactosylceramide, a potent activating ligand presented by CD1d, ameliorated the development of diabetes in NOD female mice and resulted in the accumulation of iNKT cells and myeloid dendritic cells (DC) in pancreatic lymph nodes (PLN), but not in inguinal lymph nodes. Strikingly, injection of NOD female mice with myeloid DC isolated from the PLN, but not those from the inguinal lymph nodes, completely prevented diabetes. Thus, the immunoregulatory role of iNKT cells is manifested by the recruitment of tolerogenic myeloid DC to the PLN and the inhibition of ongoing autoimmune inflammation. PMID:11707602

  1. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor.

    PubMed

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J; DeVree, Brian T; Yang, Yang; Sunahara, Roger K; Yan, Elsa C Y

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms.

  2. Purification of family B G protein-coupled receptors using nanodiscs: Application to human glucagon-like peptide-1 receptor

    PubMed Central

    Cai, Yingying; Liu, Yuting; Culhane, Kelly J.; DeVree, Brian T.; Yang, Yang; Sunahara, Roger K.; Yan, Elsa C. Y.

    2017-01-01

    Family B G protein-coupled receptors (GPCRs) play vital roles in hormone-regulated homeostasis. They are drug targets for metabolic diseases, including type 2 diabetes and osteoporosis. Despite their importance, the signaling mechanisms for family B GPCRs at the molecular level remain largely unexplored due to the challenges in purification of functional receptors in sufficient amount for biophysical characterization. Here, we purified the family B GPCR human glucagon-like peptide-1 (GLP-1) receptor (GLP1R), whose agonists, e.g. exendin-4, are used for the treatment of type 2 diabetes mellitus. The receptor was expressed in HEK293S GnTl- cells using our recently developed protocol. The protocol incorporates the receptor into the native-like lipid environment of reconstituted high density lipoprotein (rHDL) particles, also known as nanodiscs, immediately after the membrane solubilization step followed by chromatographic purification, minimizing detergent contact with the target receptor to reduce denaturation and prolonging stabilization of receptor in lipid bilayers without extra steps of reconstitution. This method yielded purified GLP1R in nanodiscs that could bind to GLP-1 and exendin-4 and activate Gs protein. This nanodisc purification method can potentially be a general strategy to routinely obtain purified family B GPCRs in the 10s of microgram amounts useful for spectroscopic analysis of receptor functions and activation mechanisms. PMID:28609478

  3. Cannabidiol Arrests Onset of Autoimmune Diabetes in NOD Mice

    PubMed Central

    Weiss, Lola; Zeira, Michael; Reich, Shoshana; Slavin, Shimon; Raz, Itamar; Mechoulam, Raphael; Gallily, Ruth

    2008-01-01

    We have previously reported that cannabidiol (CBD) lowers the incidence of diabetes in young non-obese diabetes-prone (NOD) female mice. In the present study we show that administration of CBD to 11–14 week old female NOD mice, which are either in a latent diabetes stage or with initial symptoms of diabetes, ameliorates the manifestations of the disease. Diabetes was diagnosed in only 32% of the mice in the CBD-treated group, compared to 86% and 100% in the emulsifier-treated and untreated groups, respectively. In addition, the level of the proinflammatory cytokine IL-12 produced by splenocytes was significantly reduced, whereas the level of the anti-inflammatory IL-10 was significantly elevated following CBD-treatment. Histological examination of the pancreata of CBD-treated mice revealed more intact islets than in the controls. Our data strengthen our previous assumption that CBD, known to be safe in man, can possibly be used as a therapeutic agent for treatment of type 1 diabetes. PMID:17714746

  4. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future.

    PubMed

    Chen, Yi-Guang; Mathews, Clayton E; Driver, John P

    2018-01-01

    For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk.

  5. The Role of NOD Mice in Type 1 Diabetes Research: Lessons from the Past and Recommendations for the Future

    PubMed Central

    Chen, Yi-Guang; Mathews, Clayton E.; Driver, John P.

    2018-01-01

    For more than 35 years, the NOD mouse has been the primary animal model for studying autoimmune diabetes. During this time, striking similarities to the human disease have been uncovered. In both species, unusual polymorphisms in a major histocompatibility complex (MHC) class II molecule confer the most disease risk, disease is caused by perturbations by the same genes or different genes in the same biological pathways and that diabetes onset is preceded by the presence of circulating autoreactive T cells and autoantibodies that recognize many of the same islet antigens. However, the relevance of the NOD model is frequently challenged due to past failures translating therapies from NOD mice to humans and because the appearance of insulitis in mice and some patients is different. Nevertheless, the NOD mouse remains a pillar of autoimmune diabetes research for its usefulness as a preclinical model and because it provides access to invasive procedures as well as tissues that are rarely procured from patients or controls. The current article is focused on approaches to improve the NOD mouse by addressing reasons why immune therapies have failed to translate from mice to humans. We also propose new strategies for mixing and editing the NOD genome to improve the model in ways that will better advance our understanding of human diabetes. As proof of concept, we report that diabetes is completely suppressed in a knock-in NOD strain with a serine to aspartic acid substitution at position 57 in the MHC class II Aβ. This supports that similar non-aspartic acid substitutions at residue 57 of variants of the human class II HLA-DQβ homolog confer diabetes risk. PMID:29527189

  6. Divergent Nod-Containing Bradyrhizobium sp. DOA9 with a Megaplasmid and its Host Range

    PubMed Central

    Teamtisong, Kamonluck; Songwattana, Pongpan; Noisangiam, Rujirek; Piromyou, Pongdet; Boonkerd, Nantakorn; Tittabutr, Panlada; Minamisawa, Kiwamu; Nantagij, Achara; Okazaki, Shin; Abe, Mikiko; Uchiumi, Toshiki; Teaumroong, Neung

    2014-01-01

    Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons. PMID:25283477

  7. Morphine-like Opiates Selectively Antagonize Receptor-Arrestin Interactions*

    PubMed Central

    Molinari, Paola; Vezzi, Vanessa; Sbraccia, Maria; Grò, Cristina; Riitano, Daniela; Ambrosio, Caterina; Casella, Ida; Costa, Tommaso

    2010-01-01

    The addictive potential of opioids may be related to their differential ability to induce G protein signaling and endocytosis. We compared the ability of 20 ligands (sampled from the main chemical classes of opioids) to promote the association of μ and δ receptors with G protein or β-arrestin 2. Receptor-arrestin binding was monitored by bioluminescence resonance energy transfer (BRET) in intact cells, where pertussis toxin experiments indicated that the interaction was minimally affected by receptor signaling. To assess receptor-G protein coupling without competition from arrestins, we employed a cell-free BRET assay using membranes isolated from cells expressing luminescent receptors and fluorescent Gβ1. In this system, the agonist-induced enhancement of BRET (indicating shortening of distance between the two proteins) was Gα-mediated (as shown by sensitivity to pertussis toxin and guanine nucleotides) and yielded data consistent with the known pharmacology of the ligands. We found marked differences of efficacy for G protein and arrestin, with a pattern suggesting more restrictive structural requirements for arrestin efficacy. The analysis of such differences identified a subset of structures showing a marked discrepancy between efficacies for G protein and arrestin. Addictive opiates like morphine and oxymorphone exhibited large differences both at δ and μ receptors. Thus, they were effective agonists for G protein coupling but acted as competitive enkephalins antagonists (δ) or partial agonists (μ) for arrestin. This arrestin-selective antagonism resulted in inhibition of short and long term events mediated by arrestin, such as rapid receptor internalization and down-regulation. PMID:20189994

  8. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems

    PubMed Central

    Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E.

    2016-01-01

    ABSTRACT It has recently been suggested that oxygenic dismutation of NO into N2 and O2 may occur in the anaerobic methanotrophic “Candidatus Methylomirabilis oxyfera” and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to “Ca. Methylomirabilis oxyfera” and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from “Ca. Methylomirabilis oxyfera” and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 107 to 5.2 × 1010 copies · g−1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. IMPORTANCE NO dismutation into N2 and O2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium “Ca. Methylomirabilis oxyfera” and

  9. Unexpected Diversity and High Abundance of Putative Nitric Oxide Dismutase (Nod) Genes in Contaminated Aquifers and Wastewater Treatment Systems.

    PubMed

    Zhu, Baoli; Bradford, Lauren; Huang, Sichao; Szalay, Anna; Leix, Carmen; Weissbach, Max; Táncsics, András; Drewes, Jörg E; Lueders, Tillmann

    2017-02-15

    It has recently been suggested that oxygenic dismutation of NO into N 2 and O 2 may occur in the anaerobic methanotrophic "Candidatus Methylomirabilis oxyfera" and the alkane-oxidizing gammaproteobacterium HdN1. It may represent a new pathway in microbial nitrogen cycling catalyzed by a putative NO dismutase (Nod). The formed O 2 enables microbes to employ aerobic catabolic pathways in anoxic habitats, suggesting an ecophysiological niche space of substantial appeal for bioremediation and water treatment. However, it is still unknown whether this physiology is limited to "Ca Methylomirabilis oxyfera" and HdN1 and whether it can be coupled to the oxidation of electron donors other than alkanes. Here, we report insights into an unexpected diversity and remarkable abundance of nod genes in natural and engineered water systems. Phylogenetically diverse nod genes were recovered from a range of contaminated aquifers and N-removing wastewater treatment systems. Together with nod genes from "Ca Methylomirabilis oxyfera" and HdN1, the novel environmental nod sequences formed no fewer than 6 well-supported phylogenetic clusters, clearly distinct from canonical NO reductase (quinol-dependent NO reductase [qNor] and cytochrome c-dependent NO reductase [cNor]) genes. The abundance of nod genes in the investigated samples ranged from 1.6 × 10 7 to 5.2 × 10 10 copies · g -1 (wet weight) of sediment or sludge biomass, accounting for up to 10% of total bacterial 16S rRNA gene counts. In essence, NO dismutation could be a much more widespread physiology than currently perceived. Understanding the controls of this emergent microbial capacity could offer new routes for nitrogen elimination or pollutant remediation in natural and engineered water systems. NO dismutation into N 2 and O 2 is a novel process catalyzed by putative NO dismutase (Nod). To date, only two bacteria, the anaerobic methane-oxidizing bacterium "Ca Methylomirabilis oxyfera" and the alkane

  10. Beside the point: Mothers' head nodding and shaking gestures during parent-child play.

    PubMed

    Fusaro, Maria; Vallotton, Claire D; Harris, Paul L

    2014-05-01

    Understanding the context for children's social learning and language acquisition requires consideration of caregivers' multi-modal (speech, gesture) messages. Though young children can interpret both manual and head gestures, little research has examined the communicative input that children receive via parents' head gestures. We longitudinally examined the frequency and communicative functions of mothers' head nodding and head shaking gestures during laboratory play sessions for 32 mother-child dyads, when the children were 14, 20, and 30 months of age. The majority of mothers produced head nods more frequently than head shakes. Both gestures contributed to mothers' verbal attempts at behavior regulation and dialog. Mothers' head nods primarily conveyed agreement with, and attentiveness to, children's utterances, and accompanied affirmative statements and yes/no questions. Mothers' head shakes primarily conveyed prohibitions and statements with negations. Changes over time appeared to reflect corresponding developmental changes in social and communicative dimensions of caregiver-child interaction. Directions for future research are discussed regarding the role of head gesture input in socialization and in supporting language development. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Effective therapy for a murine model of human anaplastic large-cell lymphoma with the anti-CD30 monoclonal antibody, HeFi-1, does not require activating Fc receptors

    PubMed Central

    Zhang, Meili; Yao, Zhengsheng; Zhang, Zhuo; Garmestani, Kayhan; Goldman, Carolyn K.; Ravetch, Jeffrey V.; Janik, John; Brechbiel, Martin W.; Waldmann, Thomas A.

    2006-01-01

    CD30 is a member of the tumor necrosis factor receptor family. Overexpression of CD30 on some neoplasms versus its limited expression on normal tissues makes this receptor a promising target for antibody-based therapy. Anaplastic large-cell lymphoma (ALCL) represents a heterogeneous group of aggressive non-Hodgkin lymphomas characterized by the strong expression of CD30. We investigated the therapeutic efficacy of HeFi-1, a mouse IgG1 monoclonal antibody, which recognizes the ligand-binding site on CD30, and humanized anti-Tac antibody (daclizumab), which recognizes CD25, in a murine model of human ALCL. The ALCL model was established by intravenous injection of karpas299 cells into nonobese diabetic/severe combined immuno-deficient (SCID/NOD) wild-type or SCID/NOD Fc receptor common γ chain–deficient (FcRγ–/–) mice. HeFi-1, given at a dose of 100 μg weekly for 4 weeks, significantly prolonged survival of the ALCL-bearing SCID/NOD wild-type and SCID/NOD FcRγ–/– mice (P < .01) as compared with the control groups. In vitro studies showed that HeFi-1 inhibited the proliferation of karpas299 cells, whereas daclizumab did not inhibit cell proliferation. We demonstrated that the expression of FcRγ on polymorphonuclear leukocytes and monocytes was not required for HeFi-1–mediated tumor growth inhibition in vivo, although it was required for daclizumab. PMID:16551968

  12. Identification of Gambling Problems in Primary Care: Properties of the NODS-CLiP Screening Tool.

    PubMed

    Cowlishaw, Sean; McCambridge, Jim; Kessler, David

    2018-06-25

    There are several brief screening tools for gambling that possess promising psychometric properties, but have uncertain utility in generalist healthcare environments which prioritize prevention and brief interventions. This study describes an examination of the National Opinion Research Centre Diagnostic and Statistical Manual of Mental Disorders Screen for Gambling Problems (NODS-CLiP), in comparison with the Problem Gambling Severity Index (PGSI), when used to operationalize gambling problems across a spectrum of severity. Data were obtained from 1058 primary care attendees recruited from 11 practices in England who completed various measures including the NODS-CLiP and PGSI. The performance of the former was defined by estimates of sensitivity, specificity, positive predictive values (PPVs), and negative predictive values (NPVs), when PGSI indicators of problem gambling (5+) and any gambling problems (1+), respectively, were reference standards. The NODS-CLiP demonstrated perfect sensitivity for problem gambling, along with high specificity and a NPV, but a low PPV. There was much lower sensitivity when the indicator of any gambling problems was the reference standard, with capture rates indicating only 20% of patients exhibiting low to moderate severity gambling problems (PGSI 1-4) were identified by the NODS-CLiP. The NODS-CLiP performs well when identifying severe cases of problem gambling, but lacks sensitivity for less severe problems and may be unsuitable for settings which prioritize prevention and brief interventions. There is a need for screening measures which are sensitive across the full spectrum of risk and severity, and can support initiatives for improving identification and responses to gambling problems in healthcare settings such as primary care.

  13. Small-molecule agonists for the glucagon-like peptide 1 receptor

    PubMed Central

    Knudsen, Lotte Bjerre; Kiel, Dan; Teng, Min; Behrens, Carsten; Bhumralkar, Dilip; Kodra, János T.; Holst, Jens J.; Jeppesen, Claus B.; Johnson, Michael D.; de Jong, Johannes Cornelis; Jorgensen, Anker Steen; Kercher, Tim; Kostrowicki, Jarek; Madsen, Peter; Olesen, Preben H.; Petersen, Jacob S.; Poulsen, Fritz; Sidelmann, Ulla G.; Sturis, Jeppe; Truesdale, Larry; May, John; Lau, Jesper

    2007-01-01

    The peptide hormone glucagon-like peptide (GLP)-1 has important actions resulting in glucose lowering along with weight loss in patients with type 2 diabetes. As a peptide hormone, GLP-1 has to be administered by injection. Only a few small-molecule agonists to peptide hormone receptors have been described and none in the B family of the G protein coupled receptors to which the GLP-1 receptor belongs. We have discovered a series of small molecules known as ago-allosteric modulators selective for the human GLP-1 receptor. These compounds act as both allosteric activators of the receptor and independent agonists. Potency of GLP-1 was not changed by the allosteric agonists, but affinity of GLP-1 for the receptor was increased. The most potent compound identified stimulates glucose-dependent insulin release from normal mouse islets but, importantly, not from GLP-1 receptor knockout mice. Also, the compound stimulates insulin release from perfused rat pancreas in a manner additive with GLP-1 itself. These compounds may lead to the identification or design of orally active GLP-1 agonists. PMID:17213325

  14. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication

    PubMed Central

    Thepsoonthorn, C.; Yokozuka, T.; Miura, S.; Ogawa, K.; Miyake, Y.

    2016-01-01

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony. PMID:27910902

  15. Prior Knowledge Facilitates Mutual Gaze Convergence and Head Nodding Synchrony in Face-to-face Communication.

    PubMed

    Thepsoonthorn, C; Yokozuka, T; Miura, S; Ogawa, K; Miyake, Y

    2016-12-02

    As prior knowledge is claimed to be an essential key to achieve effective education, we are interested in exploring whether prior knowledge enhances communication effectiveness. To demonstrate the effects of prior knowledge, mutual gaze convergence and head nodding synchrony are observed as indicators of communication effectiveness. We conducted an experiment on lecture task between lecturer and student under 2 conditions: prior knowledge and non-prior knowledge. The students in prior knowledge condition were provided the basic information about the lecture content and were assessed their understanding by the experimenter before starting the lecture while the students in non-prior knowledge had none. The result shows that the interaction in prior knowledge condition establishes significantly higher mutual gaze convergence (t(15.03) = 6.72, p < 0.0001; α = 0.05, n = 20) and head nodding synchrony (t(16.67) = 1.83, p = 0.04; α = 0.05, n = 19) compared to non-prior knowledge condition. This study reveals that prior knowledge facilitates mutual gaze convergence and head nodding synchrony. Furthermore, the interaction with and without prior knowledge can be evaluated by measuring or observing mutual gaze convergence and head nodding synchrony.

  16. An intrinsic agonist mechanism for activation of glucagon-like peptide-1 receptor by its extracellular domain

    PubMed Central

    Yin, Yanting; Zhou, X Edward; Hou, Li; Zhao, Li-Hua; Liu, Bo; Wang, Gaihong; Jiang, Yi; Melcher, Karsten; Xu, H Eric

    2016-01-01

    The glucagon-like peptide-1 receptor is a class B G protein coupled receptor (GPCR) that plays key roles in glucose metabolism and is a major therapeutic target for diabetes. The classic two-domain model for class B GPCR activation proposes that the apo-state receptor is auto-inhibited by its extracellular domain, which physically interacts with the transmembrane domain. The binding of the C-terminus of the peptide hormone to the extracellular domain allows the N-terminus of the hormone to insert into the transmembrane domain to induce receptor activation. In contrast to this model, here we demonstrate that glucagon-like peptide-1 receptor can be activated by N-terminally truncated glucagon-like peptide-1 or exendin-4 when fused to the receptor, raising the question regarding the role of N-terminal residues of peptide hormone in glucagon-like peptide-1 receptor activation. Mutations of cysteine 347 to lysine or arginine in intracellular loop 3 transform the receptor into a G protein-biased receptor and allow it to be activated by a nonspecific five-residue linker that is completely devoid of exendin-4 or glucagon-like peptide-1 sequence but still requires the presence of an intact extracellular domain. Moreover, the extracellular domain can activate the receptor in trans in the presence of an intact peptide hormone, and specific mutations in three extracellular loops abolished this extracellular domain trans-activation. Together, our data reveal a dominant role of the extracellular domain in glucagon-like peptide-1 receptor activation and support an intrinsic agonist model of the extracellular domain, in which peptide binding switches the receptor from the auto-inhibited state to the auto-activated state by releasing the intrinsic agonist activity of the extracellular domain. PMID:27917297

  17. Endogenous Nod-Factor-Like Signal Molecules Promote Early Somatic Embryo Development in Norway Spruce1

    PubMed Central

    Dyachok, Julia V.; Wiweger, Malgorzata; Kenne, Lennart; von Arnold, Sara

    2002-01-01

    Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PEM aggregates in auxin-deficient cultures. Partial characterization of the conditioning factor shows that it is a lipophilic, low-molecular-weight molecule, which is sensitive to chitinase and contains GlcNAc residues. On the basis of this information, we propose that the factor is a lipophilic chitin oligosaccharide (LCO). The amount of LCO correlates to the developmental stages of PEMs and embryos, with the highest level in the media conditioned by developmentally blocked cultures. LCO is not present in nonembryogenic cultures. Cell death, induced by withdrawal of auxin, is suppressed by extra supply of endogenous LCO or Nod factor from Rhizobium sp. NGR234. The effect can be mimicked by a chitotetraose or chitinase from Streptomyces griseus. Taken together, our data suggest that endogenous LCO acts as a signal molecule stimulating PEM and early embryo development in Norway spruce. PMID:11842156

  18. Isoliquiritigenin, a strong nod gene- and glyceollin resistance-inducing flavonoid from soybean root exudate.

    PubMed

    Kape, R; Parniske, M; Brandt, S; Werner, D

    1992-05-01

    Isoflavonoid signal molecules from soybean (Glycine max (L.) Merr.) seed and root exudate induce the transcription of nodulation (nod) genes in Bradyrhizobium japonicum. In this study, a new compound with symbiotic activity was isolated from soybean root exudate. The isolated 2',4',4-trihydroxychalcone (isoliquiritigenin) is characterized by its strong inducing activity for the nod genes of B. japonicum. These genes are already induced at concentrations 1 order of magnitude below those required of the previously described isoflavonoid inducers genistein and daidzein. Isoliquiritigenin is also a potent inducer of glyceollin resistance in B. japonicum, which renders this bacterium insensitive to potentially bactericidal concentrations of glyceollin, the phytoalexin of G. max. No chemotactic effect of isoliquiritigenin was observed. The highly efficient induction of nod genes and glyceollin resistance by isoliquiritigenin suggests the ecological significance of this compound, although it is not a major flavonoid constituent of the soybean root exudate in quantitative terms.

  19. Pre-activation with IL-12, IL-15, and IL-18 induces CD25 and a functional high affinity IL-2 receptor on human cytokine-induced memory-like NK cells

    PubMed Central

    Leong, Jeffrey W.; Chase, Julie M.; Romee, Rizwan; Schneider, Stephanie E.; Sullivan, Ryan P.; Cooper, Megan A.; Fehniger, Todd A.

    2014-01-01

    NK cells are effector lymphocytes that are under clinical investigation for the adoptive immunotherapy of hematologic malignancies, especially acute myeloid leukemia. Recent work in mice has identified innate memory-like properties of NK cells. Human NK cells also exhibit memory-like properties, and cytokine-induced memory-like (CIML) NK cells are generated via brief pre-activation with IL-12, IL-15, and IL-18, which later exhibit enhanced functionality upon restimulation. However, investigation of the optimal cytokine receptors and signals for maintenance of enhanced function and homeostasis following pre-activation remains unclear. Here, we show that IL-12, IL-15, and IL-18 pre-activation induces a rapid and prolonged expression of CD25, resulting in a functional high affinity IL-2 receptor (IL-2Rαβγ) that confers responsiveness to picomolar concentrations of IL-2. The expression of CD25 correlated with STAT5 phosphorylation in response to picomolar concentrations of IL-2, indicating the presence of a signal-competent IL-2Rαβγ. Furthermore, picomolar concentrations of IL-2 acted synergistically with IL-12 to co-stimulate IFN-γ production by pre-activated NK cells, an effect that was CD25-dependent. Picomolar concentrations of IL-2 also enhanced NK cell proliferation and cytotoxicity via the IL-2Rαβγ. Further, following adoptive transfer into immunodeficient NOD-SCID-γc−/− mice, human cytokine pre-activated NK cells expand preferentially in response to exogenous IL-2. Collectively, these data demonstrate that human CIML NK cells respond to IL-2 via IL-2Rαβγ with enhanced survival and functionality, and provide additional rationale for immunotherapeutic strategies that include brief cytokine pre-activation prior to adoptive NK cell transfer, followed by low dose IL-2 therapy. PMID:24434782

  20. Toll-like receptor activation in the pathogenesis of lupus nephritis.

    PubMed

    Lorenz, Georg; Lech, Maciej; Anders, Hans-Joachim

    2017-12-01

    The pathogenesis of systemic lupus erythematosus (SLE) and lupus nephritis is complex but no longer enigmatic. Much progress has been made to on the polygenetic origin of lupus in identifying gene variants that permit the loss of tolerance against nuclear autoantigens. Along the same line in about 50% of lupus patients additional genetic weaknesses promote immune complex glomerulonephritis and filtration barrier dysfunction. Here we briefly summarize the pathogenesis of SLE with a focus on loss of tolerance and the role of toll-like receptors in the "pseudo"-antiviral immunity concept of systemic lupus. In addition, we discuss the local role of Toll-like receptors in intrarenal inflammation and kidney remodeling. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Toll-like receptors and gastrointestinal diseases: from bench to bedside?

    PubMed

    Cario, Elke

    2002-11-01

    The family of Toll-like receptors (TLRs) plays a key role in mediating innate immune responses to numerous luminal commensal- and pathogen-derived pattern molecules by the intestinal mucosa. Recent findings have identified several ligands recognized by TLRs as well as the complex downstream signaling effects resulting from activation of these receptors. Understanding is emerging of the importance of TLRs in mucosal host defense-potentially triggering gastrointestinal diseases.

  2. The Inositol Phosphatase SHIP-1 Inhibits NOD2-Induced NF-κB Activation by Disturbing the Interaction of XIAP with RIP2

    PubMed Central

    Condé, Claude; Rambout, Xavier; Lebrun, Marielle; Lecat, Aurore; Di Valentin, Emmanuel; Dequiedt, Franck; Piette, Jacques

    2012-01-01

    SHIP-1 is an inositol phosphatase predominantly expressed in hematopoietic cells. Over the ten past years, SHIP-1 has been described as an important regulator of immune functions. Here, we characterize a new inhibitory function for SHIP-1 in NOD2 signaling. NOD2 is a crucial cytoplasmic bacterial sensor that activates proinflammatory and antimicrobial responses upon bacterial invasion. We observed that SHIP-1 decreases NOD2-induced NF-κB activation in macrophages. This negative regulation relies on its interaction with XIAP. Indeed, we observed that XIAP is an essential mediator of the NOD2 signaling pathway that enables proper NF-κB activation in macrophages. Upon NOD2 activation, SHIP-1 C-terminal proline rich domain (PRD) interacts with XIAP, thereby disturbing the interaction between XIAP and RIP2 in order to decrease NF-κB signaling. PMID:22815893

  3. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.

    PubMed

    Nguyen, Linda; Matsumoto, Rae R

    2015-12-15

    Dextromethorphan (DM) is an antitussive with rapid acting antidepressant potential based on pharmacodynamic similarities to ketamine. Building upon our previous finding that DM produces antidepressant-like effects in the mouse forced swim test (FST), the present study aimed to establish the antidepressant-like actions of DM in the tail suspension test (TST), another well-established model predictive of antidepressant efficacy. Additionally, using the TST and FST, we investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in the antidepressant-like properties of DM because accumulating evidence suggests that AMPA receptors play an important role in the pathophysiology of depression and may contribute to the efficacy of antidepressant medications, including that of ketamine. We found that DM displays antidepressant-like effects in the TST similar to the conventional and fast acting antidepressants characterized by imipramine and ketamine, respectively. Moreover, decreasing the first-pass metabolism of DM by concomitant administration of quinidine (CYP2D6 inhibitor) potentiated antidepressant-like actions, implying DM itself has antidepressant efficacy. Finally, in both the TST and FST, pretreatment with the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) significantly attenuated the antidepressant-like behavior elicited by DM. Together, the data show that DM exerts antidepressant-like actions through AMPA receptors, further suggesting DM may act as a safe and effective fast acting antidepressant drug. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Toll-like receptors (TLRs) and immune disorders.

    PubMed

    Akashi-Takamura, Sachiko; Miyake, Kensuke

    2006-10-01

    Upon the invasion of pathogens, the immune system needs to mount defense responses immediately. Over the past 10 years, Toll-like receptors (TLRs) have been discovered in mammals and defined as pathogen sensors. TLRs are considered to bind directly to ligands, discriminate them immediately, and induce defense responses when appropriate. We here review microbial recognition by TLRs, downstream signaling, and the relationship of TLRs to susceptibility to infectious diseases and immune disorders. Recent reports have revealed a requirement for co-receptors in TLR responses. A TLR signaling pathway is required for protection against infectious diseases, but excessive signaling may lead to allergies, autoimmune diseases, or atherosclerosis. In humans, several deficiencies of signaling molecules downstream of TLRs, and TLR polymorphisms that affect recognition or signaling, were reported to cause immunodeficiencies. It is important to understand how TLR signaling is controlled.

  5. Breathing is affected by dopamine D2-like receptors in the basolateral amygdala.

    PubMed

    Sugita, Toshihisa; Kanamaru, Mitsuko; Iizuka, Makito; Sato, Kanako; Tsukada, Setsuro; Kawamura, Mitsuru; Homma, Ikuo; Izumizaki, Masahiko

    2015-04-01

    The precise mechanisms underlying how emotions change breathing patterns remain unclear, but dopamine is a candidate neurotransmitter in the process of emotion-associated breathing. We investigated whether basal dopamine release occurs in the basolateral amygdala (BLA), where sensory-related inputs are received and lead to fear or anxiety responses, and whether D1- and D2-like receptor antagonists affect breathing patterns and dopamine release in the BLA. Adult male mice (C57BL/6N) were perfused with artificial cerebrospinal fluid, a D1-like receptor antagonist (SCH 23390), or a D2-like receptor antagonist ((S)-(-)-sulpiride) through a microdialysis probe in the BLA. Respiratory variables were measured using a double-chamber plethysmograph. Dopamine release was measured by an HPLC. Perfusion of (S)-(-)-sulpiride in the BLA, not SCH 23390, specifically decreased respiratory rate without changes in local release of dopamine. These results suggest that basal dopamine release in the BLA, at least partially, increases respiratory rates only through post-synaptic D2-like receptors, not autoreceptors, which might be associated with emotional responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Evaluation of the Role of the LysM Receptor-Like Kinase, OsNFR5/OsRLK2 for AM Symbiosis in Rice.

    PubMed

    Miyata, Kana; Hayafune, Masahiro; Kobae, Yoshihiro; Kaku, Hanae; Nishizawa, Yoko; Masuda, Yoshiki; Shibuya, Naoto; Nakagawa, Tomomi

    2016-11-01

    In legume-specific rhizobial symbiosis, host plants perceive rhizobial signal molecules, Nod factors, by a pair of LysM receptor-like kinases, NFR1/LYK3 and NFR5/NFP, and activate symbiotic responses through the downstream signaling components also required for arbuscular mycorrhizal (AM) symbiosis. Recently, the rice NFR1/LYK3 ortholog, OsCERK1, was shown to play crucial roles for AM symbiosis. On the other hand, the roles of the NFR5/NFP ortholog in rice have not been elucidated, while it has been shown that NFR5/NFP orthologs, Parasponia PaNFR5 and tomato SlRLK10, engage in AM symbiosis. OsCERK1 also triggers immune responses in combination with a receptor partner, OsCEBiP, against fungal or bacterial infection, thus regulating opposite responses against symbiotic and pathogenic microbes. However, it has not been elucidated how OsCERK1 switches these opposite functions. Here, we analyzed the function of the rice NFR5/NFP ortholog, OsNFR5/OsRLK2, as a possible candidate of the OsCERK1 partner for symbiotic signaling. Inoculation of AM fungi induced the expression of OsNFR5 in the rice root, and the chimeric receptor consisting of the extracellular domain of LjNFR5 and the intracellular domain of OsNFR5 complemented the Ljnfr5 mutant for rhizobial symbiosis, indicating that the intracellular kinase domain of OsNFR5 could activate symbiotic signaling in Lotus japonicus. Although these data suggested the possible involvement of OsNFR5 in AM symbiosis, osnfr5 knockout mutants were colonized by AM fungi similar to the wild-type rice. These observations suggested several possibilities including the presence of functionally redundant genes other than OsNFR5 or involvement of novel ligands, which do not require OsNFR5 for recognition. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Intracellular postsynaptic cannabinoid receptors link thyrotropin-releasing hormone receptors to TRPC-like channels in thalamic paraventricular nucleus neurons.

