Science.gov

Sample records for noise-equivalent temperature difference

  1. Noise-equivalent sensitivity of photoacoustics

    PubMed Central

    Winkler, Amy M.; Maslov, Konstantin

    2013-01-01

    Abstract. The fundamental limitations of photoacoustic microscopy for detecting optically absorbing molecules are investigated both theoretically and experimentally. We experimentally demonstrate noise-equivalent detection sensitivities of 160,000 methylene blue molecules (270 zeptomol or 2.7×10−19  mol) and 86,000 oxygenated hemoglobin molecules (140 zeptomol) using narrowband continuous-wave photoacoustics. The ultimate sensitivity of photoacoustics is fundamentally limited by thermal noise, which can present in the acoustic detection system as well as in the medium itself. Under the optimized conditions described herein and using commercially available detectors, photoacoustic microscopy can detect as few as 100s of oxygenated hemoglobin molecules. Realizable improvements to the detector may enable single molecule detection of select molecules. PMID:24026425

  2. Determination of noise equivalent sigma(0) using highly correlated repeat-pass SAR images

    NASA Technical Reports Server (NTRS)

    Sun, James; Freeman, Anthony

    1993-01-01

    Noise equivalent sigma(sup 0) is a fundamental parameter in any synthetic aperture radar (SAR) measurement. Knowledge of the noise equivalent sigma(sup 0) allows the radar application scientist to band the error contributions due to noise present in his/her data. In this paper, a novel technique for determining noise equivalent sigma(sup 0) is presented. It has been observed that a pair of images obtained by a SAR over the same area in a nearly repeating orbit can demonstrate a high degree of correlation, depending on the baseline. If noise independence and signal power invariance are assumed, an estimate for the noise equivalent sigma(sup 0) for each image can be determined without any known ground targets. We examine the application of this technique to several images of different backscatter obtained by ERS-1.

  3. The use of noise equivalent count rate and the NEMA phantom for PET image quality evaluation.

    PubMed

    Yang, Xin; Peng, Hao

    2015-03-01

    PET image quality is directly associated with two important parameters among others: count-rate performance and image signal-to-noise ratio (SNR). The framework of noise equivalent count rate (NECR) was developed back in the 1990s and has been widely used since then to evaluate count-rate performance for PET systems. The concept of NECR is not entirely straightforward, however, and among the issues requiring clarification are its original definition, its relationship to image quality, and its consistency among different derivation methods. In particular, we try to answer whether a higher NECR measurement using a standard NEMA phantom actually corresponds to better imaging performance. The paper includes the following topics: 1) revisiting the original analytical model for NECR derivation; 2) validating three methods for NECR calculation based on the NEMA phantom/standard; and 3) studying the spatial dependence of NECR and quantitative relationship between NECR and image SNR. PMID:25622772

  4. Equivalence of optical and electrical noise equivalent power of hybrid NbTiN-Al microwave kinetic inductance detectors

    SciTech Connect

    Janssen, R. M. J.; Endo, A.; Visser, P. J. de; Klapwijk, T. M.; Baselmans, J. J. A.

    2014-11-10

    We have measured and compared the response of hybrid NbTiN-Al Microwave Kinetic Inductance Detectors (MKIDs) to changes in bath temperature and illumination by sub-mm radiation. We show that these two stimulants have an equivalent effect on the resonance feature of hybrid MKIDs. We determine an electrical noise equivalent power (NEP) from the measured temperature responsivity, quasiparticle recombination time, superconducting transition temperature, and noise spectrum, all of which can be measured in a dark environment. For the two hybrid NbTiN-Al MKIDs studied in detail, the electrical NEP is within a factor of two of the optical NEP, which is measured directly using a blackbody source.

  5. Imaging performance in differential phase contrast CT compared with the conventional CT-noise equivalent quanta NEQ(k)

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2012-03-01

    The grating-based x-ray differential phase contrast (DPC) CT is emerging as a new technology with the potential for extensive preclinical and clinical applications. In general, the performance of an imaging system is jointly determined by its signal property (modulation transfer function-MTF(k)) and noise property (noise power spectrum-NPS(k)), which is characterized by its spectrum of noise equivalent quanta. As reported by us previously, owing to an adoption of the Hilbert filtering for image reconstruction in the fashion of filtered backprojection (FBP), the noise property of DPC-CT characterized by its NPS(k) differs drastically from that of the conventional attenuation-based CT (1/|k| trait vs. |k| trait). In this work, via system analysis, modeling and simulated phantom study, we initially investigate the signal property of DPC-CT characterized by its MTF(k) and compare it with that of the conventional CT. In addition, we investigate the DPC-CT's spectrum of noise equivalent quanta NEQ(k) - the most important figure of merit (FOM) in the assessment of an imaging system's performance - by taking the MTF(k) and NPS(k) jointly into account. Through such a thorough investigation into both the signal and noise properties, the imaging performance of DPC-CT and its potential over the conventional attenuation-based CT can be fully understood and appreciated.

  6. Determination of noise equivalent reflectance for a multispectral scanner: A scanner sensitivity study

    NASA Technical Reports Server (NTRS)

    Gibbons, D. E.; Richard, R. R.

    1979-01-01

    The methods used to calculate the sensitivity parameter noise equivalent reflectance of a remote-sensing scanner are explored, and the results are compared with values measured over calibrated test sites. Data were acquired on four occasions covering a span of 4 years and providing various atmospheric conditions. One of the calculated values was based on assumed atmospheric conditions, whereas two others were based on atmospheric models. Results indicate that the assumed atmospheric conditions provide useful answers adequate for many purposes. A nomograph was developed to indicate sensitivity variations due to geographic location, time of day, and season.

  7. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers.

    PubMed

    Pandya, Shwetang N; Peterson, Byron J; Kobayashi, Masahiro; Pandya, Santosh P; Mukai, Kiyofumi; Sano, Ryuichi

    2014-12-01

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the improvements is validated and found to reproduce the input power well within 10% accuracy. This article answers many fundamental questions relevant to the IRVB and illustrates the care to be exercised while processing the IRVB data. PMID:25554287

  8. A reconsideration of the noise equivalent power and the data analysis procedure for the infrared imaging video bolometers

    SciTech Connect

    Pandya, Shwetang N. Sano, Ryuichi; Peterson, Byron J.; Kobayashi, Masahiro; Mukai, Kiyofumi; Pandya, Santosh P.

    2014-12-15

    The infrared imaging video bolometer (IRVB) used for measurement of the two-dimensional (2D) radiation profiles from the Large Helical Device has been significantly upgraded recently to improve its signal to noise ratio, sensitivity, and calibration, which ultimately provides quantitative measurements of the radiation from the plasma. The reliability of the quantified data needs to be established by various checks. The noise estimates also need to be revised and more realistic values need to be established. It is shown that the 2D heat diffusion equation can be used for estimating the power falling on the IRVB foil, even with a significant amount of spatial variation in the thermal diffusivity across the area of the platinum foil found experimentally during foil calibration. The equation for the noise equivalent power density (NEPD) is re-derived to include the errors in the measurement of the thermophysical and the optical properties of the IRVB foil. The theoretical value estimated using this newly derived equation matches closely, within 5.5%, with the mean experimental value. The change in the contribution of each error term of the NEPD equation with rising foil temperature is also studied and the blackbody term is found to dominate the other terms at elevated operating temperatures. The IRVB foil is also sensitive to the charge exchange (CX) neutrals escaping from the plasma. The CX neutral contribution is estimated to be marginally higher than the noise equivalent power (NEP) of the IRVB. It is also established that the radiation measured by the IRVB originates from the impurity line radiation from the plasma and not from the heated divertor tiles. The change in the power density due to noise reduction measures such as data smoothing and averaging is found to be comparable to the IRVB NEPD. The precautions that need to be considered during background subtraction are also discussed with experimental illustrations. Finally, the analysis algorithm with all the improvements is validated and found to reproduce the input power well within 10% accuracy. This article answers many fundamental questions relevant to the IRVB and illustrates the care to be exercised while processing the IRVB data.

