Sample records for noise psyko-akustisk vaerdering

  1. Effects of background noise on total noise annoyance

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1987-01-01

    Two experiments were conducted to assess the effects of combined community noise sources on annoyance. The first experiment baseline relationships between annoyance and noise level for three community noise sources (jet aircraft flyovers, traffic and air conditioners) presented individually. Forty eight subjects evaluated the annoyance of each noise source presented at four different noise levels. Results indicated the slope of the linear relationship between annoyance and noise level for the traffic noise was significantly different from that of aircraft and of air conditioner noise, which had equal slopes. The second experiment investigated annoyance response to combined noise sources, with aircraft noise defined as the major noise source and traffic and air conditioner noise as background noise sources. Effects on annoyance of noise level differences between aircraft and background noise for three total noise levels and for both background noise sources were determined. A total of 216 subjects were required to make either total or source specific annoyance judgements, or a combination of the two, for a wide range of combined noise conditions.

  2. Maximizing noise energy for noise-masking studies.

    PubMed

    Jules Étienne, Cédric; Arleo, Angelo; Allard, Rémy

    2017-08-01

    Noise-masking experiments are widely used to investigate visual functions. To be useful, noise generally needs to be strong enough to noticeably impair performance, but under some conditions, noise does not impair performance even when its contrast approaches the maximal displayable limit of 100 %. To extend the usefulness of noise-masking paradigms over a wider range of conditions, the present study developed a noise with great masking strength. There are two typical ways of increasing masking strength without exceeding the limited contrast range: use binary noise instead of Gaussian noise or filter out frequencies that are not relevant to the task (i.e., which can be removed without affecting performance). The present study combined these two approaches to further increase masking strength. We show that binarizing the noise after the filtering process substantially increases the energy at frequencies within the pass-band of the filter given equated total contrast ranges. A validation experiment showed that similar performances were obtained using binarized-filtered noise and filtered noise (given equated noise energy at the frequencies within the pass-band) suggesting that the binarization operation, which substantially reduced the contrast range, had no significant impact on performance. We conclude that binarized-filtered noise (and more generally, truncated-filtered noise) can substantially increase the energy of the noise at frequencies within the pass-band. Thus, given a limited contrast range, binarized-filtered noise can display higher energy levels than Gaussian noise and thereby widen the range of conditions over which noise-masking paradigms can be useful.

  3. Active Noise Control for Dishwasher noise

    NASA Astrophysics Data System (ADS)

    Lee, Nokhaeng; Park, Youngjin

    2016-09-01

    The dishwasher is a useful home appliance and continually used for automatically washing dishes. It's commonly placed in the kitchen with built-in style for practicality and better use of space. In this environment, people are easily exposed to dishwasher noise, so it is an important issue for the consumers, especially for the people living in open and narrow space. Recently, the sound power levels of the noise are about 40 - 50 dBA. It could be achieved by removal of noise sources and passive means of insulating acoustical path. For more reduction, such a quiet mode with the lower speed of cycle has been introduced, but this deteriorates the washing capacity. Under this background, we propose active noise control for dishwasher noise. It is observed that the noise is propagating mainly from the lower part of the front side. Control speakers are placed in the part for the collocation. Observation part of estimating sound field distribution and control part of generating the anti-noise are designed for active noise control. Simulation result shows proposed active noise control scheme could have a potential application for dishwasher noise reduction.

  4. Community noise sources and noise control issues

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    The topics covered include the following: community noise sources and noise control issues; noise components for turbine bypass turbojet engine (TBE) turbojet; engine cycle selection and noise; nozzle development schedule; NACA nozzle design; NACA nozzle test results; nearly fully mixed (NFM) nozzle design; noise versus aspiration rate; peak noise test results; nozzle test in the Low Speed Aeroacoustic Facility (LSAF); and Schlieren pictures of NACA nozzle.

  5. Practical ranges of loudness levels of various types of environmental noise, including traffic noise, aircraft noise, and industrial noise.

    PubMed

    Salomons, Erik M; Janssen, Sabine A

    2011-06-01

    In environmental noise control one commonly employs the A-weighted sound level as an approximate measure of the effect of noise on people. A measure that is more closely related to direct human perception of noise is the loudness level. At constant A-weighted sound level, the loudness level of a noise signal varies considerably with the shape of the frequency spectrum of the noise signal. In particular the bandwidth of the spectrum has a large effect on the loudness level, due to the effect of critical bands in the human hearing system. The low-frequency content of the spectrum also has an effect on the loudness level. In this note the relation between loudness level and A-weighted sound level is analyzed for various environmental noise spectra, including spectra of traffic noise, aircraft noise, and industrial noise. From loudness levels calculated for these environmental noise spectra, diagrams are constructed that show the relation between loudness level, A-weighted sound level, and shape of the spectrum. The diagrams show that the upper limits of the loudness level for broadband environmental noise spectra are about 20 to 40 phon higher than the lower limits for narrowband spectra, which correspond to the loudness levels of pure tones. The diagrams are useful for assessing limitations and potential improvements of environmental noise control methods and policy based on A-weighted sound levels.

  6. Helicopter rotor trailing edge noise. [noise prediction

    NASA Technical Reports Server (NTRS)

    Schlinker, R. H.; Amier, R. K.

    1981-01-01

    A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.

  7. Judgments of aircraft noise in a traffic noise background

    NASA Technical Reports Server (NTRS)

    Powell, C. A.; Rice, C. G.

    1975-01-01

    An investigation was conducted to determine subjective response to aircraft noise in different road traffic backgrounds. In addition, two laboratory techniques for presenting the aircraft noise with the background noise were evaluated. For one technique, the background noise was continuous over an entire test session; for the other, the background noise level was changed with each aircraft noise during a session. Subjective response to aircraft noise was found to decrease with increasing background noise level, for a range of typical indoor noise levels. Subjective response was found to be highly correlated with the Noise Pollution Level (NPL) measurement scale.

  8. Core-Noise

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2010-01-01

    This presentation is a technical progress report and near-term outlook for NASA-internal and NASA-sponsored external work on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system level noise metrics for the 2015, 2020, and 2025 timeframes; the emerging importance of core noise and its relevance to the SFW Reduced-Noise-Aircraft Technical Challenge; the current research activities in the core-noise area, with some additional details given about the development of a high-fidelity combustion-noise prediction capability; the need for a core-noise diagnostic capability to generate benchmark data for validation of both high-fidelity work and improved models, as well as testing of future noise-reduction technologies; relevant existing core-noise tests using real engines and auxiliary power units; and examples of possible scenarios for a future diagnostic facility. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Noise-Aircraft Technical Challenge aims to enable concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical for enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor designs could increase

  9. Noise frame duration, masking potency and whiteness of temporal noise.

    PubMed

    Kukkonen, Heljä; Rovamo, Jyrki; Donner, Kristian; Tammikallio, Marja; Raninen, Antti

    2002-09-01

    Because of the limited contrast range, increasing the duration of the noise frame is often the only option for increasing the masking potency of external, white temporal noise. This, however, reduces the high-frequency cutoff beyond which noise is no longer white. This study was conducted to determine the longest noise frame duration that produces the strongest masking effect and still mimics white noise on the detection of sinusoidal flicker. Contrast energy thresholds (E(th)) were measured for flicker at 1.25 to 20 Hz in strong, purely temporal (spatially uniform), additive, external noise. The masking power of white external noise, characterized by its spectral density at zero frequency N0, increases with the duration of the noise frame. For short noise frame durations, E(th) increased in direct proportion to N0, keeping the nominal signal-to-noise ratio [SNR = (E(th)/N0)(0.5)] constant at threshold. The masking effect thus increased with the duration of the noise frame and the noise mimicked white noise. When noise frame duration and N0 increased further, the nominal SNR at threshold started to decrease, indicating that noise no longer mimicked white noise. The minimum number of noise frames per flicker cycle needed to mimic white noise decreased with increasing flicker frequency from 8.3 at 1.25 Hz to 1.6 at 20 Hz. The critical high-frequency cutoff of detection-limiting temporal noise in terms of noise frames per signal cycle depends on the temporal frequency of the signal. This is opposite to the situation in the spatial domain and must be taken into consideration when temporal signals are masked with temporal noise.

  10. Reducing environmental noise impacts: A USAREUR noise management program handbook

    NASA Astrophysics Data System (ADS)

    Feather, Timothy D.; Shekell, Ted K.

    1991-06-01

    Noise pollution is a major environmental problem faced by the U.S. Army in Europe. Noise-related complaints from German citizens can escalate into intense political issues in German communities. This in turn hampers efficient operation of military training and often times threatens the Army's mission. In order to remedy these problems, USAREUR has developed a noise management program. A successful noise management program will limit the impact of unavoidable noise on the populace. This report, a component of the noise management program, is a reference document for noise management planning. It contains guidelines and rules-of-thumb for noise management. This document contains procedures which operation and training level personnel can understand and apply in their day to day noise management planning. Noise mitigation tips are given. Basic technical information that will aid in understanding noise mitigation is provided along with noise management through land use planning. Noise management for specific components of the military community, (airfields, base operations, training areas, and housing and recreation areas) are addressed. The nature of noise generated, means of noise abatement at the source, path, and receiver (both physical and organizational/public relations methods), and a case study example are described.

  11. Active noise control in a duct to cancel broadband noise

    NASA Astrophysics Data System (ADS)

    Chen, Kuan-Chun; Chang, Cheng-Yuan; Kuo, Sen M.

    2017-09-01

    The paper presents cancelling duct noises by using the active noise control (ANC) techniques. We use the single channel feed forward algorithm with feedback neutralization to realize ANC. Several kinds of ducts noises including tonal noises, sweep tonal signals, and white noise had investigated. Experimental results show that the proposed ANC system can cancel these noises in a PVC duct very well. The noise reduction of white noise can be up to 20 dB.

  12. Rotorcraft noise

    NASA Technical Reports Server (NTRS)

    Huston, R. J. (Compiler)

    1982-01-01

    The establishment of a realistic plan for NASA and the U.S. helicopter industry to develop a design-for-noise methodology, including plans for the identification and development of promising noise reduction technology was discussed. Topics included: noise reduction techniques, scaling laws, empirical noise prediction, psychoacoustics, and methods of developing and validing noise prediction methods.

  13. Sounds and Noises. A Position Paper on Noise Pollution.

    ERIC Educational Resources Information Center

    Chapman, Thomas L.

    This position paper focuses on noise pollution and the problems and solutions associated with this form of pollution. The paper is divided into the following five sections: Noise and the Ear, Noise Measurement, III Effects of Noise, Acoustics and Action, and Programs and Activities. The first section identifies noise and sound, the beginnings of…

  14. Airport noise

    NASA Technical Reports Server (NTRS)

    Pendley, R. E.

    1982-01-01

    The problem of airport noise at several airports and air bases is detailed. Community reactions to the noise, steps taken to reduce jet engine noise, and the effect of airport use restrictions and curfews on air transportation are discussed. The adverse effect of changes in allowable operational noise on airport safety and altenative means for reducing noise pollution are considered. Community-airport relations and public relations are discussed.

  15. Noise-induced hearing loss: a recreational noise perspective.

    PubMed

    Ivory, Robert; Kane, Rebecca; Diaz, Rodney C

    2014-10-01

    This review will discuss the real-world risk factors involved in noise-induced hearing loss as a result of common and popular recreational activities prone to mid and high levels of noise exposure. Although there are currently no interventional measures available to reverse or mitigate preexisting hearing loss from noise, we discuss the vital importance of hearing loss prevention from noise exposure avoidance and reduction. Despite a seeming understanding of the effects of noise exposure from various recreational activities and devices, a large percentage of the general public who is at risk of such noise-induced hearing loss still chooses to refrain from using hearing protection instruments. While occupational exposures pose the greatest traditional risk to hearing conservation in selected workers, recreational risk factors for noise-induced hearing loss may be more insidious in overall effect given the indifferent attitude of much of the general public and particularly our youths toward hearing protection during recreational activities. Active counseling regarding the consequences of excessive noise exposure and the potential benefits to hearing from usage of hearing protection instruments is critical to providing best possible care in the hearing health professions.

  16. Noise temperature and noise figure concepts: DC to light

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1982-01-01

    The Deep Space Network is investigating the use of higher operational frequencies for improved performance. Noise temperature and noise figure concepts are used to describe the noise performance of these receiving systems. It is proposed to modify present noise temperature definitions for linear amplifiers so they will be valid over the range (hf/kT) 1 (hf/kT). This is important for systems operating at high frequencies and low noise temperatures, or systems requiring very accurate calibrations. The suggested definitions are such that for an ideal amplifier, T sub e = (hg/k) = T sub q and F = 1. These definitions revert to the present definition for (hf/kT) 1. Noise temperature calibrations are illustrated with a detailed example. These concepts are applied to system signal-to-noise analysis. The fundamental limit to a receiving system sensitivity is determined by the thermal noise of the source and the quantum noise limit of the receiver. The sensitivity of a receiving system consisting of an ideal linear amplifier with a 2.7 K source, degrades significantly at higher frequencies.

  17. Combustion noise

    NASA Technical Reports Server (NTRS)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  18. Masking potency and whiteness of noise at various noise check sizes.

    PubMed

    Kukkonen, H; Rovamo, J; Näsänen, R

    1995-02-01

    The masking effect of spatial noise can be increased by increasing either the rms contrast or check size of noise. In this study, the authors investigated the largest noise check size that still mimics the effect of white noise in grating detection and how it depends on the bandwidth and spatial frequency of a grating. The authors measured contrast energy thresholds, E, for vertical cosine gratings at various spatial frequencies and bandwidths. Gratings were embedded in two-dimensional spatial noise. The side length of the square noise checks was varied in the experiments. The spectral density, N(0,0), of white spatial noise at zero frequency was calculated by multiplying the noise check area by the rms contrast of noise squared. The physical signal-to-noise ratio at threshold [E/N(0,0)]0.5 was initially constant but then started to decrease. The largest noise check that still produced a constant physical signal-to-noise ratio at threshold was directly proportional to the spatial frequency. When expressed as a fraction of grating cycle, the largest noise check size depended only on stimulus bandwidth. The smallest number of noise checks per grating cycle needed to mimic the effect of white noise decreased from 4.2 to 2.6 when the number of grating cycles increased from 1 to 64. Spatial noise can be regarded as white in grating detection if there are at least four square noise checks per grating cycle at all spatial frequencies.

  19. Core-Noise Research

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015 (N+1), 2020 (N+2), and 2025 (N+3) timeframes; SFW strategic thrusts and technical challenges; SFW advanced subsystems that are broadly applicable to N+3 vehicle concepts, with an indication where further noise research is needed; the components of core noise (compressor, combustor and turbine noise) and a rationale for NASA's current emphasis on the combustor-noise component; the increase in the relative importance of core noise due to turbofan design trends; the need to understand and mitigate core-noise sources for high-efficiency small gas generators; and the current research activities in the core-noise area, with additional details given about forthcoming updates to NASA's Aircraft Noise Prediction Program (ANOPP) core-noise prediction capabilities, two NRA efforts (Honeywell International, Phoenix, AZ and University of Illinois at Urbana-Champaign, respectively) to improve the understanding of core-noise sources and noise propagation through the engine core, and an effort to develop oxide/oxide ceramic-matrix-composite (CMC) liners for broadband noise attenuation suitable for turbofan-core application. Core noise must be addressed to ensure that the N+3 noise goals are met. Focused, but long-term, core-noise research is carried out to enable the advanced high-efficiency small gas-generator subsystem, common to several N+3 conceptual designs, needed to meet NASA's technical challenges. Intermediate updates to prediction tools are implemented as the understanding of the source structure and engine-internal propagation effects is improved. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The

  20. Noise-induced annoyance from transportation noise: short-term responses to a single noise source in a laboratory.

    PubMed

    Kim, Jaehwan; Lim, Changwoo; Hong, Jiyoung; Lee, Soogab

    2010-02-01

    An experimental study was performed to compare the annoyances from civil-aircraft noise, military-aircraft noise, railway noise, and road-traffic noise. Two-way within-subjects designs were applied in this research. Fifty-two subjects, who were naive listeners, were given various stimuli with varying levels through a headphone in an anechoic chamber. Regardless of the frequency weighting network, even under the same average energy level, civil-aircraft noise was the most annoying, followed by military-aircraft noise, railway noise, and road-traffic noise. In particular, penalties in the time-averaged, A-weighted sound level (TAL) of about 8, 5, and 5 dB, respectively, were found in the civil-aircraft, military-aircraft, and railway noises. The reason could be clarified through the high-frequency component and the variability in the level. When people were exposed to sounds with the same maximum A-weighted level, a railway bonus of about 3 dB was found. However, transportation noise has been evaluated by the time-averaged A-weighted level in most countries. Therefore, in the present situation, the railway bonus is not acceptable for railway vehicles with diesel-electric engines.

  1. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status

    PubMed Central

    Maamor, Nashrah; Billings, Curtis J.

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain’s response to complex auditory stimuli and contribute to the ability to listen in noise. PMID:27838448

  2. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A compendium is presented of documents on noise. The articles presented are categorized in the following sections: noise sources, noise detection and measurement, noise abatement and control, physical effects of noise, psychological and physiological effects of noise, noise regulations and standards, patents and contracts, and noise research.

  3. Phase-Noise and Amplitude-Noise Measurement of Low-Power Signals

    NASA Technical Reports Server (NTRS)

    Rubiola, Enrico; Salik, Ertan; Yu, Nan; Maleki, Lute

    2004-01-01

    Measuring the phase fluctuation between a pair of low-power microwave signals, the signals must be amplified before detection. In such cases the phase noise of the amplifier pair is the main cause of 1/f background noise of the instrument. this article proposes a scheme that makes amplification possible while rejecting the close in 1/f (flicker) noise of the two amplifiers. Noise rejection, which relies upon the understanding of the amplifier noise mechanism does not require averaging. Therefore, our scheme can also be the detector of a closed loop noise reduction system. the first prototype, compared to a traditional saturated mixer system under the same condition, show a 24 dB noise reduction of the 1/f region.

  4. Core Noise Reduction

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduce-Perceived-Noise Technical Challenge; and the current research activities in the core noise area. Recent work1 on the turbine-transmission loss of combustor noise is briefly described, two2,3 new NRA efforts in the core-noise area are outlined, and an effort to develop CMC-based acoustic liners for broadband noise reduction suitable for turbofan-core application is delineated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. The Subsonic Fixed Wing Project's Reduce-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries.

  5. Cortical signal-in-noise coding varies by noise type, signal-to-noise ratio, age, and hearing status.

    PubMed

    Maamor, Nashrah; Billings, Curtis J

    2017-01-01

    The purpose of this study was to determine the effects of noise type, signal-to-noise ratio (SNR), age, and hearing status on cortical auditory evoked potentials (CAEPs) to speech sounds. This helps to explain the hearing-in-noise difficulties often seen in the aging and hearing impaired population. Continuous, modulated, and babble noise types were presented at varying SNRs to 30 individuals divided into three groups according to age and hearing status. Significant main effects of noise type, SNR, and group were found. Interaction effects revealed that the SNR effect varies as a function of noise type and is most systematic for continuous noise. Effects of age and hearing loss were limited to CAEP latency and were differentially modulated by energetic and informational-like masking. It is clear that the spectrotemporal characteristics of signals and noises play an important role in determining the morphology of neural responses. Participant factors such as age and hearing status, also play an important role in determining the brain's response to complex auditory stimuli and contribute to the ability to listen in noise. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Airframe noise

    NASA Astrophysics Data System (ADS)

    Crighton, David G.

    1991-08-01

    Current understanding of airframe noise was reviewed as represented by experiment at model and full scale, by theoretical modeling, and by empirical correlation models. The principal component sources are associated with the trailing edges of wing and tail, deflected trailing edge flaps, flap side edges, leading edge flaps or slats, undercarriage gear elements, gear wheel wells, fuselage and wing boundary layers, and panel vibration, together with many minor protrusions like radio antennas and air conditioning intakes which may contribute significantly to perceived noise. There are also possibilities for interactions between the various mechanisms. With current engine technology, the principal airframe noise mechanisms dominate only at low frequencies, typically less than 1 kHz and often much lower, but further reduction of turbomachinery noise in particular may make airframe noise the principal element of approach noise at frequencies in the sensitive range.

  7. Calculated wind noise for an infrasonic wind noise enclosure.

    PubMed

    Abbott, JohnPaul; Raspet, Richard

    2015-07-01

    A simple calculation of the wind noise measured at the center of a large porous wind fence enclosure is developed. The calculation provides a good model of the measured wind noise, with a good agreement within ±5 dB, and is derived by combining the wind noise contributions from (a) the turbulence-turbulence and turbulence-shear interactions inside the enclosure, (b) the turbulence interactions on the surface of the enclosure, and (c) the turbulence-shear interactions outside of the enclosure. Each wind noise contribution is calculated from the appropriate measured turbulence spectra, velocity profiles, correlation lengths, and the mean velocity at the center, surface, and outside of the enclosure. The model is verified by comparisons of the measured wind noise to the calculated estimates of the differing noise contributions and their sum.

  8. Community noise

    NASA Astrophysics Data System (ADS)

    Bragdon, C. R.

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  9. Community noise

    NASA Technical Reports Server (NTRS)

    Bragdon, C. R.

    1982-01-01

    Airport and community land use planning as they relate to airport noise reduction are discussed. Legislation, community relations, and the physiological effect of airport noise are considered. Noise at the Logan, Los Angeles, and Minneapolis/St. Paul airports is discussed.

  10. Noise Estimation and Quality Assessment of Gaussian Noise Corrupted Images

    NASA Astrophysics Data System (ADS)

    Kamble, V. M.; Bhurchandi, K.

    2018-03-01

    Evaluating the exact quantity of noise present in an image and quality of an image in the absence of reference image is a challenging task. We propose a near perfect noise estimation method and a no reference image quality assessment method for images corrupted by Gaussian noise. The proposed methods obtain initial estimate of noise standard deviation present in an image using the median of wavelet transform coefficients and then obtains a near to exact estimate using curve fitting. The proposed noise estimation method provides the estimate of noise within average error of +/-4%. For quality assessment, this noise estimate is mapped to fit the Differential Mean Opinion Score (DMOS) using a nonlinear function. The proposed methods require minimum training and yields the noise estimate and image quality score. Images from Laboratory for image and Video Processing (LIVE) database and Computational Perception and Image Quality (CSIQ) database are used for validation of the proposed quality assessment method. Experimental results show that the performance of proposed quality assessment method is at par with the existing no reference image quality assessment metric for Gaussian noise corrupted images.

  11. Aviation noise effects

    NASA Astrophysics Data System (ADS)

    Newman, J. S.; Beattie, K. R.

    1985-03-01

    This report summarizes the effects of aviation noise in many areas, ranging from human annoyance to impact on real estate values. It also synthesizes the findings of literature on several topics. Included in the literature were many original studies carried out under FAA and other Federal funding over the past two decades. Efforts have been made to present the critical findings and conclusions of pertinent research, providing, when possible, a bottom line conclusion, criterion or perspective. Issues related to aviation noise are highlighted, and current policy is presented. Specific topic addressed include: annoyance; Hearing and hearing loss; noise metrics; human response to noise; speech interference; sleep interference; non-auditory health effects of noise; effects of noise on wild and domesticated animals; low frequency acoustical energy; impulsive noise; time of day weightings; noise contours; land use compatibility; and real estate values. This document is designed for a variety of users, from the individual completely unfamiliar with aviation noise to experts in the field.

  12. Hearing through the noise: Biologically inspired noise reduction

    NASA Astrophysics Data System (ADS)

    Lee, Tyler Paul

    Vocal communication in the natural world demands that a listener perform a remarkably complicated task in real-time. Vocalizations mix with all other sounds in the environment as they travel to the listener, arriving as a jumbled low-dimensional signal. A listener must then use this signal to extract the structure corresponding to individual sound sources. How this computation is implemented in the brain remains poorly understood, yet an accurate description of such mechanisms would impact a variety of medical and technological applications of sound processing. In this thesis, I describe initial work on how neurons in the secondary auditory cortex of the Zebra Finch extract song from naturalistic background noise. I then build on our understanding of the function of these neurons by creating an algorithm that extracts speech from natural background noise using spectrotemporal modulations. The algorithm, implemented as an artificial neural network, can be flexibly applied to any class of signal or noise and performs better than an optimal frequency-based noise reduction algorithm for a variety of background noises and signal-to-noise ratios. One potential drawback to using spectrotemporal modulations for noise reduction, though, is that analyzing the modulations present in an ongoing sound requires a latency set by the slowest temporal modulation computed. The algorithm avoids this problem by reducing noise predictively, taking advantage of the large amount of temporal structure present in natural sounds. This predictive denoising has ties to recent work suggesting that the auditory system uses attention to focus on predicted regions of spectrotemporal space when performing auditory scene analysis.

  13. Noise Protection

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Environmental Health Systems puts forth an increasing effort in the U.S. to develop ways of controlling noise, particularly in industrial environments due to Federal and State laws, labor union insistence and new findings relative to noise pollution impact on human health. NASA's Apollo guidance control system aided in the development of a noise protection product, SMART. The basis of all SMART products is SMART compound a liquid plastic mixture with exceptional energy/sound absorbing qualities. The basic compound was later refined for noise protection use.

  14. Adaptive EMG noise reduction in ECG signals using noise level approximation

    NASA Astrophysics Data System (ADS)

    Marouf, Mohamed; Saranovac, Lazar

    2017-12-01

    In this paper the usage of noise level approximation for adaptive Electromyogram (EMG) noise reduction in the Electrocardiogram (ECG) signals is introduced. To achieve the adequate adaptiveness, a translation-invariant noise level approximation is employed. The approximation is done in the form of a guiding signal extracted as an estimation of the signal quality vs. EMG noise. The noise reduction framework is based on a bank of low pass filters. So, the adaptive noise reduction is achieved by selecting the appropriate filter with respect to the guiding signal aiming to obtain the best trade-off between the signal distortion caused by filtering and the signal readability. For the evaluation purposes; both real EMG and artificial noises are used. The tested ECG signals are from the MIT-BIH Arrhythmia Database Directory, while both real and artificial records of EMG noise are added and used in the evaluation process. Firstly, comparison with state of the art methods is conducted to verify the performance of the proposed approach in terms of noise cancellation while preserving the QRS complex waves. Additionally, the signal to noise ratio improvement after the adaptive noise reduction is computed and presented for the proposed method. Finally, the impact of adaptive noise reduction method on QRS complexes detection was studied. The tested signals are delineated using a state of the art method, and the QRS detection improvement for different SNR is presented.

  15. Noise pollution resources compendium

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Abstracts of reports concerning noise pollution are presented. The abstracts are grouped in the following areas of activity: (1) sources of noise, (2) noise detection and measurement, (3) noise abatement and control, (4) physical effects of noise and (5) social effects of noise.

  16. Noise from turbomachinery.

    NASA Technical Reports Server (NTRS)

    Feiler, C. E.; Conrad, E. W.

    1973-01-01

    This paper reviews turbomachinery noise from turbofan engines as typified by fan noise. The mechanisms and theories of fan noise are reviewed and concepts for its reduction, including acoustic suppresion are discussed. Correlations of the overall noise data from several full-scale fans tested at NASA-Lewis Research Center are presented as indicative of the current state-of-the-art. Estimates are presented to show economics versus reduced noise for two quieted experimental engines, one with subsonic and one with supersonic fan tip speed. Finally, some concepts that may have the potential to reduce fan noise are indicated.

  17. Linking Traffic Noise, Noise Annoyance and Life Satisfaction: A Case Study

    PubMed Central

    Urban, Jan; Máca, Vojtěch

    2013-01-01

    The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction. PMID:23652784

  18. Linking traffic noise, noise annoyance and life satisfaction: a case study.

    PubMed

    Urban, Jan; Máca, Vojtěch

    2013-05-07

    The primary purpose of this study was to explore the link between rail and road traffic noise and overall life satisfaction. While the negative relationship between residential satisfaction and traffic noise is relatively well-established, much less is known about the effect of traffic noise on overall life satisfaction. Based on results of previous studies, we propose a model that links objective noise levels, noise sensitivity, noise annoyance, residential satisfaction and life satisfaction. Since it is not clear whether a bottom-up or top-down relationship between residential satisfaction and life satisfaction holds, we specify models that incorporate both of these theoretical propositions. Empirical models are tested using structural equation modeling and data from a survey among residents of areas with high levels of road traffic noise (n1 = 354) and rail traffic noise (n2 = 228). We find that traffic noise has a negative effect on residential satisfaction, but no significant direct or indirect effects on overall life satisfaction. Noise annoyance due to road and rail traffic noise has strong negative effect on residential satisfaction rather than on overall life satisfaction. These results are very similar for the road and railway traffic contexts and regardless of whether the model assumes the top-down or bottom-up direction of the causation between life satisfaction and residential satisfaction.

  19. Fan Noise Prediction with Applications to Aircraft System Noise Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Casey L.

    2009-01-01

    This paper describes an assessment of current fan noise prediction tools by comparing measured and predicted sideline acoustic levels from a benchmark fan noise wind tunnel test. Specifically, an empirical method and newly developed coupled computational approach are utilized to predict aft fan noise for a benchmark test configuration. Comparisons with sideline noise measurements are performed to assess the relative merits of the two approaches. The study identifies issues entailed in coupling the source and propagation codes, as well as provides insight into the capabilities of the tools in predicting the fan noise source and subsequent propagation and radiation. In contrast to the empirical method, the new coupled computational approach provides the ability to investigate acoustic near-field effects. The potential benefits/costs of these new methods are also compared with the existing capabilities in a current aircraft noise system prediction tool. The knowledge gained in this work provides a basis for improved fan source specification in overall aircraft system noise studies.

  20. Background Noise Reduction Using Adaptive Noise Cancellation Determined by the Cross-Correlation

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Brooks, Thomas F.; Fuller, Christopher R.

    2012-01-01

    Background noise due to flow in wind tunnels contaminates desired data by decreasing the Signal-to-Noise Ratio. The use of Adaptive Noise Cancellation to remove background noise at measurement microphones is compromised when the reference sensor measures both background and desired noise. The technique proposed modifies the classical processing configuration based on the cross-correlation between the reference and primary microphone. Background noise attenuation is achieved using a cross-correlation sample width that encompasses only the background noise and a matched delay for the adaptive processing. A present limitation of the method is that a minimum time delay between the background noise and desired signal must exist in order for the correlated parts of the desired signal to be separated from the background noise in the crosscorrelation. A simulation yields primary signal recovery which can be predicted from the coherence of the background noise between the channels. Results are compared with two existing methods.

  1. Classical noise, quantum noise and secure communication

    NASA Astrophysics Data System (ADS)

    Tannous, C.; Langlois, J.

    2016-01-01

    Secure communication based on message encryption might be performed by combining the message with controlled noise (called pseudo-noise) as performed in spread-spectrum communication used presently in Wi-Fi and smartphone telecommunication systems. Quantum communication based on entanglement is another route for securing communications as demonstrated by several important experiments described in this work. The central role played by the photon in unifying the description of classical and quantum noise as major ingredients of secure communication systems is highlighted and described on the basis of the classical and quantum fluctuation dissipation theorems.

  2. Raman-noise-induced noise-figure limit for chi (3) parametric amplifiers

    NASA Astrophysics Data System (ADS)

    Voss, Paul L.; Kumar, Prem

    2004-03-01

    The nonzero response time of the Kerr [chi (3)] nonlinearity determines the quantum-limited noise figure of c3 parametric amplifiers. This nonzero response time of the nonlinearity requires coupling of the parametric amplification process to a molecular-vibration phonon bath, causing the addition of excess noise through Raman gain or loss at temperatures above 0 K. The effect of this excess noise on the noise figure can be surprisingly significant. We derive analytical expressions for this quantum-limited noise figure for phase-insensitive operation of a chi (3) amplifier and show good agreement with published noise-figure measurements.

  3. Aircraft Noise Prediction Program (ANOPP) Fan Noise Prediction for Small Engines

    NASA Technical Reports Server (NTRS)

    Hough, Joe W.; Weir, Donald S.

    1996-01-01

    The Fan Noise Module of ANOPP is used to predict the broadband noise and pure tones for axial flow compressors or fans. The module, based on the method developed by M. F. Heidmann, uses empirical functions to predict fan noise spectra as a function of frequency and polar directivity. Previous studies have determined the need to modify the module to better correlate measurements of fan noise from engines in the 3000- to 6000-pound thrust class. Additional measurements made by AlliedSignal have confirmed the need to revise the ANOPP fan noise method for smaller engines. This report describes the revisions to the fan noise method which have been verified with measured data from three separate AlliedSignal fan engines. Comparisons of the revised prediction show a significant improvement in overall and spectral noise predictions.

  4. Active noise control technique for diesel train locomotor exhaust noise abatement

    NASA Astrophysics Data System (ADS)

    Cotana, Franco; Rossi, Federico

    2002-11-01

    An original prototype for train locomotor exhaust gas pipe noise reduction (electronic muffler) is proposed: the system is based on an active noise control technique. An acoustical measurement campaign has shown that locomotor exhaust noise is characterized by very low frequency components (less than 80 Hz) and very high acoustic power (up to 110 dB). A peculiar electronic muffler characterized by high acoustical efficiency at very low frequencies has been designed and realized at Perugia University Acoustic Laboratory; it has been installed on an Italian D.245 train locomotor, equipped with a 500-kW diesel engine. The electronic muffler has been added to the traditional passive muffler. Very low transmission losses are introduced by the electronic muffler because of its particular shape; thus, engine efficiency does not further decrease. Canceling noise is generated by means of DSP-based numerical algorithm. Disturbing noise and canceling noise destructively interfere at the exhaust duct outlet section; outgoing noise is thus reduced. The control system reduces exhaust noise both in the steady and unsteady engine regime. Measurement results have shown that electronic muffler introduces up to 15 dB noise abatement in the low-frequency components.

  5. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  6. Jet engine noise source and noise footprint computer programs

    NASA Technical Reports Server (NTRS)

    Dunn, D. G.; Peart, N. A.; Miller, D. L.; Crowley, K. C.

    1972-01-01

    Calculation procedures are presented for predicting maximum passby noise levels and contours (footprints) of conventional jet aircraft with or without noise suppression devices. The procedures have been computerized and a user's guide is presented for the computer programs to be used in predicting the noise characteristics during aircraft takeoffs, fly-over, and/or landing operations.

  7. Core Noise - Increasing Importance

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2011-01-01

    This presentation is a technical summary of and outlook for NASA-internal and NASA-sponsored external research on core (combustor and turbine) noise funded by the Fundamental Aeronautics Program Subsonic Fixed Wing (SFW) Project. Sections of the presentation cover: the SFW system-level noise metrics for the 2015, 2020, and 2025 timeframes; turbofan design trends and their aeroacoustic implications; the emerging importance of core noise and its relevance to the SFW Reduced-Perceived-Noise Technical Challenge; and the current research activities in the core-noise area, with additional details given about the development of a high-fidelity combustor-noise prediction capability as well as activities supporting the development of improved reduced-order, physics-based models for combustor-noise prediction. The need for benchmark data for validation of high-fidelity and modeling work and the value of a potential future diagnostic facility for testing of core-noise-reduction concepts are indicated. The NASA Fundamental Aeronautics Program has the principal objective of overcoming today's national challenges in air transportation. The SFW Reduced-Perceived-Noise Technical Challenge aims to develop concepts and technologies to dramatically reduce the perceived aircraft noise outside of airport boundaries. This reduction of aircraft noise is critical to enabling the anticipated large increase in future air traffic. Noise generated in the jet engine core, by sources such as the compressor, combustor, and turbine, can be a significant contribution to the overall noise signature at low-power conditions, typical of approach flight. At high engine power during takeoff, jet and fan noise have traditionally dominated over core noise. However, current design trends and expected technological advances in engine-cycle design as well as noise-reduction methods are likely to reduce non-core noise even at engine-power points higher than approach. In addition, future low-emission combustor

  8. Jet noise suppression

    NASA Astrophysics Data System (ADS)

    Gliebe, P. R.; Brausch, J. F.; Majjigi, R. K.; Lee, R.

    1991-08-01

    The objectives of this chapter are to review and summarize the jet noise suppression technology, to provide a physical and theoretical model to explain the measured jet noise suppression characteristics of different concepts, and to provide a set of guidelines for evolving jet noise suppression designs. The underlying principle for all jet noise suppression devices is to enhance rapid mixing (i.e., diffusion) of the jet plume by geometric and aerothermodynamic means. In the case of supersonic jets, the shock-cell broadband noise reduction is effectively accomplished by the elimination or mitigation of the shock-cell structure. So far, the diffusion concepts have predominantly concentrated on jet momentum and energy (kinetic and thermal) diffusion, in that order, and have yielded better noise reduction than the simple conical nozzles. A critical technology issue that needs resolution is the effect of flight on the noise suppression potential of mechanical suppressor nozzles. A more thorough investigation of this mechanism is necessary for the successful development and design of an acceptable noise suppression device for future high-speed civil transports.

  9. Simulation of aerodynamic noise and vibration noise in hard disk drives

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Shen, Sheng-Nan; Li, Hui; Zhang, Guo-Qing; Cui, Fu-Hao

    2018-05-01

    Internal flow field characteristics of HDDs are usually influenced by the arm swing during seek operations. This, in turn, can affect aerodynamic noise and airflow-induced noise. In this paper, the dynamic mesh method is used to calculate the flow-induced vibration (FIV) by transient structure analysis and the boundary element method (BEM) is utilized to predict the vibration noise. Two operational states are considered: the arm is fixed and swinging over the disk. Both aerodynamic noise and vibration noise inside drives increase rapidly with increase in disk rotation and arm swing velocities. The largest aerodynamic noise source is always located near the arm and swung with the arm.

  10. Effects of active noise reduction on noise levels at the tympanic membrane.

    PubMed

    Wagstaff, A S; Woxen, O J; Andersen, H T

    1998-06-01

    Active noise reduction (ANR) is an electronic system that works by continuous sampling of noise inside the earshell of the headset with a small microphone. This signal is inverted in phase through the headset speaker, thus reducing noise levels by destructive interference of the acoustic field. The system provides good low-frequency noise attenuation, but aircrew differ in their subjective opinion of ANR. The present study is an attempt to provide an objective assessment of the effect of ANR on noise levels at the tympanic membrane. There were 7 subjects with normal ears who were placed in an environment of recorded noise from a BO-105 helicopter. A microphone probe was inserted to within 5 mm of the tympanic membrane of each subject's right ear. Noise levels in the ear were measured without a headset and with two different ANR headsets. Measurements were performed with and without the ANR system on, and with and without white noise through the headset communication system. The white noise was used to simulate aircraft communication noise. The two headsets tested had differing levels of passive and active attenuation. The ANR system produced a substantial low-frequency attenuation. However, noise levels in the mid frequencies increased somewhat when the ANR system was switched on. This effect was augmented when white noise in the communications system was introduced, particularly for one of the two headsets. Low-frequency noise attenuation of ANR systems is substantial, but an increased mid- and high-frequency noise level caused by the ANR may affect both communication and overall noise levels. Our data provide advice on what factors should be taken into account when ANR is evaluated for use in an aviation operational environment.

  11. Combat aircraft noise

    NASA Astrophysics Data System (ADS)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  12. Relationship between Aircraft Noise Contour Area and Noise Levels at Certification Points

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A.

    2003-01-01

    The use of sound exposure level contour area reduction has been proposed as an alternative or supplemental metric of progress and success for the NASA Quiet Aircraft Technology program, which currently uses the average of predicted noise reductions at three community locations. As the program has expanded to include reductions in airframe noise as well as reduction due to optimization of operating procedures for lower noise, there is concern that the three-point methodology may not represent a fair measure of benefit to airport communities. This paper addresses several topics related to this proposal: (1) an analytical basis for a relationship between certification noise levels and noise contour areas for departure operations is developed, (2) the relationship between predicted noise contour area and the noise levels measured or predicted at the certification measurement points is examined for a wide range of commercial and business aircraft, and (3) reductions in contour area for low-noise approach scenarios are predicted and equivalent reductions in source noise are determined.

  13. A community survey of helicopter noise annoyance conducted under controlled noise exposure conditions

    NASA Technical Reports Server (NTRS)

    Fields, J. M.; Powell, C. A.

    1985-01-01

    Reactions to low numbers of helicopter noise events (less than 50 per day) were studied in a community setting. Community residents were repeatedly interviewed about daily noise annoyance reactions on days when helicopter noise exposures were, without the residents' knowledge, controlled. The effects of maximum noise level and number of noise events on helicopter noise annoyance are consistent with the principles contained in LEQ-based noise indices. The effect of the duration of noise events is also consistent with LEQ-based indices. After removing the effect of differences in noise levels (LEQ) there is not an important difference between reactions to impulsive and nonimpulsive types of helicopters. EPNL, where corrected for number of overflights, and LEQ are approximately equally successful in representing the characteristics of noise which are related to human response. The new type of design provided estimates of the parameters in a noise reaction model which would not obtained with a similar degree of precision from conventional study designs.

  14. Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.

    PubMed

    Zaki, Farzana; Wang, Yahui; Su, Hao; Yuan, Xin; Liu, Xuan

    2017-05-01

    Optical coherence tomography (OCT) is based on coherence detection of interferometric signals and hence inevitably suffers from speckle noise. To remove speckle noise in OCT images, wavelet domain thresholding has demonstrated significant advantages in suppressing noise magnitude while preserving image sharpness. However, speckle noise in OCT images has different characteristics in different spatial scales, which has not been considered in previous applications of wavelet domain thresholding. In this study, we demonstrate a noise adaptive wavelet thresholding (NAWT) algorithm that exploits the difference of noise characteristics in different wavelet sub-bands. The algorithm is simple, fast, effective and is closely related to the physical origin of speckle noise in OCT image. Our results demonstrate that NAWT outperforms conventional wavelet thresholding.

  15. Noise Gating Solar Images

    NASA Astrophysics Data System (ADS)

    DeForest, Craig; Seaton, Daniel B.; Darnell, John A.

    2017-08-01

    I present and demonstrate a new, general purpose post-processing technique, "3D noise gating", that can reduce image noise by an order of magnitude or more without effective loss of spatial or temporal resolution in typical solar applications.Nearly all scientific images are, ultimately, limited by noise. Noise can be direct Poisson "shot noise" from photon counting effects, or introduced by other means such as detector read noise. Noise is typically represented as a random variable (perhaps with location- or image-dependent characteristics) that is sampled once per pixel or once per resolution element of an image sequence. Noise limits many aspects of image analysis, including photometry, spatiotemporal resolution, feature identification, morphology extraction, and background modeling and separation.Identifying and separating noise from image signal is difficult. The common practice of blurring in space and/or time works because most image "signal" is concentrated in the low Fourier components of an image, while noise is evenly distributed. Blurring in space and/or time attenuates the high spatial and temporal frequencies, reducing noise at the expense of also attenuating image detail. Noise-gating exploits the same property -- "coherence" -- that we use to identify features in images, to separate image features from noise.Processing image sequences through 3-D noise gating results in spectacular (more than 10x) improvements in signal-to-noise ratio, while not blurring bright, resolved features in either space or time. This improves most types of image analysis, including feature identification, time sequence extraction, absolute and relative photometry (including differential emission measure analysis), feature tracking, computer vision, correlation tracking, background modeling, cross-scale analysis, visual display/presentation, and image compression.I will introduce noise gating, describe the method, and show examples from several instruments (including SDO

  16. Long-term Self-noise Estimates of Seismic Sensors From a High-noise Vault

    NASA Astrophysics Data System (ADS)

    Hicks, S. P.; Goessen, S.; Hill, P.; Rietbrock, A.

    2017-12-01

    To understand the detection capabilities of seismic stations and for reducing biases in ambient noise imaging, it is vital to assess the contribution of instrument self-noise to overall site noise. Self-noise estimates typically come from vault installations in continental interiors with very low ambient noise levels. However, this approach restricts the independent assessment of self-noise by individual end-users to assess any variations in their own instrument pools from nominal specifications given by manufacturers and from estimations given in comparative test papers. However, the calculation method should be adapted to variable installation conditions. One problem is that microseism noise can contaminate self-noise results caused by instrument misalignment errors or manufacturing limits; this effect becomes stronger where ambient noise is higher. Moreover, due to expected stochastic and time-varying sensor noise, estimates based on hand-picking small numbers of data segments may not accurately reflect true self-noise. We report on results from a self-noise test experiment of Güralp seismic instruments (3T, 3ESPC broadband seismometers, Fortis strong motion accelerometer) that were installed in the sub-surface vault of the Eskdalemuir Seismic Observatory in Scotland, UK over the period October 2016-August 2017. Due to vault's proximity to the ocean, secondary microseism noise is strong, so we efficiently compute the angle of misalignment that maximises waveform coherence with a reference sensor. Self-noise was calculated using the 3-sensor correlation technique and we compute probability density functions of self-noise to assess its spread over time. We find that not correcting for misalignments as low as 0.1° can cause self-noise to be artificially higher by up to 15 dB at frequencies of 0.1-1 Hz. Our method thus efficiently removes the effect of microseism contamination on self-noise; for example, it restores the minimum noise floor for a 360s - 50 Hz 3T to

  17. Critical Low-Noise Technologies Being Developed for Engine Noise Reduction Systems Subproject

    NASA Technical Reports Server (NTRS)

    Grady, Joseph E.; Civinskas, Kestutis C.

    2004-01-01

    NASA's previous Advanced Subsonic Technology (AST) Noise Reduction Program delivered the initial technologies for meeting a 10-year goal of a 10-dB reduction in total aircraft system noise. Technology Readiness Levels achieved for the engine-noise-reduction technologies ranged from 4 (rig scale) to 6 (engine demonstration). The current Quiet Aircraft Technology (QAT) project is building on those AST accomplishments to achieve the additional noise reduction needed to meet the Aerospace Technology Enterprise's 10-year goal, again validated through a combination of laboratory rig and engine demonstration tests. In order to meet the Aerospace Technology Enterprise goal for future aircraft of a 50- reduction in the perceived noise level, reductions of 4 dB are needed in both fan and jet noise. The primary objectives of the Engine Noise Reduction Systems (ENRS) subproject are, therefore, to develop technologies to reduce both fan and jet noise by 4 dB, to demonstrate these technologies in engine tests, and to develop and experimentally validate Computational Aero Acoustics (CAA) computer codes that will improve our ability to predict engine noise.

  18. When noise is beneficial for sensory encoding: Noise adaptation can improve face processing.

    PubMed

    Menzel, Claudia; Hayn-Leichsenring, Gregor U; Redies, Christoph; Németh, Kornél; Kovács, Gyula

    2017-10-01

    The presence of noise usually impairs the processing of a stimulus. Here, we studied the effects of noise on face processing and show, for the first time, that adaptation to noise patterns has beneficial effects on face perception. We used noiseless faces that were either surrounded by random noise or presented on a uniform background as stimuli. In addition, the faces were either preceded by noise adaptors or not. Moreover, we varied the statistics of the noise so that its spectral slope either matched that of the faces or it was steeper or shallower. Results of parallel ERP recordings showed that the background noise reduces the amplitude of the face-evoked N170, indicating less intensive face processing. Adaptation to a noise pattern, however, led to reduced P1 and enhanced N170 amplitudes as well as to a better behavioral performance in two of the three noise conditions. This effect was also augmented by the presence of background noise around the target stimuli. Additionally, the spectral slope of the noise pattern affected the size of the P1, N170 and P2 amplitudes. We reason that the observed effects are due to the selective adaptation of noise-sensitive neurons present in the face-processing cortical areas, which may enhance the signal-to-noise-ratio. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Hot topics in noise

    NASA Astrophysics Data System (ADS)

    Stinson, Michael R.

    2003-10-01

    Our world continues to be a noisy place and the challenge to ``increase and diffuse knowledge of noise propagation, passive and active noise control, and the effects of noise'' remains. In the last several years, noise in the classroom has emerged as one of the hotter topics: Considerable progress has been made in the underpinning research, the formulation of recommendations, and the process of educating society on the social and personal impact of inadequate acoustical conditions in classrooms. The establishment of the ANSI S12.60-2002 standard for classroom acoustics was a milestone event. Noise in cities and the understanding of our soundscapes are subjects of ongoing significance. The development of standards and regulations is a continuing process, with urban community noise regulations, aviation noise, and the preservation of natural quiet in national parks being of current concern. New methods to reduce noise are under development and include passive and active methods of noise control, techniques for modeling the performance of noise barriers, and approaches for designing product sound quality.

  20. Effects of road traffic background noise on judgments of individual airplane noises. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Powell, C. A.

    1979-01-01

    Two laboratory experiments were conducted to investigate the effects of road-traffic background noise on judgments of individual airplane flyover noises. In the first experiment, 27 subjects judged a set of 16 airplane flyover noises in the presence of traffic-noise sessions of 30-min duration consisting of the combinations of 3 traffic-noise types and 3 noise levels. In the second experiment, 24 subjects judged the same airplane flyover noises in the presence of traffic-noise sessions of 10-min duration consisting of the combinations of 2 traffic-noise types and 4 noise levels. In both experiments the airplane noises were judged less annoying in the presence of high traffic-noise levels than in the presence of low traffic-noise levels.

  1. Interior Noise

    NASA Technical Reports Server (NTRS)

    Mixson, John S.; Wilby, John F.

    1991-01-01

    The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.

  2. Low noise constant current source for bias dependent noise measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Talukdar, D.; Bose, Suvendu; Bardhan, K. K.

    2011-01-15

    A low noise constant current source used for measuring the 1/f noise in disordered systems in ohmic as well as nonohmic regime is described. The source can supply low noise constant current starting from as low as 1 {mu}A to a few tens of milliampere with a high voltage compliance limit of around 20 V. The constant current source has several stages, which can work in a standalone manner or together to supply the desired value of load current. The noise contributed by the current source is very low in the entire current range. The fabrication of a low noisemore » voltage preamplifier modified for bias dependent noise measurements and based on the existing design available in the MAT04 data sheet is also described.« less

  3. Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Webster, D. A.; Blackstock, D. T.

    1978-01-01

    The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.

  4. Fan Noise Source Diagnostic Test Computation of Rotor Wake Turbulence Noise

    NASA Technical Reports Server (NTRS)

    Nallasamy, M.; Envia, E.; Thorp, S. A.; Shabbir, A.

    2002-01-01

    An important source mechanism of fan broadband noise is the interaction of rotor wake turbulence with the fan outlet guide vanes. A broadband noise model that utilizes computed rotor flow turbulence from a RANS code is used to predict fan broadband noise spectra. The noise model is employed to examine the broadband noise characteristics of the 22-inch Source Diagnostic Test fan rig for which broadband noise data were obtained in wind tunnel tests at the NASA Glenn Research Center. A 9-case matrix of three outlet guide vane configurations at three representative fan tip speeds are considered. For all cases inlet and exhaust acoustic power spectra are computed and compared with the measured spectra where possible. In general, the acoustic power levels and shape of the predicted spectra are in good agreement with the measured data. The predicted spectra show the experimentally observed trends with fan tip speed, vane count, and vane sweep. The results also demonstrate the validity of using CFD-based turbulence information for fan broadband noise calculations.