    PubMed

    Zhang, L; Kolaj, M; Renaud, L P

    2015-12-17

    In rat thalamic paraventricular nucleus of thalamus (PVT) neurons, activation of thyrotropin-releasing hormone (TRH) receptors enhances excitability via concurrent decrease in G protein-coupled inwardly-rectifying potassium (GIRK)-like and activation of transient receptor potential cation (TRPC)4/5-like cationic conductances. An exploration of intracellular signaling pathways revealed the TRH-induced current to be insensitive to phosphatidylinositol-specific phospholipase C (PI-PLC) inhibitors, but reduced by D609, an inhibitor of phosphatidylcholine-specific PLC (PC-PLC). A corresponding change in the I-V relationship implied suppression of the cationic component of the TRH-induced current. Diacylglycerol (DAG) is a product of the hydrolysis of PC. Studies focused on the isolated cationic component of the TRH-induced response revealed a reduction by RHC80267, an inhibitor of DAG lipase, the enzyme involved in the hydrolysis of DAG to the endocannabinoid 2-arachidonoylglycerol (2-AG). Further investigation revealed enhancement of the cationic component in the presence of either JZL184 or WWL70, inhibitors of enzymes involved in the hydrolysis of 2-AG. A decrease in the TRH-induced response was noted in the presence of rimonabant or SR144528, membrane permeable CB1 and CB2 receptor antagonists, respectively. A decrease in the TRH-induced current by intracellular, but not by bath application of the membrane impermeable peptide hemopressin, selective for CB1 receptors, suggests a postsynaptic intracellular localization of these receptors. The TRH-induced current was increased in the presence of arachidonyl-2'-chloroethylamide (ACEA) or JWH133, CB1 and CB2 receptor agonists, respectively. The PI3-kinase inhibitor LY294002, known to inhibit TRPC translocation, decreased the response to TRH. In addition, a TRH-induced enhancement of the low-threshold spike was prevented by both rimonabant, and SR144528. TRH had no influence on excitatory or inhibitory miniature

  8. Co-existence of Blau syndrome and NAID? Diagnostic challenges associated with presence of multiple pathogenic variants in NOD2 gene: a case report.

    PubMed

    Dziedzic, Magdalena; Marjańska, Agata; Bąbol-Pokora, Katarzyna; Urbańczyk, Anna; Grześk, Elżbieta; Młynarski, Wojciech; Kołtan, Sylwia

    2017-07-27

    Pediatric autoinflammatory diseases are rare and still poorly understood conditions resulting from defective genetic control of innate immune system, inter alia from anomalies of NOD2 gene. The product of this gene is Nod2 protein, taking part in maintenance of immune homeostasis. Clinical form of resultant autoinflammatory condition depends on NOD2 genotype; usually patients with NOD2 defects present with Blau syndrome, NOD2-associated autoinflammatory disease (NAID) or Crohn's disease. We present the case of a 7-year-old girl with co-existing symptoms of two rare diseases, Blau syndrome and NAID. Overlapping manifestations of two syndromes raised a significant diagnostic challenge, until next-generation molecular test (NGS) identified presence of three pathogenic variants of NOD2 gene: P268S, IVS8 +158 , 1007 fs, and established the ultimate diagnosis. Presence of multiple genetical abnormalities resulted in an ambiguous clinical presentation with overlapping symptoms of Blau syndrome and NAID. Final diagnosis of autoinflammatory disease opened new therapeutic possibilities, including the use of biological treatments.

  9. Recipient’s Genetic R702W NOD2 Variant Is Associated with an Increased Risk of Bacterial Infections after Orthotopic Liver Transplantation

    PubMed Central

    van Hoek, Bart; van den Berg, Arie P.; Porte, Robert J.; Blokzijl, Hans; Coenraad, Minneke J.; Hepkema, Bouke G.; Schaapherder, Alexander F.; Ringers, Jan; Weersma, Rinse K.; Verspaget, Hein W.

    2013-01-01

    Introduction Orthotopic liver transplantation (OLT) is accompanied by a significant postoperative infection risk. Immunosuppression to prevent rejection increases the susceptibility to infections, mainly by impairing the adaptive immune system. Genetic polymorphisms in the lectin complement pathway of the donor have recently been identified as important risk determinants of clinically significant bacterial infection (CSI) after OLT. Another genetic factor involved in innate immunity is NOD2, which was reported to be associated with increased risk of spontaneous bacterial peritonitis in cirrhotic patients. Methods We assessed association of three genetic NOD2 variants (R702W, G908R and 3020insC) with increased risk of CSI after OLT. 288 OLT recipient-donor pairs from two tertiary referral centers were genotyped for the three NOD2 variants. The probability of CSI in relation to NOD2 gene variants was determined with cumulative incidence curves and log-rank analysis. Results The R702W NOD2 variant in the recipient was associated with CSI after OLT. Eight out of 15 (53.3%) individuals with a mutated genotype compared to 80/273 (29.3%) with wild type genotype developed CSI (p=0.027, univariate cox regression), illustrated by a higher frequency of CSI after OLT over time (p=0.0003, log rank analysis). Multivariate analysis (including the donor lectin complement pathway profile) showed independence of this R702W NOD2 association from other risk factors (HR 2.0; p=0.04). The other NOD2 variants, G908R and 3020insC, in the recipient were not associated with CSI. There was no association with CSI after OLT for any of the NOD2 variants in the donor. Conclusion The mutated NOD2 R702W genotype in the recipient is independently associated with an increased risk of bacterial infections after liver transplantation, indicating a predisposing role for this genetic factor impairing the recipient’s innate immune system. PMID:23977330

  10. Symbiotic Burkholderia Species Show Diverse Arrangements of nif/fix and nod Genes and Lack Typical High-Affinity Cytochrome cbb3 Oxidase Genes.

    PubMed

    De Meyer, Sofie E; Briscoe, Leah; Martínez-Hidalgo, Pilar; Agapakis, Christina M; de-Los Santos, Paulina Estrada; Seshadri, Rekha; Reeve, Wayne; Weinstock, George; O'Hara, Graham; Howieson, John G; Hirsch, Ann M

    2016-08-01

    Genome analysis of fourteen mimosoid and four papilionoid beta-rhizobia together with fourteen reference alpha-rhizobia for both nodulation (nod) and nitrogen-fixing (nif/fix) genes has shown phylogenetic congruence between 16S rRNA/MLSA (combined 16S rRNA gene sequencing and multilocus sequence analysis) and nif/fix genes, indicating a free-living diazotrophic ancestry of the beta-rhizobia. However, deeper genomic analysis revealed a complex symbiosis acquisition history in the beta-rhizobia that clearly separates the mimosoid and papilionoid nodulating groups. Mimosoid-nodulating beta-rhizobia have nod genes tightly clustered in the nodBCIJHASU operon, whereas papilionoid-nodulating Burkholderia have nodUSDABC and nodIJ genes, although their arrangement is not canonical because the nod genes are subdivided by the insertion of nif and other genes. Furthermore, the papilionoid Burkholderia spp. contain duplications of several nod and nif genes. The Burkholderia nifHDKEN and fixABC genes are very closely related to those found in free-living diazotrophs. In contrast, nifA is highly divergent between both groups, but the papilionoid species nifA is more similar to alpha-rhizobia nifA than to other groups. Surprisingly, for all Burkholderia, the fixNOQP and fixGHIS genes required for cbb3 cytochrome oxidase production and assembly are missing. In contrast, symbiotic Cupriavidus strains have fixNOQPGHIS genes, revealing a divergence in the evolution of two distinct electron transport chains required for nitrogen fixation within the beta-rhizobia.

  11. Human nasal polyp microenvironments maintained in a viable and functional state as xenografts in NOD-scid IL2rgamma(null) mice.

    PubMed

    Bernstein, Joel M; Brooks, Stephen P; Lehman, Heather K; Pope, Liza; Sands, Amy; Shultz, Leonard D; Bankert, Richard B

    2009-12-01

    the xenografts to the spleens of the recipient mice, resulting in a significant splenomegaly. A progressive increase in the volume of the xenografts was observed with little or no evidence of mouse cell infiltration into the human leukocyte antigen-positive human tissue. An average twofold increase in polyp volume was found at 3 months after engraftment. The use of innate and adaptive immunodeficient NOD-scid mice homozygous for targeted mutations in the interleukin-2 receptor gamma-chain locus NOD-scid IL2rgamma(null) for establishing xenografts of nondisrupted pieces of human nasal polyp tissues represents a significant improvement over the previously reported xenograft model that used partially immunoincompetent CB17-scid mice as tissue recipients. The absence of the interleukin-2 receptor gamma-chain results in complete elimination of natural killer cell development, as well as severe impairments in T and B cell development. These mice, lacking both innate and adaptive immune responses, significantly improve upon the long-term engraftment of human nasal polyp tissues and provide a model with which to study how nasal polyp-associated lymphocytes and their secreted biologically active products contribute to the histopathology and progression of this chronic inflammatory disease.

  12. Bacterial Stimulation of Toll-Like Receptor 4 Drives Macrophages To Hemophagocytose

    PubMed Central

    McDonald, Erin M.; Pilonieta, M. Carolina; Nick, Heidi J.

    2015-01-01

    During acute infection with bacteria, viruses or parasites, a fraction of macrophages engulf large numbers of red and white blood cells, a process called hemophagocytosis. Hemophagocytes persist into the chronic stage of infection and have an anti-inflammatory phenotype. Salmonella enterica serovar Typhimurium infection of immunocompetent mice results in acute followed by chronic infection, with the accumulation of hemophagocytes. The mechanism(s) that triggers a macrophage to become hemophagocytic is unknown, but it has been reported that the proinflammatory cytokine gamma interferon (IFN-γ) is responsible. We show that primary macrophages become hemophagocytic in the absence or presence of IFN-γ upon infection with Gram-negative bacterial pathogens or prolonged exposure to heat-killed Salmonella enterica, the Gram-positive bacterium Bacillus subtilis, or Mycobacterium marinum. Moreover, conserved microbe-associated molecular patterns are sufficient to stimulate macrophages to hemophagocytose. Purified bacterial lipopolysaccharide (LPS) induced hemophagocytosis in resting and IFN-γ-pretreated macrophages, whereas lipoteichoic acid and synthetic unmethylated deoxycytidine-deoxyguanosine dinucleotides, which mimic bacterial DNA, induced hemophagocytosis only in IFN-γ-pretreated macrophages. Chemical inhibition or genetic deletion of Toll-like receptor 4, a pattern recognition receptor responsive to LPS, prevented both Salmonella- and LPS-stimulated hemophagocytosis. Inhibition of NF-κB also prevented hemophagocytosis. These results indicate that recognition of microbial products by Toll-like receptors stimulates hemophagocytosis, a novel outcome of prolonged Toll-like receptor signaling, suggesting hemophagocytosis is a highly conserved innate immune response. PMID:26459510

  13. Despite Increased Type 1 IFN, Autoimmune Nonobese Diabetic Mice Display Impaired Dendritic Cell Response to CpG and Decreased Nuclear Localization of IFN-Activated STAT1.

    PubMed

    Rahman, M Jubayer; Rahir, Gwendoline; Dong, Matthew B; Zhao, Yongge; Rodrigues, Kameron B; Hotta-Iwamura, Chie; Chen, Ye; Guerrero, Alan; Tarbell, Kristin V

    2016-03-01

    Innate immune signals help break self-tolerance to initiate autoimmune diseases such as type 1 diabetes, but innate contributions to subsequent regulation of disease progression are less clear. Most studies have measured in vitro innate responses of GM-CSF dendritic cells (DCs) that are functionally distinct from conventional DCs (cDCs) and do not reflect in vivo DC subsets. To determine whether autoimmune NOD mice have alterations in type 1 IFN innate responsiveness, we compared cDCs from prediabetic NOD and control C57BL/6 (B6) mice stimulated in vivo with the TLR9 ligand CpG, a strong type 1 IFN inducer. In response to CpG, NOD mice produce more type 1 IFN and express higher levels of CD40, and NOD monocyte DCs make more TNF. However, the overall CpG-induced transcriptional response is muted in NOD cDCs. Of relevance the costimulatory proteins CD80/CD86, signals needed for regulatory T cell homeostasis, are upregulated less on NOD cDCs. Interestingly, NOD Rag1(-/-) mice also display a defect in CpG-induced CD86 upregulation compared with B6 Rag1(-/-), indicating this particular innate alteration precedes adaptive autoimmunity. The impaired response in NOD DCs is likely downstream of the IFN-α/β receptor because DCs from NOD and B6 mice show similar CpG-induced CD86 levels when anti-IFN-α/β receptor Ab is added. IFN-α-induced nuclear localization of activated STAT1 is markedly reduced in NOD CD11c(+) cells, consistent with lower type 1 IFN responsiveness. In conclusion, NOD DCs display altered innate responses characterized by enhanced type 1 IFN and activation of monocyte-derived DCs but diminished cDC type 1 IFN response.

  14. Function of the cytoplasmic tail of human calcitonin receptor-like receptor in complex with receptor activity-modifying protein 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuwasako, Kenji, E-mail: kuwasako@fc.miyazaki-u.ac.jp; Kitamura, Kazuo; Nagata, Sayaka

    2010-02-12

    Receptor activity-modifying protein 2 (RAMP2) enables calcitonin receptor-like receptor (CRLR) to form an adrenomedullin (AM)-specific receptor. Here we investigated the function of the cytoplasmic C-terminal tail (C-tail) of human (h)CRLR by co-transfecting its C-terminal mutants into HEK-293 cells stably expressing hRAMP2. Deleting the C-tail from CRLR disrupted AM-evoked cAMP production or receptor internalization, but did not affect [{sup 125}I]AM binding. We found that CRLR residues 428-439 are required for AM-evoked cAMP production, though deleting this region had little effect on receptor internalization. Moreover, pretreatment with pertussis toxin (100 ng/mL) led to significant increases in AM-induced cAMP production via wild-type CRLR/RAMP2more » complexes. This effect was canceled by deleting CRLR residues 454-457, suggesting Gi couples to this region. Flow cytometric analysis revealed that CRLR truncation mutants lacking residues in the Ser/Thr-rich region extending from Ser{sup 449} to Ser{sup 467} were unable to undergo AM-induced receptor internalization and, in contrast to the effect on wild-type CRLR, overexpression of GPCR kinases-2, -3 and -4 failed to promote internalization of CRLR mutants lacking residues 449-467. Thus, the hCRLR C-tail is crucial for AM-evoked cAMP production and internalization of the CRLR/RAMP2, while the receptor internalization is dependent on the aforementioned GPCR kinases, but not Gs coupling.« less

  15. Excessive D1 Dopamine Receptor Activation in the Dorsal Striatum Promotes Autistic-Like Behaviors.

    PubMed

    Lee, Yunjin; Kim, Hannah; Kim, Ji-Eun; Park, Jin-Young; Choi, Juli; Lee, Jung-Eun; Lee, Eun-Hwa; Han, Pyung-Lim

    2018-07-01

    The dopamine system has been characterized in motor function, goal-directed behaviors, and rewards. Recent studies recognize various dopamine system genes as being associated with autism spectrum disorder (ASD). However, how dopamine system dysfunction induces ASD pathophysiology remains unknown. In the present study, we demonstrated that mice with increased dopamine functions in the dorsal striatum via the suppression of dopamine transporter expression in substantia nigra neurons or the optogenetic stimulation of the nigro-striatal circuitry exhibited sociability deficits and repetitive behaviors relevant to ASD pathology in animal models, while these behavioral changes were blocked by a D1 receptor antagonist. Pharmacological activation of D1 dopamine receptors in normal mice or the genetic knockout (KO) of D2 dopamine receptors also produced typical autistic-like behaviors. Moreover, the siRNA-mediated inhibition of D2 dopamine receptors in the dorsal striatum was sufficient to replicate autistic-like phenotypes in D2 KO mice. Intervention of D1 dopamine receptor functions or the signaling pathways-related D1 receptors in D2 KO mice produced anti-autistic effects. Together, our results indicate that increased dopamine function in the dorsal striatum promotes autistic-like behaviors and that the dorsal striatum is the neural correlate of ASD core symptoms.

  16. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake

    PubMed Central

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C.; Schwartz, Gary J.

    2018-01-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)–enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake. PMID:29689050

  17. Activation of temperature-sensitive TRPV1-like receptors in ARC POMC neurons reduces food intake.

    PubMed

    Jeong, Jae Hoon; Lee, Dong Kun; Liu, Shun-Mei; Chua, Streamson C; Schwartz, Gary J; Jo, Young-Hwan

    2018-04-01

    Proopiomelanocortin (POMC) neurons in the arcuate nucleus of the hypothalamus (ARC) respond to numerous hormonal and neural signals, resulting in changes in food intake. Here, we demonstrate that ARC POMC neurons express capsaicin-sensitive transient receptor potential vanilloid 1 receptor (TRPV1)-like receptors. To show expression of TRPV1-like receptors in ARC POMC neurons, we use single-cell reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, electrophysiology, TRPV1 knock-out (KO), and TRPV1-Cre knock-in mice. A small elevation of temperature in the physiological range is enough to depolarize ARC POMC neurons. This depolarization is blocked by the TRPV1 receptor antagonist and by Trpv1 gene knockdown. Capsaicin-induced activation reduces food intake that is abolished by a melanocortin receptor antagonist. To selectively stimulate TRPV1-like receptor-expressing ARC POMC neurons in the ARC, we generate an adeno-associated virus serotype 5 (AAV5) carrying a Cre-dependent channelrhodopsin-2 (ChR2)-enhanced yellow fluorescent protein (eYFP) expression cassette under the control of the two neuronal POMC enhancers (nPEs). Optogenetic stimulation of TRPV1-like receptor-expressing POMC neurons decreases food intake. Hypothalamic temperature is rapidly elevated and reaches to approximately 39 °C during treadmill running. This elevation is associated with a reduction in food intake. Knockdown of the Trpv1 gene exclusively in ARC POMC neurons blocks the feeding inhibition produced by increased hypothalamic temperature. Taken together, our findings identify a melanocortinergic circuit that links acute elevations in hypothalamic temperature with acute reductions in food intake.

  18. Dopamine D₂-Like Receptors and Behavioral Economics of Food Reinforcement.

    PubMed

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-03-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food.

  19. The ubiquitin ligase Nedd4 mediates oxidized low-density lipoprotein-induced downregulation of insulin-like growth factor-1 receptor

    PubMed Central

    Higashi, Yusuke; Sukhanov, Sergiy; Parthasarathy, Sampath; Delafontaine, Patrice

    2008-01-01

    Oxidized low-density lipoprotein (LDL) is proatherogenic and induces smooth muscle cell apoptosis, which contributes to atherosclerotic plaque destabilization. We showed previously that oxidized LDL downregulates insulin-like growth factor-1 receptor in human smooth muscle cells and that this is critical for induction of apoptosis. To identify mechanisms, we exposed smooth muscle cells to 60 μg/ml oxidized LDL or native LDL and assessed insulin-like growth factor-1 receptor mRNA levels, protein synthesis rate, and receptor protein stability. Oxidized LDL decreased insulin-like growth factor-1 receptor mRNA levels by 30% at 8 h compared with native LDL, and this decrease was maintained for up to 20 h. However, insulin-like growth factor-1 receptor protein synthesis rate was not altered by oxidized LDL. Pulse-chase labeling experiments revealed that oxidized LDL reduced insulin-like growth factor-1 receptor protein half-life to 12.2 ± 1.7 h from 24.4 ± 4.7 h with native LDL. This destabilization of insulin-like growth factor-1 receptor protein was accompanied by enhanced receptor ubiquitination. Overexpression of dominant-negative Nedd4 prevented oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor, suggesting that Nedd4 was the ubiquitin ligase that mediated receptor downregulation. However, the proteasome inhibitors lactacystin, MG-132, and proteasome inhibitor-1 failed to block oxidized LDL-induced downregulation of insulin-like growth factor-1 receptor. Thus oxidized LDL downregulates insulin-like growth factor-1 receptor by destabilizing the protein via Nedd4-enhanced ubiquitination, leading to degradation via a proteasome-independent pathway. This finding provides novel insights into oxidized LDL-triggered oxidant signaling and mechanisms of smooth muscle cell depletion that contribute to plaque destabilization and coronary events. PMID:18723765

  20. Evidence for Noncanonical Neurotransmitter Activation: Norepinephrine as a Dopamine D2-Like Receptor Agonist

    PubMed Central

    Sánchez-Soto, Marta; Bonifazi, Alessandro; Cai, Ning Sheng; Ellenberger, Michael P.; Newman, Amy Hauck

    2016-01-01

    The Gαi/o-coupled dopamine D2-like receptor family comprises three subtypes: the D2 receptor (D2R), with short and long isoform variants (D2SR and D2LR), D3 receptor (D3R), and D4 receptor (D4R), with several polymorphic variants. The common overlap of norepinephrine innervation and D2-like receptor expression patterns prompts the question of a possible noncanonical action by norepinephrine. In fact, previous studies have suggested that norepinephrine can functionally interact with D4R. To our knowledge, significant interactions between norepinephrine and D2R or D3R receptors have not been demonstrated. By using radioligand binding and bioluminescent resonance energy transfer (BRET) assays in transfected cells, the present study attempted a careful comparison between dopamine and norepinephrine in their possible activation of all D2-like receptors, including the two D2R isoforms and the most common D4R polymorphic variants. Functional BRET assays included activation of G proteins with all Gαi/o subunits, adenylyl cyclase inhibition, and β arrestin recruitment. Norepinephrine acted as a potent agonist for all D2-like receptor subtypes, with the general rank order of potency of D3R > D4R ≥ D2SR ≥ D2L. However, for both dopamine and norepinephrine, differences depended on the Gαi/o protein subunit involved. The most striking differences were observed with Gαi2, where the rank order of potencies for both dopamine and norepinephrine were D4R > D2SR = D2LR >> D3R. Furthermore the results do not support the existence of differences in the ability of dopamine and norepinephrine to activate different human D4R variants. The potency of norepinephrine for adrenergic α2A receptor was only about 20-fold higher compared with D3R and D4R across the three functional assays. PMID:26843180

  1. Novel receptor-like protein kinases induced by Erwinia carotovora and short oligogalacturonides in potato.

    PubMed

    Montesano, M; Kõiv, V; Mäe, A; Palva, E T

    2001-11-01

    summary Identification of potato genes responsive to cell wall-degrading enzymes of Erwinia carotovora resulted in the isolation of cDNA clones for four related receptor-like protein kinases. One of the putative serine-threonine protein kinases might have arisen through alternative splicing. These potato receptor-like kinases (PRK1-4) were highly equivalent (91-99%), most likely constituting a family of related receptors. All PRKs and four other plant RLKs share in their extracellular domain a conserved bi-modular pattern of cysteine repeats distinct from that in previously characterized plant RLKs, suggesting that they represent a new class of receptors. The corresponding genes were rapidly induced by E. carotovora culture filtrate (CF), both in the leaves and tubers of potato. Furthermore, the genes were transiently induced by short oligogalacturonides. The structural identity of PRKs and their induction pattern suggested that they constitute part of the early response of potato to E. carotovora infection.

  2. Physiology and emerging biochemistry of the glucagon-like peptide-1 receptor.

    PubMed

    Willard, Francis S; Sloop, Kyle W

    2012-01-01

    The glucagon-like peptide-1 (GLP-1) receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM). Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators.

  3. Physiology and Emerging Biochemistry of the Glucagon-Like Peptide-1 Receptor

    PubMed Central

    Willard, Francis S.; Sloop, Kyle W.

    2012-01-01

    The glucagon-like peptide-1 (GLP-1) receptor is one of the best validated therapeutic targets for the treatment of type 2 diabetes mellitus (T2DM). Over several years, the accumulation of basic, translational, and clinical research helped define the physiologic roles of GLP-1 and its receptor in regulating glucose homeostasis and energy metabolism. These efforts provided much of the foundation for pharmaceutical development of the GLP-1 receptor peptide agonists, exenatide and liraglutide, as novel medicines for patients suffering from T2DM. Now, much attention is focused on better understanding the molecular mechanisms involved in ligand induced signaling of the GLP-1 receptor. For example, advancements in biophysical and structural biology techniques are being applied in attempts to more precisely determine ligand binding and receptor occupancy characteristics at the atomic level. These efforts should better inform three-dimensional modeling of the GLP-1 receptor that will help inspire more rational approaches to identify and optimize small molecule agonists or allosteric modulators targeting the GLP-1 receptor. This article reviews GLP-1 receptor physiology with an emphasis on GLP-1 induced signaling mechanisms in order to highlight new molecular strategies that help determine desired pharmacologic characteristics for guiding development of future nonpeptide GLP-1 receptor activators. PMID:22666230

  4. Efficacy studies of Sclerotium rolfsii lectin on breast cancer using NOD SCID mouse model.

    PubMed

    Hegde, Prajna; Narasimhappagari, Jagadeesh; Swamy, Bale M; Inamdar, Shashikala R

    2018-04-20

    Expression of altered glycans like TF, Tn and sTn antigens has been observed in a number of carcinomas which are targeted in cancer therapy. Sclerotium rolfsii lectin (SRL) is known to recognize TF and its substituted forms. Clinical potential of SRL has been demonstrated by studying its interaction with different types of cancer cells. Here we report, in vitro studies of SRL on breast cancer MDA-MB-468 cells and in vivo studies with MCF-7 xenografts. In vitro growth inhibitory studies of SRL on metastatic triple negative breast cancer MDA-MB-468 cells was performed by MTT assay, flow cytometry, adhesion and CAM assay. In vivo efficacy studies of SRL were performed using NOD SCID mice bearing MCF-7 xenografts. SRL has strong binding to MDA-MB-468 cells with MFI of 85.5 and has growth inhibitory effect with IC 50 of 32μg/mL at 48 h. SRL has anti angiogenesis effect and also anti adhesive effect with fibronectin and collagen at 20μg/mL by 36 and 42% respectively. In vivo efficacy studies of SRL on NOD SCID mice bearing MCF-7 xenogratfs revealed 61.77 and 75.71% tumor regressing effect respectively at 20 and 30mg/kg body weight without any toxicity. All these results substantiate clinical potential of SRL on breast cancer. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. GAL3 receptor KO mice exhibit an anxiety-like phenotype

    PubMed Central

    Brunner, Susanne M.; Farzi, Aitak; Locker, Felix; Holub, Barbara S.; Drexel, Meinrad; Reichmann, Florian; Lang, Andreas A.; Mayr, Johannes A.; Vilches, Jorge J.; Navarro, Xavier; Lang, Roland; Sperk, Günther; Holzer, Peter; Kofler, Barbara

    2014-01-01

    The neuropeptide galanin (GAL) is widely distributed in the central and peripheral nervous systems. It is a modulator of various physiological and pathological processes, and it mediates its effects via three G protein-coupled receptors (GAL1–3 receptors). A role for GAL as a modulator of mood and anxiety was suggested, because GAL and its receptors are highly expressed in limbic brain structures of rodents. In recent years, numerous studies of animal models have suggested an involvement of GAL and GAL1 and GAL2 receptors in anxiety- and depression-related behavior. However, to date, there is sparse literature implicating GAL3 receptors in behavioral functions. Therefore, we studied the behavior of GAL3 receptor-deficient (GAL3-KO) mice to elucidate whether GAL3 receptors are involved in mediating behavior-associated actions of GAL. The GAL3-KO mouse line exhibited normal breeding and physical development. In addition to behavioral tests, phenotypic characterization included analysis of hematology, amino acid profiles, metabolism, and sudomotor function. In contrast to WT littermates, male GAL3-KO mice exhibited an anxiety-like phenotype in the elevated plus maze, open field, and light/dark box tests, and they were less socially affiliated than WT animals to a stranger mouse in a social interaction test. In conclusion, our data suggest involvement of GAL3 receptors in GAL-mediated effects on mood, anxiety, and behavior, making it a possible target for alternative treatment strategies for mood disorders. PMID:24782539

  6. The NOD3 software package: A graphical user interface-supported reduction package for single-dish radio continuum and polarisation observations

    NASA Astrophysics Data System (ADS)

    Müller, Peter; Krause, Marita; Beck, Rainer; Schmidt, Philip

    2017-10-01

    Context. The venerable NOD2 data reduction software package for single-dish radio continuum observations, which was developed for use at the 100-m Effelsberg radio telescope, has been successfully applied over many decades. Modern computing facilities, however, call for a new design. Aims: We aim to develop an interactive software tool with a graphical user interface for the reduction of single-dish radio continuum maps. We make a special effort to reduce the distortions along the scanning direction (scanning effects) by combining maps scanned in orthogonal directions or dual- or multiple-horn observations that need to be processed in a restoration procedure. The package should also process polarisation data and offer the possibility to include special tasks written by the individual user. Methods: Based on the ideas of the NOD2 package we developed NOD3, which includes all necessary tasks from the raw maps to the final maps in total intensity and linear polarisation. Furthermore, plot routines and several methods for map analysis are available. The NOD3 package is written in Python, which allows the extension of the package via additional tasks. The required data format for the input maps is FITS. Results: The NOD3 package is a sophisticated tool to process and analyse maps from single-dish observations that are affected by scanning effects from clouds, receiver instabilities, or radio-frequency interference. The "basket-weaving" tool combines orthogonally scanned maps into a final map that is almost free of scanning effects. The new restoration tool for dual-beam observations reduces the noise by a factor of about two compared to the NOD2 version. Combining single-dish with interferometer data in the map plane ensures the full recovery of the total flux density. Conclusions: This software package is available under the open source license GPL for free use at other single-dish radio telescopes of the astronomical community. The NOD3 package is designed to be

  7. NLR mutations suppressing immune hybrid incompatibility and their effects on disease resistance.

    PubMed

    Atanasov, Kostadin Evgeniev; Liu, Changxin; Erban, Alexander; Kopka, Joachim; Parker, Jane E; Alcázar, Rubén

    2018-05-23

    Genetic divergence between populations can lead to reproductive isolation. Hybrid incompatibilities (HI) represent intermediate points along a continuum towards speciation. In plants, genetic variation in disease resistance (R) genes underlies several cases of HI. The progeny of a cross between Arabidopsis (Arabidopsis thaliana) accessions Landsberg (Ler, Poland) and Kashmir-2 (Kas-2, central Asia) exhibits immune-related HI. This incompatibility is due to a genetic interaction between a cluster of eight TNL (TOLL/INTERLEUKIN1 RECEPTOR- NUCLEOTIDE BINDING - LEUCINE RICH REPEAT) RPP1 (RECOGNITION OF PERONOSPORA PARASITICA 1)- like genes (R1- R8) from Ler and central Asian alleles of a Strubbelig-family receptor-like kinase (SRF3) from Kas-2. In characterizing mutants altered in Ler/Kas-2 HI, we mapped multiple mutations to the RPP1-like Ler locus. Analysis of these suppressor of Ler/Kas-2 incompatibility (sulki) mutants reveals complex, additive and epistatic interactions underlying RPP1-like Ler locus activity. The effects of these mutations were measured on basal defense, global gene expression, primary metabolism, and disease resistance to a local Hyaloperonospora arabidopsidis isolate (Hpa Gw) collected from Gorzów (Gw), where the Landsberg accession originated. Gene expression sectors and metabolic hallmarks identified for HI are both dependent and independent of RPP1-like Ler members. We establish that mutations suppressing immune-related Ler/Kas-2 HI do not compromise resistance to Hpa Gw. QTL mapping analysis of Hpa Gw resistance point to RPP7 as the causal locus. This work provides insight into the complex genetic architecture of the RPP1-like Ler locus and immune-related HI in Arabidopsis and into the contributions of RPP1-like genes to HI and defense. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  8. Unique Variant of NOD2 Pediatric Granulomatous Arthritis With Severe 1,25-Dihydroxyvitamin D-Mediated Hypercalcemia and Generalized Osteosclerosis.