  9. Limits to the NEP of an intracavity LiNbO3 upconverter. [Noise Equivalent Power

    NASA Technical Reports Server (NTRS)

    See, Y. C.; Guha, S.; Falk, J.

    1980-01-01

    Limits to low noise equivalent power (NEP) operation of a lithium niobate upconverter are investigated. Upconversion is achieved inside the optical cavity of an Ar-ion laser. Limits to NEP are imposed by limits to conversion efficiency and by noise present in the upconversion process. Conversion efficiency is limited by thermal effects in the lithium niobate. Thermally induced wedging, focusing, and aberrations are caused by the lithium niobate absorption at the 514.5-nm argon pump wavelength. The primary component of noise in the upconverter is due to upconversion of thermal radiation from the lithium niobate crystal. The lowest NEP, at a wavelength of 3.4 microns, achieved in this study was 8.9 x 10 to the -14th W/(Hz to the 1/2 power).

  10. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  11. Characterization of imaging performance in differential phase contrast CT compared with the conventional CT: Spectrum of noise equivalent quanta NEQ(k)

    SciTech Connect

    Tang Xiangyang; Yang Yi; Tang Shaojie

    2012-07-15

    Purpose: Differential phase contrast CT (DPC-CT) is emerging as a new technology to improve the contrast sensitivity of conventional attenuation-based CT. The noise equivalent quanta as a function over spatial frequency, i.e., the spectrum of noise equivalent quanta NEQ(k), is a decisive indicator of the signal and noise transfer properties of an imaging system. In this work, we derive the functional form of NEQ(k) in DPC-CT. Via system modeling, analysis, and computer simulation, we evaluate and verify the derived NEQ(k) and compare it with that of the conventional attenuation-based CT. Methods: The DPC-CT is implemented with x-ray tube and gratings. The x-ray propagation and data acquisition are modeled and simulated through Fresnel and Fourier analysis. A monochromatic x-ray source (30 keV) is assumed to exclude any system imperfection and interference caused by scatter and beam hardening, while a 360 Degree-Sign full scan is carried out in data acquisition to avoid any weighting scheme that may disrupt noise randomness. Adequate upsampling is implemented to simulate the x-ray beam's propagation through the gratings G{sub 1} and G{sub 2} with periods 8 and 4 {mu}m, respectively, while the intergrating distance is 193.6 mm (1/16 of the Talbot distance). The dimensions of the detector cell for data acquisition are 32 Multiplication-Sign 32, 64 Multiplication-Sign 64, 96 Multiplication-Sign 96, and 128 Multiplication-Sign 128 {mu}m{sup 2}, respectively, corresponding to a 40.96 Multiplication-Sign 40.96 mm{sup 2} field of view in data acquisition. An air phantom is employed to obtain the noise power spectrum NPS(k), spectrum of noise equivalent quanta NEQ(k), and detective quantum efficiency DQE(k). A cylindrical water phantom at 5.1 mm diameter and complex refraction coefficient n= 1 -{delta}+i{beta}= 1 -2.5604 Multiplication-Sign 10{sup -7}+i1.2353 Multiplication-Sign 10{sup -10} is placed in air to measure the edge transfer function, line spread function and then modulation transfer function MTF(k), of both DPC-CT and the conventional attenuation-based CT. The x-ray flux is set at 5 Multiplication-Sign 10{sup 6} photon/cm{sup 2} per projection and observes the Poisson distribution, which is consistent with that of a micro-CT for preclinical applications. Approximately 360 regions, each at 128 Multiplication-Sign 128 matrix, are used to calculate the NPS(k) via 2D Fourier transform, in which adequate zero padding is carried out to avoid aliasing in noise. Results: The preliminary data show that the DPC-CT possesses a signal transfer property [MTF(k)] comparable to that of the conventional attenuation-based CT. Meanwhile, though there exists a radical difference in their noise power spectrum NPS(k) (trait 1/|k| in DPC-CT but |k| in the conventional attenuation-based CT) the NEQ(k) and DQE(k) of DPC-CT and the conventional attenuation-based CT are in principle identical. Conclusions: Under the framework of ideal observer study, the joint signal and noise transfer property NEQ(k) and detective quantum efficiency DQE(k) of DPC-CT are essentially the same as those of the conventional attenuation-based CT. The findings reported in this paper may provide insightful guidelines on the research, development, and performance optimization of DPC-CT for extensive preclinical and clinical applications in the future.

  12. Phosphor material evaluation for use in medical imaging radiation detectors by the noise-equivalent-quanta (NEQ) method

    NASA Astrophysics Data System (ADS)

    Kandarakis, I.; Cavouras, D.; Nomicos, C. D.; Panayiotakis, G. S.

    This study presents a method to evaluate the imaging performance of phosphor materials used in medical imaging systems. The advantage of the method is that phosphor evaluation is performed independently of the optical detectors (films, photocathodes, photodiodes) used in radiation detectors to capture phosphor light. The method is based on the noise-equivalent-quanta (NEQ) concept, which provides an index of the signal-to-noise ratio (SNR) associated with the diagnostic value of a medical image. NEQ was expressed as a function of the phosphor's emitted light wavelength, light energy flux, and modulation transfer function (MTF). All these parameters are related to intrinsic phosphor properties such as effective atomic number, density, activator ion. The method was tested on three yttrium-based phosphors, two of them activated with europium (Eu3+) and one with terbium (Tb3+). Results showed that europium-activated phosphors (Y2O2S:Eu, Y2O3:Eu) exhibited improved SNR, whereas the terbium phosphor (Y2O2S:Tb) had better MTF.

  13. Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) for system optimization purposes in digital mammography

    NASA Astrophysics Data System (ADS)

    Salvagnini, Elena; Bosmans, Hilde; Struelens, Lara; Marshall, Nicholas W.

    2012-03-01

    Effective detective quantum efficiency (eDQE) and effective noise equivalent quanta (eNEQ) were recently introduced to broaden the notion of DQE and NEQ by including system parameters such as focus blurring and system scatter rejection methods. This work investigates eDQE and eNEQ normalized for mean glandular dose (eNEQMGD) as a means to characterize and select optimal exposure parameters for a digital mammographic system. The eDQE was measured for three anode/filter combinations, with and without anti-scatter grid and for four thicknesses of poly(methylmethacrylate) (PMMA). The modulation transfer function used to calculate eDQE and eNEQ was measured from an edge positioned at 20,40,60,70 mm above the table top without scattering material in the beam. The grid-in eDQE results for all A/F settings were generally larger than those for grid-out. Contrarily, the eNEQMGD results were higher for grid-out than gridin, with a maximum difference of 61% among all A/F combinations and PMMA thicknesses. The W/Rh combination gave the highest eNEQMGD for all PMMA thicknesses compared to the other A/F combinations (for grid-in and grid-out), supporting the results of alternative methods (e.g. the signal difference to noise ratio method). The eNEQMGD was then multiplied with the contrast obtained from a 0.2mm Al square, resulting in a normalized quantity that was higher for the W/Rh combination than for the other A/F combinations. In particular, the results for the W/Rh combination were greater for the grid-in case. Furthermore, these results showed close agreement with a non-prewhitened match filter with eye response model observer (d') normalized for MGD.

  14. Low temperature difference Stirling engine

    SciTech Connect

    Kolin, I.

    1984-08-01

    The most outstanding feature of the Stirling engine described here is its ability to work at low temperatures, namely below the temperature of boiling water. More precisely, even the temperature of the human body is sufficient to put the engine in motion although with reduced power due to lower Carnot efficiency. Nevertheless, the engine can use low temperature energy sources that are widespread in nature: the hot water from flat solar collectors, geothermal water, and industrial waste heat.