  5. Cosmological flux noise and measured noise power spectra in SQUIDs

    PubMed Central

    Beck, Christian

    2016-01-01

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe. PMID:27320418

  6. Cosmological flux noise and measured noise power spectra in SQUIDs.

    PubMed

    Beck, Christian

    2016-06-20

    The understanding of the origin of 1/f magnetic flux noise commonly observed in superconducting devices such as SQUIDs and qubits is still a major unsolved puzzle. Here we discuss the possibility that a significant part of the observed low-frequency flux noise measured in these devices is ultimately seeded by cosmological fluctuations. We consider a theory where a primordial flux noise field left over in unchanged form from an early inflationary or quantum gravity epoch of the universe intrinsically influences the phase difference in SQUIDs and qubits. The perturbation seeds generated by this field can explain in a quantitatively correct way the form and amplitude of measured low-frequency flux noise spectra in SQUID devices if one takes as a source of fluctuations the primordial power spectrum of curvature fluctuations as measured by the Planck collaboration. Our theoretical predictions are in excellent agreement with recent low-frequency flux noise measurements of various experimental groups. Magnetic flux noise, so far mainly considered as a nuisance for electronic devices, may thus contain valuable information about fluctuation spectra in the very early universe.

  7. Drone noise

    NASA Astrophysics Data System (ADS)

    Tinney, Charles; Sirohi, Jayant; University of Texas at Austin Team

    2017-11-01

    A basic understanding of the noise produced by single and multirotor drones operating at static thrust conditions is presented. This work acts as an extension to previous efforts conducted at The University of Texas at Austin (Tinney et al. 2017, AHS Forum 73). Propeller diameters ranging from 8 inch to 12 inch are examined for configurations comprising an isolated rotor, a quadcopter configuration and a hexacopter configuration, and with a constant drone pitch of 2.25. An azimuthal array of half-inch microphones, placed between 2 and 3 hub-center diameters from the drone center, are used to assess the acoustic near-field. Thrust levels, acquired using a six degree-of-freedom load cell, are then used to correlate acoustic noise levels to aerodynamic performance for each drone configuration. The findings reveal a nearly logarithmic increase in noise with increasing thrust. However, for the same thrust condition, considerable noise reduction is achieved by increasing the number of propeller blades thereby reducing the blade passage frequency and both the thickness and loading noise sources that accompany it.

  8. Overview of en route noise prediction using a integrated noise model

    DOT National Transportation Integrated Search

    2010-04-20

    En route aircraft noise is often ignored in aircraft noise modeling because large amounts of noise attenuation due to long propagation distances between the aircraft and the receivers on the ground, reduced power in cruise flight compared to takeoff ...

  9. Fractional Ornstein-Uhlenbeck noise

    NASA Astrophysics Data System (ADS)

    Fa, Kwok Sau

    2018-06-01

    Fractional Ornstein-Uhlenbeck noise is considered and investigated. The fractional Ornstein-Uhlenbeck noise may be linked with a supercapacitor driven by the white noise, and its correlation function for the stationary state shows monotonic and oscillatory decays. In the case of the oscillatory behavior the correlation function presents behaviors similar to those of the harmonic noise (harmonic oscillator driven by the white noise). For application, the Langevin equation with the harmonic potential driven by the fractional Ornstein-Uhlenbeck noise is considered; the first two moments and mean energy are investigated.

  10. The Traffic Noise Index: A Method of Controlling Noise Nuisance.

    ERIC Educational Resources Information Center

    Langdon, F. J.; Scholes, W. E.

    This building research survey is an analysis of the social nuisance caused by urban motor ways and their noise. The Traffic Noise Index is used to indicate traffic noises and their effects on architectural designs and planning, while suggesting the need for more and better window insulation and acoustical barriers. Overall concern is for--(1)…

  11. Exposure to Road, Railway, and Aircraft Noise and Arterial Stiffness in the SAPALDIA Study: Annual Average Noise Levels and Temporal Noise Characteristics

    PubMed Central

    Eze, Ikenna C.; Schaffner, Emmanuel; Vienneau, Danielle; Héritier, Harris; Endes, Simon; Rudzik, Franziska; Thiesse, Laurie; Pieren, Reto; Schindler, Christian; Schmidt-Trucksäss, Arno; Brink, Mark; Cajochen, Christian; Marc Wunderli, Jean; Röösli, Martin; Probst-Hensch, Nicole

    2017-01-01

    Background: The impact of different transportation noise sources and noise environments on arterial stiffness remains unknown. Objectives: We evaluated the association between residential outdoor exposure to annual average road, railway, and aircraft noise levels, total noise intermittency (IR), and total number of noise events (NE) and brachial-ankle pulse wave velocity (baPWV) following a cross-sectional design. Methods: We measured baPWV (meters/second) in 2,775 participants (49–81 y old) at the second follow-up (2010–2011) of the Swiss Cohort Study on Air Pollution and Lung and Heart Diseases in Adults (SAPALDIA). We assigned annual average road, railway, and aircraft noise levels (Ldensource), total day- and nighttime NEtime and IRtime (percent fluctuation=0%, none or constant noise; percent fluctuation=100%, high fluctuation) at the most exposed façade using 2011 Swiss noise models. We applied multivariable linear mixed regression models to analyze associations. Results: Medians [interquartile ranges (IQRs)] were baPWV=13.4 (3.1) m/s; Ldenair (57.6% exposed)=32.8 (8.0) dB; Ldenrail (44.6% exposed)=30.0 (8.1) dB; Ldenroad (99.7% exposed): 54.2 (10.6) dB; NEnight=123 (179); NEday=433 (870); IRnight=73% (27); and IRday=63.8% (40.3). We observed a 0.87% (95% CI: 0.31, 1.43%) increase in baPWV per IQR of Ldenrail, which was greater with IRnight>80% or with daytime sleepiness. We observed a nonsignificant positive association between Ldenroad and baPWV in urban areas and a negative tendency in rural areas. NEnight, but not NEday, was associated with baPWV. Associations were independent of the other noise sources and air pollution. Conclusions: Long-term exposure to railway noise, particularly in an intermittent nighttime noise environment, and to nighttime noise events, mainly related to road noise, may affect arterial stiffness, a major determinant of cardiovascular disease. Ascertaining noise exposure characteristics beyond average noise levels may

  12. Investigation of Diesel’s Residual Noise on Predictive Vehicles Noise Cancelling using LMS Adaptive Algorithm

    NASA Astrophysics Data System (ADS)

    Arttini Dwi Prasetyowati, Sri; Susanto, Adhi; Widihastuti, Ida

    2017-04-01

    Every noise problems require different solution. In this research, the noise that must be cancelled comes from roadway. Least Mean Square (LMS) adaptive is one of the algorithm that can be used to cancel that noise. Residual noise always appears and could not be erased completely. This research aims to know the characteristic of residual noise from vehicle’s noise and analysis so that it is no longer appearing as a problem. LMS algorithm was used to predict the vehicle’s noise and minimize the error. The distribution of the residual noise could be observed to determine the specificity of the residual noise. The statistic of the residual noise close to normal distribution with = 0,0435, = 1,13 and the autocorrelation of the residual noise forming impulse. As a conclusion the residual noise is insignificant.

  13. Noise Exposure Questionnaire (NEQ): A Tool for Quantifying Annual Noise Exposure

    PubMed Central

    Johnson, Tiffany A.; Cooper, Susan; Stamper, Greta C.; Chertoff, Mark

    2017-01-01

    Background Exposure to both occupational and non-occupational noise is recognized as a risk factor for noise-induced hearing loss (NIHL). Although audiologists routinely inquire regarding history of noise exposure, there are limited tools available for quantifying this history or for identifying those individuals who are at highest risk for NIHL. Identifying those at highest risk would allow hearing conservation activities to be focused on those individuals. Purpose To develop a detailed, task-based questionnaire for quantifying an individual’s annual noise exposure arising from both occupational and non-occupational sources (aim 1) and to develop a short screening tool that could be used to identify individuals at high risk of NIHL (aim 2). Research Design Review of relevant literature for questionnaire development followed by a cross-sectional descriptive and correlational investigation of the newly developed questionnaire and screening tool. Study Sample One hundred fourteen college freshmen completed the detailed questionnaire for estimating annual noise exposure (aim 1) and answered the potential screening questions (aim 2). An additional 59 adults participated in data collection where the accuracy of the screening tool was evaluated (aim 2). Data Collection and Analysis In study aim 1, all subjects completed the detailed questionnaire and the potential screening questions. Descriptive statistics were used to quantify subject participation in various noisy activities and their associated annual noise exposure estimates. In study aim 2, linear regression techniques were used to identify screening questions that could be used to predict a subject’s estimated annual noise exposure. Clinical decision theory was then used to assess the accuracy with which the screening tool predicted high and low risk of NIHL in a new group of subjects. Results Responses on the detailed questionnaire indicated that our sample of college freshmen reported high rates of

  14. Comparison of predicted engine core noise with current and proposed aircraft noise certification requirements

    NASA Technical Reports Server (NTRS)

    Vonglahn, U. H.; Groesbeck, D. E.

    1981-01-01

    Predicted engine core noise levels are compared with measured total aircraft noise levels and with current and proposed federal noise certification requirements. Comparisons are made at the FAR-36 measuring stations and include consideration of both full- and cutback-power operation at takeoff. In general, core noise provides a barrier to achieving proposed EPA stage 5 noise levels for all types of aircraft. More specifically, core noise levels will limit further reductions in aircraft noise levels for current widebody commercial aircraft.

  15. High internal noise and poor external noise filtering characterize perception in autism spectrum disorder.

    PubMed

    Park, Woon Ju; Schauder, Kimberly B; Zhang, Ruyuan; Bennetto, Loisa; Tadin, Duje

    2017-12-14

    An emerging hypothesis postulates that internal noise is a key factor influencing perceptual abilities in autism spectrum disorder (ASD). Given fundamental and inescapable effects of noise on nearly all aspects of neural processing, this could be a critical abnormality with broad implications for perception, behavior, and cognition. However, this proposal has been challenged by both theoretical and empirical studies. A crucial question is whether and how internal noise limits perception in ASD, independently from other sources of perceptual inefficiency, such as the ability to filter out external noise. Here, we separately estimated internal noise and external noise filtering in ASD. In children and adolescents with and without ASD, we computationally modeled individuals' visual orientation discrimination in the presence of varying levels of external noise. The results revealed increased internal noise and worse external noise filtering in individuals with ASD. For both factors, we also observed high inter-individual variability in ASD, with only the internal noise estimates significantly correlating with severity of ASD symptoms. We provide evidence for reduced perceptual efficiency in ASD that is due to both increased internal noise and worse external noise filtering, while highlighting internal noise as a possible contributing factor to variability in ASD symptoms.

  16. Theory and Measurement of Signal-to-Noise Ratio in Continuous-Wave Noise Radar.

    PubMed

    Stec, Bronisław; Susek, Waldemar

    2018-05-06

    Determination of the signal power-to-noise power ratio on the input and output of reception systems is essential to the estimation of their quality and signal reception capability. This issue is especially important in the case when both signal and noise have the same characteristic as Gaussian white noise. This article considers the problem of how a signal-to-noise ratio is changed as a result of signal processing in the correlation receiver of a noise radar in order to determine the ability to detect weak features in the presence of strong clutter-type interference. These studies concern both theoretical analysis and practical measurements of a noise radar with a digital correlation receiver for 9.2 GHz bandwidth. Firstly, signals participating individually in the correlation process are defined and the terms signal and interference are ascribed to them. Further studies show that it is possible to distinguish a signal and a noise on the input and output of a correlation receiver, respectively, when all the considered noises are in the form of white noise. Considering the above, a measurement system is designed in which it is possible to represent the actual conditions of noise radar operation and power measurement of a useful noise signal and interference noise signals—in particular the power of an internal leakage signal between a transmitter and a receiver of the noise radar. The proposed measurement stands and the obtained results show that it is possible to optimize with the use of the equipment and not with the complex processing of a noise signal. The radar parameters depend on its prospective application, such as short- and medium-range radar, ground-penetrating radar, and through-the-wall detection radar.

  17. A study of rotor broadband noise mechanisms and helicopter tail rotor noise

    NASA Technical Reports Server (NTRS)

    Chou, Shau-Tak Rudy

    1990-01-01

    The rotor broadband noise mechanisms considered are the following: (1) lift fluctuation due to turbulence ingestion; (2) boundary layer/trailing edge interaction; (3) tip vortex formation; and (4) turbulent vortex shedding from blunt trailing edge. Predictions show good agreement with available experimental data. The study shows that inflow turbulence is the most important broadband noise source for typical helicopters' main rotors at low- and mid-frequencies. Due to the size difference, isolated helicopter tail rotor broadband noise is not important compared to the much louder main rotor broadband noise. However, the inflow turbulence noise from a tail rotor can be very significant because it is operating in a highly turbulent environment, ingesting wakes from upstream components of the helicopter. The study indicates that the main rotor turbulent wake is the most important source of tail rotor broadband noise. The harmonic noise due to ingestion of main rotor tip vortices is studied.

  18. Airframe-Jet Engine Integration Noise

    NASA Technical Reports Server (NTRS)

    Tam, Christopher; Antcliff, Richard R. (Technical Monitor)

    2003-01-01

    It has been found experimentally that the noise radiated by a jet mounted under the wing of an aircraft exceeds that of the same jet in a stand-alone environment. The increase in noise is referred to as jet engine airframe integration noise. The objectives of the present investigation are, (1) To obtain a better understanding of the physical mechanisms responsible for jet engine airframe integration noise or installation noise. (2) To develop a prediction model for jet engine airframe integration noise. It is known that jet mixing noise consists of two principal components. They are the noise from the large turbulence structures of the jet flow and the noise from the fine scale turbulence. In this investigation, only the effect of jet engine airframe interaction on the fine scale turbulence noise of a jet is studied. The fine scale turbulence noise is the dominant noise component in the sideline direction. Thus we limit out consideration primarily to the sideline.

  19. A Tool for Low Noise Procedures Design and Community Noise Impact Assessment: The Rotorcraft Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Page, Juliet A.

    2002-01-01

    To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in

  20. Noise properties in the ideal Kirchhoff-Law-Johnson-Noise secure communication system.

    PubMed

    Gingl, Zoltan; Mingesz, Robert

    2014-01-01

    In this paper we determine the noise properties needed for unconditional security for the ideal Kirchhoff-Law-Johnson-Noise (KLJN) secure key distribution system using simple statistical analysis. It has already been shown using physical laws that resistors and Johnson-like noise sources provide unconditional security. However real implementations use artificial noise generators, therefore it is a question if other kind of noise sources and resistor values could be used as well. We answer this question and in the same time we provide a theoretical basis to analyze real systems as well.

  1. Active noise control using noise source having adaptive resonant frequency tuning through stiffness variation

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor); Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by a plurality of force transmitting mechanisms which contact the noise radiating element. Each one of the force transmitting mechanisms includes an expandable element and a spring in contact with the noise radiating element so that excitation of the element varies the spring force applied to the noise radiating element. The elements are actuated by a controller which receives input of a signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the elements and causes the spring force applied to the noise radiating element to be varied. The force transmitting mechanisms can be arranged to either produce bending or linear stiffness variations in the noise radiating element.

  2. Noise sensitivity, rather than noise level, predicts the non-auditory effects of noise in community samples: a population-based survey.

    PubMed

    Park, Jangho; Chung, Seockhoon; Lee, Jiho; Sung, Joo Hyun; Cho, Seung Woo; Sim, Chang Sun

    2017-04-12

    Excessive noise affects human health and interferes with daily activities. Although environmental noise may not directly cause mental illness, it may accelerate and intensify the development of latent mental disorders. Noise sensitivity (NS) is considered a moderator of non-auditory noise effects. In the present study, we aimed to assess whether NS is associated with non-auditory effects. We recruited a community sample of 1836 residents residing in Ulsan and Seoul, South Korea. From July to November 2015, participants were interviewed regarding their demographic characteristics, socioeconomic status, medical history, and NS. The non-auditory effects of noise were assessed using the Center of Epidemiologic Studies Depression, Insomnia Severity index, State Trait Anxiety Inventory state subscale, and Stress Response Inventory-Modified Form. Individual noise levels were recorded from noise maps. A three-model multivariate logistic regression analysis was performed to identify factors that might affect psychiatric illnesses. Participants ranged in age from 19 to 91 years (mean: 47.0 ± 16.1 years), and 37.9% (n = 696) were male. Participants with high NS were more likely to have been diagnosed with diabetes and hyperlipidemia and to use psychiatric medication. The multivariable analysis indicated that even after adjusting for noise-related variables, sociodemographic factors, medical illness, and duration of residence, subjects in the high NS group were more than 2 times more likely to experience depression and insomnia and 1.9 times more likely to have anxiety, compared with those in the low NS group. Noise exposure level was not identified as an explanatory value. NS increases the susceptibility and hence moderates there actions of individuals to noise. NS, rather than noise itself, is associated with an elevated susceptibility to non-auditory effects.

  3. Investigations of internal noise levels for different target sizes, contrasts, and noise structures

    NASA Astrophysics Data System (ADS)

    Han, Minah; Choi, Shinkook; Baek, Jongduk

    2014-03-01

    To describe internal noise levels for different target sizes, contrasts, and noise structures, Gaussian targets with four different sizes (i.e., standard deviation of 2,4,6 and 8) and three different noise structures(i.e., white, low-pass, and highpass) were generated. The generated noise images were scaled to have standard deviation of 0.15. For each noise type, target contrasts were adjusted to have the same detectability based on NPW, and the detectability of CHO was calculated accordingly. For human observer study, 3 trained observers performed 2AFC detection tasks, and correction rate, Pc, was calculated for each task. By adding proper internal noise level to numerical observer (i.e., NPW and CHO), detectability of human observer was matched with that of numerical observers. Even though target contrasts were adjusted to have the same detectability of NPW observer, detectability of human observer decreases as the target size increases. The internal noise level varies for different target sizes, contrasts, and noise structures, demonstrating different internal noise levels should be considered in numerical observer to predict the detection performance of human observer.

  4. The shot noise thermometer

    NASA Astrophysics Data System (ADS)

    Spietz, Lafe Frederick

    This thesis describes the development and testing of the shot noise thermometer, or SNT, a new kind of noise thermometer based on the combined thermal and shot noise of a tunnel junction in the non-superconducting state. In the shot noise thermometer, the noise power from a tunnel junction is measured as a function of the DC voltage across the junction, and the temperature is determined from the voltage dependence of the noise. This voltage dependence follows directly from the Fermi statistics of electrons in a metal, and is independent of the gain or noise temperature of the microwave amplifiers and detector used to measure the noise. Since the shot noise thermometer requires no calibration from an external temperature standard, it is a primary thermometer. In this thesis I demonstrate the operation of the shot noise thermometer over four orders of magnitude in temperature, from the base temperature of a dilution refrigerator to room temperature. Because of its wide range and the fact that it requires no outside calibration (it is a primary thermometer), the SNT is useful as a thermometer for general use in dilution refrigerators. In addition, the shot noise thermometer has sufficient accuracy to be useful as a potential temperature standard. This thesis discusses both of these applications as well as basic physics questions about the operation of the SNT and prospects for future development of the SNT technology.

  5. Active noise control using noise source having adaptive resonant frequency tuning through stress variation

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Renshaw, Anthony A. (Inventor); Rajiyah, Harindra (Inventor); Hedeen, Robert A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of a noise radiating element is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating element is tuned by an expandable ring embedded in the noise radiating element. Excitation of the ring causes expansion or contraction of the ring, thereby varying the stress in the noise radiating element. The ring is actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the ring, causing the ring to expand or contract. Instead of a single ring embedded in the noise radiating panel, a first expandable ring can be bonded to one side of the noise radiating element, and a second expandable ring can be bonded to the other side.

  6. Active Noise Control of Radiated Noise from Jets Originating NASA

    NASA Technical Reports Server (NTRS)

    Doty, Michael J.; Fuller, Christopher R.; Schiller, Noah H.; Turner, Travis L.

    2013-01-01

    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance.

  7. Spatial patterns in community response to aircraft noise associated with non-noise factors

    NASA Astrophysics Data System (ADS)

    Hall, F. L.; Taylor, S. M.; Birnie, S. E.

    1980-08-01

    Non-noise aspects of airport operations may affect individuals' responses to aircraft noise. Fear of crashes, other forms of pollution, and proximity to the flight path are three such non-noise aspects which have spatial patterns that are closely related to the pattern of noise contours around an airport. If these variables affect response to aircraft noise, they may therefore confound attempts to understand relationships between noise level and community response. Analyses based on data from 673 individuals around Toronto International Airport suggest that these factors do affect annoyance responses, but do not affect reported activity interference. Hence it may prove fruitful, in aggregate analyses of community response data, to control for these variables in order to better understand the noise-annoyance relationships.

  8. Niobe: Improved noise temperature and back ground noise suppression

    NASA Astrophysics Data System (ADS)

    Tobar, Michael E.; Locke, Clayton R.; Heng, Ik Siong; Ivanov, Eugene N.; Blair, David G.

    2000-06-01

    The calibration and sensitivity of the Niobe detector are presented. Typically the detector operates with a 1 mK noise temperature. A best noise temperature of 890 μK between 1300 to 2000 UTC for day 60 in 1997 is reported. The transducer has been upgraded with a new microwave amplifier, which has a measured electronic noise floor 40 dB lower than the previous amplifier, which is only 10 dB above the quantum limit. A detector noise temperature of 23 μk can be expected with this improvement. Also, we discuss a new filter to suppress accidental coincidences between two gravitational wave detectors. The filter is based on the amplitude ratio of events in pairs of detectors and improves the statistical significance of zero time delay coincidences. .

  9. Assessment of annoyance due to urban road traffic noise combined with tramway noise.

    PubMed

    Klein, A; Marquis-Favre, C; Champelovier, P

    2017-01-01

    Due to the expansion of urban areas, an increasing number of residents are exposed to combined community noise sources. Studies show that the exposure to transportation noise significantly affects health and well-being. Noise annoyance is one of these adverse health effects. Up to now, annoyance due to transportation noise is mostly assessed considering single noise exposure situations neglecting the effects of potential interactions between noise sources. In this study, perceptual phenomena involved in noise annoyance due to combined urban road traffic and tramway noises are assessed in laboratory conditions with imaginary and simulated contexts. The urban road traffic was composed of light vehicles, heavy vehicles, buses, and powered-two-wheelers in different driving conditions. The tramway traffic corresponded to tramways in in-curve operating configurations. It could be shown that the road traffic and tramway traffic partial annoyance responses were influenced by each other. Throughout the experiments the strongest component effect prevailed but secondary phenomena could also be observed. Considering the perceptual phenomena highlighted in the analysis, it is shown that total noise annoyance due to the combined noises can be most adequately predicted by the strongest component model. This result was obtained by calculating partial annoyance responses due to urban road and tramway traffic.

  10. Combustion and Engine-Core Noise

    NASA Astrophysics Data System (ADS)

    Ihme, Matthias

    2017-01-01

    The implementation of advanced low-emission aircraft engine technologies and the reduction of noise from airframe, fan, and jet exhaust have made noise contributions from an engine core increasingly important. Therefore, meeting future ambitious noise-reduction goals requires the consideration of engine-core noise. This article reviews progress on the fundamental understanding, experimental analysis, and modeling of engine-core noise; addresses limitations of current techniques; and identifies opportunities for future research. After identifying core-noise contributions from the combustor, turbomachinery, nozzles, and jet exhaust, they are examined in detail. Contributions from direct combustion noise, originating from unsteady combustion, and indirect combustion noise, resulting from the interaction of flow-field perturbations with mean-flow variations in turbine stages and nozzles, are analyzed. A new indirect noise-source contribution arising from mixture inhomogeneities is identified by extending the theory. Although typically omitted in core-noise analysis, the impact of mean-flow variations and nozzle-upstream perturbations on the jet-noise modulation is examined, providing potential avenues for future core-noise mitigation.

  11. Noise from high speed maglev systems: Noise sources, noise criteria, preliminary design guidelines for noise control, recommendations for acoustical test facility for maglev research. Final report, July 1991-October 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanson, C.E.; Abbot, P.; Dyer, I.

    1993-01-01

    Noise levels from magnetically-levitated trains (maglev) at very high speed may be high enough to cause environmental noise impact in residential areas. Aeroacoustic sources dominate the sound at high speeds and guideway vibrations generate noticeable sound at low speed. In addition to high noise levels, the startle effect as a result of sudden onset of sound from a rapidly moving nearby maglev vehicle may lead to increased annoyance to neighbors of a maglev system. The report provides a base for determining the noise consequences and potential mitigation for a high speed maglev system in populated areas of the United States.more » Four areas are included in the study: (1) definition of noise sources; (2) development of noise criteria; (3) development of design guidelines; and (4) recommendations for a noise testing facility.« less

  12. Rotorcraft Noise Model

    NASA Technical Reports Server (NTRS)

    Lucas, Michael J.; Marcolini, Michael A.

    1997-01-01

    The Rotorcraft Noise Model (RNM) is an aircraft noise impact modeling computer program being developed for NASA-Langley Research Center which calculates sound levels at receiver positions either on a uniform grid or at specific defined locations. The basic computational model calculates a variety of metria. Acoustic properties of the noise source are defined by two sets of sound pressure hemispheres, each hemisphere being centered on a noise source of the aircraft. One set of sound hemispheres provides the broadband data in the form of one-third octave band sound levels. The other set of sound hemispheres provides narrowband data in the form of pure-tone sound pressure levels and phase. Noise contours on the ground are output graphically or in tabular format, and are suitable for inclusion in Environmental Impact Statements or Environmental Assessments.

  13. Approximations to camera sensor noise

    NASA Astrophysics Data System (ADS)

    Jin, Xiaodan; Hirakawa, Keigo

    2013-02-01

    Noise is present in all image sensor data. Poisson distribution is said to model the stochastic nature of the photon arrival process, while it is common to approximate readout/thermal noise by additive white Gaussian noise (AWGN). Other sources of signal-dependent noise such as Fano and quantization also contribute to the overall noise profile. Question remains, however, about how best to model the combined sensor noise. Though additive Gaussian noise with signal-dependent noise variance (SD-AWGN) and Poisson corruption are two widely used models to approximate the actual sensor noise distribution, the justification given to these types of models are based on limited evidence. The goal of this paper is to provide a more comprehensive characterization of random noise. We concluded by presenting concrete evidence that Poisson model is a better approximation to real camera model than SD-AWGN. We suggest further modification to Poisson that may improve the noise model.

  14. Noise, Health, and Architecture.

    ERIC Educational Resources Information Center

    Beranek, Leo L.

    There is reasonable agreement that hearing impairment is related to noise exposure. This hearing loss due to noise is considered a serious health injury, but there is still difficulty in delineating the importance of noise related to people's general non-auditory well-being and health. Beside hearing loss, noise inhibits satisfactory speech…

  15. Electronic noise in CT detectors: Impact on image noise and artifacts.

    PubMed

    Duan, Xinhui; Wang, Jia; Leng, Shuai; Schmidt, Bernhard; Allmendinger, Thomas; Grant, Katharine; Flohr, Thomas; McCollough, Cynthia H

    2013-10-01

    The objective of our study was to evaluate in phantoms the differences in CT image noise and artifact level between two types of commercial CT detectors: one with distributed electronics (conventional) and one with integrated electronics intended to decrease system electronic noise. Cylindric water phantoms of 20, 30, and 40 cm in diameter were scanned using two CT scanners, one equipped with integrated detector electronics and one with distributed detector electronics. All other scanning parameters were identical. Scans were acquired at four tube potentials and 10 tube currents. Semianthropomorphic phantoms were scanned to mimic the shoulder and abdominal regions. Images of two patients were also selected to show the clinical values of the integrated detector. Reduction of image noise with the integrated detector depended on phantom size, tube potential, and tube current. Scans that had low detected signal had the greatest reductions in noise, up to 40% for a 30-cm phantom scanned using 80 kV. This noise reduction translated into up to 50% in dose reduction to achieve equivalent image noise. Streak artifacts through regions of high attenuation were reduced by up to 45% on scans obtained using the integrated detector. Patient images also showed superior image quality for the integrated detector. For the same applied radiation level, the use of integrated electronics in a CT detector showed a substantially reduced level of electronic noise, resulting in reductions in image noise and artifacts, compared with detectors having distributed electronics.

  16. Oscillator Noise Analysis

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2005-08-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, that exist in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter. These are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In noise analysis for oscillators, the key is figuring out how the various disturbances and noise sources in the oscillator end up as phase fluctuations. In doing so, one first computes transfer functions from the noise sources to the oscillator phase, or the sensitivity of the oscillator phase to these noise sources. In this paper, we first provide a discussion explaining the origins and the proper definition of this transfer or sensitivity function, followed by a critical review of the various numerical techniques for its computation that have been proposed by various authors over the past fifteen years.

  17. Propeller noise prediction

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E.

    1983-01-01

    Analytic propeller noise prediction involves a sequence of computations culminating in the application of acoustic equations. The prediction sequence currently used by NASA in its ANOPP (aircraft noise prediction) program is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the actual noise prediction, based on data from the first group. Deterministic predictions of periodic thickness and loading noise are made using Farassat's time-domain methods. Broadband noise is predicted by the semi-empirical Schlinker-Amiet method. Near-field predictions of fuselage surface pressures include the effects of boundary layer refraction and (for a cylinder) scattering. Far-field predictions include atmospheric and ground effects. Experimental data from subsonic and transonic propellers are compared and NASA's future direction is propeller noise technology development are indicated.

  18. Noise-Optimized Silicon Radiometers

    PubMed Central

    Eppeldauer, George P.

    2000-01-01

    This paper describes a new, experimentally verified, noise analysis and the design considerations of the dynamic characteristics of silicon radiometers. Transimpedance gain, loop gain, and voltage gain were optimized versus frequency for photodiode current meters measuring ac and dc optical radiation. Silicon radiometers with improved dynamic characteristics were built and tested. The frequency-dependent photocurrent gains were measured. The noise floor was optimized in an ac measurement mode using photodiodes of different shunt resistance and operational amplifiers with low 1/f voltage and current noise. In the dark (without any signal), the noise floor of the optimized silicon radiometers was dominated by the Johnson noise of the source resistance. The Johnson noise was decreased and equalized to the amplified 1/f input noise at a 9 Hz chopping frequency and 30 s integration time constant, resulting in an equivalent root-mean-square (rms) photocurrent noise of 8 × 10−17 A. The lowest noise floor of 5 × 10−17 A, equal to a noise equivalent power (NEP) of 1.4 × 10−16 W at the 730 nm peak responsivity, was obtained at a 100 s integration time constant. The radiometers, optimized for ac measurements, were tested in a dc measurement mode as well. Performances in ac and dc measurement modes were compared. In the ac mode, a ten times shorter (40 s) overall measurement time was needed than in the dc mode (400 s) to obtain the same 10−16 A noise floor. PMID:27551606

  19. Examining nocturnal railway noise and aircraft noise in the field: sleep, psychomotor performance, and annoyance.

    PubMed

    Elmenhorst, Eva-Maria; Pennig, Sibylle; Rolny, Vinzent; Quehl, Julia; Mueller, Uwe; Maaß, Hartmut; Basner, Mathias

    2012-05-01

    Traffic noise is interfering during day- and nighttime causing distress and adverse physiological reactions in large parts of the population. Railway noise proved less annoying than aircraft noise in surveys which were the bases for a so called 5 dB railway bonus regarding noise protection in many European countries. The present field study investigated railway noise-induced awakenings during sleep, nighttime annoyance and the impact on performance the following day. Comparing these results with those from a field study on aircraft noise allowed for a ranking of traffic modes concerning physiological and psychological reactions. 33 participants (mean age 36.2 years ± 10.3 (SD); 22 females) living alongside railway tracks around Cologne/Bonn (Germany) were polysomnographically investigated. These data were pooled with data from a field study on aircraft noise (61 subjects) directly comparing the effects of railway and aircraft noise in one random subject effects logistic regression model. Annoyance was rated in the morning evaluating the previous night. Probability of sleep stage changes to wake/S1 from railway noise increased significantly from 6.5% at 35 dB(A) to 20.5% at 80 dB(A) LAFmax. Rise time of noise events had a significant impact on awakening probability. Nocturnal railway noise led to significantly higher awakening probabilities than aircraft noise, partly explained by the different rise times, whereas the order was inversed for annoyance. Freight train noise compared to passenger train noise proved to have the most impact on awakening probability. Nocturnal railway noise had no effect on psychomotor vigilance. Nocturnal freight train noise exposure in Germany was associated with increased awakening probabilities exceeding those for aircraft noise and contrasting the findings of many annoyance surveys and annoyance ratings of our study. During nighttime a bonus for railway noise seems not appropriate. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Single-electron thermal noise

    NASA Astrophysics Data System (ADS)

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-01

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  1. Single-electron thermal noise.

    PubMed

    Nishiguchi, Katsuhiko; Ono, Yukinori; Fujiwara, Akira

    2014-07-11

    We report the observation of thermal noise in the motion of single electrons in an ultimately small dynamic random access memory (DRAM). The nanometer-scale transistors that compose the DRAM resolve the thermal noise in single-electron motion. A complete set of fundamental tests conducted on this single-electron thermal noise shows that the noise perfectly follows all the aspects predicted by statistical mechanics, which include the occupation probability, the law of equipartition, a detailed balance, and the law of kT/C. In addition, the counting statistics on the directional motion (i.e., the current) of the single-electron thermal noise indicate that the individual electron motion follows the Poisson process, as it does in shot noise.

  2. Identification of Noise Sources and Design of Noise Reduction Measures for a Pneumatic Nail Gun

    PubMed Central

    Jayakumar, Vignesh; Zechmann, Edward

    2015-01-01

    An experimental-analytical procedure was implemented to reduce the operating noise level of a nail gun, a commonly found power tool in a construction site. The procedure is comprised of preliminary measurements, identification and ranking of major noise sources and application of noise controls. Preliminary measurements show that the impact noise transmitted through the structure and the exhaust related noise were found to be the first and second major contributors. Applying a noise absorbing foam on the outside of the nail gun body was found to be an effective noise reduction technique. One and two-volume small mufflers were designed and applied to the exhaust side of the nail gun which reduced not only the exhaust noise but also the impact noise. It was shown that the overall noise level could be reduced by as much as 3.5 dB, suggesting that significant noise reduction is possible in construction power tools without any significant increase of the cost. PMID:26366038

  3. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  4. Associations between chronic community noise exposure and blood pressure at rest and during acute noise and non-noise stressors among urban school children in India.

    PubMed

    Lepore, Stephen J; Shejwal, Bhaskar; Kim, Bang Hyun; Evans, Gary W

    2010-09-01

    The present study builds on prior research that has examined the association between children's chronic exposure to community noise and resting blood pressure and blood pressure dysregulation during exposure to acute stressors. A novel contribution of the study is that it examines how chronic noise exposure relates to blood pressure responses during exposure to both noise and non-noise acute stressors. The acute noise stressor was recorded street noise and the non-noise stressor was mental arithmetic. The sample consisted of 189 3rd and 6th grade children (51.9% percent boys; 52.9% 3rd graders) from a noisy (n = 95) or relatively quiet (n = 94) public school in the city of Pune, India. There were no statistically significant differences between chronic noise levels and resting blood pressure levels. However, relative to quiet-school children, noisy-school children had significantly lower increases in blood pressure when exposed to either an acute noise or non-noise stressor. This finding suggests that chronic noise exposure may result in hypo-reactivity to a variety of stressors and not just habituation to noise stressors.

  5. On the prediction of impact noise, V: The noise from drop hammers

    NASA Astrophysics Data System (ADS)

    Richards, E. J.; Carr, I.; Westcott, M.

    1983-06-01

    In earlier papers in this series, the concepts of "acceleration" and "ringing" noise have been studied in relation to impact machines, and values of radiation efficiency have been obtained for the various types of structural components. In the work reported in this paper the predicted and measured noise radiation from a drop hammer, both in full-scale and in {1}/{3}- scale model form, were examined. It is found that overall noise levels ( Leq per event) can be predicted from vibration measurements to within ± 1·5 dB, and to within ±2·5 dB in one-third octave bands. In turn this has permitted noise reduction techniques to be examined by studies of local component vibration levels rather than overall noise, a method which provides considerable enlightenment at the design stage. It is shown that on one particular drop hammer, the noise energy is shared surprisingly uniformly over four or five sources, and that when these have been reduced, the overall noise reduction is severely limited by the "acceleration" noise from the "tup" or "hammer" itself. As this is difficult to eliminate without a basic change in forging technology, it follows that "tup" enclosure or modification of the sharpness of the final "hard" impact are the only means available for any serious noise reduction. Also indicated is the reliability of using model techniques, suitably scaled in frequency and impulse magnitude, in developing machinery with impact characteristics.

  6. Aircraft noise prediction program theoretical manual: Rotorcraft System Noise Prediction System (ROTONET), part 4

    NASA Technical Reports Server (NTRS)

    Weir, Donald S.; Jumper, Stephen J.; Burley, Casey L.; Golub, Robert A.

    1995-01-01

    This document describes the theoretical methods used in the rotorcraft noise prediction system (ROTONET), which is a part of the NASA Aircraft Noise Prediction Program (ANOPP). The ANOPP code consists of an executive, database manager, and prediction modules for jet engine, propeller, and rotor noise. The ROTONET subsystem contains modules for the prediction of rotor airloads and performance with momentum theory and prescribed wake aerodynamics, rotor tone noise with compact chordwise and full-surface solutions to the Ffowcs-Williams-Hawkings equations, semiempirical airfoil broadband noise, and turbulence ingestion broadband noise. Flight dynamics, atmosphere propagation, and noise metric calculations are covered in NASA TM-83199, Parts 1, 2, and 3.

  7. The effect of AM noise on correlation phase-noise measurements.

    PubMed

    Rubiola, Enrico; Boudot, Rodolphe

    2007-05-01

    We analyze the phase-noise measurement methods in which correlation and averaging is used to reject the background noise of the instrument. All the known methods make use of a mixer, used either as a saturated-phase detector or as a linear-synchronous detector. Unifortunately, AM noise is taken in through the power-to-dc-offset conversion mechanism that results from the mixer asymmetry. The measurement of some mixers indicates that the unwanted amplitude-to-voltage gain is of the order of 5-50 mV, which is 12-35 dB lower than the phase-to-voltage gain of the mixer. In addition, the trick of setting the mixer at a sweet point--off the quadrature condition--where the sensitivity to AM nulls, works only with microwave mixers. The HF-VHF mixers do not have this sweet point. Moreover, we prove that if the AM noise comes from the oscillator under test, it cannot be rejected by correlation. At least not with the schemes currently used. An example shows that at some critical frequencies the unwanted effect of AM noise is of the same order-if not greater--than the phase noise. Thus, experimental mistakes are around the corner.

  8. Noise levels, noise annoyance, and hearing-related problems in a dental college.

    PubMed

    Ahmed, Hafiz Omer; Ali, Wesal Jasim

    2017-05-04

    Through a cross-sectional survey and integrated sound level meter, this research examined noise exposure and auditory- and nonauditory-related problems experienced by students of a dentistry college located in the United Arab Emirates (UAE). A structured interview questionnaire was used to examine hearing-related problems, noise annoyance, and awareness of 114 students toward noise. The results showed that maximum noise levels were between 65 and 79 dB(A) with peak levels (high and low frequencies) ranging between 89 and 93 dB(A). Around 80% of the students experienced a certain degree of noise annoyance; 54% reported one of the hearing-related problems; and about 10% claimed to have hearing loss to a certain extent. It is recommended that sound-absorbent materials be used during the construction of dental clinics and laboratories to reduce the noise levels.

  9. Noise-invariant Neurons in the Avian Auditory Cortex: Hearing the Song in Noise

    PubMed Central

    Moore, R. Channing; Lee, Tyler; Theunissen, Frédéric E.

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex. PMID:23505354

  10. Noise-invariant neurons in the avian auditory cortex: hearing the song in noise.

    PubMed

    Moore, R Channing; Lee, Tyler; Theunissen, Frédéric E

    2013-01-01

    Given the extraordinary ability of humans and animals to recognize communication signals over a background of noise, describing noise invariant neural responses is critical not only to pinpoint the brain regions that are mediating our robust perceptions but also to understand the neural computations that are performing these tasks and the underlying circuitry. Although invariant neural responses, such as rotation-invariant face cells, are well described in the visual system, high-level auditory neurons that can represent the same behaviorally relevant signal in a range of listening conditions have yet to be discovered. Here we found neurons in a secondary area of the avian auditory cortex that exhibit noise-invariant responses in the sense that they responded with similar spike patterns to song stimuli presented in silence and over a background of naturalistic noise. By characterizing the neurons' tuning in terms of their responses to modulations in the temporal and spectral envelope of the sound, we then show that noise invariance is partly achieved by selectively responding to long sounds with sharp spectral structure. Finally, to demonstrate that such computations could explain noise invariance, we designed a biologically inspired noise-filtering algorithm that can be used to separate song or speech from noise. This novel noise-filtering method performs as well as other state-of-the-art de-noising algorithms and could be used in clinical or consumer oriented applications. Our biologically inspired model also shows how high-level noise-invariant responses could be created from neural responses typically found in primary auditory cortex.

  11. Truck Noise X : Noise Reduction Options for Diesel Powered International Harvester Trucks : Volume 2. Cost-Noise Analysis and Field Installation.

    DOT National Transportation Integrated Search

    1977-04-01

    Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...

  12. Fourth Aircraft Interior Noise Workshop

    NASA Technical Reports Server (NTRS)

    Stephens, David G. (Compiler)

    1992-01-01

    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues.

  13. Revision of civil aircraft noise data for the Integrated Noise Model (INM)

    DOT National Transportation Integrated Search

    1986-09-30

    This report provides noise data for the Integrated Noise Model (INM) and is referred to as data base number nine. Air-to-ground sound level versus distance data for civil (and some military) aircraft in a form useful for airport noise contour computa...

  14. Spin noise amplification and giant noise in optical microcavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification ofmore » broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.« less

  15. Noise and noise figure of vertical-cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode

    NASA Astrophysics Data System (ADS)

    Wen, Pengyue; Sanchez, Michael; Gross, Matthias; Esener, Sadik C.

    2003-05-01

    In this paper, the noise properties of vertical cavity semiconductor optical amplifiers (VCSOAs) operated in reflection mode are studied. Expressions for noise sources contributing to the total noise detected at amplifier output are derived, based on the photon statistics master equations. The noise figure, defined as the degradation of signal-to-noise ratio (SNR), is analyzed using the assumption that spontaneous emission-signal beat noise dominates. The analysis shows that the noise figure of reflection mode VCSOAs has the same values as that in transmission mode as long as amplifier gain is high (G>>1). Furthermore, simulations depict the dependence of noise figure on device parameters and bias conditions, as well as reveal the importance of the low reflectivity front mirror and the high reflectivity rear mirror for low noise operation. In addition, the noise figure analysis results are compared with experimental measurements, in which amplified spontaneous emission (ASE) power is measured by an optical spectrum analyzer and the noise figure is obtained from the ASE power and the amplifier gain. The measured data are in good agreement with the theoretical predictions.

  16. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  17. Electronic Noise and Fluctuations in Solids

    NASA Astrophysics Data System (ADS)

    Kogan, Sh.

    2008-07-01

    Preface; Part I. Introduction. Some Basic Concepts of the Theory of Random Processes: 1. Probability density functions. Moments. Stationary processes; 2. Correlation function; 3. Spectral density of noise; 4. Ergodicity and nonergodicity of random processes; 5. Random pulses and shot noise; 6. Markov processes. General theory; 7. Discrete Markov processes. Random telegraph noise; 8. Quasicontinuous (Diffusion-like) Markov processes; 9. Brownian motion; 10. Langevin approach to the kinetics of fluctuations; Part II. Fluctuation-Dissipation Relations in Equilibrium Systems: 11. Derivation of fluctuation-dissipation relations; 12. Equilibrium noise in quasistationary circuits. Nyquist theorem; 13. Fluctuations of electromagnetic fields in continuous media; Part III. Fluctuations in Nonequilibrium Gases: 14. Some basic concepts of hot-electrons' physics; 15. Simple model of current fluctuations in a semiconductor with hot electrons; 16. General kinetic theory of quasiclassical fluctuations in a gas of particles. The Boltzmann-Langevin equation; 17. Current fluctuations and noise temperature; 18. Current fluctuations and diffusion in a gas of hot electrons; 19. One-time correlation in nonequilibrium gases; 20. Intervalley noise in multivalley semiconductors; 21. Noise of hot electrons emitting optical phonons in the streaming regime; 22. Noise in a semiconductor with a postbreakdown stable current filament; Part IV. Generation-recombination noise: 23. G-R noise in uniform unipolar semiconductors; 24. Noise produced by recombination and diffusion; Part V. Noise in quantum ballistic systems: 25. Introduction; 26. Equilibrium noise and shot noise in quantum conductors; 27. Modulation noise in quantum point contacts; 28. Transition from a ballistic conductor to a macroscopic one; 29. Noise in tunnel junctions; Part VI. Resistance noise in metals: 30. Incoherent scattering of electrons by mobile defects; 31. Effect of mobile scattering centers on the electron interference

  18. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H. (Editor)

    1993-01-01

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects.

  19. ''1/f noise'' in music: Music from 1/f noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voss, R.F.; Clarke, J.

    1978-01-01

    The spectral density of fluctuations in the audio power of many musical selections and of English speech varies approximately as 1/f (f is the frequency) down to a frequency of 5 x 10/sup -4/ Hz. This result implies that the audio-power fluctuations are correlated over all times in the same manner as ''1/f noise'' in electronic components. The frequency fluctuations of music also have a 1/f spectral density at frequencies down to the inverse of the length of the piece of music. The frequency fluctuations of English speech have a quite different behavior, with a single characteristic time of aboutmore » 0.1 s, the average length of a syllable. The observations on music suggest that 1/f noise is a good choice for stochastic composition. Compositions in which the frequency and duration of each note were determined by 1/f noise sources sounded pleasing. Those generated by white-noise sources sounded too random, while those generated by 1/f/sup 2/ noise sounded too correlated.« less

  20. Externally-blown-flap noise

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.; Kreim, W. J.; Olsen, W. A.

    1972-01-01

    Noise data were obtained with a large externally blown flap model. A fan-jet engine exhaust was simulated by a 1/2-scale bypass nozzle supplied by pressurized air. The nozzle was pylon mounted on a wing section having a double-slotted flap for lift augmentation. Noise radiation patterns and spectra were obtained for nozzle exhaust velocities between 400 and 1150 ft/sec. The blown flap noise data are in good agreement with previous small model results extrapolated to test conditions by Strouhal scaling. The results indicate that blown flap noise must be suppressed to meet STOL aircraft noise goals.

  1. Phase noise in oscillators as differential-algebraic systems with colored noise sources

    NASA Astrophysics Data System (ADS)

    Demir, Alper

    2004-05-01

    Oscillators are key components of many kinds of systems, particularly electronic and opto-electronic systems. Undesired perturbations, i.e. noise, in practical systems adversely affect the spectral and timing properties of the signals generated by oscillators resulting in phase noise and timing jitter, which are key performance limiting factors, being major contributors to bit-error-rate (BER) of RF and possibly optical communication systems, and creating synchronization problems in clocked and sampled-data electronic systems. In this paper, we review our work on the theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of differential-algebraic equations (DAEs) with white and colored noise sources. The bulk of the work reviewed in this paper first appeared in [1], then in [2] and [3]. Prior to the work mentioned above, we developed a theory and numerical methods for nonlinear perturbation and noise analysis of oscillators described by a system of ordinary differential equations (ODEs) with white noise sources only [4, 5]. In this paper, we also discuss some open problems and issues in the modeling and analysis of phase noise both in free running oscillators and in phase/injection-locked ones.

  2. Understanding Slat Noise Sources

    NASA Technical Reports Server (NTRS)

    Khorrami, Medhi R.

    2003-01-01

    Model-scale aeroacoustic tests of large civil transports point to the leading-edge slat as a dominant high-lift noise source in the low- to mid-frequencies during aircraft approach and landing. Using generic multi-element high-lift models, complementary experimental and numerical tests were carefully planned and executed at NASA in order to isolate slat noise sources and the underlying noise generation mechanisms. In this paper, a brief overview of the supporting computational effort undertaken at NASA Langley Research Center, is provided. Both tonal and broadband aspects of slat noise are discussed. Recent gains in predicting a slat s far-field acoustic noise, current shortcomings of numerical simulations, and other remaining open issues, are presented. Finally, an example of the ever-expanding role of computational simulations in noise reduction studies also is given.

  3. 23 CFR 772.3 - Noise standards.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Noise standards. 772.3 Section 772.3 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.3 Noise standards. The highway traffic noise prediction requirements, noise analyses, noise abatement criteria, and requirements for informing local...

  4. 23 CFR 772.3 - Noise standards.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Noise standards. 772.3 Section 772.3 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.3 Noise standards. The highway traffic noise prediction requirements, noise analyses, noise abatement criteria, and requirements for informing local...

  5. Noise levels from a model turbofan engine with simulated noise control measures applied

    NASA Technical Reports Server (NTRS)

    Hall, David G.; Woodward, Richard P.

    1993-01-01

    A study of estimated full-scale noise levels based on measured levels from the Advanced Ducted Propeller (ADP) sub-scale model is presented. Testing of this model was performed in the NASA Lewis Low Speed Anechoic Wind Tunnel at a simulated takeoff condition of Mach 0.2. Effective Perceived Noise Level (EPNL) estimates for the baseline configuration are documented, and also used as the control case in a study of the potential benefits of two categories of noise control. The effect of active noise control is evaluated by artificially removing various rotor-stator interaction tones. Passive noise control is simulated by applying a notch filter to the wind tunnel data. Cases with both techniques are included to evaluate hybrid active-passive noise control. The results for EPNL values are approximate because the original source data was limited in bandwidth and in sideline angular coverage. The main emphasis is on comparisons between the baseline and configurations with simulated noise control measures.

  6. Aerodynamic Noise Generated by Shinkansen Cars

    NASA Astrophysics Data System (ADS)

    KITAGAWA, T.; NAGAKURA, K.

    2000-03-01

    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  7. Noise, impulse noise, and other physical factors: combined effects on hearing.