    PubMed

    Whyte, Michael P; Lim, Emilina; McAlister, William H; Gottesman, Gary S; Trinh, Lien; Veis, Deborah J; Bijanki, Vinieth N; Boden, Matthew G; Nenninger, Angela; Mumm, Steven; Buchbinder, David

    2018-06-22

    Pediatric granulomatous arthritis (PGA) refers to two formerly separate entities; autosomal dominant Blau syndrome (BS) and its sporadic phenocopy early-onset sarcoidosis (EOS). In 2001 BS and in 2005 EOS became explained by heterozygous mutations within the gene that encodes nucleotide-binding oligomerization domain-containing protein 2 (NOD2), also called caspase recruitment domain-containing protein 15 (CARD15). NOD2 is a microbe sensor in leukocyte cytosol that activates and regulates inflammation. PGA is characterized by a triad of auto-inflammatory problems (dermatitis, uveitis, and arthritis) in early childhood, which suggests the causal NOD2/CARD15 mutations are activating defects. Additional complications of PGA were recognized especially when NOD2 mutation analysis became generally available. However, in PGA hypercalcemia is only briefly mentioned, and generalized osteosclerosis is not reported although NOD2 regulates NF-κB signaling essential for osteoclastogenesis and osteoclast function. Herein, we report a 4-year-old girl with PGA uniquely complicated by severe 1,25(OH) 2 D-mediated hypercalcemia, nephrocalcinosis, and compromised renal function together with radiological and histopathological features of osteopetrosis (OPT). The classic triad of PGA complications was absent although joint pain and an antalgic gait accompanied wrist, knee, and ankle swelling and soft non-tender masses over her hands, knees, and feet. MRI revealed tenosynovitis in her hands and suprapatellar effusions. Synovial biopsy demonstrated reactive synovitis without granulomas. Spontaneous resolution of metaphyseal osteosclerosis occurred while biochemical markers indicated active bone turnover. Anti-inflammatory medications suppressed circulating 1,25(OH) 2 D, corrected the hypercalcemia, and improved her renal function, joint pain and swelling, and gait. Mutation analysis excluded idiopathic infantile hypercalcemia, type 1, and known forms of OPT, and identified a

  9. Intraradical colonization by arbuscular mycorrhizal fungi triggers induction of a lipochitooligosaccharide receptor

    NASA Astrophysics Data System (ADS)

    Rasmussen, S. R.; Füchtbauer, W.; Novero, M.; Volpe, V.; Malkov, N.; Genre, A.; Bonfante, P.; Stougaard, J.; Radutoiu, S.

    2016-07-01

    Functional divergence of paralogs following gene duplication is one of the mechanisms leading to evolution of novel pathways and traits. Here we show that divergence of Lys11 and Nfr5 LysM receptor kinase paralogs of Lotus japonicus has affected their specificity for lipochitooligosaccharides (LCOs) decorations, while the innate capacity to recognize and induce a downstream signalling after perception of rhizobial LCOs (Nod factors) was maintained. Regardless of this conserved ability, Lys11 was found neither expressed, nor essential during nitrogen-fixing symbiosis, providing an explanation for the determinant role of Nfr5 gene during Lotus-rhizobia interaction. Lys11 was expressed in root cortex cells associated with intraradical colonizing arbuscular mycorrhizal fungi. Detailed analyses of lys11 single and nfr1nfr5lys11 triple mutants revealed a functional arbuscular mycorrhizal symbiosis, indicating that Lys11 alone, or its possible shared function with the Nod factor receptors is not essential for the presymbiotic phases of AM symbiosis. Hence, both subfunctionalization and specialization appear to have shaped the function of these paralogs where Lys11 acts as an AM-inducible gene, possibly to fine-tune later stages of this interaction.

  10. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88.

    PubMed

    Dunne, Aisling; Ejdeback, Mikael; Ludidi, Phumzile L; O'Neill, Luke A J; Gay, Nicholas J

    2003-10-17

    The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.

  11. Extraintestinal roles of bombesin-like peptides and their receptors: lung.

    PubMed

    Qin, Xiao-Qun; Qu, Xiangping

    2013-02-01

    Description of the recent findings of the biological roles of bombesin-like peptides and their receptors in lungs. Gastrin-releasing peptide (GRP) was involved in the airway inflammation in murine models of airway hyperreactivity. The circulating proGRP could serve as a valuable tumor marker for small-cell lung cancers, and the plasma level of proGRP is more stable compared with that of serum proGRP. Recent studies also shed light on the intracellular signaling pathways of bombesin receptor subtype-3 (BRS-3) activation in cultured human lung cancer cells. The relevant biology of BLPs and their receptors in lung cancers and other lung diseases still remains largely unknown. With the development of several highly specific BRS-3 agonists, recent studies provided some insights into the biological effects of BRS-3 in lungs.

  12. Bench-to-bedside review: Toll-like receptors and their role in septic shock

    PubMed Central

    Opal, Steven M; Huber, Christian E

    2002-01-01

    The Toll-like receptors (TLRs) are essential transmembrane signaling receptors of the innate immune system that alert the host to the presence of a microbial invader. The recent discovery of the TLRs has rapidly expanded our knowledge of molecular events that initiate host–pathogen interactions. These functional attributes of the cellular receptors provide insights into the nature of pattern recognition receptors that activate the human antimicrobial defense systems. The fundamental significance of the TLRs in the generation of systemic inflammation and the pathogenesis of septic shock is reviewed. The potential clinical implications of therapeutic modulation of these recently characterized receptors of innate immunity are also discussed. PMID:11983038

  13. NMDA receptors are involved in the antidepressant-like effects of capsaicin following amphetamine withdrawal in male mice.

    PubMed

    Amiri, Shayan; Alijanpour, Sakineh; Tirgar, Fatemeh; Haj-Mirzaian, Arya; Amini-Khoei, Hossein; Rahimi-Balaei, Maryam; Rastegar, Mojgan; Ghaderi, Marzieh; Ghazi-Khansari, Mahmoud; Zarrindast, Mohammad-Reza

    2016-08-04

    Amphetamine withdrawal (AW) is accompanied by diminished pleasure and depression which plays a key role in drug relapse and addictive behaviors. There is no efficient treatment for AW-induced depression and underpinning mechanisms were not well determined. Considering both transient receptor potential cation channel, subfamily V, member 1 (TRPV1) and N-Methyl-d-aspartate (NMDA) receptors contribute to pathophysiology of mood and addictive disorders, in this study, we investigated the role of TRPV1 and NMDA receptors in mediating depressive-like behaviors following AW in male mice. Results revealed that administration of capsaicin, TRPV1 agonist, (100μg/mouse, i.c.v.) and MK-801, NMDA receptor antagonist (0.005mg/kg, i.p.) reversed AW-induced depressive-like behaviors in forced swimming test (FST) and splash test with no effect on animals' locomotion. Co-administration of sub-effective doses of MK-801 (0.001mg/kg, i.p.) and capsaicin (10μg/mouse, i.c.v) exerted antidepressant-like effects in behavioral tests. Capsazepine, TRPV1 antagonist, (100μg/mouse, i.c.v) and NMDA, NMDA receptor agonist (7.5mg/kg, i.p.) abolished the effects of capsaicin and MK-801, respectively. None of aforementioned treatments had any effect on behavior of control animals. Collectively, our findings showed that activation of TRPV1 and blockade of NMDA receptors produced antidepressant-like effects in male mice following AW, and these receptors are involved in AW-induced depressive-like behaviors. Further, we found that rapid antidepressant-like effects of capsaicin in FST and splash test are partly mediated by NMDA receptors. Copyright © 2016. Published by Elsevier Ltd.

  14. Kappa-opioid receptors mediate the antidepressant-like activity of hesperidin in the mouse forced swimming test.

    PubMed

    Filho, Carlos B; Del Fabbro, Lucian; de Gomes, Marcelo G; Goes, André T R; Souza, Leandro C; Boeira, Silvana P; Jesse, Cristiano R

    2013-01-05

    The opioid system has been implicated as a contributing factor for major depression and is thought to play a role in the mechanism of action of antidepressants. This study investigated the involvement of the opioid system in the antidepressant-like effect of hesperidin in the mouse forced swimming test. Our results demonstrate that hesperidin (0.1, 0.3 and 1 mg/kg; intraperitoneal) decreased the immobility time in the forced swimming test without affecting locomotor activity in the open field test. The antidepressant-like effect of hesperidin (0.3 mg/kg) in the forced swimming test was prevented by pretreating mice with naloxone (1 mg/kg, a nonselective opioid receptor antagonist) and 2-(3,4-dichlorophenyl)-Nmethyl-N-[(1S)-1-(3-isothiocyanatophenyl)-2-(1-pyrrolidinyl)ethyl] acetamide (DIPPA (1 mg/kg), a selective κ-opioid receptor antagonist), but not with naloxone methiodide (1 mg/kg, a peripherally acting opioid receptor antagonist), naltrindole (3 mg/kg, a selective δ-opioid receptor antagonist), clocinnamox (1 mg/kg, a selective μ-opioid receptor antagonist) or caffeine (3 mg/kg, a nonselective adenosine receptor antagonist). In addition, a sub-effective dose of hesperidin (0.01 mg/kg) produced a synergistic antidepressant-like effect in the forced swimming test when combined with a sub-effective dose of morphine (1 mg/kg). The antidepressant-like effect of hesperidin in the forced swimming test on mice was dependent on its interaction with the κ-opioid receptor, but not with the δ-opioid, μ-opioid or adenosinergic receptors. Taken together, these results suggest that hesperidin possesses antidepressant-like properties and may be of interest as a therapeutic agent for the treatment of depressive disorders. Published by Elsevier B.V.

  15. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance.

    PubMed

    Vandanmagsar, Bolormaa; Youm, Yun-Hee; Ravussin, Anthony; Galgani, Jose E; Stadler, Krisztian; Mynatt, Randall L; Ravussin, Eric; Stephens, Jacqueline M; Dixit, Vishwa Deep

    2011-02-01

    The emergence of chronic inflammation during obesity in the absence of overt infection or well-defined autoimmune processes is a puzzling phenomenon. The Nod-like receptor (NLR) family of innate immune cell sensors, such as the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (Nlrp3, but also known as Nalp3 or cryopyrin) inflammasome are implicated in recognizing certain nonmicrobial originated 'danger signals' leading to caspase-1 activation and subsequent interleukin-1β (IL-1β) and IL-18 secretion. We show that calorie restriction and exercise-mediated weight loss in obese individuals with type 2 diabetes is associated with a reduction in adipose tissue expression of Nlrp3 as well as with decreased inflammation and improved insulin sensitivity. We further found that the Nlrp3 inflammasome senses lipotoxicity-associated increases in intracellular ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 in mice prevents obesity-induced inflammasome activation in fat depots and liver as well as enhances insulin signaling. Furthermore, elimination of Nlrp3 in obese mice reduces IL-18 and adipose tissue interferon-γ (IFN-γ) expression, increases naive T cell numbers and reduces effector T cell numbers in adipose tissue. Collectively, these data establish that the Nlrp3 inflammasome senses obesity-associated danger signals and contributes to obesity-induced inflammation and insulin resistance.

  16. NLRC5/MHC class I transactivator is a target for immune evasion in cancer

    PubMed Central

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B.; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A.; Lizee, Gregory A.; Kobayashi, Koichi S.

    2016-01-01

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as “NLRC5” [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8+ cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers. PMID:27162338

  17. NLRC5/MHC class I transactivator is a target for immune evasion in cancer.

    PubMed

    Yoshihama, Sayuri; Roszik, Jason; Downs, Isaac; Meissner, Torsten B; Vijayan, Saptha; Chapuy, Bjoern; Sidiq, Tabasum; Shipp, Margaret A; Lizee, Gregory A; Kobayashi, Koichi S

    2016-05-24

    Cancer cells develop under immune surveillance, thus necessitating immune escape for successful growth. Loss of MHC class I expression provides a key immune evasion strategy in many cancers, although the molecular mechanisms remain elusive. MHC class I transactivator (CITA), known as "NLRC5" [NOD-like receptor (NLR) family, caspase recruitment (CARD) domain containing 5], has recently been identified as a critical transcriptional coactivator of MHC class I gene expression. Here we show that the MHC class I transactivation pathway mediated by CITA/NLRC5 constitutes a target for cancer immune evasion. In all the 21 tumor types we examined, NLRC5 expression was highly correlated with the expression of MHC class I, with cytotoxic T-cell markers, and with genes in the MHC class I antigen-presentation pathway, including LMP2/LMP7, TAP1, and β2-microglobulin. Epigenetic and genetic alterations in cancers, including promoter methylation, copy number loss, and somatic mutations, were most prevalent in NLRC5 among all MHC class I-related genes and were associated with the impaired expression of components of the MHC class I pathway. Strikingly, NLRC5 expression was significantly associated with the activation of CD8(+) cytotoxic T cells and patient survival in multiple cancer types. Thus, NLRC5 constitutes a novel prognostic biomarker and potential therapeutic target of cancers.

  18. Gluten-free but also gluten-enriched (gluten+) diet prevent diabetes in NOD mice; the gluten enigma in type 1 diabetes.

    PubMed

    Funda, David P; Kaas, Anne; Tlaskalová-Hogenová, Helena; Buschard, Karsten

    2008-01-01

    Environmental factors such as nutrition or exposure to infections play a substantial role in the pathogenesis of type 1 diabetes (T1D). We have previously shown that gluten-free, non-purified diet largely prevented diabetes in non-obese diabetic (NOD) mice. In this study we tested hypothesis that early introduction of gluten-enriched (gluten+) diet may increase diabetes incidence in NOD mice. Standard, gluten-free, gluten+ modified Altromin diets and hydrolysed-casein-based Pregestimil diet were fed to NOD females and diabetes incidence was followed for 310 days. Insulitis score and numbers of gut mucosal lymphocytes were determined in non-diabetic animals. A significantly lower diabetes incidence (p < 0.0001) was observed in NOD mice fed gluten-free diet (5.9%, n = 34) and Pregestimil diet (10%, n = 30) compared to mice on the standard Altromin diet (60.6%, n = 33). Surprisingly, gluten+ diet also prevented diabetes incidence, even at the level found with the gluten-free diet (p < 0.0001, 5.9%, n = 34). The minority of mice, which developed diabetes on all the three diabetes-protective (gluten+, gluten-free, Pregestimil) diets, did that slightly later compared to those on the standard diet. Lower insulitis score compared to control mice was found in non-diabetic NOD mice on the gluten-free, and to a lesser extent also gluten+ and Pregestimil diets. No substantial differences in the number of CD3(+), TCR-gammadelta(+), and IgA(+) cells in the small intestine were documented. Gluten+ diet prevents diabetes in NOD mice at the level found with the non-purified gluten-free diet. Possible mechanisms of the enigmatic, dual effect of dietary gluten on the development of T1D are discussed. 2007 John Wiley & Sons, Ltd

  19. Degradable polymeric carrier for the delivery of IL-10 plasmid DNA to prevent autoimmune insulitis of NOD mice.

    PubMed

    Koh, J J; Ko, K S; Lee, M; Han, S; Park, J S; Kim, S W

    2000-12-01

    Recently, we have reported that biodegradable poly [alpha-(4-aminobutyl)-L-glycolic acid] (PAGA) can condense and protect plasmid DNA from DNase I. In this study, we investigated whether the systemic administration of pCAGGS mouse IL-10 (mIL-10) expression plasmid complexed with PAGA can reduce the development of insulitis in non-obese diabetic (NOD) mice. PAGA/mIL-10 plasmid complexes were stable for more than 60 min, but the naked DNA was destroyed within 10 min by DNase I. The PAGA/DNA complexes were injected into the tail vein of 3-week-old NOD mice. Serum mIL-10 level peaked at 5 days after injection, and could be detected for more than 9 weeks. The prevalence of severe insulitis on 12-week-old NOD mice was markedly reduced by the intravenous injection of PAGA/DNA complex (15.7%) compared with that of naked DNA injection (34.5%) and non-treated controls (90.9%). In conclusion, systemic administration of pCAGGS mIL-10 plasmid/PAGA complexes can reduce the severity of insulitis in NOD mice. This study shows that the PAGA/DNA complex has the potential for the prevention of autoimmune diabetes mellitus. Gene Therapy (2000) 7, 2099-2104.

  20. Glucagon Like Peptide-1 Receptor Expression in the Human Thyroid Gland

    PubMed Central

    Gier, Belinda; Butler, Peter C.; Lai, Chi K.; Kirakossian, David; DeNicola, Matthew M.

    2012-01-01

    Background: Glucagon like peptide-1 (GLP-1) mimetic therapy induces medullary thyroid neoplasia in rodents. We sought to establish whether C cells in human medullary thyroid carcinoma, C cell hyperplasia, and normal human thyroid express the GLP-1 receptor. Methods: Thyroid tissue samples with medullary thyroid carcinoma (n = 12), C cell hyperplasia (n = 9), papillary thyroid carcinoma (n = 17), and normal human thyroid (n = 15) were evaluated by immunofluorescence for expression of calcitonin and GLP-1 receptors. Results: Coincident immunoreactivity for calcitonin and GLP-1 receptor was consistently observed in both medullary thyroid carcinoma and C cell hyperplasia. GLP-1 receptor immunoreactivity was also detected in 18% of papillary thyroid carcinoma (three of 17 cases). Within normal human thyroid tissue, GLP-1 receptor immunoreactivity was found in five of 15 of the examined cases in about 35% of the total C cells assessed. Conclusions: In humans, neoplastic and hyperplastic lesions of thyroid C cells express the GLP-1 receptor. GLP-1 receptor expression is detected in 18% papillary thyroid carcinomas and in C cells in 33% of control thyroid lobes. The consequence of long-term pharmacologically increased GLP-1 signaling on these GLP-1 receptor-expressing cells in the thyroid gland in humans remains unknown, but appropriately powered prospective studies to exclude an increase in medullary or papillary carcinomas of the thyroid are warranted. PMID:22031513

  1. TrkA and TrkC neurotrophin receptor-like proteins in the lizard gut.

    PubMed

    Lucini, C; de Girolamo, P; Lamanna, C; Botte, V; Vega, J A; Castaldo, L

    2001-03-01

    The tyrosine kinase proteins (Trk), encoded by the trk family of proto-oncogenes, mediate, in mammals, the action of neurotrophins, a family of growth factors acting on the development and maintenance of the nervous system. Neurotrophins and their specific receptors, TrkA, TrkB and TrkC, seem to be phylogenetically well preserved but, in reptiles, data regarding the occurrence of Trk-like proteins are very scarce, especially in non-nervous organs. Western blot analysis demonstrated that the lizard gut contains TrkA- and TrkC-like, but not TrkB-like, proteins. Consistently, TrkA- and TrkC-like immunoreactivity were both observed in neurons of the anterior intestine, whereas endocrine cells of the stomach and anterior intestine only displayed TrkA-like immunoreactivity. These results demonstrate for the first time the occurrence of Trk-like proteins in non-neuronal tissues of reptilians and provide further evidence for the evolutionary preservation of the molecular mass and cell distribution of Trk neurotrophin receptor-like proteins in the gut of vertebrates.

  2. Dear Nel: Opening the Circles of Care (Letters to Nel Noddings)

    ERIC Educational Resources Information Center

    Lake, Robert

    2012-01-01

    This collection is a moving tribute to Nel Noddings, a fascinating and influential scholar who has contributed greatly to numerous fields, including education, feminism, ethics, and the study of social justice and equity. "Dear Nel: Opening the Circles of Care" presents contributions from renowned teachers, educators, and activists, such as David…

  3. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzezinski, Krzysztof; Polish Academy of Sciences, 61-704 Poznan; Dauter, Zbigniew

    Crystal structures of the bacterial α1,6-fucosyltransferase NodZ in complex with GDP and GDP-fucose are presented. Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5′-diphosphate-β-l-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fucmore » and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme–product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-l-glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the

  4. Dopamine D2-Like Receptors and Behavioral Economics of Food Reinforcement

    PubMed Central

    Soto, Paul L; Hiranita, Takato; Xu, Ming; Hursh, Steven R; Grandy, David K; Katz, Jonathan L

    2016-01-01

    Previous studies suggest dopamine (DA) D2-like receptor involvement in the reinforcing effects of food. To determine contributions of the three D2-like receptor subtypes, knockout (KO) mice completely lacking DA D2, D3, or D4 receptors (D2R, D3R, or D4R KO mice) and their wild-type (WT) littermates were exposed to a series of fixed-ratio (FR) food-reinforcement schedules in two contexts: an open economy with additional food provided outside the experimental setting and a closed economy with all food earned within the experimental setting. A behavioral economic model was used to quantify reinforcer effectiveness with food pellets obtained as a function of price (FR schedule value) plotted to assess elasticity of demand. Under both economies, as price increased, food pellets obtained decreased more rapidly (ie, food demand was more elastic) in DA D2R KO mice compared with WT littermates. Extinction of responding was studied in two contexts: by eliminating food deliveries and by delivering food independently of responding. A hyperbolic model quantified rates of extinction. Extinction in DA D2R KO mice occurred less rapidly compared with WT mice in both contexts. Elasticity of food demand was higher in DA D4R KO than WT mice in the open, but not closed, economy. Extinction of responding in DA D4R KO mice was not different from that in WT littermates in either context. No differences in elasticity of food demand or extinction rate were obtained in D3R KO mice and WT littermates. These results indicate that the D2R is the primary DA D2-like receptor subtype mediating the reinforcing effectiveness of food. PMID:26205210

  5. Endotoxin, Toll-like Receptor-4, and Atherosclerotic Heart Disease

    PubMed Central

    Horseman, Michael A.; Surani, Salim; Bowman, John D.

    2017-01-01

    Background: Endotoxin is a lipopolysaccharide (LPS) constituent of the outer membrane of most gram negative bacteria. Ubiquitous in the environment, it has been implicated as a cause or con-tributing factor in several disparate disorders from sepsis to heatstroke and Type II diabetes mellitus. Starting at birth, the innate immune system develops cellular defense mechanisms against environmen-tal microbes that are in part modulated through a series of receptors known as toll-like receptors. Endo-toxin, often referred to as LPS, binds to toll-like receptor 4 (TLR4)/ myeloid differentiation protein 2 (MD2) complexes on various tissues including cells of the innate immune system, smooth muscle and endothelial cells of blood vessels including coronary arteries, and adipose tissue. Entry of LPS into the systemic circulation ultimately leads to intracellular transcription of several inflammatory mediators. The subsequent inflammation has been implicated in the development and progression atherosclerosis and subsequent coronary artery disease and heart failure. Objective: The potential roles of endotoxin and TLR4 are reviewed regarding their role in the pathogen-esis of atherosclerotic heart disease. Conclusion: Atherosclerosis is initiated by inflammation in arterial endothelial and subendothelial cells, and inflammatory processes are implicated in its progression to clinical heart disease. Endotoxin and TLR4 play a central role in the inflammatory process, and represent potential targets for therapeutic intervention. Therapy with HMG-CoA inhibitors may reduce the expression of TLR4 on monocytes. Other therapeutic interventions targeting TLR4 expression or function may prove beneficial in athero-sclerotic disease prevention and treatment.

  6. The novel antidyskinetic drug sarizotan elicits different functional responses at human D2-like dopamine receptors.

    PubMed

    Kuzhikandathil, Eldo V; Bartoszyk, Gerd D

    2006-09-01

    Sarizotan (EMD 128130) is a chromane derivative that exhibits affinity at serotonin and dopamine receptors. Sarizotan effectively suppresses levodopa-induced dyskinesia in primate and rodent models of Parkinson's disease, and tardive dyskinesia in a rodent model. Results from clinical trials suggest that sarizotan significantly alleviates levodopa-induced dyskinesia. The functional effects of sarizotan on individual dopamine receptor subtypes are not known. Here we report the functional effects of sarizotan on human D2-like dopamine receptors (D2S, D2L, D3, D4.2 and D4.4) individually expressed in the AtT-20 neuroendocrine cell line. Using the coupling of D2-like dopamine receptors to G-protein coupled inward rectifier potassium channels we determined that sarizotan is a full agonist at D3 and D4.4 receptors (EC50=5.6 and 5.4 nM, respectively) but a partial agonist at D2S, D2L and D4.2 receptors (EC50=29, 23 and 4.5 nM, respectively). Consistent with its partial agonist property, sarizotan is an antagonist at D2S and D2L receptors (IC50=52 and 121 nM, respectively). Using the coupling of D2-like dopamine receptors to adenylyl cyclase we determined that sarizotan is a full agonist at D2L, D3, D4.2 and D4.4 receptors (EC50=0.51, 0.47, 0.48 and 0.23 nM, respectively) but a partial agonist at D2S receptors (EC50=0.6 nM).

  7. Human Milk Components Modulate Toll-Like Receptor-Mediated Inflammation.

    PubMed

    He, YingYing; Lawlor, Nathan T; Newburg, David S

    2016-01-01

    Toll-like receptor (TLR) signaling is central to innate immunity. Aberrant expression of TLRs is found in neonatal inflammatory diseases. Several bioactive components of human milk modulate TLR expression and signaling pathways, including soluble toll-like receptors (sTLRs), soluble cluster of differentiation (sCD) 14, glycoproteins, small peptides, and oligosaccharides. Some milk components, such as sialyl (α2,3) lactose and lacto-N-fucopentaose III, are reported to increase TLR signaling; under some circumstances this might contribute toward immunologic balance. Human milk on the whole is strongly anti-inflammatory, and contains abundant components that depress TLR signaling pathways: sTLR2 and sCD14 inhibit TLR2 signaling; sCD14, lactadherin, lactoferrin, and 2'-fucosyllactose attenuate TLR4 signaling; 3'-galactosyllactose inhibits TLR3 signaling, and β-defensin 2 inhibits TLR7 signaling. Feeding human milk to neonates decreases their risk of sepsis and necrotizing enterocolitis. Thus, the TLR regulatory components found in human milk hold promise as benign oral prophylactic and therapeutic treatments for the many gastrointestinal inflammatory disorders mediated by abnormal TLR signaling. © 2016 American Society for Nutrition.

  8. Inhibition of autoimmune diabetes in NOD mice with serum from streptococcal preparation (OK-432)-injected mice.

    PubMed Central

    Seino, H; Satoh, J; Shintani, S; Takahashi, K; Zhu, X P; Masuda, T; Nobunaga, T; Saito, M; Terano, Y; Toyota, T

    1991-01-01

    We have recently reported that systemic and chronic administration of recombinant tumour necrosis factor alpha (TNF-alpha), as well as streptococcal preparation (OK-432), inhibits development of insulin-dependent diabetes mellitus (IDDM) in NOD mice and BB rats, models of IDDM. In this study we examined whether serum containing endogenous TNF induced by OK-432 injection could inhibit IDDM in NOD mice. Treatment twice a week from 4 weeks of age with OK-432-injected mouse serum, which contained endogenous TNF (75U), but not IL-1, IL-2 and interferon-gamma (IFN-gamma) activity, reduced the intensity of insulitis and significantly inhibited the cumulative incidence of diabetes by 28 weeks of age in NOD mice, as compared with the incidence in non-treated mice (P less than 0.01) and in mice treated with control serum (P less than 0.02). This inhibitory effect of the serum was diminished, although not significantly, by neutralization of serum TNF activity with anti-mouse TNF antibody. In the mice treated with the serum from OK-432-injected mice, Thy-1.2+ or CD8+ spleen cells decreased (P less than 0.01) and surface-Ig+ (S-Ig+) cells increased (P less than 0.05), whereas the proliferative response of spleen cells to concanavalin A (P less than 0.01) and lipopolysaccharide (P less than 0.05) increased. The results indicate that the inhibition by OK-432 treatment of IDDM in NOD mice was partially mediated by serum factors including endogenous TNF. PMID:1747949

  9. Toll-like receptors and chronic inflammation in rheumatic diseases: new developments.

    PubMed

    Joosten, Leo A B; Abdollahi-Roodsaz, Shahla; Dinarello, Charles A; O'Neill, Luke; Netea, Mihai G

    2016-06-01

    In the past few years, new developments have been reported on the role of Toll-like receptors (TLRs) in chronic inflammation in rheumatic diseases. The inhibitory function of TLR10 has been demonstrated. Receptors that enhance the function of TLRs, and several TLR inhibitors, have been identified. In addition, the role of the microbiome and TLRs in the onset of rheumatic diseases has been reported. We review novel insights on the role of TLRs in several inflammatory joint diseases, including rheumatoid arthritis, systemic lupus erythematosus, gout and Lyme arthritis, with a focus on the signalling mechanisms mediated by the Toll-IL-1 receptor (TIR) domain, the exogenous and endogenous ligands of TLRs, and the current and future therapeutic strategies to target TLR signalling in rheumatic diseases.

  10. Induction of Direct Antimicrobial Activity Through Mammalian Toll-Like Receptors

    NASA Astrophysics Data System (ADS)

    Thoma-Uszynski, Sybille; Stenger, Steffen; Takeuchi, Osamu; Ochoa, Maria Teresa; Engele, Matthias; Sieling, Peter A.; Barnes, Peter F.; Röllinghoff, Martin; Bölcskei, Pal L.; Wagner, Manfred; Akira, Shizuo; Norgard, Michael V.; Belisle, John T.; Godowski, Paul J.; Bloom, Barry R.; Modlin, Robert L.

    2001-02-01

    The mammalian innate immune system retains from Drosophila a family of homologous Toll-like receptors (TLRs) that mediate responses to microbial ligands. Here, we show that TLR2 activation leads to killing of intracellular Mycobacterium tuberculosis in both mouse and human macrophages, through distinct mechanisms. In mouse macrophages, bacterial lipoprotein activation of TLR2 leads to a nitric oxide-dependent killing of intracellular tubercle bacilli, but in human monocytes and alveolar macrophages, this pathway was nitric oxide-independent. Thus, mammalian TLRs respond (as Drosophila Toll receptors do) to microbial ligands and also have the ability to activate antimicrobial effector pathways at the site of infection.

  11. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas

    PubMed Central

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-01-01

    Background: Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. Aim: To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Methods: Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. Results: All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. Conclusions: This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours. PMID:14747444

  12. The immunohistochemical expression of calcitonin receptor-like receptor (CRLR) in human gliomas.

    PubMed

    Benes, L; Kappus, C; McGregor, G P; Bertalanffy, H; Mennel, H D; Hagner, S

    2004-02-01

    Gliomas are the most common primary tumours of the central nervous system and exhibit rapid growth that is associated with neovascularisation. Adrenomedullin is an important tumour survival factor in human carcinogenesis. It has growth promoting effects on gliomas, and blockade of its actions has been experimentally shown to reduce the growth of glioma tissues and cell lines. There is some evidence that the calcitonin receptor-like receptor (CRLR) mediates the tumorigenic actions of adrenomedullin. To determine whether CRLR is expressed in human gliomas and the probable cellular targets of adrenomedullin. Biopsies from 95 human gliomas of varying grade were processed for immunohistochemical analysis using a previously developed and characterised antibody to CRLR. All tumour specimens were positive for CRLR. As previously found in normal peripheral tissues, CRLR immunostaining was particularly intense in the endothelial cells. This was evident in all the various vascular conformations that were observed, and which are typical of gliomas. In addition, clear immunostaining of tumour cells with astrocyte morphology was observed. These were preferentially localised around vessels. This study has shown for the first time that the CRLR protein is present in human glioma tissue. The expression of the receptor in endothelial cells and in astrocytic tumour cells is consistent with the evidence that its endogenous ligand, adrenomedullin, may influence glioma growth by means of both direct mitogenic and indirect angiogenic effects. CRLR may be a valuable target for effective therapeutic intervention in these malignant tumours.

  13. Structural Insight Into the Role of Mutual Polymorphism and Conservatism in the Contact Zone of the NFR5-K1 Heterodimer With the Nod Factor.