  15. Microclimatic Temperature Relationships over Different Surfaces.

    ERIC Educational Resources Information Center

    Williams, Thomas B.

    1991-01-01

    Describes a study of temperature variations over different surfaces in an urban campus setting. Explains that researchers sampled temperatures over grass, bare soil, gravel, concrete, and blacktop. Reports that grassy areas registered the highest morning temperatures and lowest afternoon temperatures. (SG)

  16. Electron temperature differences and double layers

    NASA Technical Reports Server (NTRS)

    Chan, C.; Hershkowitz, N.; Lonngren, K. E.

    1983-01-01

    Electron temperature differences across plasma double layers are studied experimentally. It is shown that the temperature differences across a double layer can be varied and are not a result of thermalization of the bump-on-tail distribution. The implications of these results for electron thermal energy transport in laser-pellet and tandem-mirror experiments are also discussed.

  17. Measuring noise equivalent irradiance of a digital short-wave infrared imaging system using a broadband source to simulate the night spectrum

    NASA Astrophysics Data System (ADS)

    Green, John R.; Robinson, Timothy

    2015-05-01

    There is a growing interest in developing helmet-mounted digital imaging systems (HMDIS) for integration into military aircraft cockpits. This interest stems from the multiple advantages of digital vs. analog imaging such as image fusion from multiple sensors, data processing to enhance the image contrast, superposition of non-imaging data over the image, and sending images to remote location for analysis. There are several properties an HMDIS must have in order to aid the pilot during night operations. In addition to the resolution, image refresh rate, dynamic range, and sensor uniformity over the entire Focal Plane Array (FPA); the imaging system must have the sensitivity to detect the limited night light available filtered through cockpit transparencies. Digital sensor sensitivity is generally measured monochromatically using a laser with a wavelength near the peak detector quantum efficiency, and is generally reported as either the Noise Equivalent Power (NEP) or Noise Equivalent Irradiance (NEI). This paper proposes a test system that measures NEI of Short-Wave Infrared (SWIR) digital imaging systems using a broadband source that simulates the night spectrum. This method has a few advantages over a monochromatic method. Namely, the test conditions provide spectrum closer to what is experienced by the end-user, and the resulting NEI may be compared directly to modeled night glow irradiance calculation. This comparison may be used to assess the Technology Readiness Level of the imaging system for the application. The test system is being developed under a Cooperative Research and Development Agreement (CRADA) with the Air Force Research Laboratory.

  18. Detection of Temperature Difference in Neuronal Cells

    PubMed Central

    Tanimoto, Ryuichi; Hiraiwa, Takumi; Nakai, Yuichiro; Shindo, Yutaka; Oka, Kotaro; Hiroi, Noriko; Funahashi, Akira

    2016-01-01

    For a better understanding of the mechanisms behind cellular functions, quantification of the heterogeneity in an organism or cells is essential. Recently, the importance of quantifying temperature has been highlighted, as it correlates with biochemical reaction rates. Several methods for detecting intracellular temperature have recently been established. Here we develop a novel method for sensing temperature in living cells based on the imaging technique of fluorescence of quantum dots. We apply the method to quantify the temperature difference in a human derived neuronal cell line, SH-SY5Y. Our results show that temperatures in the cell body and neurites are different and thus suggest that inhomogeneous heat production and dissipation happen in a cell. We estimate that heterogeneous heat dissipation results from the characteristic shape of neuronal cells, which consist of several compartments formed with different surface-volume ratios. Inhomogeneous heat production is attributable to the localization of specific organelles as the heat source. PMID:26925874

  19. Meaning of temperature in different thermostatistical ensembles.

    PubMed

    Hänggi, Peter; Hilbert, Stefan; Dunkel, Jörn

    2016-03-28

    Depending on the exact experimental conditions, the thermodynamic properties of physical systems can be related to one or more thermostatistical ensembles. Here, we survey the notion of thermodynamic temperature in different statistical ensembles, focusing in particular on subtleties that arise when ensembles become non-equivalent. The 'mother' of all ensembles, the microcanonical ensemble, uses entropy and internal energy (the most fundamental, dynamically conserved quantity) to derive temperature as a secondary thermodynamic variable. Over the past century, some confusion has been caused by the fact that several competing microcanonical entropy definitions are used in the literature, most commonly the volume and surface entropies introduced by Gibbs. It can be proved, however, that only the volume entropy satisfies exactly the traditional form of the laws of thermodynamics for a broad class of physical systems, including all standard classical Hamiltonian systems, regardless of their size. This mathematically rigorous fact implies that negative 'absolute' temperatures and Carnot efficiencies more than 1 are not achievable within a standard thermodynamical framework. As an important offspring of microcanonical thermostatistics, we shall briefly consider the canonical ensemble and comment on the validity of the Boltzmann weight factor. We conclude by addressing open mathematical problems that arise for systems with discrete energy spectra. PMID:26903095

  20. Radically Different Kinetics at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M. Tizniti, A. Canosa, I. R. Sims, I. W. M. Smith, Science 328, 1258 (2010). H. Sabbah, L. Biennier, S. J. Klippenstein, I. R. Sims, B. R. Rowe, J. Phys. Chem. Lett. 1, 2962 (2010). M. Tizniti, S. D. Le Picard, F. Lique, C. Berteloite, A. Canosa, M. H. Alexander, I. R. Sims, Nature Chemistry 6, 141 (2014). S. Cheikh Sid Ely, S. B. Morales, J. C. Guillemin, S. J. Klippenstein, I. R. Sims, J. Phys. Chem. A 117, 12155 (2013). K. Hoshina, Y. Endo, J. Chem. Phys. 127, 184304 (2007).

  1. Electrically induced temperature difference and deformation in hardened cement pastes

    SciTech Connect

    Sun Mingqing . E-mail: sunmingqing@yahoo.com; Wang Xiaoying; Zhao Kairui; Li Zhuoqiu

    2006-12-15

    Electromechanical effect of hardened cement paste beam is investigated in this paper. When an external electrical current is applied to the electrodes attached to opposite surfaces of a cement beam, it is found that temperature on the positive electrode is always higher than that on the negative electrode. The sign of electrically induced temperature difference is determined by the direction of applied electrical current. Electrically induced temperature difference makes the beam bend towards the surface with a higher temperature. Both electrically induced temperature difference and electroosmosis lead to electromechanical effect of hardened cement paste. Finally, electromechanical effect becomes more obvious by adding NaCl to cement paste.

  2. Finite difference program for calculating hydride bed wall temperature profiles

    SciTech Connect

    Klein, J.E.

    1992-10-29

    A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.

  3. Stream water temperature difference between coniferous and deciduous forest

    NASA Astrophysics Data System (ADS)

    Onishi, T.; Senge, M.; Hiramatsu, K.

    2011-12-01

    Amount of solar radiation input into ground surface has a strong influence on underground heat condition. Stream water temperature is a gross index of underground heat condition of a watershed. As for stream water temperature of forest covered watershed, the effect of riparian forest on direct solar radiation input on stream water, and the effect of deforestation on stream water temperature have been studied. However, there is a few studies which deal with the impact of forest type difference on heat condition of a watershed. Thus, we measured stream water temperature of adjacent watersheds of which forest types are different; i.e. coniferous and deciduous forest. As a result, significant stream water temperature pattern difference between coniferous and deciduous forest was observed. While stream water temperature of coniferous forest was significantly lower than that of deciduous forest during the period of winter season (from the end of October to the start of May), tendency was converted during the period of summer season (from June to the end of October). No significant difference was found in the annual temperature amplitude of both forest types. We conducted numerical modeling study to explore the mechanism of stream water temperature difference. The result suggested that difference of snow cover pattern due to the leaf abscission of deciduous forest might play an important role in deciding stream water temperature during the winter season.