    PubMed

    Pekkarinen, J

    1995-01-01

    In most of the epidemiologic studies conducted during the last 20 years, impulse noise caused increased risk of hearing loss in comparison to continuous noise with the same acoustical energy. The interaction between noise exposure (broadband at 100 dB(A)) and hand-arm vibration (125 Hz at 2 ms-2 acceleration level) has been proven for people having vibration-induced white finger symptoms. This interaction is evidenced as a permanent hearing loss. However, why the interaction is seen only in people with VWF is not known. The mechanisms may be related to individual susceptibility, and hypotheses are given on the role of the autonomous nervous system regulating the peripheral vascular reaction. Whole-body vibration (2-10 Hz, at 10 ms-2 level) seems to increase the TTS when noise (broadband at 90 dB(A)) is present. This effect is more pronounced at higher temperatures. The hypothermia protects hearing against the effects of noise in animal studies. The interaction between noise and temperature decrease seems obvious in animal studies. Exercise has both increased and decreased the TTS during noise exposure. The effects have been successfully explained as the depression of the stapedius reflex. Thus, less protection against noise is provided for the inner ear in exercise conditions. The increase of the blood temperature also has been suggested to increase noise-induced TTS during exercise. Electromagnetic fields have been found to cause acoustical interactions in the inner ear. Animal studies and human studies have given contradictory results on the effects of magnetic coil devices on hearing. The MR imaging devices produce noise levels of 82-93 dB, which is not sufficient to produce the risk of permanent hearing loss when short exposure durations are taken into consideration. More systematic research is needed with accurately defined electromagnetic characteristics to reveal the potential interactions. The interactions seem to exist, but relatively high levels and

  8. A measurement model for general noise reaction in response to aircraft noise.

    PubMed

    Kroesen, Maarten; Schreckenberg, Dirk

    2011-01-01

    In this paper a measurement model for general noise reaction (GNR) in response to aircraft noise is developed to assess the performance of aircraft noise annoyance and a direct measure of general reaction as indicators of this concept. For this purpose GNR is conceptualized as a superordinate latent construct underlying particular manifestations. This conceptualization is empirically tested through estimation of a second-order factor model. Data from a community survey at Frankfurt Airport are used for this purpose (N=2206). The data fit the hypothesized factor structure well and support the conceptualization of GNR as a superordinate construct. It is concluded that noise annoyance and a direct measure of general reaction to noise capture a large part of the negative feelings and emotions in response to aircraft noise but are unable to capture all relevant variance. The paper concludes with recommendations for the valid measurement of community reaction and several directions for further research.

  9. Influence of detector noise and background noise on detection-system

    NASA Astrophysics Data System (ADS)

    Song, Yiheng; Wang, Zhiyong

    2018-02-01

    Study the noise by detectors and background light ,we find that the influence of background noise on the detection is more than that of itself. Therefore, base on the fiber coupled beam splitting technique, the small area detector is used to replace the large area detector. It can achieve high signal-to-noise ratio (SNR) and reduce the speckle interference of the background light. This technique is expected to solve the bottleneck of large field of view and high sensitivity.

  10. A Ratiometric Method for Johnson Noise Thermometry Using a Quantized Voltage Noise Source

    NASA Astrophysics Data System (ADS)

    Nam, S. W.; Benz, S. P.; Martinis, J. M.; Dresselhaus, P.; Tew, W. L.; White, D. R.

    2003-09-01

    Johnson Noise Thermometry (JNT) involves the measurement of the statistical variance of a fluctuating voltage across a resistor in thermal equilibrium. Modern digital techniques make it now possible to perform many functions required for JNT in highly efficient and predictable ways. We describe the operational characteristics of a prototype JNT system which uses digital signal processing for filtering, real-time spectral cross-correlation for noise power measurement, and a digitally synthesized Quantized Voltage Noise Source (QVNS) as an AC voltage reference. The QVNS emulates noise with a constant spectral density that is stable, programmable, and calculable in terms of known parameters using digital synthesis techniques. Changes in analog gain are accounted for by alternating the inputs between the Johnson noise sensor and the QVNS. The Johnson noise power at a known temperature is first balanced with a synthesized noise power from the QVNS. The process is then repeated by balancing the noise power from the same resistor at an unknown temperature. When the two noise power ratios are combined, a thermodynamic temperature is derived using the ratio of the two QVNS spectral densities. We present preliminary results where the ratio between the gallium triple point and the water triple point is used to demonstrate the accuracy of the measurement system with a standard uncertainty of 0.04 %.

  11. Airframe Noise Reduction Studies and Clean-Airframe Noise Investigation

    NASA Technical Reports Server (NTRS)

    Fink, M. R.; Bailey, D. A.

    1980-01-01

    Acoustic wind tunnel tests were conducted of a wing model with modified leading edge slat and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence. Tests were conducted at 70.7 and 100 m/sec airspeeds, with Reynolds numbers 1.5 x 10 to the 6th power and 2.1 x 10 to the 6th power. Considerable reduction of noise radiation from the side edges of a 40 deflection single slotted flap was achieved by modification to the side edge regions or the leading edge region of the flap panel. Total far field noise was reduced 2 to 3 dB over several octaves of frequency. When these panels were installed as the aft panel of a 40 deg deflection double slotted flap, 2 dB noise reduction was achieved.

  12. Technologies for Turbofan Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis

    2005-01-01

    An overview presentation of NASA's engine noise research since 1992 is given for subsonic commercial aircraft applications. Highlights are included from the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project with emphasis on engine source noise reduction. Noise reduction goals for 10 EPNdB by 207 and 20 EPNdB by 2022 are reviewed. Fan and jet noise technologies are highlighted from the AST program including higher bypass ratio propulsion, scarf inlets, forward-swept fans, swept/leaned stators, chevron nozzles, noise prediction methods, and active noise control for fans. Source diagnostic tests for fans and jets that have been completed over the past few years are presented showing how new flow measurement methods such as Particle Image Velocimetry (PIV) have played a key role in understanding turbulence, the noise generation process, and how to improve noise prediction methods. Tests focused on source decomposition have helped identify which engine components need further noise reduction. The role of Computational AeroAcoustics (CAA) for fan noise prediction is presented. Advanced noise reduction methods such as Hershel-Quincke tubes and trailing edge blowing for fan noise that are currently being pursued n the QAT program are also presented. Highlights are shown form engine validation and flight demonstrations that were done in the late 1990's with Pratt & Whitney on their PW4098 engine and Honeywell on their TFE-731-60 engine. Finally, future propulsion configurations currently being studied that show promise towards meeting NASA's long term goal of 20 dB noise reduction are shown including a Dual Fan Engine concept on a Blended Wing Body aircraft.

  13. Noise-enhanced convolutional neural networks.

    PubMed

    Audhkhasi, Kartik; Osoba, Osonde; Kosko, Bart

    2016-06-01

    Injecting carefully chosen noise can speed convergence in the backpropagation training of a convolutional neural network (CNN). The Noisy CNN algorithm speeds training on average because the backpropagation algorithm is a special case of the generalized expectation-maximization (EM) algorithm and because such carefully chosen noise always speeds up the EM algorithm on average. The CNN framework gives a practical way to learn and recognize images because backpropagation scales with training data. It has only linear time complexity in the number of training samples. The Noisy CNN algorithm finds a special separating hyperplane in the network's noise space. The hyperplane arises from the likelihood-based positivity condition that noise-boosts the EM algorithm. The hyperplane cuts through a uniform-noise hypercube or Gaussian ball in the noise space depending on the type of noise used. Noise chosen from above the hyperplane speeds training on average. Noise chosen from below slows it on average. The algorithm can inject noise anywhere in the multilayered network. Adding noise to the output neurons reduced the average per-iteration training-set cross entropy by 39% on a standard MNIST image test set of handwritten digits. It also reduced the average per-iteration training-set classification error by 47%. Adding noise to the hidden layers can also reduce these performance measures. The noise benefit is most pronounced for smaller data sets because the largest EM hill-climbing gains tend to occur in the first few iterations. This noise effect can assist random sampling from large data sets because it allows a smaller random sample to give the same or better performance than a noiseless sample gives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. [Urban noise pollution].

    PubMed

    Chouard, C H

    2001-07-01

    Noise is responsible for cochlear and general damages. Hearing loss and tinnitus greatly depend on sound intensity and duration. Short-duration sound of sufficient intensity (gunshot or explosion) will not be described because they are not currently encountered in our normal urban environment. Sound levels of less than 75 d (A) are unlikely to cause permanent hearing loss, while sound levels of about 85 d (A) with exposures of 8 h per day will produce permanent hearing loss after many years. Popular and largely amplified music is today one of the most dangerous causes of noise induced hearing loss. The intensity of noises (airport, highway) responsible for stress and general consequences (cardiovascular) is generally lower. Individual noise sensibility depends on several factors. Strategies to prevent damage from sound exposure should include the use of individual hearing protection devices, education programs beginning with school-age children, consumer guidance, increased product noise labelling, and hearing conservation programs for occupational settings.

  15. Noise, anti-noise and fluid flow control.

    PubMed

    Williams, J E Ffowcs

    2002-05-15

    This paper celebrates Thomas Young's discovery that wave interference was responsible for much that is known about light and colour. A substantial programme of work has been aimed at controlling the noise of aerodynamic flows. Much of that field can be explained in terms of interference and it is argued in this paper that the theoretical techniques for analysing noise can also be seen to rest on interference effects. Interference can change the character of wave fields to produce, out of well-ordered fields, wave systems quite different from the interfering wave elements. Lighthill's acoustic analogy is described as an example of this effect, an example in which the exact model of turbulence-generated noise is seen to consist of elementary interfering sound waves; waves that are sometimes heard in advance of their sources. The paper goes on to describe an emerging field of technology where sound is suppressed by superimposing on it a destructively interfering secondary sound; one designed and manufactured specifically for interference. That sound is known as anti-sound, or anti-noise when the sound is chaotic enough. Examples are then referred to where the noisy effect to be controlled is actually a disturbance of a linearly unstable system; a disturbance that is destroyed by destructive interference with a deliberately constructed antidote. The practical benefits of this kind of instability control are much greater and can even change the whole character of flows. It is argued that completely unnatural unstable conditions can be held with active controllers generating destructively interfering elements. Examples are given in which gravitational instability of stratified fluids can be prevented. The Kelvin-Helmholtz instability of shear flows can also be avoided by simple controls. Those are speculative examples of what might be possible in future developments of an interference effect, which has made anti-noise a useful technology.

  16. Demonstration of Johnson noise thermometry with all-superconducting quantum voltage noise source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Takahiro, E-mail: yamada-takahiro@aist.go.jp; Urano, Chiharu; Maezawa, Masaaki

    We present a Johnson noise thermometry (JNT) system based on an integrated quantum voltage noise source (IQVNS) that has been fully implemented using superconducting circuit technology. To enable precise measurement of Boltzmann's constant, an IQVNS chip was designed to produce intrinsically calculable pseudo-white noise to calibrate the JNT system. On-chip real-time generation of pseudo-random codes via simple circuits produced pseudo-voltage noise with a harmonic tone interval of less than 1 Hz, which was one order of magnitude finer than the harmonic tone interval of conventional quantum voltage noise sources. We estimated a value for Boltzmann's constant experimentally by performing JNT measurementsmore » at the temperature of the triple point of water using the IQVNS chip.« less

  17. Sources, control, and effects of noise from aircraft propellers and rotors. [noise prediction (aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Greene, G. C.; Dempsey, T. K.

    1981-01-01

    Source noise predictions are compared with measurements for conventional low-speed propellers, for new high speed propellers (propfans), and for a helicopter. Results from a light aircraft demonstration program are described, indicating that about 5-dB reduction of flyover noise can be obtained without significant performance penalty. Sidewall design studies are described for interior noise control in light general aviation aircraft and in large transports using propfan propulsion. The weight of the added acoustic treatment is estimated and tradeoffs between weight and noise reduction are discussed. A laboratory study of passenger response to combined broadband and tonal propeller like noise is described. Subject discomfort ratings of combined tone broadband noises are compared with ratings of broadband (boundary layer) noise alone, and the relative importance of the propeller tones is examined.

  18. Broadband rotor noise analyses

    NASA Technical Reports Server (NTRS)

    George, A. R.; Chou, S. T.

    1984-01-01

    The various mechanisms which generate broadband noise on a range of rotors studied include load fluctuations due to inflow turbulence, due to turbulent boundary layers passing the blades' trailing edges, and due to tip vortex formation. Existing analyses are used and extensions to them are developed to make more accurate predictions of rotor noise spectra and to determine which mechanisms are important in which circumstances. Calculations based on the various prediction methods in existing experiments were compared. The present analyses are adequate to predict the spectra from a wide variety of experiments on fans, full scale and model scale helicopter rotors, wind turbines, and propellers to within about 5 to 10 dB. Better knowledge of the inflow turbulence improves the accuracy of the predictions. Results indicate that inflow turbulence noise depends strongly on ambient conditions and dominates at low frequencies. Trailing edge noise and tip vortex noise are important at higher frequencies if inflow turbulence is weak. Boundary layer trailing edge noise, important, for large sized rotors, increases slowly with angle of attack but not as rapidly as tip vortex noise.

  19. Noise power spectrum of the fixed pattern noise in digital radiography detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong Sik, E-mail: dskim@hufs.ac.kr; Kim, Eun

    Purpose: The fixed pattern noise in radiography image detectors is caused by various sources. Multiple readout circuits with gate drivers and charge amplifiers are used to efficiently acquire the pixel voltage signals. However, the multiple circuits are not identical and thus yield nonuniform system gains. Nonuniform sensitivities are also produced from local variations in the charge collection elements. Furthermore, in phosphor-based detectors, the optical scattering at the top surface of the columnar CsI growth, the grain boundaries, and the disorder structure causes spatial sensitivity variations. These nonuniform gains or sensitivities cause fixed pattern noise and degrade the detector performance, evenmore » though the noise problem can be partially alleviated by using gain correction techniques. Hence, in order to develop good detectors, comparative analysis of the energy spectrum of the fixed pattern noise is important. Methods: In order to observe the energy spectrum of the fixed pattern noise, a normalized noise power spectrum (NNPS) of the fixed pattern noise is considered in this paper. Since the fixed pattern noise is mainly caused by the nonuniform gains, we call the spectrum the gain NNPS. We first asymptotically observe the gain NNPS and then formulate two relationships to calculate the gain NNPS based on a nonuniform-gain model. Since the gain NNPS values are quite low compared to the usual NNPS, measuring such a low NNPS value is difficult. By using the average of the uniform exposure images, a robust measuring method for the gain NNPS is proposed in this paper. Results: By using the proposed measuring method, the gain NNPS curves of several prototypes of general radiography and mammography detectors were measured to analyze their fixed pattern noise properties. We notice that a direct detector, which is based on the a-Se photoconductor, showed lower gain NNPS than the indirect-detector case, which is based on the CsI scintillator. By comparing

  20. Optical Johnson noise thermometry

    NASA Technical Reports Server (NTRS)

    Shepard, R. L.; Blalock, T. V.; Maxey, L. C.; Roberts, M. J.; Simpson, M. L.

    1989-01-01

    A concept is being explored that an optical analog of the electrical Johnson noise may be used to measure temperature independently of emissivity. The concept is that a laser beam may be modulated on reflection from a hot surface by interaction of the laser photons with the thermally agitated conduction electrons or the lattice phonons, thereby adding noise to the reflected laser beam. If the reflectance noise can be detected and quantified in a background of other noise in the optical and signal processing systems, the reflectance noise may provide a noncontact measurement of the absolute surface temperature and may be independent of the surface's emissivity.

  1. Estimation of Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, Kenji; Camp, Jordan

    2012-01-01

    We evaluate mechanical thermal noise in semiconductor lasers, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Our simple model determines an underlying fundamental limit for the frequency noise of free-running semiconductor laser, and provides a framework: where the noise may be potentially reduced with improved design.

  2. A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Spalt, Taylor B.; Fuller, Christopher R.; Brooks, Thomas F.; Humphreys, William M., Jr.; Brooks, Thomas F.

    2011-01-01

    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions.

  3. The battle against noise in industry

    NASA Astrophysics Data System (ADS)

    Iudin, E. Ia.

    The physiological effects of noise in manufacturing plants and other industrial facilities are discussed, and several common noise abatement methods are described. Consideration is given to the acoustic properties of three types of noise which are present in industrial plants: aerohydrodynamic noise; mechanical noise; and electromagnetic noise. Among the specific noise abatement techniques discussed are: sound isolation by means of noise-absorbant screens; insulation or noise-emitting media; and acoustic interference. The use of earplugs and external ear protectors for protection of individual workers in noisy work environments is also considered.

  4. Controlling Industrial Noise

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Handbook gives basic comprehensive information on noise in industrial environments. Intended to aid engineers in understanding measuring and controlling noise whether or not they have experiences in acoustics.

  5. Noise control in aeroacoustics; Proceedings of the 1993 National Conference on Noise Control Engineering, NOISE-CON 93, Williamsburg, VA, May 2-5, 1993

    NASA Astrophysics Data System (ADS)

    Hubbard, Harvey H.

    In the conference over 100 papers were presented in eight sessions: (1) Emission: Noise Sources; (2) Physical Phenomena; (3) Noise ControlElements; (4) Vibration and Shock: Generation, Transmission, Isolation, and Reduction; (5) Immission: Physical Aspects of Environmental Noise; (6) Immission: Effects of Noise; (7) Analysis; and (8) Requirements. In addition, the distinguished lecture series included presentations on the High Speed Civil Transport and on research from the United Kingdom on aircraft noise effects. For individual titles, see A95-90089 through A95-90141.

  6. Active noise control using noise source having adaptive resonant frequency tuning through variable ring loading

    NASA Technical Reports Server (NTRS)

    Rajiyah, Harindra (Inventor); Pla, Frederic G. (Inventor); Hedeen, Robert A. (Inventor); Renshaw, Anthony A. (Inventor)

    1995-01-01

    A noise source for an aircraft engine active noise cancellation system in which the resonant frequency of noise radiating structure is tuned to permit noise cancellation over a wide range of frequencies. The resonant frequency of the noise radiating structure is tuned by a plurality of drivers arranged to contact the noise radiating structure. Excitation of the drivers causes expansion or contraction of the drivers, thereby varying the edge loading applied to the noise radiating structure. The drivers are actuated by a controller which receives input of a feedback signal proportional to displacement of the noise radiating element and a signal corresponding to the blade passage frequency of the engine's fan. In response, the controller determines a control signal which is sent to the drivers, causing them to expand or contract. The noise radiating structure may be either the outer shroud of the engine or a ring mounted flush with an inner wall of the shroud or disposed in the interior of the shroud.

  7. Reception thresholds for sentences in quiet, continuous noise, and interrupted noise in school-age children.

    PubMed

    Stuart, Andrew

    2008-02-01

    Sentence recognition in noise was employed to investigate the development of temporal resolution in school-age children. Eighty children aged 6 to 15 years and 16 young adults participated. Reception thresholds for sentences (RTSs) were determined in quiet and in backgrounds of competing continuous and interrupted noise. In the noise conditions, RTSs were determined with a fixed noise level. RTSs were higher in quiet for six- to seven-year-old children (p = .006). Performance was better in the interrupted noise evidenced by lower RTS signal-to-noise ratios (S/Ns) relative to continuous noise (p < .0001). An effect of age was found in noise (p < .0001) where RTS S/Ns decreased with increasing age. Specifically, children under 14 years performed worse than adults. "Release from masking" was computed by subtracting RTS S/Ns in interrupted noise from continuous noise for each participant. There was no significant difference in RTS S/N difference scores as a function of age (p = .057). Children were more adversely affected by noise and needed greater S/Ns in order to perform as well as adults. Since there was no effect of age on the amount of release from masking, one can suggest that school-age children have inherently poorer processing efficiency rather than temporal resolution.

  8. Airport noise impact reduction through operations

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The airport-noise levels and annoyance model (ALAMO) developed at NASA Langley Research Center is comprised of a system of computer programs which is capable of quantifying airport community noise impact in terms of noise level, population distribution, and human subjective response to noise. The ALAMO can be used to compare the noise impact of an airport's current operating scenario with the noise impact which would result from some proposed change in airport operations. The relative effectiveness of number of noise-impact reduction alternatives is assessed for a major midwest airport. Significant reductions in noise impact are predicted for certain noise abatement strategies while others are shown to result in relatively little noise relief.

  9. Noise in Neural Networks: Thresholds, Hysteresis, and Neuromodulation of Signal-To-Noise

    NASA Astrophysics Data System (ADS)

    Keeler, James D.; Pichler, Elgar E.; Ross, John

    1989-03-01

    We study a neural-network model including Gaussian noise, higher-order neuronal interactions, and neuromodulation. For a first-order network, there is a threshold in the noise level (phase transition) above which the network displays only disorganized behavior and critical slowing down near the noise threshold. The network can tolerate more noise if it has higher-order feedback interactions, which also lead to hysteresis and multistability in the network dynamics. The signal-to-noise ratio can be adjusted in a biological neural network by neuromodulators such as norepinephrine. Comparisons are made to experimental results and further investigations are suggested to test the effects of hysteresis and neuromodulation in pattern recognition and learning. We propose that norepinephrine may ``quench'' the neural patterns of activity to enhance the ability to learn details.

  10. Shot-noise in resistive-diode mixers and the attenuator noise model

    NASA Technical Reports Server (NTRS)

    Kerr, A. R.

    1979-01-01

    The representation of a pumped exponential diode, operating as a mixer, by an equivalent lossy network, is reexamined. It is shown that the model is correct provided the network has ports for all sideband frequencies at which (real) power flow can occur between the diode and its embedding. The temperature of the equivalent network is eta/2 times the physical temperature of the diode. The model is valid only if the series resistance and nonlinear capacitance of the diode are negligible. Expressions are derived for the input and output noise temperature and the noise-temperature ratio of ideal mixers. Some common beliefs concerning noise-figure and noise-temperature ratio are shown to be incorrect.

  11. EIT amplitude noise spectroscopy

    NASA Astrophysics Data System (ADS)

    Whitenack, Benjamin; Tormey, Devan; O'Leary, Shannon; Crescimanno, Michael

    2017-04-01

    EIT Noise spectroscopy is usually studied by computing a correlation statistic based on temporal intensity variations of the two (circular polarization) propagation eigenstates. Studying the intensity noise correlations that result from amplitude mixing that we perform before and after the cell allows us to recast it in terms of the underlying amplitude noise. This leads to new tests of the quantum optics theory model and suggests an approach to the use of noise spectroscopy for vector magnetometry.

  12. Poultry Plant Noise Control

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A demonstration conducted last winter at the Tip Top Poultry Plant intended to show poultry plant managers from all over the U.S. potential solutions to the problem of plant noise. Plastic covers used over sound absorbing materials need to meet cleanability requirements, high- pressure water cleaning and other harsh maintenance procedures peculiar to the poultry processing industry. For the demonstration, Fiber Flex, Inc. manufactured and donated 750 noise panels; Owens-Corning Fiberglas Corporation donated the fiberglas cores; and the cover material was purchased from Howe and Bainbridge. The Engineering Experiment Station (EES) conducted before and after noise surveys and is evaluating the effect of noise reduction on turnover and productivity in the demonstration plant. EES plans to conduct a noise abatement workshop and update a handbook to help poultry processors with noise problems. EES study and demonstration may be applicable to other food processing plants where similar sanitary constraints exist.

  13. The Airframe Noise Reduction Challenge

    NASA Technical Reports Server (NTRS)

    Lockard, David P.; Lilley, Geoffrey M.

    2004-01-01

    The NASA goal of reducing external aircraft noise by 10 dB in the near-term presents the acoustics community with an enormous challenge. This report identifies technologies with the greatest potential to reduce airframe noise. Acoustic and aerodynamic effects will be discussed, along with the likelihood of industry accepting and implementing the different technologies. We investigate the lower bound, defined as noise generated by an aircraft modified with a virtual retrofit capable of eliminating all noise associated with the high lift system and landing gear. However, the airframe noise of an aircraft in this 'clean' configuration would only be about 8 dB quieter on approach than current civil transports. To achieve the NASA goal of 10 dB noise reduction will require that additional noise sources be addressed. Research shows that energy in the turbulent boundary layer of a wing is scattered as it crosses trailing edge. Noise generated by scattering is the dominant noise mechanism on an aircraft flying in the clean configuration. Eliminating scattering would require changes to much of the aircraft, and practical reduction devices have yet to receive serious attention. Evidence suggests that to meet NASA goals in civil aviation noise reduction, we need to employ emerging technologies and improve landing procedures; modified landing patterns and zoning restrictions could help alleviate aircraft noise in communities close to airports.

  14. Aircraft and background noise annoyance effects

    NASA Technical Reports Server (NTRS)

    Willshire, K. F.

    1984-01-01

    To investigate annoyance of multiple noise sources, two experiments were conducted. The first experiment, which used 48 subjects, was designed to establish annoyance-noise level functions for three community noise sources presented individually: jet aircraft flyovers, air conditioner, and traffic. The second experiment, which used 216 subjects, investigated the effects of background noise on aircraft annoyance as a function of noise level and spectrum shape; and the differences between overall, aircraft, and background noise annoyance. In both experiments, rated annoyance was the dependent measure. Results indicate that the slope of the linear relationship between annoyance and noise level for traffic is significantly different from that of flyover and air conditioner noise and that further research was justified to determine the influence of the two background noises on overall, aircraft, and background noise annoyance (e.g., experiment two). In experiment two, total noise exposure, signal-to-noise ratio, and background source type were found to have effects on all three types of annoyance. Thus, both signal-to-noise ratio, and the background source must be considered when trying to determine community response to combined noise sources.

  15. General Aviation Interior Noise. Part 3; Noise Control Measure Evaluation

    NASA Technical Reports Server (NTRS)

    Unruh, James F.; Till, Paul D.; Palumbo, Daniel L. (Technical Monitor)

    2002-01-01

    The work reported herein is an extension to the work accomplished under NASA Grant NAG1-2091 on the development of noise/source/path identification techniques for single engine propeller driven General Aviation aircraft. The previous work developed a Conditioned Response Analysis (CRA) technique to identify potential noise sources that contributed to the dominating tonal responses within the aircraft cabin. The objective of the present effort was to improve and verify the findings of the CRA and develop and demonstrate noise control measures for single engine propeller driven General Aviation aircraft.

  16. Communication system with adaptive noise suppression

    NASA Technical Reports Server (NTRS)

    Kozel, David (Inventor); Devault, James A. (Inventor); Birr, Richard B. (Inventor)

    2007-01-01

    A signal-to-noise ratio dependent adaptive spectral subtraction process eliminates noise from noise-corrupted speech signals. The process first pre-emphasizes the frequency components of the input sound signal which contain the consonant information in human speech. Next, a signal-to-noise ratio is determined and a spectral subtraction proportion adjusted appropriately. After spectral subtraction, low amplitude signals can be squelched. A single microphone is used to obtain both the noise-corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoiced frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Spectral subtraction may be performed on a composite noise-corrupted signal, or upon individual sub-bands of the noise-corrupted signal. Pre-averaging of the input signal's magnitude spectrum over multiple time frames may be performed to reduce musical noise.

  17. Area computer model for transportation noise prediction : phase II--improved noise prediction methods.

    DOT National Transportation Integrated Search

    1975-01-01

    This report recommended that NOISE 3 initially use the same basic logic as the MICNOISE program for highway noise prediction except that additional options be made available, such as flexibility in specifying vehicle noise sources. A choice of six no...

  18. Environmental Noise

    NASA Astrophysics Data System (ADS)

    Rumberg, Martin

    Environmental noise may be defined as unwanted sound that is caused by emissions from traffic (roads, air traffic corridors, and railways), industrial sites and recreational infrastructures, which may cause both annoyance and damage to health. Noise in the environment or community seriously affects people, interfering with daily activities at school, work and home and during leisure time.

  19. Fundamental Limit of 1/f Frequency Noise in Semiconductor Lasers Due to Mechanical Thermal Noise

    NASA Technical Reports Server (NTRS)

    Numata, K.; Camp, J.

    2011-01-01

    So-called 1/f noise has power spectral density inversely proportional to frequency, and is observed in many physical processes. Single longitudinal-mode semiconductor lasers, used in variety of interferometric sensing applications, as well as coherent communications, exhibit 1/f frequency noise at low frequency (typically below 100kHz). Here we evaluate mechanical thermal noise due to mechanical dissipation in semiconductor laser components and give a plausible explanation for the widely-observed 1/f frequency noise, applying a methodology developed for fixed-spacer cavities for laser frequency stabilization. Semiconductor-laser's short cavity, small beam radius, and lossy components are expected to emphasize thermal-noise-limited frequency noise. Our simple model largely explains the different 1/f noise levels observed in various semiconductor lasers, and provides a framework where the noise may be reduced with proper design.

  20. Helicopter noise regulations: An industry perspective

    NASA Technical Reports Server (NTRS)

    Wagner, R. A.

    1978-01-01

    A review of helicopter noise measurement programs and noise reduction/economic studies of FAA is given along with a critique of a study which addresses the economic impact of noise reduction on helicopter noise. Modification of several helicopters to reduce noise and demonstrate the economic impact of the application of the current state-of-the-art technology is discussed. Specific helicopters described include Boeing Vertol 347 Helicopter, Hughes OH-6 Helicopter, and Hughes 269C Helicopter. Other topics covered include: (1) noise trends and possible noise limits; (2) accuracy of helicopter noise prediction techniques; (3) limited change possibilities of derivatives; and (4) rotor impulsive noise. The unique operational capabilities of helicopters and the implications relative to noise regulations and certification are discussed.

  1. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling.

    PubMed

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment.

  2. Stochastic speckle noise compensation in optical coherence tomography using non-stationary spline-based speckle noise modelling

    PubMed Central

    Cameron, Andrew; Lui, Dorothy; Boroomand, Ameneh; Glaister, Jeffrey; Wong, Alexander; Bizheva, Kostadinka

    2013-01-01

    Optical coherence tomography (OCT) allows for non-invasive 3D visualization of biological tissue at cellular level resolution. Often hindered by speckle noise, the visualization of important biological tissue details in OCT that can aid disease diagnosis can be improved by speckle noise compensation. A challenge with handling speckle noise is its inherent non-stationary nature, where the underlying noise characteristics vary with the spatial location. In this study, an innovative speckle noise compensation method is presented for handling the non-stationary traits of speckle noise in OCT imagery. The proposed approach centers on a non-stationary spline-based speckle noise modeling strategy to characterize the speckle noise. The novel method was applied to ultra high-resolution OCT (UHROCT) images of the human retina and corneo-scleral limbus acquired in-vivo that vary in tissue structure and optical properties. Test results showed improved performance of the proposed novel algorithm compared to a number of previously published speckle noise compensation approaches in terms of higher signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR) and better overall visual assessment. PMID:24049697

  3. Inter-noise 89 - Engineering for environmental noise control; Proceedings of the International Conference on Noise Control Engineering, Newport Beach, CA, Dec. 4-6, 1989. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Maling, George C., Jr.

    Recent advances in noise analysis and control theory and technology are discussed in reviews and reports. Topics addressed include noise generation; sound-wave propagation; noise control by external treatments; vibration and shock generation, transmission, isolation, and reduction; multiple sources and paths of environmental noise; noise perception and the physiological and psychological effects of noise; instrumentation, signal processing, and analysis techniques; and noise standards and legal aspects. Diagrams, drawings, graphs, photographs, and tables of numerical data are provided.

  4. Noise and soundscape in Rome

    NASA Astrophysics Data System (ADS)

    Brambilla, Giovanni

    2004-05-01

    Noise pollution is an old problem in Rome. In 45 B.C. the Lex Julia Municipalis limited carriage traffic in the city center to specific times. Road traffic constitutes the most important and widespread noise source, and several investigations have been conducted since 1972, some aimed at developing a numerical model for predicting the hourly LAeq level. In order to reduce the large impact of this type of noise some measures have been carried out, including surfacing with porous asphalt, erection of noise barriers, limitation in time and spacing of private traffic, etc. However, most of the public complaints deal with noise from equipment operation and recreational activities rather than transportation systems. Moreover, the most famous tourist areas opened to pedestrians only are not as quiet as expected but their sound environment is usually rated more acceptable than noise from other sources at the same level. In compliance with the Italian legislation on noise, the Municipality of Rome issued a noise zoning code for its own territory, and a noise mapping is in progress, pursuant to the requirements of the 2002/49/EC European directive. A Geographical Information System has been also developed to manage all the aspects of noise pollution.

  5. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance.

    PubMed

    Guski, Rainer; Schreckenberg, Dirk; Schuemer, Rudolf

    2017-12-08

    Background : This paper describes a systematic review and meta-analyses on effects of environmental noise on annoyance. The noise sources include aircraft, road, and rail transportation noise as well as wind turbines and noise source combinations. Objectives: Update knowledge about effects of environmental noise on people living in the vicinity of noise sources. Methods: Eligible were published studies (2000-2014) providing comparable acoustical and social survey data including exposure-response functions between standard indicators of noise exposure and standard annoyance responses. The systematic literature search in 20 data bases resulted in 62 studies, of which 57 were used for quantitative meta-analyses. By means of questionnaires sent to the study authors, additional study data were obtained. Risk of bias was assessed by means of study characteristics for individual studies and by funnel plots to assess the risk of publication bias. Main Results: Tentative exposure-response relations for percent highly annoyed residents (%HA) in relation to noise levels for aircraft, road, rail, wind turbine and noise source combinations are presented as well as meta-analyses of correlations between noise levels and annoyance raw scores, and the OR for increase of %HA with increasing noise levels. Quality of evidence was assessed using the GRADE terminology. The evidence of exposure-response relations between noise levels and %HA is moderate (aircraft and railway) or low (road traffic and wind turbines). The evidence of correlations between noise levels and annoyance raw scores is high (aircraft and railway) or moderate (road traffic and wind turbines). The evidence of ORs representing the %HA increase by a certain noise level increase is moderate (aircraft noise), moderate/high (road and railway traffic), and low (wind turbines). Strengths and Limitations: The strength of the evidence is seen in the large total sample size encompassing the included studies (e.g., 18

  6. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Annoyance

    PubMed Central

    Guski, Rainer; Schreckenberg, Dirk; Schuemer, Rudolf

    2017-01-01

    Background: This paper describes a systematic review and meta-analyses on effects of environmental noise on annoyance. The noise sources include aircraft, road, and rail transportation noise as well as wind turbines and noise source combinations. Objectives: Update knowledge about effects of environmental noise on people living in the vicinity of noise sources. Methods: Eligible were published studies (2000–2014) providing comparable acoustical and social survey data including exposure-response functions between standard indicators of noise exposure and standard annoyance responses. The systematic literature search in 20 data bases resulted in 62 studies, of which 57 were used for quantitative meta-analyses. By means of questionnaires sent to the study authors, additional study data were obtained. Risk of bias was assessed by means of study characteristics for individual studies and by funnel plots to assess the risk of publication bias. Main Results: Tentative exposure-response relations for percent highly annoyed residents (%HA) in relation to noise levels for aircraft, road, rail, wind turbine and noise source combinations are presented as well as meta-analyses of correlations between noise levels and annoyance raw scores, and the OR for increase of %HA with increasing noise levels. Quality of evidence was assessed using the GRADE terminology. The evidence of exposure-response relations between noise levels and %HA is moderate (aircraft and railway) or low (road traffic and wind turbines). The evidence of correlations between noise levels and annoyance raw scores is high (aircraft and railway) or moderate (road traffic and wind turbines). The evidence of ORs representing the %HA increase by a certain noise level increase is moderate (aircraft noise), moderate/high (road and railway traffic), and low (wind turbines). Strengths and Limitations: The strength of the evidence is seen in the large total sample size encompassing the included studies (e.g., 18

  7. Molecular Filters for Noise Reduction.

    PubMed

    Laurenti, Luca; Csikasz-Nagy, Attila; Kwiatkowska, Marta; Cardelli, Luca

    2018-06-19

    Living systems are inherently stochastic and operate in a noisy environment, yet despite all these uncertainties, they perform their functions in a surprisingly reliable way. The biochemical mechanisms used by natural systems to tolerate and control noise are still not fully understood, and this issue also limits our capacity to engineer reliable, quantitative synthetic biological circuits. We study how representative models of biochemical systems propagate and attenuate noise, accounting for intrinsic as well as extrinsic noise. We investigate three molecular noise-filtering mechanisms, study their noise-reduction capabilities and limitations, and show that nonlinear dynamics such as complex formation are necessary for efficient noise reduction. We further suggest that the derived molecular filters are widespread in gene expression and regulation and, particularly, that microRNAs can serve as such noise filters. To our knowledge, our results provide new insight into how biochemical networks control noise and could be useful to build robust synthetic circuits. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  8. Airframe self-noise: Four years of research. [aircraft noise reduction for commercial aircraft

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.

    1976-01-01

    A critical assessment of the state of the art in airframe self-noise is presented. Full-scale data on the intensity, spectra and directivity of this noise source are evaluated in the light of the comprehensive theory developed by Ffowcs-Williams and Hawkins. Vibration of panels on commercial aircraft is identified as a possible additional source of airframe noise. The present understanding and methods for prediction of other component sources - airfoils, struts, and cavities - are discussed, and areas for further research as well as potential methods for airframe noise reduction are identified. Finally, the various experimental methods which have been developed for airframe noise research are discussed and sample results are presented.

  9. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-11-30

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance , as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered.

  10. Partial and Total Annoyance Due to Road Traffic Noise Combined with Aircraft or Railway Noise: Structural Equation Analysis

    PubMed Central

    Gille, Laure-Anne; Marquis-Favre, Catherine; Lam, Kin-Che

    2017-01-01

    Structural equation modeling was used to analyze partial and total in situ annoyance in combined transportation noise situations. A psychophysical total annoyance model and a perceptual total annoyance model were proposed. Results show a high contribution of Noise exposure and Noise sensitivity to Noise annoyance, as well as a causal relationship between noise annoyance and lower Dwelling satisfaction. Moreover, the Visibility of noise source may increase noise annoyance, even when the visible noise source is different from the annoying source under study. With regards to total annoyance due to road traffic noise combined with railway or aircraft noise, even though in both situations road traffic noise may be considered background noise and the other noise source event noise, the contribution of road traffic noise to the models is greater than railway noise and smaller than aircraft noise. This finding may be explained by the difference in sound pressure levels between these two types of combined exposures or by the aircraft noise level, which may also indicate the city in which the respondents live. Finally, the results highlight the importance of sample size and variable distribution in the database, as different results can be observed depending on the sample or variables considered. PMID:29189751

  11. Perspectives on jet noise

    NASA Technical Reports Server (NTRS)

    Ribner, H. S.

    1981-01-01

    Jet noise is a byproduct of turbulence. Until recently turbulence was assumed to be known statistically, and jet noise was computed therefrom. As a result of new findings though on the behavior of vortices and instability waves, a more integrated view of the problem has been accepted lately. After presenting a simple view of jet noise, the paper attempts to resolve the apparent differences between Lighthill's and Lilley's interpretations of mean-flow shear, and examines a number of ad hoc approaches to jet noise suppression.

  12. Noise-induced hearing loss.

    PubMed

    Sliwinska-Kowalska, Mariola; Davis, Adrian

    2012-01-01

    Noise-induced hearing loss (NIHL) still remains a problem in developed countries, despite reduced occupational noise exposure, strict standards for hearing protection and extensive public health awareness campaigns. Therefore NIHL continues to be the focus of noise research activities. This paper summarizes progress achieved recently in our knowledge of NIHL. It includes papers published between the years 2008-2011 (in English), which were identified by a literature search of accessible medical and other relevant databases. A substantial part of this research has been concerned with the risk of NIHL in the entertainment sector, particularly in professional, orchestral musicians. There are also constant concerns regarding noise exposure and hearing risk in "hard to control" occupations, such as farming and construction work. Although occupational noise has decreased since the early 1980s, the number of young people subject to social noise exposure has tripled. If the exposure limits from the Noise at Work Regulations are applied, discotheque music, rock concerts, as well as music from personal music players are associated with the risk of hearing loss in teenagers and young adults. Several recent research studies have increased the understanding of the pathomechanisms of acoustic trauma, the genetics of NIHL, as well as possible dietary and pharmacologic otoprotection in acoustic trauma. The results of these studies are very promising and offer grounds to expect that targeted therapies might help prevent the loss of sensory hair cells and protect the hearing of noise-exposed individuals. These studies emphasize the need to launch an improved noise exposure policy for hearing protection along with developing more efficient norms of NIHL risk assessment.

  13. Noise correlation in CBCT projection data and its application for noise reduction in low-dose CBCT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hua; Ouyang, Luo; Wang, Jing, E-mail: jhma@smu.edu.cn, E-mail: jing.wang@utsouthwestern.edu

    2014-03-15

    Purpose: To study the noise correlation properties of cone-beam CT (CBCT) projection data and to incorporate the noise correlation information to a statistics-based projection restoration algorithm for noise reduction in low-dose CBCT. Methods: In this study, the authors systematically investigated the noise correlation properties among detector bins of CBCT projection data by analyzing repeated projection measurements. The measurements were performed on a TrueBeam onboard CBCT imaging system with a 4030CB flat panel detector. An anthropomorphic male pelvis phantom was used to acquire 500 repeated projection data at six different dose levels from 0.1 to 1.6 mAs per projection at threemore » fixed angles. To minimize the influence of the lag effect, lag correction was performed on the consecutively acquired projection data. The noise correlation coefficient between detector bin pairs was calculated from the corrected projection data. The noise correlation among CBCT projection data was then incorporated into the covariance matrix of the penalized weighted least-squares (PWLS) criterion for noise reduction of low-dose CBCT. Results: The analyses of the repeated measurements show that noise correlation coefficients are nonzero between the nearest neighboring bins of CBCT projection data. The average noise correlation coefficients for the first- and second-order neighbors are 0.20 and 0.06, respectively. The noise correlation coefficients are independent of the dose level. Reconstruction of the pelvis phantom shows that the PWLS criterion with consideration of noise correlation (PWLS-Cor) results in a lower noise level as compared to the PWLS criterion without considering the noise correlation (PWLS-Dia) at the matched resolution. At the 2.0 mm resolution level in the axial-plane noise resolution tradeoff analysis, the noise level of the PWLS-Cor reconstruction is 6.3% lower than that of the PWLS-Dia reconstruction. Conclusions: Noise is correlated among nearest

  14. On common noise-induced synchronization in complex networks with state-dependent noise diffusion processes

    NASA Astrophysics Data System (ADS)

    Russo, Giovanni; Shorten, Robert

    2018-04-01

    This paper is concerned with the study of common noise-induced synchronization phenomena in complex networks of diffusively coupled nonlinear systems. We consider the case where common noise propagation depends on the network state and, as a result, the noise diffusion process at the nodes depends on the state of the network. For such networks, we present an algebraic sufficient condition for the onset of synchronization, which depends on the network topology, the dynamics at the nodes, the coupling strength and the noise diffusion. Our result explicitly shows that certain noise diffusion processes can drive an unsynchronized network towards synchronization. In order to illustrate the effectiveness of our result, we consider two applications: collective decision processes and synchronization of chaotic systems. We explicitly show that, in the former application, a sufficiently large noise can drive a population towards a common decision, while, in the latter, we show how common noise can synchronize a network of Lorentz chaotic systems.

  15. Effects of environmental noise on sleep.

    PubMed

    Hume, Kenneth I; Brink, Mark; Basner, Mathias

    2012-01-01

    This paper summarizes the findings from the past 3 year's research on the effects of environmental noise on sleep and identifies key future research goals. The past 3 years have seen continued interest in both short term effects of noise on sleep (arousals, awakenings), as well as epidemiological studies focusing on long term health impacts of nocturnal noise exposure. This research corroborated findings that noise events induce arousals at relatively low exposure levels, and independent of the noise source (air, road, and rail traffic, neighbors, church bells) and the environment (home, laboratory, hospital). New epidemiological studies support already existing evidence that night-time noise is likely associated with cardiovascular disease and stroke in the elderly. These studies collectively also suggest that nocturnal noise exposure may be more relevant for the genesis of cardiovascular disease than daytime noise exposure. Relative to noise policy, new effect-oriented noise protection concepts, and rating methods based on limiting awakening reactions were introduced. The publications of WHO's ''Night Noise Guidelines for Europe'' and ''Burden of Disease from Environmental Noise'' both stress the importance of nocturnal noise exposure for health and well-being. However, studies demonstrating a causal pathway that directly link noise (at ecological levels) and disturbed sleep with cardiovascular disease and/or other long term health outcomes are still missing. These studies, as well as the quantification of the impact of emerging noise sources (e.g., high speed rail, wind turbines) have been identified as the most relevant issues that should be addressed in the field on the effects of noise on sleep in the near future.

  16. High level white noise generator

    DOEpatents

    Borkowski, Casimer J.; Blalock, Theron V.

    1979-01-01

    A wide band, stable, random noise source with a high and well-defined output power spectral density is provided which may be used for accurate calibration of Johnson Noise Power Thermometers (JNPT) and other applications requiring a stable, wide band, well-defined noise power spectral density. The noise source is based on the fact that the open-circuit thermal noise voltage of a feedback resistor, connecting the output to the input of a special inverting amplifier, is available at the amplifier output from an equivalent low output impedance caused by the feedback mechanism. The noise power spectral density level at the noise source output is equivalent to the density of the open-circuit thermal noise or a 100 ohm resistor at a temperature of approximately 64,000 Kelvins. The noise source has an output power spectral density that is flat to within 0.1% (0.0043 db) in the frequency range of from 1 KHz to 100 KHz which brackets typical passbands of the signal-processing channels of JNPT's. Two embodiments, one of higher accuracy that is suitable for use as a standards instrument and another that is particularly adapted for ambient temperature operation, are illustrated in this application.

  17. Shot-noise-limited optical Faraday polarimetry with enhanced laser noise cancelling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiaming; Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, Indiana 46202; Luo, Le, E-mail: leluo@iupui.edu

    2014-03-14

    We present a shot-noise-limited measurement of optical Faraday rotations with sub-ten-nanoradian angular sensitivity. This extremely high sensitivity is achieved by using electronic laser noise cancelling and phase sensitive detection. Specially, an electronic laser noise canceller with a common mode rejection ratio of over 100 dB was designed and built for enhanced laser noise cancelling. By measuring the Faraday rotation of ambient air, we demonstrate an angular sensitivity of up to 9.0×10{sup −9} rad/√(Hz), which is limited only by the shot-noise of the photocurrent of the detector. To date, this is the highest angular sensitivity ever reported for Faraday polarimeters in the absencemore » of cavity enhancement. The measured Verdet constant of ambient air, 1.93(3)×10{sup −9}rad/(G cm) at 633 nm wavelength, agrees extremely well with the earlier experiments using high finesse optical cavities. Further, we demonstrate the applications of this sensitive technique in materials science by measuring the Faraday effect of an ultrathin iron film.« less

  18. The role of noise sensitivity in the noise-response relation: A comparison of three international airport studies

    NASA Astrophysics Data System (ADS)

    van Kamp, Irene; Job, R. F. Soames; Hatfield, Julie; Haines, Mary; Stellato, Rebecca K.; Stansfeld, Stephen A.

    2004-12-01

    In order to examine the role of noise sensitivity in response to environmental noise, this paper presents detailed comparisons of socio-acoustic studies conducted around international airports in Amsterdam, Sydney, and London. Earlier findings that noise sensitivity moderates the effect of noise on annoyance were examined to see if they could be replicated in each of the datasets, independent of the technique of measuring noise sensitivity. The relation between exposure to aircraft noise and noise annoyance was studied separately for groups of individuals with low, medium, and high noise sensitivity, with statistical adjustment for relevant confounders. Results support the previous findings that noise sensitivity is an independent predictor of annoyance and adds to the prediction of noise annoyance afforded by noise exposure level by up to 26% of explained variance. There is no evidence of a moderating effect, whereby the covariation between noise exposure level and annoyance is weak for people who score at the extreme high or low end of the sensitivity scale, and strong for people who score in the middle of the sensitivity scale. Generally, noise sensitivity appears to increase annoyance independently of the level of noise exposure after adjustment for relevant confounders. These findings were consistent across the three datasets. .

  19. Handbook of noise ratings

    NASA Technical Reports Server (NTRS)

    Pearsons, K. S.; Bennett, R. L.

    1974-01-01

    The handbook was compiled to provide information in a concise form, describing the multitude of noise rating schemes. It is hoped that by describing the noise rating methods in a single volume the user will have better access to the definitions, application and calculation procedures of the current noise rating methods.

  20. Disturbance caused by aircraft noise

    NASA Technical Reports Server (NTRS)

    Josse, R.

    1980-01-01

    Noise pollution caused by the presence of airfields adjacent to residential areas is studied. Noise effects on the sleep of residents near airports and the degree of the residents noise tolerance are evaluated. What aircraft noises are annoying and to what extent the annoyance varies with sound level are discussed.

  1. Noise and linearity optimization methods for a 1.9GHz low noise amplifier.

    PubMed

    Guo, Wei; Huang, Da-Quan

    2003-01-01

    Noise and linearity performances are critical characteristics for radio frequency integrated circuits (RFICs), especially for low noise amplifiers (LNAs). In this paper, a detailed analysis of noise and linearity for the cascode architecture, a widely used circuit structure in LNA designs, is presented. The noise and the linearity improvement techniques for cascode structures are also developed and have been proven by computer simulating experiments. Theoretical analysis and simulation results showed that, for cascode structure LNAs, the first metallic oxide semiconductor field effect transistor (MOSFET) dominates the noise performance of the LNA, while the second MOSFET contributes more to the linearity. A conclusion is thus obtained that the first and second MOSFET of the LNA can be designed to optimize the noise performance and the linearity performance separately, without trade-offs. The 1.9GHz Complementary Metal-Oxide-Semiconductor (CMOS) LNA simulation results are also given as an application of the developed theory.

  2. A targeted noise reduction observational study for reducing noise in a neonatal intensive unit.

    PubMed

    Chawla, S; Barach, P; Dwaihy, M; Kamat, D; Shankaran, S; Panaitescu, B; Wang, B; Natarajan, G

    2017-09-01

    Excessive noise in neonatal intensive care units (NICUs) can interfere with infants' growth, development and healing.Local problem:Sound levels in our NICUs exceeded the recommended levels by the World Health Organization. We implemented a noise reduction strategy in an urban, tertiary academic medical center NICU that included baseline noise measurements. We conducted a survey involving staff and visitors regarding their opinions and perceptions of noise levels in the NICU. Ongoing feedback to staff after each measurement cycle was provided to improve awareness, engagement and adherence with noise reduction strategies. After widespread discussion with active clinician involvement, consensus building and iterative testing, changes were implemented including: lowering of equipment alarm sounds, designated 'quiet times' and implementing a customized education program for staff. A multiphase noise reduction quality improvement (QI) intervention to reduce ambient sound levels in a patient care room in our NICUs by 3 dB (20%) over 18 months. The noise in the NICU was reduced by 3 dB from baseline. Mean (s.d.) baseline, phase 2, 3 and 4 noise levels in the two NICUs were: LAeq: 57.0 (0.84), 56.8 (1.6), 55.3 (1.9) and 54.5 (2.6) dB, respectively (P<0.01). Adherence with the planned process measure of 'quiet times' was >90%. Implementing a multipronged QI initiative resulted in significant noise level reduction in two multipod NICUs. It is feasible to reduce noise levels if QI interventions are coupled with active engagement of the clinical staff and following continuous process of improvement methods, measurements and protocols.