    PubMed

    Igolkina, A A; Porozov, Yu B; Chizhevskaya, E P; Andronov, E E

    2018-01-01

    Sandwich-like docking configurations of the heterodimeric complex of NFR5 and K1 Vicia sativa receptor-like kinases together with the putative ligand, Nod factor (NF) of Rhizobium leguminosarum bv. viciae , were modeled and two of the most probable configurations were assessed through the analysis of the mutual polymorphisms and conservatism. We carried out this analysis based on the hypothesis that in a contact zone of two docked components (proteins or ligands) the population polymorphism or conservatism is mutual, i.e., the variation in one component has a reflected variation in the other component. The population material of 30 wild-growing V. sativa (leaf pieces) was collected from a large field (uncultivated for the past 25-years) and pooled; form this pool, 100 randomly selected cloned fragments of NFR5 gene and 100 of K1 gene were sequenced by the Sanger method. Congruence between population trees of NFR5 and K1 haplotypes allowed us to select two respective haplotypes, build their 3D structures, and perform protein-protein docking. In a separate simulation, the protein-ligand docking between NFR5 and NF was carried out. We merged the results of the two docking experiments and extracted NFR5-NF-K1 complexes, in which NF was located within the cavity between two receptors. Molecular dynamics simulations indicated two out of six complexes as stable. Regions of mutual polymorphism in the contact zone of one complex overlapped with known NF structural variations produced by R. leguminosarum bv. viciae . A total of 74% of the contact zone of another complex contained mutually polymorphic and conservative areas. Common traits of the obtained two stable structures allowed us to hypothesize the functional role of three-domain structure of plant LysM-RLKs in their heteromers.

  14. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy.

    PubMed

    Sales-Marques, Carolinne; Cardoso, Cynthia Chester; Alvarado-Arnez, Lucia Elena; Illaramendi, Ximena; Sales, Anna Maria; Hacker, Mariana de Andréa; Barbosa, Mayara Garcia de Mattos; Nery, José Augusto da Costa; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes; Pacheco, Antonio Guilherme; Moraes, Milton Ozório

    2017-07-01

    The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan-Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients.

  15. Genetic polymorphisms of the IL6 and NOD2 genes are risk factors for inflammatory reactions in leprosy

    PubMed Central

    Sales-Marques, Carolinne; Cardoso, Cynthia Chester; Alvarado-Arnez, Lucia Elena; Illaramendi, Ximena; Sales, Anna Maria; Hacker, Mariana de Andréa; Barbosa, Mayara Garcia de Mattos; Nery, José Augusto da Costa; Pinheiro, Roberta Olmo; Sarno, Euzenir Nunes; Pacheco, Antonio Guilherme

    2017-01-01

    The pathways that trigger exacerbated immune reactions in leprosy could be determined by genetic variations. Here, in a prospective approach, both genetic and non-genetic variables influencing the amount of time before the development of reactional episodes were studied using Kaplan–Meier survival curves, and the genetic effect was estimated by the Cox proportional-hazards regression model. In a sample including 447 leprosy patients, we confirmed that gender (male), and high bacillary clinical forms are risk factors for leprosy reactions. From the 15 single nucleotide polymorphisms (SNPs) at the 8 candidate genes genotyped (TNF/LTA, IFNG, IL10, TLR1, NOD2, SOD2, and IL6) we observed statistically different survival curves for rs751271 at the NOD2 and rs2069845 at the IL6 genes (log-rank p-values = 0.002 and 0.023, respectively), suggesting an influence on the amount of time before developing leprosy reactions. Cox models showed associations between the SNPs rs751271 at NOD2 and rs2069845 at IL6 with leprosy reactions (HRGT = 0.45, p = 0.002; HRAG = 1.88, p = 0.0008, respectively). Finally, IL-6 and IFN-γ levels were confirmed as high, while IL-10 titers were low in the sera of reactional patients. Rs751271-GT genotype-bearing individuals correlated (p = 0.05) with lower levels of IL-6 in sera samples, corroborating the genetic results. Although the experimental size may be considered a limitation of the study, the findings confirm the association of classical variables such as sex and clinical forms with leprosy, demonstrating the consistency of the results. From the results, we conclude that SNPs at the NOD2 and IL6 genes are associated with leprosy reactions as an outcome. NOD2 also has a clear functional pro-inflammatory link that is coherent with the exacerbated responses observed in these patients. PMID:28715406

  16. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens

    PubMed Central

    McGuire, Victoria A.; Arthur, J. Simon C.

    2015-01-01

    Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection. PMID:26648936

  17. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability

    PubMed Central

    Beckley, Ethan H.; Scibelli, Angela C.; Finn, Deborah A.

    2010-01-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone’s GABAA receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. PMID:21163582

  18. Progesterone receptor antagonist CDB-4124 increases depression-like behavior in mice without affecting locomotor ability.

    PubMed

    Beckley, Ethan H; Scibelli, Angela C; Finn, Deborah A

    2011-07-01

    Progesterone withdrawal has been proposed as an underlying factor in premenstrual syndrome and postpartum depression. Progesterone withdrawal induces forced swim test (FST) immobility in mice, a depression-like behavior, but the contribution of specific receptors to this effect is unclear. The role of progesterone's GABA(A) receptor-modulating metabolite allopregnanolone in depression- and anxiety-related behaviors has been extensively documented, but little attention has been paid to the role of progesterone receptors. We administered the classic progesterone receptor antagonist mifepristone (RU-38486) and the specific progesterone receptor antagonist CDB-4124 to mice that had been primed with progesterone for five days, and found that both compounds induced FST immobility reliably, robustly, and in a dose-dependent fashion. Although CDB-4124 increased FST immobility, it did not suppress initial activity in a locomotor test. These findings suggest that decreased progesterone receptor activity contributes to depression-like behavior in mice, consistent with the hypothesis that progesterone withdrawal may contribute to the symptoms of premenstrual syndrome or postpartum depression. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. Receptor-like cytoplasmic kinases are pivotal components in pattern recognition receptor-mediated signaling in plant immunity.

    PubMed

    Yamaguchi, Koji; Yamada, Kenta; Kawasaki, Tsutomu

    2013-10-01

    Innate immunity is generally initiated with recognition of conserved pathogen-associated molecular patterns (PAMPs). PAMPs are perceived by pattern recognition receptors (PRRs), leading to activation of a series of immune responses, including the expression of defense genes, ROS production and activation of MAP kinase. Recent progress has indicated that receptor-like cytoplasmic kinases (RLCKs) are directly activated by ligand-activated PRRs and initiate pattern-triggered immunity (PTI) in both Arabidopsis and rice. To suppress PTI, pathogens inhibit the RLCKs by many types of effectors, including AvrAC, AvrPphB and Xoo1488. In this review, we summarize recent advances in RLCK-mediated PTI in plants.

  20. The nuclear immune receptor RPS4 is required for RRS1SLH1-dependent constitutive defense activation in Arabidopsis thaliana.

    PubMed

    Sohn, Kee Hoon; Segonzac, Cécile; Rallapalli, Ghanasyam; Sarris, Panagiotis F; Woo, Joo Yong; Williams, Simon J; Newman, Toby E; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D G

    2014-10-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific "avirulent" pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new light

  1. The Nuclear Immune Receptor RPS4 Is Required for RRS1SLH1-Dependent Constitutive Defense Activation in Arabidopsis thaliana

    PubMed Central

    Sarris, Panagiotis F.; Woo, Joo Yong; Williams, Simon J.; Newman, Toby E.; Paek, Kyung Hee; Kobe, Bostjan; Jones, Jonathan D. G.

    2014-01-01

    Plant nucleotide-binding leucine-rich repeat (NB-LRR) disease resistance (R) proteins recognize specific “avirulent” pathogen effectors and activate immune responses. NB-LRR proteins structurally and functionally resemble mammalian Nod-like receptors (NLRs). How NB-LRR and NLR proteins activate defense is poorly understood. The divergently transcribed Arabidopsis R genes, RPS4 (resistance to Pseudomonas syringae 4) and RRS1 (resistance to Ralstonia solanacearum 1), function together to confer recognition of Pseudomonas AvrRps4 and Ralstonia PopP2. RRS1 is the only known recessive NB-LRR R gene and encodes a WRKY DNA binding domain, prompting suggestions that it acts downstream of RPS4 for transcriptional activation of defense genes. We define here the early RRS1-dependent transcriptional changes upon delivery of PopP2 via Pseudomonas type III secretion. The Arabidopsis slh1 (sensitive to low humidity 1) mutant encodes an RRS1 allele (RRS1SLH1) with a single amino acid (leucine) insertion in the WRKY DNA-binding domain. Its poor growth due to constitutive defense activation is rescued at higher temperature. Transcription profiling data indicate that RRS1SLH1-mediated defense activation overlaps substantially with AvrRps4- and PopP2-regulated responses. To better understand the genetic basis of RPS4/RRS1-dependent immunity, we performed a genetic screen to identify suppressor of slh1 immunity (sushi) mutants. We show that many sushi mutants carry mutations in RPS4, suggesting that RPS4 acts downstream or in a complex with RRS1. Interestingly, several mutations were identified in a domain C-terminal to the RPS4 LRR domain. Using an Agrobacterium-mediated transient assay system, we demonstrate that the P-loop motif of RPS4 but not of RRS1SLH1 is required for RRS1SLH1 function. We also recapitulate the dominant suppression of RRS1SLH1 defense activation by wild type RRS1 and show this suppression requires an intact RRS1 P-loop. These analyses of RRS1SLH1 shed new

  2. Interleukin-32 induces the differentiation of monocytes into macrophage-like cells.

    PubMed

    Netea, Mihai G; Lewis, Eli C; Azam, Tania; Joosten, Leo A B; Jaekal, Jun; Bae, Su-Young; Dinarello, Charles A; Kim, Soo-Hyun

    2008-03-04

    After emigration from the bone marrow to the peripheral blood, monocytes enter tissues and differentiate into macrophages, the prototype scavenger of the immune system. By ingesting and killing microorganisms and removing cellular debris, macrophages also process antigens as a first step in mounting a specific immune response. IL-32 is a cytokine inducing proinflammatory cytokines and chemokines via p38-MAPK and NF-kappaB. In the present study, we demonstrate that IL-32 induces differentiation of human blood monocytes as well as THP-1 leukemic cells into macrophage-like cells with functional phagocytic activity for live bacteria. Muramyl dipepide (MDP), the ligand for the intracellular nuclear oligomerization domain (NOD) 2 receptor, has no effect on differentiation alone but augments the monocyte-to-macrophage differentiation by IL-32. Unexpectedly, IL-32 reversed GM-CSF/IL-4-induced dendritic cell differentiation to macrophage-like cells. Whereas the induction of TNFalpha, IL-1beta, and IL-6 by IL-32 is mediated by p38-MAPK, IL-32-induced monocyte-to-macrophage differentiation is mediated through nonapoptotic, caspase-3-dependent mechanisms. Thus, IL-32 not only contributes to host responses through the induction of proinflammatory cytokines but also directly affects specific immunity by differentiating monocytes into macrophage-like cells.

  3. The structural basis for endotoxin-induced allosteric regulation of the Toll-like receptor 4 (TLR4) innate immune receptor.

    PubMed

    Paramo, Teresa; Piggot, Thomas J; Bryant, Clare E; Bond, Peter J

    2013-12-20

    As part of the innate immune system, Toll-like receptor 4 (TLR4) recognizes bacterial cell surface lipopolysaccharide (LPS) by forming a complex with a lipid-binding co-receptor, MD-2. In the presence of agonist, TLR4·MD-2 dimerizes to form an active receptor complex, leading to initiation of intracellular inflammatory signals. TLR4 is of great biomedical interest, but its pharmacological manipulation is complicated because even subtle variations in the structure of LPS can profoundly impact the resultant immunological response. Here, we use atomically detailed molecular simulations to gain insights into the nature of the molecular signaling mechanism. We first demonstrate that MD-2 is extraordinarily flexible. The "clamshell-like" motions of its β-cup fold enable it to sensitively match the volume of its hydrophobic cavity to the size and shape of the bound lipid moiety. We show that MD-2 allosterically transmits this conformational plasticity, in a ligand-dependent manner, to a phenylalanine residue (Phe-126) at the cavity mouth previously implicated in TLR4 activation. Remarkably, within the receptor complex, we observe spontaneous transitions between active and inactive signaling states of Phe-126, and we confirm that Phe-126 is indeed the "molecular switch" in endotoxic signaling.

  4. Avr4 promotes Cf-4 receptor-like protein association with the BAK1/SERK3 receptor-like kinase to initiate receptor endocytosis and plant immunity.

    PubMed

    Postma, Jelle; Liebrand, Thomas W H; Bi, Guozhi; Evrard, Alexandre; Bye, Ruby R; Mbengue, Malick; Kuhn, Hannah; Joosten, Matthieu H A J; Robatzek, Silke

    2016-04-01

    The first layer of plant immunity is activated by cell surface receptor-like kinases (RLKs) and proteins (RLPs) that detect infectious pathogens. Constitutive interaction with the SUPPRESSOR OF BIR1 (SOBIR1) RLK contributes to RLP stability and kinase activity. As RLK activation requires transphosphorylation with a second associated RLK, it remains elusive how RLPs initiate downstream signaling. We employed live-cell imaging, gene silencing and coimmunoprecipitation to investigate the requirement of associated kinases for functioning and ligand-induced subcellular trafficking of Cf RLPs that mediate immunity of tomato against Cladosporium fulvum. Our research shows that after elicitation with matching effector ligands Avr4 and Avr9, BRI1-ASSOCIATED KINASE 1/SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (BAK1/SERK3) associates with Cf-4 and Cf-9. BAK1/SERK3 is required for the effector-triggered hypersensitive response and resistance of tomato against C. fulvum. Furthermore, Cf-4 interacts with SOBIR1 at the plasma membrane and is recruited to late endosomes upon Avr4 trigger, also depending on BAK1/SERK3. These observations indicate that RLP-mediated resistance and endocytosis require ligand-induced recruitment of BAK1/SERK3, reminiscent of BAK1/SERK3 interaction and subcellular fate of the FLAGELLIN SENSING 2 (FLS2) RLK. This reveals that diverse classes of cell surface immune receptors share common requirements for initiation of resistance and endocytosis. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  5. Induction of nodD Gene in a Betarhizobium Isolate, Cupriavidus sp. of Mimosa pudica, by Root Nodule Phenolic Acids.

    PubMed

    Mandal, Santi M; Chakraborty, Dipjyoti; Dutta, Suhrid R; Ghosh, Ananta K; Pati, Bikas R; Korpole, Suresh; Paul, Debarati

    2016-06-01

    A range of phenolic acids, viz., p-coumaric acid, 4-hydroxybenzaldehyde, 4-hydroxybenzoic acid, protocatechuic acid, caffeic acid, ferulic acid, and cinnamic acid have been isolated and identified by LC-MS analysis in the roots and root nodules of Mimosa pudica. The effects of identified phenolic acids on the regulation of nodulation (nod) genes have been evaluated in a betarhizobium isolate of M. pudica root nodule. Protocatechuic acid and p-hydroxybenzoic acid were most effective in inducing nod gene, whereas caffeic acid had no significant effect. Phenylalanine ammonia lyase, peroxidase, and polyphenol oxidase activities were estimated, indicating regulation and metabolism of phenolic acids in root nodules. These results showed that nodD gene expression of betarhizobium is regulated by simple phenolic acids such as protocatechuic acid and p-hydroxybenzoic acid present in host root nodule and sustains nodule organogenesis.

  6. Ebselen has lithium-like effects on central 5-HT2A receptor function.

    PubMed

    Antoniadou, I; Kouskou, M; Arsiwala, T; Singh, N; Vasudevan, S R; Fowler, T; Cadirci, E; Churchill, G C; Sharp, T

    2018-02-27

    Lithium's antidepressant action may be mediated by inhibition of inositol monophosphatase (IMPase), a key enzyme in G q protein coupled receptor signalling. Recently, the antioxidant agent ebselen was identified as an IMPase inhibitor. Here we investigated both ebselen and lithium in models of the 5-HT 2A receptor, a G q protein coupled receptor implicated in lithium's actions. 5-HT 2A receptor function was modelled in mice by measuring the behavioural (head-twitches) and cortical immediate early gene (IEG; Arc, c-fos and Erg2 mRNA) responses to 5-HT 2A receptor agonist administration. Ebselen and lithium were administered either acutely or chronically prior to assessment of 5-HT 2A receptor function. Given the SSRI augmenting action of lithium and 5-HT 2A antagonists, ebselen was also tested for this action by co-administration with the SSRI citalopram in microdialysis (extracellular 5-HT) experiments. Acute and repeated administration of ebselen inhibited behavioural and IEG responses to the 5-HT 2A receptor agonist DOI. Repeated lithium also inhibited DOI-evoked behavioural and IEG responses. In comparison, a selective IMPase inhibitor (L-690,330) attenuated the behavioural response to DOI whereas glycogen synthase kinase inhibitor (AR-A014418) did not. Finally, ebselen increased regional brain 5-HT synthesis and enhanced the increase in extracellular 5-HT induced by citalopram. The current data demonstrate lithium-mimetic effects of ebselen in different experimental models of 5-HT 2A receptor function, likely mediated by IMPase inhibition. This evidence of lithium-like neuropharmacological effects of ebselen adds further support for the clinical testing of ebselen in mood disorder, including as an antidepressant augmenting agent. This article is protected by copyright. All rights reserved.

  7. Dopamine acting at D1-like, D2-like and α1-adrenergic receptors differentially modulates theta and gamma oscillatory activity in primary motor cortex.

    PubMed

    Özkan, Mazhar; Johnson, Nicholas W; Sehirli, Umit S; Woodhall, Gavin L; Stanford, Ian M

    2017-01-01

    The loss of dopamine (DA) in Parkinson's is accompanied by the emergence of exaggerated theta and beta frequency neuronal oscillatory activity in the primary motor cortex (M1) and basal ganglia. DA replacement therapy or deep brain stimulation reduces the power of these oscillations and this is coincident with an improvement in motor performance implying a causal relationship. Here we provide in vitro evidence for the differential modulation of theta and gamma activity in M1 by DA acting at receptors exhibiting conventional and non-conventional DA pharmacology. Recording local field potentials in deep layer V of rat M1, co-application of carbachol (CCh, 5 μM) and kainic acid (KA, 150 nM) elicited simultaneous oscillations at a frequency of 6.49 ± 0.18 Hz (theta, n = 84) and 34.97 ± 0.39 Hz (gamma, n = 84). Bath application of DA resulted in a decrease in gamma power with no change in theta power. However, application of either the D1-like receptor agonist SKF38393 or the D2-like agonist quinpirole increased the power of both theta and gamma suggesting that the DA-mediated inhibition of oscillatory power is by action at other sites other than classical DA receptors. Application of amphetamine, which promotes endogenous amine neurotransmitter release, or the adrenergic α1-selective agonist phenylephrine mimicked the action of DA and reduced gamma power, a result unaffected by prior co-application of D1 and D2 receptor antagonists SCH23390 and sulpiride. Finally, application of the α1-adrenergic receptor antagonist prazosin blocked the action of DA on gamma power suggestive of interaction between α1 and DA receptors. These results show that DA mediates complex actions acting at dopamine D1-like and D2-like receptors, α1 adrenergic receptors and possibly DA/α1 heteromultimeric receptors to differentially modulate theta and gamma activity in M1.

  8. Toll-like Receptors and B-cell Receptors Synergize to Induce Immunoglobulin Class Switch DNA Recombination: Relevance to Microbial Antibody Responses

    PubMed Central

    Pone, Egest J.; Zan, Hong; Zhang, Jinsong; Al-Qahtani, Ahmed; Xu, Zhenming; Casali, Paolo

    2011-01-01

    Differentiation of naïve B cells, including immunoglobulin (Ig) class switch DNA recombination (CSR), is critical for the immune response and depends on the extensive integration of signals from the B cell receptor (BCR), tumor necrosis factor (TNF) receptor family members, Toll-like receptors (TLRs) and cytokine receptors. TLRs and BCR synergize to induce CSR in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B cell differentiation and antibody responses. The requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the upregulation of co-stimulatory CD80 and MHC-II receptors, which, in turn, result in more efficient interactions with T cells, thereby enhancing the germinal center (GC) reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products, determine the ensuing B cell antibody response. PMID:20370617

  9. NMDA and D2-like receptors modulate cognitive flexibility in a color discrimination reversal task in pigeons.

    PubMed

    Herold, Christina

    2010-06-01

    Reversal and extinction learning represent forms of cognitive flexibility that refer to the ability of an animal to alter behavior in response to unanticipated changes on environmental demands. A role for dopamine and glutamate in modulating this behavior has been implicated. Here, we determined the effects of intracerebroventricular injections in pigeons' forebrain of the D2-like receptor agonist quinpirole, the D2-like receptor antagonist sulpiride and the N-methyl-d-aspartate receptor antagonist AP-5 on initial acquisition and reversal of a color discrimination task. On day one, pigeons had to learn to discriminate two color keys. On day two, pigeons first performed a retention test, which was followed by a reversal of the reward contingencies of the two color keys. None of the drugs altered performance in the initial acquisition of color discrimination or affected the retention of the learned color key. In contrast, all drugs impaired reversal learning by increasing trials and incorrect responses in the reversal session. Our data support the hypothesis that D2-like receptor mechanisms, like N-methyl-d-aspartate receptor modulations, are involved in cognitive flexibility and relearning processes, but not in initial learning of stimulus-reward association.

  10. Identification of the phosphorylation targets of symbiotic receptor-like kinases using a high-throughput multiplexed assay for kinase specificity.

    PubMed

    Jayaraman, Dhileepkumar; Richards, Alicia L; Westphall, Michael S; Coon, Joshua J; Ané, Jean-Michel

    2017-06-01

    Detecting the phosphorylation substrates of multiple kinases in a single experiment is a challenge, and new techniques are being developed to overcome this challenge. Here, we used a multiplexed assay for kinase specificity (MAKS) to identify the substrates directly and to map the phosphorylation site(s) of plant symbiotic receptor-like kinases. The symbiotic receptor-like kinases nodulation receptor-like kinase (NORK) and lysin motif domain-containing receptor-like kinase 3 (LYK3) are indispensable for the establishment of root nodule symbiosis. Although some interacting proteins have been identified for these symbiotic receptor-like kinases, very little is known about their phosphorylation substrates. Using this high-throughput approach, we identified several other potential phosphorylation targets for both these symbiotic receptor-like kinases. In particular, we also discovered the phosphorylation of LYK3 by NORK itself, which was also confirmed by pairwise kinase assays. Motif analysis of potential targets for these kinases revealed that the acidic motif xxxsDxxx was common to both of them. In summary, this high-throughput technique catalogs the potential phosphorylation substrates of multiple kinases in a single efficient experiment, the biological characterization of which should provide a better understanding of phosphorylation signaling cascade in symbiosis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  11. The effects of pargyline and 2-phenylethylamine on D1-like dopamine receptor binding.

    PubMed

    Berry, Mark D

    2011-07-01

    2-Phenylethylamine (PE) potentiates neuronal responses to dopamine by an unknown post-synaptic mechanism. Here, whether PE modifies D1-like receptor binding was examined. An unexpected effect of the monoamine oxidase inhibitor pargyline was observed, which did not involve competition for ligand binding. PE did not affect ligand binding in the presence or absence of pargyline. It is concluded that the effect of pargyline does not involve elevation of endogenous PE, and PE effects on dopaminergic neurotransmission are not due to altered D1-like receptor binding.

  12. Toll-like receptor signaling and stages of addiction.

    PubMed

    Crews, Fulton T; Walter, T Jordan; Coleman, Leon G; Vetreno, Ryan P

    2017-05-01

    Athina Markou and her colleagues discovered persistent changes in adult behavior following adolescent exposure to ethanol or nicotine consistent with increased risk for developing addiction. Building on Dr. Markou's important work and that of others in the field, researchers at the Bowles Center for Alcohol Studies have found that persistent changes in behavior following adolescent stress or alcohol exposure may be linked to induction of immune signaling in brain. This study aims to illuminate the critical interrelationship of the innate immune system (e.g., toll-like receptors [TLRs], high-mobility group box 1 [HMGB1]) in the neurobiology of addiction. This study reviews the relevant research regarding the relationship between the innate immune system and addiction. Emerging evidence indicates that TLRs in brain, particularly those on microglia, respond to endogenous innate immune agonists such as HMGB1 and microRNAs (miRNAs). Multiple TLRs, HMGB1, and miRNAs are induced in the brain by stress, alcohol, and other drugs of abuse and are increased in the postmortem human alcoholic brain. Enhanced TLR-innate immune signaling in brain leads to epigenetic modifications, alterations in synaptic plasticity, and loss of neuronal cell populations, which contribute to cognitive and emotive dysfunctions. Addiction involves progressive stages of drug binges and intoxication, withdrawal-negative affect, and ultimately compulsive drug use and abuse. Toll-like receptor signaling within cortical-limbic circuits is modified by alcohol and stress in a manner consistent with promoting progression through the stages of addiction.

  13. Toll-like receptor signaling: a perspective to develop vaccine against leishmaniasis.

    PubMed

    Singh, Rakesh K; Srivastava, Ankita; Singh, Nisha

    2012-09-06

    The toll-like receptors (TLRs) are the sentinel factor of the innate immunity, which are essential for host defense. These receptors detect the presence of conserved molecular patterns of potentially pathogenic microorganisms and contribute in both, cellular as well as humoral immune responses. Leishmania is an intracellular pathogen that silently invades host immune system. After phagocytosis, it divides and proliferates in the harmful environment of host macrophages by down-regulating its vital effector functions. In leishmaniasis, the outcome of the infection basically relies on the skewed balance between Th1/Th2 immune responses. Lots of work have been done and on progress but still characterization of either preventive or prophylactic candidate antigen/s is far from satisfactory. How does Leishmania regulate host innate immune system? Still it is unanswered. TLRs play very important role during inflammatory process of various diseases such as cancer, bacterial and viral infections but TLR signaling is comparatively less explained in leishmanial infection. In the context to Th1/Th2 dichotomy, identification of leishmanial antigens that modulate toll-like receptor signaling will certainly help in the development of future vaccine. This review will initially describe global properties of TLRs, and later will discuss their role in the pathogenesis of leishmaniasis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  14. Paricalcitol modulates ACE2 shedding and renal ADAM17 in NOD mice beyond proteinuria.

    PubMed

    Riera, Marta; Anguiano, Lidia; Clotet, Sergi; Roca-Ho, Heleia; Rebull, Marta; Pascual, Julio; Soler, Maria Jose

    2016-03-15

    Circulating and renal activity of angiotensin-converting enzyme 2 (ACE2) is increased in non-obese diabetic (NOD) mice. Because paricalcitol has been reported to protect against diabetic nephropathy, we investigated the role of paricalcitol in modulating ACE2 in these mice. In addition, renal ADAM17, a metalloprotease implied in ACE2 shedding, was assessed. NOD female and non-diabetic control mice were studied for 21 days after diabetes onset and divided into various treatment groups. Diabetic animals received either vehicle; 0.4 or 0.8 μg/kg paricalcitol, aliskiren, or a combination of paricalcitol and aliskiren. We then studied the effect of paricalcitol on ACE2 expression in proximal tubular epithelial cells. Paricalcitol alone or in combination with aliskiren resulted in significantly reduced circulating ACE2 activity in NOD mice but there were no changes in urinary albumin excretion. Serum renin activity was significantly decreased in mice that received aliskiren but no effect was found when paricalcitol was used alone. Renal content of ADAM17 was significantly decreased in animals that received a high dose of paricalcitol. Renal and circulating oxidative stress (quantified by plasma H2O2 levels and immunolocalization of nitrotyrosine) were reduced in high-dose paricalcitol-treated mice compared with non-treated diabetic mice. In culture, paricalcitol incubation resulted in a significant increase in ACE2 expression compared with nontreated cells. In NOD mice with type 1 diabetes, paricalcitol modulates ACE2 activity, ADAM17, and oxidative stress renal content independently from the glycemic profile and urinary albumin excretion. In tubular cells, paricalcitol may modulate ACE2 by blocking its shedding. In the early stage of diabetic nephropathy, paricalcitol treatment counterbalances the effect of diabetes on circulating ACE2 activity. Our results suggest that additional use of paricalcitol may be beneficial in treating patients with diabetes under standard

  15. Major histocompatibility complex class I-deficient NOD-B2mnull mice are diabetes and insulitis resistant.

    PubMed

    Serreze, D V; Leiter, E H; Christianson, G J; Greiner, D; Roopenian, D C

    1994-03-01

    Specific allelic combinations within the class II region of the major histocompatibility complex (MHC) represent a major genetic component for susceptibility to autoimmune insulin-dependent diabetes mellitus (IDDM) in humans. We produced and used a stock of NOD/Lt mice congenic for a functionally inactivated beta 2-microglobulin (B2mnull) locus to assess whether there was an absolute requirement for MHC class I expression and/or CD8+ T-cells in diabetogenesis. These NOD-B2mnull mice do not express cell surface MHC class I molecules or produce detectable levels of CD8+ T-cells and are diabetes and insulitis resistant. Previous results from transgenic mouse models indicated that intracellular accumulation of MHC class I molecules negatively affects pancreatic beta-cell function and can result in the development of nonautoimmune insulin-dependent diabetes mellitus (IDDM). MHC class I molecules have been shown to accumulate intracellularly in the presence of a disrupted B2m locus, but this mutation does not negatively affect plasma insulin levels in either NOD/Lt mice or in those of a mixed 129 and C57BL/6 genetic background. Interestingly, 14% of the male mice in this mixed background did develop hyperinsulinemia (> 1,500 pM) independent of the disrupted B2m locus, suggesting that these mice could conceivably develop insulin-resistant diabetes. However, none of these mice became diabetic at up to 22 months of age. Thus, elimination of cell surface MHC class I expression with a disrupted B2m gene blocks autoimmune diabetes in NOD/Lt mice, without engendering a separate, distinct form of glucose intolerance.

  16. Association of a NOD2 Gene Polymorphism and T-Helper 17 Cells With Presumed Ocular Toxoplasmosis

    PubMed Central

    Dutra, Míriam S.; Béla, Samantha R.; Peixoto-Rangel, Alba L.; Fakiola, Michaela; Cruz, Ariane G.; Gazzinelli, Andrea; Quites, Humberto F.; Bahia-Oliveira, Lilian M. G.; Peixe, Ricardo G.; Campos, Wesley R.; Higino-Rocha, Anna C.; Miller, Nancy E.; Blackwell, Jenefer M.; Antonelli, Lis R.; Gazzinelli, Ricardo T.

    2013-01-01

    Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 gene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon γ (IFN-γ) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4+CD45RO+T-bet−IFN-γ− T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4+ T lymphocytes and might contribute to the development of ocular toxoplasmosis. PMID:23100559

  17. Association of a NOD2 gene polymorphism and T-helper 17 cells with presumed ocular toxoplasmosis.

    PubMed

    Dutra, Míriam S; Béla, Samantha R; Peixoto-Rangel, Alba L; Fakiola, Michaela; Cruz, Ariane G; Gazzinelli, Andrea; Quites, Humberto F; Bahia-Oliveira, Lilian M G; Peixe, Ricardo G; Campos, Wesley R; Higino-Rocha, Anna C; Miller, Nancy E; Blackwell, Jenefer M; Antonelli, Lis R; Gazzinelli, Ricardo T

    2013-01-01

    Retinochoroiditis manifests in patients infected with Toxoplasma gondii. Here, we assessed 30 sibships and 89 parent/case trios of presumed ocular toxoplasmosis (POT) to evaluate associations with polymorphisms in the NOD2 gene. Three haplotype-tagging single-nucleotide polymorphisms (tag-SNPs) within the NOD2 gene were genotyped. The family-based association test showed that the tag-SNP rs3135499 is associated with retinochoroiditis (P = .039). We then characterized the cellular immune response of 59 cases of POT and 4 cases of active ocular toxoplasmosis (AOT). We found no differences in levels of interferon γ (IFN-γ) and interleukin 2 produced by T-helper 1 cells when comparing patients with AOT or POT to asymptomatic individuals. Unexpectedly, we found an increased interleukin 17A (IL-17A) production in patients with POT or OAT. In patients with POT or AOT, the main cellular source of IL-17A was CD4(+)CD45RO(+)T-bet(-)IFN-γ(-) T-helper 17 cells. Altogether, our results suggest that NOD2 influences the production of IL-17A by CD4(+) T lymphocytes and might contribute to the development of ocular toxoplasmosis.

  18. Pathogen recognition in the innate immune response.

    PubMed

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  19. Panicolytic-like effect of tramadol is mediated by opioid receptors in the dorsal periaqueductal grey.