  4. Development of Temperature Sensitive Paints for the Detection of Small Temperature Differences

    NASA Technical Reports Server (NTRS)

    Oglesby, Donald M.; Upchurch, Billy T.; Sealey, Bradley S.; Leighty, Bradley D.; Burkett, Cecil G., Jr.; Jalali, Amir

    1997-01-01

    Temperature sensitive paints (TSP s) have recently been used to detect small temperature differences on aerodynamic model surfaces. These types of applications impose stringent performance requirements on a paint system. The TSP s must operate over a broad temperature range, must be physically robust (cannot chip or peel), must be polishable to at least the smoothness of the model surface, and must have sufficient sensitivity to detect small temperature differences. TSP coatings based on the use of metal complexes in polymer binders were developed at NASA Langley Research Center which meet most of the requirements for detection of small temperature differences under severe environmental conditions.

  5. Atmospheric Circulation of Hot Jupiters: Dayside–Nightside Temperature Differences

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2016-04-01

    The full-phase infrared light curves of low-eccentricity hot Jupiters show a trend of increasing dayside-to-nightside brightness temperature difference with increasing equilibrium temperature. Here, we present a three-dimensional model that explains this relationship, in order to provide insight into the processes that control heat redistribution in tidally locked planetary atmospheres. This three-dimensional model combines predictive analytic theory for the atmospheric circulation and dayside–nightside temperature differences over a range of equilibrium temperatures, atmospheric compositions, and potential frictional drag strengths with numerical solutions of the circulation that verify this analytic theory. The theory shows that the longitudinal propagation of waves mediates dayside–nightside temperature differences in hot Jupiter atmospheres, analogous to the wave adjustment mechanism that regulates the thermal structure in Earth’s tropics. These waves can be damped in hot Jupiter atmospheres by either radiative cooling or potential frictional drag. This frictional drag would likely be caused by Lorentz forces in a partially ionized atmosphere threaded by a background magnetic field, and would increase in strength with increasing temperature. Additionally, the amplitude of radiative heating and cooling increases with increasing temperature, and hence both radiative heating/cooling and frictional drag damp waves more efficiently with increasing equilibrium temperature. Radiative heating and cooling play the largest role in controlling dayside–nightside temperature differences in both our analytic theory and numerical simulations, with frictional drag only being important if it is stronger than the Coriolis force. As a result, dayside–nightside temperature differences in hot Jupiter atmospheres increase with increasing stellar irradiation and decrease with increasing pressure.

  6. Electron beam irradiated polyamide-6 at different temperatures

    NASA Astrophysics Data System (ADS)

    Burillo, G.; Adem, E.; Muñoz, E.; Vásquez, M.

    2013-03-01

    Electron beam irradiation of Polyamide-6 (PA-6) films was carried out over a range of irradiation doses (15-1200 kGy) in air at different temperatures (from room temperature to 80 °C), and at a dose rate of 4.48 kGy/min. The effect of temperature on the radiochemical crosslinking, scission yield, and the dose of incipient gel formation of PA-6 were investigated on the basis of solution viscosity, molecular weight and gel content. The crosslinking efficiency increases with increasing irradiation dose and temperature. The crosslinking rates of PA-6 irradiated above the glass transition temperature (Tg), about 50 °C, are higher than those samples irradiated at temperatures below Tg. FTIR and electron paramagnetic resonance (EPR) spectroscopy are used to determine modifications in the samples induced by irradiation. EPR was also used to study the decay of the free radicals.

  7. Temperature transport in Lysimeters – comparison of different setups

    NASA Astrophysics Data System (ADS)

    Weller, Ulrich; Weber, Katja; Seyfarth, Manfred; Reth, Sascha

    2015-04-01

    Lysimeter studies are designed to mimick the undisturbed soil for the study of soil processes. Ecological and chemical processes are influenced by temperature and therefore it is mandatory that the temperature regime in the lysimeter follows closely the natural conditions. Unfortunately the lysimeter has a lower boundary that cuts off the natural dampening temperature flux. Also the walls of the vessel can transport temperature in a higher rate than the soil would do. And the exchange with the surrounding air at the installation facility may add a bias to the temperature regime in the lysimeter vessels. To test the influence of the wall and the lower boundary we have set up a lysimeter experiment with three different lysimeters. These are all 1m surface by 2 m depth vessels, identically filled with a sandy loam. All three were instrumented with temperature sensors in 4 depths, and at each depth with 4 sensors, with a distance of 2,5 cm; 5 cm; 10 cm and 15 cm from the wall. In addition, temperature sensors in the surrounding soil and air temperature in the lysimeter containment are available. The three vessels differ in their setup and material. One vessel is a standard stainless steel vessel with seepage boundary, the second is stainless steel with isolation and a controlled lower boundary. This vessel has a tube system at the bottom that circulates water in the vessel and the surrounding soil at the same depth. The control ascertains that the bottom temperature of the lysimeter vessel is always the same as in the surrounding soil. The third vessel is made of PE, in order to minimize temperature transport in the wall material. The data so far shows little difference between the alternative setup. It seems that in a well closed lysimeter containment the temperature regime is sufficiently close to the natural soil. This is especially true for the top soil where most biological and chemical processes occur.

  8. Temperature Rise during Resin Composite Polymerization under Different Ceramic Restorations

    PubMed Central

    Yondem, Isa; Altintas, Subutay Han; Usumez, Aslihan

    2011-01-01

    Objectives: The purpose of this study was to measure temperature increase induced by various light polymerizing units during resin composite polymerization beneath one of three types of ceramic restorations. Methods: The resin composite (Variolink II) was polymerized between one of three different ceramic specimens (zirconium oxide, lithium disilicate, feldspathic) (diameter 5 mm, height 2 mm) and a dentin disc (diameter 5 mm, height 1 mm) with a conventional halogen light, a high intensity halogen light, or an LED unit. The temperature rise was measured under the dentin disc with a J-type thermocouple wire connected to a data logger. Ten measurements were carried out for each group. The difference between the initial and highest temperature readings was taken and the 10 calculated temperature changes were averaged to determine the mean value in temperature rise. Two way analysis of variance (ANOVA) was used to analyze the data (polymerizing unit, ceramic brand) for significant differences. The Tukey HSD test was used to perform multiple comparisons (?=.05). Results: Temperature rise did not vary significantly depending on the light polymerizing unit used (P=.16), however, the type of ceramic system showed a significant effect on temperature increases (P<.01). There were no statistically significant differences between lithium disilicate and feldspathic ceramic systems (P >.05); in comparison, the resin composite polymerized under the zirconium oxide ceramic system induced a significantly lower temperature increase than the other ceramic systems tested (P<.05) Conclusions: The resin composite polymerized beneath zirconium oxide ceramic system induced significantly smaller temperature changes. The maximal temperature increase detected in all groups in this study was not viewed as critical for pulpal health. PMID:21769272

  9. Dayside-Nightside Temperature Differences in Hot Jupiter Atmospheres

    NASA Astrophysics Data System (ADS)

    Komacek, Thaddeus D.; Showman, Adam P.