  3. Hypertension and Exposure to Noise near Airports (HYENA): study design and noise exposure assessment.

    PubMed

    Jarup, Lars; Dudley, Marie-Louise; Babisch, Wolfgang; Houthuijs, Danny; Swart, Wim; Pershagen, Göran; Bluhm, Gösta; Katsouyanni, Klea; Velonakis, Manolis; Cadum, Ennio; Vigna-Taglianti, Federica

    2005-11-01

    An increasing number of people live near airports with considerable noise and air pollution. The Hypertension and Exposure to Noise near Airports (HYENA) project aims to assess the impact of airport-related noise exposure on blood pressure (BP) and cardiovascular disease using a cross-sectional study design. We selected 6,000 persons (45-70 years of age) who had lived at least 5 years near one of six major European airports. We used modeled aircraft noise contours, aiming to maximize exposure contrast. Automated BP instruments are used to reduce observer error. We designed a standardized questionnaire to collect data on annoyance, noise disturbance, and major confounders. Cortisol in saliva was collected in a subsample of the study population (n = 500) stratified by noise exposure level. To investigate short-term noise effects on BP and possible effects on nighttime BP dipping, we measured 24-hr BP and assessed continuous night noise in another subsample (n = 200). To ensure comparability between countries, we used common noise models to assess individual noise exposure, with a resolution of 1 dB(A). Modifiers of individual exposure, such as the orientation of living and bedroom toward roads, window-opening habits, and sound insulation, were assessed by the questionnaire. For four airports, we estimated exposure to air pollution to explore modifying effects of air pollution on cardiovascular disease. The project assesses exposure to traffic-related air pollutants, primarily using data from another project funded by the European Union (APMoSPHERE, Air Pollution Modelling for Support to Policy on Health and Environmental Risks in Europe).

  4. Landing gear noise attenuation

    NASA Technical Reports Server (NTRS)

    Moe, Jeffrey W. (Inventor); Whitmire, Julia (Inventor); Abeysinghe, Amal (Inventor); Kwan, Hwa-Wan (Inventor)

    2011-01-01

    A landing gear noise attenuator mitigates noise generated by airframe deployable landing gear. The noise attenuator can have a first position when the landing gear is in its deployed or down position, and a second position when the landing gear is in its up or stowed position. The noise attenuator may be an inflatable fairing that does not compromise limited space constraints associated with landing gear retraction and stowage. A truck fairing mounted under a truck beam can have a compliant edge to allow for non-destructive impingement of a deflected fire during certain conditions.

  5. Environmental Propagation of Noise in Mines and Nearby Villages: A Study Through Noise Mapping

    PubMed Central

    Manwar, Veena D.; Mandal, Bibhuti B.; Pal, Asim K.

    2016-01-01

    Background: Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS). As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A), and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B) or only by increased mechanization and not changing the duration of work (Situation C). Methods: Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. Results: In all three situations, Lden values were 95 dB(A) and 70–80 dB(A) near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A) around shovels. Noise levels on both sides of conveyor belts were in the range of 80–85 dB(A) in Situations A and C whereas it was 85–90 dB(A) in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A) in Situations A and C and between 85 and 95 dB(A) in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB) limits, i.e., 55 dB(A). Conclusions: For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation. PMID:27569406

  6. Environmental propagation of noise in mines and nearby villages: A study through noise mapping.

    PubMed

    Manwar, Veena D; Mandal, Bibhuti B; Pal, Asim K

    2016-01-01

    Noise mapping being an established practice in Europe is hardly practiced for noise management in India although it is mandatory in Indian mines as per guidelines of the Directorate General of Mines Safety (DGMS). As a pilot study, noise mapping was conducted in an opencast mine with three different models; one based on the baseline operating conditions in two shifts (Situation A), and two other virtual situations where either production targets were enhanced by extending working hours to three shifts (Situation B) or only by increased mechanization and not changing the duration of work (Situation C). Noise sources were categorized as point, line, area, and moving sources. Considering measured power of the sources, specific meteorological and geographical parameters, noise maps were generated using Predictor LimA software. In all three situations, Lden values were 95 dB(A) and 70-80 dB(A) near drill machine and haul roads, respectively. Noise contours were wider in Situation C due to increase in frequency of dumpers. Lden values near Shovel 1 and Shovel 2 under Situation B increased by 5 dB and 3 dB, respectively due to expansion of working hours. In Situation C, noise levels were >82 dB(A) around shovels. Noise levels on both sides of conveyor belts were in the range of 80-85 dB(A) in Situations A and C whereas it was 85-90 dB(A) in Situation B. Near crusher plants, it ranged from 80 to 90 dB(A) in Situations A and C and between 85 and 95 dB(A) in Situation B. In all situations, noise levels near residential areas exceeded the Central Pollution Control Board (CPCB) limits, i.e., 55 dB(A). For all situations, predicted noise levels exceeded CPCB limits within the mine and nearby residential area. Residential areas near the crusher plants are vulnerable to increased noise propagation. It is recommended to put an acoustic barrier near the crusher plant to attenuate the noise propagation.

  7. FAA/NASA En Route Noise Symposium

    NASA Technical Reports Server (NTRS)

    Powell, Clemans A. (Compiler)

    1990-01-01

    Aircraft community noise annoyance is traditionally a concern only in localities near airports. The proposed introduction of large commercial airplanes with advanced turboprop propulsion systems with supersonic propellers has given rise to concerns of noise annoyance in areas previously considered not to be impacted by aircraft noise. A symposium was held to assess the current knowledge of factors important to the impact of en route noise and to aid in the formulation of FAA and NASA programs in the area. Papers were invited on human response to aircraft noise in areas with low ambient noise levels, aircraft noise heard indoors and outdoors, aircraft noise in recreational areas, detection of propeller and jet aircraft noise, and methodological issues relevant to the design of future studies.

  8. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1994-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section, and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration, and loading noise.

  9. Using noise to shape motor learning

    PubMed Central

    Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721

  10. Nature of orchestral noise.

    PubMed

    O'Brien, Ian; Wilson, Wayne; Bradley, Andrew

    2008-08-01

    Professional orchestral musicians are at risk of exposure to excessive noise when at work. This is an industry-wide problem that threatens not only the hearing of orchestral musicians but also the way orchestras operate. The research described in this paper recorded noise levels within a professional orchestra over three years in order to provide greater insight to the orchestral noise environment; to guide future research into orchestral noise management and hearing conservation strategies; and to provide a basis for the future education of musicians and their managers. Every rehearsal, performance, and recording from May 2004 to May 2007 was monitored, with the woodwind, brass, and percussion sections monitored in greatest detail. The study recorded dBALEQ and dBC peak data, which are presented in graphical form with accompanying summarized data tables. The findings indicate that the principal trumpet, first and third horns, and principal trombone are at greatest risk of exposure to excessive sustained noise levels and that the percussion and timpani are at greatest risk of exposure to excessive peak noise levels. However, the findings also strongly support the notion that the true nature of orchestral noise is a great deal more complex than this simple statement would imply.

  11. Comparison of two transonic noise prediction formulations using the aircraft noise prediction program

    NASA Technical Reports Server (NTRS)

    Spence, Peter L.

    1987-01-01

    This paper addresses recently completed work on using Farassat's Formulation 3 noise prediction code with the Aircraft Noise Prediction Program (ANOPP). Software was written to link aerodynamic loading generated by the Propeller Loading (PLD) module within ANOPP with formulation 3. Included are results of comparisons between Formulation 3 with ANOPP's existing noise prediction modules, Subsonic Propeller Noise (SPN) and Transonic Propeller Noise (TPN). Four case studies are investigated. Results of the comparison studies show excellent agreement for the subsonic cases. Differences found in the comparisons made under transonic conditions are strictly numerical and can be explained by the way in which the time derivative is calculated in Formulation 3. Also included is a section on how to execute Formulation 3 with ANOPP.

  12. Characteristics of propeller noise on an aircraft fuselage related to interior noise transmission

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Barton, C. K.; Piersol, A. G.; Wilby, J. F.

    1979-01-01

    Exterior noise was measured on the fuselage of a twin-engine, light aircraft at four values of engine rpm in ground static tests and at forward speeds up to 36 m/s in taxi tests. Propeller noise levels, spectra, and correlations were determined using a horizontal array of seven flush-mounted microphones and a vertical array of four flush-mounted microphones in the propeller plane. The measured levels and spectra are compared with predictions based on empirical and analytical methods for static and taxi conditions. Trace wavelengths of the propeller noise field, obtained from point-to-point correlations, are compared with the aircraft sidewall structural dimensions, and some analytical results are presented that suggest the sensitivity of interior noise transmission to variations of the propeller noise characteristics.

  13. En Route Jet Aircraft Noise Analysis

    DOT National Transportation Integrated Search

    2012-12-15

    Most research into commercial noise is primarily focused on reducing the community noise, noise that the local population near an airport experiences as aircraft takeoff and land. While this type of noise may be a main driver for the noise that commu...

  14. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed using a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify deficiencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the measured data, a sensitivity analysis of the model parameters with emphasis on the definition of the convection velocity parameter, and a least-squares fit of the predicted to the measured shock-associated noise component spectra, resulted in a new definition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  15. Seismometer Self-Noise and Measuring Methods

    USGS Publications Warehouse

    Ringler, Adam; R. Sleeman,; Hutt, Charles R.; Gee, Lind S.

    2014-01-01

    Seismometer self-noise is usually not considered when selecting and using seismic waveform data in scientific research as it is typically assumed that the self-noise is negligibly small compared to seismic signals. However, instrumental noise is part of the noise in any seismic record, and in particular, at frequencies below a few mHz, the instrumental noise has a frequency-dependent character and may dominate the noise. When seismic noise itself is considered as a carrier of information, as in seismic interferometry (e.g., Chaput et al. 2012), it becomes extremely important to estimate the contribution of instrumental noise to the recordings.

  16. Fan Noise Test Facility

    NASA Image and Video Library

    1969-01-21

    The Fan Noise Test Facility built at the Lewis Research Center to obtain far-field noise data for the National Aeronautics and Space Administration (NASA) and General Electric Quiet Engine Program. The engine incorporated existing noise reduction methods into an engine of similar power to those that propelled the Boeing 707 or McDonnell-Douglas DC-8 airliner. The new the low-bypass ratio turbofan engines of the 1960s were inherently quieter than their turbojet counterparts, researchers had a better grasp of the noise generation problem, and new acoustic technologies had emerged. Lewis contracted General Electric in 1969 to build and aerodynamically test three experimental engines with 72-inch diameter fans. The engines were then brought to Lewis and tested with an acoustically treated nacelle. This Fan Noise Test Facility was built off of the 10- by 10-Foot Supersonic Wind Tunnel’s Main Compressor and Drive Building. Lewis researchers were able to isolate the fan’s noise during these initial tests by removing the core of the engine. The Lewis test rig drove engines to takeoff tip speeds of 1160 feet per second. The facility was later used to test a series of full-scale model fans and fan noise suppressors to be used with the quiet engine. NASA researchers predicted low-speed single-stage fans without inlet guide vanes and with large spacing between rotors and stators would be quieter. General Electric modified a TF39 turbofan engine by removing the the outer protion of the fan and spacing the blade rows of the inner portion. The tests revealed that the untreated version of the engine generated less noise than was anticipated, and the acoustically treated nacelle substantially reduced engine noise.

  17. Analysis of helicopter noise data using international helicopter noise certification procedures

    DOT National Transportation Integrated Search

    1986-03-31

    This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program involving seven helicopters and established noise levels using the basic testing, reduction and analysis procedures specified by the In...

  18. Emerging Community Noise Reduction Approaches

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2012-01-01

    An overview of the current NASA research portfolio in the area of aircraft noise reduction is presented. The emphasis of the research described herein is on meeting the aggressive near- and mid-term national goals for reducing aircraft noise emissions, which NASA internal studies have shown to be feasible using noise reduction technologies currently being developed in-house or in partnership with NASA s industry and academic partners. While NASA has an active research effort in airframe noise reduction, this overview focuses on propulsion noise reduction only.

  19. Technical noise supplement : TeNS : a technical supplement to the Traffic Noise Analysis Protocol.

    DOT National Transportation Integrated Search

    1998-10-01

    The purpose of this Technical Noise Supplement (TeNS) is to provide technical background : information on transportation-related noise in general and highway traffic noise in : particular. It is designed to elaborate on technical concepts and procedu...

  20. Propfan noise propagation

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.

    1993-01-01

    The unconventional supersonic tip speed of advanced propellers has led to uncertainties about Propfan's noise acceptability and compliance with Federal Aviation Noise Regulation (FAR 36). Overhead flight testing of the Propfan with an SR-7L blade during 1989's Propfan Test Assessment (PTA) Program have shown unexpectedly high far-field sound pressure levels. This study here attempts to provide insights into the acoustics of a single-rotating propeller (SRP) with supersonic tip speed. At the same time, the role of the atmosphere in shaping the far-field noise characteristics is investigated.

  1. Cancelation and its simulation using Matlab according to active noise control case study of automotive noise silencer

    NASA Astrophysics Data System (ADS)

    Alfisyahrin; Isranuri, I.

    2018-02-01

    Active Noise Control is a technique to overcome noisy with noise or sound countered with sound in scientific terminology i.e signal countered with signals. This technique can be used to dampen relevant noise in accordance with the wishes of the engineering task and reducing automotive muffler noise to a minimum. Objective of this study is to develop a Active Noise Control which should cancel the noise of automotive Exhaust (Silencer) through Signal Processing Simulation methods. Noise generator of Active Noise Control is to make the opponent signal amplitude and frequency of the automotive noise. The steps are: Firstly, the noise of automotive silencer was measured to characterize the automotive noise that its amplitude and frequency which intended to be expressed. The opposed sound which having similar character with the signal source should be generated by signal function. A comparison between the data which has been completed with simulation calculations Fourier transform field data is data that has been captured on the muffler (noise silencer) Toyota Kijang Capsule assembly 2009. MATLAB is used to simulate how the signal processing noise generated by exhaust (silencer) using FFT. This opponent is inverted phase signal from the signal source 180° conducted by Instruments of Signal Noise Generators. The process of noise cancelation examined through simulation using computer software simulation. The result is obtained that attenuation of sound (noise cancellation) has a difference of 33.7%. This value is obtained from the comparison of the value of the signal source and the signal value of the opponent. So it can be concluded that the noisy signal can be attenuated by 33.7%.

  2. The effect of noise-induced hearing loss on the intelligibility of speech in noise

    NASA Astrophysics Data System (ADS)

    Smoorenburg, G. F.; Delaat, J. A. P. M.; Plomp, R.

    1981-06-01

    Speech reception thresholds, both in quiet and in noise, and tone audiograms were measured for 14 normal ears (7 subjects) and 44 ears (22 subjects) with noise-induced hearing loss. Maximum hearing loss in the 4-6 kHz region equalled 40 to 90 dB (losses exceeded by 90% and 10%, respectively). Hearing loss for speech in quiet measured with respect to the median speech reception threshold for normal ears ranged from 1.8 dB to 13.4 dB. For speech in noise the numbers are 1.2 dB to 7.0 dB which means that the subjects with noise-induced hearing loss need a 1.2 to 7.0 dB higher signal-to-noise ratio than normal to understand sentences equally well. A hearing loss for speech of 1 dB corresponds to a decrease in sentence intelligibility of 15 to 20%. The relation between hearing handicap conceived as a reduced ability to understand speech and tone audiogram is discussed. The higher signal-to-noise ratio needed by people with noise-induced hearing loss to understand speech in noisy environments is shown to be due partly to the decreased bandwidth of their hearing caused by the noise dip.

  3. Aero acoustic analysis and community noise. HSCT climb to cruise noise assessment

    NASA Technical Reports Server (NTRS)

    Mortlock, Alan K.

    1992-01-01

    The widely accepted industry High Speed Civil Transport (HSCT) design goal for exterior noise is to achieve Federal Aviation Regulation (FAR) Part 36 Stage 3 noise limits currently required for new subsonic aircraft. The three phases of the concern are as follows: (1) airport noise abatement at communities close to the airport, (2) climb power opening-up procedures, and (3) the climb to cruise phase affecting communities far from the airport.

  4. Multi-Aperture-Based Probabilistic Noise Reduction of Random Telegraph Signal Noise and Photon Shot Noise in Semi-Photon-Counting Complementary-Metal-Oxide-Semiconductor Image Sensor

    PubMed Central

    Ishida, Haruki; Kagawa, Keiichiro; Komuro, Takashi; Zhang, Bo; Seo, Min-Woong; Takasawa, Taishi; Yasutomi, Keita; Kawahito, Shoji

    2018-01-01

    A probabilistic method to remove the random telegraph signal (RTS) noise and to increase the signal level is proposed, and was verified by simulation based on measured real sensor noise. Although semi-photon-counting-level (SPCL) ultra-low noise complementary-metal-oxide-semiconductor (CMOS) image sensors (CISs) with high conversion gain pixels have emerged, they still suffer from huge RTS noise, which is inherent to the CISs. The proposed method utilizes a multi-aperture (MA) camera that is composed of multiple sets of an SPCL CIS and a moderately fast and compact imaging lens to emulate a very fast single lens. Due to the redundancy of the MA camera, the RTS noise is removed by the maximum likelihood estimation where noise characteristics are modeled by the probability density distribution. In the proposed method, the photon shot noise is also relatively reduced because of the averaging effect, where the pixel values of all the multiple apertures are considered. An extremely low-light condition that the maximum number of electrons per aperture was the only 2e− was simulated. PSNRs of a test image for simple averaging, selective averaging (our previous method), and the proposed method were 11.92 dB, 11.61 dB, and 13.14 dB, respectively. The selective averaging, which can remove RTS noise, was worse than the simple averaging because it ignores the pixels with RTS noise and photon shot noise was less improved. The simulation results showed that the proposed method provided the best noise reduction performance. PMID:29587424

  5. Fan Noise Reduction: An Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane

    2001-01-01

    Fan noise reduction technologies developed as part of the engine noise reduction element of the Advanced Subsonic Technology Program are reviewed. Developments in low-noise fan stage design, swept and leaned outlet guide vanes, active noise control, fan flow management, and scarfed inlet are discussed. In each case, a description of the method is presented and, where available, representative results and general conclusions are discussed. The review concludes with a summary of the accomplishments of the AST-sponsored fan noise reduction research and a few thoughts on future work.

  6. Noise tolerant spatiotemporal chaos computing.

    PubMed

    Kia, Behnam; Kia, Sarvenaz; Lindner, John F; Sinha, Sudeshna; Ditto, William L

    2014-12-01

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  7. Noise tolerant spatiotemporal chaos computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kia, Behnam; Kia, Sarvenaz; Ditto, William L.

    We introduce and design a noise tolerant chaos computing system based on a coupled map lattice (CML) and the noise reduction capabilities inherent in coupled dynamical systems. The resulting spatiotemporal chaos computing system is more robust to noise than a single map chaos computing system. In this CML based approach to computing, under the coupled dynamics, the local noise from different nodes of the lattice diffuses across the lattice, and it attenuates each other's effects, resulting in a system with less noise content and a more robust chaos computing architecture.

  8. Flyover-noise measurement and prediction

    NASA Technical Reports Server (NTRS)

    Peart, Noel A.

    1991-01-01

    Details are presented for the measurement and prediction of aircraft flyover noise to be used for certification, research and development, community noise surveys, airport monitors, and pass fail criteria. Test details presented are applicable to all types of aircraft, both large and small, and the use of Federal Aviation Regulations (FAR) Part 36 (ref. 1) is emphasized. Accuracy of noise measurements is important. Thus, a pass-fail criterion should be used for all noise measurements. Finally, factors which influence the sound propagation and noise prediction procedures, such as atmospheric and ground effects, are also presented.

  9. Stochastic resonance in a piecewise nonlinear model driven by multiplicative non-Gaussian noise and additive white noise

    NASA Astrophysics Data System (ADS)

    Guo, Yongfeng; Shen, Yajun; Tan, Jianguo

    2016-09-01

    The phenomenon of stochastic resonance (SR) in a piecewise nonlinear model driven by a periodic signal and correlated noises for the cases of a multiplicative non-Gaussian noise and an additive Gaussian white noise is investigated. Applying the path integral approach, the unified colored noise approximation and the two-state model theory, the analytical expression of the signal-to-noise ratio (SNR) is derived. It is found that conventional stochastic resonance exists in this system. From numerical computations we obtain that: (i) As a function of the non-Gaussian noise intensity, the SNR is increased when the non-Gaussian noise deviation parameter q is increased. (ii) As a function of the Gaussian noise intensity, the SNR is decreased when q is increased. This demonstrates that the effect of the non-Gaussian noise on SNR is different from that of the Gaussian noise in this system. Moreover, we further discuss the effect of the correlation time of the non-Gaussian noise, cross-correlation strength, the amplitude and frequency of the periodic signal on SR.

  10. Truck Noise - VI A Diesel Exhaust and Air Intake Noise

    DOT National Transportation Integrated Search

    1973-07-01

    Exhaust and air intake noise is studied on five truck and bus diesel engines; the Detroit Diesel 6-71 and 8V-71, the Cummins NHC-250 and NTC-350 and the Mack ENDT-675. The noise source is isolated and its sound level measured at a distance of 50 feet...

  11. Truck Noise XI : Evaluation and Reduction of Heavy-Duty Truck Noise

    DOT National Transportation Integrated Search

    1976-09-01

    This report describes the work performed to examine the noise sources on two common truck configurations manufactured by this company, and to evaluate the noise reduction effectiveness of retrofit hardware. The two trucks selected were Cab-Over-Engin...

  12. Using noise to shape motor learning.

    PubMed

    Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A

    2017-02-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.

  13. 23 CFR 772.11 - Noise abatement.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Noise abatement. 772.11 Section 772.11 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.11 Noise abatement. (a) In determining and abating traffic noise impacts, primary consideration is to be given to exterior areas. Abatement will...

  14. 23 CFR 772.11 - Noise abatement.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 23 Highways 1 2010-04-01 2010-04-01 false Noise abatement. 772.11 Section 772.11 Highways FEDERAL... OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.11 Noise abatement. (a) In determining and abating traffic noise impacts, primary consideration is to be given to exterior areas. Abatement will...

  15. Measurement time and statistics for a noise thermometer with a synthetic-noise reference

    NASA Astrophysics Data System (ADS)

    White, D. R.; Benz, S. P.; Labenski, J. R.; Nam, S. W.; Qu, J. F.; Rogalla, H.; Tew, W. L.

    2008-08-01

    This paper describes methods for reducing the statistical uncertainty in measurements made by noise thermometers using digital cross-correlators and, in particular, for thermometers using pseudo-random noise for the reference signal. First, a discrete-frequency expression for the correlation bandwidth for conventional noise thermometers is derived. It is shown how an alternative frequency-domain computation can be used to eliminate the spectral response of the correlator and increase the correlation bandwidth. The corresponding expressions for the uncertainty in the measurement of pseudo-random noise in the presence of uncorrelated thermal noise are then derived. The measurement uncertainty in this case is less than that for true thermal-noise measurements. For pseudo-random sources generating a frequency comb, an additional small reduction in uncertainty is possible, but at the cost of increasing the thermometer's sensitivity to non-linearity errors. A procedure is described for allocating integration times to further reduce the total uncertainty in temperature measurements. Finally, an important systematic error arising from the calculation of ratios of statistical variables is described.

  16. Analysis of a Shock-Associated Noise Prediction Model Using Measured Jet Far-Field Noise Data

    NASA Technical Reports Server (NTRS)

    Dahl, Milo D.; Sharpe, Jacob A.

    2014-01-01

    A code for predicting supersonic jet broadband shock-associated noise was assessed us- ing a database containing noise measurements of a jet issuing from a convergent nozzle. The jet was operated at 24 conditions covering six fully expanded Mach numbers with four total temperature ratios. To enable comparisons of the predicted shock-associated noise component spectra with data, the measured total jet noise spectra were separated into mixing noise and shock-associated noise component spectra. Comparisons between predicted and measured shock-associated noise component spectra were used to identify de ciencies in the prediction model. Proposed revisions to the model, based on a study of the overall sound pressure levels for the shock-associated noise component of the mea- sured data, a sensitivity analysis of the model parameters with emphasis on the de nition of the convection velocity parameter, and a least-squares t of the predicted to the mea- sured shock-associated noise component spectra, resulted in a new de nition for the source strength spectrum in the model. An error analysis showed that the average error in the predicted spectra was reduced by as much as 3.5 dB for the revised model relative to the average error for the original model.

  17. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  18. Noise reduction experience at Hughes Helicopter, Inc.

    NASA Technical Reports Server (NTRS)

    Janakiram, D. S.

    1982-01-01

    Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).

  19. Noise reduction experience at Hughes Helicopter, Inc.

    NASA Astrophysics Data System (ADS)

    Janakiram, D. S.

    1982-07-01

    Noise reduction is mostly limited to light helicopters whose noise signature is dominated by their tail rotors. It is primarily hardware oriented. Well known noise reduction techniques such as reduction of rotor speeds with an accompanying increase in solidity to maintain performance, engine noise reduction with the use of exhaust mufflers, and acoustic blanketing of transmission and engine compartment are used. The concept of blade phasing as a means of reducing tail rotor noise is also used. Engine noise (exhaust noise), power train noise and airframe noise becomes important at low rotor tip speeds and means must be found to reduce these noise sources if further noise reductions are desired. The use of a special test rig aids in isolating the various noise sources and arriving at the penalties (performance or payload) involved in quieting them. Significant noise reduction are achieved for the light helicopter with minimum performance or weight penalties because of the dominance of a single noise source (the tail rotor).

  20. A Noise Removal Method for Uniform Circular Arrays in Complex Underwater Noise Environments with Low SNR

    PubMed Central

    Xia, Huijun; Yang, Kunde; Ma, Yuanliang; Wang, Yong; Liu, Yaxiong

    2017-01-01

    Generally, many beamforming methods are derived under the assumption of white noise. In practice, the actual underwater ambient noise is complex. As a result, the noise removal capacity of the beamforming method may be deteriorated considerably. Furthermore, in underwater environment with extremely low signal-to-noise ratio (SNR), the performances of the beamforming method may be deteriorated. To tackle these problems, a noise removal method for uniform circular array (UCA) is proposed to remove the received noise and improve the SNR in complex noise environments with low SNR. First, the symmetrical noise sources are defined and the spatial correlation of the symmetrical noise sources is calculated. Then, based on the preceding results, the noise covariance matrix is decomposed into symmetrical and asymmetrical components. Analysis indicates that the symmetrical component only affect the real part of the noise covariance matrix. Consequently, the delay-and-sum (DAS) beamforming is performed by using the imaginary part of the covariance matrix to remove the symmetrical component. However, the noise removal method causes two problems. First, the proposed method produces a false target. Second, the proposed method would seriously suppress the signal when it is located in some directions. To solve the first problem, two methods to reconstruct the signal covariance matrix are presented: based on the estimation of signal variance and based on the constrained optimization algorithm. To solve the second problem, we can design the array configuration and select the suitable working frequency. Theoretical analysis and experimental results are included to demonstrate that the proposed methods are particularly effective in complex noise environments with low SNR. The proposed method can be extended to any array. PMID:28598386

  1. Effect of Personal and Situational Variables on Noise Annoyance: with Special Reference to Implications for En Route Noise

    NASA Technical Reports Server (NTRS)

    Fields, James M.

    1992-01-01

    Over 680 publications from 282 social surveys of residents' reactions to environmental noise have been examined to locate 495 published findings on 26 topics concerning non-noise explanations for residents' reactions to environmental noise. This report (1) tabulates the evidence on the 26 response topics, (2) identifies the 495 findings, and (3) discusses the implications for en route noise assessment. After controlling for noise level, over half of the social survey evidence indicates that noise annoyance is not strongly affected by any of the nine demographic variables examined (age, sex, social status, income, education, homeownership, type of dwelling, length of residence, or receipt of benefits from the noise source), but is positively associated with each of the five attitudinal variables examined (a fear of danger from the noise source, a sensitivity towards noise generally, the belief that the authorities can control the noise, the awareness of non-noise impacts of the source, and the belief that the noise source is not important).

  2. Measurement of hearing aid internal noise1

    PubMed Central

    Lewis, James D.; Goodman, Shawn S.; Bentler, Ruth A.

    2010-01-01

    Hearing aid equivalent input noise (EIN) measures assume the primary source of internal noise to be located prior to amplification and to be constant regardless of input level. EIN will underestimate internal noise in the case that noise is generated following amplification. The present study investigated the internal noise levels of six hearing aids (HAs). Concurrent with HA processing of a speech-like stimulus with both adaptive features (acoustic feedback cancellation, digital noise reduction, microphone directionality) enabled and disabled, internal noise was quantified for various stimulus levels as the variance across repeated trials. Changes in noise level as a function of stimulus level demonstrated that (1) generation of internal noise is not isolated to the microphone, (2) noise may be dependent on input level, and (3) certain adaptive features may contribute to internal noise. Quantifying internal noise as the variance of the output measures allows for noise to be measured under real-world processing conditions, accounts for all sources of noise, and is predictive of internal noise audibility. PMID:20370034

  3. Chicago transit authority train noise exposure.

    PubMed

    Phan, Linh T; Jones, Rachael M

    2017-06-01

    To characterize noise exposure of riders on Chicago Transit Authority (CTA) trains, we measured noise levels twice on each segment of 7 of the 8 CTA train lines, which are named after colors, yielding 48 time-series measurements. We found the Blue Line has the highest noise levels compared to other train lines, with mean 76.9 dBA; and that the maximum noise level, 88.9 dBA occurred in the tunnel between the Chicago and Grand stations. Train segments involving travel through a tunnel had significantly higher noise levels than segments with travel on elevated and ground level tracks. While 8-hr doses inside the passenger cars were not estimated to exceed occupational exposure limits, train operators ride in a separate cab with operational windows and may therefore have higher noise exposures than riders. Despite the low risk of hearing loss for riders on CTA trains, in part because transit noise accounts for a small part of total daily noise exposure, 1-min average noise levels exceeded 85 dBA at times. This confirms anecdotal observations of discomfort due to noise levels, and indicates a need for noise management, particularly in tunnels.

  4. Comparison of noise reduction systems

    NASA Astrophysics Data System (ADS)

    Noel, S. D.; Whitaker, R. W.

    1991-06-01

    When using infrasound as a tool for verification, the most important measurement to determine yield has been the peak-to-peak pressure amplitude of the signal. Therefore, there is a need to operate at the most favorable signal-to-noise ratio (SNR) possible. Winds near the ground can degrade the SNR, thereby making accurate signal amplitude measurement difficult. Wind noise reduction techniques were developed to help alleviate this problem; however, a noise reducing system should reduce the noise, and should not introduce distortion of coherent signals. An experiment is described to study system response for a variety of noise reducing configurations to a signal generated by an underground test (UGT) at the Nevada Test Site (NTS). In addition to the signal, background noise reduction is examined through measurements of variance. Sensors using two particular geometries of noise reducing equipment, the spider and the cross appear to deliver the best SNR. Because the spider configuration is easier to deploy, it is now the most commonly used.

  5. Progress in Noise Thermometry at 505 K and 693 K Using Quantized Voltage Noise Ratio Spectra

    NASA Astrophysics Data System (ADS)

    Tew, W. L.; Benz, S. P.; Dresselhaus, P. D.; Coakley, K. J.; Rogalla, H.; White, D. R.; Labenski, J. R.

    2010-09-01

    Technical advances and new results in noise thermometry at temperatures near the tin freezing point and the zinc freezing point using a quantized voltage noise source (QVNS) are reported. The temperatures are derived by comparing the power spectral density of QVNS synthesized noise with that of Johnson noise from a known resistance at both 505 K and 693 K. Reference noise is digitally synthesized so that the average power spectra of the QVNS match those of the thermal noise, resulting in ratios of power spectra close to unity in the low-frequency limit. Three-parameter models are used to account for differences in impedance-related time constants in the spectra. Direct comparison of noise temperatures to the International Temperature Scale of 1990 (ITS-90) is achieved in a comparison furnace with standard platinum resistance thermometers. The observed noise temperatures determined by operating the noise thermometer in both absolute and relative modes, and related statistics together with estimated uncertainties are reported. The relative noise thermometry results are combined with results from other thermodynamic determinations at temperatures near the tin freezing point to calculate a value of T - T 90 = +4(18) mK for temperatures near the zinc freezing point. These latest results achieve a lower uncertainty than that of our earlier efforts. The present value of T - T 90 is compared to other published determinations from noise thermometry and other methods.

  6. Experimental Study of Wake / Flap Interaction Noise and the Reduction of Flap Side Edge Noise

    NASA Technical Reports Server (NTRS)

    Hutcheson, Florence V.; Stead, Daniel J.; Plassman, Gerald E.

    2016-01-01

    The effects of the interaction of a wake with a half-span flap on radiated noise are examined. The incident wake is generated by bars of various widths and lengths or by a simplified landing gear model. Single microphone and phased array measurements are used to isolate the effects of the wake interaction on the noise radiating from the flap side edge and flap cove regions. The effects on noise of the wake generator's geometry and relative placement with respect to the flap are assessed. Placement of the wake generators upstream of the flap side edge is shown to lead to the reduction of flap side edge noise by introducing a velocity deficit and likely altering the instabilities in the flap side edge vortex system. Significant reduction in flap side edge noise is achieved with a bar positioned directly upstream of the flap side edge. The noise reduction benefit is seen to improve with increased bar width, length and proximity to the flap edge. Positioning of the landing gear model upstream of the flap side edge also leads to decreased flap side edge noise. In addition, flap cove noise levels are significantly lower than when the landing gear is positioned upstream of the flap mid-span. The impact of the local flow velocity on the noise radiating directly from the landing gear is discussed. The effects of the landing gear side-braces on flap side edge, flap cove and landing gear noise are shown.

  7. Technologies for Aircraft Noise Reduction

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2006-01-01

    Technologies for aircraft noise reduction have been developed by NASA over the past 15 years through the Advanced Subsonic Technology (AST) Noise Reduction Program and the Quiet Aircraft Technology (QAT) project. This presentation summarizes highlights from these programs and anticipated noise reduction benefits for communities surrounding airports. Historical progress in noise reduction and technologies available for future aircraft/engine development are identified. Technologies address aircraft/engine components including fans, exhaust nozzles, landing gear, and flap systems. New "chevron" nozzles have been developed and implemented on several aircraft in production today that provide significant jet noise reduction. New engines using Ultra-High Bypass (UHB) ratios are projected to provide about 10 EPNdB (Effective Perceived Noise Level in decibels) engine noise reduction relative to the average fleet that was flying in 1997. Audio files are embedded in the presentation that estimate the sound levels for a 35,000 pound thrust engine for takeoff and approach power conditions. The predictions are based on actual model scale data that was obtained by NASA. Finally, conceptual pictures are shown that look toward future aircraft/propulsion systems that might be used to obtain further noise reduction.

  8. Consumer oriented product noise testing

    NASA Astrophysics Data System (ADS)

    Blomberg, Les

    2005-09-01

    This paper explores the need for product noise measurements and how best to meet that need in the near future. Currently there is only a small market place for quieter consumer products. This is not because of lack of interest. No one really wants to announce to everyone in their house that they just flushed the toilet, few really want the entire neighborhood to know they are mowing their yard, etc. The small market place is primarily due to a lack of regulations on product noise, a lack of information easily available to consumers about which products are quieter, and market consolidation resulting in fewer manufacturers, most of whom are unwilling to emphasize their quieter products at the risk of eroding sales of their noisier ones (that currently have greater market share). In the absence of the EPA fulfilling its statutory requirement to regulate and label product noise under the Noise Control Act of 1972, and with the unwillingness of most industries to voluntarily publish accurate product noise data, there is a significant role for ``Consumer Oriented Product Noise Testing.'' This paper explores the Noise Pollution Clearinghouse's ongoing and planned product noise testing, evaluating its advantages, disadvantages, and limitations.

  9. Mapping Urban Environmental Noise Using Smartphones.

    PubMed

    Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou

    2016-10-13

    Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution.

  10. Mapping Urban Environmental Noise Using Smartphones

    PubMed Central

    Zuo, Jinbo; Xia, Hao; Liu, Shuo; Qiao, Yanyou

    2016-01-01

    Noise mapping is an effective method of visualizing and accessing noise pollution. In this paper, a noise-mapping method based on smartphones to effectively and easily measure environmental noise is proposed. By using this method, a noise map of an entire area can be created using limited measurement data. To achieve the measurement with certain precision, a set of methods was designed to calibrate the smartphones. Measuring noise with mobile phones is different from the traditional static observations. The users may be moving at any time. Therefore, a method of attaching an additional microphone with a windscreen is proposed to reduce the wind effect. However, covering an entire area is impossible. Therefore, an interpolation method is needed to achieve full coverage of the area. To reduce the influence of spatial heterogeneity and improve the precision of noise mapping, a region-based noise-mapping method is proposed in this paper, which is based on the distribution of noise in different region types tagged by volunteers, to interpolate and combine them to create a noise map. To validate the effect of the method, a comparison of the interpolation results was made to analyse our method and the ordinary Kriging method. The result shows that our method is more accurate in reflecting the local distribution of noise and has better interpolation precision. We believe that the proposed noise-mapping method is a feasible and low-cost noise-mapping solution. PMID:27754359

  11. On the Impact of Anomalous Noise Events on Road Traffic Noise Mapping in Urban and Suburban Environments.

    PubMed

    Orga, Ferran; Alías, Francesc; Alsina-Pagès, Rosa Ma

    2017-12-23

    Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate.

  12. On the Impact of Anomalous Noise Events on Road Traffic Noise Mapping in Urban and Suburban Environments

    PubMed Central

    2017-01-01

    Noise pollution is a critical factor affecting public health, the relationship between road traffic noise (RTN) and several diseases in urban areas being especially disturbing. The Environmental Noise Directive 2002/49/EC and the CNOSSOS-EU framework are the main instruments of the European Union to identify and combat noise pollution, requiring Member States to compose and publish noise maps and noise management action plans every five years. Nowadays, the noise maps are starting to be tailored by means of Wireless Acoustic Sensor Networks (WASN). In order to exclusively monitor the impact of RTN on the well-being of citizens through WASN-based approaches, those noise sources unrelated to RTN denoted as Anomalous Noise Events (ANEs) should be removed from the noise map generation. This paper introduces an analysis methodology considering both Signal-to-Noise Ratio (SNR) and duration of ANEs to evaluate their impact on the A-weighted equivalent RTN level calculation for different integration times. The experiments conducted on 9 h of real-life data from the WASN-based DYNAMAP project show that both individual high-impact events and aggregated medium-impact events bias significantly the equivalent noise levels of the RTN map, making any derived study about public health impact inaccurate. PMID:29295492

  13. Analysis of aerobatic aircraft noise using the FAA's Integrated Noise Model

    DOT National Transportation Integrated Search

    2012-09-30

    This project has three main objectives. The first objective is to model noise from complete aerobatic routines for a range of aircraft. The second is to compare modeled and previously measured aircraft noise from complete aerobatic routines for a ran...

  14. Guardrail installation noise level evaluation

    DOT National Transportation Integrated Search

    1999-06-01

    The Oregon Department of Transportation (ODOT) Environmental Services Unit evaluates the impacts of noise and mitigation of noise issues. ODOT currently requires noise level evaluation for proposed construction projects when threatened or endangered ...

  15. Noise in CdZnTe detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luke, P. N.; Amman, M.; Lee J. S.

    2000-10-10

    Noise in CdZnTe devices with different electrode configurations was investigated. Measurements on devices with guard-ring electrode structures showed that surface leakage current does not produce any significant noise. The parallel white noise component of the devices appeared to be generated by the bulk current alone, even though the surface current was substantially higher. This implies that reducing the surface leakage current of a CdZnTe detector may not necessarily result in a significant improvement in noise performance. The noise generated by the bulk current is also observed to be below full shot noise. This partial suppression of shot noise may bemore » the result of Coulomb interaction between carriers or carrier trapping. Devices with coplanar strip electrodes were observed to produce a 1/f noise term at the preamplifier output. Higher levels of this 1/f noise were observed with decreasing gap widths between electrodes. The level of this 1/f noise appeared to be independent of bias voltage and leakage current but was substantially reduced after certain surface treatments.« less

  16. Noise suppression and crosstalk analysis of on-chip magnetic film-type noise suppressor

    NASA Astrophysics Data System (ADS)

    Ma, Jingyan; Muroga, Sho; Endo, Yasushi; Hashi, Shuichiro; Naoe, Masayuki; Yokoyama, Hiroo; Hayashi, Yoshiaki; Ishiyama, Kazushi

    2018-05-01

    This paper discusses near field, conduction and crosstalk noise suppression of magnetic films with uniaxial anisotropy on transmission lines for a film-type noise suppressor in the GHz frequency range. The electromagnetic noise suppressions of magnetic films with different permeability and resistivity were measured and simulated with simple microstrip lines. The experimental and simulated results of Co-Zr-Nb and CoPd-CaF2 films agreed with each other. The results indicate that the higher permeability leads to a better near field shielding, and in the frequency range of 2-7 GHz, a higher conduction noise suppression. It also suggests that the higher resistivity results in a better crosstalk suppression in the frequency range below 2 GHz. These results can support the design guidelines of the magnetic film-type noise suppressor used in the next generation IC chip.

  17. The Alternative Low Noise Fan

    NASA Technical Reports Server (NTRS)

    Dittmar, James H.; Elliott, David M.; Jeracki, Robert J.; Moore, Royce D.; Parrott, Tony L.

    2000-01-01

    A 106 bladed fan with a design takeoff tip speed of 1100 ft/sec was hypothesized as reducing perceived noise because of the shift of the blade passing harmonics to frequencies beyond the perceived noise rating range. A 22 in. model of this Alternative Low Noise Fan, ALNF, was tested in the NASA Glenn 9x 15 Wind Tunnel. 'Me fan was tested with a 7 vane long chord stator assembly and a 70 vane conventional stator assembly in both hard and acoustically treated configurations. In addition a partially treated 7 vane configuration was tested wherein the acoustic material between the 7 long chord stators was made inactive. The noise data from the 106 bladed fan with 7 long chord stators in a hard configuration was shown to be around 4 EPNdB quieter than a low tip speed Allison fan at takeoff and around 5 EPNdB quieter at approach. Although the tone noise behaved as hypothesized, the majority of this noise reduction was from reduced broadband noise related to the large number of rotor blades. This 106 bladed ALNF is a research fan designed to push the technology limits and as such is probably not a practical device with present materials technology. However, a low tip speed fan with around 50 blades would be a practical device and calculations indicate that it could be 2 to 3 EPNdB quieter at takeoff and 3 to 4 EPNdB quieter at approach than the Allison fan. 7 vane data compared with 70 vane data indicated that the tone noise was controlled by rotor wake-stator interaction but that the broadband noise is probably controlled by the interaction of the rotor with incoming flows. A possible multiple pure tone noise reduction technique for a fan/acoustic treatment system was identified. The data from the fully treated configuration showed significant noise reductions over a large frequency range thereby providing a real tribute to this bulk absorber treatment design. The tone noise data with the partially treated 7 vane configuration indicated that acoustic material in the

  18. Handbook for industrial noise control

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  19. Handbook for industrial noise control

    NASA Astrophysics Data System (ADS)

    The basic principles of sound, measuring techniques, and instrumentation associated with general purpose noise control are discussed. Means for identifying and characterizing a noise problem so that subsequent work may provide the most efficient and cost effective solution are outlined. A methodology for choosing appropriate noise control materials and the proper implementation of control procedures is detailed. The most significant NASA sponsored contributions to the state of the art development of optimum noise control technologies are described including cases in which aeroacoustics and related research have shed some light on ways of reducing noise generation at its source.

  20. Compact low-noise preamplifier for noise spectroscopy with biased photodiodes in cargo inspection systems

    NASA Astrophysics Data System (ADS)

    Benetti, Bob; Langeveld, Willem G. J.

    2013-09-01

    Noise Spectroscopy, a.k.a. Z-determination by Statistical Count-rate ANalysis (Z-SCAN), is a statistical technique to determine a quantity called the "noise figure" from digitized waveforms of pulses of transmitted x-rays in cargo inspection systems. Depending only on quantities related to the x-ray energies, it measures a characteristic of the transmitted x-ray spectrum, which depends on the atomic number, Z, of the material penetrated. The noise figure can thus be used for material separation. In an 80-detector prototype, scintillators are used with large-area photodiodes biased at 80V and digitized using 50-MSPS 12-bit ADC boards. We present an ultra-compact low-noise preamplifier design, with one high-gain and one low-gain channel per detector for improved dynamic range. To achieve adequate detection sensitivity and spatial resolution each dual-gain preamplifier channel must fit within a 12.7 mm wide circuit board footprint and maintain adequate noise immunity to conducted and radiated interference from adjacent channels. The novel design included iterative SPICE analysis of transient response, dynamic range, frequency response, and noise analysis to optimize the selection and configuration of amplifiers and filter response. We discuss low-noise active and passive components and low-noise techniques for circuit board layout that are essential to achieving the design goals, and how the completed circuit board performed in comparison to the predicted responses.

  1. A Literature Survey of Noise Pollution.

    ERIC Educational Resources Information Center

    Shih, H. H.

    Physically, noise is a complex sound that has little or no periodicity. However, the essential characteristic of noise is its undesirability. Thus, noise can be defined as any annoying or unwanted sound. In recent years, the rapid increase of noise level in our environment has become a national public health hazard. Noise affects man's state of…

  2. Wind noise in hearing aids: I. Effect of wide dynamic range compression and modulation-based noise reduction.

    PubMed

    Chung, King

    2012-01-01

    The objectives of this study were: (1) to examine the effect of wide dynamic range compression (WDRC) and modulation-based noise reduction (NR) algorithms on wind noise levels at the hearing aid output; and (2) to derive effective strategies for clinicians and engineers to reduce wind noise in hearing aids. Three digital hearing aids were fitted to KEMAR. The noise output was recorded at flow velocities of 0, 4.5, 9.0, and 13.5 m/s in a wind tunnel as the KEMAR head was turned from 0° to 360°. Flow noise levels were compared between the 1:1 linear and 3:1 WDRC conditions, and between NR-activated and NR-deactivated conditions when the hearing aid was programmed to the directional and omnidirectional modes. The results showed that: (1) WDRC increased low-level noise and reduced high-level noise; and (2) different noise reduction algorithms provided different amounts of wind noise reduction in different microphone modes, frequency regions, flow velocities, and head angles. Wind noise can be reduced by decreasing the gain for low-level inputs, increasing the compression ratio for high-level inputs, and activating modulation-based noise reduction algorithms.

  3. Uniform apparent contrast noise: A picture of the noise of the visual contrast detection system

    NASA Technical Reports Server (NTRS)

    Ahumada, A. J., Jr.; Watson, A. B.

    1984-01-01

    A picture which is a sample of random contrast noise is generated. The noise amplitude spectrum in each region of the picture is inversely proportional to spatial frequency contrast sensitivity for that region, assuming the observer fixates the center of the picture and is the appropriate distance from it. In this case, the picture appears to have approximately the same contrast everywhere. To the extent that contrast detection thresholds are determined by visual system noise, this picture can be regarded as a picture of the noise of that system. There is evidence that, at different eccentricities, contrast sensitivity functions differ only by a magnification factor. The picture was generated by filtering a sample of white noise with a filter whose frequency response is inversely proportional to foveal contrast sensitivity. It was then stretched by a space-varying magnification function. The picture summmarizes a noise linear model of detection and discrimination of contrast signals by referring the model noise to the input picture domain.

  4. Reliability, synchrony and noise

    PubMed Central

    Ermentrout, G. Bard; Galán, Roberto F.; Urban, Nathaniel N.

    2008-01-01

    The brain is noisy. Neurons receive tens of thousands of highly fluctuating inputs and generate spike trains that appear highly irregular. Much of this activity is spontaneous—uncoupled to overt stimuli or motor outputs—leading to questions about the functional impact of this noise. Although noise is most often thought of as disrupting patterned activity and interfering with the encoding of stimuli, recent theoretical and experimental work has shown that noise can play a constructive role—leading to increased reliability or regularity of neuronal firing in single neurons and across populations. These results raise fundamental questions about how noise can influence neural function and computation. PMID:18603311

  5. Compact, thermal-noise-limited reference cavity for ultra-low-noise microwave generation.

    PubMed

    Davila-Rodriguez, J; Baynes, F N; Ludlow, A D; Fortier, T M; Leopardi, H; Diddams, S A; Quinlan, F

    2017-04-01

    We demonstrate an easy-to-manufacture 25-mm-long ultra-stable optical reference cavity for transportable photonic microwave generation systems. Employing a rigid holding geometry that is first-order insensitive to the squeezing force and a cavity geometry that improves the thermal noise limit at room temperature, we observe a laser phase noise that is nearly thermal noise limited for three frequency decades (1 Hz to 1 kHz offset) and supports 10 GHz generation with phase noise near -100  dBc/Hz at 1 Hz offset and <-173  dBc/Hz for all offsets >600  Hz. The fractional frequency stability reaches 2×10-15 at 0.1 s of averaging.

  6. Prediction of V/STOL Noise for Application to Community Noise Exposure

    DOT National Transportation Integrated Search

    1973-05-01

    A computer program to predict the Effective Perceived Noise Level (EPNL), the tone corrected Perceived Noise Level (PNLT) and the A-Weighted Sound Level (dBA) radiated by a V/STOL vehicle as it flies along a prescribed takeoff, landing, or cruise fli...

  7. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Langley Research Center efforts to develop a methodology for predicting the effective perceived noise level (EPNL) produced by jet-powered CTOL aircraft to an accuracy of + or - 1.5 dB are summarized with emphasis on the aircraft noise prediction program (ANOPP) which contains a complete set of prediction methods for CTOL aircraft including propulsion system noise sources, aerodynamic or airframe noise sources, forward speed effects, a layered atmospheric model with molecular absorption, ground impedance effects including excess ground attenuation, and a received noise contouring capability. The present state of ANOPP is described and its accuracy and applicability to the preliminary aircraft design process is assessed. Areas are indicated where further theoretical and experimental research on noise prediction are needed. Topics covered include the elements of the noise prediction problem which are incorporated in ANOPP, results of comparisons of ANOPP calculations with measured noise levels, and progress toward treating noise as a design constraint in aircraft system studies.

  8. Aircraft Noise Prediction Program theoretical manual: Propeller aerodynamics and noise

    NASA Technical Reports Server (NTRS)

    Zorumski, W. E. (Editor); Weir, D. S. (Editor)

    1986-01-01

    The prediction sequence used in the aircraft noise prediction program (ANOPP) is described. The elements of the sequence are called program modules. The first group of modules analyzes the propeller geometry, the aerodynamics, including both potential and boundary-layer flow, the propeller performance, and the surface loading distribution. This group of modules is based entirely on aerodynamic strip theory. The next group of modules deals with the first group. Predictions of periodic thickness and loading noise are determined with time-domain methods. Broadband noise is predicted by a semiempirical method. Near-field predictions of fuselage surface pressrues include the effects of boundary layer refraction and scattering. Far-field predictions include atmospheric and ground effects.