    PubMed

    Fiaes, Gislaine Cardoso de Souza; Roncon, Camila Marroni; Sestile, Caio Cesar; Maraschin, Jhonatan Christian; Souza, Rodolfo Luis Silva; Porcu, Mauro; Audi, Elisabeth Aparecida

    2017-05-30

    Tramadol is a synthetic opioid prescribed for the treatment of moderate to severe pain, acting as agonist of μ-opioid receptors and serotonin (5-HT) and noradrenaline (NE) reuptake inhibitor. This study evaluated the effects of tramadol in rats submitted to the elevated T-maze (ETM), an animal model that evaluates behavioural parameters such as anxiety and panic. Male Wistar rats were intraperitoneally (i.p.) treated acutely with tramadol (16 and 32mg/kg) and were submitted to the ETM. Tramadol (32mg/kg) promoted a panicolytic-like effect. Considering that dorsal periaqueductal grey (dPAG) is the main brain structure related to the pathophysiology of panic disorder (PD), this study also evaluated the participation of 5-HT and opioid receptors located in the dPAG in the panicolytic-like effect of tramadol. Seven days after stereotaxic surgery for implantation of a cannula in the dPAG, the animals were submitted to the test. To assess the involvement of 5-HT 1A receptors on the effect of tramadol, we combined the 5-HT 1A receptor antagonist, WAY100635 (0.37nmol), microinjected intra-dPAG, 10min prior to the administration of tramadol (32mg/kg, i.p.). WAY100635 did not block the panicolytic-like effect of tramadol. We also associated the non-selective opioid receptor antagonist, naloxone, systemically (1mg/kg, i.p.) or intra-dPAG (0.5nmol) administered 10min prior to tramadol (32mg/kg, i.p.). Naloxone blocked the panicolytic-like effect of tramadol in both routes of administrations, showing that tramadol modulates acute panic defensive behaviours through its interaction with opioid receptors located in the dPAG. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Involvement of NMDA receptors in the antidepressant-like effect of tramadol in the mouse forced swimming test.

    PubMed

    Ostadhadi, Sattar; Norouzi-Javidan, Abbas; Chamanara, Mohsen; Akbarian, Reyhaneh; Imran-Khan, Muhammad; Ghasemi, Mehdi; Dehpour, Ahmad-Reza

    2017-09-01

    Tramadol is an analgesic agent that is mainly used to treat moderate to severe pain. There is evidence that tramadol may have antidepressant property. However, the mechanisms underlying the antidepressant effects of tramadol have not been elucidated yet. Considering that fact that N-methyl-d-aspartate (NMDA) receptor signaling may play an important role in the pathophysiology of depression, the aim of the present study was to investigate the role of NMDA receptor signaling in the possible antidepressant-like effects of tramadol in the mouse forced swimming test (mFST). We found that tramadol exerted antidepressant-like effects at high dose (40mg/kg, intraperitoneally [i.p.]) in the mFST. Co-administration of non-effective doses of NMDA receptor antagonists (ketamine [1mg/kg, i.p.], MK-801 [0.05mg/kg, i.p.], or magnesium sulfate [10mg/kg, i.p.]) with sub-effective dose of tramadol (20mg/kg, i.p.) exerted significant antidepressant-like effects in the mFST. The antidepressant-like effects of tramadol (40mg/kg) was also inhibited by pre-treatment with non-effective dose of the NMDA receptor agonist NMDA (75mg/kg, i.p.). Our data suggest a role for NMDA receptor signaling in the antidepressant-like effects of tramadol in the mFST. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Effects of human interleukin-18 and interleukin-12 treatment on human lymphocyte engraftment in NOD-scid mouse

    PubMed Central

    Senpuku, Hidenobu; Asano, Toshihiko; Matin, Khairul; Salam, M Abdus; Tsuha, Yuzo; Horibata, Shigeo; Shimazu, Yoshihito; Soeno, Yuichi; Aoba, Takaaki; Sata, Tetsutaro; Hanada, Nobuhiro; Honda, Mitsuo

    2002-01-01

    NOD/LtSz-prkdcscid/prkdcscid (non-obese diabetic-severe combine immunodeficiency; NOD-scid) mice grafted with human peripheral blood lymphoid cells have been used as an in vivo humanized mouse model in various studies. However, cytotoxic human T cells are induced in this model during immune responses, which gives misleading results. To assist in grafting of human lymphocytes without the induction of cytotoxic human T cells, we investigated the effects of T helper type 1 (Th1) and Th2 cytokines on human lymphocyte grafting and migration, as well as the production of immunoglobulin deposited in glomeruli and human immunodeficiency virus-1 (HIV-1) infection using NOD-scid mice. Administration of interleukin-18 (IL-18) and IL-12 enhanced the grafting of human CD4+ and CD8+ T cells in the mice, whereas co-administration prevented grafting due to interferon-γ-dependent apoptosis. Immunoglobulin A (IgA) deposits were observed in mice treated with IL-18 alone, but not in those given phosphate-buffered saline, IL-12 alone, or IL-18 + IL-12. A high rate of HIV infection was also observed in the IL-18-treated group. Together, these results indicate that IL-18 may be effective for the grafting and migration of CD4+ and CD8+ T cells, except for the induction of apoptosis and regulation of class-switching IgA. IL-18-administered NOD-scid mice provide a useful small humanized model for the study of HIV infection and IgA nephropathy. PMID:12383203

  2. Evaluation of antidepressant-like and anxiolytic-like activity of purinedione-derivatives with affinity for adenosine A2A receptors in mice.

    PubMed

    Dziubina, Anna; Szmyd, Karina; Zygmunt, Małgorzata; Sapa, Jacek; Dudek, Magdalena; Filipek, Barbara; Drabczyńska, Anna; Załuski, Michał; Pytka, Karolina; Kieć-Kononowicz, Katarzyna

    2016-12-01

    It has recently been suggested that the adenosine A 2A receptor plays a role in several animal models of depression. Additionally, A 2A antagonists have reversed behavioral deficits and exhibited a profile similar to classical antidepressants. In the present study, imidazo- and pyrimido[2,1-f]purinedione derivatives (KD 66, KD 167, KD 206) with affinity to A 2A receptors but poor A 1 affinity were evaluated for their antidepressant- and anxiolytic-like activity. The activity of these derivatives was tested using a tail suspension and forced swim test, two widely-used behavioral paradigms for the evaluation of antidepressant-like activity. In turn, the anxiolytic activity was evaluated using the four-plate test. The results showed the antidepressant-like activity of pyrimido- and imidazopurinedione derivatives (i.e. KD 66, KD 167 and KD 206) in acute and chronic behavioral tests in mice. KD 66 revealed an anxiolytic-like effect, while KD 167 increased anxiety behaviors. KD 206 had no effect on anxiety. Furthermore, none of the tested compounds increased locomotor activity. Available data support the proposition that the examined compounds with adenosine A 2A receptor affinity may be an interesting target for the development of antidepressant and/or anxiolytic agents. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  3. Knowing your friends and foes--plant receptor-like kinases as initiators of symbiosis or defence.

    PubMed

    Antolín-Llovera, Meritxell; Petutsching, Elena Kristin; Ried, Martina Katharina; Lipka, Volker; Nürnberger, Thorsten; Robatzek, Silke; Parniske, Martin

    2014-12-01

    The decision between defence and symbiosis signalling in plants involves alternative and modular plasma membrane-localized receptor complexes. A critical step in their activation is ligand-induced homo- or hetero-oligomerization of leucine-rich repeat (LRR)- and/or lysin motif (LysM) receptor-like kinases (RLKs). In defence signalling, receptor complexes form upon binding of pathogen-associated molecular patterns (PAMPs), including the bacterial flagellin-derived peptide flg22, or chitin. Similar mechanisms are likely to operate during the perception of microbial symbiont-derived (lipo)-chitooligosaccharides. The structurally related chitin-oligomer ligands chitooctaose and chitotetraose trigger defence and symbiosis signalling, respectively, and their discrimination involves closely related, if not identical, LysM-RLKs. This illustrates the demand for and the challenges imposed on decision mechanisms that ensure appropriate signal initiation. Appropriate signalling critically depends on abundance and localization of RLKs at the cell surface. This is regulated by internalization, which also provides a mechanism for the removal of activated signalling RLKs. Abundance of the malectin-like domain (MLD)-LRR-RLK Symbiosis Receptor-like Kinase (SYMRK) is additionally controlled by cleavage of its modular ectodomain, which generates a truncated and rapidly degraded RLK fragment. This review explores LRR- and LysM-mediated signalling, the involvement of MLD-LRR-RLKs in symbiosis and defence, and the role of endocytosis in RLK function. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  4. Human T-cell responses to oral streptococci in human PBMC-NOD/SCID mice.

    PubMed

    Salam, M A; Nakao, R; Yonezawa, H; Watanabe, H; Senpuku, H

    2006-06-01

    We investigated cellular and humoral immune responses to oral biofilm bacteria, including Streptococcus mutans, Streptococcus anginosus, Streptococcus sobrinus, and Streptococcus sanguinis, in NOD/SCID mice immunized with human peripheral blood mononuclear cells (hu-PBMC-NOD/SCID mice) to explore the pathogenicity of each of those organisms in dental and oral inflammatory diseases. hu-PBMC-NOD/SCID mice were immunized by intraperitoneal injections with the whole cells of the streptococci once a week for 3 weeks. FACS analyses were used to determine the percentages of various hu-T cell types, as well as intracellular cytokine production of interleukin-4 and interferon-gamma. Serum IgG and IgM antibody levels in response to the streptococci were also determined by enzyme-linked immunosorbent assay. S. anginosus induced a significant amount of the proinflammatory cytokine interferon-gamma in CD4(+) and CD8(+) T cells in comparison with the other streptococci. However, there was no significant differences between the streptococci in interleukin-4 production by CD4(+) and CD8(+) T cells after inoculation. Further, S. mutans significantly induced human anti-S. mutans IgG, IgG(1), IgG(2), and IgM antibodies in comparison with the other organisms. In conclusion, S. anginosus up-regulated Th1 and Tc1 cells, and S. mutans led to increasing levels of their antibodies, which was associated with the induction of Th2 cells. These results may contribute to a better understanding of human lymphocyte interactions to biofilm bacteria, along with their impact on dental and mucosal inflammatory diseases, as well as endocarditis.

  5. Lack of Both Nucleotide-Binding Oligomerization Domain-Containing Proteins 1 and 2 Primes T Cells for Activation-Induced Cell Death.

    PubMed

    Kasimsetty, Sashi G; Shigeoka, Alana A; Scheinok, Andrew A; Gavin, Amanda L; Ulevitch, Richard J; McKay, Dianne B

    2017-08-01

    Nucleotide-binding oligomerization domain (Nod)-containing proteins Nod1 and Nod2 play important roles in the innate immune response to pathogenic microbes, but mounting data suggest these pattern recognition receptors might also play key roles in adaptive immune responses. Targeting Nod1 and Nod2 signaling pathways in T cells is likely to provide a new strategy to modify inflammation in a variety of disease states, particularly those that depend on Ag-induced T cell activation. To better understand how Nod1 and Nod2 proteins contribute to adaptive immunity, this study investigated their role in alloantigen-induced T cell activation and asked whether their absence might impact in vivo alloresponses using a severe acute graft versus host disease model. The study provided several important observations. We found that the simultaneous absence of Nod1 and Nod2 primed T cells for activation-induced cell death. T cells from Nod1 × 2 -/- mice rapidly underwent cell death upon exposure to alloantigen. The Nod1 × 2 -/- T cells had sustained p53 expression that was associated with downregulation of its negative regulator MDM2. In vivo, mice transplanted with an inoculum containing Nod1 × 2 -/- T cells were protected from severe graft versus host disease. The results show that the simultaneous absence of Nod1 and Nod2 is associated with accelerated T cell death upon alloantigen encounter, suggesting these proteins might provide new targets to ameliorate T cell responses in a variety of inflammatory states, including those associated with bone marrow or solid organ transplantation. Copyright © 2017 by The American Association of Immunologists, Inc.

  6. Influence of Pause Duration and Nod Response Timing in Dialogue between Human and Communication Robot

    NASA Astrophysics Data System (ADS)

    Takasugi, Shoji; Yoshida, Shohei; Okitsu, Kengo; Yokoyama, Masanori; Yamamoto, Tomohito; Miyake, Yoshihiro

    The purpose of this study is to clarify the influence from timing of utterance and body motion in dialogue between human and robot. We controlled pause duration and nod response timing in robot-side, and analyzed impression of communication in human-side by using Scheffe's Paired Comparison method. The results revealed that the impression of communication significantly modified by changing the pause duration and nod response timing. And, timing pattern of the impression altered diversely in elderly people than in younger, indicating that elderly generation uses various timing control mechanisms. From these results, it was suggested that timing control and impression of communication are mutually influenced, and this mechanism is thought to be useful to realize human-robot communication system for elderly generation.

  7. Inflammatory bowel disease: cause and immunobiology.

    PubMed

    Baumgart, Daniel C; Carding, Simon R

    2007-05-12

    Crohn's disease and ulcerative colitis are idiopathic inflammatory bowel disorders. In this paper, we discuss how environmental factors (eg, geography, cigarette smoking, sanitation and hygiene), infectious microbes, ethnic origin, genetic susceptibility, and a dysregulated immune system can result in mucosal inflammation. After describing the symbiotic interaction of the commensal microbiota with the host, oral tolerance, epithelial barrier function, antigen recognition, and immunoregulation by the innate and adaptive immune system, we examine the initiating and perpetuating events of mucosal inflammation. We pay special attention to pattern-recognition receptors, such as toll-like receptors and nucleotide-binding-oligomerisation-domains (NOD), NOD-like receptors and their mutual interaction on epithelial cells and antigen-presenting cells. We also discuss the important role of dendritic cells in directing tolerance and immunity by modulation of subpopulations of effector T cells, regulatory T cells, Th17 cells, natural killer T cells, natural killer cells, and monocyte-macrophages in mucosal inflammation. Implications for novel therapies, which are discussed in detail in the second paper in this Series, are covered briefly.

  8. Toll-Like Receptors in the Pathogenesis of Autoimmune Diseases

    PubMed Central

    Mohammad Hosseini, Akbar; Majidi, Jafar; Baradaran, Behzad; Yousefi, Mehdi

    2015-01-01

    Human Toll-like receptors (TLRs) are a family of transmembrane receptors, which play a key role in both innate and adaptive immune responses. Beside of recognizing specific molecular patterns that associated with different types of pathogens, TLRs may also detect a number of self-proteins and endogenous nucleic acids. Activating TLRs lead to the heightened expression of various inflammatory genes, which have a protective role against infection. Data rising predominantly from human patients and animal models of autoimmune disease indicate that, inappropriate triggering of TLR pathways by exogenous or endogenous ligands may cause the initiation and/or perpetuation of autoimmune reactions and tissue damage. Given their important role in infectious and non-infectious disease process, TLRs and its signaling pathways emerge as appealing targets for therapeutics. In this review, we demonstrate how TLRs pathways could be involved in autoimmune disorders and their therapeutic application. PMID:26793605

  9. Involvement of the CA1 GABAA receptors in MK-801-induced anxiolytic-like effects: an isobologram analysis.

    PubMed

    Naseri, Mohammad-Hasan; Hesami-Tackallou, Saeed; Torabi-Nami, Mohammad; Zarrindast, Mohammad-Reza; Nasehi, Mohammad

    2014-06-01

    There seems to be a close relationship between hippocampal N-methyl-D-aspartic acid (NMDA) and GABAA receptors with respect to the modulation of behavior that occurs in the CA1 region of the hippocampus. This study investigated the possible involvement of the CA1 GABAA receptors in anxiolytic-like effects induced by (+)-MK-801 (a noncompetitive antagonist of the NMDA subtype of the glutamate receptor). Male Wistar rats were subjected to the elevated plus-maze apparatus and open arm time (%OAT), and open arm entries (%OAE) for anxiety-related behaviors, and closed arm entries that correspond to the locomotor activity were assessed. An intra-CA1 injection of (+)-MK-801 (2 μg/rat) and muscimol (0.5 μg/rat; a GABAA receptor agonist) increased %OAT and %OAE by themselves while not altering the closed arm entries, indicating an anxiolytic-like effect of these drugs. Injection of bicuculline (0.1, 0.25, and 0.5 μg/rat; a GABAA receptor antagonist) did not alter any of the anxiety-related parameters. An intra-CA1 injection of a subthreshold dose of muscimol (0.1 μg/rat) or bicuculline (0.5 μg/rat), 5 min before injection of subthreshold and effective doses of (+)-MK-801 (0.5, 1 and 2 μg/rat), increased and decreased the anxiolytic-like effect of (+)-MK-801, respectively. The isobologram analysis of these findings suggested a synergistic anxiety-like effect of intra-CA1 (+)-MK-801 and muscimol. In conclusion, the CA1 GABAA receptors appear to be involved in anxiolytic-like behaviors induced by (+)-MK-801.

  10. Dopamine induces inhibitory effects on the circular muscle contractility of mouse distal colon via D1- and D2-like receptors.

    PubMed

    Auteri, Michelangelo; Zizzo, Maria Grazia; Amato, Antonella; Serio, Rosa

    2016-08-01

    Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2'-deoxy-N 6 -methyl adenosine 3',5'-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is

  11. An intravital microscopy model to study early pancreatic inflammation in type 1 diabetes in NOD mice

    PubMed Central

    Lehmann, Christian; Fisher, Nicholas B.; Tugwell, Barna; Zhou, Juan

    2016-01-01

    ABSTRACT Intravital microscopy (IVM) of the pancreas has been proven to be an invaluable tool in pancreatitis, transplantation and ischemia/reperfusion research. Also in type 1 diabetes (T1D) pancreatic IVM offers unique advantages for the elucidation of the disease process. Female non-obese diabetic (NOD) mice develop T1D spontaneously by 40 weeks of age. Our goal was to establish an IVM-based method to study early pancreatic inflammation in NOD mice, which can be used to screen novel medications to prevent or delay T1D in future studies. This included evaluation of leukocyte-endothelial interactions as well as disturbances of capillary perfusion in the pancreatic microcirculation. PMID:28243521

  12. PGE2 released by primary sensory neurons modulates Toll-like receptor 4 activities through an EP4 receptor-dependent process.

    PubMed

    Tse, Kai-Hei; Chow, Kevin B S; Wise, Helen

    2016-04-15

    Exogenous prostaglandin E2 (PGE2) displays mixed regulatory properties with regard to inflammatory gene expression in dorsal root ganglion (DRG) cells. We show here that endogenously-produced nanomolar concentrations of PGE2, such as that generated in response to Toll-like receptor 4 (TLR4) stimulation, inhibits both cyclooxygenase-2 (COX-2) and tumour necrosis factor alpha (TNFα) mRNA expression in DRG cells in an EP4 receptor-dependent manner. DRG neurons appear to be the major source of PGE2 in the DRG and likely serve as both an autocrine and paracrine system for limiting over-activation of both DRG neurons and glial cells in response to TLR4 stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. IL-1 receptor-antagonist (IL-1Ra) knockout mice show anxiety-like behavior by aging.

    PubMed

    Wakabayashi, Chisato; Numakawa, Tadahiro; Odaka, Haruki; Ooshima, Yoshiko; Kiyama, Yuji; Manabe, Toshiya; Kunugi, Hiroshi; Iwakura, Yoichiro

    2015-07-10

    Interleukin 1 (IL-1) plays a critical role in stress responses, and its mRNA is induced in the brain by restraint stress. Previously, we reported that IL-1 receptor antagonist (IL-1Ra) knockout (KO) mice, which lacked IL-1Ra molecules that antagonize the IL-1 receptor, showed anti-depression-like behavior via adrenergic modulation at the age of 8 weeks. Here, we report that IL-1Ra KO mice display an anxiety-like phenotype that is induced spontaneously by aging in the elevated plus-maze (EPM) test. This anxiety-like phenotype was improved by the administration of diazepam. The expression of the anxiety-related molecule glucocorticoid receptor (GR) was significantly reduced in 20-week-old but not in 11-week-old IL-1Ra KO mice compared to wild-type (WT) littermates. The expression of the mineralocorticoid receptor (MR) was not altered between IL-1Ra KO mice and WT littermates at either 11 or 20 weeks old. Analysis of monoamine concentration in the hippocampus revealed that tryptophan, the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), and the dopamine metabolite homovanillic acid (HVA) were significantly increased in 20-week-old IL-1Ra KO mice compared to littermate WT mice. These findings strongly suggest that the anxiety-like behavior observed in older mice was caused by the complicated alteration of monoamine metabolism and/or GR expression in the hippocampus. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  14. Binding specificity of Bacillus thuringiensis Cry1Aa for purified, native Bombyx mori aminopeptidase N and cadherin-like receptors

    PubMed Central

    Jenkins, Jeremy L; Dean, Donald H

    2001-01-01

    Background To better understand the molecular interactions of Bt toxins with non-target insects, we have examined the real-time binding specificity and affinity of Cry1 toxins to native silkworm (Bombyx mori) midgut receptors. Previous studies on B. mori receptors utilized brush border membrane vesicles or purifed receptors in blot-type assays. Results The Bombyx mori (silkworm) aminopeptidase N (APN) and cadherin-like receptors for Bacillus thuringiensis insecticidal Cry1Aa toxin were purified and their real-time binding affinities for Cry toxins were examined by surface plasmon resonance. Cry1Ab and Cry1Ac toxins did not bind to the immobilized native receptors, correlating with their low toxicities. Cry1Aa displayed moderate affinity for B. mori APN (75 nM), and unusually tight binding to the cadherin-like receptor (2.6 nM), which results from slow dissociation rates. The binding of a hybrid toxin (Aa/Aa/Ac) was identical to Cry1Aa. Conclusions These results indicate domain II of Cry1Aa is essential for binding to native B. mori receptors and for toxicity. Moreover, the high-affinity binding of Cry1Aa to native cadherin-like receptor emphasizes the importance of this receptor class for Bt toxin research. PMID:11722800

  15. Sleep deprivation and divergent toll-like receptor-4 activation of cellular inflammation in aging.

    PubMed

    Carroll, Judith E; Carrillo, Carmen; Olmstead, Richard; Witarama, Tuff; Breen, Elizabeth C; Yokomizo, Megumi; Seeman, Teresa; Irwin, Michael R

    2015-02-01

    Sleep disturbance and aging are associated with increases in inflammation, as well as increased risk of infectious disease. However, there is limited understanding of the role of sleep loss on age-related differences in immune responses. This study examines the effects of sleep deprivation on toll-like receptor activation of monocytic inflammation in younger compared to older adults. Community-dwelling adults (n = 70) who were categorized as younger (25-39 y old, n = 21) and older (60-84 y old, n = 49) participants, underwent a sleep laboratory-based experimental partial sleep deprivation (PSD) protocol including adaptation, an uninterrupted night of sleep, sleep deprivation (sleep restricted to 03:00-07:00), and recovery. Blood samples were obtained each morning to measure toll-like receptor-4 activation of monocyte intracellular production of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). Partial sleep deprivation induced a significant increase in the production of IL-6 and/or TNF-α that persisted after a night of recovery sleep (F(2,121.2) = 3.8, P < 0.05). Age moderated the effects of sleep loss, such that younger adults had an increase in inflammatory cytokine production that was not present in older adults (F(2,121.2) = 4.0, P < 0.05). Older adults exhibit reduced toll-like receptor 4 stimulated cellular inflammation that, unlike in younger adults, is not activated after a night of partial sleep loss. Whereas sleep loss increases cellular inflammation in younger adults and may contribute to inflammatory disorders, blunted toll-like receptor activation in older adults may increase the risk of infectious disease seen with aging. © 2015 Associated Professional Sleep Societies, LLC.

  16. Candidate chromosome 1 disease susceptibility genes for Sjogren’s syndrome xerostomia are narrowed by novel NOD.B10 congenic mice

    PubMed Central

    Mongini, Patricia K. A.; Kramer, Jill M.; Ishikawa, Tomo-o; Herschman, Harvey; Esposito, Donna

    2014-01-01

    Sjogren’s syndrome (SS) is characterized by salivary gland leukocytic infiltrates and impaired salivation (xerostomia). Cox-2 (Ptgs2) is located on chromosome 1 within the span of the Aec2 region. In an attempt to demonstrate that COX-2 drives antibody-dependent hyposalivation, NOD.B10 congenic mice bearing a Cox-2flox gene were generated. A congenic line with non-NOD alleles in Cox-2-flanking genes failed manifest xerostomia. Further backcrossing yielded disease-susceptible NOD.B10 Cox-2flox lines; fine genetic mapping determined that critical Aec2 genes lie within a 1.56 to 2.17 Mb span of DNA downstream of Cox-2. Bioinformatics analysis revealed that susceptible and non-susceptible lines exhibit non-synonymous coding SNPs in 8 protein-encoding genes of this region, thereby better delineating candidate Aec2 alleles needed for SS xerostomia. PMID:24685748

  17. Amyloid-beta mediates the receptor of advanced glycation end product-induced pro-inflammatory response via toll-like receptor 4 signaling pathway in retinal ganglion cell line RGC-5.

    PubMed

    Lee, Jong-Jer; Wang, Pei-Wen; Yang, I-Hui; Wu, Chia-Lin; Chuang, Jiin-Haur

    2015-07-01

    Patients with diabetes mellitus have an increased risk of developing Alzheimer's disease. Amyloid-β, a product of amyloid precursor protein, is associated with neuro-inflammation in patients with Alzheimer's diseases. The correlation between amyloid-beta and advanced glycation end products, which accumulate in tissue of diabetic patients, is not clear. The aims of this study were to determine the effect of advanced glycation end product on the expression of amyloid precursor protein/amyloid-beta and associated pro-inflammatory responses in retinal ganglion cell line RGC-5. Treatment with advanced glycation end product produced upregulation of amyloid precursor protein and increased secretion of amyloid-β(1-40). Additionally, amyloid-β(1-40) induced toll-like receptor 4-dependent phosphorylation of tyrosine in myeloid differentiation primary response gene (88). We found that N-[N-(3,5-Difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, a γ-secretase inhibitor, reduced the secretion of amyloid-β(1-40) and inhibited the advanced glycation end product-induced activation of myeloid differentiation primary response gene (88). Amyloid-β(1-40) induced the activation of NF-κB and the expression of TNFα mRNA. Knockdown of toll-like receptor 4 inhibited the amyloid-β(1-40)-induced phosphorylation of p65 in NF-κB. Additionally, the nuclear translocation of p65 and transcriptions of TNFα were inhibited by siRNA knockdown of receptor of advanced glycation end product or toll-like receptor 4. The advanced glycation end product-induced secretion of VEGF-A was also reduced by knockdown of toll-like receptor 4. Taken together, our data suggested that amyloid-β(1-40) mediates the interaction between receptor of advanced glycation end product and toll-like receptor 4. Inhibition of the toll-like receptor 4 is an effective method for suppressing the amyloid-β(1-40)-induced pro-inflammatory responses in RGC-5 cells. Copyright © 2015 Elsevier Ltd. All rights

  18. Two-tiered control of epithelial growth and autophagy by the insulin receptor and the ret-like receptor, stitcher.

    PubMed

    O'Farrell, Fergal; Wang, Shenqiu; Katheder, Nadja; Rusten, Tor Erik; Samakovlis, Christos

    2013-07-01

    Body size in Drosophila larvae, like in other animals, is controlled by nutrition. Nutrient restriction leads to catabolic responses in the majority of tissues, but the Drosophila mitotic imaginal discs continue growing. The nature of these differential control mechanisms that spare distinct tissues from starvation are poorly understood. Here, we reveal that the Ret-like receptor tyrosine kinase (RTK), Stitcher (Stit), is required for cell growth and proliferation through the PI3K-I/TORC1 pathway in the Drosophila wing disc. Both Stit and insulin receptor (InR) signaling activate PI3K-I and drive cellular proliferation and tissue growth. However, whereas optimal growth requires signaling from both InR and Stit, catabolic changes manifested by autophagy only occur when both signaling pathways are compromised. The combined activities of Stit and InR in ectodermal epithelial tissues provide an RTK-mediated, two-tiered reaction threshold to varying nutritional conditions that promote epithelial organ growth even at low levels of InR signaling.

  19. Two-Tiered Control of Epithelial Growth and Autophagy by the Insulin Receptor and the Ret-Like Receptor, Stitcher

    PubMed Central

    O'Farrell, Fergal; Wang, Shenqiu; Katheder, Nadja

    2013-01-01

    Body size in Drosophila larvae, like in other animals, is controlled by nutrition. Nutrient restriction leads to catabolic responses in the majority of tissues, but the Drosophila mitotic imaginal discs continue growing. The nature of these differential control mechanisms that spare distinct tissues from starvation are poorly understood. Here, we reveal that the Ret-like receptor tyrosine kinase (RTK), Stitcher (Stit), is required for cell growth and proliferation through the PI3K-I/TORC1 pathway in the Drosophila wing disc. Both Stit and insulin receptor (InR) signaling activate PI3K-I and drive cellular proliferation and tissue growth. However, whereas optimal growth requires signaling from both InR and Stit, catabolic changes manifested by autophagy only occur when both signaling pathways are compromised. The combined activities of Stit and InR in ectodermal epithelial tissues provide an RTK-mediated, two-tiered reaction threshold to varying nutritional conditions that promote epithelial organ growth even at low levels of InR signaling. PMID:23935447

  20. Leucine zipper motif in RRS1 is crucial for the regulation of Arabidopsis dual resistance protein complex RPS4/RRS1

    PubMed Central

    Narusaka, Mari; Toyoda, Kazuhiro; Shiraishi, Tomonori; Iuchi, Satoshi; Takano, Yoshitaka; Shirasu, Ken; Narusaka, Yoshihiro

    2016-01-01

    Arabidopsis thaliana leucine-rich repeat-containing (NLR) proteins RPS4 and RRS1, known as dual resistance proteins, confer resistance to multiple pathogen isolates, such as the bacterial pathogens Pseudomonas syringae and Ralstonia solanacearum and the fungal pathogen Colletotrichum higginsianum. RPS4 is a typical Toll/interleukin 1 Receptor (TIR)-type NLR, whereas RRS1 is an atypical TIR-NLR that contains a leucine zipper (LZ) motif and a C-terminal WRKY domain. RPS4 and RRS1 are localised near each other in a head-to-head orientation. In this study, direct mutagenesis of the C-terminal LZ motif in RRS1 caused an autoimmune response and stunting in the mutant. Co-immunoprecipitation analysis indicated that full-length RPS4 and RRS1 are physically associated with one another. Furthermore, virus-induced gene silencing experiments showed that hypersensitive-like cell death triggered by RPS4/LZ motif-mutated RRS1 depends on EDS1. In conclusion, we suggest that the RRS1-LZ motif is crucial for the regulation of the RPS4/RRS1 complex. PMID:26750751

  1. [Abnormalities in gastric mechanic sensitivity, gastric emptying and electrogastrography in non organic dyspepsia (NOD)].