    2015-12-01

    The infrared phase curves of low-eccentricity transiting hot Jupiters show a trend of increasing flux amplitude, or increasing day-night temperature difference, with increasing equilibrium temperature. Here we utilize atmospheric circulation modeling and analytic theory to understand this trend, and the more general question: what processes control heat redistribution in tidally-locked giant planet atmospheres? We performed a wide range of 3D numerical simulations of the atmospheric circulation with simplified forcing, and constructed an analytic theory that explains the day-night temperature differences in these simulations over a wide parameter space. Our analytic theory shows that day-night temperature differences in tidally-locked planet atmospheres are mediated by wave propagation. If planetary-scale waves are free to propagate longitudinally, they will efficiently flatten isentropes and lessen day-night temperature differences. If these waves are damped, the day-night temperature differences will necessarily be larger. We expect that wave propagation in hot Jupiter atmospheres can be damped in two ways: by either radiative cooling or frictional drag. Both of these processes increase in efficacy with increasing equilibrium temperature, as radiative cooling is directly related to the cube of temperature and magnetically-induced (Lorentz) drag becomes stronger with increasing partial ionization and hence temperature. We find that radiative cooling plays the largest role in damping wave propagation and hence plays the biggest role in controlling day-night temperature differences. As a result, day-night temperature differences in hot Jupiter atmospheres decrease with increasing pressure and increase with increasing stellar flux. One can apply this result to phase curve observations of individual hot Jupiters in multiple bandpasses, as varying flux amplitudes between wavelengths implies that different photospheric pressure levels are being probed. Namely, a larger flux amplitude in one waveband than the band-averaged value implies a relatively low photospheric pressure and hence high abundance of the absorber in that waveband. This effect has been seen for both HD 189733b and WASP-14b, where the 3.6 micron flux amplitude is larger than the 4.5 micron flux amplitude, which constrains the relative abundances of methane and carbon monoxide and hence the C/O ratio in these atmospheres.

  10. Simulation of Soil Temperature Dynamics with Models Using Different Concepts

    PubMed Central

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs. PMID:22792047

  11. Simulation of soil temperature dynamics with models using different concepts.

    PubMed

    Sándor, Renáta; Fodor, Nándor

    2012-01-01

    This paper presents two soil temperature models with empirical and mechanistic concepts. At the test site (calcaric arenosol), meteorological parameters as well as soil moisture content and temperature at 5 different depths were measured in an experiment with 8 parcels realizing the combinations of the fertilized, nonfertilized, irrigated, nonirrigated treatments in two replicates. Leaf area dynamics was also monitored. Soil temperature was calculated with the original and a modified version of CERES as well as with the HYDRUS-1D model. The simulated soil temperature values were compared to the observed ones. The vegetation reduced both the average soil temperature and its diurnal amplitude; therefore, considering the leaf area dynamics is important in modeling. The models underestimated the actual soil temperature and overestimated the temperature oscillation within the winter period. All models failed to account for the insulation effect of snow cover. The modified CERES provided explicitly more accurate soil temperature values than the original one. Though HYDRUS-1D provided more accurate soil temperature estimations, its superiority to CERES is not unequivocal as it requires more detailed inputs. PMID:22792047

  12. Effect of different healing temperature on self-healing hydrogel

    NASA Astrophysics Data System (ADS)

    Sirajuddin, Najiyyah Abdullah; Jamil, Mohd Suzeren Md; Lazim, Azwan Mat

    2014-09-01

    In this study, hydrogels of poly(2-hydroxyethyl methacrylate) with different healing temperature were studied on healing efficacy of self-healing hydrogel. To identify the optimum healing temperature of healable hydrogel which give the highest healing efficacy, the sample were tested from 45C-65C for 5 hours. The gel being cut will merge together through intermolecular diffusion of dangling chain and/or chain slippage. The results showed that 60C was the optimum healing temperature which provides the highest ultimate tensile strength of healing efficacy. The pictures of durability poly(HEMA) hydrogel were taken and supported the self-healing behavior of hydrogel.

  13. Temperature dependencies of Henry's law constants for different plant sesquiterpenes.

    PubMed

    Copolovici, Lucian; Niinemets, Ülo

    2015-11-01

    Sesquiterpenes are plant-produced hydrocarbons with important ecological functions in plant-to-plant and plant-to-insect communication, but due to their high reactivity they can also play a significant role in atmospheric chemistry. So far, there is little information of gas/liquid phase partition coefficients (Henry's law constants) and their temperature dependencies for sesquiterpenes, but this information is needed for quantitative simulation of the release of sesquiterpenes from plants and modeling atmospheric reactions in different phases. In this study, we estimated Henry's law constants (Hpc) and their temperature responses for 12 key plant sesquiterpenes with varying structure (aliphatic, mono-, bi- and tricyclic sesquiterpenes). At 25 °C, Henry's law constants varied 1.4-fold among different sesquiterpenes, and the values were within the range previously observed for monocyclic monoterpenes. Hpc of sesquiterpenes exhibited a high rate of increase, on average ca. 1.5-fold with a 10 °C increase in temperature (Q10). The values of Q10 varied 1.2-fold among different sesquiterpenes. Overall, these data demonstrate moderately high variation in Hpc values and Hpc temperature responses among different sesquiterpenes. We argue that these variations can importantly alter the emission kinetics of sesquiterpenes from plants. PMID:26291755

  14. Temperature responses of mesophyll conductance differ greatly between species.

    PubMed

    von Caemmerer, Susanne; Evans, John R

    2015-04-01

    The temperature responses of mesophyll conductance (gm ) were investigated for nine species using carbon isotope techniques combining tunable diode laser spectroscopy and gas exchange measurements. Species included the evergreen trees Eucalyptus pauciflora and Quercus engelmannii; the tropical evergreen tree Lophostemon confertus; as well as the herbaceous species Nicotiana tabacum, Oryza sativa, Triticum aestivum, Gossypium hirsutum, Glycine max and Arabidopsis thaliana. Responses varied from a two- to threefold increase in mesophyll conductance between 15 and 40 °C observed for N. tabacum, G. hirsutum, G. max and E. pauciflora to almost no change in L. confertus and T. aestivum. To account for the different temperature responses between species, we suggest that there must be variation in both the activation energy for membrane permeability and the effective pathlength for liquid phase diffusion. Stomatal conductance was relatively independent of increases in leaf temperature and concomitant increases in leaf to air vapour pressure difference. Two exceptions were Eucalyptus and Gossypium, where stomatal conductance increased with temperature up to 35 °C despite increasing leaf to air vapour pressure. For a given species, temperature responses of stomatal and mesophyll conductance were independent of one another. PMID:25224884

  15. Predicting thermal inactivation in media of different pH of Salmonella grown at different temperatures.

    PubMed

    Mañas, Pilar; Pagán, Rafael; Raso, Javier; Condón, Santiago

    2003-10-15

    The influence of the growth temperature and the pH of the heating medium on the heat resistance at different temperatures of Salmonella typhimurium ATCC 13311 was studied and described mathematically. The shift of the growth temperature from 10 to 37 degrees C increased heat resistance of S. typhimurium fourfold. The pH of the heating medium at which heat resistance was maximum was pH 6 for cells grown at 37 degrees C, but changed with growth temperature. The alkalinization of the heating medium from pH 6 to pH 7.7 decreased the heat resistance of cells grown at 37 degrees C by a factor of 3. Neither the growth temperature nor the pH modified the z values significantly (4.9 degrees C). The decimal reduction times at different treatment temperatures, in buffers of different pH of cells of S. typhimurium grown at different temperatures, were accurately described by a mathematical equation (correlation coefficient of 0.97). This equation was also tested for Salmonella senftenberg 775W (ATCC 43845) and Salmonella enteritidis ATCC 13076, strains in which the correlation coefficients between the observed and the theoretically calculated values were 0.91 and 0.98, respectively. PMID:12927706

  16. General properties of the acoustic plate modes at different temperatures.

    PubMed

    Anisimkin, V I; Anisimkin, I V; Voronova, N V; Puсhkov, Yu V

    2015-09-01

    Using acoustic plate modes with SH-polarization and quartz crystal with Euler angles 0°, 132.75°, 90°, as an example, general properties of the acoustic plate modes at different temperatures are studied theoretically and experimentally in the range from -40 to +80°C. It is shown that in addition to well-known parameters responsible for temperature characteristics of acoustic waves the temperature coefficients of the acoustic plate modes depend on the mode order n, plate thickness h/λ, and expansion of the plate in direction of its thickness (h - thickness, λ - acoustic wavelength). These properties permit the mode sensitivity to be increased or decreased without replacing plate material and orientation. PMID:26002698

  17. LED Curing Lights and Temperature Changes in Different Tooth Sites

    PubMed Central

    Armellin, E.; Bovesecchi, G.; Coppa, P.; Pasquantonio, G.; Cerroni, L.