  9. Actively generated noise liquid flowmeter.

    PubMed

    Tanisawa, S; Hirose, H; Yoshihisa, N

    1994-01-01

    A new noise flowmeter with two transducers has been tested experimentally in water. It detects the noises generated by the interaction between artificially introduced air bubbles and a built-in obstacle with a downstream transducer, and differentiates them from the external noises detected by the upstream transducer in a pipe. The system includes processing instrumentation with functions such as averaging and difference-operating for reduction of external noise effects.

  10. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  11. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e - rms ) when compared with the CMS gain of two (2.4 e - rms ), or 16 (1.1 e - rms ).

  12. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  13. Noise as a Health Hazard for Children, Time to Make a Noise about it.

    PubMed

    Thakur, Neha; Batra, Prerna; Gupta, Piyush

    2016-02-01

    Noise, a modern day curse of advancing infrastructure and technology, has emerged as an important public health problem. Exposure to noise during pregnancy may result in high-frequency hearing loss in newborns, growth retardation, cochlear damage, prematurity and birth defects. Newborns exposed to sound above 45 decibels may experience increase in blood pressure, heart rate, respiratory rate; decreased oxygen saturation; and increased caloric consumption. Noise exposure in older children may result in learning disabilities, attention difficulties, insulin resistance, hypertension, stress ulcers and cardiovascular diseases. Sudden exposure to loud noise can lead to rupture of eardrum. The damaging effects of noise pollution are more noticeable in large metropolitan cities, the hubs of urban settlements and industrial growth. Another concern is noise pollution inside the hospitals (particularly intensive care areas) that can lead to serious health consequences both for caregivers and for children. The issue needs to be addressed by both researchers and policy makers on an urgent basis.

  14. Measurement with verification of stationary signals and noise in extremely quiet environments: Measuring below the noise floor

    PubMed Central

    Ellingson, Roger M.; Gallun, Frederick J.; Bock, Guillaume

    2015-01-01

    It can be problematic to measure stationary acoustic sound pressure level in any environment when the target level approaches or lies below the minimum measureable sound pressure level of the measurement system itself. This minimum measureable level, referred to as the inherent measurement system noise floor, is generally established by noise emission characteristics of measurement system components such as microphones, preamplifiers, and other system circuitry. In this paper, methods are presented and shown accurate measuring stationary levels within 20 dB above and below this system noise floor. Methodology includes (1) measuring inherent measurement system noise, (2) subtractive energy based, inherent noise adjustment of levels affected by system noise floor, and (3) verifying accuracy of inherent noise adjustment technique. While generalizable to other purposes, the techniques presented here were specifically developed to quantify ambient noise levels in very quiet rooms used to evaluate free-field human hearing thresholds. Results obtained applying the methods to objectively measure and verify the ambient noise level in an extremely quiet room, using various measurement system noise floors and analysis bandwidths, are presented and discussed. The verified results demonstrate the adjustment method can accurately extend measurement range to 20 dB below the measurement system noise floor, and how measurement system frequency bandwidth can affect accuracy of reported noise levels. PMID:25786932

  15. Noise characteristics of eight helicopters

    DOT National Transportation Integrated Search

    1977-07-01

    This report describes the noise characteristics of Eight Helicopters during level flyovers, simulated approaches, and hover. The data was obtained during an FAA/DOT Helicopter Noise Program to acquire a data base for possible helicopter noise regulat...

  16. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms

    PubMed Central

    Baldwin, Alex S.; Baker, Daniel H.; Hess, Robert F.

    2016-01-01

    The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system’s input has on its output one can estimate the variance of this internal noise. By applying this simple “linear amplifier” model to the human visual system, one can entirely explain an observer’s detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system’s internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies. PMID:26953796

  17. What Do Contrast Threshold Equivalent Noise Studies Actually Measure? Noise vs. Nonlinearity in Different Masking Paradigms.

    PubMed

    Baldwin, Alex S; Baker, Daniel H; Hess, Robert F

    2016-01-01

    The internal noise present in a linear system can be quantified by the equivalent noise method. By measuring the effect that applying external noise to the system's input has on its output one can estimate the variance of this internal noise. By applying this simple "linear amplifier" model to the human visual system, one can entirely explain an observer's detection performance by a combination of the internal noise variance and their efficiency relative to an ideal observer. Studies using this method rely on two crucial factors: firstly that the external noise in their stimuli behaves like the visual system's internal noise in the dimension of interest, and secondly that the assumptions underlying their model are correct (e.g. linearity). Here we explore the effects of these two factors while applying the equivalent noise method to investigate the contrast sensitivity function (CSF). We compare the results at 0.5 and 6 c/deg from the equivalent noise method against those we would expect based on pedestal masking data collected from the same observers. We find that the loss of sensitivity with increasing spatial frequency results from changes in the saturation constant of the gain control nonlinearity, and that this only masquerades as a change in internal noise under the equivalent noise method. Part of the effect we find can be attributed to the optical transfer function of the eye. The remainder can be explained by either changes in effective input gain, divisive suppression, or a combination of the two. Given these effects the efficiency of our observers approaches the ideal level. We show the importance of considering these factors in equivalent noise studies.

  18. Noise sensitivity and loudness derivative index for urban road traffic noise annoyance computation.

    PubMed

    Gille, Laure-Anne; Marquis-Favre, Catherine; Weber, Reinhard

    2016-12-01

    Urban road traffic composed of powered-two-wheelers (PTWs), buses, heavy, and light vehicles is a major source of noise annoyance. In order to assess annoyance models considering different acoustical and non-acoustical factors, a laboratory experiment on short-term annoyance due to urban road traffic noise was conducted. At the end of the experiment, participants were asked to rate their noise sensitivity and to describe the noise sequences they heard. This verbalization task highlights that annoyance ratings are highly influenced by the presence of PTWs and by different acoustical features: noise intensity, irregular temporal amplitude variation, regular amplitude modulation, and spectral content. These features, except irregular temporal amplitude variation, are satisfactorily characterized by the loudness, the total energy of tonal components and the sputtering and nasal indices. Introduction of the temporal derivative of loudness allows successful modeling of perceived amplitude variations. Its contribution to the tested annoyance models is high and seems to be higher than the contribution of mean loudness index. A multilevel regression is performed to assess annoyance models using selected acoustical indices and noise sensitivity. Three models are found to be promising for further studies that aim to enhance current annoyance models.

  19. Burst-type noise mechanisms in bipolar transistors

    NASA Astrophysics Data System (ADS)

    Wu, X. L.; van der Ziel, A.; Birbas, A. N.; van Rheenen, A. D.

    1989-11-01

    Two types of burst noise have been observed in silicon bipolar transistors. They can be characterized by the typical frequency dependence of their current fluctuation spectra. Interestingly, observation of the noise signal in the time domain gives two distinctively different pictures of the bistable waveform. Also, amplification of the noise signal yields different sounds when fed to a speaker. One of the noise spectra is the superposition of 1/ƒ noise and a Lorentzian component (burst noise) and the other can be described mathematically as 1/ƒ noise modulated by the burst noise. The classification of those two types of burst noise and the mathematical explanation will lead to a better understanding of the bipolar transistor burst noise itself.

  20. Measuring noise in microwave metamaterials

    NASA Astrophysics Data System (ADS)

    Wiltshire, M. C. K.; Syms, R. R. A.

    2018-05-01

    Electromagnetic metamaterials are artificially constructed media composed of arrays of electrical circuits that can exhibit electric and magnetic characteristics unlike those of any conventional materials. However, the materials are lossy and hence noisy, so that the signal-to-noise ratio in practical situations is greatly reduced. In particular, operating in the double negative region, where both the permittivity and the permeability are negative so that the refractive index is real but negative, incurs significant loss and noise penalties. In this work, we report noise measurements on a double negative metamaterial at microwave frequencies and compare them with the results of a simple model based on a transmission line loaded with lossy elements that mimic the split ring resonators and fine wires of the metamaterial. A noise source is associated with the resistive part of each element, and these are added incoherently to predict the total noise spectrum of the metamaterial. The theoretical results are in good agreement with the measurements. In particular, we find that the measured noise spectrum has contributions from both electric and magnetic noise, but is dominated by the magnetic noise. This limits possible applications, even with optimised materials, to functions that cannot be realised by conventional means.

  1. Pavement noise measurements in Poland

    NASA Astrophysics Data System (ADS)

    Zofka, Ewa; Zofka, Adam; Mechowski, Tomasz

    2017-09-01

    The objective of this study is to investigate the feasibility of the On-Board Sound Intensity (OBSI) system to measure tire-pavement noise in Poland. In general, sources of noise emitted by the modern vehicles are the propulsion noise, aerodynamic resistance and noise generated at the tire-pavement interface. In order to capture tire-pavement noise, the OBSI system uses a noise intensity probe installed in the close proximity of that interface. In this study, OBSI measurements were performed at different types of pavement surfaces such as stone mastic asphalt (SMA), regular asphalt concrete (HMA) as well as Portland cement concrete (PCC). The influence of several necessary OBSI measurement conditions were recognized as: testing speed, air temperature, tire pressure and tire type. The results of this study demonstrate that the OBSI system is a viable and robust tool that can be used for the quality evaluation of newly built asphalt pavements in Poland. It can be also applied to generate reliable input parameters for the noise propagation models that are used to assess the environmental impact of new and existing highway corridors.

  2. Noise Emission from Laboratory Air Blowers

    ERIC Educational Resources Information Center

    Rossing, Thomas D.; Windham, Betty

    1978-01-01

    Product noise ratings for a number of laboratory air blowers are reported and several recommendations for reducing laboratory noise from air blowers are given. Relevant noise ratings and methods for measuring noise emission of appliances are discussed. (BB)

  3. Noise suppression in surface microseismic data

    USGS Publications Warehouse

    Forghani-Arani, Farnoush; Batzle, Mike; Behura, Jyoti; Willis, Mark; Haines, Seth S.; Davidson, Michael

    2012-01-01

    We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform. We introduce a passive noise suppression technique, based on the τ − p transform. In the τ − p domain, one can separate microseismic events from surface noise based on distinct characteristics that are not visible in the time-offset domain. By applying the inverse τ − p transform to the separated microseismic event, we suppress the surface noise in the data. Our technique significantly improves the signal-to-noise ratios of the microseismic events and is superior to existing techniques for passive noise suppression in the sense that it preserves the waveform.

  4. Noise in solid-state nanopores

    PubMed Central

    Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C.

    2008-01-01

    We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f ≲ 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter α = (1.1 ± 0.1) × 10−4. In the high-frequency regime (f ≳ 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency. PMID:18184817

  5. Noise in solid-state nanopores.

    PubMed

    Smeets, R M M; Keyser, U F; Dekker, N H; Dekker, C

    2008-01-15

    We study ionic current fluctuations in solid-state nanopores over a wide frequency range and present a complete description of the noise characteristics. At low frequencies (f approximately < 100 Hz) we observe 1/f-type of noise. We analyze this low-frequency noise at different salt concentrations and find that the noise power remarkably scales linearly with the inverse number of charge carriers, in agreement with Hooge's relation. We find a Hooge parameter alpha = (1.1 +/- 0.1) x 10(-4). In the high-frequency regime (f approximately > 1 kHz), we can model the increase in current power spectral density with frequency through a calculation of the Johnson noise. Finally, we use these results to compute the signal-to-noise ratio for DNA translocation for different salt concentrations and nanopore diameters, yielding the parameters for optimal detection efficiency.

  6. Structure-borne noise at hotels

    NASA Astrophysics Data System (ADS)

    Wilson, George Paul; Jue, Deborah A.

    2002-11-01

    Hotels present a challenging environment for building designers to provide suitable noise and vibration isolation between very incompatible uses. While many are familiar with ways to reduce traditional sources of airborne noise and vibration, structure-borne noise and vibration are often overlooked, often with costly repercussions. Structure-borne noise can be very difficult to pinpoint, and troubleshooting the sources of the vibration can be a tedious process. Therefore, the best approach is to avoid the problem altogether during design, with attention to the building construction, potential vibration sources, building uses and equipment locations. In this paper, the relationship between structure-borne vibration and noise are reviewed, typical vibration sources discussed (e.g., aerobic rooms, laundry rooms, mechanical equipment/building services, and subway rail transit), and key details and design guidance to minimize structure-borne noise provided.

  7. Semiconductor Laser Low Frequency Noise Characterization

    NASA Technical Reports Server (NTRS)

    Maleki, Lute; Logan, Ronald T.

    1996-01-01

    This work summarizes the efforts in identifying the fundamental noise limit in semiconductor optical sources (lasers) to determine the source of 1/F noise and it's associated behavior. In addition, the study also addresses the effects of this 1/F noise on RF phased arrays. The study showed that the 1/F noise in semiconductor lasers has an ultimate physical limit based upon similar factors to fundamental noise generated in other semiconductor and solid state devices. The study also showed that both additive and multiplicative noise can be a significant detriment to the performance of RF phased arrays especially in regard to very low sidelobe performance and ultimate beam steering accuracy. The final result is that a noise power related term must be included in a complete analysis of the noise spectrum of any semiconductor device including semiconductor lasers.

  8. Natural radio noise - A mini-review

    NASA Technical Reports Server (NTRS)

    Flock, W. L.; Smith, E. K.

    1984-01-01

    Natural radio noise in telecommunication systems can be accounted for by the contribution which it makes to antenna noise temperature. Attenuation due to water vapor and oxygen, clouds, and precipitation is accompanied by thermal noise which further degrades the applicable signal-to-noise ratio. Extraterrestrial noise may be of thermal or nonthermal origin and may cover a continuum of frequencies or occur at discrete frequencies. The spectral index n (the exponent giving the variation of noise power density with wavelength) is -2 for a black body and between 0 and -2 for thermal emission in general. The mechanism responsible for much of the extensive nonthermal extraterrestrial noise is synchrotron radiation, characterized by a positive spectral index.

  9. Airport noise and teratogenesis.

    PubMed

    Edmonds, L D; Layde, P M; Erickson, J D

    1979-01-01

    It has been suggested that exposures to high-noise levels near major airports may cause increased incidence of birth defects in the offspring of parents residing near these airports. Using data gathered in Metropolitan Atlanta during 1970 to 1972, we compared the rates of seventeen categories of defects in high- and low-noise census tracts. No significant differences were observed. However, when we subdivided the category of central nervous system defects into several subcategories of specific defects, we noted a significantly increased incidence of spina bifida without hydrocephalus in the high-noise areas. Because the small number of cases associated with this finding we did a matched case-control study using all cases of central nervous system defects born during the years 1968 to 1976. No significantly increased risk for residents in the high-noise areas was noted in this study. It is our opinion that noise or other factors associated with residence near airports are unlikely to be important environmental teratogens.

  10. Aircraft noise synthesis system

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.; Grandle, Robert E.

    1987-01-01

    A second-generation Aircraft Noise Synthesis System has been developed to provide test stimuli for studies of community annoyance to aircraft flyover noise. The computer-based system generates realistic, time-varying, audio simulations of aircraft flyover noise at a specified observer location on the ground. The synthesis takes into account the time-varying aircraft position relative to the observer; specified reference spectra consisting of broadband, narrowband, and pure-tone components; directivity patterns; Doppler shift; atmospheric effects; and ground effects. These parameters can be specified and controlled in such a way as to generate stimuli in which certain noise characteristics, such as duration or tonal content, are independently varied, while the remaining characteristics, such as broadband content, are held constant. The system can also generate simulations of the predicted noise characteristics of future aircraft. A description of the synthesis system and a discussion of the algorithms and methods used to generate the simulations are provided. An appendix describing the input data and providing user instructions is also included.

  11. Community noise technology needs: Boeing's perspective

    NASA Technical Reports Server (NTRS)

    Nihart, Gene L.

    1992-01-01

    Airport community acceptance of High Speed Civil Transport (HSCT) noise levels will depend on the relative noise levels of airplanes flying at the time of introduction. The 85 dBA noise contours for the range of large subsonic airplanes that are expected to be in service in the early 21st century are shown as a shaded area. A certifiable HSCT noise contour as shown, would be somewhat wider along the runway, but about the same in the residential areas downrange. An HSCT noise rule should insure this noise capability.

  12. Noise characterization of oil and gas operations.

    PubMed

    Radtke, Cameron; Autenrieth, Daniel A; Lipsey, Tiffany; Brazile, William J

    2017-08-01

    In cooperation with The Colorado Oil and Gas Conservation Commission, researchers at Colorado State University performed area noise monitoring at 23 oil and gas sites throughout Northern Colorado. The goals of this study were to: (1) measure and compare the noise levels for the different phases of oil and gas development sites; (2) evaluate the effectiveness of noise barriers; and (3) determine if noise levels exceeded the Colorado Oil and Gas Conservation Commission noise limits. The four phases of oil and gas development include drilling, hydraulic fracturing, completion and production. Noise measurements were collected using the A- and C-weighted sound scales. Octave band analysis was also performed to characterize the frequency spectra of the noise measurements.  Noise measurements were collected using noise dosimeters and a hand-held sound-level meter at specified distances from the development sites in each cardinal direction. At 350 ft (107 m), drilling, hydraulic fracturing, and completion sites without noise barriers exceeded the maximum permissible noise levels for residential and commercial zones (55 dBA and 60 dBA, respectively). In addition, drilling and hydraulic fracturing sites with noise barriers exceeded the maximum permissible noise level for residential zones (55 dBA). However, during drilling, hydraulic fracturing, and completion operations, oil producers are allowed an exception to the noise permissible limits in that they only must comply with the industrial noise limit (80 dBA). It is stated in Rule 604.c.(2)A. that: "Operations involving pipeline or gas facility installation or maintenance, the use of a drilling rig, completion rig, workover rig, or stimulation is subject to the maximum permissible noise levels for industrial zones (80dBA)." [8] Production sites were within the Colorado Oil and Gas Conservation Commission permissible noise level criteria for all zones. At 350 ft (107 m) from the noise source, all drilling

  13. Physiological, Psychological, and Social Effects of Noise

    NASA Technical Reports Server (NTRS)

    Kryter, K. D.

    1984-01-01

    The physiological, and behavioral effects of noise on man are investigated. Basic parameters such as definitions of noise, measuring techniques of noise, and the physiology of the ear are presented prior to the development of topics on hearing loss, speech communication in noise, social effects of noise, and the health effects of noise pollution. Recommendations for the assessment and subsequent control of noise is included.

  14. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Afanasiev, Michael; Boehm, Christian; Fichtner, Andreas

    2017-04-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source distribution, and thereby to contribute to a better understanding of both Earth structure and noise generation. First, we develop an inversion strategy based on a 2D finite-difference code using adjoint techniques. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: i) the capability of different misfit functionals to image wave speed anomalies and source distribution and ii) possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus (http://salvus.io). It allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface and the corresponding sensitivity kernels for the distribution of noise sources and Earth structure. By studying the effect of noise sources on correlation functions in 3D, we validate the aforementioned inversion strategy and prepare the

  15. Reduced-Noise Gas Flow Design Guide Developed as a Noise-Control Design Tool for Meeting Glenn's Hearing Conservation and Community Noise Goals

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2000-01-01

    A Reduced-Noise Gas Flow Design Guide has been developed for the NASA Glenn Research Center at Lewis Field by Nelson Acoustical Engineering of Elgin, Texas. Gas flow systems are a significant contributor to t he noise exposure landscape at Glenn. Because of the power of many of these systems, hearing conservation and community noise are importan t issues. The purpose of the Guide is to allow Glenn engineers and de signers to address noise emission and control at the design stage by using readily available system parameters. Although the Guide was deve loped with Glenn equipment and systems in mind, it is expected to hav e wide application in industry.

  16. The subjective importance of noise spectral content

    NASA Astrophysics Data System (ADS)

    Baxter, Donald; Phillips, Jonathan; Denman, Hugh

    2014-01-01

    This paper presents secondary Standard Quality Scale (SQS2) rankings in overall quality JNDs for a subjective analysis of the 3 axes of noise, amplitude, spectral content, and noise type, based on the ISO 20462 softcopy ruler protocol. For the initial pilot study, a Python noise simulation model was created to generate the matrix of noise masks for the softcopy ruler base images with different levels of noise, different low pass filter noise bandwidths and different band pass filter center frequencies, and 3 different types of noise: luma only, chroma only, and luma and chroma combined. Based on the lessons learned, the full subjective experiment, involving 27 observers from Google, NVIDIA and STMicroelectronics was modified to incorporate a wider set of base image scenes, and the removal of band pass filtered noise masks to ease observer fatigue. Good correlation was observed with the Aptina subjective noise study. The absence of tone mapping in the noise simulation model visibly reduced the contrast at high levels of noise, due to the clipping of the high levels of noise near black and white. Under the 34-inch viewing distance, no significant difference was found between the luma only noise masks and the combined luma and chroma noise masks. This was not the intuitive expectation. Two of the base images with large uniform areas, `restaurant' and `no parking', were found to be consistently more sensitive to noise than the texture rich scenes. Two key conclusions are (1) there are fundamentally different sensitivities to noise on a flat patch versus noise in real images and (2) magnification of an image accentuates visual noise in a way that is non-representative of typical noise reduction algorithms generating the same output frequency. Analysis of our experimental noise masks applied to a synthetic Macbeth ColorChecker Chart confirmed the color-dependent nature of the visibility of luma and chroma noise.

  17. Noise Pollution in Turkish Elementary Schools: Evaluation of Noise Pollution Awareness and Sensitivity Training

    ERIC Educational Resources Information Center

    Bulunuz, Nermin

    2014-01-01

    This study investigates noise pollution levels in two elementary schools. Also, "noise level awareness and sensitivity training" was given for reducing noise pollution, and the effects and results of this training were evaluated. "Sensitivity" training was given to 611 students and 48 teachers in a private and a public school.…

  18. The properties of the anti-tumor model with coupling non-Gaussian noise and Gaussian colored noise

    NASA Astrophysics Data System (ADS)

    Guo, Qin; Sun, Zhongkui; Xu, Wei

    2016-05-01

    The anti-tumor model with correlation between multiplicative non-Gaussian noise and additive Gaussian-colored noise has been investigated in this paper. The behaviors of the stationary probability distribution demonstrate that the multiplicative non-Gaussian noise plays a dual role in the development of tumor and an appropriate additive Gaussian colored noise can lead to a minimum of the mean value of tumor cell population. The mean first passage time is calculated to quantify the effects of noises on the transition time of tumors between the stable states. An increase in both the non-Gaussian noise intensity and the departure from the Gaussian noise can accelerate the transition from the disease state to the healthy state. On the contrary, an increase in cross-correlated degree will slow down the transition. Moreover, the correlation time can enhance the stability of the disease state.

  19. Ultra-High Bypass Ratio Jet Noise

    NASA Technical Reports Server (NTRS)

    Low, John K. C.

    1994-01-01

    The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components.

  20. Hybrid Analysis of Engine Core Noise

    NASA Astrophysics Data System (ADS)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  1. Effect of external classroom noise on schoolchildren's reading and mathematics performance: correlation of noise levels and gender.

    PubMed

    Papanikolaou, M; Skenteris, N; Piperakis, S M

    2015-02-01

    The present study investigated the effect of low, medium, and high traffic road noise as well as irrelevant background speech noise on primary school children's reading and mathematical performance. A total of 676 participants (324 boys, 47.9% and 352 girls, 52.1%) of the 4th and 5th elementary classes participated in the project. The participants were enrolled in public primary schools from urban areas and had ages ranging from 9 to 10 years and from. Schools were selected on the basis of increasing levels of exposure to road traffic noise and then classified into three categories (Low noise: 55-66 dB, Medium noise: 67-77 dB, and High noise: 72-80 dB). We measured reading comprehension and mathematical skills in accordance with the national guidelines for elementary education, using a test designed specifically for the purpose of this study. On the one hand, children in low-level noise schools showed statistically significant differences from children in medium- and high-level noise schools in reading performance (p<0.001). On the other hand, children in low-level noise schools differed significantly from children in high-level noise schools but only in mathematics performance (p=0.001). Girls in general did better in reading score than boys, especially in schools with medium- and high-level noise. Finally the levels of noise and gender were found to be two independent factors.

  2. A de-noising method using the improved wavelet threshold function based on noise variance estimation

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Wang, Weida; Xiang, Changle; Han, Lijin; Nie, Haizhao

    2018-01-01

    The precise and efficient noise variance estimation is very important for the processing of all kinds of signals while using the wavelet transform to analyze signals and extract signal features. In view of the problem that the accuracy of traditional noise variance estimation is greatly affected by the fluctuation of noise values, this study puts forward the strategy of using the two-state Gaussian mixture model to classify the high-frequency wavelet coefficients in the minimum scale, which takes both the efficiency and accuracy into account. According to the noise variance estimation, a novel improved wavelet threshold function is proposed by combining the advantages of hard and soft threshold functions, and on the basis of the noise variance estimation algorithm and the improved wavelet threshold function, the research puts forth a novel wavelet threshold de-noising method. The method is tested and validated using random signals and bench test data of an electro-mechanical transmission system. The test results indicate that the wavelet threshold de-noising method based on the noise variance estimation shows preferable performance in processing the testing signals of the electro-mechanical transmission system: it can effectively eliminate the interference of transient signals including voltage, current, and oil pressure and maintain the dynamic characteristics of the signals favorably.

  3. NASA progress in aircraft noise prediction

    NASA Technical Reports Server (NTRS)

    Raney, J. P.; Padula, S. L.; Zorumski, W. E.

    1981-01-01

    Some of the essential features of aircraft noise prediction are described and the basis for evaluating its capability and future potential is discussed. A takeoff noise optimizing procedure is described which calculates a minimum noise takeoff procedure subject to multiple site noise constraints.

  4. Near-field noise prediction for aircraft in cruising flight: Methods manual. [laminar flow control noise effects analysis

    NASA Technical Reports Server (NTRS)

    Tibbetts, J. G.

    1979-01-01

    Methods for predicting noise at any point on an aircraft while the aircraft is in a cruise flight regime are presented. Developed for use in laminar flow control (LFC) noise effects analyses, they can be used in any case where aircraft generated noise needs to be evaluated at a location on an aircraft while under high altitude, high speed conditions. For each noise source applicable to the LFC problem, a noise computational procedure is given in algorithm format, suitable for computerization. Three categories of noise sources are covered: (1) propulsion system, (2) airframe, and (3) LFC suction system. In addition, procedures are given for noise modifications due to source soundproofing and the shielding effects of the aircraft structure wherever needed. Sample cases, for each of the individual noise source procedures, are provided to familiarize the user with typical input and computed data.

  5. Self-reported sleep disturbances due to railway noise: exposure-response relationships for nighttime equivalent and maximum noise levels.

    PubMed

    Aasvang, Gunn Marit; Moum, Torbjorn; Engdahl, Bo

    2008-07-01

    The objective of the present survey was to study self-reported sleep disturbances due to railway noise with respect to nighttime equivalent noise level (L(p,A,eq,night)) and maximum noise level (L(p,A,max)). A sample of 1349 people in and around Oslo in Norway exposed to railway noise was studied in a cross-sectional survey to obtain data on sleep disturbances, sleep problems due to noise, and personal characteristics including noise sensitivity. Individual noise exposure levels were determined outside of the bedroom facade, the most-exposed facade, and inside the respondents' bedrooms. The exposure-response relationships were analyzed by using logistic regression models, controlling for possible modifying factors including the number of noise events (train pass-by frequency). L(p,A,eq,night) and L(p,A,max) were significantly correlated, and the proportion of reported noise-induced sleep problems increased as both L(p,A,eq,night) and L(p,A,max) increased. Noise sensitivity, type of bedroom window, and pass-by frequency were significant factors affecting noise-induced sleep disturbances, in addition to the noise exposure level. Because about half of the study population did not use a bedroom at the most-exposed side of the house, the exposure-response curve obtained by using noise levels for the most-exposed facade underestimated noise-induced sleep disturbance for those who actually have their bedroom at the most-exposed facade.

  6. Fan noise research at NASA

    NASA Technical Reports Server (NTRS)

    Groeneweg, John F.

    1994-01-01

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  7. Fan noise research at NASA

    NASA Astrophysics Data System (ADS)

    Groeneweg, John F.

    Results of recent NASA research to reduce aircraft turbofan noise are described. As the bypass ratio of a turbofan engine increases from 5 to as much as 20, the dominant source of engine noise is the fan. A primary mechanism of tone noise generation is the rotor blade wakes interacting with downstream stator vanes. Methods of analyzing rotor-stator tone noise generation are described and sample results are given. The role of an acoustic modal description is emphasized. Wind tunnel tests of model fans and nacelles are described including a novel rotating microphone technique for modal measurement. Sample far field results are given showing the effects of inlet length, and modal measurements are shown which point to a new generation mechanism. Concepts for active fan noise control at the source are addressed. Implications of the research which have general relevance to fan noise generation and control are discussed.

  8. Noise Reduction Technologies for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.

    2007-01-01

    Significant progress continues to be made with noise reduction for turbofan engines. NASA has conducted and sponsored research aimed at reducing noise from commercial aircraft. Since it takes many years for technologies to be developed and implemented, it is important to have aggressive technology goals that lead the target entry into service dates. Engine noise is one of the major contributors to the overall sound levels as aircraft operate near airports. Turbofan engines are commonly used on commercial transports due to their advantage for higher performance and lower noise. The noise reduction comes from combinations of changes to the engine cycle parameters and low noise design features. In this paper, an overview of major accomplishments from recent NASA research programs for engine noise will be given.

  9. Should helicopter noise be measured differently from other aircraft noise? A review of the psychoacoustic literature

    NASA Technical Reports Server (NTRS)

    Molino, J. A.

    1982-01-01

    A review of 34 studies indicates that several factors or variables might be important in providing a psychoacoustic foundation for measurements of the noise from helicopters. These factors are phase relations, tail rotor noise, repetition rate, crest level, and generic differences between conventional aircraft and helicopters. Particular attention was given to the impulsive noise known as blade slap. Analysis of the evidence for and against each factor reveals that, for the present state of scientific knowledge, none of these factors should be regarded as the basis for a significant noise measurement correction due to impulsive blade slap. The current method of measuring effective perceived noise level for conventional aircraft appears to be adequate for measuring helicopter noise as well.

  10. High-Tc Superconducting Bolometer Noise Measurement Using Low Noise Transformers - Theory and Optimization

    NASA Technical Reports Server (NTRS)

    Aslam, Shahid; Jones, Hollis H.

    2011-01-01

    Care must always be taken when performing noise measurements on high-Tc superconducting materials to ensure that the results are not from the measurement system itself. One situation likely to occur is with low noise transformers. One of the least understood devices, it provides voltage gain for low impedance inputs (< 100 ), e.g., YBaCuO and GdBaCuO thin films, with comparatively lower noise levels than other devices for instance field effect and bipolar junction transistors. An essential point made in this paper is that because of the complex relationships between the transformer ports, input impedance variance alters the transformer s transfer function in particular, the low frequency cutoff shift. The transfer of external and intrinsic transformer noise to the output along with optimization and precautions are treated; all the while, we will cohesively connect the transfer function shift, the load impedance, and the actual noise at the transformer output.

  11. Occupational Noise Reduction in CNC Striping Process

    NASA Astrophysics Data System (ADS)

    Mahmad Khairai, Kamarulzaman; Shamime Salleh, Nurul; Razlan Yusoff, Ahmad

    2018-03-01

    Occupational noise hearing loss with high level exposure is common occupational hazards. In CNC striping process, employee that exposed to high noise level for a long time as 8-hour contributes to hearing loss, create physical and psychological stress that reduce productivity. In this paper, CNC stripping process with high level noises are measured and reduced to the permissible noise exposure. First condition is all machines shutting down and second condition when all CNC machine under operations. For both conditions, noise exposures were measured to evaluate the noise problems and sources. After improvement made, the noise exposures were measured to evaluate the effectiveness of reduction. The initial average noise level at the first condition is 95.797 dB (A). After the pneumatic system with leakage was solved, the noise reduced to 55.517 dB (A). The average noise level at the second condition is 109.340 dB (A). After six machines were gathered at one area and cover that area with plastic curtain, the noise reduced to 95.209 dB (A). In conclusion, the noise level exposure in CNC striping machine is high and exceed the permissible noise exposure can be reduced to acceptable levels. The reduction of noise level in CNC striping processes enhanced productivity in the industry.

  12. Development of Jet Noise Power Spectral Laws

    NASA Technical Reports Server (NTRS)

    Khavaran, Abbas; Bridges, James

    2011-01-01

    High-quality jet noise spectral data measured at the Aero-Acoustic Propulsion Laboratory (AAPL) at NASA Glenn is used to develop jet noise scaling laws. A FORTRAN algorithm was written that provides detailed spectral prediction of component jet noise at user-specified conditions. The model generates quick estimates of the jet mixing noise and the broadband shock-associated noise (BBSN) in single-stream, axis-symmetric jets within a wide range of nozzle operating conditions. Shock noise is emitted when supersonic jets exit a nozzle at imperfectly expanded conditions. A successful scaling of the BBSN allows for this noise component to be predicted in both convergent and convergent-divergent nozzles. Configurations considered in this study consisted of convergent and convergent- divergent nozzles. Velocity exponents for the jet mixing noise were evaluated as a function of observer angle and jet temperature. Similar intensity laws were developed for the broadband shock-associated noise in supersonic jets. A computer program called sJet was developed that provides a quick estimate of component noise in single-stream jets at a wide range of operating conditions. A number of features have been incorporated into the data bank and subsequent scaling in order to improve jet noise predictions. Measurements have been converted to a lossless format. Set points have been carefully selected to minimize the instability-related noise at small aft angles. Regression parameters have been scrutinized for error bounds at each angle. Screech-related amplification noise has been kept to a minimum to ensure that the velocity exponents for the jet mixing noise remain free of amplifications. A shock-noise-intensity scaling has been developed independent of the nozzle design point. The computer program provides detailed narrow-band spectral predictions for component noise (mixing noise and shock associated noise), as well as the total noise. Although the methodology is confined to single

  13. Internal noise sources limiting contrast sensitivity.

    PubMed

    Silvestre, Daphné; Arleo, Angelo; Allard, Rémy

    2018-02-07

    Contrast sensitivity varies substantially as a function of spatial frequency and luminance intensity. The variation as a function of luminance intensity is well known and characterized by three laws that can be attributed to the impact of three internal noise sources: early spontaneous neural activity limiting contrast sensitivity at low luminance intensities (i.e. early noise responsible for the linear law), probabilistic photon absorption at intermediate luminance intensities (i.e. photon noise responsible for de Vries-Rose law) and late spontaneous neural activity at high luminance intensities (i.e. late noise responsible for Weber's law). The aim of this study was to characterize how the impact of these three internal noise sources vary with spatial frequency and determine which one is limiting contrast sensitivity as a function of luminance intensity and spatial frequency. To estimate the impact of the different internal noise sources, the current study used an external noise paradigm to factorize contrast sensitivity into equivalent input noise and calculation efficiency over a wide range of luminance intensities and spatial frequencies. The impact of early and late noise was found to drop linearly with spatial frequency, whereas the impact of photon noise rose with spatial frequency due to ocular factors.

  14. Observations of highway traffic noise measurements behind barriers and comparisons to FHWA's Traffic Noise Model

    DOT National Transportation Integrated Search

    2001-08-20

    In 1998, the United States Federal Highway Administration (FHWA) released a new tool for highway traffic noise prediction and noise barrier design, the Traffic Noise Model (TNM). In order to assess the accuracy and make recommendations on the use of ...

  15. Noise-Enhanced Human Balance Control

    NASA Astrophysics Data System (ADS)

    Priplata, Attila; Niemi, James; Salen, Martin; Harry, Jason; Lipsitz, Lewis A.; Collins, J. J.

    2002-11-01

    Noise can enhance the detection and transmission of weak signals in certain nonlinear systems, via a mechanism known as stochastic resonance. Here we show that input noise can be used to improve motor control in humans. Specifically, we show that the postural sway of both young and elderly individuals during quiet standing can be significantly reduced by applying subsensory mechanical noise to the feet. We further demonstrate with input noise a trend towards the reduction of postural sway in elderly subjects to the level of young subjects. These results suggest that noise-based devices, such as randomly vibrating shoe inserts, may enable people to overcome functional difficulties due to age-related sensory loss.

  16. Robustness analysis of superpixel algorithms to image blur, additive Gaussian noise, and impulse noise

    NASA Astrophysics Data System (ADS)

    Brekhna, Brekhna; Mahmood, Arif; Zhou, Yuanfeng; Zhang, Caiming

    2017-11-01

    Superpixels have gradually become popular in computer vision and image processing applications. However, no comprehensive study has been performed to evaluate the robustness of superpixel algorithms in regard to common forms of noise in natural images. We evaluated the robustness of 11 recently proposed algorithms to different types of noise. The images were corrupted with various degrees of Gaussian blur, additive white Gaussian noise, and impulse noise that either made the object boundaries weak or added extra information to it. We performed a robustness analysis of simple linear iterative clustering (SLIC), Voronoi Cells (VCells), flooding-based superpixel generation (FCCS), bilateral geodesic distance (Bilateral-G), superpixel via geodesic distance (SSS-G), manifold SLIC (M-SLIC), Turbopixels, superpixels extracted via energy-driven sampling (SEEDS), lazy random walk (LRW), real-time superpixel segmentation by DBSCAN clustering, and video supervoxels using partially absorbing random walks (PARW) algorithms. The evaluation process was carried out both qualitatively and quantitatively. For quantitative performance comparison, we used achievable segmentation accuracy (ASA), compactness, under-segmentation error (USE), and boundary recall (BR) on the Berkeley image database. The results demonstrated that all algorithms suffered performance degradation due to noise. For Gaussian blur, Bilateral-G exhibited optimal results for ASA and USE measures, SLIC yielded optimal compactness, whereas FCCS and DBSCAN remained optimal for BR. For the case of additive Gaussian and impulse noises, FCCS exhibited optimal results for ASA, USE, and BR, whereas Bilateral-G remained a close competitor in ASA and USE for Gaussian noise only. Additionally, Turbopixel demonstrated optimal performance for compactness for both types of noise. Thus, no single algorithm was able to yield optimal results for all three types of noise across all performance measures. Conclusively, to solve real

  17. Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Kenny, Patrick

    2004-01-01

    The Acoustics Branch is responsible for reducing noise levels for jet and fan components on aircraft engines. To do this, data must be measured and calibrated accurately to ensure validity of test results. This noise reduction is accomplished by modifications to hardware such as jet nozzles, and by the use of other experimental hardware such as fluidic chevrons, elliptic cores, and fluidic shields. To insure validity of data calibration, a variety of software is used. This software adjusts the sound amplitude and frequency to be consistent with data taken on another day. Both the software and the hardware help make noise reduction possible. work properly. These software programs were designed to make corrections for atmosphere, shear, attenuation, electronic, and background noise. All data can be converted to a one-foot lossless condition, using the proper software corrections, making a reading independent of weather and distance. Also, data can be transformed from model scale to full scale for noise predictions of a real flight. Other programs included calculations of Over All Sound Pressure Level (OASPL), Effective Perceived Noise Level (EPNL). OASPL is the integration of sound with respect to frequency, and EPNL is weighted for a human s response to different sound frequencies and integrated with respect to time. With the proper software correction, data taken in the NATR are useful in determining ways to reduce noise. display any difference between two or more data files. Using this program and graphs of the data, the actual and predicted data can be compared. This software was tested on data collected at the Aero Acoustic Propulsion Laboratory (AAPL) using a variety of window types and overlaps. Similarly, short scripts were written to test each individual program in the software suite for verification. Each graph displays both the original points and the adjusted points connected with lines. During this summer, data points were taken during a live experiment

  18. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.

    PubMed

    Chung, King; Nelson, Lance; Teske, Melissa

    2012-09-01

    The purpose of this study was to investigate whether a multichannel adaptive directional microphone and a modulation-based noise reduction algorithm could enhance cochlear implant performance in reverberant noise fields. A hearing aid was modified to output electrical signals (ePreprocessor) and a cochlear implant speech processor was modified to receive electrical signals (eProcessor). The ePreprocessor was programmed to flat frequency response and linear amplification. Cochlear implant listeners wore the ePreprocessor-eProcessor system in three reverberant noise fields: 1) one noise source with variable locations; 2) three noise sources with variable locations; and 3) eight evenly spaced noise sources from 0° to 360°. Listeners' speech recognition scores were tested when the ePreprocessor was programmed to omnidirectional microphone (OMNI), omnidirectional microphone plus noise reduction algorithm (OMNI + NR), and adaptive directional microphone plus noise reduction algorithm (ADM + NR). They were also tested with their own cochlear implant speech processor (CI_OMNI) in the three noise fields. Additionally, listeners rated overall sound quality preferences on recordings made in the noise fields. Results indicated that ADM+NR produced the highest speech recognition scores and the most preferable rating in all noise fields. Factors requiring attention in the hearing aid-cochlear implant integration process are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Microwave cryogenic thermal-noise standards

    NASA Technical Reports Server (NTRS)

    Stelzried, C. T.

    1971-01-01

    Field operational waveguide noise standard with nominal noise temperature of 78.09 plus/minus 0.12 deg K is calibrated more precisely than before. Calibration technique applies to various disciplines such as microwave radiometry, antenna temperature and loss measurement, and low-noise amplifier performance evaluation.

  20. Aircraft Noise Reduction Subproject Overview

    NASA Technical Reports Server (NTRS)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  1. Development of Ocean Noise "Budgets"

    NASA Astrophysics Data System (ADS)

    D'Spain, G. L.; Miller, J. H.; Frisk, G. V.; Bradley, D. L.

    2003-12-01

    The National Oceanographic Partnership Program recently sponsored the third U.S. National Academy of Sciences study on the potential impact of manmade sound on the marine environment. Several recommendations for future research are made by the 11-member committee in their report titled Ocean Noise and Marine Mammals (National Academies Press, 2003). This presentation will focus on the subset of recommendations related to a "noise budget", i.e., an accounting of the relative contributions of various sources to the ocean noise field. A noise budget is defined in terms of a specific metric of the sound field. The metric, or budget "currency", typically considered is the acoustic pressure spectrum integrated over space and time, which is proportional to the total mechanical energy in the acoustic field. However, this currency may not be the only one of relevance to marine animals. Each of the various ways in which sound can potentially impact these animals, e.g., temporary threshold shift, masking, behavior disruption, etc, probably depends upon a different property, or set of properties, of the sound field. Therefore, a family of noise budgets based on various currencies will be required for complete evaluation of the potential impact of manmade noise on the marine environment. Validation of noise budgets will require sustained, long term measurements of the underwater noise field.

  2. Adaptive Noise Suppression Using Digital Signal Processing

    NASA Technical Reports Server (NTRS)

    Kozel, David; Nelson, Richard

    1996-01-01

    A signal to noise ratio dependent adaptive spectral subtraction algorithm is developed to eliminate noise from noise corrupted speech signals. The algorithm determines the signal to noise ratio and adjusts the spectral subtraction proportion appropriately. After spectra subtraction low amplitude signals are squelched. A single microphone is used to obtain both eh noise corrupted speech and the average noise estimate. This is done by determining if the frame of data being sampled is a voiced or unvoiced frame. During unvoice frames an estimate of the noise is obtained. A running average of the noise is used to approximate the expected value of the noise. Applications include the emergency egress vehicle and the crawler transporter.

  3. Noise Control in Space Shuttle Orbiter

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.

    2009-01-01

    Acoustic limits in habitable space enclosures are required to ensure crew safety, comfort, and habitability. Noise control is implemented to ensure compliance with the acoustic requirements. The purpose of this paper is to describe problems with establishing acoustic requirements and noise control efforts, and present examples of noise control treatments and design applications used in the Space Shuttle Orbiter. Included is the need to implement the design discipline of acoustics early in the design process, and noise control throughout a program to ensure that limits are met. The use of dedicated personnel to provide expertise and oversight of acoustic requirements and noise control implementation has shown to be of value in the Space Shuttle Orbiter program. It is concluded that to achieve acceptable and safe noise levels in the crew habitable space, early resolution of acoustic requirements and implementation of effective noise control efforts are needed. Management support of established acoustic requirements and noise control efforts is essential.

  4. Binaural noise reduction via cue-preserving MMSE filter and adaptive-blocking-based noise PSD estimation

    NASA Astrophysics Data System (ADS)

    Azarpour, Masoumeh; Enzner, Gerald

    2017-12-01

    Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome

  5. Influence of background noise on the performance in the odor sensitivity task: effects of noise type and extraversion.

    PubMed

    Seo, Han-Seok; Hähner, Antje; Gudziol, Volker; Scheibe, Mandy; Hummel, Thomas

    2012-10-01

    Recent research demonstrated that background noise relative to silence impaired subjects' performance in a cognitively driven odor discrimination test. The current study aimed to investigate whether the background noise can also modulate performance in an odor sensitivity task that is less cognitively loaded. Previous studies have shown that the effect of background noise on task performance can be different in relation to degree of extraversion and/or type of noise. Accordingly, we wanted to examine whether the influence of background noise on the odor sensitivity task can be altered as a function of the type of background noise (i.e., nonverbal vs. verbal noise) and the degree of extraversion (i.e., introvert vs. extrovert group). Subjects were asked to conduct an odor sensitivity task in the presence of either nonverbal noise (e.g., party sound) or verbal noise (e.g., audio book), or silence. Overall, the subjects' mean performance in the odor sensitivity task was not significantly different across three auditory conditions. However, with regard to the odor sensitivity task, a significant interaction emerged between the type of background noise and the degree of extraversion. Specifically, verbal noise relative to silence significantly impaired or improved the performance of the odor sensitivity task in the introvert or extrovert group, respectively; the differential effect of introversion/extraversion was not observed in the nonverbal noise-induced task performance. In conclusion, our findings provide new empirical evidence that type of background noise and degree of extraversion play an important role in modulating the effect of background noise on subjects' performance in an odor sensitivity task.

  6. Effects of noise upon human information processing

    NASA Technical Reports Server (NTRS)

    Cohen, H. H.; Conrad, D. W.; Obrien, J. F.; Pearson, R. G.

    1974-01-01

    Studies of noise effects upon human information processing are described which investigated whether or not effects of noise upon performance are dependent upon specific characteristics of noise stimulation and their interaction with task conditions. The difficulty of predicting noise effects was emphasized. Arousal theory was considered to have explanatory value in interpreting the findings of all the studies. Performance under noise was found to involve a psychophysiological cost, measured by vasoconstriction response, with the degree of response cost being related to scores on a noise annoyance sensitivity scale. Noise sensitive subjects showed a greater autonomic response under noise stimulation.

  7. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearitiesmore » for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.« less

  8. Fourth Aircraft Interior Noise Workshop

    DTIC Science & Technology

    1992-07-01

    the occupational desease "Noise Deafness" in the aviation sector The development of the occupational noise deafness disease and the costs involved...compensation of a pension which is granted to sufferers of the occupational desease known as noise deafness. 235 , „. In summary, the statistics

  9. Evaluation of Noise Exposure Secondary to Wind Noise in Cyclists.

    PubMed

    Seidman, Michael D; Wertz, Anna G; Smith, Matthew M; Jacob, Steve; Ahsan, Syed F

    2017-11-01

    Objective Determine if the noise levels of wind exposure experienced by cyclists reach levels that could contribute to noise-induced hearing loss. Study Design Industrial lab research. Setting Industrial wind tunnel. Subjects and Methods A commercial-grade electric wind tunnel was used to simulate different speeds encountered by a cyclist. A single cyclist was used during the simulation for audiometric measurements. Microphones attached near the ears of the cyclist were used to measure the sound (dB sound pressure level) experienced by the cyclist. Loudness levels were measured with the head positioned at 15-degree increments from 0 degrees to 180 degrees relative to the oncoming wind at different speeds (10-60 mph). Results Wind noise ranged from 84.9 dB at 10 mph and increased proportionally with speed to a maximum of 120.3 dB at 60 mph. The maximum of 120.3 dB was measured at the downwind ear when the ear was 90 degrees away from the wind. Conclusions Wind noise experienced by a cyclist is proportional to the speed and the directionality of the wind current. Turbulent air flow patterns are observed that contribute to increased sound exposure in the downwind ear. Consideration of ear deflection equipment without compromising sound awareness for cyclists during prolonged rides is advised to avoid potential noise trauma. Future research is warranted and can include long-term studies including dosimetry measures of the sound and yearly pre- and postexposure audiograms of cyclists to detect if any hearing loss occurs with long-term cycling.

  10. Background noise spectra of global seismic stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wada, M.M.; Claassen, J.P.

    1996-08-01

    Over an extended period of time station noise spectra were collected from various sources for use in estimating the detection and location performance of global networks of seismic stations. As the database of noise spectra enlarged and duplicate entries became available, an effort was mounted to more carefully select station noise spectra while discarding others. This report discusses the methodology and criteria by which the noise spectra were selected. It also identifies and illustrates the station noise spectra which survived the selection process and which currently contribute to the modeling efforts. The resulting catalog of noise statistics not only benefitsmore » those who model network performance but also those who wish to select stations on the basis of their noise level as may occur in designing networks or in selecting seismological data for analysis on the basis of station noise level. In view of the various ways by which station noise were estimated by the different contributors, it is advisable that future efforts which predict network performance have available station noise data and spectral estimation methods which are compatible with the statistics underlying seismic noise. This appropriately requires (1) averaging noise over seasonal and/or diurnal cycles, (2) averaging noise over time intervals comparable to those employed by actual detectors, and (3) using logarithmic measures of the noise.« less

  11. EIT Intensity Noise Spectroscopy

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Xiao, Yanhong; Baryakhtar, Maria; Hohensee, Michael; Phillips, David; Walsworth, Ron

    2008-10-01

    Intensity noise correlations in coherently-prepared media can reveal underlying spectroscopic detail, such as power broadening-free resonances. We analyze recent experimental results using very simple theory: The intensity noise correlation spectra can be quantitatively understood entirely in terms of static ensemble averages of the medium's steady state response. This is significantly simpler than stochastic integration of the Bloch equations, and leads to physical insights we apply to non-linear Faraday rotation and noise spectra in optically thick media.

  12. Improved CEEMDAN-wavelet transform de-noising method and its application in well logging noise reduction

    NASA Astrophysics Data System (ADS)

    Zhang, Jingxia; Guo, Yinghai; Shen, Yulin; Zhao, Difei; Li, Mi

    2018-06-01

    The use of geophysical logging data to identify lithology is an important groundwork in logging interpretation. Inevitably, noise is mixed in during data collection due to the equipment and other external factors and this will affect the further lithological identification and other logging interpretation. Therefore, to get a more accurate lithological identification it is necessary to adopt de-noising methods. In this study, a new de-noising method, namely improved complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN)-wavelet transform, is proposed, which integrates the superiorities of improved CEEMDAN and wavelet transform. Improved CEEMDAN, an effective self-adaptive multi-scale analysis method, is used to decompose non-stationary signals as the logging data to obtain the intrinsic mode function (IMF) of N different scales and one residual. Moreover, one self-adaptive scale selection method is used to determine the reconstruction scale k. Simultaneously, given the possible frequency aliasing problem between adjacent IMFs, a wavelet transform threshold de-noising method is used to reduce the noise of the (k-1)th IMF. Subsequently, the de-noised logging data are reconstructed by the de-noised (k-1)th IMF and the remaining low-frequency IMFs and the residual. Finally, empirical mode decomposition, improved CEEMDAN, wavelet transform and the proposed method are applied for analysis of the simulation and the actual data. Results show diverse performance of these de-noising methods with regard to accuracy for lithological identification. Compared with the other methods, the proposed method has the best self-adaptability and accuracy in lithological identification.