    PubMed

    López Gastón, A; López DeLuise, G A; Sarmiento, A; Andrusch, A

    1997-01-01

    The aim was to study the alterations in mechanosensitivity, gastric emptying, and electrogastrography (E.G.G.) in a population of patients suffering from N.O.D. eighteen controls (9 males, 9 females, mean age 49.33 years old < SEM 3.62, range 24-74) and 32 patients with N.O.D. (22 males, 21 females, mean age 55.72 years old, SEM 2.87, range 17-86) were studied. Gastric mechano-sensitivity with a latex balloon of low compliance inflated "in phasic" was investigated, and intra balloon pressure was recorded. Gastric emptying with a mixed meal marked with 99 Tc in the solid phase, containing 250 Cal, was studied. E.G.G. was studied using two skin surface electrodes Ag-2C1Ag placed on epigastric area following a probalistic antral axe. Only dominant frequency in each block was considered, and % of total abnormalities on total recording time lesser than 2 c.p.m or more than 4 c.p.m. was considered. Recordings were taken during fast time during 30 minutes, and 30 minutes after a meal containing 250 Cal. Analysis with F.F.T, and spectral running. In 67.92% a delay in gastric emptying was observed. 56.3% did not complete 700 ml. of balloon inflation because of pain, Vs 16.8% in controls (p < 0.001) The slopes of intra-balloon pressure were not different in both groups. (Variance, F-NS). Mean E.C.A was 2.99 c.p.m in control, Vs 3.46 in fasting and 3.64 in postprandial period in N.O.D. (p = NS) Differences in fasting and postprandial % of arrhythmias total time recording were significant in N.O.D. ("t". 0.02 > p 0.01). Twenty percent of controls showed isolated tachygastria, but dominant frequencies never were higher than 6 c.p.m and never last more than 8% of the total recording time. Sixty eight point seventy five percent of N.O.D. showed arrhythmias. 48% of tachygastrias were in the range 30-60% of total recording time. No differences in gastric emptying between patient presenting pain with = < 700 ml. and < 700 ml. of balloon inflation were seen. Patients with sensorial

  2. Involvement of dopamine D2 receptors in addictive-like behaviour for acetaldehyde.

    PubMed

    Brancato, Anna; Plescia, Fulvio; Marino, Rosa Anna Maria; Maniaci, Giuseppe; Navarra, Michele; Cannizzaro, Carla

    2014-01-01

    Acetaldehyde, the first metabolite of ethanol, is active in the central nervous system, where it exerts motivational properties. Acetaldehyde is able to induce drinking behaviour in operant-conflict paradigms that resemble the core features of the addictive phenotype: drug-intake acquisition and maintenance, drug-seeking, relapse and drug use despite negative consequences. Since acetaldehyde directly stimulates dopamine neuronal firing in the mesolimbic system, the aim of this study was the investigation of dopamine D2-receptors' role in the onset of the operant drinking behaviour for acetaldehyde in different functional stages, by the administration of two different D2-receptor agonists, quinpirole and ropinirole. Our results show that acetaldehyde was able to induce and maintain a drug-taking behaviour, displaying an escalation during training, and a reinstatement behaviour after 1-week forced abstinence. Acetaldehyde operant drinking behaviour involved D2-receptor signalling: in particular, quinpirole administration at 0.03 mg/kg, induced a significant decrease in the number of lever presses both in extinction and in relapse. Ropinirole, administered at 0.03 mg/kg during extinction, did not produce any modification but, when administered during abstinence, induced a strong decrease in acetaldehyde intake in the following relapse session. Taken together, our data suggest that acetaldehyde exerts its own motivational properties, involving the dopaminergic transmission: indeed, activation of pre-synaptic D2-receptors by quinpirole, during extinction and relapse, negatively affects operant behaviour for acetaldehyde, likely decreasing acetaldehyde-induced dopamine release. The activation of post-synaptic D2-receptors by ropinirole, during abstinence, decreases the motivation to the consecutive reinstatement of acetaldehyde drinking behaviour, likely counteracting the reduction in the dopaminergic tone typical of withdrawal. These data further strengthen the evidence

  3. Antidepressant-like responses to the combined sigma and 5-HT1A receptor agonist OPC-14523.

    PubMed

    Tottori, K; Miwa, T; Uwahodo, Y; Yamada, S; Nakai, M; Oshiro, Y; Kikuchi, T; Altar, C A

    2001-12-01

    The antidepressant-like activity of a novel compound, OPC-14523, was investigated in comparison with the conventional antidepressants, fluoxetine and imipramine. OPC-14523 bound with nanomolar affinities to sigma receptors (IC(50)=47-56 nM), the 5-HT(1A) receptor (IC(50)=2.3 nM), and the 5-HT transporter (IC(50)=80 nM). OPC-14523 inhibited the in vitro reuptake of 3H-5-HT (IC(50)=27 nM), but it showed very weak inhibitory activity on 3H-NE and 3H-DA reuptake. OPC-14523 did not inhibit MAO A or B activities or muscarinic receptors. A single oral administration of OPC-14523 produced a marked antidepressant-like effect in the forced swimming test (FST) with rats (ED(50)=27 mg/kg) and mice (ED(50)=20mg/kg) without affecting the general locomotor activity. In contrast, fluoxetine and imipramine each required at least four days of repeated dosing to show this activity. The acute activity of OPC-14523 was blocked by pretreatment with the sigma receptor antagonist NE-100 or the selective 5-HT(1A) receptor antagonist WAY-100635. The induction of flat body posture by OPC-14523 was blocked by the selective 5-HT(1A) receptor antagonist NAN-190, and forebrain 5-HT biosynthesis was attenuated by OPC-14523 at behaviorally effective doses. In contrast, OPC-14523, unlike fluoxetine, failed to inhibit 5-HT reuptake at oral doses below 100mg/kg. Thus, the acute antidepressant-like action of OPC-14523 is achieved by the combined stimulation of sigma and 5-HT(1A) receptors without inhibition of 5-HT reuptake in vivo.

  4. NOD2 mutations and anti-Saccharomyces cerevisiae antibodies are risk factors for Crohn’s disease in African Americans

    PubMed Central

    Dassopoulos, Themistocles; Nguyen, Geoffrey C.; Talor, Monica Vladut; Datta, Lisa Wu; Isaacs, Kim L.; Lewis, James D.; Gold, Michael S.; Valentine, John F.; Smoot, Duane T.; Harris, Mary L.; Oliva-Hemker, Maria; Bayless, Theodore M.; Burek, C. Lynne; Brant, Steven R.

    2012-01-01

    Background NOD2 mutations and anti-Saccharomyces cerevisiae antibodies (ASCA) are associated with Crohn’s disease (CD), ileal involvement and complicated disease behavior in whites. ASCA and the three common NOD2 mutations have not been assessed in African American (AA) adults with CD. Methods AA patients with CD and controls were recruited by the Mid-Atlantic African American IBD Study (Johns Hopkins Hospital and satellite centers at Howard University, University of Florida, University of North Carolina, University of Pennsylvania, and the Washington Hospital Center, Washington, DC) as part of the NIDDK IBD Genetics Consortium. Genotyping for the three common CD associated NOD2 mutations (Leu1007fsinsC, G908R/2722g>c, and R702W/2104c>t) and ASCA ELISA assays were performed in 183 AA CD patients and 143 controls. Positive ASCA was based on either IgA or IgG above threshold. CD phenotyping was performed using the NIDDK IBD Genetics Consortium guidelines. Logistic regression was used to calculate adjusted odds ratios (OR) for the association between ASCA and disease phenotype. Results ASCA sensitivity and specificity in this AA population were 70.5% and 70.4% respectively. On univariate analysis, ASCA was associated with younger mean age at diagnosis (25.0±11.8 vs. 32.1±14.2 yrs, p<0.001), ileal involvement (73.0% vs. 48.0%, p=0.002), and complicated (stricturing/ penetrating) behavior (60.3% vs. 41.7%, p=0.03). On multivariate analysis, ASCA titer (/25U) was associated with ileal involvement (OR 1.18, 95% CI 1.04-1.34), complicated behavior (OR 1.13, 95% CI 1.01-1.28) and surgery (hazard ratio 1.11, 95% CI 1.02-1.21). Risks for surgery also included smoking (hazard ratio 1.50, 95% CI 1.14-1.99) and CD family history (hazard ratio 2.39, 95% CI 1.11-5.14). NOD2 carriers (all heterozygotes) were more common among CD cases than controls (8.2 vs. 2.1%; OR 4.17, 95% CI: 1.18 - 14.69). NOD2 mutation population attributable risk was 6.2%. Conclusions In comparison to

  5. A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths

    USGS Publications Warehouse

    Boudinot, Pierre; Zou, Jun; Ota, Tatsuya; Buonocore, Francesco; Scapigliati, Giuseppe; Canapa, Adriana; Cannon, John; Litman, Gary; Hansen, John D.

    2014-01-01

    The recent availability of both robust transcriptome and genome resources for coelacanth (Latimeria chalumnae) has led to unique discoveries for coelacanth immunity such as the lack of IgM, a central component of adaptive immunity. This study was designed to more precisely address the origins and evolution of gene families involved in the initial recognition and response to microbial pathogens, which effect innate immunity. Several multigene families involved in innate immunity are addressed, including: Toll-like receptors (TLRs), retinoic acid inducible gene 1 (RIG1)-like receptors (RLRs), the nucleotide-binding domain and leucine-rich repeat containing proteins (NLRs), diverse immunoglobulin domain-containing proteins (DICP) and modular domain immune-type receptors (MDIRs). Our analyses also include the tripartite motif-containing proteins (TRIM), which are involved in pathogen recognition as well as the positive regulation of antiviral immunity. Finally, this study addressed some of the downstream effectors of the antimicrobial response including IL-1 family members, type I and II interferons (IFN) and IFN-stimulated effectors (ISGs). Collectively, the genes and gene families in coelacanth that effect innate immune functions share characteristics both in content, structure and arrangement with those found in tetrapods but not in teleosts. The findings support the sister group relationship of coelacanth fish with tetrapods.

  6. Burn Enhances Toll-Like Receptor Induced Responses by Circulating Leukocytes

    DTIC Science & Technology

    2012-04-30

    Introduction Major burn is associated with a local and sys- temic activation of the innate immune system resulting in a profound inflammatory...plications. Previous studies have shown that responses after burn differ between fixed-tissue immune cells and circulating immune cells [15]. In the current...Abstract: Burn and toll-like receptors (TLR) are associated with innate immune system activation, but the impact of burn on TLR-induced inflammation

  7. Systemic blockade of dopamine D2-like receptors increases high-voltage spindles in the globus pallidus and motor cortex of freely moving rats.

    PubMed

    Yang, Chen; Ge, Shun-Nan; Zhang, Jia-Rui; Chen, Lei; Yan, Zhi-Qiang; Heng, Li-Jun; Zhao, Tian-Zhi; Li, Wei-Xin; Jia, Dong; Zhu, Jun-Ling; Gao, Guo-Dong

    2013-01-01

    High-voltage spindles (HVSs) have been reported to appear spontaneously and widely in the cortical-basal ganglia networks of rats. Our previous study showed that dopamine depletion can significantly increase the power and coherence of HVSs in the globus pallidus (GP) and motor cortex of freely moving rats. However, it is unclear whether dopamine regulates HVS activity by acting on dopamine D₁-like receptors or D₂-like receptors. We employed local-field potential and electrocorticogram methods to simultaneously record the oscillatory activities in the GP and primary motor cortex (M1) in freely moving rats following systemic administration of dopamine receptor antagonists or saline. The results showed that the dopamine D₂-like receptor antagonists, raclopride and haloperidol, significantly increased the number and duration of HVSs, and the relative power associated with HVS activity in the GP and M1 cortex. Coherence values for HVS activity between the GP and M1 cortex area were also significantly increased by dopamine D₂-like receptor antagonists. On the contrary, the selective dopamine D₁-like receptor antagonist, SCH23390, had no significant effect on the number, duration, or relative power of HVSs, or HVS-related coherence between M1 and GP. In conclusion, dopamine D₂-like receptors, but not D₁-like receptors, were involved in HVS regulation. This supports the important role of dopamine D₂-like receptors in the regulation of HVSs. An siRNA knock-down experiment on the striatum confirmed our conclusion.

  8. A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.

    1980-01-01

    A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.

  9. A flight investigation of performance and loads for a helicopter with NLR-1T main-rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Tomaine, R. L.; Stevens, D. D.

    1979-01-01

    Data on performance and rotor loads for a teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade-section contour are presented. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec, and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point described vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor.

  10. Molecular role of TGF-beta, secreted from a new type of CD4+ suppressor T cell, NY4.2, in the prevention of autoimmune IDDM in NOD mice.

    PubMed

    Han, H S; Jun, H S; Utsugi, T; Yoon, J W

    1997-06-01

    A new type of CD4+ T cell clone (NY4.2) isolated from pancreatic islet-infiltrated lymphocytes of acutely diabetic non-obese diabetic (NOD) mice prevents the development of insulin-dependent diabetes mellitus (IDDM) in NOD mice, as well as the recurrence of autoimmune diabetes in syngeneic islet-transplanted NOD mice. It has been demonstrated that the cytokine TGF-beta, secreted from the cells of this clone, is the substance which prevents autoimmune IDDM. This investigation was initiated to determine the molecular role TGF-beta plays in the prevention of autoimmune IDDM by determining its effect on IL-2-induced signal transduction in Con A-activated NOD mouse splenocytes and HT-2 cells. First, we determined whether TGF-beta, secreted from NY4.2 T cells, inhibits IL-2-dependent T cell proliferation in HT-2 cells (IL-2-dependent T cell line) and NOD splenocytes. We found that TGF-beta suppresses IL-2-dependent T cell proliferation. Second, we determined whether TGF-beta inhibits the activation of Janus kinases (JAKs), as well as signal transducers and activators of transcription (STAT) proteins, involved in an IL-2-induced signalling pathway that normally leads to the proliferation of T cells. We found that TGF-beta inhibited tyrosine phosphorylation of JAK1, JAK3, STAT3 and STAT5 in Con A blasts from NOD splenocytes and HT-2 cells. Third, we examined whether TGF-beta inhibits the cooperation between STAT proteins and mitogen-activated protein kinase (MAPK), especially extracellular signal-regulated kinase 2 (ERK2). We found that TGF-beta inhibited the association of STAT3 and STAT5 with ERK2 in Con A blasts from NOD splenocytes and HT-2 cells. On the basis of these observations, we conclude that TGF-beta may interfere with signal transduction via inhibition of the IL-2-induced JAK/STAT pathway and inhibition of the association of STAT proteins with ERK2 in T cells from NOD splenocytes, resulting in the inhibition of IL-2-dependent T cell proliferation. TGF

  11. Evaluation of blood neutrophil to lymphocyte and platelet to lymphocyte ratios according to plasma glucose status and serum insulin-like growth factor 1 levels in patients with acromegaly.

    PubMed

    Üçler, R; Aslan, M; Atmaca, M; Alay, M; Ademoğlu, E N; Gülşen, I

    2016-06-01

    Cardiovascular, respiratory, and cerebrovascular diseases and malignancies are responsible for morbidity and mortality in acromegaly. Also these diseases are associated with chronic inflammation. The neutrophil to lymphocyte ratio (NLR) and platelet to lymphocyte ratio (PLR) are currently gaining interest as new markers of inflammation. Moreover, increased morbidity and mortality are positively correlated with the presence of diabetes and levels of insulin-like growth factor 1 (IGF-1) in acromegaly. The objective of the present study was to investigate the relationship between these markers and acromegaly according to plasma glucose status and serum IGF-1 levels. We retrospectively analyzed data from 61 acromegaly patients who were in a newly diagnosed period (35 male, 26 female; mean age 38.13 ± 13.98). Patients with normal plasma glucose (n = 27), impaired fasting glucose (n = 18), and diabetes mellitus (n = 16) were categorized into three different groups. NLR and PLR were compared between the study groups and were evaluated according to IGF-1 levels. There were no statistically significant differences in NLR and PLR measurements among the study groups (p > 0.05). However, there were significant positive correlations between NLR and IGF-1 levels and between PLR and IGF-1 levels when all patients were evaluated (r = 0.334, p = 0.011 and r = 0.277, p = 0.035, respectively). This is the first report studying the relationship of NLR and PLR with glucose status and IGF-1 levels in acromegaly patients. Our study results suggest that subclinical inflammation may play a role in increased incidence of mortality and morbidity, which depends on uncontrolled IGF-1 levels in patients with acromegaly. © The Author(s) 2015.

  12. Novel receptor-like kinases in cacao contain PR-1 extracellular domains.

    PubMed

    Teixeira, Paulo José Pereira Lima; Costa, Gustavo Gilson Lacerda; Fiorin, Gabriel Lorencini; Pereira, Gonçalo Amarante Guimarães; Mondego, Jorge Maurício Costa

    2013-08-01

    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacao L.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.

  13. Evaluation of Complete Blood Count Indices (NLR, PLR, MPV/PLT, and PLCRi) in Healthy Dogs, Dogs With Periodontitis, and Dogs With Oropharyngeal Tumors as Potential Biomarkers of Systemic Inflammatory Response.

    PubMed

    Rejec, Ana; Butinar, Janos; Gawor, Jerzy; Petelin, Milan

    2017-12-01

    The aim of the study was to retrospectively assess complete blood count (CBC) indices of dogs with periodontitis (PD; n = 73) and dogs with oropharyngeal tumors (OT; n = 92) in comparison to CBC indices of healthy dogs (HD; n = 71). Neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio, mean platelet volume to platelet ratio, and platelet large cell ratio index (PLCRi) were evaluated as biomarkers of systemic inflammatory response provoked by PD and OT. Results of multivariable polytomous logistic regression analysis indicated no significant associations between CBC indices and PD. Both NLR and PLCRi were significantly higher in dogs with OT when compared to HD and dogs with PD and could, therefore, indicate a tumor-associated systemic inflammatory response. Additional studies of CBC indices, along with other biomarkers of systemic inflammatory response, are recommended to validate them as reliable indicators of clinical disease activity.

  14. Introgression of Neandertal- and Denisovan-like Haplotypes Contributes to Adaptive Variation in Human Toll-like Receptors

    PubMed Central

    Dannemann, Michael; Andrés, Aida M.; Kelso, Janet

    2016-01-01

    Pathogens and the diseases they cause have been among the most important selective forces experienced by humans during their evolutionary history. Although adaptive alleles generally arise by mutation, introgression can also be a valuable source of beneficial alleles. Archaic humans, who lived in Europe and Western Asia for more than 200,000 years, were probably well adapted to this environment and its local pathogens. It is therefore conceivable that modern humans entering Europe and Western Asia who admixed with them obtained a substantial immune advantage from the introgression of archaic alleles. Here we document a cluster of three Toll-like receptors (TLR6-TLR1-TLR10) in modern humans that carries three distinct archaic haplotypes, indicating repeated introgression from archaic humans. Two of these haplotypes are most similar to the Neandertal genome, and the third haplotype is most similar to the Denisovan genome. The Toll-like receptors are key components of innate immunity and provide an important first line of immune defense against bacteria, fungi, and parasites. The unusually high allele frequencies and unexpected levels of population differentiation indicate that there has been local positive selection on multiple haplotypes at this locus. We show that the introgressed alleles have clear functional effects in modern humans; archaic-like alleles underlie differences in the expression of the TLR genes and are associated with reduced microbial resistance and increased allergic disease in large cohorts. This provides strong evidence for recurrent adaptive introgression at the TLR6-TLR1-TLR10 locus, resulting in differences in disease phenotypes in modern humans. PMID:26748514

  15. Protective effect of cinnamic acid in endotoxin-poisoned mice.

    PubMed

    Xu, Feng; Wang, Feng; Wen, Taoqun; Sang, Wentao; He, Xinyu; Li, Ling; Zeng, Nan

    2017-12-01

    In this work, we aimed to evaluate the protective effect of cinnamic acid (CD) on lipopolysaccharide (LPS; Escherichia coli 055:B5)-induced endotoxin-poisoned mice and clarify the underlying mechanisms. The mice were administrated CD 5 d before 15 mg/kg LPS challenge. 12 hr later, thymus was separated for determination of thymus indexes. Lung and spleen tissues were collected for histologic examination and the wet/dry weight ratio of lung was calculated, and serum was acquired for tumor necrosis factor-α (TNF-α), interleukin (IL)-18, and IL-1β measurement. Moreover, the expression of NOD-like receptor (NLR) family, pyrin domain-containing 3 (NLRP3) inflammasome was determined in lung. CD increased the thymus indexes and decreased lung wet/dry weight ratio. In addition, CD improved the lung and spleen histopathological changes induced by LPS and decreased the number of neutrophils in lung tissues. CD also inhibited the pro-inflammatory cytokines (TNF-α, IL-18, and IL-1β) production in serum. Furthermore, CD suppressed the LPS-induced NLRP3, Caspase-1, and IL-1β mRNA expression in lung, as well as the expression of NLRP3 and Caspase-1 (p20) protein. CD may have protective effects in endotoxin-poisoned mice via inhibiting the activation of NLRP3 inflammasome, and can be considered as a potential therapeutic candidate for diseases involved in endotoxin poisoning such as sepsis. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Insufficient evidence for association of NOD2/CARD15 or other inflammatory bowel disease–associated markers on GVHD incidence or other adverse outcomes in T-replete, unrelated donor transplantation

    PubMed Central

    Nguyen, Yume; Al-Lehibi, Abed; Gorbe, Elizabeth; Li, Ellen; Haagenson, Michael; Wang, Tao; Spellman, Stephen; Lee, Stephanie J.

    2010-01-01

    Previous European studies suggest NOD2/CARD15 and interleukin-23 receptor (IL-23R) donor or recipient variants are associated with adverse clinical outcomes in allogeneic hematopoietic stem cell transplantation. We reexamined these findings as well as the role of another inflammatory bowel disease (IBD) susceptibility gene (immunity-related GTPase family, M [IRGM]) on transplantation outcomes in 390 US patients and their matched unrelated donors, accrued between 1995 and 2004. Patients received T-replete grafts with mostly myeloablative conditioning regimens. Multivariate analyses were performed for overall survival, disease-free survival, transplantation-related mortality, relapse, and acute and chronic graft-versus-host disease. Of 390 pairs, NOD2/CARD15 variant single nucleotide polymorphisms (SNPs) were found in 14% of donors and 17% of recipients. In 3% both donor and recipient had a mutant SNP. Thirteen percent of donors and 16% of recipients had variant IL23R SNPs, with 3% having both donor and recipient variants. Twenty-three percent of both donors and recipients had variant IRGM SNPs. None of the 3 IBD-associated alleles showed a statistically significant association with any adverse clinical outcomes. Our results do not support an association between the 3 IBD-associated SNPs and adverse outcomes after matched unrelated donor hematopoietic cell transplantations in US patients. PMID:20177049

  17. Toll-like receptors and intestinal defence: molecular basis and therapeutic implications.

    PubMed

    Cario, Elke

    2003-07-07

    Toll-like receptors (TLRs) play a principle role in distinct pathogen recognition and in the initiation of innate immune responses of the intestinal mucosa. Activated innate immunity interconnects downstream with adaptive immunity in complex feedback regulatory loops. Intestinal disease might result from inappropriate activation of the mucosal immune system driven by TLRs in response to normal luminal flora.

  18. [Toll-like receptor in lung response to pathogens].

    PubMed

    Rivas-Santiago, Bruno; Juárez, Esmeralda

    2007-01-01

    Innate immunity plays a central role in antimicrobial defense. Advances in the understanding of pathogen recognition systems of innate cells have yielded the identification of Toll like receptors (TLR) as key elements of the lung defense mechanisms which is heavily exposed to a variety of stimuli. TLR recognition of several microbial compounds induces proinflammatory cytokines production whose contribution to the host may be either protective or detrimental. Human immune response diversity may explain the differences observed between patients facing bacterial, viral and fungal lung infections. New strategies designs that modify innate immune response may be useful to limit detrimental consequences of inflammatory processes in the lung.

  19. Receptor activity-modifying protein-dependent effects of mutations in the calcitonin receptor-like receptor: implications for adrenomedullin and calcitonin gene-related peptide pharmacology

    PubMed Central

    Watkins, H A; Walker, C S; Ly, K N; Bailey, R J; Barwell, J; Poyner, D R; Hay, D L

    2014-01-01

    Background and Purpose Receptor activity-modifying proteins (RAMPs) define the pharmacology of the calcitonin receptor-like receptor (CLR). The interactions of the different RAMPs with this class B GPCR yield high-affinity calcitonin gene-related peptide (CGRP) or adrenomedullin (AM) receptors. However, the mechanism for this is unclear. Experimental Approach Guided by receptor models, we mutated residues in the N-terminal helix of CLR, RAMP2 and RAMP3 hypothesized to be involved in peptide interactions. These were assayed for cAMP production with AM, AM2 and CGRP together with their cell surface expression. Binding studies were also conducted for selected mutants. Key Results An important domain for peptide interactions on CLR from I32 to I52 was defined. Although I41 was universally important for binding and receptor function, the role of other residues depended on both ligand and RAMP. Peptide binding to CLR/RAMP3 involved a more restricted range of residues than that to CLR/RAMP1 or CLR/RAMP2. E101 of RAMP2 had a major role in AM interactions, and F111/W84 of RAMP2/3 was important with each peptide. Conclusions and Implications RAMP-dependent effects of CLR mutations suggest that the different RAMPs control accessibility of peptides to binding residues situated on the CLR N-terminus. RAMP3 appears to alter the role of specific residues at the CLR-RAMP interface compared with RAMP1 and RAMP2. PMID:24199627

  20. Characteristics of Multi-Organ Lymphangiectasia Resulting from Temporal Deletion of Calcitonin Receptor-Like Receptor in Adult Mice

    PubMed Central

    Hoopes, Samantha L.; Willcockson, Helen H.; Caron, Kathleen M.

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrlfl/fl/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrlfl/fl/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrlfl/fl/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia. PMID:23028890

  1. Characteristics of multi-organ lymphangiectasia resulting from temporal deletion of calcitonin receptor-like receptor in adult mice.

    PubMed

    Hoopes, Samantha L; Willcockson, Helen H; Caron, Kathleen M

    2012-01-01

    Adrenomedullin (AM) and its receptor complexes, calcitonin receptor-like receptor (Calcrl) and receptor activity modifying protein 2/3, are highly expressed in lymphatic endothelial cells and are required for embryonic lymphatic development. To determine the role of Calcrl in adulthood, we used an inducible Cre-loxP system to temporally and ubiquitously delete Calcrl in adult mice. Following tamoxifen injection, Calcrl(fl/fl)/CAGGCre-ER™ mice rapidly developed corneal edema and inflammation that was preceded by and persistently associated with dilated corneoscleral lymphatics. Lacteals and submucosal lymphatic capillaries of the intestine were also dilated, while mesenteric collecting lymphatics failed to properly transport chyle after an acute Western Diet, culminating in chronic failure of Calcrl(fl/fl)/CAGGCre-ER™ mice to gain weight. Dermal lymphatic capillaries were also dilated and chronic edema challenge confirmed significant and prolonged dermal lymphatic insufficiency. In vivo and in vitro imaging of lymphatics with either genetic or pharmacologic inhibition of AM signaling revealed markedly disorganized lymphatic junctional proteins ZO-1 and VE-cadherin. The maintenance of AM signaling during adulthood is required for preserving normal lymphatic permeability and function. Collectively, these studies reveal a spectrum of lymphatic defects in adult Calcrl(fl/fl)/CAGGCre-ER™ mice that closely recapitulate the clinical symptoms of patients with corneal, intestinal and peripheral lymphangiectasia.

  2. Anxiolytic-like Effect of Testosterone in Male Rats: GABAC Receptors Are Not Involved

    PubMed Central

    Roohbakhsh, Ali; Moghaddam, Akbar Hajizadeh; Delfan, Karim Mahmoodi

    2011-01-01

    Objective(s) The effect of testosterone on anxiety-like behaviors has been the subject of some studies. There is evidence that testosterone modulates anxiety via GABA (gama aminobutyric acid) and GABAergic system. The involvement of GABAC receptors in those effects of testosterone on anxiety-like behaviors of the rats was investigated in the present study. Materials and Methods A group of rats received subcutaneous injections of testosterone (5, 10 and 20 mg/kg). Two groups of rats received intracerebroventricular injections of either CACA (GABAC agonist, 0.125 μg/rat) or TPMPA (GABAC antagonist, 3 microg/rat) following administration of testosterone (5, 10 and 20 mg/kg). After the injections, the rats were submitted to the elevated plus-maze test of anxiety. Results The rats received testosterone alone, showed a decreased in anxiety-like behaviors (P< 0.01). Administration of either CACA or TPMPA did not modify animals’ behavior compared to the rats received testosterone alone. Conclusion The results of the present study showed that administration of testosterone induces anxiolytic-like behaviors in the rats and GABAC receptors possibly are not involved in the anxiolytic effect of testosterone. PMID:23493519

  3. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  4. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1-3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  5. Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception.

    PubMed

    Bozsoki, Zoltan; Cheng, Jeryl; Feng, Feng; Gysel, Kira; Vinther, Maria; Andersen, Kasper R; Oldroyd, Giles; Blaise, Mickael; Radutoiu, Simona; Stougaard, Jens

    2017-09-19

    The ability of root cells to distinguish mutualistic microbes from pathogens is crucial for plants that allow symbiotic microorganisms to infect and colonize their internal root tissues. Here we show that Lotus japonicus and Medicago truncatula possess very similar LysM pattern-recognition receptors, Lj LYS6/ Mt LYK9 and Mt LYR4, enabling root cells to separate the perception of chitin oligomeric microbe-associated molecular patterns from the perception of lipochitin oligosaccharide by the Lj NFR1/ Mt LYK3 and Lj NFR5/ Mt NFP receptors triggering symbiosis. Inactivation of chitin-receptor genes in Ljlys6 , Mtlyk9 , and Mtlyr4 mutants eliminates early reactive oxygen species responses and induction of defense-response genes in roots. Ljlys6 , Mtlyk9 , and Mtlyr4 mutants were also more susceptible to fungal and bacterial pathogens, while infection and colonization by rhizobia and arbuscular mycorrhizal fungi was maintained. Biochemical binding studies with purified Lj LYS6 ectodomains further showed that at least six GlcNAc moieties (CO6) are required for optimal binding efficiency. The 2.3-Å crystal structure of the Lj LYS6 ectodomain reveals three LysM βααβ motifs similar to other LysM proteins and a conserved chitin-binding site. These results show that distinct receptor sets in legume roots respond to chitin and lipochitin oligosaccharides found in the heterogeneous mixture of chitinaceous compounds originating from soil microbes. This establishes a foundation for genetic and biochemical dissection of the perception and the downstream responses separating defense from symbiosis in the roots of the 80-90% of land plants able to develop rhizobial and/or mycorrhizal endosymbiosis.

  6. In the Blink of an Eye: Relating Positive-Feedback Sensitivity to Striatal Dopamine D2-Like Receptors through Blink Rate

    PubMed Central

    Groman, Stephanie M.; James, Alex S.; Seu, Emanuele; Tran, Steven; Clark, Taylor A.; Harpster, Sandra N.; Crawford, Maverick; Burtner, Joanna Lee; Feiler, Karen; Roth, Robert H.; Elsworth, John D.; London, Edythe D.

    2014-01-01

    For >30 years, positron emission tomography (PET) has proven to be a powerful approach for measuring aspects of dopaminergic transmission in the living human brain; this technique has revealed important relationships between dopamine D2-like receptors and dimensions of normal behavior, such as human impulsivity, and psychopathology, particularly behavioral addictions. Nevertheless, PET is an indirect estimate that lacks cellular and functional resolution and, in some cases, is not entirely pharmacologically specific. To identify the relationships between PET estimates of D2-like receptor availability and direct in vitro measures of receptor number, affinity, and function, we conducted neuroimaging and behavioral and molecular pharmacological assessments in a group of adult male vervet monkeys. Data gathered from these studies indicate that variation in D2-like receptor PET measurements is related to reversal-learning performance and sensitivity to positive feedback and is associated with in vitro estimates of the density of functional dopamine D2-like receptors. Furthermore, we report that a simple behavioral measure, eyeblink rate, reveals novel and crucial links between neuroimaging assessments and in vitro measures of dopamine D2 receptors. PMID:25339755

  7. Positional signaling mediated by a receptor-like kinase in Arabidopsis.

    PubMed

    Kwak, Su-Hwan; Shen, Ronglai; Schiefelbein, John

    2005-02-18

    The position-dependent specification of root epidermal cells in Arabidopsis provides an elegant paradigm for cell patterning during development. Here, we describe a new gene, SCRAMBLED (SCM), required for cells to appropriately interpret their location within the developing root epidermis. SCM encodes a receptor-like kinase protein with a predicted extracellular domain of six leucine-rich repeats and an intracellular serine-threonine kinase domain. SCM regulates the expression of the GLABRA2, CAPRICE, WEREWOLF, and ENHANCER OF GLABRA3 transcription factor genes that define the cell fates. Further, the SCM gene is expressed throughout the developing root. Therefore, SCM likely enables developing epidermal cells to detect positional cues and establish an appropriate cell-type pattern.