    2016-01-01

    Objectives. The aim of this in vitro study was to assess thermal changes on tooth tissues during light exposure using two different LED curing units. The hypothesis was that no temperature increase could be detected within the dental pulp during polymerization irrespective of the use of a composite resin or a light-curing unit. Methods. Caries-free human first molars were selected, pulp residues were removed after root resection, and four calibrated type-J thermocouples were positioned. Two LED lamps were tested; temperature measurements were made on intact teeth and on the same tooth during curing of composite restorations. The data was analyzed by one-way analysis of variance (ANOVA), Wilcoxon test, Kruskal-Wallis test, and Pearson's χ2. After ANOVA, the Bonferroni multiple comparison test was performed. Results. Polymerization data analysis showed that in the pulp chamber temperature increase was higher than that without resin. Starlight PRO, in the same condition of Valo lamp, showed a lower temperature increase in pre- and intrapolymerization. A control group (without composite resin) was evaluated. Significance. Temperature increase during resin curing is a function of the rate of polymerization, due to the exothermic polymerization reaction, the energy from the light unit, and time of exposure. PMID:27195282

  18. Refinement of thermal imager minimum resolvable temperature difference calculating method

    NASA Astrophysics Data System (ADS)

    Kolobrodov, V. G.; Mykytenko, V. I.

    2015-11-01

    Calculating methods, which accurately predict minimum resolvable temperature difference (MRTD), are of significant interest for many years. The article deals with improvement the accuracy of determining the thermal imaging system MRTD by elaboration the visual perception model. We suggest MRTD calculating algorithm, which is based on a reliable approximation of the human visual system modulation transfer function (MTF) proposed by N. Nill. There was obtained a new expression for the bandwidth evaluation, which is independent of angular size of the Foucault bar target.

  19. Triaxial testing of polymer concrete materials under different temperature

    SciTech Connect

    Salami, M.R.; Zhao, S.

    1995-06-01

    Since polymer mortar materials are used in construction, there is a need for an accurate material model to predict the behavior of the materials under various loading conditions. To make use of a material failure model, it is necessary to determine the material constants by conducting laboratory tests on material specimens. To find the constants for a failure model the material will be subjected to static load testing at different temperatures and loading rates.

  20. The Effects of High Temperature on Gessoes with Different Admixtures

    NASA Astrophysics Data System (ADS)

    Budu, Ana-Maria; Sandu, Ion; Cristache, Raluca Anamaria

    2014-11-01

    This paper presents the effects of temperature on gessoes that have different substances added, usually used in painting or restoration to enhance the flexibility of the ground layer or to create a suitable gesso for the specific painting technique. Five samples of gesso were made and applied on Balsa wood (a dry, stable wood that is used in restoration for completing the missing elements of the panel). After the thermal treatment, the samples were analyzed optical, by microscopy and colorimetry. The results showed small differences in colour, but no cracks of the gessoes

  1. Piglets’ Surface Temperature Change at Different Weights at Birth

    PubMed Central

    Caldara, Fabiana Ribeiro; dos Santos, Luan Sousa; Machado, Sivanilza Teixeira; Moi, Marta; de Alencar Nääs, Irenilza; Foppa, Luciana; Garcia, Rodrigo Garófallo; de Kássia Silva dos Santos, Rita

    2014-01-01

    The study was carried out in order to verify the effects of piglets’ weight at birth on their surface temperature change (ST) after birth, and its relationship with ingestion time of colostrum. Piglets from four different sows were weighed at birth and divided into a totally randomized design with three treatments according to birth weight (PBW): T1 - less than 1.00 kg, T2 - 1.00 to 1.39 kg, and T3 - higher than or equal to 1.40 kg. The time spent for the first colostrum ingestion was recorded (TFS). Images of piglets’ surface by thermal imaging camera were recorded at birth (STB) and 15, 30, 45, 60, and 120 min after birth. The air temperature and relative humidity were recorded every 30 min and the indexes of temperature and humidity (THI) were calculated. A ST drop after 15 min from birth was observed, increasing again after sixty minutes. Positive correlations were found between the PBW and the ST at 30 and 45 min after birth. The PBW was negatively correlated with the TFS. The THI showed high negative correlations (−0.824 and −0.815) with STB and after 15 min from birth. The piglet’s surface temperature at birth was positively correlated with temperature thereof to 15 min, influencing therefore the temperatures in the interval of 45 to 120 min. The birth weight contributes significantly to postnatal hypothermia and consequently to the time it takes for piglets ingest colostrum, requiring special attention to those of low birth weight. PMID:25049971

  2. Lesion size estimator of cardiac radiofrequency ablation at different common locations with different tip temperatures.

    PubMed

    Lai, Yu-Chi; Choy, Young Bin; Haemmerich, Dieter; Vorperian, Vicken R; Webster, John G

    2004-10-01

    Finite element method (FEM) analysis has become a common method to analyze the lesion formation during temperature-controlled radiofrequency (RF) cardiac ablation. We present a process of FEM modeling a system including blood, myocardium, and an ablation catheter with a thermistor embedded at the tip. The simulation used a simple proportional-integral (PI) controller to control the entire process operated in temperature-controlled mode. Several factors affect the lesion size such as target temperature, blood flow rate, and application time. We simulated the time response of RF ablation at different locations by using different target temperatures. The applied sites were divided into two groups each with a different convective heat transfer coefficient. The first group was high-flow such as the atrioventricular (AV) node and the atrial aspect of the AV annulus, and the other was low-flow such as beneath the valve or inside the coronary sinus. Results showed the change of lesion depth and lesion width with time, under different conditions. We collected data for all conditions and used it to create a database. We implemented a user-interface, the lesion size estimator, where the user enters set temperature and location. Based on the database, the software estimated lesion dimensions during different applied durations. This software could be used as a first-step predictor to help the electrophysiologist choose treatment parameters. PMID:15490835

  3. Physical Constraints on Temperature Difference in Some Thermogenic Aroid Inflorescences

    PubMed Central

    GIBERNAU, MARC; BARAB, DENIS; MOISSON, MARC; TROMBE, ALAIN

    2005-01-01

    Backgrounds and Aims Thermogenesis in reproductive organs is known from several plant families, including the Araceae. A study was made of the relationship between temperature increase and spadix size in the subfamily Aroideae in order to determine whether the quantitative variation of heat production among species and inflorescences of different sizes follows a physical law of heat transfer. Methods Spadix temperature was measured in 18 species from eight genera of tropical Araceae from the basal clade of Aroideae, both in French Guiana and in the glasshouses of the Montreal Botanical Garden. Key Results A significant logarithmic relationship was found between the volume of the thermogenic spadix zone and the maximum temperature difference between the spadix and ambient air. Four heat transfer models were applied to the data (conductive heat transfer alone, convective heat transfer alone, radiative heat transfer alone, and convective and radiative heat transfers) to test if physical (geometric and thermic) constraints apply. Which heat transfer model was the most probable was determined by using the criterion of a classical minimization process represented by the least-squares method. Two heat transfer models appeared to fit the data well and were equivalent: conductive heat transfer alone, and convective plus radiative heat transfers. Conclusions The increase in the temperature difference between the spadix and ambient air appears to be physically constrained and corresponds to the value of a thermal model of heat conduction in an insulated cylinder with an internal heat source. In the models, a heat metabolic rate of 29.5?mW g?1 was used, which was an acceptable value for an overall metabolic heat rate in aroid inflorescences. PMID:15883130