  13. NASA propeller noise research

    NASA Technical Reports Server (NTRS)

    Greene, G. C.

    1980-01-01

    The research in propeller noise prediction, noise/performance optimization, and interior reduction is described. Selected results are presented to illustrate the status of the technology and the direction of future research.

  14. Noise in ecosystems: a short review.

    PubMed

    Spagnolo, B; Valenti, D; Fiasconaro, A

    2004-06-01

    Noise, through its interaction with the nonlinearity of the living systems, can give rise to counter-intuitive phenomena such as stochastic resonance, noise-delayed extinction, temporal oscillations, and spatial patterns. In this paper we briefly review the noise-induced effects in three different ecosystems: (i) two competing species; (ii) three interacting species, one predator and two preys, and (iii) N-interacting species. The transient dynamics of these ecosystems are analyzed through generalized Lotka-Volterra equations in the presence of multiplicative noise, which models the interaction between the species and the environment. The interaction parameter between the species is random in cases (i) and (iii), and a periodical function, which accounts for the environmental temperature, in case (ii). We find noise-induced phenomena such as quasi-deterministic oscillations, stochastic resonance, noise-delayed extinction, and noise-induced pattern formation with nonmonotonic behaviors of patterns areas and of the density correlation as a function of the multiplicative noise intensity. The asymptotic behavior of the time average of the i(th) population when the ecosystem is composed of a great number of interacting species is obtained and the effect of the noise on the asymptotic probability distributions of the populations is discussed.

  15. Spin noise spectroscopy of ZnO

    NASA Astrophysics Data System (ADS)

    Horn, H.; Berski, F.; Balocchi, A.; Marie, X.; Mansur-Al-Suleiman, M.; Bakin, A.; Waag, A.; Hübner, J.; Oestreich, M.

    2013-12-01

    We investigate the thermal equilibrium dynamics of electron spins bound to donors in nanoporous ZnO by optical spin noise spectroscopy. The spin noise spectra reveal two noise contributions: A weak spin noise signal from undisturbed localized donor electrons with a dephasing time of 24 ns due to hyperfine interaction and a strong spin noise signal with a spin dephasing time of 5 ns which we attribute to localized donor electrons which interact with lattice defects.

  16. Shinkansen noise: Research and achievements in countermeasures for Shinkansen noise

    NASA Astrophysics Data System (ADS)

    Kikuchi, I.

    1988-01-01

    In 1982, the Tohoku and Joetsu Shinkansen lines were opened. The result is the present Shinkansen network that runs through Japan from north to south, leading to a remarkable improvement in railway services, together with the provision of new, efficient connections with conventional lines. Since the opening of the Tokaido Shinkansen, the high utility of the Shinkansen as a high speed, large volume, and safe mode of transport has been gaining a high reputation. On the other hand, social demands for environmental preservation increased in strength with the advent of the period of Japan's high economic growth. Such demands were posed in the form of complaints about air and water pollution and noise from transportation. The problems of noise and vibration from Shinkansen train operation were posed mainly in relation to railway viaducts in urban areas. The Japanese National Railways (JNR) has made all-out efforts in technical development for noise reduction, obtained many achievements, and put them into practical use one by one on the Shinkansen lines. In the early stage of studies, there were many virgin areas for JNR staff, such as measurement technology, estimation methods, and noise alleviation technology. With the start of full-scale testing at a general test center in 1975, various studies and the development of effective measures made a great step forward. In March 1985, the maximum speed on the Tohoku Shinkansen was increased to 240 km/h, enhancing the Shinkansen reputation and resulting in a considerable growth of traffic. As a matter of course, new measures for noise reduction were taken for this line. In view of the history and results of voluminous studies over many years on the Shinkansen noise problem, and also of the roles and surrounding conditions of the Shinkansen as a mode of transport, however, new tasks are being posed concerning such aspects as how to accomplish environmental preservation in the future.

  17. Implementation of noise budgets for civil airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bishop, D.E.

    1982-01-01

    An increasing number of airports are faced with the need for establishing a lid on the noise from aircraft operations and for developing programs for reducing airport noise on a year-to-year basis. As an example, the California Airport Noise Standard acts to impose such programs on a number of airports in California. Any airport faced with the need to establish a quantitative reduction of noise obviously wants to achieve this reduction with the least impact on numbers of operations and reduction in air transportation services to the community. A reduction in noise and an increase in operations usually can bemore » achieved only by encouraging use of the quietest aircraft available and, further adding incentives for operating procedures that minimize noise. One approach in administering airport noise reduction is to adopt an airport noise budget. As used in this paper, the noise budget concept implies that quantitative limits on the noise environment and on the noise contributions by major airport users will be established. Having methods for enforcing compliance with the airport budget for those airport users that exceed their budget will be established. Thus, the noise budget provides airport management, and major airport users, with quantitative measures for defining noise goals, and actual progress in achieving such goals.« less

  18. Noise: My 62 years of it!

    NASA Astrophysics Data System (ADS)

    Miller, Laymon N.

    2004-05-01

    Imagine getting paid for having fun! Well, in retrospect, it was fun; but there were several tough challenges. Even those are worth remembering. From 1941 to 1982, there were acoustic torpedoes, HVAC acoustics, noise and vibration in auditoriums, aircraft and airport noise, OSHA and industrial noise control, power plants, community noise problems, vbration, railroad and subway vibration control, legal acoustics, noise manuals, and noise courses-and a few other things that don't fit into those neat categories. Some specific jobs could be named, but that would take away the suspense and the surprise. But 1941 to 1982 is only 41 years. How about the other 20-odd years?

  19. NASA Jet Noise Research

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda

    2016-01-01

    The presentation highlights NASA's jet noise research for 2016. Jet-noise modeling efforts, jet-surface interactions results, acoustic characteristics of multi-stream jets, and N+2 Supersonic Aircraft system studies are presented.

  20. [Communication and noise. Speech intelligibility of airplane pilots with and without active noise compensation].

    PubMed

    Matschke, R G

    1994-08-01

    Noise exposure measurements were performed with pilots of the German Federal Navy during flight situations. The ambient noise levels during regular flight were maintained at levels above a 90 dB A-weighted level. This noise intensity requires wearing ear protection to avoid sound-induced hearing loss. To be able to understand radio communication (ATC) in spite of a noisy environment, headphone volume must be raised above the noise of the engines. The use of ear plugs in addition to the headsets and flight helmets is only of limited value because personal ear protection affects the intelligibility of ATC. Whereas speech intelligibility of pilots with normal hearing is affected to only a smaller degree, pilots with pre-existing high-frequency hearing losses show substantial impairments of speech intelligibility that vary in proportion to the hearing deficit present. Communication abilities can be reduced drastically, which in turn can affect air traffic security. The development of active noise compensation devices (ANC) that make use of the "anti-noise" principle may be a solution to this dilemma. To evaluate the effectiveness of an ANC-system and its influence on speech intelligibility, speech audiometry was performed with a German standardized test during simulated flight conditions with helicopter pilots. Results demonstrate the helpful effect on speech understanding especially for pilots with noise-induced hearing losses. This may help to avoid pre-retirement professional disability.

  1. Wind noise under a pine tree canopy.

    PubMed

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  2. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance-An Analysis in the Context of the Joint Research Initiative NORAH.

    PubMed

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-08-02

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise ( N = 4905), or aircraft and railway noise ( N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance.

  3. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH

    PubMed Central

    Wothge, Jördis; Belke, Christin; Möhler, Ulrich; Guski, Rainer; Schreckenberg, Dirk

    2017-01-01

    The Noise Related Annoyance Cognition and Health (NORAH) research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905), or aircraft and railway noise (N = 4777). Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise). To a lesser extent, the average sound pressure level of the two present sources was also of relevance. PMID:28767095

  4. Noise Exposure Assessment in a Dental School

    PubMed Central

    Kaimook, Wandee; Tantisarasart, Ratchada; Sooksamear, Puwanai; Chayaphum, Satith; Kongkamol, Chanon; Srisintorn, Wisarut; Phakthongsuk, Pitchaya

    2011-01-01

    Objectives This cross-sectional study was performed in the Dental School of Prince of Songkla University to ascertain noise exposure of dentists, dental assistants, and laboratory technicians. A noise spectral analysis was taken to illustrate the spectra of dental devices. Methods A noise evaluation was performed to measure the noise level at dental clinics and one dental laboratory from May to December 2010. Noise spectral data of dental devices were taken during dental practices at the dental services clinic and at the dental laboratory. A noise dosimeter was set following the Occupational Safety and Health Administration criteria and then attached to the subjects' collar to record personal noise dose exposure during working periods. Results The peaks of the noise spectrum of dental instruments were at 1,000, 4,000, and 8,000 Hz which depended on the type of instrument. The differences in working areas and job positions had an influence on the level of noise exposure (p < 0.01). Noise measurement in the personal hearing zone found that the laboratory technicians were exposed to the highest impulsive noise levels (137.1 dBC). The dentists and dental assistants who worked at a pedodontic clinic had the highest percent noise dose (4.60 ± 3.59%). In the working areas, the 8-hour time-weighted average of noise levels ranged between 49.7-58.1 dBA while the noisiest working area was the dental laboratory. Conclusion Dental personnel are exposed to noise intensities lower than occupational exposure limits. Therefore, these dental personnel may not experience a noise-induced hearing loss. PMID:22953219

  5. Noise exposure assessment in a dental school.

    PubMed

    Choosong, Thitiworn; Kaimook, Wandee; Tantisarasart, Ratchada; Sooksamear, Puwanai; Chayaphum, Satith; Kongkamol, Chanon; Srisintorn, Wisarut; Phakthongsuk, Pitchaya

    2011-12-01

    This cross-sectional study was performed in the Dental School of Prince of Songkla University to ascertain noise exposure of dentists, dental assistants, and laboratory technicians. A noise spectral analysis was taken to illustrate the spectra of dental devices. A noise evaluation was performed to measure the noise level at dental clinics and one dental laboratory from May to December 2010. Noise spectral data of dental devices were taken during dental practices at the dental services clinic and at the dental laboratory. A noise dosimeter was set following the Occupational Safety and Health Administration criteria and then attached to the subjects' collar to record personal noise dose exposure during working periods. The peaks of the noise spectrum of dental instruments were at 1,000, 4,000, and 8,000 Hz which depended on the type of instrument. The differences in working areas and job positions had an influence on the level of noise exposure (p < 0.01). Noise measurement in the personal hearing zone found that the laboratory technicians were exposed to the highest impulsive noise levels (137.1 dBC). The dentists and dental assistants who worked at a pedodontic clinic had the highest percent noise dose (4.60 ± 3.59%). In the working areas, the 8-hour time-weighted average of noise levels ranged between 49.7-58.1 dBA while the noisiest working area was the dental laboratory. Dental personnel are exposed to noise intensities lower than occupational exposure limits. Therefore, these dental personnel may not experience a noise-induced hearing loss.

  6. Sources of noise in magneto-optical readout

    NASA Technical Reports Server (NTRS)

    Mansuripur, M.

    1991-01-01

    The various sources of noise which are often encountered in magneto-optical readout systems are analyzed. Although the focus is on magneto-optics, most sources of noise are common among the various optical recording systems and one can easily adapt the results to other media and systems. A description of the magneto-optical readout system under consideration is given, and the standard methods and the relevant terminology of signal and noise measurement are described. The characteristics of thermal noise, which originates in the electronic circuitry of the readout system, are described. The most fundamental of all sources of noise, the shot noise, is considered, and a detailed account of its statistical properties is given. Shot noise, which is due to random fluctuations in photon arrival times, is an ever-present noise in optical detection. Since the performance of magneto-optical recording devices in use today is approaching the limit imposed by the shot noise, it is important that the reader have a good grasp of this particular source of noise. A model for the laser noise is described, and measurement results which yield numerical values for the strength of the laser power fluctuations are presented. Spatial variations of the disk reflectivity and random depolarization phenomena also contribute to the overall level of noise in readout; these and related issues are treated. Numerical simulation results describing some of the more frequently encountered sources of noise which accompany the recorded waveform itself, namely, jitter noise and signal-amplitude fluctuation noise are presented.

  7. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational controls...

  8. 49 CFR 227.113 - Noise operational controls.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Noise operational controls. 227.113 Section 227... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.113 Noise operational controls. (a) Railroads may use noise operational controls...

  9. Prediction of airframe noise

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Fratello, D. J.; Hayden, R. E.; Kadman, Y.; Africk, S.

    1975-01-01

    Methods of predicting airframe noise generated by aircraft in flight under nonpowered conditions are discussed. Approaches to predictions relying on flyover data and component theoretical analyses are developed. A nondimensional airframe noise spectrum of various aircraft is presented. The spectrum was obtained by smoothing all the measured spectra to remove any peculiarities due to airframe protrusions, normalizing each spectra by its overall sound pressure level and a characteristics frequency, and averaging the spectra together. A chart of airframe noise sources is included.

  10. Computer program to predict aircraft noise levels

    NASA Technical Reports Server (NTRS)

    Clark, B. J.

    1981-01-01

    Methods developed at the NASA Lewis Research Center for predicting the noise contributions from various aircraft noise sources were programmed to predict aircraft noise levels either in flight or in ground tests. The noise sources include fan inlet and exhaust, jet, flap (for powered lift), core (combustor), turbine, and airframe. Noise propagation corrections are available for atmospheric attenuation, ground reflections, extra ground attenuation, and shielding. Outputs can include spectra, overall sound pressure level, perceived noise level, tone-weighted perceived noise level, and effective perceived noise level at locations specified by the user. Footprint contour coordinates and approximate footprint areas can also be calculated. Inputs and outputs can be in either System International or U.S. customary units. The subroutines for each noise source and propagation correction are described. A complete listing is given.

  11. The effect of microphone wind noise on the amplitude modulation of wind turbine noise and its mitigation.

    PubMed

    Kendrick, Paul; von Hünerbein, Sabine; Cox, Trevor J

    2016-07-01

    Microphone wind noise can corrupt outdoor recordings even when wind shields are used. When monitoring wind turbine noise, microphone wind noise is almost inevitable because measurements cannot be made in still conditions. The effect of microphone wind noise on two amplitude modulation (AM) metrics is quantified in a simulation, showing that even at low wind speeds of 2.5 m/s errors of over 4 dBA can result. As microphone wind noise is intermittent, a wind noise detection algorithm is used to automatically find uncorrupted sections of the recording, and so recover the true AM metrics to within ±2/±0.5 dBA.

  12. Road traffic noise and children's inattention.

    PubMed

    Weyde, Kjell Vegard; Krog, Norun Hjertager; Oftedal, Bente; Magnus, Per; Øverland, Simon; Stansfeld, Stephen; Nieuwenhuijsen, Mark J; Vrijheid, Martine; de Castro Pascual, Montserrat; Aasvang, Gunn Marit

    2017-11-21

    An increasing number of children are exposed to road traffic noise levels that may lead to adverse effects on health and daily functioning. Childhood is a period of intense growth and brain maturation, and children may therefore be especially vulnerable to road traffic noise. The objective of the present study was to examine whether road traffic noise was associated with reported inattention symptoms in children, and whether this association was mediated by sleep duration. This study was based on the Norwegian Mother and Child Cohort Study conducted by the Norwegian Institute of Public Health. Parental reports of children's inattention at age 8 were linked to modelled levels of residential road traffic noise. We investigated the association between inattention and noise exposure during pregnancy (n = 1934), noise exposure averaged over 5 years (age 3 to 8 years; n = 1384) and noise exposure at age 8 years (n = 1384), using fractional logit response models. The participants were children from Oslo, Norway. An association with inattention at age 8 years was found for road traffic noise exposure at age 8 years (coef = .0083, CI = [.0012, .0154]; 1.2% point increase in inattention score per 10 dB increase in noise level), road traffic noise exposure average for the last 5 years (coef = .0090, CI = [.0016, .0164]; 1.3% point increase/10 dB), and for pregnancy road traffic noise exposure for boys (coef = .0091, CI = [.0010, .0171]), but not girls (coef = -.0021, CI = [-.0094, .0053]). Criteria for doing mediation analyses were not fulfilled. Results indicate that road traffic noise has a negative impact on children's inattention. We found no mediation by sleep duration.

  13. Fan and pump noise control

    NASA Technical Reports Server (NTRS)

    Misoda, J.; Magliozzi, B.

    1973-01-01

    The development is described of improved, low noise level fan and pump concepts for the space shuttle. In addition, a set of noise design criteria for small fans and pumps was derived. The concepts and criteria were created by obtaining Apollo hardware test data to correlate and modify existing noise estimating procedures. A set of space shuttle selection criteria was used to determine preliminary fan and pump concepts. These concepts were tested and modified to obtain noise sources and characteristics which yield the design criteria and quiet, efficient space shuttle fan and pump concepts.

  14. 49 CFR 227.103 - Noise monitoring program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Noise monitoring program. 227.103 Section 227.103..., DEPARTMENT OF TRANSPORTATION OCCUPATIONAL NOISE EXPOSURE Occupational Noise Exposure for Railroad Operating Employees. § 227.103 Noise monitoring program. (a) Schedule. A railroad shall develop and implement a noise...

  15. Occupational noise exposure and hearing levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambasankaran, M.; Brahmachari, D.; Chadda, V.K.

    1981-07-01

    A study was made at the Bhabha Atomic Research Center to measure the hearing levels of persons working in a noise environment. Two different workplaces, central air-conditioning plant and glass blowing shops, where a number of persons were exposed to noise levels exceeding 85 dB(A) were chosen. The occupational exposure to noise was determined using a sound level meter, an octave band filter and a personal noise dose meter. The hearing levels of persons exposed to these high levels of noise and a control group not exposed to occupational noise were measured by means of a pure-tone audiometer in amore » specially-built booth. These persons, aged between 20 to 60 years, were divided into four age groups for the study. The low ambient noise levels in the booth were measured using correlation technique since such low signals cannot be detected by an ordinary sound level meter. The audiometric findings and the results of the noise level survey are discussed in this paper.« less

  16. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements

    NASA Astrophysics Data System (ADS)

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  17. A very low noise, high accuracy, programmable voltage source for low frequency noise measurements.

    PubMed

    Scandurra, Graziella; Giusi, Gino; Ciofi, Carmine

    2014-04-01

    In this paper an approach for designing a programmable, very low noise, high accuracy voltage source for biasing devices under test in low frequency noise measurements is proposed. The core of the system is a supercapacitor based two pole low pass filter used for filtering out the noise produced by a standard DA converter down to 100 mHz with an attenuation in excess of 40 dB. The high leakage current of the supercapacitors, however, introduces large DC errors that need to be compensated in order to obtain high accuracy as well as very low output noise. To this end, a proper circuit topology has been developed that allows to considerably reduce the effect of the supercapacitor leakage current on the DC response of the system while maintaining a very low level of output noise. With a proper design an output noise as low as the equivalent input voltage noise of the OP27 operational amplifier, used as the output buffer of the system, can be obtained with DC accuracies better that 0.05% up to the maximum output of 8 V. The expected performances of the proposed voltage source have been confirmed both by means of SPICE simulations and by means of measurements on actual prototypes. Turn on and stabilization times for the system are of the order of a few hundred seconds. These times are fully compatible with noise measurements down to 100 mHz, since measurement times of the order of several tens of minutes are required in any case in order to reduce the statistical error in the measured spectra down to an acceptable level.

  18. Underwater noise modelling for environmental impact assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farcas, Adrian; Thompson, Paul M.; Merchant, Nathan D., E-mail: nathan.merchant@cefas.co.uk

    Assessment of underwater noise is increasingly required by regulators of development projects in marine and freshwater habitats, and noise pollution can be a constraining factor in the consenting process. Noise levels arising from the proposed activity are modelled and the potential impact on species of interest within the affected area is then evaluated. Although there is considerable uncertainty in the relationship between noise levels and impacts on aquatic species, the science underlying noise modelling is well understood. Nevertheless, many environmental impact assessments (EIAs) do not reflect best practice, and stakeholders and decision makers in the EIA process are often unfamiliarmore » with the concepts and terminology that are integral to interpreting noise exposure predictions. In this paper, we review the process of underwater noise modelling and explore the factors affecting predictions of noise exposure. Finally, we illustrate the consequences of errors and uncertainties in noise modelling, and discuss future research needs to reduce uncertainty in noise assessments.« less

  19. Core/Combustor Noise - Research Overview

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2017-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and advances in mitigation of other noise sources. Future propulsion systems for ultra-efficient commercial air vehicles are projected to be of increasingly higher bypass ratio from larger fans combined with much smaller cores, with ultra-clean burning fuel-flexible combustors. Unless effective noise-reduction strategies are developed, combustor noise is likely to become a prominent contributor to overall airport community noise in the future. This presentation gives a brief overview of the NASA outlook on pertinent issues and far-term research needs as well as current and planned research in the core/combustor-noise area. The research described herein is aligned with the NASA Ultra-Efficient Commercial Transport strategic thrust and is supported by the NASA Advanced Air Vehicle Program, Advanced Air Transport Technology Project, under the Aircraft Noise Reduction Subproject. The overarching goal of the Advanced Air Transport Technology (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  20. Acoustic noise during functional magnetic resonance imaginga)

    PubMed Central

    Ravicz, Michael E.; Melcher, Jennifer R.; Kiang, Nelson Y.-S.

    2007-01-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For studies of the auditory system, acoustic noise generated during fMRI can interfere with assessments of this activation by introducing uncontrolled extraneous sounds. As a first step toward reducing the noise during fMRI, this paper describes the temporal and spectral characteristics of the noise present under typical fMRI study conditions for two imagers with different static magnetic field strengths. Peak noise levels were 123 and 138 dB re 20 μPa in a 1.5-tesla (T) and a 3-T imager, respectively. The noise spectrum (calculated over a 10-ms window coinciding with the highest-amplitude noise) showed a prominent maximum at 1 kHz for the 1.5-T imager (115 dB SPL) and at 1.4 kHz for the 3-T imager (131 dB SPL). The frequency content and timing of the most intense noise components indicated that the noise was primarily attributable to the readout gradients in the imaging pulse sequence. The noise persisted above background levels for 300-500 ms after gradient activity ceased, indicating that resonating structures in the imager or noise reverberating in the imager room were also factors. The gradient noise waveform was highly repeatable. In addition, the coolant pump for the imager’s permanent magnet and the room air handling system were sources of ongoing noise lower in both level and frequency than gradient coil noise. Knowledge of the sources and characteristics of the noise enabled the examination of general approaches to noise control that could be applied to reduce the unwanted noise during fMRI sessions. PMID:11051496

  1. Noise canceling in-situ detection

    DOEpatents

    Walsh, David O.

    2014-08-26

    Technologies applicable to noise canceling in-situ NMR detection and imaging are disclosed. An example noise canceling in-situ NMR detection apparatus may comprise one or more of a static magnetic field generator, an alternating magnetic field generator, an in-situ NMR detection device, an auxiliary noise detection device, and a computer.

  2. Propagation of Environmental Noise

    ERIC Educational Resources Information Center

    Lyon, R. H.

    1973-01-01

    Solutions for environmental noise pollution lie in systematic study of many basic processes such as reflection, scattering, and spreading. Noise propagation processes should be identified in different situations and assessed for their relative importance. (PS)

  3. Broadband Noise Reduction of a Low-Speed Fan Noise Using Trailing Edge Blowing

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.

    2005-01-01

    An experimental proof-of-concept test was conducted to demonstrate reduction of rotor-stator interaction noise through the use of rotor-trailing edge blowing. The velocity deficit from the viscous wake of the rotor blades was reduced by injecting air into the wake from a continuous trailing edge slot. Hollow blades with interior guide vanes create flow channels through which externally supplied air flows from the blade root to the trailing edge. A previous paper documented the substantial tonal reductions of this Trailing Edge Rotor Blowing (TERB) fan. This report documents the broadband characteristics of TERB. The Active Noise Control Fan (ANCF), located at the NASA Glenn Research Center, was used as the proof-of-concept test bed. Two-component hotwire data behind the rotor, unsteady surface pressures on the stator vane, and farfield directivity acoustic data were acquired at blowing rates of 1.1, 1.5, and 1.8 percent of the total fan mass flow. The results indicate a substantial reduction in the rotor wake turbulent velocity and in the stator vane unsteady surface pressures. Based on the physics of the noise generation, these indirect measurements indicate the prospect of broadband noise reduction. However, since the broadband noise generated by the ANCF is rotor-dominated, any change in the rotor-stator interaction broadband noise levels is barely distinguishable in the farfield measurements.

  4. Noise. Ag Ed Environmental Education Series.

    ERIC Educational Resources Information Center

    Tulloch, Rodney W.

    Noise is the subject of the student resource unit to be used with high school vocational agriculture students. The nature of noise as a phenomenon and as a problem is clarified. Sources of noise pollution and the decibel levels they produce are described. Among the effects of noise pollution discussed are hearing loss, annoyance, and accidental…

  5. A Stochastic Simulation Framework for the Prediction of Strategic Noise Mapping and Occupational Noise Exposure Using the Random Walk Approach

    PubMed Central

    Haron, Zaiton; Bakar, Suhaimi Abu; Dimon, Mohamad Ngasri

    2015-01-01

    Strategic noise mapping provides important information for noise impact assessment and noise abatement. However, producing reliable strategic noise mapping in a dynamic, complex working environment is difficult. This study proposes the implementation of the random walk approach as a new stochastic technique to simulate noise mapping and to predict the noise exposure level in a workplace. A stochastic simulation framework and software, namely RW-eNMS, were developed to facilitate the random walk approach in noise mapping prediction. This framework considers the randomness and complexity of machinery operation and noise emission levels. Also, it assesses the impact of noise on the workers and the surrounding environment. For data validation, three case studies were conducted to check the accuracy of the prediction data and to determine the efficiency and effectiveness of this approach. The results showed high accuracy of prediction results together with a majority of absolute differences of less than 2 dBA; also, the predicted noise doses were mostly in the range of measurement. Therefore, the random walk approach was effective in dealing with environmental noises. It could predict strategic noise mapping to facilitate noise monitoring and noise control in the workplaces. PMID:25875019

  6. Analysis of sharpness increase by image noise

    NASA Astrophysics Data System (ADS)

    Kurihara, Takehito; Aoki, Naokazu; Kobayashi, Hiroyuki

    2009-02-01

    Motivated by the reported increase in sharpness by image noise, we investigated how noise affects sharpness perception. We first used natural images of tree bark with different amounts of noise to see whether noise enhances sharpness. Although the result showed sharpness decreased as noise amount increased, some observers seemed to perceive more sharpness with increasing noise, while the others did not. We next used 1D and 2D uni-frequency patterns as stimuli in an attempt to reduce such variability in the judgment. The result showed, for higher frequency stimuli, sharpness decreased as the noise amount increased, while sharpness of the lower frequency stimuli increased at a certain noise level. From this result, we thought image noise might reduce sharpness at edges, but be able to improve sharpness of lower frequency component or texture in image. To prove this prediction, we experimented again with the natural image used in the first experiment. Stimuli were made by applying noise separately to edge or to texture part of the image. The result showed noise, when added to edge region, only decreased sharpness, whereas when added to texture, could improve sharpness. We think it is the interaction between noise and texture that sharpens image.

  7. Active Chevrons for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Depuru-Mohan, N. K.; Doty, M. J.

    2017-01-01

    Jet noise is often a dominant component of aircraft noise, particularly at takeoff. To meet the stringent noise regulations, the aircraft industry is in a pressing need of advanced noise reduction concepts. In the present study, the potential of piezoelectrically-activated chevrons for jet noise reduction was experimentally investigated. The perturbations near the nozzle exit caused by piezoelectrically-activated chevrons could be used to modify the growth rate of the mixing layer and thereby potentially reduce jet noise. These perturbations are believed to increase the production of small-scale disturbances at the expense of large-scale turbulent structures. These large-scale turbulent structures are responsible for the dominant portion of the jet mixing noise, particularly low-frequency noise. Therefore, by exciting the static chevron geometry through piezoelectric actuators, an additional acoustic benefit could possibly be achieved. To aid in the initial implementation of this concept, several flat-faced faceted nozzles (four, six, and eight facets) were investigated. Among the faceted nozzles, it was found that the eight-faceted nozzle behaves very similarly to the round nozzle. Furthermore, among the faceted nozzles with static chevrons, the four-faceted nozzle with static chevrons was found to be most effective in terms of jet noise reduction. The piezoelectrically-activated chevrons reduced jet noise up to 2 dB compared to the same nozzle geometry without excitation. This benefit was observed over a wide range of excitation frequencies by applying very low voltages to the piezoelectric actuators.

  8. Indirect combustion noise of auxiliary power units

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Parrish, Sarah A.; Xu, Jun; Schuster, Bill

    2013-08-01

    Recent advances in noise suppression technology have significantly reduced jet and fan noise from commercial jet engines. This leads many investigators in the aeroacoustics community to suggest that core noise could well be the next aircraft noise barrier. Core noise consists of turbine noise and combustion noise. There is direct combustion noise generated by the combustion processes, and there is indirect combustion noise generated by the passage of combustion hot spots, or entropy waves, through constrictions in an engine. The present work focuses on indirect combustion noise. Indirect combustion noise has now been found in laboratory experiments. The primary objective of this work is to investigate whether indirect combustion noise is also generated in jet and other engines. In a jet engine, there are numerous noise sources. This makes the identification of indirect combustion noise a formidable task. Here, our effort concentrates exclusively on auxiliary power units (APUs). This choice is motivated by the fact that APUs are relatively simple engines with only a few noise sources. It is, therefore, expected that the chance of success is higher. Accordingly, a theoretical model study of the generation of indirect combustion noise in an Auxiliary Power Unit (APU) is carried out. The cross-sectional areas of an APU from the combustor to the turbine exit are scaled off to form an equivalent nozzle. A principal function of a turbine in an APU is to extract mechanical energy from the flow stream through the exertion of a resistive force. Therefore, the turbine is modeled by adding a negative body force to the momentum equation. This model is used to predict the ranges of frequencies over which there is a high probability for indirect combustion noise generation. Experimental spectra of internal pressure fluctuations and far-field noise of an RE220 APU are examined to identify anomalous peaks. These peaks are possible indirection combustion noise. In the case of the

  9. The Signal Importance of Noise

    ERIC Educational Resources Information Center

    Macy, Michael; Tsvetkova, Milena

    2015-01-01

    Noise is widely regarded as a residual category--the unexplained variance in a linear model or the random disturbance of a predictable pattern. Accordingly, formal models often impose the simplifying assumption that the world is noise-free and social dynamics are deterministic. Where noise is assigned causal importance, it is often assumed to be a…

  10. Sounds Alive: A Noise Workbook.

    ERIC Educational Resources Information Center

    Dickman, Donna McCord

    Sarah Screech, Danny Decibel, Sweetie Sound and Neil Noisy describe their experiences in the world of sound and noise to elementary students. Presented are their reports, games and charts which address sound measurement, the effects of noise on people, methods of noise control, and related areas. The workbook is intended to stimulate students'…

  11. Control of jet noise

    NASA Technical Reports Server (NTRS)

    Schreck, Stefan

    1992-01-01

    To investigate the possibility of active control of jet noise, knowledge of the noise generation mechanisms in natural jets is essential. Once these mechanisms are determined, active control can be used to manipulate the noise production processes. We investigated the evolution of the flow fields and the acoustic fields of rectangular and circular jets. A predominant flapping mode was found in the supersonic rectangular jets. We hope to increase the spreading of supersonic jets by active control of the flapping mode found in rectangular supersonic jets.

  12. Low Frequency Noise Contamination in Fan Model Testing

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.; Schifer, Nicholas A.

    2008-01-01

    Aircraft engine noise research and development depends on the ability to study and predict the noise created by each engine component in isolation. The presence of a downstream pylon for a model fan test, however, may result in noise contamination through pylon interactions with the free stream and model exhaust airflows. Additionally, there is the problem of separating the fan and jet noise components generated by the model fan. A methodology was therefore developed to improve the data quality for the 9 15 Low Speed Wind Tunnel (LSWT) at the NASA Glenn Research Center that identifies three noise sources: fan noise, jet noise, and rig noise. The jet noise and rig noise were then measured by mounting a scale model of the 9 15 LSWT model fan installation in a jet rig to simulate everything except the rotating machinery and in duct components of fan noise. The data showed that the spectra measured in the LSWT has a strong rig noise component at frequencies as high as 3 kHz depending on the fan and airflow fan exit velocity. The jet noise was determined to be significantly lower than the rig noise (i.e., noise generated by flow interaction with the downstream support pylon). A mathematical model for the rig noise was then developed using a multi-dimensional least squares fit to the rig noise data. This allows the rig noise to be subtracted or removed, depending on the amplitude of the rig noise relative to the fan noise, at any given frequency, observer angle, or nozzle pressure ratio. The impact of isolating the fan noise with this method on spectra, overall power level (OAPWL), and Effective Perceived Noise Level (EPNL) is studied.

  13. Noise-induced hearing loss and combined noise and vibration exposure.

    PubMed

    Turcot, A; Girard, S A; Courteau, M; Baril, J; Larocque, R

    2015-04-01

    While there is a wide body of literature addressing noise-induced hearing loss (NIHL) and hand-arm vibration syndrome (HAVS) independently, relatively few studies have considered the combined effects of noise and vibration. These studies have suggested an increased risk of NIHL in workers with vibration white finger (VWF), though the relationship remains poorly understood. To determine whether hearing impairment is worse in noise-exposed workers with VWF than in workers with similar noise exposures but without VWF. The Quebec National Institute of Public Health audiometric database was used in conjunction with work-related accident and occupational diseases data from the Quebec workers' compensation board to analyse differences in audiometry results between vibration-exposed workers in the mining and forestry industries and the overall source population, and between mining and forestry workers with documented VWF and those without VWF. The International Organization for Standardization (ISO) 7029 standards were used to calculate hearing loss not attributable to age. 15751 vibration-exposed workers were identified in an overall source population of 59339. Workers with VWF (n = 96) had significantly worse hearing at every frequency studied (500, 1000, 2000 4000 Hz) compared with other mining and forestry workers without VWF. This study confirms previous findings of greater hearing loss at higher frequencies in workers with VWF, but also found a significant difference in hearing loss at low frequencies. It therefore supports the association between combined noise and hand-arm vibration (HAV) exposure and NIHL. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cognition

    PubMed Central

    Clark, Charlotte

    2018-01-01

    This systematic review assesses the quality of the evidence across individual studies on the effect of environmental noise (road traffic, aircraft, and train and railway noise) on cognition. Quantitative non-experimental studies of the association between environmental noise exposure on child and adult cognitive performance published up to June 2015 were reviewed: no limit was placed on the start date for the search. A total of 34 papers were identified, all of which were of child populations. 82% of the papers were of cross-sectional design, with fewer studies of longitudinal or intervention design. A range of cognitive outcomes were examined. The quality of the evidence across the studies for each individual noise source and cognitive outcome was assessed using an adaptation of GRADE methodology. This review found, given the predominance of cross-sectional studies, that the quality of the evidence across studies ranged from being of moderate quality for an effect for some outcomes, e.g., aircraft noise effects on reading comprehension and on long-term memory, to no effect for other outcomes such as attention and executive function and for some noise sources such as road traffic noise and railway noise. The GRADE evaluation of low quality evidence across studies for some cognitive domains and for some noise sources does not necessarily mean that there are no effects: rather, that more robust and a greater number of studies are required. PMID:29414890

  15. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Cognition.

    PubMed

    Clark, Charlotte; Paunovic, Katarina

    2018-02-07

    This systematic review assesses the quality of the evidence across individual studies on the effect of environmental noise (road traffic, aircraft, and train and railway noise) on cognition. Quantitative non-experimental studies of the association between environmental noise exposure on child and adult cognitive performance published up to June 2015 were reviewed: no limit was placed on the start date for the search. A total of 34 papers were identified, all of which were of child populations. 82% of the papers were of cross-sectional design, with fewer studies of longitudinal or intervention design. A range of cognitive outcomes were examined. The quality of the evidence across the studies for each individual noise source and cognitive outcome was assessed using an adaptation of GRADE methodology. This review found, given the predominance of cross-sectional studies, that the quality of the evidence across studies ranged from being of moderate quality for an effect for some outcomes, e.g., aircraft noise effects on reading comprehension and on long-term memory, to no effect for other outcomes such as attention and executive function and for some noise sources such as road traffic noise and railway noise. The GRADE evaluation of low quality evidence across studies for some cognitive domains and for some noise sources does not necessarily mean that there are no effects: rather, that more robust and a greater number of studies are required.

  16. Noise-enhanced CVQKD with untrusted source

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoqun; Huang, Chunhui

    2017-06-01

    The performance of one-way and two-way continuous variable quantum key distribution (CVQKD) protocols can be increased by adding some noise on the reconciliation side. In this paper, we propose to add noise at the reconciliation end to improve the performance of CVQKD with untrusted source. We derive the key rate of this case and analyze the impact of the additive noise. The simulation results show that the optimal additive noise can improve the performance of the system in terms of maximum transmission distance and tolerable excess noise.

  17. Reduction of external noise of mobile energy facilities by using active noise control system in muffler

    NASA Astrophysics Data System (ADS)

    Polivaev, O. I.; Kuznetsov, A. N.; Larionov, A. N.; Beliansky, R. G.

    2018-03-01

    The paper describes a method for the reducing emission of low-frequency noise of modern automotive vehicles into the environment. The importance of reducing the external noise of modern mobile energy facilities made in Russia is substantiated. Standard methods for controlling external noise in technology are of low efficiency when low-frequency sound waves are reduced. In this case, it is in the low-frequency zone of the sound range that the main power of the noise emitted by the machinery lies. The most effective way to reduce such sound waves is to use active noise control systems. A design of a muffler using a similar system is presented. This muffler allowed one to reduce the emission of increased noise levels into the environment by 7-11 dB and to increase acoustic comfort at the operator's workplace by 3-5 dB.

  18. 23 CFR 772.17 - Traffic noise prediction.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 23 Highways 1 2011-04-01 2011-04-01 false Traffic noise prediction. 772.17 Section 772.17 Highways... ABATEMENT OF HIGHWAY TRAFFIC NOISE AND CONSTRUCTION NOISE § 772.17 Traffic noise prediction. (a) Any analysis required by this subpart must use the FHWA Traffic Noise Model (FHWA TNM), which is described in...

  19. The Effects of Noise on Pupil Performance.

    ERIC Educational Resources Information Center

    Slater, Barbara Ruth

    Effects of school noise conditions on student written task performance were studied. Three noise levels were examined--(1) irregular interval noise, 75-90 decibels, (2) average or normal noise, and (3) quiet condition, 45-55 decibels. An attempt was made to reproduce noise conditions typical of the school environment. A second controlled…

  20. Listen to the Noise: Noise Is Beneficial for Cognitive Performance in ADHD

    ERIC Educational Resources Information Center

    Soderlund, Goran; Sikstrom, Sverker; Smart, Andrew

    2007-01-01

    Background: Noise is typically conceived of as being detrimental to cognitive performance. However, given the mechanism of stochastic resonance, a certain amount of noise can benefit performance. We investigate cognitive performance in noisy environments in relation to a neurocomputational model of attention deficit hyperactivity disorder (ADHD)…

  1. Health consequences of aircraft noise.

    PubMed

    Kaltenbach, Martin; Maschke, Christian; Klinke, Rainer

    2008-08-01

    The ever-increasing level of air traffic means that any medical evaluation of its effects must be based on recent data. Selective literature review of epidemiological studies from 2000 to 2007 regarding the illnesses, annoyance, and learning disorders resulting from aircraft noise. In residential areas, outdoor aircraft noise-induced equivalent noise levels of 60 dB(A) in the daytime and 45 dB(A) at night are associated with an increased incidence of hypertension. There is a dose-response relationship between aircraft noise and the occurrence of arterial hypertension. The prescription frequency of blood pressure-lowering medications is associated dose-dependently with aircraft noise from a level of about 45 dB(A). Around 25% of the population are greatly annoyed by exposure to noise of 55 dB(A) during the daytime. Exposure to 50 dB(A) in the daytime (outside) is associated with relevant learning difficulties in schoolchildren. Based on recent epidemiological studies, outdoor noise limits of 60 dB(A) in the daytime and 50 dB(A) at night can be recommended on grounds of health protection. Hence, maximum values of 55 dB(A) for the day and 45 dB(A) for the night should be aimed for in order to protect the more sensitive segments of the population such as children, the elderly, and the chronically ill. These values are 5 to 10 dB(A) lower than those specified by the German federal law on aircraft noise and in the report "synopsis" commissioned by the company that runs Frankfurt airport (Fraport).

  2. Airframe Noise Studies: Review and Future Direction

    NASA Technical Reports Server (NTRS)

    Rackl, Robert G.; Miller, Gregory; Guo, Yueping; Yamamoto, Kingo

    2005-01-01

    This report contains the following information: 1) a review of airframe noise research performed under NASA's Advanced Subsonic Transport (AST) program up to the year 2000, 2) a comparison of the year 1992 airframe noise predictions with those using a year 2000 baseline, 3) an assessment of various airframe noise reduction concepts as applied to the year 2000 baseline predictions, and 4) prioritized recommendations for future airframe noise reduction work. NASA's Aircraft Noise Prediction Program was the software used for all noise predictions and assessments. For future work, the recommendations for the immediate future focus on the development of design tools sensitive to airframe noise treatment effects and on improving the basic understanding of noise generation by the landing gear as well as on its reduction.

  3. Noise can speed convergence in Markov chains.

    PubMed

    Franzke, Brandon; Kosko, Bart

    2011-10-01

    A new theorem shows that noise can speed convergence to equilibrium in discrete finite-state Markov chains. The noise applies to the state density and helps the Markov chain explore improbable regions of the state space. The theorem ensures that a stochastic-resonance noise benefit exists for states that obey a vector-norm inequality. Such noise leads to faster convergence because the noise reduces the norm components. A corollary shows that a noise benefit still occurs if the system states obey an alternate norm inequality. This leads to a noise-benefit algorithm that requires knowledge of the steady state. An alternative blind algorithm uses only past state information to achieve a weaker noise benefit. Simulations illustrate the predicted noise benefits in three well-known Markov models. The first model is a two-parameter Ehrenfest diffusion model that shows how noise benefits can occur in the class of birth-death processes. The second model is a Wright-Fisher model of genotype drift in population genetics. The third model is a chemical reaction network of zeolite crystallization. A fourth simulation shows a convergence rate increase of 64% for states that satisfy the theorem and an increase of 53% for states that satisfy the corollary. A final simulation shows that even suboptimal noise can speed convergence if the noise applies over successive time cycles. Noise benefits tend to be sharpest in Markov models that do not converge quickly and that do not have strong absorbing states.

  4. Noise filtering via electromagnetically induced transparency

    NASA Astrophysics Data System (ADS)

    Jeong, Taek; Bae, In-Ho; Moon, Han Seb

    2017-01-01

    We report on the intensity-noise reduction of pseudo-thermal light via electromagnetically induced transparency (EIT) in the Λ-type system of the 5S1/2-5P1/2 transition in 87Rb. Noise filtering of the pseudo-thermal probe light was achieved via an EIT filter and measured according to the degree of intensity noise of the pseudo-thermal probe light. Reductions in the intensity and spectral noise of the pseudo-thermal probe light with the EIT filter were observed using the direct intensity fluctuation and heterodyne detection technique, respectively. Comparison of the intensity noise of the pseudo-thermal probe light before and after passing through the EIT filter revealed a significant reduction in the intensity noise.

  5. Low frequency noise study.

    DOT National Transportation Integrated Search

    2007-04-01

    This report documents a study to investigate human response to the low-frequency : content of aviation noise, or low-frequency noise (LFN). The study comprised field : measurements and laboratory studies. The major findings were: : 1. Start-of-takeof...

  6. Engineering out the noise.

    PubMed

    Yankaskas, Kurt; Fischer, Raymond; Spence, Jesse; Komrower, Jeffrey

    2017-06-01

    The US Navy, through an Office of Naval Research (ONR) lead effort on Noise Induced Hearing Loss (NIHL), is investigating methods and techniques to mitigate hearing loss for the crews and warfighters. Hearing protection is a viable and increasingly popular method of reducing hearing exposure for many ship crew members; however, it has limitations on comfort and low frequency effectiveness. Furthermore, Personal Hearing Protection (PHP) is often used improperly. Proper vessel planning, programmatic changes and advances in noise control engineering can also have significant impacts by inherently reducing noise exposure through ship design and use of noise control treatments. These impacts go beyond hearing loss mitigation since they can improve quality of life onboard vessels and provide enhanced warfighter performance. Such approaches also can be made to work in the lower frequency range where hearing protection is not as effective. This paper describes non-hearing protection methods being implemented to mitigate and control noise within the US Navy and US Marine Corps. These approaches reflect the latest changes to Mil-Std 1474E, Appendix F. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Impact of Vessel Noise on Oyster Toadfish (Opsanus tau) Behavior and Implications for Underwater Noise Management

    NASA Astrophysics Data System (ADS)

    Krahforst, Cecilia S.

    Underwater noise and its impacts on marine life are growing management concerns. This dissertation considers both the ecological and social concerns of underwater noise, using the oyster toadfish (Opsanus tau) as a model species. Oyster toadfish call for mates using a boatwhistle sound, but increased ambient noise levels from vessels or other anthropogenic activities are likely to influence the ability of males to find mates. If increased ambient noise levels reduce fish fitness then underwater noise can impact socially valued ecosystem services (e.g. fisheries). The following ecological objectives of the impacts of underwater noise on oyster toadfish were investigated: (1) to determine how noise influences male calling behavior; (2) to assess how areas of high vessel activity ("noisy") and low vessel activity ("quiet") influence habitat utilization (fish standard length and occupancy rate); and (3) to discover if fitness (number of clutches and number of embryos per clutch) is lower in "noisy" compared with "quiet" sites. Field experiments were executed in "noisy" and "quiet" areas. Recorded calls by males in response to playback sounds (vessel, predator, and snapping shrimp sounds) and egg deposition by females ("noisy" vs. "quiet" sites) demonstrated that oyster toadfish are impacted by underwater noise. First, males decreased their call rates and called louder in response to increased ambient noise levels. Second, oyster toadfish selected nesting sites in areas with little or no inboard motorboat activity. Third, male oyster toadfish at "noisy" sites either had no egg clutches on their shelters or the number of embryos per clutch was significantly lower than in the "quiet" areas. Underwater noise and disturbance from vessels are influencing the fitness of the oyster toadfish. The social significance of the growing concerns regarding underwater noise was investigated by identifying dominant themes found within two types of texts: four recent underwater noise

  8. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  9. Reactions to railway noise in Denmark

    NASA Astrophysics Data System (ADS)

    Andersen, T. V.; Kühl, K.; Relster, E.

    1983-03-01

    People's reactions to railway noise were studied along seven Danish railway lines with traffic intensities from 30 to about 300 trains per 24 hours. The calculated sound levels varied between 43 and 71 dB(A) for LAeq,24h and between 78 and 102 sB(A) for LAmax . 615 persons were interviewed. One third of these felt strongly or somewhat annoyed by the railway noise. The relations between the noise level and the extent of annoyance or various kinds of behaviour (telephone conversation, TV-listening, opening of windows, sleep, etc.) were found. The relations were found for both LAeq,24h and LAmax , but the correlation for LAmax is generally bad. Noise in the evenings was found to be more annoying than noise in other daytime periods. More than half of the interviewees answered that goods trains especially were a problem. People exposed to noise at their place of work seem to feel more annoyed by railway noise than other people.

  10. Modeling and Prediction of Fan Noise

    NASA Technical Reports Server (NTRS)

    Envia, Ed

    2008-01-01

    Fan noise is a significant contributor to the total noise signature of a modern high bypass ratio aircraft engine and with the advent of ultra high bypass ratio engines like the geared turbofan, it is likely to remain so in the future. As such, accurate modeling and prediction of the basic characteristics of fan noise are necessary ingredients in designing quieter aircraft engines in order to ensure compliance with ever more stringent aviation noise regulations. In this paper, results from a comprehensive study aimed at establishing the utility of current tools for modeling and predicting fan noise will be summarized. It should be emphasized that these tools exemplify present state of the practice and embody what is currently used at NASA and Industry for predicting fan noise. The ability of these tools to model and predict fan noise is assessed against a set of benchmark fan noise databases obtained for a range of representative fan cycles and operating conditions. Detailed comparisons between the predicted and measured narrowband spectral and directivity characteristics of fan nose will be presented in the full paper. General conclusions regarding the utility of current tools and recommendations for future improvements will also be given.

  11. Potentiation of Chemical Ototoxicity by Noise

    PubMed Central

    Steyger, Peter S.

    2010-01-01

    High-intensity and/or prolonged exposure to noise causes temporary or permanent threshold shifts in auditory perception. Occupational exposure to solvents or administration of clinically important drugs, such as aminoglycoside antibiotics and cisplatin, also can induce permanent hearing loss. The mechanisms by which these ototoxic insults cause auditory dysfunction are still being unraveled, yet they share common sequelae, particularly generation of reactive oxygen species, that ultimately lead to hearing loss and deafness. Individuals are frequently exposed to ototoxic chemical contaminants (e.g., fuel) and noise simultaneously in a variety of work and recreational environments. Does simultaneous exposure to chemical ototoxins and noise potentiate auditory dysfunction? Exposure to solvent vapor in noisy environments potentiates the permanent threshold shifts induced by noise alone. Moderate noise levels potentiate both aminoglycoside- and cisplatin-induced ototoxicity in both rate of onset and in severity of auditory dysfunction. Thus, simultaneous exposure to chemical ototoxins and moderate levels of noise can potentiate auditory dysfunction. Preventing the ototoxic synergy of noise and chemical ototoxins requires removing exposure to ototoxins and/or attenuating noise exposure levels when chemical ototoxins are present. PMID:20523755

  12. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  13. Noise exposure in convertible automobiles.

    PubMed

    Mikulec, A A; Lukens, S B; Jackson, L E; Deyoung, M N

    2011-02-01

    To quantify the noise exposure received while driving a convertible automobile with the top open, compared with the top closed. Five different convertible automobiles were driven, with the top both closed and open, and noise levels measured. The cars were tested at speeds of 88.5, 104.6 and 120.7 km/h. When driving with the convertible top open, the mean noise exposure ranged from 85.3 dB at 88.5 km/h to 89.9 dB at 120.7 km/h. At the tested speeds, noise exposure increased by an average of 12.4-14.6 dB after opening the convertible top. Driving convertible automobiles at speeds exceeding 88.5 km/h, with the top open, may result in noise exposure levels exceeding recommended limits, especially when driving with the convertible top open for prolonged periods.