  8. The host control of a clinical isolate strain of P. aeruginosa infection is independent of Nod-1 but depends on MyD88.

    PubMed

    Sônego, Fabiane; Castanheira, Fernanda V S; Horta, Catarina V; Kanashiro, Alexandre; Czaikoski, Paula G; Zamboni, Dario S; Alves-Filho, José Carlos; Cunha, Fernando Q

    2018-05-01

    The objective of this study was to investigate the role of Nod1 in the recruitment of neutrophils into the infection site and in the establishment of the inflammatory response elicited by a clinical isolate strain of P. aeruginosa in vivo, while comparing it to the well-established role of MyD88 in this process. Wild-type, Nod1 -/- and MyD88 -/- mice, all with a C57Bl/6 background. Mice were intranasally infected with Pseudomonas aeruginosa DZ605. Bronchoalveolar lavage and blood were harvested 6 or 20 h post-infection for evaluating bacterial load, chemokine levels and neutrophil migration. Survival post-infection was also observed. We show here that wild-type and Nod1 -/- mice induce similar lung chemokine levels, neutrophil recruitment, and bacterial load, thus leading to equal survival rates upon P. aeruginosa pulmonary infection. Furthermore, we confirmed the essential role of MyD88-dependent signalling in recruiting neutrophils and controlling P. aeruginosa-induced pulmonary infection. The results suggest that in contrast to MyD88, under our experimental conditions, the absence of Nod1 does not impair the recruitment of neutrophils in response to P. aeruginosa DZ605.

  9. Consumption of Acidic Water Alters the Gut Microbiome and Decreases the Risk of Diabetes in NOD Mice

    PubMed Central

    Wolf, Kyle J.; Daft, Joseph G.; Tanner, Scott M.; Hartmann, Riley; Khafipour, Ehsan

    2014-01-01

    Infant formula and breastfeeding are environmental factors that influence the incidence of Type 1 Diabetes (T1D) as well as the acidity of newborn diets. To determine if altering the intestinal microbiome is one mechanism through which an acidic liquid plays a role in T1D, we placed non-obese diabetic (NOD)/ShiLtJt mice on neutral (N) or acidified H2O and monitored the impact on microbial composition and diabetes incidence. NOD-N mice showed an increased development of diabetes, while exhibiting a decrease in Firmicutes and an increase in Bacteroidetes, Actinobacteria, and Proteobacteria from as early as 2 weeks of age. NOD-N mice had a decrease in the levels of Foxp3 expression in CD4+Foxp3+ cells, as well as decreased CD4+IL17+ cells, and a lower ratio of IL17/IFNγ CD4+ T-cells. Our data clearly indicates that a change in the acidity of liquids consumed dramatically alters the intestinal microbiome, the presence of protective Th17 and Treg cells, and the incidence of diabetes. This data suggests that early dietary manipulation of intestinal microbiota may be a novel mechanism to delay T1D onset in genetically pre-disposed individuals. PMID:24453191

  10. Consumption of acidic water alters the gut microbiome and decreases the risk of diabetes in NOD mice.

    PubMed

    Wolf, Kyle J; Daft, Joseph G; Tanner, Scott M; Hartmann, Riley; Khafipour, Ehsan; Lorenz, Robin G

    2014-04-01

    Infant formula and breastfeeding are environmental factors that influence the incidence of Type 1 Diabetes (T1D) as well as the acidity of newborn diets. To determine if altering the intestinal microbiome is one mechanism through which an acidic liquid plays a role in T1D, we placed non-obese diabetic (NOD)/ShiLtJt mice on neutral (N) or acidified H2O and monitored the impact on microbial composition and diabetes incidence. NOD-N mice showed an increased development of diabetes, while exhibiting a decrease in Firmicutes and an increase in Bacteroidetes, Actinobacteria, and Proteobacteria from as early as 2 weeks of age. NOD-N mice had a decrease in the levels of Foxp3 expression in CD4(+)Foxp3(+) cells, as well as decreased CD4(+)IL17(+) cells, and a lower ratio of IL17/IFNγ CD4+ T-cells. Our data clearly indicates that a change in the acidity of liquids consumed dramatically alters the intestinal microbiome, the presence of protective Th17 and Treg cells, and the incidence of diabetes. This data suggests that early dietary manipulation of intestinal microbiota may be a novel mechanism to delay T1D onset in genetically pre-disposed individuals.

  11. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong [Columbia, MO; Stacey, Gary [Columbia, MO; Stacey, Minviluz [Columbia, MO; Zhang, Xuecheng [Columbia, MO

    2012-01-17

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  12. LysM receptor-like kinases to improve plant defense response against fungal pathogens

    DOEpatents

    Wan, Jinrong; Stacey, Gary; Stacey, Minviluz; Zhang, Xuecheng

    2013-10-15

    Perception of chitin fragments (chitooligosaccharides) is an important first step in plant defense response against fungal pathogen. LysM receptor-like kinases (LysM RLKs) are instrumental in this perception process. LysM RLKs also play a role in activating transcription of chitin-responsive genes (CRGs) in plants. Mutations in the LysM kinase receptor genes or the downstream CRGs may affect the fungal susceptibility of a plant. Mutations in LysM RLKs or transgenes carrying the same may be beneficial in imparting resistance against fungal pathogens.

  13. Boosting Immune Responses Against Bacterial Pathogens: In Vitro Analysis of Immunomodulators (In Vitro Analyse van de Stimulerende Werking van Verschillende Stoffen op het Immuunsysteem)

    DTIC Science & Technology

    2007-07-01

    desmuramylpeptides in combination with chemically synthesized Toll-like receptor agonists synergistically induced production of interleukin-8 in a NOD2- and NODI...biothreat agents may be an option, however there is a broad range of biothreat agents, which may become even broader as a result of genetic engeneering

  14. Hepatocyte Toll-like receptor 4 regulates obesity-induced inflammation and insulin resistance

    USDA-ARS?s Scientific Manuscript database

    Chronic low-grade inflammation is a hallmark of obesity and thought to contribute to the development of obesity-related insulin resistance. Toll-like receptor 4 (Tlr4) is a key mediator of pro-inflammatory responses. Mice lacking Tlr4s are protected from diet-induced insulin resistance and inflammat...

  15. Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators

    PubMed Central

    Pérez-Regidor, Lucía; Zarioh, Malik; Ortega, Laura; Martín-Santamaría, Sonsoles

    2016-01-01

    This review aims to summarize the latest efforts performed in the search for novel chemical entities such as Toll-like receptor (TLR) modulators by means of virtual screening techniques. This is an emergent research field with only very recent (and successful) contributions. Identification of drug-like molecules with potential therapeutic applications for the treatment of a variety of TLR-regulated diseases has attracted considerable interest due to the clinical potential. Additionally, the virtual screening databases and computational tools employed have been overviewed in a descriptive way, widening the scope for researchers interested in the field. PMID:27618029

  16. Toll-Like Receptor Pathways in Autoimmune Diseases.

    PubMed

    Chen, Ji-Qing; Szodoray, Peter; Zeher, Margit

    2016-02-01

    Autoimmune diseases are a family of chronic systemic inflammatory disorders, characterized by the dysregulation of the immune system which finally results in the break of tolerance to self-antigen. Several studies suggest that Toll-like receptors (TLRs) play an essential role in the pathogenesis of autoimmune diseases. TLRs belong to the family of pattern recognition receptors (PRRs) that recognize a wide range of pathogen-associated molecular patterns (PAMPs). TLRs are type I transmembrane proteins and located on various cellular membranes. Two main groups have been classified based on their location; the extracelluar group referred to the ones located on the plasma membrane while the intracellular group all located in endosomal compartments responsible for the recognition of nucleic acids. They are released by the host cells and trigger various intracellular pathways which results in the production of proinflammatory cytokines, chemokines, as well as the expression of co-stimulatory molecules to protect against invading microorganisms. In particular, TLR pathway-associated proteins, such as IRAK, TRAF, and SOCS, are often dysregulated in this group of diseases. TLR-associated gene expression profile analysis together with single nucleotide polymorphism (SNP) assessment could be important to explain the pathomechanism driving autoimmune diseases. In this review, we summarize recent findings on TLR pathway regulation in various autoimmune diseases, including Sjögren's syndrome (SS), systemic lupus erythematosus (SLE), multiple sclerosis (MS), rheumatoid arthritis (RA), systemic sclerosis (SSc), and psoriasis.

  17. The Gene Expression Profile of CD11c+CD8α− Dendritic Cells in the Pre-Diabetic Pancreas of the NOD Mouse

    PubMed Central

    Beumer, Wouter; Welzen-Coppens, Jojanneke M. C.; van Helden-Meeuwsen, Cornelia G.; Gibney, Sinead M.; Drexhage, Hemmo A.; Versnel, Marjan A.

    2014-01-01

    Two major dendritic cell (DC) subsets have been described in the pancreas of mice: The CD11c+CD8α− DCs (strong CD4+ T cell proliferation inducers) and the CD8α+CD103+ DCs (T cell apoptosis inducers). Here we analyzed the larger subset of CD11c+CD8α− DCs isolated from the pancreas of pre-diabetic NOD mice for genome-wide gene expression (validated by Q-PCR) to elucidate abnormalities in underlying gene expression networks. CD11c+CD8α− DCs were isolated from 5 week old NOD and control C57BL/6 pancreas. The steady state pancreatic NOD CD11c+CD8α− DCs showed a reduced expression of several gene networks important for the prime functions of these cells, i.e. for cell renewal, immune tolerance induction, migration and for the provision of growth factors including those for beta cell regeneration. A functional in vivo BrdU incorporation test showed the reduced proliferation of steady state pancreatic DC. The reduced expression of tolerance induction genes (CD200R, CCR5 and CD24) was supported on the protein level by flow cytometry. Also previously published functional tests on maturation, immune stimulation and migration confirm the molecular deficits of NOD steady state DC. Despite these deficiencies NOD pancreas CD11c+CD8α− DCs showed a hyperreactivity to LPS, which resulted in an enhanced pro-inflammatory state characterized by a gene profile of an enhanced expression of a number of classical inflammatory cytokines. The enhanced up-regulation of inflammatory genes was supported by the in vitro cytokine production profile of the DCs. In conclusion, our data show that NOD pancreatic CD11c+CD8α− DCs show various deficiencies in steady state, while hyperreactive when encountering a danger signal such as LPS. PMID:25166904

  18. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-05-31

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.

  19. Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.

    PubMed

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.

  20. Double Negative (CD3+4-8-) TCRalphaBeta Splenic Cells from Young NOD Mice Provide Long-Lasting Protection against Type 1 Diabetes

    DTIC Science & Technology

    2010-07-02

    indicated. Panel B, pancreatic infiltrating lymphocytes from 4 month-old NOD females ( left histogram) and males ( right histogram) (n = 8 mice/group...assay was used to measure the IL-2 secretion in the culture medium. Panel A, DN splenic cell cultures stimulated under Th1 ( left panel) and Th2 ( right ...variance test. The significance (p#0.005) of individual differences in frequency of DNCD3 thymocytes and splenocytes from female and male NOD littermates

  1. Preferential recognition of avian-like receptors in human influenza A H7N9 viruses.

    PubMed

    Xu, Rui; de Vries, Robert P; Zhu, Xueyong; Nycholat, Corwin M; McBride, Ryan; Yu, Wenli; Paulson, James C; Wilson, Ian A

    2013-12-06

    The 2013 outbreak of avian-origin H7N9 influenza in eastern China has raised concerns about its ability to transmit in the human population. The hemagglutinin glycoprotein of most human H7N9 viruses carries Leu(226), a residue linked to adaptation of H2N2 and H3N2 pandemic viruses to human receptors. However, glycan array analysis of the H7 hemagglutinin reveals negligible binding to humanlike α2-6-linked receptors and strong preference for a subset of avian-like α2-3-linked glycans recognized by all avian H7 viruses. Crystal structures of H7N9 hemagglutinin and six hemagglutinin-glycan complexes have elucidated the structural basis for preferential recognition of avian-like receptors. These findings suggest that the current human H7N9 viruses are poorly adapted for efficient human-to-human transmission.

  2. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice

    PubMed Central

    Lei, Kelly; Wegner, Scott A.; Yu, Ji-Hwan; Hopf, F. Woodward

    2016-01-01

    Addiction is promoted by pathological motivation for addictive substances, and, despite extensive efforts, alcohol use disorders (AUDs) continue to extract a very high social, physical, and economic toll. Compulsive drinking of alcohol, where consumption persists even when alcohol is paired with negative consequences, is considered a particular obstacle for treating AUDs. Aversion-resistant alcohol intake in rodents, e.g. where rodents drink even when alcohol is paired with the bitter tastant quinine, has been considered to model some compulsive aspects of human alcohol consumption. However, the critical mechanisms that drive compulsive-like drinking are only beginning to be identified. The neuropeptide orexin has been linked to high motivation for cocaine, preferred foods, and alcohol. Thus, we investigated the role of orexin receptors in compulsive-like alcohol drinking, where C57BL/6 mice had 2-hr daily access to 15% alcohol with or without quinine (100 µM). We found that systemic administration of the widely used selective orexin-1 receptor (OX1R) blocker, SB-334867 (SB), significantly reduced compulsive-like consumption at doses lower than those reported to reduce quinine-free alcohol intake. The dose of 3-mg/kg SB, in particular, suppressed only compulsive-like drinking. Furthermore, SB did not reduce concurrent water intake during the alcohol drinking sessions, and did not alter saccharin+quinine consumption. In addition, the OX2R antagonist TCS-OX2-29 (3 or 10 mg/kg) did not alter intake of alcohol with or without quinine. Together, our results suggest that OX1R signaling is particularly important for promoting compulsive-like alcohol drinking, and that OX1Rs might represent a novel therapy to counteract compulsive aspects of human AUDs. PMID:27523303

  3. Involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940 in male rats.

    PubMed

    Marín, S; Marco, E; Biscaia, M; Fernández, B; Rubio, M; Guaza, C; Schmidhammer, H; Viveros, M P

    2003-02-01

    We have studied the possible interaction between three selective opioid-receptor antagonists, nor-binaltorphimine (NB: kappa) (5 mg/kg), cyprodime (CY: mu) (10 mg/kg) and naltrindole (NTI: delta) (1 mg/kg), and the cannabinoid receptor agonist CP 55,940, in the modulation of anxiety (plus-maze) and adrenocortical activity (serum corticosterone levels by radioimmunoassay) in male rats. The holeboard was used to evaluate motor activity and directed exploration. CP 55,940 (75 microg/kg, but not 10 microg/kg) induced an anxiogenic-like effect, which was antagonised by NB. The other effects of CP 55,940 (75 microg/kg), a decreased holeboard activity and stimulation of adrenocortical activity, were not antagonised by any of the three opioid receptor antagonists. CY and NTI, when administered alone, induced marked reductions in motor activity, anxiogenic-like effects and stimulation of adrenocortical activity. The selective kappa-opioid receptor antagonist NB, on its own, did not modify the level of anxiety but stimulated adrenocortical activity. We provide the first pharmacological evidence about the involvement of the kappa-opioid receptor in the anxiogenic-like effect of CP 55,940.

  4. Oxyntomodulin differentially affects glucagon-like peptide-1 receptor beta-arrestin recruitment and signaling through Galpha(s).

    PubMed

    Jorgensen, Rasmus; Kubale, Valentina; Vrecl, Milka; Schwartz, Thue W; Elling, Christian E

    2007-07-01

    The glucagon-like peptide (GLP)-1 receptor is a promising target for the treatment of type 2 diabetes and obesity, and there is great interest in characterizing the pharmacology of the GLP-1 receptor and its ligands. In the present report, we have applied bioluminescence resonance energy transfer assays to measure agonist-induced recruitment of betaarrestins and G-protein-coupled receptor kinase (GRK) 2 to the GLP-1 receptor in addition to traditional measurements of second messenger generation. The peptide hormone oxyntomodulin is described in the literature as a full agonist on the glucagon and GLP-1 receptors. Surprisingly, despite being full agonists in GLP-1 receptor-mediated cAMP accumulation, oxyntomodulin and glucagon were observed to be partial agonists in recruiting betaarrestins and GRK2 to the GLP-1 receptor. We suggest that oxyntomodulin and glucagon are biased ligands on the GLP-1 receptor.

  5. Promoters, toll like receptors and microRNAs: a strange association.

    PubMed

    Korla, Kalyani; Arrigo, Patrizio; Mitra, Chanchal K

    2013-06-01

    Toll-like receptors (TLRs) are proteins that play key role in the innate immune system. In the present study, -1000 base pairs upstream are taken from the transcription start site of the various TLR genes (10 known) in human. About 40 microRNAs have been identified that share 12-19 nucleotide sequence similarity with the promoter regions of 10 TLRs. It is proposed that the microRNA performs potential role in identification of promoter sequence and initiation of transcription.

  6. Toll-like receptor signaling and its relevance to intestinal inflammation.

    PubMed

    Cario, Elke; Podolsky, Daniel K

    2006-08-01

    This review discusses the current progress in the understanding of how commensal-mediated activation of toll-like receptors (TLRs) may be involved in the regulation of physiological and pathophysiological processes of the intestinal mucosa including tissue regeneration and inflammation. While regulation of TLRs and their downstream signaling mediators might be used to prevent and treat inflammatory bowel diseases, paradoxically, at this time, it remains uncertain whether this would be more effectively accomplished by enhancing or inhibiting these pathways.

  7. Toll-like receptor 2 and type 2 diabetes.

    PubMed

    Sepehri, Zahra; Kiani, Zohre; Nasiri, Ali Akbar; Kohan, Farhad

    2016-01-01

    Innate immunity plays a crucial role in the pathogenesis of type 2 diabetes and related complications. Since the toll-like receptors (TLRs) are central to innate immunity, it appears that they are important participants in the development and pathogenesis of the disease. Previous investigations demonstrated that TLR2 homodimers and TLR2 heterodimers with TLR1 or TLR6 activate innate immunity upon recognition of damage-associated molecular patterns (DAMPs). Several DAMPs are released during type 2 diabetes, so it may be hypothesized that TLR2 is significantly involved in its progression. Here, we review recent data on the important roles and status of TLR2 in type 2 diabetes and related complications.

  8. Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine.

    PubMed Central

    Greaves, J L; Wilson, C G; Birmingham, A T; Richardson, M C; Bentley, P H

    1992-01-01

    1. A gamma scintigraphic study has been carried out on the precorneal residence and pharmacodynamic action of a radiolabelled New Ophthalmic Delivery System (NODS) containing pilocarpine nitrate in 12 healthy volunteers. 2. The NODS was radiolabelled with the soluble marker technetium-99m labelled diethylenetriaminepentaacetic acid, to mark the release characteristics of soluble drugs contained within the matrix. 3. The relationship between the precorneal residence time of the marker and the duration of drug effect on intraocular pressure and pupil diameter was monitored. Results obtained following administration of the NODS were compared with those obtained after administration of a 25 microliters drop of a 2% w/v pilocarpine nitrate solution. Each formulation was administered to one eye only, the other eye acting as a control. 4. Dissolution of the radiolabel from the NODS in vivo showed considerable intersubject variation with half-times of dissolution ranging from 46 s to 833 s (mean +/- s.d. -280 +/- 217 s), the mean (+/- s.d.) half-time of clearance of the radiolabel from the NODS and corneal region of interest was 406 +/- 214 s whereas the radiolabelled solution had a mean (+/- s.d.) ocular surface residence time of 2.9 +/- 1.5 s. 5. Pupil diameter and intraocular pressure were measured for 5 h post-administration of the NODS and the solution. After both treatments pupil diameter was significantly constricted in the test eye when compared with the control eye (P less than 0.001; Student's paired t-test). Pupil diameter was constricted by 52% after administration of the NODS and by 35% after administration of the solution.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 1 PMID:1389932

  9. Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine.

    PubMed

    Greaves, J L; Wilson, C G; Birmingham, A T; Richardson, M C; Bentley, P H

    1992-06-01

    1. A gamma scintigraphic study has been carried out on the precorneal residence and pharmacodynamic action of a radiolabelled New Ophthalmic Delivery System (NODS) containing pilocarpine nitrate in 12 healthy volunteers. 2. The NODS was radiolabelled with the soluble marker technetium-99m labelled diethylenetriaminepentaacetic acid, to mark the release characteristics of soluble drugs contained within the matrix. 3. The relationship between the precorneal residence time of the marker and the duration of drug effect on intraocular pressure and pupil diameter was monitored. Results obtained following administration of the NODS were compared with those obtained after administration of a 25 microliters drop of a 2% w/v pilocarpine nitrate solution. Each formulation was administered to one eye only, the other eye acting as a control. 4. Dissolution of the radiolabel from the NODS in vivo showed considerable intersubject variation with half-times of dissolution ranging from 46 s to 833 s (mean +/- s.d. -280 +/- 217 s), the mean (+/- s.d.) half-time of clearance of the radiolabel from the NODS and corneal region of interest was 406 +/- 214 s whereas the radiolabelled solution had a mean (+/- s.d.) ocular surface residence time of 2.9 +/- 1.5 s. 5. Pupil diameter and intraocular pressure were measured for 5 h post-administration of the NODS and the solution. After both treatments pupil diameter was significantly constricted in the test eye when compared with the control eye (P less than 0.001; Student's paired t-test). Pupil diameter was constricted by 52% after administration of the NODS and by 35% after administration of the solution.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Structures of NodZ [alpha]1,6-fucosyltransferase in complex with GDP and GDP-fucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brzezinski, Krzysztof; Dauter, Zbigniew; Jaskolski, Mariusz

    Rhizobial NodZ {alpha}1,6-fucosyltransferase ({alpha}1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5'-diphosphate-{beta}-L-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signaling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two {alpha}1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of {alpha}1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystalmore » of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 {angstrom} resolution. The fucose residue is exposed to solvent and is disordered. The enzyme-product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-L-glucosamine (penta-NAG). The structure has been determined at 1.98 {angstrom} resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among {alpha}1,2-, {alpha}1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand {beta}C2 and helix {alpha}C3. In addition

  11. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose

    PubMed Central

    Brzezinski, Krzysztof; Dauter, Zbigniew; Jaskolski, Mariusz

    2012-01-01

    Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5′-­diphosphate-β-l-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme–product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-l-­glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-­terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand βC2 and helix αC3. In addition, there is a shift of the αC3 helix itself upon GDP

  12. Structures of NodZ α1,6-fucosyltransferase in complex with GDP and GDP-fucose.

    PubMed

    Brzezinski, Krzysztof; Dauter, Zbigniew; Jaskolski, Mariusz

    2012-02-01

    Rhizobial NodZ α1,6-fucosyltransferase (α1,6-FucT) catalyzes the transfer of the fucose (Fuc) moiety from guanosine 5'-diphosphate-β-L-fucose to the reducing end of the chitin oligosaccharide core during Nod-factor (NF) biosynthesis. NF is a key signalling molecule required for successful symbiosis with a legume host for atmospheric nitrogen fixation. To date, only two α1,6-FucT structures have been determined, both without any donor or acceptor molecule that could highlight the structural background of the catalytic mechanism. Here, the first crystal structures of α1,6-FucT in complex with its substrate GDP-Fuc and with GDP, which is a byproduct of the enzymatic reaction, are presented. The crystal of the complex with GDP-Fuc was obtained through soaking of native NodZ crystals with the ligand and its structure has been determined at 2.35 Å resolution. The fucose residue is exposed to solvent and is disordered. The enzyme-product complex crystal was obtained by cocrystallization with GDP and an acceptor molecule, penta-N-acetyl-L-glucosamine (penta-NAG). The structure has been determined at 1.98 Å resolution, showing that only the GDP molecule is present in the complex. In both structures the ligands are located in a cleft formed between the two domains of NodZ and extend towards the C-terminal domain, but their conformations differ significantly. The structures revealed that residues in three regions of the C-terminal domain, which are conserved among α1,2-, α1,6- and protein O-fucosyltransferases, are involved in interactions with the sugar-donor molecule. There is also an interaction with the side chain of Tyr45 in the N-terminal domain, which is very unusual for a GT-B-type glycosyltransferase. Only minor conformational changes of the protein backbone are observed upon ligand binding. The only exception is a movement of the loop located between strand βC2 and helix αC3. In addition, there is a shift of the αC3 helix itself upon GDP

  13. Cooperative effect of the attenuation determinants derived from poliovirus sabin 1 strain is essential for attenuation of enterovirus 71 in the NOD/SCID mouse infection model.

    PubMed

    Arita, Minetaro; Ami, Yasushi; Wakita, Takaji; Shimizu, Hiroyuki

    2008-02-01

    Enterovirus 71 (EV71) is a causative agent of hand, foot, and mouth disease and is also associated with serious neurological disorders. An attenuated EV71 strain [EV71(S1-3')] has been established in the cynomolgus monkey infection model; this strain contains the attenuation determinants derived from the type 1 poliovirus vaccine strain, Sabin 1 [PV1(Sabin)], in the 5' nontranslated region (NTR), 3D polymerase, and 3' NTR. In this study, we analyzed the effect of the attenuation determinants of PV1(Sabin) on EV71 infection in a NOD/SCID mouse infection model. We isolated a mouse-adapted EV71 strain [EV71(NOD/SCID)] that causes paralysis of the hind limbs in 3- to 4-week-old NOD/SCID mice by adaptation of the virulent EV71(Nagoya) strain in the brains of NOD/SCID mice. A single mutation at nucleotide 2876 that caused an amino acid change in capsid protein VP1 (change of the glycine at position 145 to glutamic acid) was essential for the mouse-adapted phenotype in NOD/SCID mice. Next, we introduced attenuation determinants derived from PV1(Sabin) along with the mouse adaptation mutation into the EV71(Nagoya) genome. In 4-week-old mice, the determinants in the 3D polymerase and 3' NTR, which are the major temperature-sensitive determinants, had a strong effect on attenuation. In contrast, the effect of individual determinants was weak in 3-week-old NOD/SCID mice, and all the determinants were required for substantial attenuation. These results suggest that a cooperative effect of the attenuation determinants of PV1(Sabin) is essential for attenuated neurovirulence of EV71.

  14. Bioelectronic tongue using heterodimeric human taste receptor for the discrimination of sweeteners with human-like performance.

    PubMed

    Song, Hyun Seok; Jin, Hye Jun; Ahn, Sae Ryun; Kim, Daesan; Lee, Sang Hun; Kim, Un-Kyung; Simons, Christopher T; Hong, Seunghun; Park, Tai Hyun

    2014-10-28

    The sense of taste helps humans to obtain information and form a picture of the world by recognizing chemicals in their environments. Over the past decade, large advances have been made in understanding the mechanisms of taste detection and mimicking its capability using artificial sensor devices. However, the detection capability of previous artificial taste sensors has been far inferior to that of animal tongues, in terms of its sensitivity and selectivity. Herein, we developed a bioelectronic tongue using heterodimeric human sweet taste receptors for the detection and discrimination of sweeteners with human-like performance, where single-walled carbon nanotube field-effect transistors were functionalized with nanovesicles containing human sweet taste receptors and used to detect the binding of sweeteners to the taste receptors. The receptors are heterodimeric G-protein-coupled receptors (GPCRs) composed of human taste receptor type 1 member 2 (hTAS1R2) and human taste receptor type 1 member 3 (hTAS1R3), which have multiple binding sites and allow a human tongue-like broad selectivity for the detection of sweeteners. This nanovesicle-based bioelectronic tongue can be a powerful tool for the detection of sweeteners as an alternative to labor-intensive and time-consuming cell-based assays and the sensory evaluation panels used in the food and beverage industry. Furthermore, this study also allows the artificial sensor to exam the functional activity of dimeric GPCRs.

  15. Dissociable Hippocampal and Amygdalar D1-like receptor contribution to Discriminated Pavlovian conditioned approach learning

    PubMed Central

    Andrzejewski, Matthew E; Ryals, Curtis

    2016-01-01

    Pavlovian conditioning is an elementary form of reward-related behavioral adaptation. The mesolimbic dopamine system is widely considered to mediate critical aspects of reward-related learning. For example, initial acquisition of positively-reinforced operant behavior requires dopamine (DA) D1 receptor (D1R) activation in the basolateral amygdala (BLA), central nucleus of the amygdala (CeA), and the ventral subiculum (vSUB). However, the role of D1R activation in these areas on appetitive, non-drug-related, Pavlovian learning is not currently known. In separate experiments, microinfusions of the D1-like receptor antagonist SCH-23390 (3.0 nmol/0.5 μL per side) into the amygdala and subiculum preceded discriminated Pavlovian conditioned approach (dPCA) training sessions. D1-like antagonism in all three structures impaired the acquisition of discriminated approach, but had no effect on performance after conditioning was asymptotic. Moreover, dissociable effects of D1-like antagonism in the three structures on components of discriminated responding were obtained. Lastly, the lack of latent inhibition in drug-treated groups may elucidate the role of D1-like in reward-related Pavlovian conditioning. The present data suggest a role for the D1 receptors in the amygdala and hippocampus in learning the significance of conditional stimuli, but not in the expression of conditional responses. PMID:26632336

  16. Residues within the Transmembrane Domain of the Glucagon-Like Peptide-1 Receptor Involved in Ligand Binding and Receptor Activation: Modelling the Ligand-Bound Receptor

    PubMed Central

    Coopman, K.; Wallis, R.; Robb, G.; Brown, A. J. H.; Wilkinson, G. F.; Timms, D.

    2011-01-01

    The C-terminal regions of glucagon-like peptide-1 (GLP-1) bind to the N terminus of the GLP-1 receptor (GLP-1R), facilitating interaction of the ligand N terminus with the receptor transmembrane domain. In contrast, the agonist exendin-4 relies less on the transmembrane domain, and truncated antagonist analogs (e.g. exendin 9–39) may interact solely with the receptor N terminus. Here we used mutagenesis to explore the role of residues highly conserved in the predicted transmembrane helices of mammalian GLP-1Rs and conserved in family B G protein coupled receptors in ligand binding and GLP-1R activation. By iteration using information from the mutagenesis, along with the available crystal structure of the receptor N terminus and a model of the active opsin transmembrane domain, we developed a structural receptor model with GLP-1 bound and used this to better understand consequences of mutations. Mutation at Y152 [transmembrane helix (TM) 1], R190 (TM2), Y235 (TM3), H363 (TM6), and E364 (TM6) produced similar reductions in affinity for GLP-1 and exendin 9–39. In contrast, other mutations either preferentially [K197 (TM2), Q234 (TM3), and W284 (extracellular loop 2)] or solely [D198 (TM2) and R310 (TM5)] reduced GLP-1 affinity. Reduced agonist affinity was always associated with reduced potency. However, reductions in potency exceeded reductions in agonist affinity for K197A, W284A, and R310A, while H363A was uncoupled from cAMP generation, highlighting critical roles of these residues in translating binding to activation. Data show important roles in ligand binding and receptor activation of conserved residues within the transmembrane domain of the GLP-1R. The receptor structural model provides insight into the roles of these residues. PMID:21868452

  17. Self-renewal of human embryonic stem cells requires insulin-like growth factor-1 receptor and ERBB2 receptor signaling

    PubMed Central

    Wang, Linlin; Schulz, Thomas C.; Sherrer, Eric S.; Dauphin, Derek S.; Shin, Soojung; Nelson, Angelique M.; Ware, Carol B.; Zhan, Mei; Song, Chao-Zhong; Chen, Xiaoji; Brimble, Sandii N.; McLean, Amanda; Galeano, Maria J.; Uhl, Elizabeth W.; D'Amour, Kevin A.; Chesnut, Jonathan D.; Rao, Mahendra S.