  4. Stall cleanliness and stall temperature of two different freestall bases.

    PubMed

    Wadsworth, B A; Stone, A E; Clark, J D; Ray, D L; Bewley, J M

    2015-06-01

    The objective of this study was to describe the differences in freestall cleanliness and stall temperature between a barn with Dual Chamber Cow Waterbeds (DCCW; Advanced Comfort Technology, Reedsburg, WI) and a barn with rubber-filled mattresses at the University of Kentucky Coldstream Dairy Research Farm from January 18, 2012, to May 3, 2013. Stall cleanliness was measured twice weekly (n=134) by the same 2 observers using a 0.91 m×0.91 m wire grid containing 128 equally sized rectangles (10.16 cm×5.08 cm). This grid was centered at the rear portion of the stall; a rectangle that was visibly wet or had any amount of feces present was defined as a dirty rectangle. Weekly stall temperature (n=66) was measured by the same observer during a.m. milkings in the same predetermined stalls. Feces and wet sawdust were removed from the stalls before stall temperatures were acquired. Temperatures were obtained using a handheld thermometer at 30.48 cm above the stall base as determined via dual laser measurements. Stall temperature was measured on the front, middle, and back of the stall first with clean sawdust and then with the sawdust removed from the stall and wiped clean with a towel. Daily temperature-humidity index (THI) was calculated using Kentucky climate data calculated through the University of Kentucky College of Agriculture via a data logger, located 5.63 km from the Coldstream Dairy Farm. Stall cleanliness was not different between the DCCW barn (26.09±0.89 rectangles) and the rubber-filled mattress barn (23.70±0.89 rectangles). Mean THI throughout the study was 64.39±0.82. Stall temperature was different among THI categories. Temperature-humidity index categories 1 (coldest), 2, 3, and 4 (warmest) had THI ranges of 22.94 to 50.77, 50.77 to 64.88, 64.88 to 78.75, and 78.75 to 101.59, respectively. Stall temperatures (°C; least squares means±SE) were 2.26±0.30, 8.86±0.30, 15.52±0.30, and 20.95±0.30 for THI categories 1 to 4, respectively. Stalls with rubber-filled mattresses had a lower temperature (°C) than DCCW with least squares means±SE of 10.52±0.21°C and 13.29±0.21°C, respectively. The DCCW were probably significantly warmer because water holds heat well. The DCCW may have more of a heat-insulating effect compared with rubber-filled mattresses. PMID:25841963

  5. Experimental dynamic electron densities of multipole models at different temperatures.

    PubMed

    Mondal, Swastik; Prathapa, Siriyara Jagannatha; van Smaalen, Sander

    2012-09-01

    It is shown that the dynamic electron density corresponding to a structure model can be computed by inverse Fourier transform of accurately calculated structure factors, employing the method of fast Fourier transform. Maps free of series-termination effects are obtained for resolutions better than 0.04 Å in direct space, corresponding to resolutions larger than 6 Å(-1) in reciprocal space. Multipole (MP) models of α-glycine and D,L-serine at different temperatures have been determined by refinement against X-ray diffraction data obtained from the scientific literature. The successful construction of dynamic electron densities is demonstrated by their topological properties, which indicate local maxima and bond-critical points (BCPs) at positions expected on the basis of the corresponding static electron densities, while non-atomic maxima have not been found. Density values near atomic maxima are much smaller in dynamic than in static electron densities. Static and low-temperature (∼20 K) dynamic electron-density maps are found to be surprisingly similar in the low-density regions. Especially at BCPs, values of the ∼20 K dynamic density maps are only slightly smaller than values of the corresponding static density maps. The major effect of these zero-point vibrations is a modification of the second derivatives of the density, which is most pronounced for values at the BCPs of polar C-O bonds. Nevertheless, dynamic MP electron densities provide an estimate of reasonable accuracy for the topological properties at BCPs of the corresponding static electron densities. The difference between static and dynamic electron densities increases with increasing temperature. These differences might provide information on temperature-dependent molecular or solid-state properties like chemical stability and reactivity. In regions of still lower densities, like in hydrogen bonds, static and dynamic electron densities have similar appearances within the complete range of temperatures that have been considered (20-298 K), providing similar values of both the density and its Laplacian at BCPs in static and dynamic electron densities at all temperatures. PMID:22893240

  6. Deposition Ice Nuclei Concentration at Different Temperatures and Supersaturations

    NASA Astrophysics Data System (ADS)

    López, M. L.; Avila, E.

    2013-05-01

    Ice formation is one of the main processes involved in the initiation of precipitation. Some aerosols serve to nucleate ice in clouds. They are called ice nuclei (IN) and they are generally solid particles, insoluble in water. At temperatures warmer than about -36°C the only means for initiation of the ice phase in the atmosphere involves IN, and temperature and supersaturation required to activate IN are considered as key information for the understanding of primary ice formation in clouds. The objective of this work is to quantify the IN concentration at ground level in Córdoba City, Argentina, under the deposition mode, that is to say that ice deposits on the IN directly from the vapor phase. It happens when the environment is supersaturated with respect to ice and subsaturated with respect to liquid water. Ice nuclei concentrations were measured in a cloud chamber placed in a cold room with temperature control down to -35°C. The operating temperature was varied between -15°C and -30°C. Ice supersaturation was ranged between 2 and 20 %. In order to quantify the number of ice particles produced in each experiment, a dish containing a supercooled solution of cane sugar, water and glycerol was placed on the floor of the cloud chamber. The activated IN grew at the expense of vapor until ice crystals were formed and these then fell down onto the sugar solution. Once there, these crystals could grow enough to be counted easily with a naked eye after a period of about three minutes, when they reach around 2 mm in diameter. In order to compare the present results with previously reported results, the data were grouped in three different ranges of supersaturation: the data with supersaturations between 2 and 8 %, the data with supersaturations between 8 and 14% and the data with supersaturations between 14 and 20 %. In the same way, in order to analize the behavior of IN concentration with supersaturation, the data were grouped for three different temperatures, the data with temperatures between -15°C and -20°C, the data with temperatures between -20°C and -25°C and the data with temperatures between -25°C and -30°C. The results confirm that for each temperature range, the concentration of IN increases at higher supersaturation, and show the tendency of the IN concentration to increase with increasing ice supersaturation. Based on previous parameterizations, a combination of IN concentration in relation with temperature and ice supersaturation is proposed in this work. As far as we know, this is among the first work to measure and parameterize the concentration of deposition ice nuclei in the Southern Hemisphere.

  7. Interhemispheric temperature difference as a predictor of boreal winter ENSO

    NASA Astrophysics Data System (ADS)

    Piskozub, Jacek; Gutowska, Dorota

    2013-04-01

    We use statistical analysis to show statistically significant relationship between the boreal winter MEI index of ENSO and HadCRUT3 temperature difference between Northern and Southern hemispheres (NH - SH) during the preceding summer. Correlation values increase (in absolute terms) if the correlated time periods are increased from month to seasonal length. For example December and January (DJ) MEI values anticorrelate stronger with the preceding MJJA period than with any of the four months taken separately. We believe this is further evidence that the correlation is caused by a real physical process as increase of the averaging period tends to reduce statistical noise. The motivation for looking for such a relationship comes from review of literature on paleoclimatic ENSO behavior. We have noticed that in many cases relatively cold NH coincided with "strong ENSO" (frequent El Niños), for example the Ice Age periods and Little Ice Age. On the other hand periods of relatively warm NH (the Holocene climate optimum or Medieval Climate Anomaly) are coincident with frequent or even "permanent" La Niñas. This relationship suggest the influence of the position of Intertropical Convergence Zone (ITCZ) on the frequency of El Niños. The simplest physical mechanism of the relationship is that the positive (negative) NH-SH temperature difference causes a north (south) shift of ITCZ with a parallel shift of trade wind zones. The North-South orographic difference between the Panama Isthmus and the South America may cause stronger (weaker) trade winds in Eastern Tropical Pacific increasing (decreasing) the thermochemical tilt which, in turn, causes a more negative (positive) ENSO values. Of course this may be only a first approximation of the real mechanism of this "teleconnection". The correlations we have found are not strong even if statistically significant. For example, the MJJA NH-SH temperature vs. DJ MEI correlation has r = -0.28 implying it explains only 8% of boreal winter ENSO variability. In, fact, we did not expect a high value for a phenomenon which is a self-regulated ocean-atmosphere oscillation with timing partly triggered by stochastic atmospheric forcing, especially as we predict ENSO with (semi)global parameters. It is possible that further research may identify smaller regions of both hemispheres which temperature differences explain a larger part of ENSO variability. However in our opinion, the importance of this result is that it may not only improve ENSO prediction but also help in better understanding of ENSO variability in different time scales.