  14. Unsolved Problems of Intracellular Noise

    NASA Astrophysics Data System (ADS)

    Paulsson, Johan

    2003-05-01

    Many molecules are present at so low numbers per cell that significant fluctuations arise spontaneously. Such `noise' can randomize developmental pathways, disrupt cell cycle control or force metabolites away from their optimal levels. It can also be exploited for non-genetic individuality or, surprisingly, for more reliable and deterministic control. However, in spite of the mechanistic and evolutionary significance of noise, both explicit modeling and implicit verbal reasoning in molecular biology are completely dominated by macroscopic kinetics. Here I discuss some particularly under-addressed issues of noise in genetic and metabolic networks: 1) relations between systematic macro- and mesoscopic approaches; 2) order and disorder in gene expression; 3) autorepression for checking fluctuations; 4) noise suppression by noise; 5) phase-transitions in metabolic systems; 6) effects of cell growth and division; and 7) mono- and bistable bimodal switches.

  15. Could driving safety be compromised by noise exposure at work and noise-induced hearing loss?

    PubMed

    Picard, Michel; Girard, Serge André; Courteau, Marilène; Leroux, Tony; Larocque, Richard; Turcotte, Fernand; Lavoie, Michel; Simard, Marc

    2008-10-01

    A study was conducted to verify if there is an association between occupational noise exposure, noise-induced hearing loss and driving safety expanding on previous findings by Picard, et al. (2008) that the two factors did increase accident risk in the workplace. This study was made possible when driving records of all Quebec drivers were made available by the Societe de l'assurance automobile du Quebec (SAAQ is the state monopoly responsible for the provision of motor vehicle insurance and the compensation of victims of traffic accidents). These records were linked with personal records maintained by the Quebec National Institute of Public Health as part of its mission to prevent noise induced hearing loss in the workplace. Individualized information on occupational noise exposure and hearing sensitivity was available for 46,030 male workers employed in noisy industries who also held a valid driver's permit. The observation period is of five years duration, starting with the most recent audiometric examination. The associations between occupational noise exposure levels, hearing status, and personal driving record were examined by log-binomial regression on data adjusted for age and duration of exposure. Daily noise exposures and bilateral average hearing threshold levels at 3, 4, and 6 kHz were used as independent variables while the dependent variables were 1) the number of motor vehicle accidents experienced by participants during the study period and 2) participants' records of registered traffic violations of the highway safety code. The findings are reported as prevalence ratios (PRs) with their 95% confidence intervals (CIs). Attributable numbers of events were computed with the relevant PRs, lesser-noise, exposed workers and those with normal hearing levels making the group of reference. Adjusting for age confirmed that experienced workers had fewer traffic accidents. The data show that occupational noise exposure and hearing loss have the same effect on

  16. A Comprehensive Review of Helicopter Noise Literature

    DTIC Science & Technology

    1975-06-01

    Broadband Noise .... ........................ .0.0.0 13 Impulsive Noise .......... ........... ............... ... *. i Introduction... broadband noise is probably the turbulence in the flow seen by the rotor blades. Trhe prediction of rotor broadband noise based on rotor geometry amd...acoustic processes, but rely on generalization of existing test data. The recent impetus to study broadband noise is the result of reducing

  17. Noise adaptation in integrate-and fire neurons.

    PubMed

    Rudd, M E; Brown, L G

    1997-07-01

    The statistical spiking response of an ensemble of identically prepared stochastic integrate-and-fire neurons to a rectangular input current plus gaussian white noise is analyzed. It is shown that, on average, integrate-and-fire neurons adapt to the root-mean-square noise level of their input. This phenomenon is referred to as noise adaptation. Noise adaptation is characterized by a decrease in the average neural firing rate and an accompanying decrease in the average value of the generator potential, both of which can be attributed to noise-induced resets of the generator potential mediated by the integrate-and-fire mechanism. A quantitative theory of noise adaptation in stochastic integrate-and-fire neurons is developed. It is shown that integrate-and-fire neurons, on average, produce transient spiking activity whenever there is an increase in the level of their input noise. This transient noise response is either reduced or eliminated over time, depending on the parameters of the model neuron. Analytical methods are used to prove that nonleaky integrate-and-fire neurons totally adapt to any constant input noise level, in the sense that their asymptotic spiking rates are independent of the magnitude of their input noise. For leaky integrate-and-fire neurons, the long-run noise adaptation is not total, but the response to noise is partially eliminated. Expressions for the probability density function of the generator potential and the first two moments of the potential distribution are derived for the particular case of a nonleaky neuron driven by gaussian white noise of mean zero and constant variance. The functional significance of noise adaptation for the performance of networks comprising integrate-and-fire neurons is discussed.

  18. Environmental noise and human prenatal growth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schell, L.M.

    1981-09-01

    To determine whether chronic exposure to relatively loud noise has demonstrable biological effects in humans, a study was conducted on the effect of mother's exposure to airport noise while pregnant, and of social and biological characteristics of the family upon birthweight and gestation length. The sample of births was drawn from a community located adjacent to an international airport in the U.S., where noise levels had been measured previously. Mother's noise exposure was based upon noise levels near her residence in the community while she was pregnant. Data from 115 births were used, these being from mothers whose noise exposuremore » history was most complete throughout the pregnancy. Using multivariate analysis to correct for family characteristics, the partial correlation coefficient for noise exposure and gestation length was negative, large, and significant in girls (r . -0.49, p less than 0.001). In boys the partial correlation coefficient was also negative but was smaller and did not quite reach statistical significance. Partial correlations with birthweight were smaller in both boys and girls and not significant. These results agree best with previous studies that suggest that noise may reduce prenatal growth. The size of the observed effects may be related to a conservative research design biased towards underestimation, as well as to the real effects of noise upon human prenatal growth.« less

  19. Minimizing noise in fiberglass aquaculture tanks: Noise reduction potential of various retrofits

    USDA-ARS?s Scientific Manuscript database

    Equipment used in intensive aquaculture systems, such as pumps and blowers can produce underwater sound levels and frequencies within the range of fish hearing. The impacts of underwater noise on fish are not well known, but limited research suggests that subjecting fish to noise could result in imp...

  20. A Comparison of Combustor-Noise Models

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.

    2012-01-01

    The present status of combustor-noise prediction in the NASA Aircraft Noise Prediction Program (ANOPP)1 for current-generation (N) turbofan engines is summarized. Several semi-empirical models for turbofan combustor noise are discussed, including best methods for near-term updates to ANOPP. An alternate turbine-transmission factor2 will appear as a user selectable option in the combustor-noise module GECOR in the next release. The three-spectrum model proposed by Stone et al.3 for GE turbofan-engine combustor noise is discussed and compared with ANOPP predictions for several relevant cases. Based on the results presented herein and in their report,3 it is recommended that the application of this fully empirical combustor-noise prediction method be limited to situations involving only General-Electric turbofan engines. Long-term needs and challenges for the N+1 through N+3 time frame are discussed. Because the impact of other propulsion-noise sources continues to be reduced due to turbofan design trends, advances in noise-mitigation techniques, and expected aircraft configuration changes, the relative importance of core noise is expected to greatly increase in the future. The noise-source structure in the combustor, including the indirect one, and the effects of the propagation path through the engine and exhaust nozzle need to be better understood. In particular, the acoustic consequences of the expected trends toward smaller, highly efficient gas-generator cores and low-emission fuel-flexible combustors need to be fully investigated since future designs are quite likely to fall outside of the parameter space of existing (semi-empirical) prediction tools.

  1. Wavy-Planform Helicopter Blades Make Less Noise

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.

    2004-01-01

    Wavy-planform rotor blades for helicopters have been investigated for the first time in an effort to reduce noise. Two of the main sources of helicopter noise are blade/vortex interaction (BVI) and volume displacement. (The noise contributed by volume displacement is termed thickness noise.) The reduction in noise generated by a wavyplanform blade, relative to that generated by an otherwise equivalent straight-planform blade, affects both main sources: (1) the BVI noise is reduced through smoothing and defocusing of the aerodynamic loading on the blade and (2) the thickness noise is reduced by reducing gradients of thickness with respect to listeners on the ground.

  2. On Noise Assessment for Blended Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L; Thomas, Russell H.

    2014-01-01

    A system noise study is presented for the blended-wing-body (BWB) aircraft configured with advanced technologies that are projected to be available in the 2025 timeframe of the NASA N+2 definition. This system noise assessment shows that the noise levels of the baseline configuration, measured by the cumulative Effective Perceived Noise Level (EPNL), have a large margin of 34 dB to the aircraft noise regulation of Stage 4. This confirms the acoustic benefits of the BWB shielding of engine noise, as well as other projected noise reduction technologies, but the noise margins are less than previously published assessments and are short of meeting the NASA N+2 noise goal. In establishing the relevance of the acoustic assessment framework, the design of the BWB configuration, the technical approach of the noise analysis, the databases and prediction tools used in the assessment are first described and discussed. The predicted noise levels and the component decomposition are then analyzed to identify the ranking order of importance of various noise components, revealing the prominence of airframe noise, which holds up the levels at all three noise certification locations and renders engine noise reduction technologies less effective. When projected airframe component noise reduction is added to the HWB configuration, it is shown that the cumulative noise margin to Stage 4 can reach 41.6 dB, nearly at the NASA goal. These results are compared with a previous NASA assessment with a different study framework. The approaches that yield projections of such low noise levels are discussed including aggressive assumptions on future technologies, assumptions on flight profile management, engine installation, and component noise reduction technologies. It is shown that reliable predictions of component noise also play an important role in the system noise assessment. The comparisons and discussions illustrate the importance of practical feasibilities and constraints in aircraft

  3. Towards Full-Waveform Ambient Noise Inversion

    NASA Astrophysics Data System (ADS)

    Sager, K.; Ermert, L. A.; Boehm, C.; Fichtner, A.

    2016-12-01

    Noise tomography usually works under the assumption that the inter-station ambient noise correlation is equal to a scaled version of the Green function between the two receivers. This assumption, however, is only met under specific conditions, e.g. wavefield diffusivity and equipartitioning, or the isotropic distribution of both mono- and dipolar uncorrelated noise sources. These assumptions are typically not satisfied in the Earth. This inconsistency inhibits the exploitation of the full waveform information contained in noise correlations in order to constrain Earth structure and noise generation. To overcome this limitation, we attempt to develop a method that consistently accounts for the distribution of noise sources, 3D heterogeneous Earth structure and the full seismic wave propagation physics. This is intended to improve the resolution of tomographic images, to refine noise source location, and thereby to contribute to a better understanding of noise generation. We introduce an operator-based formulation for the computation of correlation functions and apply the continuous adjoint method that allows us to compute first and second derivatives of misfit functionals with respect to source distribution and Earth structure efficiently. Based on these developments we design an inversion scheme using a 2D finite-difference code. To enable a joint inversion for noise sources and Earth structure, we investigate the following aspects: The capability of different misfit functionals to image wave speed anomalies and source distribution. Possible source-structure trade-offs, especially to what extent unresolvable structure can be mapped into the inverted noise source distribution and vice versa. In anticipation of real-data applications, we present an extension of the open-source waveform modelling and inversion package Salvus, which allows us to compute correlation functions in 3D media with heterogeneous noise sources at the surface.

  4. Low-Power Low-Noise Amplifier Using Attenuation-Adaptive Noise Control for Ultrasound Imaging Systems.

    PubMed

    Jung, Sung-Jin; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2017-02-01

    This paper presents a low-noise amplifier (LNA) using attenuation-adaptive noise control (AANC) for ultrasound imaging systems. The proposed AANC reduces unnecessary power consumption of the LNA, which arises from useless noise floor, by controlling the noise floor of the LNA with respect to the attenuation of the ultrasound. In addition, a current feedback amplifier with a source-degenerated input stage reduces variations of the bandwidth and the closed loop gain, which are caused by the AANC. The proposed LNA was fabricated using a 0.18-[Formula: see text] CMOS process. The input-referred voltage noise density of the fabricated LNA is 1.01 [Formula: see text] at the frequency of 5 MHz. The second harmonic distortion is -53.5 dB when the input signal frequency is 5 MHz and the output voltage swing is 2 [Formula: see text]. The power consumption of the LNA using the AANC is 16.2 mW at the supply voltage of 1.8 V, which is reduced to 64% of that without using the AANC. The noise efficiency factor (NEF) of the proposed LNA is 3.69, to our knowledge, which is the lowest NEF compared with previous LNAs for ultrasound imaging.

  5. Noise transmission and reduction in turboprop aircraft

    NASA Astrophysics Data System (ADS)

    MacMartin, Douglas G.; Basso, Gordon L.; Leigh, Barry

    1994-09-01

    There is considerable interest in reducing the cabin noise environment in turboprop aircraft. Various approaches have been considered at deHaviland Inc., including passive tuned-vibration absorbers, speaker-based noise cancellation, and structural vibration control of the fuselage. These approaches will be discussed briefly. In addition to controlling the noise, a method of predicting the internal noise is required both to evaluate potential noise reduction approaches, and to validate analytical design models. Instead of costly flight tests, or carrying out a ground simulation of the propeller pressure field, a much simpler reciprocal technique can be used. A capacitive scanner is used to measure the fuselage vibration response on a deHaviland Dash-8 fuselage, due to an internal noise source. The approach is validated by comparing this reciprocal noise transmission measurement with the direct measurement. The fuselage noise transmission information is then combined with computer predictions of the propeller pressure field data to predict the internal noise at two points.

  6. Highway renewable energy : photovoltaic noise barriers

    DOT National Transportation Integrated Search

    2017-07-01

    Highway photovoltaic noise barriers (PVNBs) represent the combination of noise barrier systems and photovoltaic systems in order to mitigate traffic noise while simultaneously producing renewable energy. First deployed in Switzerland in 1989, PVNBs a...

  7. Noise Pollution and Impact on Children Health.

    PubMed

    Gupta, Alok; Gupta, Anant; Jain, Khushbu; Gupta, Sweta

    2018-04-01

    With rapid urbanization and life style changes, loud noise is omnipresent and has become a part of life. Indoor and outdoor environmental noise pollution have been documented as a serious health hazard with increasing adverse effects on fetus, infants, children, adolescents and adults. Noise induced hearing loss and non-auditory adverse effects due to noise pollution, are being increasingly diagnosed in all age groups including the fetus. Outdated motorized vehicles, machinery, increasing traffic, congested residential areas, crowded educational institutions and workplaces, unregulated commercial and industrial noise have become a source of noise pollution with long-term disability. Areas of noise pollution must be identified and corrective measures be taken. Toys, personal, domestic, commercial, industrial equipment should be within the safe sound intensity. Loudspeakers and vehicular horns should be banned except in emergencies. Nocturnal noise pollution must be avoided near residential areas as sleep disturbances have serious long-term health consequences. Pregnant women, fetus, newborns, infants and children are most susceptible to noise induced health hazards and should be given utmost protection. Educational institutions, workplaces, commercial and industrial areas should be regularly monitored for noise levels and protective ear muffs and plugs be used. Public be educated repeatedly regarding health hazards of noise. Traffic noise should be regulated to be within safe limits. Bus-stands, railway stations and airports should be moved away from residential areas. Houses should be sound proofed suitably. Long term studies should be conducted in pregnant women, newborn children and adults to have more data on hazards of noise pollution.

  8. Pusher propeller noise directivity and trends

    NASA Technical Reports Server (NTRS)

    Block, P. J. W.

    1986-01-01

    The effects of pylon wake interaction on far-field propeller noise are studied using a model scale SR-2 propeller in a low-speed anechoic wind tunnel. The variation in the pusher noise penalty with axial angle theta and circumferential angle phi is compared to that of the tractor noise penalty; and the former exhibits minima occurring in the propeller plane and maxima occurring toward the propeller axis. The magnitude of the pusher installation noise penalty decreased with in increase in shaft horsepower and tip Mach number. Directivity comparisons revealed that both a noise reduction and a directivity pattern change resulted when the pylon was moved farther from the propeller. Noise emerging from the wake interaction was distinguished from that of the propeller by means of a modal decomposition.

  9. Small Vessel Contribution to Underwater Noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matzner, Shari; Maxwell, Adam R.; Myers, Joshua R.

    2010-12-10

    Understanding the types of noise generated by a small boat is important for ensuring that marine ecosystems are protected from detrimental anthropogenic noise. Here we present the results of a field test conducted to examine the effects of engine RPM, number of engines and number of propeller blades on the broadband and narrowband noise produced by a small boat. The test boat was a 23-foot aluminum-hulled boat with dual 100 hp engines. The broadband noise and narrowband peak levels were observed using two hydrophones in different locations. The broadband noise levels were affected by both the number of engines andmore » the RPM; the narrowband peaks showed a greater increase in amplitude with an increase in RPM than the broadband noise levels.« less

  10. Cardiovascular effects of environmental noise exposure

    PubMed Central

    Münzel, Thomas; Gori, Tommaso; Babisch, Wolfgang; Basner, Mathias

    2014-01-01

    The role of noise as an environmental pollutant and its impact on health are being increasingly recognized. Beyond its effects on the auditory system, noise causes annoyance and disturbs sleep, and it impairs cognitive performance. Furthermore, evidence from epidemiologic studies demonstrates that environmental noise is associated with an increased incidence of arterial hypertension, myocardial infarction, and stroke. Both observational and experimental studies indicate that in particular night-time noise can cause disruptions of sleep structure, vegetative arousals (e.g. increases of blood pressure and heart rate) and increases in stress hormone levels and oxidative stress, which in turn may result in endothelial dysfunction and arterial hypertension. This review focuses on the cardiovascular consequences of environmental noise exposure and stresses the importance of noise mitigation strategies for public health. PMID:24616334

  11. Effect of noise spectra and a listening task upon passenger annoyance in a helicopter interior noise environment

    NASA Technical Reports Server (NTRS)

    Clevenson, S. A.; Leatherwood, J. D.

    1979-01-01

    The effects of helicopter interior noise on passenger annoyance were studied. Both reverie and listening situations were studied as well as the relative effectiveness of several descriptors (i.e., overall sound pressure level, A-weighted sound pressure level, and speech interference level) for quantifying annoyance response for these situations. The noise stimuli were based upon recordings of the interior noise of a civil helicopter research aircraft. These noises were presented at levels ranging from approximately 68 to 86 dB(A) with various gear clash tones selectively attenuated to give a range of spectra. Results indicated that annoyance during a listening condition is generally higher than annoyance during a reverie condition for corresponding interior noise environments. Attenuation of the planetary gear clash tone results in increases in listening performance but has negligible effect upon annoyance for a given noise level. The noise descriptor most effective for estimating annoyance response under conditions of reverie and listening situations is shown to be the A-weighted sound pressure level.

  12. Quantification of airport community noise impact in terms of noise levels, population density, and human subjective response

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1981-01-01

    The Fraction Impact Method (FIM), developed by the National Research Council (NRC) for assessing the amount and physiological effect of noise, is described. Here, the number of people exposed to a given level of noise is multiplied by a weighting factor that depends on noise level. It is pointed out that the Aircraft-noise Levels and Annoyance MOdel (ALAMO), recently developed at NASA Langley Research Center, can perform the NRC fractional impact calculations for given modes of operation at any U.S. airport. The sensitivity of these calculations to errors in estimates of population, noise level, and human subjective response is discussed. It is found that a change in source noise causes a substantially smaller change in contour area than would be predicted simply on the basis of inverse square law considerations. Another finding is that the impact calculations are generally less sensitive to source noise errors than to systematic errors in population or subjective response.

  13. Procedure for Separating Noise Sources in Measurements of Turbofan Engine Core Noise

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton

    2006-01-01

    The study of core noise from turbofan engines has become more important as noise from other sources like the fan and jet have been reduced. A multiple microphone and acoustic source modeling method to separate correlated and uncorrelated sources has been developed. The auto and cross spectrum in the frequency range below 1000 Hz is fitted with a noise propagation model based on a source couplet consisting of a single incoherent source with a single coherent source or a source triplet consisting of a single incoherent source with two coherent point sources. Examples are presented using data from a Pratt & Whitney PW4098 turbofan engine. The method works well.

  14. Truck Noise X : Noise Reduction Options for Diesel Powered International Harvester Trucks : Volume 1. Development Work.

    DOT National Transportation Integrated Search

    1977-04-01

    Noise reduction option development work was carried out on two inservice diesel powered IH trucks, consisting of a Cab-over model and a Conventional model with a baseline exterior noise level of 87 dB(A) each. Since no specific noise goals were set, ...

  15. Helicopter Noise Reduction Design Trade-Off Study

    DTIC Science & Technology

    1977-01-01

    level, A-weighted sound pressure level, perceived noise level and tone corrected perceived noise level time histories, and are further analyzed to...DATA ---------------------------- 101 10 BASELINE VEHICLE EFFECTIVE PERCEIVED NOISE LEVELS (EPiII.) AND RANGE FOR MAXIMIJM TONE CORRECTED PERCEIVED...and tone corrected perceived noise level (PNLT) units. All noise level calculation methods have been computerized in FORTRAN language for use on the

  16. Noise Characteristics of a Four-Jet Impingement Device Inside a Broadband Engine Noise Simulator

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Housman, Jeffrey A.; Kiris, Cetin C.; Hutcheson, Florence V.

    2015-01-01

    The noise generation mechanisms for four directly impinging supersonic jets are investigated employing implicit large eddy simulations with a higher-order accurate weighted essentially non-oscillatory shock-capturing scheme. Impinging jet devices are often used as an experimental apparatus to emulate a broadband noise source. Although such devices have been used in many experiments, a detailed investigation of the noise generation mechanisms has not been conducted before. Thus, the underlying physical mechanisms that are responsible for the generation of sound waves are not well understood. The flow field is highly complex and contains a wide range of temporal and spatial scales relevant for noise generation. Proper orthogonal decomposition of the flow field is utilized to characterize the unsteady nature of the flow field involving unsteady shock oscillations, large coherent turbulent flow structures, and the sporadic appearance of vortex tubes in the center of the impingement region. The causality method based on Lighthill's acoustic analogy is applied to link fluctuations of flow quantities inside the source region to the acoustic pressure in the far field. It will be demonstrated that the entropy fluctuation term in the Lighthill's stress tensor plays a vital role in the noise generation process. Consequently, the understanding of the noise generation mechanisms is employed to develop a reduced-order linear acoustic model of the four-jet impingement device. Finally, three linear acoustic FJID models are used as broadband noise sources inside an engine nacelle and the acoustic scattering results are validated against far-field acoustic experimental data.

  17. Prop-fan noise propagation

    DOT National Transportation Integrated Search

    1989-02-07

    This report summarizes studies of enroute propfan noise propagation involving noise data obtained by DOT/TSC at ground stations during fly-over tests on October 30-31, 1987. These data have been analsyzed by DOT/TSC for comparison with in flight data...

  18. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Adverse Birth Outcomes.

    PubMed

    Nieuwenhuijsen, Mark J; Ristovska, Gordana; Dadvand, Payam

    2017-10-19

    Introduction: Three recent systematic reviews suggested a relationship between noise exposure and adverse birth outcomes. The aim of this review was to evaluate the evidence for the World Health Organization (WHO) noise guidelines and conduct an updated systematic review of environmental noise, specifically aircraft and road traffic noise and birth outcomes, such as preterm birth, low birth weight, being small for gestational age and congenital malformations. Materials and methods : We reviewed again all the papers on environmental noise and birth outcomes included in the previous three systematic reviews and conducted a systematic search on noise and birth outcomes to update previous reviews. Web of Science, PubMed and Embase electronic databases were searched for papers published between June 2014 (end date of previous systematic review) and December 2016 using a list of specific search terms. Studies were also screened in the reference list of relevant reviews/articles. Further inclusion and exclusion criteria for the studies provided by the WHO expert group were applied. Risk of bias was assessed according to criteria from the Newcastle-Ottawa quality assessment scale for case-control and cohort studies. Finally, we applied the GRADE principles to our systematic review in a reproducible and appropriate way for judgment about quality of evidence. Results: In total, 14 studies are included in this review, six studies on aircraft noise and birth outcomes, five studies (two with more or less the same population) on road traffic noise and birth outcomes and three related studies on total ambient noise that is likely to be mostly traffic noise that met the criteria. The number of studies on environmental noise and birth outcomes is small and the quality of evidence generally ranges from very low to low, particularly in case of the older studies. The quality is better for the more recent traffic noise and birth outcomes studies. As there were too few studies, we did

  19. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Adverse Birth Outcomes

    PubMed Central

    Nieuwenhuijsen, Mark J.; Ristovska, Gordana; Dadvand, Payam

    2017-01-01

    Introduction: Three recent systematic reviews suggested a relationship between noise exposure and adverse birth outcomes. The aim of this review was to evaluate the evidence for the World Health Organization (WHO) noise guidelines and conduct an updated systematic review of environmental noise, specifically aircraft and road traffic noise and birth outcomes, such as preterm birth, low birth weight, being small for gestational age and congenital malformations. Materials and methods: We reviewed again all the papers on environmental noise and birth outcomes included in the previous three systematic reviews and conducted a systematic search on noise and birth outcomes to update previous reviews. Web of Science, PubMed and Embase electronic databases were searched for papers published between June 2014 (end date of previous systematic review) and December 2016 using a list of specific search terms. Studies were also screened in the reference list of relevant reviews/articles. Further inclusion and exclusion criteria for the studies provided by the WHO expert group were applied. Risk of bias was assessed according to criteria from the Newcastle-Ottawa quality assessment scale for case-control and cohort studies. Finally, we applied the GRADE principles to our systematic review in a reproducible and appropriate way for judgment about quality of evidence. Results: In total, 14 studies are included in this review, six studies on aircraft noise and birth outcomes, five studies (two with more or less the same population) on road traffic noise and birth outcomes and three related studies on total ambient noise that is likely to be mostly traffic noise that met the criteria. The number of studies on environmental noise and birth outcomes is small and the quality of evidence generally ranges from very low to low, particularly in case of the older studies. The quality is better for the more recent traffic noise and birth outcomes studies. As there were too few studies, we did

  20. Noise Pollution in Irbid City — Jordan

    NASA Astrophysics Data System (ADS)

    Odat, Sana'A.

    2015-09-01

    Noise defined as any sound that annoys or disturbs humans or that causes or tends to cause an adverse psychological and physiological effect on humans. Irbid is one of the most populated cities in Jordan. It is environmentally noise polluted due to the rapid and widespread introduction of mechanical methods for production and for their transportation. L10, L50, L90 and LAeq noise levels were measured during the day time and night time to assess and evaluate the noise levels from mosques, schools, celebration halls, streets, building works, industrial areas and commercial areas. The results of the investigation showed that the measured noise levels from all the selected sources were high during the day time and the noise problem is not only limited to day time, but continues in night time in this city. These noise levels were higher than those set by Jordanian limits during day time and night time. A significant correlation between the measured statistical noise levels L10, L50 and L90 and equivalent continuous noise level LAeq were also detected. The mean value of industrial noise source was motors of large vehicles and engines. Whereas the presence of slow moving vehicles, low speed and honking of horns during traffic ingestion periods lead to an increase in noise levels in commercial areas. The noise from building machines and equipment (dredges, concrete mixers, concrete pumps and jackhammers) is quite different from that of traditional equipment. The construction machines have engines that produce a loud, fluctuating noise with varying frequencies that can propagate the sound for a long distance. The noise produced by these engines is particularly disturbing due to the wide variations in frequency and volume.

  1. The Effects of Digital Noise Reduction on the Acceptance of Background Noise

    PubMed Central

    Mueller, H. Gustav; Weber, Jennifer; Hornsby, Benjamin W. Y.

    2006-01-01

    Modern hearing aids commonly employ digital noise reduction (DNR) algorithms. The potential benefit of these algorithms is to provide improved speech understanding in noise or, at the least, to provide relaxed listening or increased ease of listening. In this study, 22 adults were fitted with 16-channel wide-dynamic-range compression hearing aids containing DNR processing. The DNR includes both modulation-based and Wiener-filter-type algorithms working simultaneously. Both speech intelligibility and acceptable noise level (ANL) were assessed using the Hearing in Noise Test (HINT) with DNR on and DNR off. The ANL was also assessed without hearing aids. The results showed a significant mean improvement for the ANL (4.2 dB) for the DNR-on condition when compared to DNR-off condition. Moreover, there was a significant correlation between the magnitude of ANL improvement (relative to DNR on) and the DNR-off ANL. There was no significant mean improvement for the HINT for the DNR-on condition, and on an individual basis, the HINT score did not significantly correlate with either aided ANL (DNR on or DNR off). These findings suggest that at least within the constraints of the DNR algorithms and test conditions employed in this study, DNR can significantly improve the clinically measured ANL, which may result in improved ease of listening for speech-in-noise situations. PMID:16959732

  2. Strategic environmental noise mapping: methodological issues concerning the implementation of the EU Environmental Noise Directive and their policy implications.

    PubMed

    Murphy, E; King, E A

    2010-04-01

    This paper explores methodological issues and policy implications concerning the implementation of the EU Environmental Noise Directive (END) across Member States. Methodologically, the paper focuses on two key thematic issues relevant to the Directive: (1) calculation methods and (2) mapping methods. For (1), the paper focuses, in particular, on how differing calculation methods influence noise prediction results as well as the value of the EU noise indicator L(den) and its associated implications for comparability of noise data across EU states. With regard to (2), emphasis is placed on identifying the issues affecting strategic noise mapping, estimating population exposure, noise action planning and dissemination of noise mapping results to the general public. The implication of these issues for future environmental noise policy is also examined. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  3. Helicopter rotor noise investigation during ice accretion

    NASA Astrophysics Data System (ADS)

    Cheng, Baofeng

    An investigation of helicopter rotor noise during ice accretion is conducted using experimental, theoretical, and numerical methods. This research is the acoustic part of a joint helicopter rotor icing physics, modeling, and detection project at The Pennsylvania State University Vertical Lift Research Center of Excellence (VLRCOE). The current research aims to provide acoustic insight and understanding of the rotor icing physics and investigate the feasibility of detecting rotor icing through noise measurements, especially at the early stage of ice accretion. All helicopter main rotor noise source mechanisms and their change during ice accretion are discussed. Changes of the thickness noise, steady loading noise, and especially the turbulent boundary layer - trailing edge (TBL-TE) noise due to ice accretion are identified and studied. The change of the discrete frequency noise (thickness noise and steady loading noise) due to ice accretion is calculated by using PSU-WOPWOP, an advanced rotorcraft acoustic prediction code. The change is noticeable, but too small to be used in icing detection. The small thickness noise change is due to the small volume of the accreted ice compared to that of the entire blade, although a large iced airfoil shape is used. For the loading noise calculation, two simplified methods are used to generate the loading on the rotor blades, which is the input for the loading noise calculation: 1) compact loading from blade element momentum theory, icing effects are considered by increasing the drag coefficient; and 2) pressure loading from the 2-D CFD simulation, icing effects are considered by using the iced airfoil shape. Comprehensive rotor broadband noise measurements are carried out on rotor blades with different roughness sizes and rotation speeds in two facilities: the Adverse Environment Rotor Test Stand (AERTS) facility at The Pennsylvania State University, and The University of Maryland Acoustic Chamber (UMAC). In both facilities the

  4. Noise characteristics of upper surface blown configurations: Summary

    NASA Technical Reports Server (NTRS)

    Reddy, N. N.; Gibson, J. S.

    1978-01-01

    A systematic experimental program was conducted to develop a data base for the noise and related flow characteristics of upper surface blown configurations. The effect of various geometric and flow parameters was investigated experimentally. The dominant noise was identified from the measured flow and noise characteristics to be generated downstream of the trailing edge. The possibilities of noise reduction techniques were explored. An upper surface blown (USB) noise prediction program was developed to calculate noise levels at any point and noise contours (footprints). Using this noise prediction program and a cruise performance data base, aircraft design studies were conducted to integrate low noise and good performance characteristics. A theory was developed for the noise from the highly sheared layer of a trailing edge wake. Theoretical results compare favorably with the measured noise of the USB model.

  5. High-Speed Jet Noise Reduction NASA Perspective

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Handy, J. (Technical Monitor)

    2001-01-01

    History shows that the problem of high-speed jet noise reduction is difficult to solve. the good news is that high performance military aircraft noise is dominated by a single source called 'jet noise' (commercial aircraft have several sources). The bad news is that this source has been the subject of research for the past 50 years and progress has been incremental. Major jet noise reduction has been achieved through changing the cycle of the engine to reduce the jet exit velocity. Smaller reductions have been achieved using suppression devices like mixing enhancement and acoustic liners. Significant jet noise reduction without any performance loss is probably not possible! Recent NASA Noise Reduction Research Programs include the High Speed Research Program, Advanced Subsonic Technology Noise Reduction Program, Aerospace Propulsion and Power Program - Fundamental Noise, and Quiet Aircraft Technology Program.

  6. 78 FR 19355 - Noise Exposure Map Notice: Receipt of Noise Compatibility Program and Request for Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... of 49 U.S.C. 47501 et. seq (the Aviation Safety and Noise Abatement Act, hereinafter referred to as.... 47503 (the Aviation Safety and Noise Abatement Act, hereinafter referred to as ``the Act''), an airport... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Noise Exposure Map Notice: Receipt of...

  7. Noise levels in PICU: an evaluative study.

    PubMed

    Bailey, Elizabeth; Timmons, Stephen

    2005-12-01

    High levels of noise in the hospital environment can have an impact on patients and staff increasing both recovery time and stress respectively. When our seven-bedded paediatric intensive care unit (PICU) is full, noise levels seem to increase significantly. This study measured noise levels at various times and places within a PICU using Tenma sound level meter which simulates the subjective response of a human ear. Noise levels were often excessive, exceeding international guidelines. Staff conversation was responsible for most of the noise produced; medical equipment, patient interventions, telephones, doorbell and the air shoot system were also responsible for causing high levels of noise. More can be done to reduce noise and its effects on patients and staff.

  8. Noise Pollution--What can be Done?

    ERIC Educational Resources Information Center

    Shaw, Edgar A. G.

    1975-01-01

    Discusses the ratio of energy dissipated as sound to the mechanical output of devices. Considers noise levels, ranges vs. peaks, noise indexes, and health hazards. Indicates some problems vs. solutions in the technology of noise control. (GH)

  9. WHO Environmental Noise Guidelines for the European Region: A Systematic Review on Environmental Noise and Effects on Sleep

    PubMed Central

    McGuire, Sarah

    2018-01-01

    To evaluate the quality of available evidence on the effects of environmental noise exposure on sleep a systematic review was conducted. The databases PSYCINFO, PubMed, Science Direct, Scopus, Web of Science and the TNO Repository were searched for non-laboratory studies on the effects of environmental noise on sleep with measured or predicted noise levels and published in or after the year 2000. The quality of the evidence was assessed using GRADE criteria. Seventy four studies predominately conducted between 2000 and 2015 were included in the review. A meta-analysis of surveys linking road, rail, and aircraft noise exposure to self-reports of sleep disturbance was conducted. The odds ratio for the percent highly sleep disturbed for a 10 dB increase in Lnight was significant for aircraft (1.94; 95% CI 1.61–2.3), road (2.13; 95% CI 1.82–2.48), and rail (3.06; 95% CI 2.38–3.93) noise when the question referred to noise, but non-significant for aircraft (1.17; 95% CI 0.54–2.53), road (1.09; 95% CI 0.94–1.27), and rail (1.27; 95% CI 0.89–1.81) noise when the question did not refer to noise. A pooled analysis of polysomnographic studies on the acute effects of transportation noise on sleep was also conducted and the unadjusted odds ratio for the probability of awakening for a 10 dBA increase in the indoor Lmax was significant for aircraft (1.35; 95% CI 1.22–1.50), road (1.36; 95% CI 1.19–1.55), and rail (1.35; 95% CI 1.21–1.52) noise. Due to a limited number of studies and the use of different outcome measures, a narrative review only was conducted for motility, cardiac and blood pressure outcomes, and for children’s sleep. The effect of wind turbine and hospital noise on sleep was also assessed. Based on the available evidence, transportation noise affects objectively measured sleep physiology and subjectively assessed sleep disturbance in adults. For other outcome measures and noise sources the examined evidence was conflicting or only emerging

  10. Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme

    NASA Astrophysics Data System (ADS)

    Lee, Min Soo; Park, Byung Kwon; Woo, Min Ki; Park, Chang Hoon; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2016-12-01

    We developed a countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme in quantum key distribution (QKD) systems. Background-noise cancellation includes self-differencing and balanced avalanche photon diode (APD) schemes and is considered a promising solution for low-noise APDs, which are critical components in high-performance QKD systems. However, its vulnerability to blinding attacks has been recently reported. In this work, we propose a countermeasure that prevents this potential security loophole from being used in detector blinding attacks. An experimental QKD setup is implemented and various tests are conducted to verify the feasibility and performance of the proposed method. The obtained measurement results show that the proposed scheme successfully detects occurring blinding-attack-based hacking attempts.

  11. Noise dosimetry for tactical environments.

    PubMed

    Smalt, Christopher J; Lacirignola, Joe; Davis, Shakti K; Calamia, Paul T; Collins, Paula P

    2017-06-01

    Noise exposure and the subsequent hearing loss are well documented aspects of military life. Numerous studies have indicated high rates of noise-induced hearing injury (NIHI) in active-duty service men and women, and recent statistics from the U.S. Department of Veterans Affairs indicate a population of veterans with hearing loss that is growing at an increasing rate. In an effort to minimize hearing loss, the U.S. Department of Defense (DoD) updated its Hearing Conservation Program in 2010, and also has recently revised the DoD Design Criteria Standard Noise Limits (MIL-STD-1474E) which defines allowable noise levels in the design of all military acquisitions including weapons and vehicles. Even with such mandates, it remains a challenge to accurately quantify the noise exposure experienced by a Warfighter over the course of a mission or training exercise, or even in a standard work day. Noise dosimeters are intended for exactly this purpose, but variations in device placement (e.g., free-field, on-body, in/near-ear), hardware (e.g., microphone, analog-to-digital converter), measurement time (e.g., work day, 24-h), and dose metric calculations (e.g., time-weighted energy, peak levels, Auditory Risk Units), as well as noise types (e.g., continuous, intermittent, impulsive) can cause exposure measurements to be incomplete, inaccurate, or inappropriate for a given situation. This paper describes the design of a noise dosimeter capable of acquiring exposure data across tactical environments. Two generations of prototypes have been built at MIT Lincoln Laboratory with funding from the U.S. Army, Navy, and Marine Corps. Details related to hardware, signal processing, and testing efforts are provided, along with example tactical military noise data and lessons learned from early fieldings. Finally, we discuss the continued need to prioritize personalized dosimetry in order to improve models that predict or characterize the risk of auditory damage, to integrate dosimeters

  12. Patrol Officer Daily Noise Exposure.

    PubMed

    Gilbertson, Lynn R; Vosburgh, Donna J H

    2015-01-01

    Previous research shows that police officers are at a higher risk for noise induced hearing loss (NIHL). Little data exists on the occupational tasks, outside of the firing range, that might lead to the increased risk of NIHL. The current study collected noise dosimetry from patrol officers in a smaller department and a larger department in southern Wisconsin, United States. The noise dosimeters simultaneously measured noise in three virtual dosimeters that had different thresholds, criterion levels, and exchange rates. The virtual dosimeters were set to: the Occupational Safety and Health Administration (OSHA) hearing conservation criteria (OSHA-HC), the OSHA permissible exposure level criteria (OSHA-PEL), and the American Conference of Governmental Industrial Hygienists (ACGIH). In addition to wearing a noise dosimeter during their respective work days, officers completed a log form documenting the type of task performed, the duration of that task, if the task involved the use of a siren, and officer characteristics that may have influenced their noise exposure, such as the type of dispatch radio unit worn. Analysis revealed that the normalized 8-hour time weighted averages (TWA) for all officers fell below the recommended OSHA and ACGIH exposure limits. The tasks involving the use of the siren had significantly higher levels than the tasks without (p = 0.005). The highest noise exposure levels were encountered when patrol officers were assisting other public safety agencies such as a fire department or emergency medical services (79 dBA). Canine officers had higher normalized 8-hr TWA noise exposure than regular patrol officers (p = 0.002). Officers with an evening work schedule had significantly higher noise exposure than the officers with a day or night work schedule (p = 0.023). There were no significant differences in exposure levels between the two departments (p = 0.22). Results suggest that this study population is unlikely to experience NIHL as

  13. Physiologic correlates to background noise acceptance

    NASA Astrophysics Data System (ADS)

    Tampas, Joanna; Harkrider, Ashley; Nabelek, Anna

    2004-05-01

    Acceptance of background noise can be evaluated by having listeners indicate the highest background noise level (BNL) they are willing to accept while following the words of a story presented at their most comfortable listening level (MCL). The difference between the selected MCL and BNL is termed the acceptable noise level (ANL). One of the consistent findings in previous studies of ANL is large intersubject variability in acceptance of background noise. This variability is not related to age, gender, hearing sensitivity, personality, type of background noise, or speech perception in noise performance. The purpose of the current experiment was to determine if individual differences in physiological activity measured from the peripheral and central auditory systems of young female adults with normal hearing can account for the variability observed in ANL. Correlations between ANL and various physiological responses, including spontaneous, click-evoked, and distortion-product otoacoustic emissions, auditory brainstem and middle latency evoked potentials, and electroencephalography will be presented. Results may increase understanding of the regions of the auditory system that contribute to individual noise acceptance.

  14. Speech communications in noise

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The physical characteristics of speech, the methods of speech masking measurement, and the effects of noise on speech communication are investigated. Topics include the speech signal and intelligibility, the effects of noise on intelligibility, the articulation index, and various devices for evaluating speech systems.

  15. Hypermedicalization in White Noise.

    PubMed

    Benson, Josef

    2015-09-01

    The Nazis hijacked Germany's medical establishment and appropriated medical language to hegemonize their ideology. In White Noise, shifting medical information stifles the public into docility. In Nazi Germany the primacy of language and medical authority magnified the importance of academic doctors. The muddling of identities caused complex insecurities and the need for psychological doubles. In White Noise, Professor Gladney is driven by professional insecurities to enact a double in Murray. Through the manipulation of language and medical overreach the U.S., exemplified in the novel White Noise, has become a hypermedicalized society where the spirit of the Hippocratic Oath has eroded.

  16. Image denoising based on noise detection

    NASA Astrophysics Data System (ADS)

    Jiang, Yuanxiang; Yuan, Rui; Sun, Yuqiu; Tian, Jinwen

    2018-03-01

    Because of the noise points in the images, any operation of denoising would change the original information of non-noise pixel. A noise detection algorithm based on fractional calculus was proposed to denoise in this paper. Convolution of the image was made to gain direction gradient masks firstly. Then, the mean gray was calculated to obtain the gradient detection maps. Logical product was made to acquire noise position image next. Comparisons in the visual effect and evaluation parameters after processing, the results of experiment showed that the denoising algorithms based on noise were better than that of traditional methods in both subjective and objective aspects.

  17. Modal noise in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Rawson, E. G.; Goodman, J. W.

    1983-03-01

    A changing speckle pattern exists at the output of a multimode optical fiber if the optical source is sufficiently coherent. When spatial filtration (for example, at a misaligned connector) or polarization filtration (for example, in certain access couplers) occurs in the presence of such speckle, the optical signal power fluctuates; such fluctuations are called 'modal noise'. This paper reviews modal noise theory and experiment, including the prediction and measurement of the modal noise signal-to-noise ratio in the presence of spatial filtration and constrained total guided power. It also presents new results relating to modal noise effects in fiber branching devices such as star couplers, access couplers, and power dividers.

  18. Helicopter noise analysis : round-robin test

    DOT National Transportation Integrated Search

    1981-08-01

    This report documents the results of an international round robin test on the analysis of helicopter noise. Digital spectral noise data of a 3.5-second simulated helicopter flyover and identical analog test tapes containing helicopter noise data, ref...

  19. Noise thresholds for optical quantum computers.

    PubMed

    Dawson, Christopher M; Haselgrove, Henry L; Nielsen, Michael A

    2006-01-20

    In this Letter we numerically investigate the fault-tolerant threshold for optical cluster-state quantum computing. We allow both photon loss noise and depolarizing noise (as a general proxy for all local noise), and obtain a threshold region of allowed pairs of values for the two types of noise. Roughly speaking, our results show that scalable optical quantum computing is possible for photon loss probabilities <3 x 10(-3), and for depolarization probabilities <10(-4).

  20. Discretization in time gives rise to noise-induced improvement of the signal-to-noise ratio in static nonlinearities.

    PubMed

    Davidović, A; Huntington, E H; Frater, M R

    2009-07-01

    For some nonlinear systems the performance can improve with an increasing noise level. Such noise-induced improvement in static nonlinearities is of great interest for practical applications since many systems can be modeled in that way (e.g., sensors, quantizers, limiters, etc.). We present experimental evidence that noise-induced performance improvement occurs in those systems as a consequence of discretization in time with the achievable signal-to-noise ratio (SNR) gain increasing with decreasing ratio of input noise bandwidth and total measurement bandwidth. By modifying the input noise bandwidth, noise-induced improvement with SNR gain larger than unity is demonstrated in a system where it was not previously thought possible. Our experimental results bring closer two different theoretical models for the same class of nonlinearities and shed light on the behavior of static nonlinear discrete-time systems.

  1. Enhanced Core Noise Modeling for Turbofan Engines

    NASA Technical Reports Server (NTRS)

    Stone, James R.; Krejsa, Eugene A.; Clark, Bruce J.

    2011-01-01

    This report describes work performed by MTC Technologies (MTCT) for NASA Glenn Research Center (GRC) under Contract NAS3-00178, Task Order No. 15. MTCT previously developed a first-generation empirical model that correlates the core/combustion noise of four GE engines, the CF6, CF34, CFM56, and GE90 for General Electric (GE) under Contract No. 200-1X-14W53048, in support of GRC Contract NAS3-01135. MTCT has demonstrated in earlier noise modeling efforts that the improvement of predictive modeling is greatly enhanced by an iterative approach, so in support of NASA's Quiet Aircraft Technology Project, GRC sponsored this effort to improve the model. Since the noise data available for correlation are total engine noise spectra, it is total engine noise that must be predicted. Since the scope of this effort was not sufficient to explore fan and turbine noise, the most meaningful comparisons must be restricted to frequencies below the blade passage frequency. Below the blade passage frequency and at relatively high power settings jet noise is expected to be the dominant source, and comparisons are shown that demonstrate the accuracy of the jet noise model recently developed by MTCT for NASA under Contract NAS3-00178, Task Order No. 10. At lower power settings the core noise became most apparent, and these data corrected for the contribution of jet noise were then used to establish the characteristics of core noise. There is clearly more than one spectral range where core noise is evident, so the spectral approach developed by von Glahn and Krejsa in 1982 wherein four spectral regions overlap, was used in the GE effort. Further analysis indicates that the two higher frequency components, which are often somewhat masked by turbomachinery noise, can be treated as one component, and it is on that basis that the current model is formulated. The frequency scaling relationships are improved and are now based on combustor and core nozzle geometries. In conjunction with the Task

  2. 40 CFR 205.152 - Noise emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Noise emission standards. 205.152 Section 205.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.152 Noise emission standards...

  3. 40 CFR 205.166 - Noise emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Noise emission standards. 205.166 Section 205.166 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.166 Noise...

  4. 40 CFR 205.166 - Noise emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Noise emission standards. 205.166 Section 205.166 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.166 Noise...

  5. 40 CFR 205.152 - Noise emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Noise emission standards. 205.152 Section 205.152 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycles § 205.152 Noise emission standards...

  6. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, D.R.

    1983-12-29

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  7. Noise isolation system for high-speed circuits

    DOEpatents

    McNeilly, David R.

    1986-01-01

    A noise isolation circuit is provided that consists of a dual function bypass which confines high-speed switching noise to the component or circuit which generates it and isolates the component or circuit from high-frequency noise transients which may be present on the ground and power supply busses. A local circuit ground is provided which is coupled to the system ground by sufficient impedance to force the dissipation of the noise signal in the local circuit or component generating the noise. The dual function bypass network couples high-frequency noise signals generated in the local component or circuit through a capacitor to the local ground while isolating the component or circuit from noise signals which may be present on the power supply busses or system ground. The network is an effective noise isolating system and is applicable to both high-speed analog and digital circuits.

  8. Heliport noise model : methodology - draft report

    DOT National Transportation Integrated Search

    1988-04-30

    The Heliport Noise Model (HNM) is the United States standard for predicting civil helicopter noise exposure in the vicinity of heliports and airports. HNM Version 1 is the culmination of several years of work in helicopter noise research, field measu...

  9. Green noise wall construction and evaluation.

    DOT National Transportation Integrated Search

    2011-09-01

    This report details the research performed under Phase I of a research study titled Green Noise Wall Construction and Evaluation that looks into the feasibility of using green noise barriers as a noise mitigation option in Ohio. This phase incl...

  10. Community noise survey of Medford, Massachusetts

    DOT National Transportation Integrated Search

    1971-08-31

    A noise measurement survey was conducted in Medford, Massachusetts, in order to assess the effect of transporation noise sources on the noise levels in a typical small city, and to obtain data to validate a mathematical simulation model developed for...

  11. Urban traffic noise and self-reported health.

    PubMed

    Gómez-Jacinto, L; Moral-Toranzo, F

    1999-06-01

    This paper analyzed urban traffic noise effects on health at two different levels: intense noise and moderate noise. 42 residents of the area responded to questions on perceived noise and psychological and behavior disturbance before and after acoustic insulation was constructed. Analysis of self-reports indicated that perceived noise was associated with lower health. Also these perceived effects on health did not decrease after the acoustic isolation work was finished.

  12. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  13. Spin relaxation 1/f noise in graphene

    NASA Astrophysics Data System (ADS)

    Omar, S.; Guimarães, M. H. D.; Kaverzin, A.; van Wees, B. J.; Vera-Marun, I. J.

    2017-02-01

    We report the first measurement of 1/f type noise associated with electronic spin transport, using single layer graphene as a prototypical material with a large and tunable Hooge parameter. We identify the presence of two contributions to the measured spin-dependent noise: contact polarization noise from the ferromagnetic electrodes, which can be filtered out using the cross-correlation method, and the noise originated from the spin relaxation processes. The noise magnitude for spin and charge transport differs by three orders of magnitude, implying different scattering mechanisms for the 1/f fluctuations in the charge and spin transport processes. A modulation of the spin-dependent noise magnitude by changing the spin relaxation length and time indicates that the spin-flip processes dominate the spin-dependent noise.