    2007-01-01

    Despite progress in developing defined conditions for human embryonic stem cell (hESC) cultures, little is known about the cell-surface receptors that are activated under conditions supportive of hESC self-renewal. A simultaneous interrogation of 42 receptor tyrosine kinases (RTKs) in hESCs following stimulation with mouse embryonic fibroblast (MEF) conditioned medium (CM) revealed rapid and prominent tyrosine phosphorylation of insulin receptor (IR) and insulin-like growth factor-1 receptor (IGF1R); less prominent tyrosine phosphorylation of epidermal growth factor receptor (EGFR) family members, including ERBB2 and ERBB3; and trace phosphorylation of fibroblast growth factor receptors. Intense IGF1R and IR phosphorylation occurred in the absence of MEF conditioning (NCM) and was attributable to high concentrations of insulin in the proprietary KnockOut Serum Replacer (KSR). Inhibition of IGF1R using a blocking antibody or lentivirus-delivered shRNA reduced hESC self-renewal and promoted differentiation, while disruption of ERBB2 signaling with the selective inhibitor AG825 severely inhibited hESC proliferation and promoted apoptosis. A simple defined medium containing an IGF1 analog, heregulin-1β (a ligand for ERBB2/ERBB3), fibroblast growth factor-2 (FGF2), and activin A supported long-term growth of multiple hESC lines. These studies identify previously unappreciated RTKs that support hESC proliferation and self-renewal, and provide a rationally designed medium for the growth and maintenance of pluripotent hESCs. PMID:17761519

  18. A Novel Receptor-Like Kinase Involved in Fungal Pathogen Defense in Arabidopsis thaliana

    USDA-ARS?s Scientific Manuscript database

    Plants are under constant attack from a variety of disease causing organisms. Lacking an adaptive immune system, plants repel pathogen attack via an array of pathogen recognition machinery. Receptor-like kinases (RLKs) are involved in the recognition of pathogen-associated molecular patterns (PAMPs)...

  19. Plant Lectins and Lectin Receptor-Like Kinases: How Do They Sense the Outside?

    PubMed Central

    Bellande, Kevin; Bono, Jean-Jacques; Savelli, Bruno; Jamet, Elisabeth; Canut, Hervé

    2017-01-01

    Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth. PMID:28561754

  20. Crystal Structure of Glucagon-like Peptide-1 in Complex with the Extracellular Domain of the Glucagon-like Peptide-1 Receptor*

    PubMed Central

    Underwood, Christina Rye; Garibay, Patrick; Knudsen, Lotte Bjerre; Hastrup, Sven; Peters, Günther H.; Rudolph, Rainer; Reedtz-Runge, Steffen

    2010-01-01

    GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic β-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9–39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Åresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous α-helix from Thr13 to Val33 when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor. PMID:19861722

  1. GLYX-13, a NMDA Receptor Glycine-Site Functional Partial Agonist, Induces Antidepressant-Like Effects Without Ketamine-Like Side Effects

    PubMed Central

    Burgdorf, Jeffrey; Zhang, Xiao-lei; Nicholson, Katherine L; Balster, Robert L; David Leander, J; Stanton, Patric K; Gross, Amanda L; Kroes, Roger A; Moskal, Joseph R

    2013-01-01

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of ‘metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression. PMID:23303054

  2. Glucagon-Like Peptide-1 Receptor Ligand Interactions: Structural Cross Talk between Ligands and the Extracellular Domain

    PubMed Central

    West, Graham M.; Willard, Francis S.; Sloop, Kyle W.; Showalter, Aaron D.; Pascal, Bruce D.; Griffin, Patrick R.

    2014-01-01

    Activation of the glucagon-like peptide-1 receptor (GLP-1R) in pancreatic β-cells potentiates insulin production and is a current therapeutic target for the treatment of type 2 diabetes mellitus (T2DM). Like other class B G protein-coupled receptors (GPCRs), the GLP-1R contains an N-terminal extracellular ligand binding domain. N-terminal truncations on the peptide agonist generate antagonists capable of binding to the extracellular domain, but not capable of activating full length receptor. The main objective of this study was to use Hydrogen/deuterium exchange (HDX) to identify how the amide hydrogen bonding network of peptide ligands and the extracellular domain of GLP-1R (nGLP-1R) were altered by binding interactions and to then use this platform to validate direct binding events for putative GLP-1R small molecule ligands. The HDX studies presented here for two glucagon-like peptide-1 receptor (GLP-1R) peptide ligands indicates that the antagonist exendin-4[9-39] is significantly destabilized in the presence of nonionic detergents as compared to the agonist exendin-4. Furthermore, HDX can detect stabilization of exendin-4 and exendin-4[9-39] hydrogen bonding networks at the N-terminal helix [Val19 to Lys27] upon binding to the N-terminal extracellular domain of GLP-1R (nGLP-1R). In addition we show hydrogen bonding network stabilization on nGLP-1R in response to ligand binding, and validate direct binding events with the extracellular domain of the receptor for putative GLP-1R small molecule ligands. PMID:25180755

  3. NOD2 expression, DNA damage and oxido-inflammatory status in atopic bronchial asthma: Exploring their nexus to disease severity.

    PubMed

    Gaballah, Hanaa H; Gaber, Rasha A; Sharshar, Ragia S; Elshweikh, Samah A

    2018-06-20

    Allergic asthma is a chronically relapsing inflammatory airway disease with a complex pathophysiology. This study was undertaken to investigate the potential contribution of NOD2 signaling, proinflammatory cytokines, chitotriosidase (CHIT1) activity, oxidative stress and DNA damage to atopic asthma pathogenesis, as well as to explore their possible role as surrogate noninvasive biomarkers for monitoring asthma severity. Sixty patients with atopic bronchial asthma who were divided according to asthma severity into 40 mild-moderate, 20 severe atopic asthmatics, in addition to thirty age-matched healthy controls were enrolled in this study. NOD2 expression in PBMCs was assessed by quantitative real-time RT-PCR. DNA damage indices were assessed by alkaline comet assay. Serum IgE, IL-17, IL-8 and 3-Nitrotyrosine levels were estimated by ELISA. Serum CHIT1and GST activities, as well as MDA levels, were measured. NOD2 mRNA relative expression levels were significantly decreased in atopic asthmatic cases relative to controls with lower values among severe atopic asthmatics. On the other hand, IL-17 and IL-8 serum levels, CHIT1 activity, DNA damage indices and oxidative stress markers were significantly increased in atopic asthmatic cases relative to controls with higher values among severe atopic asthmatics. The change in these parameters correlated significantly with the degree of decline in lung function. The interplay between NOD2 signaling, proinflammatory cytokines, CHIT1 activity, heightened oxidative stress and DNA damage orchestrates allergic airway inflammation and thus contributing to the pathogenesis of atopic asthma. These parameters qualified for measurement as part of new noninvasive biomarker panels for monitoring asthma severity. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Species differences in the relative densities of D1- and D2-like dopamine receptor subtypes in the Japanese quail and rats: an in vitro quantitative receptor autoradiography study.

    PubMed

    Kleitz, Hayley K; Cornil, Charlotte A; Balthazart, Jacques; Ball, Gregory F

    2009-01-01

    Evidence has accumulated that the regulation of male sexual behavior by dopamine might not be the same in Japanese quail (and perhaps all birds) as it is in mammals. For example, the non-selective dopamine receptor agonist, apomorphine (APO), facilitates male sexual behavior in rats but inhibits it in quail. Although the general organization of the dopamine system is similar in birds and mammals, it is possible that the relative distribution and/or density of binding sites are different. We therefore compared the relative densities of D1-like and D2-like receptor subtypes in Japanese quail and rats, with the use of in vitro quantitative receptor autoradiography. Brain sections from 8 male rats and 8 male quail were labeled with [(3)H]SCH-23390 and [(3)H]Spiperone. In general we found a systematic species difference in the relative density of D1- vs. D2-like receptors such that the D2/D1 ratio is higher in quail than in rats in areas, known to be important target sites for dopamine action such as striatal regions or the preoptic area, which is also associated with activation of sexual behavior. This difference might explain the variation in the behavioral effectiveness of APO in rats as compared to quail; with a higher relative density of D2-like receptors in quail, a similar dose of APO would be more likely to activate inhibitory processes in quail than in rats. (c) 2009 S. Karger AG, Basel.

  5. Simultaneous Vascular Targeting and Tumor Targeting of Cerebral Breast Cancer Metastases Using a T-Cell Receptor Mimic Antibody

    DTIC Science & Technology

    2014-05-01

    in May 2013, the difference between nude mice (which lack T- cells , but still have a partially functional adaptive and innate immune system) and NSG...Mangada J, Greiner DL, Handgretinger R. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human...Targeting of Cerebral Breast Cancer Metastases Using a T- Cell Receptor Mimic Antibody PRINCIPAL INVESTIGATOR: Ulrich Bickel

  6. Crohn's disease patients carrying Nod2/CARD15 gene variants have an increased and early need for first surgery due to stricturing disease and higher rate of surgical recurrence.

    PubMed

    Alvarez-Lobos, Manuel; Arostegui, Juan I; Sans, Miquel; Tassies, Dolors; Plaza, Susana; Delgado, Salvadora; Lacy, Antonio M; Pique, Josep M; Yagüe, Jordi; Panés, Julián

    2005-11-01

    To study the predictive value of Nod2/CARD15 gene variants along with disease phenotypic characteristics for requirement of initial surgery and for surgical recurrence in Crohn's disease (CD). Nod2/CARD15 gene variants play an important role in the susceptibility to CD. Studies of genotype-phenotype relationship suggest that these variants are associated with development of intestinal strictures. Preliminary reports analyzing the association between these variants and need for surgery have produced inconsistent results. A total of 170 CD patients were included prospectively in the study and followed up regularly for a mean of 7.4 +/- 6.1 years. Clinical characteristics of CD, time and indication for surgery, and recurrence were registered. Nod2/CARD15 gene variants were determined by DNA sequencing analysis. Surgery for stricturing disease was significantly more frequent in patients with Nod2/CARD15 variants in the univariate analysis (odds ratio [OR], 3.63; 95% confidence interval [CI], 1.42-9.27), and it was required at an earlier time (P = 0.004). Only Nod2/CARD15 variants (OR, 3.58; 95% CI, 1.21-10.5) and stricturing phenotype at diagnosis of CD (OR, 9.34; 95% CI, 2.56-33.3) were independent predictive factors of initial surgery for stricturing lesions in the multivariate analysis. Among 70 patients that required surgery, postoperative recurrence was also more frequent in patients with Nod2/CARD15 variants in the univariate and multivariate analysis (OR, 3.29; 95% CI, 1.13-9.56), and reoperation was needed at an earlier time (P = 0.03). Nod2/CARD15 variants are associated with early initial surgery due to stenosis and with surgical recurrence in Crohn's disease. Patients with these variants could benefit from preventive and/or early therapeutic strategies.

  7. Toll-Like Receptor Function in Acute Wounds

    PubMed Central

    Chen, Lin; DiPietro, Luisa A.

    2017-01-01

    Significance: Inflammation is an integral part of immune response and supports optimal wound healing in adults. Inflammatory cells such as neutrophils, macrophages, dendritic cells, lymphocytes, and mast cells produce important cytokines, chemokines, and growth factors. These immune cells interact with keratinocytes, fibroblasts, and endothelial cells (ECs), as well as the extracellular matrix within a complicated network that promotes and regulates wound healing. Aberrant and persistent inflammation may result in delayed wound healing, scar formation, or chronic wounds. Targeting the molecules involved in the inflammatory response may have great potential therapeutic value. Recent Advances and Critical Issues: Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogen-associated molecular patterns from microbes or danger-associated molecular patterns from damaged cells. The discovery of TLRs sheds new light on the mechanism by which the inflammatory or innate immune response is initiated in wound healing. Convincing evidence now shows that multiple types of cells, including infiltrating or resident inflammatory cells, keratinocytes, fibroblasts, and ECs, express specific types of TLRs. Experimental reduction of certain TLRs or treatment of wounds with TLR ligands has been shown to affect wound healing. A better understanding of the involvement of TLRs in the innate immune response during skin wound healing may suggest novel strategies to improve the quality of tissue repair. Future Directions: Despite the indisputable role of TLRs in regulating the immune response in acute wound healing, the functions of TLRs that are relevant to human wound healing and chronic wounds are poorly understood. PMID:29062591

  8. Ligand-Receptor Interaction-Mediated Transmembrane Transport of Dendrimer-like Soft Nanoparticles: Mechanisms and Complicated Diffusive Dynamics.

    PubMed

    Liang, Junshi; Chen, Pengyu; Dong, Bojun; Huang, Zihan; Zhao, Kongyin; Yan, Li-Tang

    2016-05-09

    Nearly all nanomedical applications of dendrimer-like soft nanoparticles rely on the functionality of attached ligands. Understanding how the ligands interact with the receptors in cell membrane and its further effect on the cellular uptake of dendrimer-like soft nanoparticles is thereby a key issue for their better application in nanomedicine. However, the essential mechanism and detailed kinetics for the ligand-receptor interaction-mediated transmembrane transport of such unconventional nanoparticles remain poorly elucidated. Here, using coarse-grained simulations, we present the very first study of molecular mechanism and kinetics behaviors for the transmembrane transport of dendrimer-like soft nanoparticles conjugated with ligands. A phase diagram of interaction states is constructed through examining ligand densities and membrane tensions that allows us to identify novel endocytosis mechanisms featured by the direct wrapping and the penetration-extraction vesiculation. The results provide an in-depth insight into the diffusivity of receptors and dendrimer in the membrane plane and demonstrate how the ligand density influences receptor diffusion and uptake kinetics. It is interesting to find that the ligand-conjugated dendrimers present superdiffusive behaviors on a membrane, which is revealed to be driven by the random fluctuation dynamics of the membrane. The findings facilitate our understanding of some recent experimental observations and could establish fundamental principles for the future development of such important nanomaterials for widespread nanomedical applications.

  9. Over-expression of Stat5b confers protection against diabetes in the non-obese diabetic (NOD) mice via up-regulation of CD4{sup +}CD25{sup +} regulatory T cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yulan; Purohit, Sharad; Department of Pathology, Medical College of Georgia, Georgia Health Sciences University, GA

    Highlights: Black-Right-Pointing-Pointer This is the first study to provide direct evidence of the role of Stat5b in NOD mice. Black-Right-Pointing-Pointer Over-expression of wild type Stat5b transgene protects NOD mice against diabetes. Black-Right-Pointing-Pointer This protection may be mediated by the up-regulation of CD4{sup +}CD25{sup +} Tregs. -- Abstract: The signal transducers and activators of transcription (STAT) family of proteins play a critical role in cytokine signaling required for fine tuning of immune regulation. Previous reports showed that a mutation (L327M) in the Stat5b protein leads to aberrant cytokine signaling in the NOD mice. To further elaborate the role of Stat5b inmore » diabetes, we established a NOD transgenic mouse that over-expresses the wild type Stat5b gene. The incidences of spontaneous diabetes as well as cyclophosphamide-induced diabetes were significantly reduced and delayed in the Stat5b transgenic NOD mice compared to their littermate controls. The total cell numbers of CD4{sup +} T cells and especially CD8{sup +} T cells in the spleen and pancreatic lymph node were increased in the Stat5b transgenic NOD mice. Consistent with these findings, CD4{sup +} and CD8{sup +} T cells from the Stat5b transgenic NOD mice showed a higher proliferation capacity and up-regulation of multiple cytokines including IL-2, IFN-{gamma}, TNF-{alpha} and IL-10 as well as anti-apoptotic gene Bcl-xl. Furthermore, the number and proportion of CD4{sup +}CD25{sup +} regulatory T cells were significantly increased in transgenic mice although in vitro suppression ability of the regulatory T-cells was not affected by the transgene. Our results suggest that Stat5b confers protection against diabetes in the NOD mice by regulating the numbers and function of multiple immune cell types, especially by up-regulating CD4{sup +}CD25{sup +} regulatory T cells.« less

  10. Equine insulin receptor and insulin-like growth factor-1 receptor expression in digital lamellar tissue and insulin target tissues.

    PubMed

    Kullmann, A; Weber, P S; Bishop, J B; Roux, T M; Norby, B; Burns, T A; McCutcheon, L J; Belknap, J K; Geor, R J

    2016-09-01

    Hyperinsulinaemia is implicated in the pathogenesis of endocrinopathic laminitis. Insulin can bind to different receptors: two insulin receptor isoforms (InsR-A and InsR-B), insulin-like growth factor-1 receptor (IGF-1R) and InsR/IGF-1R hybrid receptor (Hybrid). Currently, mRNA expression of these receptors in equine tissues and the influence of body type and dietary carbohydrate intake on expression of these receptors is not known. The study objectives were to characterise InsR-A, InsR-B, IGF-1R and Hybrid expression in lamellar tissue (LT) and insulin responsive tissues from horses and examine the effect of dietary nonstructural carbohydrate (NSC) on mRNA expression of these receptors in LT, skeletal muscle, liver and two adipose tissue (AT) depots of lean and obese ponies. In vivo experiment. Lamellar tissue samples were evaluated by quantitative reverse transcription polymerase chain reaction (RT-qPCR) for receptor mRNA expression (n = 8) and immunoblotting for protein expression (n = 3). Archived LT, skeletal muscle, liver and AT from lean and obese mixed-breed ponies fed either a low (~7% NSC as dry matter; 5 lean, 5 obese) or high NSC diet (~42% NSC as dry matter; 6 lean, 6 obese) for 7 days were evaluated by RT-qPCR to determine the effect of body condition and diet on expression of the receptors in different tissues. Significance was set at P≤0.05. Lamellar tissue expresses both InsR isoforms, IGF-1R and Hybrid. LT IGF-1R gene expression was greater than either InsR isoform and InsR-A expression was greater than InsR-B (P≤0.05). Obesity significantly lowered IGF-1R, InsR-A and InsR-B mRNA expression in LT and InsR-A in tailhead AT. High NSC diet lowered expression of all three receptor types in liver; IGF-1R and InsR-A in LT and InsR-A in tailhead AT. Lamellar tissue expresses IGF-1R, InsR isoforms and Hybrids. The functional characteristics of these receptors and their role in endocrinopathic laminitis warrants further investigation. © 2015 EVJ

  11. Toll-like receptors 2 and 4 exert opposite effects on the contractile response induced by serotonin in mouse colon: role of serotonin receptors.

    PubMed

    Forcén, R; Latorre, E; Pardo, J; Alcalde, A I; Murillo, M D; Grasa, L

    2016-08-01

    What is the central question of this study? The action of Toll-like receptors (TLRs) 2 and 4 on the motor response to serotonin in mouse colon has not previously been reported. What is the main finding and its importance? Toll-like receptors 2 and 4 modulate the serotonin-induced contractile response in mouse colon by modifying the expression of serotonin (5-HT) receptors. Alterations in 5-HT2A and 5-HT2C receptors explain the increase of the response to serotonin in TLR2(-/-) mice. Alterations in 5-HT2C and 5-HT4 receptors explain the suppression of the response to serotonin in TLR4(-/-) mice. The microbiota, through Toll-like receptors (TLRs), may regulate gastrointestinal motility by activating neuroendocrine mechanisms. We evaluated the influence of TLR2 and TLR4 in spontaneous contractions and in the serotonin (5-HT)-induced motor response in mouse colon, and assessed the 5-HT receptors involved. Muscle contractility studies to evaluate the intestinal spontaneous motility and the response to 5-HT were performed in the colon from wild-type (WT), TLR2(-/-) , TLR4(-/-) and TLR2/4 double knockout (DKO) mice. The 5-HT receptor mRNA expression was determined by real-time PCR. The amplitude and frequency of the spontaneous contractions of the colon were smaller in TLR4(-/-) and TLR2/4 DKO mice with respect to WT mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 100 μm 5-HT evoked a contractile response. The contractile response induced by 5-HT was significantly higher in TLR2(-/-) than in WT mice. In TLR4(-/-) mice, 5-HT did not evoke any contractile response. The mRNA expression of 5-HT2A was increased in TLR2(-/-) and TLR2/4 DKO mice. The 5-HT2C and 5-HT4 mRNA expressions were increased in TLR4(-/-) and TLR2/4 DKO mice. The 5-HT2C mRNA expression was diminished in TLR2(-/-) mice. The 5-HT3 mRNA expression was increased in TLR2(-/-) , TLR4(-/-) and TLR2/4 DKO mice. The 5-HT7 mRNA expression was diminished in TLR2/4 DKO mice. In WT, TLR2(-/-) and TLR2/4 DKO mice, 5-HT2

  12. Inflammasome activation causes dual recruitment of NLRC4 and NLRP3 to the same macromolecular complex.

    PubMed

    Man, Si Ming; Hopkins, Lee J; Nugent, Eileen; Cox, Susan; Glück, Ivo M; Tourlomousis, Panagiotis; Wright, John A; Cicuta, Pietro; Monie, Tom P; Bryant, Clare E

    2014-05-20

    Pathogen recognition by nucleotide-binding oligomerization domain-like receptor (NLR) results in the formation of a macromolecular protein complex (inflammasome) that drives protective inflammatory responses in the host. It is thought that the number of inflammasome complexes forming in a cell is determined by the number of NLRs being activated, with each NLR initiating its own inflammasome assembly independent of one another; however, we show here that the important foodborne pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) simultaneously activates at least two NLRs, whereas only a single inflammasome complex is formed in a macrophage. Both nucleotide-binding domain and leucine-rich repeat caspase recruitment domain 4 and nucleotide-binding domain and leucine-rich repeat pyrin domain 3 are simultaneously present in the same inflammasome, where both NLRs are required to drive IL-1β processing within the Salmonella-infected cell and to regulate the bacterial burden in mice. Superresolution imaging of Salmonella-infected macrophages revealed a macromolecular complex with an outer ring of apoptosis-associated speck-like protein containing a caspase activation and recruitment domain and an inner ring of NLRs, with active caspase effectors containing the pro-IL-1β substrate localized internal to the ring structure. Our data reveal the spatial localization of different components of the inflammasome and how different members of the NLR family cooperate to drive robust IL-1β processing during Salmonella infection.

  13. Attenuation of nicotine's discriminative stimulus effects in rats and its locomotor activity effects in mice by serotonergic 5-HT2A/2C receptor agonists.

    PubMed

    Batman, Angela M; Munzar, Patrik; Beardsley, Patrick M

    2005-05-01

    Reports have indicated that administration of nicotine inhibits, while withdrawal of chronically administered nicotine augments effects of serotonergic 5HT2A/2C agonists. It was our objective to determine whether 5HT2A/2C agonists can modulate the discriminative stimulus effects of nicotine in rats or its locomotor activity effects in mice. Adult male Sprague-Dawley rats were trained to discriminate 0.3 mg/kg nicotine base from saline in a two-lever, fixed-ratio (FR10), food-reinforced, operant-conditioning task during daily (Monday-Friday) 15-min experimental sessions. After characterizing a dose-response curve for nicotine, we tested the ability of the 5HT(2A/2C) agonists (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCL (DOI; 0.18-1.0 mg/kg) and 1-(4-bromo-2, 5-dimethoxyphenyl)-2-aminopropane (DOB; 0.1-1.0 mg/kg), the 5HT2C agonist 6-chloro-2-(1-piperazinyl)pyrazine hydrochloride (MK 212; 0.1 mg/kg-1.0 mg/kg), and the 5HT1A agonist (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide (8-OH-DPAT; 0.01 mg/kg-1.0 mg/kg) to modulate nicotine's discriminative stimulus effects. After finding that DOI was able to attenuate the percentage nicotine lever responding (%NLR), we tested for it to also reverse nicotine's effects on locomotor activity in mice. The 5HT2A/2C agonists-in particular DOI-dose dependently attenuated %NLR. The effects of DOI were reversed by the 5HT2A/2C antagonist ketanserin. MK 212 and 8-OH-DPAT had irregular effects among rats and only reduced %NLR to below 50% levels at doses markedly suppressing responding. DOI also dose dependently blocked nicotine's acute rate-lowering locomotor activity effects. These results indicate that activation of serotonin 5HT2A/2C receptors can blunt the discriminative stimulus and locomotor activity effects of nicotine and presents the possibility that activation of these receptors might also be able to attenuate other effects of nicotine.

  14. Pharmacological characterization of NMDA-like receptors in the single-celled organism Paramecium primaurelia.

    PubMed

    Ramoino, Paola; Candiani, Simona; Pittaluga, Anna Maria; Usai, Cesare; Gallus, Lorenzo; Ferrando, Sara; Milanese, Marco; Faimali, Marco; Bonanno, Giambattista

    2014-02-01

    Paramecium primaurelia is a unicellular eukaryote that moves in freshwater by ciliary beating and responds to environmental stimuli by altering motile behaviour. The movements of the cilia are controlled by the electrical changes of the cell membrane: when the intraciliary Ca(2+) concentration associated with plasma membrane depolarization increases, the ciliary beating reverses its direction, and consequently the swimming direction changes. The ciliary reversal duration is correlated with the amount of Ca(2+) influx. Here, we evaluated the effects due to the activation or blockade of N-methyl-d-aspartic acid (NMDA) receptors on swimming behaviour in Paramecium. Paramecia normally swim forward, drawing almost linear tracks. We observed that the simultaneous administration of NMDA and glycine induced a partial ciliary reversal (PaCR) leading to a continuous spiral-like swim. Furthermore, the duration of continuous ciliary reversal (CCR), triggered by high external KCl concentrations, was longer in NMDA+glycine-treated cells. NMDA action required the presence of Ca(2+), as the normal forward swimming was restored when the ion was omitted from the extracellular milieu. The PaCR and the enhancement of CCR duration significantly decreased when the antagonists of the glutamate site D-AP5 or CGS19755, the NMDA channel blocker MK-801 or the glycine site antagonist DCKA was added. The action of NMDA+glycine was also abolished by Zn(2+) or ifenprodil, the GluN2A and the GluN2B NMDA-containing subunit blockers, respectively. Searches of the Paramecium genome database currently available indicate that the NMDA-like receptor with ligand-binding characteristics of an NMDA receptor-like complex, purified from rat brain synaptic membranes and found in some metazoan genomes, is also present in Paramecium. These results provide evidence that functional NMDA receptors similar to those typical of mammalian neuronal cells are present in the single-celled organism Paramecium and thus

  15. Anti-N-Methyl-D-Aspartate Receptor Encephalitis and Rasmussen-like Syndrome: An Association?

    PubMed

    Gurcharran, Kevin; Karkare, Shefali

    2017-01-01

    N-methyl-D-aspartate (NMDA) receptor encephalitis is an immune-mediated condition that has a broad spectrum of manifestations, including seizures, coma, psychosis, and focal neurological deficits. Although usually a diffuse process, unihemispheric involvement mimicking early stages of Rasmussen encephalitis can occur. Rasmussen's encephalitis is a unique syndrome characterized by progressive hemiplegia, drug-resistant focal epilepsy, cognitive decline, and hemispheric brain atrophy contralateral to the hemiplegia. We describe a two-year-old girl with progressive right weakness and epilepsia partialis continua, concerning for early Rasmussen's encephalitis, who tested positive for anti-NMDA receptor antibodies. She experienced complete clinical recovery after immunotherapy. Anti-NMDA receptor antibodies were absent at three weeks and again at one year after the first treatment of intravenous immunoglobulin. There are few reports of Rasmussen-like encephalitis in individuals with anti-NMDA receptor antibody positivity. Thus the clinical significance of this association is yet to be determined. In addition, several other antibodies have been documented in individuals with Rasmussen encephalitis. The lack of a consistently reported antibody in Rasmussen encephalitis patients and the temporary nature of the anti-NMDA receptor antibody in our patient raise the following question: Is the presence of anti-NMDA receptor antibodies the cause of the symptoms or secondary to the pathogenic process? Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Evolution and functional divergence of NLRP genes in mammalian reproductive systems

    PubMed Central

    2009-01-01

    Background NLRPs (Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing Proteins) are members of NLR (Nod-like receptors) protein family. Recent researches have shown that NLRP genes play important roles in both mammalian innate immune system and reproductive system. Several of NLRP genes were shown to be specifically expressed in the oocyte in mammals. The aim of the present work was to study how these genes evolved and diverged after their duplication, as well as whether natural selection played a role during their evolution. Results By using in silico methods, we have evaluated the evolution and functional divergence of NLRP genes, in particular of mouse reproduction-related Nlrp genes. We found that (1) major NLRP genes have been duplicated before the divergence of mammals, with certain lineage-specific duplications in primates (NLRP7 and 11) and in rodents (Nlrp1, 4 and 9 duplicates); (2) tandem duplication events gave rise to a mammalian reproduction-related NLRP cluster including NLRP2, 4, 5, 7, 8, 9, 11, 13 and 14 genes; (3) the function of mammalian oocyte-specific NLRP genes (NLRP4, 5, 9 and 14) might have diverged during gene evolution; (4) recent segmental duplications concerning Nlrp4 copies and vomeronasal 1 receptor encoding genes (V1r) have been undertaken in the mouse; and (5) duplicates of Nlrp4 and 9 in the mouse might have been subjected to adaptive evolution. Conclusion In conclusion, this study brings us novel information on the evolution of mammalian reproduction-related NLRPs. On the one hand, NLRP genes duplicated and functionally diversified in mammalian reproductive systems (such as NLRP4, 5, 9 and 14). On the other hand, during evolution, different lineages adapted to develop their own NLRP genes, particularly in reproductive function (such as the specific expansion of Nlrp4 and Nlrp9 in the mouse). PMID:19682372

  17. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice.

    PubMed

    Fornari, Thais A; Donate, Paula B; Assis, Amanda F; Macedo, Claudia; Sakamoto-Hojo, Elza T; Donadi, Eduardo A; Passos, Geraldo A

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.

  18. Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

    PubMed Central

    Macedo, Claudia; Sakamoto-Hojo, Elza T.; Donadi, Eduardo A.; Passos, Geraldo A.

    2015-01-01

    In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs. PMID:26606254

  19. The Influence of the CB1 Receptor Ligands on the Schizophrenia-Like Effects in Mice Induced by MK-801.

    PubMed

    Kruk-Slomka, Marta; Budzynska, Barbara; Slomka, Tomasz; Banaszkiewicz, Izabela; Biala, Grazyna

    2016-11-01

    A growing body of psychiatric research has emerged, focusing on the role of endocannabinoid system in psychiatric disorders. For example, the endocannabinoid system, via cannabinoid CB (CB1 and CB2) receptors, is able to control the function of many receptors, such as N-methyl-D-aspartate (NMDA) receptors connected strictly with psychosis or other schizophrenia-associated symptoms. The aim of the present research was to investigate the impact of the CB1 receptor ligands on the symptoms typical for schizophrenia. We provoked psychosis-like effects in mice by an acute administration of NMDA receptor antagonist, MK-801 (0.1-0.6 mg/kg). An acute administration of MK-801 induced psychotic symptoms, manifested in the increase in locomotor activity (hyperactivity), measured in actimeters, as well as the memory impairment, assessed in the passive avoidance task. We revealed that an acute injection of CB1 receptor agonist, oleamide (5-20 mg/kg), had no influence on the short- and long-term memory-related disturbances, as well as on the hyperlocomotion in mice, provoking by an acute MK-801. In turn, an amnestic effects or hyperactivity induced by an acute MK-801 was attenuated by an acute administration of AM 251 (0.25-3 mg/kg), a CB1 receptor antagonist. The present findings confirm that endocannabinoid system is able to modify a variety of schizophrenia-like responses, including the cognitive disturbances and hyperlocomotion in mice. Antipsychotic-like effects induced by CB1 receptor antagonist, obtained in our research, confirm the potential effect of CB1 receptor blockade and could have important therapeutic implications on clinical settings, in the future.

  20. Dax Gets the Nod: Toddlers Detect and Use Social Cues to Evaluate Testimony

    PubMed Central

    Fusaro, Maria; Harris, Paul L.

    2016-01-01

    Children ages 18 and 24 months were assessed for the ability to understand and learn from an adult’s nonverbal expression of agreement and disagreement with a speaker’s claims. In one type of communicative exchange, a speaker made 2 different claims about the identity or location of an object. The hearer nodded her head in agreement with one claim and shook her head in disagreement with the other claim. In a second type of exchange, the speaker asked 2 different questions about the identity or location of an object. The hearer nodded her head in response to one question and shook her head in response to the other. The 24-month-olds grasped the implication of these gestural responses, by inferring the correct name or location of the object. The 18-month-olds showed a limited grasp of their implications. Thus, in learning from others’ testimony, toddlers focus not only on the claims of a single speaker but also on whether that information is accepted or rejected by another hearer. In particular, they detect and act on social cues of assent and dissent. PMID:23127298