  14. Environmental noise forecasting based on support vector machine

    NASA Astrophysics Data System (ADS)

    Fu, Yumei; Zan, Xinwu; Chen, Tianyi; Xiang, Shihan

    2018-01-01

    As an important pollution source, the noise pollution is always the researcher's focus. Especially in recent years, the noise pollution is seriously harmful to the human beings' environment, so the research about the noise pollution is a very hot spot. Some noise monitoring technologies and monitoring systems are applied in the environmental noise test, measurement and evaluation. But, the research about the environmental noise forecasting is weak. In this paper, a real-time environmental noise monitoring system is introduced briefly. This monitoring system is working in Mianyang City, Sichuan Province. It is monitoring and collecting the environmental noise about more than 20 enterprises in this district. Based on the large amount of noise data, the noise forecasting by the Support Vector Machine (SVM) is studied in detail. Compared with the time series forecasting model and the artificial neural network forecasting model, the SVM forecasting model has some advantages such as the smaller data size, the higher precision and stability. The noise forecasting results based on the SVM can provide the important and accuracy reference to the prevention and control of the environmental noise.

  15. Effects of night time road traffic noise—an overview of laboratory and field studies on noise dose and subjective noise sensitivity

    NASA Astrophysics Data System (ADS)

    Öhrström, E.; Rylander, R.; Björkman, M.

    1988-12-01

    This paper presents an overview of research on sleep and noise at the Department of Environmental Hygiene, University of Gothenburg. Different methods were developed to study primary and after effects of night time road traffic noise on sleep. Three one-week laboratory experiments were undertaken to study the relevance of different noise descriptors— Leq, maximum peak noise level and number of events with high peak noise levels—for sleep disturbance effects. The noise exposure was either single noise evenys or a continuous, even road traffic noise. It was concluded that Leq was not related to sleep disturbance effects. Peak noise levels were significantly related to subjective sleep quality and body movements. Results from a third continuing study showed that there is a threshold for effects of the number of single noise events on sleep quality. Habituation to noise among subjects with differing noise sensitivity was studied in a two-week experiment. A significant noise effect on subjective sleep quality was found among sensitive subjects only. No habituation was seen for the negative influence of noise on sleep quality, mood and performance. Long-term effects of road traffic noise were also investigated in a field survey among 106 individuals. This study revealed the presence of a decrease in sleep quality as well as psycho-social effects on tiredness and mood, together with increased reports of headaches and nervous stomach. As in the laboratory study, sensitive individuals were more affected by noise than less sensitive individuals.

  16. Airfoil self-noise and prediction

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

    1989-01-01

    A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

  17. Noise characteristics of CT perfusion imaging: how does noise propagate from source images to final perfusion maps?

    NASA Astrophysics Data System (ADS)

    Li, Ke; Chen, Guang-Hong

    2016-03-01

    Cerebral CT perfusion (CTP) imaging is playing an important role in the diagnosis and treatment of acute ischemic strokes. Meanwhile, the reliability of CTP-based ischemic lesion detection has been challenged due to the noisy appearance and low signal-to-noise ratio of CTP maps. To reduce noise and improve image quality, a rigorous study on the noise transfer properties of CTP systems is highly desirable to provide the needed scientific guidance. This paper concerns how noise in the CTP source images propagates to the final CTP maps. Both theoretical deviations and subsequent validation experiments demonstrated that, the noise level of background frames plays a dominant role in the noise of the cerebral blood volume (CBV) maps. This is in direct contradiction with the general belief that noise of non-background image frames is of greater importance in CTP imaging. The study found that when radiation doses delivered to the background frames and to all non-background frames are equal, lowest noise variance is achieved in the final CBV maps. This novel equality condition provides a practical means to optimize radiation dose delivery in CTP data acquisition: radiation exposures should be modulated between background frames and non-background frames so that the above equality condition is satisïnAed. For several typical CTP acquisition protocols, numerical simulations and in vivo canine experiment demonstrated that noise of CBV can be effectively reduced using the proposed exposure modulation method.

  18. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1987-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation, and acoustic suppression are discussed. The experimental techniques of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure, and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Areas requiring further research are discussed, and the relevance of aircraft turbofan results to quieting other turbomachinery installation is addressed.

  19. Aircraft turbofan noise

    NASA Astrophysics Data System (ADS)

    Groeneweg, J. F.; Rice, E. J.

    1983-03-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  20. Aircraft turbofan noise

    NASA Technical Reports Server (NTRS)

    Groeneweg, J. F.; Rice, E. J.

    1983-01-01

    Turbofan noise generation and suppression in aircraft engines are reviewed. The chain of physical processes which connect unsteady flow interactions with fan blades to far field noise is addressed. Mechanism identification and description, duct propagation, radiation and acoustic suppression are discussed. The experimental technique of fan inflow static tests are discussed. Rotor blade surface pressure and wake velocity measurements aid in the determination of the types and strengths of the generation mechanisms. Approaches to predicting or measuring acoustic mode content, optimizing treatment impedance to maximize attenuation, translating impedance into porous wall structure and interpreting far field directivity patterns are illustrated by comparisons of analytical and experimental results. The interdependence of source and acoustic treatment design to minimize far field noise is emphasized. Area requiring further research are discussed and the relevance of aircraft turbofan results to quieting other turbomachinery installations is addressed.

  1. 49 CFR 325.7 - Allowable noise levels.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 5 2011-10-01 2011-10-01 false Allowable noise levels. 325.7 Section 325.7... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION GENERAL REGULATIONS COMPLIANCE WITH INTERSTATE MOTOR CARRIER NOISE EMISSION STANDARDS General Provisions § 325.7 Allowable noise levels. Motor vehicle noise emissions, when...

  2. Wheel/Rail Noise Control : A Critical Evaluation

    DOT National Transportation Integrated Search

    1981-01-01

    Noise and vibration are the major sources of environmental impact from urban rail transit operations, and is a concern for both new and existing systems. One of the primary sources of noise on rail transit systems is wheel/rail noise, or, the noise e...

  3. Airframe noise prediction evaluation

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kingo J.; Donelson, Michael J.; Huang, Shumei C.; Joshi, Mahendra C.

    1995-01-01

    The objective of this study is to evaluate the accuracy and adequacy of current airframe noise prediction methods using available airframe noise measurements from tests of a narrow body transport (DC-9) and a wide body transport (DC-10) in addition to scale model test data. General features of the airframe noise from these aircraft and models are outlined. The results of the assessment of two airframe prediction methods, Fink's and Munson's methods, against flight test data of these aircraft and scale model wind tunnel test data are presented. These methods were extensively evaluated against measured data from several configurations including clean, slat deployed, landing gear-deployed, flap deployed, and landing configurations of both DC-9 and DC-10. They were also assessed against a limited number of configurations of scale models. The evaluation was conducted in terms of overall sound pressure level (OASPL), tone corrected perceived noise level (PNLT), and one-third-octave band sound pressure level (SPL).

  4. [Noise and communal dining facilities].

    PubMed

    Cannella, C; Meconi, S; Percoco, A; Comi, R; Graziani, M P

    2000-01-01

    Noise is a sound which is unwanted, either because of its effect on humans, its effect on fatigue or multifunctions of physical equipment, or its interference with the perception or detection of other sounds. It is a part of environmental pollution which can, in certain circumstances, reach worrying levels for the population (130 dB cause pain). Unsuitable exposure to noise for even short periods of time is responsible for symptomology involving the hearing organs (hypoacusis) and other parts of the body such as the cardiovascular, muscular and digestive systems via the connection between the central and the autonomous nervous systems. Noise in communal eating areas can be classed as coming from 3 sources: 1) operation of cooking machinery; 2) banging of pans and equipment; 3) voices of both staff and diners. The intensity of noise on these premises varies generally between 60 and 80 dB (discomfort threshold). The Regulations governing this subject are D.Lgs n.277 of 15/8/1991 regarding the protection of employees, D.P.C.M. of 1/3/1991 which establishes the maximum levels of noise both in the home and outside, and the more recent D.P.C.M. of 21/5/1999 referring to noise in public places, which includes restaurants. To contain the exposure to noise in public eating places, we believe that action should be taken at legal levels with stricter limits than the recently passed level of 105 dB, in the building planning departments and also with technological intervention in order to reduce the effects that noise has on the auditive and extra-auditive organs and thus limit possible sublimal messages which certainly do not benefit the psycho-physical well-being of the diners.

  5. Noise induced phenomena in combustion

    NASA Astrophysics Data System (ADS)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  6. En route noise of two turboprop aircraft

    NASA Technical Reports Server (NTRS)

    Dobrzynski, Werner

    1990-01-01

    In order to weigh en route noise emissions originating from future propfan powered aircraft, a data base of emission levels from conventional turboprop aircraft is needed. For this reason flyover noise measurements on two twin-engine turboprop aircraft were conducted at flight heights between 17,000 and 21,000 ft. Acoustic data are presented together with propeller operational parameters and environmental meteorological data. Narrowband spectral analyses demonstrate the characteristic features of the measured propeller noise signatures: Noise spectra are dominated by the propeller rotational noise fundamental frequency and pronounced noise beats occur as a consequence of different rotational speeds of the propellers.

  7. Interior noise prediction methodology: ATDAC theory and validation

    NASA Technical Reports Server (NTRS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-01-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  8. Interior noise prediction methodology: ATDAC theory and validation

    NASA Astrophysics Data System (ADS)

    Mathur, Gopal P.; Gardner, Bryce K.

    1992-04-01

    The Acoustical Theory for Design of Aircraft Cabins (ATDAC) is a computer program developed to predict interior noise levels inside aircraft and to evaluate the effects of different aircraft configurations on the aircraft acoustical environment. The primary motivation for development of this program is the special interior noise problems associated with advanced turboprop (ATP) aircraft where there is a tonal, low frequency noise problem. Prediction of interior noise levels requires knowledge of the energy sources, the transmission paths, and the relationship between the energy variable and the sound pressure level. The energy sources include engine noise, both airborne and structure-borne; turbulent boundary layer noise; and interior noise sources such as air conditioner noise and auxiliary power unit noise. Since propeller and engine noise prediction programs are widely available, they are not included in ATDAC. Airborne engine noise from any prediction or measurement may be input to this program. This report describes the theory and equations implemented in the ATDAC program.

  9. Towards a better understanding of helicopter external noise

    NASA Astrophysics Data System (ADS)

    Damongeot, A.; Dambra, F.; Masure, B.

    The problem of helicopter external noise generation is studied taking into consideration simultaneously the multiple noise sources: rotor rotational-, rotor broadband -, and engine noise. The main data are obtained during flight tests of the rather quiet AS 332 Super Puma. The flight procedures settled by ICAO for noise regulations are used: horizontal flyover at 90 percent of the maximum speed, approach at minimum power velocity, take-off at best rate of climb. Noise source levels are assessed through narrow band analysis of ground microphone recordings, ground measurements of engine noise and theoretical means. With the perceived noise level unit used throughout the study, relative magnitude of noise sources is shown to be different from that obtained with linear noise unit. A parametric study of the influence of some helicopter parameters on external noise has shown that thickness-tapered, chord-tapered, and swept-back blade tips are good means to reduce the overall noise level in flyover and approach.

  10. Simulation for noise cancellation using LMS adaptive filter

    NASA Astrophysics Data System (ADS)

    Lee, Jia-Haw; Ooi, Lu-Ean; Ko, Ying-Hao; Teoh, Choe-Yung

    2017-06-01

    In this paper, the fundamental algorithm of noise cancellation, Least Mean Square (LMS) algorithm is studied and enhanced with adaptive filter. The simulation of the noise cancellation using LMS adaptive filter algorithm is developed. The noise corrupted speech signal and the engine noise signal are used as inputs for LMS adaptive filter algorithm. The filtered signal is compared to the original noise-free speech signal in order to highlight the level of attenuation of the noise signal. The result shows that the noise signal is successfully canceled by the developed adaptive filter. The difference of the noise-free speech signal and filtered signal are calculated and the outcome implies that the filtered signal is approaching the noise-free speech signal upon the adaptive filtering. The frequency range of the successfully canceled noise by the LMS adaptive filter algorithm is determined by performing Fast Fourier Transform (FFT) on the signals. The LMS adaptive filter algorithm shows significant noise cancellation at lower frequency range.

  11. Highway traffic noise prediction based on GIS

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghua; Qin, Qiming

    2014-05-01

    Before building a new road, we need to predict the traffic noise generated by vehicles. Traditional traffic noise prediction methods are based on certain locations and they are not only time-consuming, high cost, but also cannot be visualized. Geographical Information System (GIS) can not only solve the problem of manual data processing, but also can get noise values at any point. The paper selected a road segment from Wenxi to Heyang. According to the geographical overview of the study area and the comparison between several models, we combine the JTG B03-2006 model and the HJ2.4-2009 model to predict the traffic noise depending on the circumstances. Finally, we interpolate the noise values at each prediction point and then generate contours of noise. By overlaying the village data on the noise contour layer, we can get the thematic maps. The use of GIS for road traffic noise prediction greatly facilitates the decision-makers because of GIS spatial analysis function and visualization capabilities. We can clearly see the districts where noise are excessive, and thus it becomes convenient to optimize the road line and take noise reduction measures such as installing sound barriers and relocating villages and so on.

  12. Restoration for Noise Removal in Quantum Images

    NASA Astrophysics Data System (ADS)

    Liu, Kai; Zhang, Yi; Lu, Kai; Wang, Xiaoping

    2017-09-01

    Quantum computation has become increasingly attractive in the past few decades due to its extraordinary performance. As a result, some studies focusing on image representation and processing via quantum mechanics have been done. However, few of them have considered the quantum operations for images restoration. To address this problem, three noise removal algorithms are proposed in this paper based on the novel enhanced quantum representation model, oriented to two kinds of noise pollution (Salt-and-Pepper noise and Gaussian noise). For the first algorithm Q-Mean, it is designed to remove the Salt-and-Pepper noise. The noise points are extracted through comparisons with the adjacent pixel values, after which the restoration operation is finished by mean filtering. As for the second method Q-Gauss, a special mask is applied to weaken the Gaussian noise pollution. The third algorithm Q-Adapt is effective for the source image containing unknown noise. The type of noise can be judged through the quantum statistic operations for the color value of the whole image, and then different noise removal algorithms are used to conduct image restoration respectively. Performance analysis reveals that our methods can offer high restoration quality and achieve significant speedup through inherent parallelism of quantum computation.

  13. Modeling and Prediction of Krueger Device Noise

    NASA Technical Reports Server (NTRS)

    Guo, Yueping; Burley, Casey L.; Thomas, Russell H.

    2016-01-01

    This paper presents the development of a noise prediction model for aircraft Krueger flap devices that are considered as alternatives to leading edge slotted slats. The prediction model decomposes the total Krueger noise into four components, generated by the unsteady flows, respectively, in the cove under the pressure side surface of the Krueger, in the gap between the Krueger trailing edge and the main wing, around the brackets supporting the Krueger device, and around the cavity on the lower side of the main wing. For each noise component, the modeling follows a physics-based approach that aims at capturing the dominant noise-generating features in the flow and developing correlations between the noise and the flow parameters that control the noise generation processes. The far field noise is modeled using each of the four noise component's respective spectral functions, far field directivities, Mach number dependencies, component amplitudes, and other parametric trends. Preliminary validations are carried out by using small scale experimental data, and two applications are discussed; one for conventional aircraft and the other for advanced configurations. The former focuses on the parametric trends of Krueger noise on design parameters, while the latter reveals its importance in relation to other airframe noise components.

  14. Voluntary Noise Mapping for Smart City

    NASA Astrophysics Data System (ADS)

    Poslončec-Petrić, V.; Vuković, V.; Frangeš, S.; Bačić, Ž.

    2016-09-01

    One of the main concept objectives of smart cities is to create a quality living environment that is long-term sustainable and economically justified. In that context, modern cities are aware of the exposure to various forms of physical and non-physical pollution that needs to be remediated, eliminated or reduced. To achieve that it is necessary to quality determine the sources and reasons of each pollution. The most prominent examples of physical pollution that affects the quality of life of citizens in cities are light and noise pollution. Noise pollution or noise, is mostly the consequence of road and rail traffic in cities and it directly affects the health of citizens. Traffic control, reduction of peak congestion, dispersion and traffic redirection or building protective barriers, are ways that cities use to reduce the amount of noise or its effects. To make these measures efficient it is necessary to obtain the information related to the level of noise in certain areas, streets, cities. To achieve this, smart cities use noise mapping. The city of Zagreb since 2012, participates in the i-SCOPE project (interoperable Smart City services trough Open Platform for urban Ecosystems). i-SCOPE delivers an open platform on top of which it develops, three "smart city" services: optimization of energy consumption through a service for accurate assessment of solar energy potential and energy loss at building level, environmental monitoring through a real-time environmental noise mapping service leveraging citizen's involvement will who act as distributed sensors city-wide measuring noise levels through an application on their mobile phones and improved inclusion and personal mobility of aging and diversely able citizens through an accurate personal routing service. The students of Faculty of Geodesy University of Zagreb, who enrolled in the course Thematic Cartography, were actively involved in the voluntary data acquisition in order to monitor the noise in real time

  15. Experimental clean combustor program: Noise study

    NASA Technical Reports Server (NTRS)

    Sofrin, T. G.; Riloff, N., Jr.

    1976-01-01

    Under a Noise Addendum to the NASA Experimental Clean Combustor Program (ECCP) internal pressure fluctuations were measured during tests of JT9D combustor designs conducted in a burner test rig. Measurements were correlated with burner operating parameters using an expression relating farfield noise to these parameters. For a given combustor, variation of internal noise with operating parameters was reasonably well predicted by this expression but the levels were higher than farfield predictions and differed significantly among several combustors. For two burners, discharge stream temperature fluctuations were obtained with fast-response thermocouples to allow calculation of indirect combustion noise which would be generated by passage of the temperature inhomogeneities through the high pressure turbine stages of a JT9D turbofan engine. Using a previously developed analysis, the computed indirect combustion noise was significantly lower than total low frequency core noise observed on this and several other engines.

  16. Nuclear spin noise in NMR revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferrand, Guillaume; Luong, Michel; Huber, Gaspard

    2015-09-07

    The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a “bump” or as a “dip” superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurementsmore » validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.« less

  17. Towards full waveform ambient noise inversion

    NASA Astrophysics Data System (ADS)

    Sager, Korbinian; Ermert, Laura; Boehm, Christian; Fichtner, Andreas

    2018-01-01

    In this work we investigate fundamentals of a method—referred to as full waveform ambient noise inversion—that improves the resolution of tomographic images by extracting waveform information from interstation correlation functions that cannot be used without knowing the distribution of noise sources. The fundamental idea is to drop the principle of Green function retrieval and to establish correlation functions as self-consistent observables in seismology. This involves the following steps: (1) We introduce an operator-based formulation of the forward problem of computing correlation functions. It is valid for arbitrary distributions of noise sources in both space and frequency, and for any type of medium, including 3-D elastic, heterogeneous and attenuating media. In addition, the formulation allows us to keep the derivations independent of time and frequency domain and it facilitates the application of adjoint techniques, which we use to derive efficient expressions to compute first and also second derivatives. The latter are essential for a resolution analysis that accounts for intra- and interparameter trade-offs. (2) In a forward modelling study we investigate the effect of noise sources and structure on different observables. Traveltimes are hardly affected by heterogeneous noise source distributions. On the other hand, the amplitude asymmetry of correlations is at least to first order insensitive to unmodelled Earth structure. Energy and waveform differences are sensitive to both structure and the distribution of noise sources. (3) We design and implement an appropriate inversion scheme, where the extraction of waveform information is successively increased. We demonstrate that full waveform ambient noise inversion has the potential to go beyond ambient noise tomography based on Green function retrieval and to refine noise source location, which is essential for a better understanding of noise generation. Inherent trade-offs between source and structure

  18. Impact of Daily Noise Exposure Monitoring on Occupational Noise Exposures in Manufacturing Workers

    PubMed Central

    McTague, Michael F.; Galusha, Deron; Dixon-Ernst, Christine; Kirsche, Sharon R.; Slade, Martin D.; Cullen, Mark R.; Rabinowitz, Peter M.

    2013-01-01

    Objective Despite the use of hearing protective devices (HPDs), noise induced hearing loss (NIHL) remains one of the most prevalent occupational conditions. A new technology allows for daily monitoring of noise exposures under HPDs. We report on an intervention employing the voluntary use of this technology in a worksite setting. Design Volunteers were fitted with a device allowing them to monitor noise exposure under their hearing protection on a daily basis. The trends in noise exposures for individuals who completed at least six months of the intervention were analyzed. Study Sample Recruitment occurred at three manufacturing facilities, with 127 workers enrolling and 66 workers actively using the device during their work shifts. Results Among volunteers downloading regularly, the percentage of daily exposures in excess of the OSHA action level (85dBA) decreased from 14% to 8%, while the percentage of daily exposures in excess of 90dBA decreased from 4% to less than 2%. Conclusion Initial results from this longitudinal study indicate that volunteers find daily noise exposure monitoring to be feasible, and that workers who monitor daily are able to reduce exposures. The results of subject adherence shed light on the challenges and possibilities of worksite interventions for health and safety. PMID:23373740

  19. 30 CFR 62.110 - Noise exposure assessment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Noise exposure assessment. 62.110 Section 62... REGULATIONS OCCUPATIONAL NOISE EXPOSURE § 62.110 Noise exposure assessment. (a) The mine operator must establish a system of monitoring that evaluates each miner's noise exposure sufficiently to determine...

  20. Impact of Air Injection on Jet Noise

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Norum, Tom

    2007-01-01

    The objective of this viewgraph presentation is to review the program to determine impact of core fluidic chevrons on noise produced by dual stream jets (i.e., broadband shock noise - supersonic, and mixing noise - subsonic and supersonic). The presentation reviews the sources of jet noise. It shows designs of Generation II Fluidic Chevrons. The injection impacts shock structure and stream disturbances through enhanced mixing. This may impact constructive interference between acoustic sources. The high fan pressures may inhibit mixing produced by core injectors. A fan stream injection may be required for better noise reduction. In future the modification of Gen II nozzles to allow for some azimuthal control: will allow for higher mass flow rates and will allow for shallower injection angles A Flow field study is scheduled for spring, 2008 The conclusions are that injection can reduce well-defined shock noise and injection reduces mixing noise near peak jet noise angle

  1. B-52G crew noise exposure study

    NASA Astrophysics Data System (ADS)

    Decker, W. H.; Nixon, C. W.

    1985-08-01

    The B-52G aircraft produces acoustic environments that are potentially hazardous, interfere with voice communications and may degrade task performance. Numerous reports from aircrew of high noise levels at crew location have been documented for those B-52G aircraft that have been modified with the Offensive Avionics System. To alleviate and minimize the excessive noise exposures of aircrews, a study of the noise problem in the b-52G was deemed necessary. First, in-flight noise measurements were obtained at key personnel locations on a B-52G during a typical training mission. Then, extensive laboratory analyses were conducted on these in-flight noise data. The resulting noise exposure data were evaluated in terms of the various segments of and the total flight profile relative to allowable noise exposures. Finally, recommendations were developed for short term and long term approaches toward potential improvement in the B-52G noise exposure problem.

  2. Noise: The Ignored Contaminant

    ERIC Educational Resources Information Center

    Miller, Maurice H.

    1977-01-01

    Noise is the single most omnipresent noxious contaminant in the American environment, yet little attention has been paid to its dangers and relatively small amounts of money spent to control it. Compares the effects and management of hearing impairment due to noise with those resulting from other causes. (Editor)

  3. Rotorcraft noise: Status and recent developments

    NASA Technical Reports Server (NTRS)

    George, Albert R.; Sim, Ben WEL-C.; Polak, David R.

    1993-01-01

    This paper briefly reviews rotorcraft noise mechanisms and their approximate importance for different types of rotorcraft in different flight regimes. Discrete noise is due to periodic flow disturbances and includes impulsive noise produced by phenomena which occur during a limited segment of a blade's rotation. Broadband noise results when rotors interact with random disturbances, such as turbulence, which can originate in a variety of sources. The status of analysis techniques for these mechanisms are reviewed. Also, some recent progress is presented on the understanding and analysis of tilt rotor aircraft noise due to: (1) recirculation and blockage effects of the rotor flow in hover; and (2) blade-vortex interactions in forward and descending flight.

  4. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  5. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise measurement. 36.801 Section 36.801 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal...

  6. Electrochemical current noise on aluminum microelectrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaac, J.W.; Hebert, K.R.

    1999-02-01

    Aluminum disk microelectrodes were used to investigate electrochemical current noise in pH 8.8 borate buffer. The current noise spectra, expressed in terms of the current spectral density, had a characteristic two-plateau structure in the experimental bandwidth of 0.05--50 Hz, were potential-independent, and increased proportionally to electrode area. Injection of NaCl solution near the electrode surface, at potentials below that of the onset of pitting corrosion, caused 0.1--1 Hz current fluctuations to appear. From the frequency and area dependence of the current spectral density in the chloride-free solution, it was concluded that the noise arose from a number of discrete, approximatelymore » evenly distributed voltage noise sources positioned electrically in series with the inner barrier layer of the oxide film. A mathematical model for the current noise was developed which described a physical mechanism for noise production based on fluctuations in the widths of cracks or pores in the outer part of the surface film. The model was consistent with the observed area and frequency dependence of the current spectral density, suggesting that the physical process it described is a possible mechanism of noise generation. It could not be determined whether the noise sources were isolated defects or flaws, or pores in an outer precipitated portion of the oxide film.« less

  7. Psychoacoustic Analysis of Synthesized Jet Noise

    NASA Technical Reports Server (NTRS)

    Okcu, Selen; Rathsam, Jonathan; Rizzi, Stephen A.

    2013-01-01

    An aircraft noise synthesis capability is being developed so the annoyance caused by proposed aircraft can be assessed during the design stage. To make synthesized signals as realistic as possible, high fidelity simulation is required for source (e.g., engine noise, airframe noise), propagation and receiver effects. This psychoacoustic study tests whether the jet noise component of synthesized aircraft engine noise can be made more realistic using a low frequency oscillator (LFO) technique to simulate fluctuations in level observed in recordings. Jet noise predictions are commonly made in the frequency domain based on models of time-averaged empirical data. The synthesis process involves conversion of the frequency domain prediction into an audible pressure time history. However, because the predictions are time-invariant, the synthesized sound lacks fluctuations observed in recordings. Such fluctuations are hypothesized to be perceptually important. To introduce time-varying characteristics into jet noise synthesis, a method has been developed that modulates measured or predicted 1/3-octave band levels with a (<20Hz) LFO. The LFO characteristics are determined through analysis of laboratory jet noise recordings. For the aft emission angle, results indicate that signals synthesized using a generic LFO are perceived as more similar to recordings than those using no LFO, and signals synthesized with an angle-specific LFO are more similar to recordings than those synthesized with a generic LFO.

  8. An airport community noise-impact assessment model

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1980-01-01

    A computer model was developed to assess the noise impact of an airport on the community which it serves. Assessments are made using the Fractional Impact Method by which a single number describes the community aircraft noise environment in terms of exposed population and multiple event noise level. The model is comprised of three elements: a conventional noise footprint model, a site specific population distribution model, and a dose response transfer function. The footprint model provides the noise distribution for a given aircraft operating scenario. This is combined with the site specific population distribution obtained from a national census data base to yield the number of residents exposed to a given level of noise. The dose response relationship relates noise exposure levels to the percentage of individuals highly annoyed by those levels.

  9. Can weekly noise levels of urban road traffic, as predominant noise source, estimate annual ones?

    PubMed

    Prieto Gajardo, Carlos; Barrigón Morillas, Juan Miguel; Rey Gozalo, Guillermo; Vílchez-Gómez, Rosendo

    2016-11-01

    The effects of noise pollution on human quality of life and health were recognised by the World Health Organisation a long time ago. There is a crucial dilemma for the study of urban noise when one is looking for proven methodologies that can allow, on the one hand, an increase in the quality of predictions, and on the other hand, saving resources in the spatial and temporal sampling. The temporal structure of urban noise is studied in this work from a different point of view. This methodology, based on Fourier analysis, is applied to several measurements of urban noise, mainly from road traffic and one-week long, carried out in two cities located on different continents and with different sociological life styles (Cáceres, Spain and Talca, Chile). Its capacity to predict annual noise levels from weekly measurements is studied. The relation between this methodology and the categorisation method is also analysed.

  10. 75 FR 39820 - Procedures for Abatement of Highway Traffic Noise and Construction Noise

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... design. The FHWA published the ``Highway Traffic Noise Analysis and Abatement Policy and Guidance... commented that quiet pavements should be allowed as a federally funded noise abatement measure. While the FHWA recognizes the efforts of many State highway agencies and the pavement industries, there are still...

  11. Noise in restaurants: levels and mathematical model.

    PubMed

    To, Wai Ming; Chung, Andy

    2014-01-01

    Noise affects the dining atmosphere and is an occupational hazard to restaurant service employees worldwide. This paper examines the levels of noise in dining areas during peak hours in different types of restaurants in Hong Kong SAR, China. A mathematical model that describes the noise level in a restaurant is presented. The 1-h equivalent continuous noise level (L(eq,1-h)) was measured using a Type-1 precision integral sound level meter while the occupancy density, the floor area of the dining area, and the ceiling height of each of the surveyed restaurants were recorded. It was found that the measured noise levels using Leq,1-h ranged from 67.6 to 79.3 dBA in Chinese restaurants, from 69.1 to 79.1 dBA in fast food restaurants, and from 66.7 to 82.6 dBA in Western restaurants. Results of the analysis of variance show that there were no significant differences between means of the measured noise levels among different types of restaurants. A stepwise multiple regression analysis was employed to determine the relationships between geometrical and operational parameters and the measured noise levels. Results of the regression analysis show that the measured noise levels depended on the levels of occupancy density only. By reconciling the measured noise levels and the mathematical model, it was found that people in restaurants increased their voice levels when the occupancy density increased. Nevertheless, the maximum measured hourly noise level indicated that the noise exposure experienced by restaurant service employees was below the regulated daily noise exposure value level of 85 dBA.

  12. Opportunities for Environmental Noise Mapping in Saudi Arabia: A Case of Traffic Noise Annoyance in an Urban Area in Jeddah City.

    PubMed

    Zytoon, Mohamed A

    2016-05-13

    As the traffic and other environmental noise generating activities are growing in The Kingdom of Saudi Arabia (KSA), adverse health and other impacts are expected to develop. The management of such problem involves many actions, of which noise mapping has been proven to be a helpful approach. The objective of the current study was to test the adequacy of the available data in KSA municipalities for generating urban noise maps and to verify the applicability of available environmental noise mapping and noise annoyance models for KSA. Therefore, noise maps were produced for Al-Fayha District in Jeddah City, KSA using commercially available noise mapping software and applying the French national computation method "NMPB" for traffic noise. Most of the data required for traffic noise prediction and annoyance analysis were available, either in the Municipality GIS department or in other governmental authorities. The predicted noise levels during the three time periods, i.e., daytime, evening, and nighttime, were found higher than the maximum recommended levels established in KSA environmental noise standards. Annoyance analysis revealed that high percentages of the District inhabitants were highly annoyed, depending on the type of planning zone and period of interest. These results reflect the urgent need to consider environmental noise reduction in KSA national plans. The accuracy of the predicted noise levels and the availability of most of the necessary data should encourage further studies on the use of noise mapping as part of noise reduction plans.

  13. Opportunities for Environmental Noise Mapping in Saudi Arabia: A Case of Traffic Noise Annoyance in an Urban Area in Jeddah City

    PubMed Central

    Zytoon, Mohamed A.

    2016-01-01

    As the traffic and other environmental noise generating activities are growing in The Kingdom of Saudi Arabia (KSA), adverse health and other impacts are expected to develop. The management of such problem involves many actions, of which noise mapping has been proven to be a helpful approach. The objective of the current study was to test the adequacy of the available data in KSA municipalities for generating urban noise maps and to verify the applicability of available environmental noise mapping and noise annoyance models for KSA. Therefore, noise maps were produced for Al-Fayha District in Jeddah City, KSA using commercially available noise mapping software and applying the French national computation method “NMPB” for traffic noise. Most of the data required for traffic noise prediction and annoyance analysis were available, either in the Municipality GIS department or in other governmental authorities. The predicted noise levels during the three time periods, i.e., daytime, evening, and nighttime, were found higher than the maximum recommended levels established in KSA environmental noise standards. Annoyance analysis revealed that high percentages of the District inhabitants were highly annoyed, depending on the type of planning zone and period of interest. These results reflect the urgent need to consider environmental noise reduction in KSA national plans. The accuracy of the predicted noise levels and the availability of most of the necessary data should encourage further studies on the use of noise mapping as part of noise reduction plans. PMID:27187438

  14. Supersonics Project - Airport Noise Tech Challenge

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2010-01-01

    The Airport Noise Tech Challenge research effort under the Supersonics Project is reviewed. While the goal of "Improved supersonic jet noise models validated on innovative nozzle concepts" remains the same, the success of the research effort has caused the thrust of the research to be modified going forward in time. The main activities from FY06-10 focused on development and validation of jet noise prediction codes. This required innovative diagnostic techniques to be developed and deployed, extensive jet noise and flow databases to be created, and computational tools to be developed and validated. Furthermore, in FY09-10 systems studies commissioned by the Supersonics Project showed that viable supersonic aircraft were within reach using variable cycle engine architectures if exhaust nozzle technology could provide 3-5dB of suppression. The Project then began to focus on integrating the technologies being developed in its Tech Challenge areas to bring about successful system designs. Consequently, the Airport Noise Tech Challenge area has shifted efforts from developing jet noise prediction codes to using them to develop low-noise nozzle concepts for integration into supersonic aircraft. The new plan of research is briefly presented by technology and timelines.

  15. Phase noise suppression through parametric filtering

    NASA Astrophysics Data System (ADS)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  16. Externally blown flap noise research

    NASA Technical Reports Server (NTRS)

    Dorsch, R. G.

    1974-01-01

    The Lewis Research Center cold-flow model externally blown flap (EBF) noise research test program is summarized. Both engine under-the-wing and over-the-wing EBF wing section configurations were studied. Ten large scale and nineteen small scale EBF models were tested. A limited number of forward airspeed effect and flap noise suppression tests were also run. The key results and conclusions drawn from the flap noise tests are summarized and discussed.

  17. Annoyance caused by aircraft en route noise

    NASA Technical Reports Server (NTRS)

    Mccurdy, David A.

    1992-01-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  18. The Negative Affect Hypothesis of Noise Sensitivity

    PubMed Central

    Shepherd, Daniel; Heinonen-Guzejev, Marja; Heikkilä, Kauko; Dirks, Kim N.; Hautus, Michael J.; Welch, David; McBride, David

    2015-01-01

    Some studies indicate that noise sensitivity is explained by negative affect, a dispositional tendency to negatively evaluate situations and the self. Individuals high in such traits may report a greater sensitivity to other sensory stimuli, such as smell, bright light and pain. However, research investigating the relationship between noise sensitivity and sensitivity to stimuli associated with other sensory modalities has not always supported the notion of a common underlying trait, such as negative affect, driving them. Additionally, other explanations of noise sensitivity based on cognitive processes have existed in the clinical literature for over 50 years. Here, we report on secondary analyses of pre-existing laboratory (n = 74) and epidemiological (n = 1005) data focusing on the relationship between noise sensitivity to and annoyance with a variety of olfactory-related stimuli. In the first study a correlational design examined the relationships between noise sensitivity, noise annoyance, and perceptual ratings of 16 odors. The second study sought differences between mean noise and air pollution annoyance scores across noise sensitivity categories. Results from both analyses failed to support the notion that, by itself, negative affectivity explains sensitivity to noise. PMID:25993104

  19. Formant discrimination in noise for isolated vowels

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Kewley-Port, Diane

    2004-11-01

    Formant discrimination for isolated vowels presented in noise was investigated for normal-hearing listeners. Discrimination thresholds for F1 and F2, for the seven American English vowels /eye, smcapi, eh, æ, invv, aye, you/, were measured under two types of noise, long-term speech-shaped noise (LTSS) and multitalker babble, and also under quiet listening conditions. Signal-to-noise ratios (SNR) varied from -4 to +4 dB in steps of 2 dB. All three factors, formant frequency, signal-to-noise ratio, and noise type, had significant effects on vowel formant discrimination. Significant interactions among the three factors showed that threshold-frequency functions depended on SNR and noise type. The thresholds at the lowest levels of SNR were highly elevated by a factor of about 3 compared to those in quiet. The masking functions (threshold vs SNR) were well described by a negative exponential over F1 and F2 for both LTSS and babble noise. Speech-shaped noise was a slightly more effective masker than multitalker babble, presumably reflecting small benefits (1.5 dB) due to the temporal variation of the babble. .

  20. Annoyance caused by aircraft en route noise

    NASA Astrophysics Data System (ADS)

    McCurdy, David A.

    1992-03-01

    A laboratory experiment was conducted to quantify the annoyance response of people on the ground to enroute noise generated by aircraft at cruise conditions. The en route noises were ground level recordings of eight advanced turboprop aircraft flyovers and six conventional turbofan flyovers. The eight advanced turboprop enroute noises represented the NASA Propfan Test Assessment aircraft operating at different combinations of altitude, aircraft Mach number, and propeller tip speed. The conventional turbofan en route noises represented six different commercial airliners. The overall durations of the en route noises varied from approximately 40 to 160 sec. In the experiment, 32 subjects judged the annoyance of the en route noises as well as recordings of the takeoff and landing noises of each of 5 conventional turboprop and 5 conventional turbofan aircraft. Each of the noises was presented at three sound pressure levels to the subjects in an anechoic listening room. Analysis of the judgments found small differences in annoyance between three combinations of aircraft type and operation. Current tone and corrections did not significantly improve en route annoyance prediction. The optimum duration-correction magnitude for en route noise was approximately 1 dB per doubling of effective duration.

  1. Noise levels in an urban Asian school environment.

    PubMed

    Chan, Karen M K; Li, Chi Mei; Ma, Estella P M; Yiu, Edwin M L; McPherson, Bradley

    2015-01-01

    Background noise is known to adversely affect speech perception and speech recognition. High levels of background noise in school classrooms may affect student learning, especially for those pupils who are learning in a second language. The current study aimed to determine the noise level and teacher speech-to-noise ratio (SNR) in Hong Kong classrooms. Noise level was measured in 146 occupied classrooms in 37 schools, including kindergartens, primary schools, secondary schools and special schools, in Hong Kong. The mean noise levels in occupied kindergarten, primary school, secondary school and special school classrooms all exceeded recommended maximum noise levels, and noise reduction measures were seldom used in classrooms. The measured SNRs were not optimal and could have adverse implications for student learning and teachers' vocal health. Schools in urban Asian environments are advised to consider noise reduction measures in classrooms to better comply with recommended maximum noise levels for classrooms.

  2. Experimental testing of the noise-canceling processor.

    PubMed

    Collins, Michael D; Baer, Ralph N; Simpson, Harry J

    2011-09-01

    Signal-processing techniques for localizing an acoustic source buried in noise are tested in a tank experiment. Noise is generated using a discrete source, a bubble generator, and a sprinkler. The experiment has essential elements of a realistic scenario in matched-field processing, including complex source and noise time series in a waveguide with water, sediment, and multipath propagation. The noise-canceling processor is found to outperform the Bartlett processor and provide the correct source range for signal-to-noise ratios below -10 dB. The multivalued Bartlett processor is found to outperform the Bartlett processor but not the noise-canceling processor. © 2011 Acoustical Society of America

  3. The effects of noise exposure and musical training on suprathreshold auditory processing and speech perception in noise.

    PubMed

    Yeend, Ingrid; Beach, Elizabeth Francis; Sharma, Mridula; Dillon, Harvey

    2017-09-01

    Recent animal research has shown that exposure to single episodes of intense noise causes cochlear synaptopathy without affecting hearing thresholds. It has been suggested that the same may occur in humans. If so, it is hypothesized that this would result in impaired encoding of sound and lead to difficulties hearing at suprathreshold levels, particularly in challenging listening environments. The primary aim of this study was to investigate the effect of noise exposure on auditory processing, including the perception of speech in noise, in adult humans. A secondary aim was to explore whether musical training might improve some aspects of auditory processing and thus counteract or ameliorate any negative impacts of noise exposure. In a sample of 122 participants (63 female) aged 30-57 years with normal or near-normal hearing thresholds, we conducted audiometric tests, including tympanometry, audiometry, acoustic reflexes, otoacoustic emissions and medial olivocochlear responses. We also assessed temporal and spectral processing, by determining thresholds for detection of amplitude modulation and temporal fine structure. We assessed speech-in-noise perception, and conducted tests of attention, memory and sentence closure. We also calculated participants' accumulated lifetime noise exposure and administered questionnaires to assess self-reported listening difficulty and musical training. The results showed no clear link between participants' lifetime noise exposure and performance on any of the auditory processing or speech-in-noise tasks. Musical training was associated with better performance on the auditory processing tasks, but not the on the speech-in-noise perception tasks. The results indicate that sentence closure skills, working memory, attention, extended high frequency hearing thresholds and medial olivocochlear suppression strength are important factors that are related to the ability to process speech in noise. Crown Copyright © 2017. Published by

  4. Improved noise-adding radiometer for microwave receivers

    NASA Technical Reports Server (NTRS)

    Batelaan, P. D.; Stelzried, C. T.; Goldstein, R. M.

    1973-01-01

    Use of input switch and noise reference standard is avoided by using noise-adding technique. Excess noise from solid state noise-diode is coupled into receiver through directional coupler and square-wave modulated at low rate. High sensitivity receivers for radioastronomy applications are utilized with greater confidence in stability of radiometer.

  5. 14 CFR 36.805 - Noise limits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Noise limits. 36.805 Section 36.805 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.805 Noise limits. (a) Compliance with the...

  6. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...

  7. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...

  8. 14 CFR 36.801 - Noise measurement.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.801 Noise measurement. For primary, normal, transport, or restricted category helicopters for which certification is sought under appendix H of this part, the noise generated by the helicopter must be measured at the noise measuring points and under...

  9. 14 CFR 36.805 - Noise limits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Noise limits. 36.805 Section 36.805 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT NOISE STANDARDS: AIRCRAFT TYPE AND AIRWORTHINESS CERTIFICATION Helicopters § 36.805 Noise limits. (a) Compliance with the...

  10. High noise immunity one shot

    NASA Technical Reports Server (NTRS)

    Schaffer, G. L.

    1972-01-01

    Multivibrator circuit, which includes constant current source, isolates line noise from timing circuitry and field effect transistor controls circuit's operational modes. Circuit has high immunity to supply line noise.

  11. The Effect of Age and Type of Noise on Speech Perception under Conditions of Changing Context and Noise Levels.

    PubMed

    Taitelbaum-Swead, Riki; Fostick, Leah

    2016-01-01

    Everyday life includes fluctuating noise levels, resulting in continuously changing speech intelligibility. The study aims were: (1) to quantify the amount of decrease in age-related speech perception, as a result of increasing noise level, and (2) to test the effect of age on context usage at the word level (smaller amount of contextual cues). A total of 24 young adults (age 20-30 years) and 20 older adults (age 60-75 years) were tested. Meaningful and nonsense one-syllable consonant-vowel-consonant words were presented with the background noise types of speech noise (SpN), babble noise (BN), and white noise (WN), with a signal-to-noise ratio (SNR) of 0 and -5 dB. Older adults had lower accuracy in SNR = 0, with WN being the most difficult condition for all participants. Measuring the change in speech perception when SNR decreased showed a reduction of 18.6-61.5% in intelligibility, with age effect only for BN. Both young and older adults used less phonemic context with WN, as compared to other conditions. Older adults are more affected by an increasing noise level of fluctuating informational noise as compared to steady-state noise. They also use less contextual cues when perceiving monosyllabic words. Further studies should take into consideration that when presenting the stimulus differently (change in noise level, less contextual cues), other perceptual and cognitive processes are involved. © 2016 S. Karger AG, Basel.

  12. Impulse noise generator--design and operation.

    PubMed

    Brinkmann, H

    1991-01-01

    In the seventies PFANDER (Pfander, 1975) proposed a screening test with an impulse noise simulator to check the particular responsivity of soldiers on vulnerability of the inner ear concerning the impulse noise-induced hearing loss. According to a system developed at the University of Oldenburg (Germany) (Klug & Radek, 1987), we have constructed an impulse noise generator designed for our specific requirements that will be presented. The simulator consists of an electrical ignited impulse noise spark gap which is supplied by a 3.5 kV high voltage source. At a distance of 1.10 m from the center of the impulse noise spark gap a peak pressure level of 155 dB with a C-Duration (Pfander, 1975) of .2 msec and with the main energy in the frequency range from 1 kHz to 2 kHz was good reproducible. It would be preferable to shift the impulse noise spectrum to lower frequencies but experimental effort has failed so far.

  13. Noise-induced effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  14. UHB Engine Fan Broadband Noise Reduction Study

    NASA Technical Reports Server (NTRS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-01-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  15. Nuisance levels of noise effects radiologists' performance

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Coffey, Amina; Ryan, John; O'Beirne, Aaron; Toomey, Rachel; Evanoff, Micheal; Manning, David; Brennan, Patrick C.

    2010-02-01

    This study aimed to measure the sound levels in Irish x-ray departments. The study then established whether these levels of noise have an impact on radiologists performance Noise levels were recorded 10 times within each of 14 environments in 4 hospitals, 11 of which were locations where radiologic images are judged. Thirty chest images were then presented to 26 senior radiologists, who were asked to detect up to three nodular lesions within 30 posteroanterior chest x-ray images in the absence and presence of noise at amplitude demonstrated in the clinical environment. The results demonstrated that noise amplitudes rarely exceeded that encountered with normal conversation with the maximum mean value for an image-viewing environment being 56.1 dB. This level of noise had no impact on the ability of radiologists to identify chest lesions with figure of merits of 0.68, 0.69, and 0.68 with noise and 0.65, 0.68, and 0.67 without noise for chest radiologists, non-chest radiologists, and all radiologists, respectively. the difference in their performance using the DBM MRMC method was significantly better with noise than in the absence of noise at the 90% confidence interval (p=0.077). Further studies are required to establish whether other aspects of diagnosis are impaired such as recall and attention and the effects of more unexpected noise on performance.

  16. UHB engine fan broadband noise reduction study

    NASA Astrophysics Data System (ADS)

    Gliebe, Philip R.; Ho, Patrick Y.; Mani, Ramani

    1995-06-01

    A study has been completed to quantify the contribution of fan broadband noise to advanced high bypass turbofan engine system noise levels. The result suggests that reducing fan broadband noise can produce 3 to 4 EPNdB in engine system noise reduction, once the fan tones are eliminated. Further, in conjunction with the elimination of fan tones and an increase in bypass ratio, a potential reduction of 7 to 10 EPNdB in system noise can be achieved. In addition, an initial assessment of engine broadband noise source mechanisms has been made, concluding that the dominant source of fan broadband noise is the interaction of incident inlet boundary layer turbulence with the fan rotor. This source has two contributors, i.e., unsteady life dipole response and steady loading quadrupole response. The quadrupole contribution was found to be the most important component, suggesting that broadband noise reduction can be achieved by the reduction of steady loading field-turbulence field quadrupole interaction. Finally, for a controlled experimental quantification and verification, the study recommends that further broadband noise tests be done on a simulated engine rig, such as the GE Aircraft Engine Universal Propulsion Simulator, rather than testing on an engine statically in an outdoor arena The rig should be capable of generating forward and aft propagating fan noise, and it needs to be tested in a large freejet or a wind tunnel.

  17. Noise Abatement Materials

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A former NASA employee who discovered a kind of plastic that soaked up energy, dampened vibrations, and was a good noise abatement material, founded a company to market noise deadening adhesives, sheets, panels and enclosures. Known as SMART products, they are 75-80% lighter than ordinary soundproofing material and have demonstrated a high degree of effectiveness. The company, Varian Associates, makes enclosures for high voltage terminals and other electronic system components, and easily transportable audiometric test booths.

  18. Ambient Noise in an Urbanized Tidal Channel

    NASA Astrophysics Data System (ADS)

    Bassett, Christopher

    In coastal environments, when topographic and bathymetric constrictions are combined with large tidal amplitudes, strong currents (> 2 m/s) can occur. Because such environments are relatively rare and difficult to study, until recently, they have received little attention from the scientific community. However, in recent years, interest in developing tidal hydrokinetic power projects in these environments has motivated studies to improve this understanding. In order to support an analysis of the acoustic effects of tidal power generation, a multi-year study was conducted at a proposed project site in Puget Sound (WA) are analyzed at a site where peak currents exceeded 3.5 m/s. From these analyses, three noise sources are shown to dominate the observed variability in ambient noise between 0.02-30 kHz: anthropogenic noise from vessel traffic, sediment-generated noise during periods of strong currents, and flow-noise resulting from turbulence advected over the hydrophones. To assess the contribution of vessel traffic noise, one calendar year of Automatic Identification System (AIS) ship-traffic data was paired with hydrophone recordings. The study region included inland waters of the Salish Sea within a 20 km radius of the hydrophone deployment site in northern Admiralty Inlet. The variability in spectra and hourly, daily, and monthly ambient noise statistics for unweighted broadband and M-weighted sound pressure levels is driven largely by vessel traffic. Within the one-year study period, at least one AIS transmitting vessel is present in the study area 90% of the time and over 1,363 unique vessels are recorded. A noise budget for vessels equipped with AIS transponders identifies cargo ships, tugs, and passenger vessels as the largest contributors to noise levels. A simple model to predict received levels at the site based on an incoherent summation of noise from different vessel types yields a cumulative probability density function of broadband sound pressure

  19. Road Traffic Noise

    NASA Astrophysics Data System (ADS)

    Beckenbauer, Thomas

    Road traffic is the most interfering noise source in developed countries. According to a publication of the European Union (EU) at the end of the twentieth century [1], about 40% of the population in 15 EU member states is exposed to road traffic noise at mean levels exceeding 55 dB(A). Nearly 80 million people, 20% of the population, are exposed to levels exceeding 65 dB(A) during daytime and more than 30% of the population is exposed to levels exceeding 55 dB(A) during night time. Such high noise levels cause health risks and social disorders (aggressiveness, protest, and helplessness), interference of communication and disturbance of sleep; the long- and short-term consequences cause adverse cardiovascular effects, detrimental hormonal responses (stress hormones), and possible disturbance of the human metabolism (nutrition) and the immune system. Even performance at work and school could be impaired.

  20. Helicopter Flight Procedures for Community Noise Reduction

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric

    2017-01-01

    A computationally efficient, semiempirical noise model suitable for maneuvering flight noise prediction is used to evaluate the community noise impact of practical variations on several helicopter flight procedures typical of normal operations. Turns, "quick-stops," approaches, climbs, and combinations of these maneuvers are assessed. Relatively small variations in flight procedures are shown to cause significant changes to Sound Exposure Levels over a wide area. Guidelines are developed for helicopter pilots intended to provide effective strategies for reducing the negative effects of helicopter noise on the community. Finally, direct optimization of flight trajectories is conducted to identify low noise optimal flight procedures and quantify the magnitude of community noise reductions that can be obtained through tailored helicopter flight procedures. Physically realizable optimal turns and approaches are identified that achieve global noise reductions of as much as 10 dBA Sound Exposure Level.