  8. Chlorella Virus Encoded Deoxyuridine triphosphatases Exhibit different Temperature Optima

    SciTech Connect

    Zhang,Y.; Moriyama, H.; Homma, K.; Van Etten, J.

    2005-01-01

    A putative deoxyuridine triphosphatase (dUTPase) gene from chlorella virus PBCV-1 was cloned, and the recombinant protein was expressed in Escherichia coli. The recombinant protein has dUTPase activity and requires Mg{sup 2+} for optimal activity, while it retains some activity in the presence of other divalent cations. Kinetic studies of the enzyme revealed a K{sub m} of 11.7 {mu}M, a turnover k{sub cat} of 6.8 s{sup -1}, and a catalytic efficiency of k{sub cat}/K{sub m} = 5.8 x 105 M{sup -1} s{sup -1}. dUTPase genes were cloned and expressed from two other chlorella viruses IL-3A and SH-6A. The two dUTPases have similar properties to PBCV-1 dUTPase except that IL-3A dUTPase has a lower temperature optimum (37{sup o}C) than PBCV-1 dUTPase (50{sup o}C). The IL-3A dUTPase differs from the PBCV-1 enzyme by nine amino acids, including two amino acid substitutions, Glu81{yields}Ser81 and Thr84{yields}Arg84, in the highly conserved motif III of the proteins. To investigate the difference in temperature optima between the two enzymes, homology modeling and docking simulations were conducted. The results of the simulation and comparisons of amino acid sequence suggest that adjacent amino acids are important in the temperature optima. To confirm this suggestion, three site-directed amino acid substitutions were made in the IL-3A enzyme: Thr84{yields}Arg84, Glu81{yields}Ser81, and Glu81{yields}Ser81 plus Thr84{yields}Arg84. The single substitutions affected the optimal temperature for enzyme activity. The temperature optimum increased from 37 to 55{sup o}C for the enzyme containing the two amino acid substitutions. We postulate that the change in temperature optimum is due to reduction in charge and balkiness in the active cavity that allows more movement of the ligand and protein before the enzyme and substrate complex is formed.

  9. Characterization of polyparaphenylene subjected to different heat treatment temperatures

    SciTech Connect

    Brown, S.D.M.; Matthews, M.J.; Marucci, A.; Pimenta, M.A.; Dresselhaus, M.S.; Endo, M.; Hiraoka, T.

    1998-07-01

    The authors investigated the structural and electronic properties of samples of polyparaphenylene (PPP), derived from two synthesis methods (the Kovacic and Yamamoto methods). These samples have been subjected to different heat-treatment temperatures (650 C {le} T{sub HT} {le} 2,000 C) and their properties are compared to the polymer prior to heat-treatment (T{sub HT} = 0 C). The photoluminescence (PL) spectra of heat-treated PPP based on the two synthesis methods reflects the differences in electronic structure of the starting polymers. The PL emission from the heat-treated Yamamoto polymer is quenched at much lower T{sub HT} than from the Kovacic material. However, Raman spectra taken of the material resulting from heat-treatment of the polymer (using both preparation methods) indicate the presence of phonon modes for PPP in samples at T{sub HT} up to 650 C.

  10. Thermoelectric properties and efficiency measurements under large temperature differences.

    PubMed

    Muto, A; Kraemer, D; Hao, Q; Ren, Z F; Chen, G

    2009-09-01

    The maximum efficiency of a thermoelectric generator is determined by the material's dimensionless figure of merit ZT. Real thermoelectric material properties are highly temperature dependent and are often measured individually using multiple measurement tools on different samples. As a result, reported ZT values have large uncertainties. In this work we present an experimental technique that eliminates some of these uncertainties. We measure the Seebeck coefficient, electrical conductivity, and thermal conductivity of a single element or leg, as well as the conversion efficiency, under a large temperature difference of 2-160 degrees C. The advantages of this technique include (1) the thermoelectric leg is mounted only once and all measurements are in the same direction and (2) the measured properties are corroborated by efficiency measurements. The directly measured power and efficiency are compared to the values calculated from the measured properties and agree within 0.4% and 2%, respectively. The realistic testing conditions of this technique make it ideal for material characterization prior to implementation in a real thermoelectric generator. PMID:19791947

  11. High-operating temperature MWIR photon detectors based on Type II InAs/GaSb superlattice

    NASA Astrophysics Data System (ADS)

    Razeghi, Manijeh; Pour, Siamak A.; Huang, Edward; Chen, Guanxi; Haddadi, Abbas; Nguyen, Binh-Minh

    2011-06-01

    Recent efforts have been paid to elevate the operating temperature of Type II superlattice Mid Infrared photon detectors. Using M-structure superlattice, novel device architectures have been developed, resulting in significant improvement of the device performances. In this paper, we will compare different photodetector architectures and discuss the optimization scheme which leads to almost one order of magnitude of improvement to the electrical performance. At 150K, single element detectors exhibit a quantum efficiency above 50%, and a specific detectivity of 1.05x1012 cm.Hz1/2/W. BLIP operation with a 300K background and 2π FOV can be reached with an operating temperature up to 180K. High quality focal plane arrays were demonstrated with a noise equivalent temperature difference (NEDT) of 11mK up to 120K. Human body imaging is achieved at 150K with NEDT of 150mK.

  12. Air - ground temperature coupling - results of the seven year temperature monitoring under different types of surface

    NASA Astrophysics Data System (ADS)

    Dědeček, Petr; Afanda, Jan Å.; Čermák, Vladimír.; Krešl, Milan

    2010-05-01

    We present results of the seven year (2003-2009) ground - air temperature tracking at observatory Prague - Spořilov located at the campus of the Institute of Geophysics in Prague (50° 02' 27" N, 14° 28' 39" E, 274 m a.s.l.). The soil temperatures (GST) under different types of surface (grass, sand, bare soil, asphalt) at the depths of 2, 5, 10, 20 and 50 cm, as well as the air temperatures (SAT) at 5 cm above each of the surface types and at 2 m above the background grass surface are recorded every 5 minutes together with other meteorological variables of solar radiation, humidity, soil moisture, precipitation and wind speed. Also presented are the results from a new observation site established during summer 2008 in Bedřichov (Jizerske Hory Mountains, Czech Republic) to determine GST difference under two typical types of vegetation cover (meadow and forest). The mean annual ground temperature depends strongly on albedo of the surface, intensity of insolation and evaporation, and presence or absence of some form of insulation like snow or vegetation covers. The highest difference between mean annual GST and SAT was observed under asphalt surface due to its low albedo of about 0.04, obtained as the ratio between reflected and incoming shortwave solar radiation. The difference varied between 4.1 and 4.8 °C in the period 2003 - 2009, depending mainly on the number of sunny hours during summer months. In the case of sand, bare soil and grass, the temperature differences were in the range 1.5 - 2 °C (sand), 1.1 - 1.6 °C (bare soil) and 0.3 - 0.5 °C (grass). Typical values of albedo are about 0.11 (sand and bare soil) and 0.14 (grass). Mean annual temperature difference between meadow and forest observed at the depth of 0.5 m in Bedřichov was 1.5 °C.

  13. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.

    PubMed

    Qiu, Xinhong; Sasaki, Keiko; Takaki, Yu; Hirajima, Tsuyoshi; Ideta, Keiko; Miyawaki, Jin

    2015-04-28

    Hydrocalumite (Ca-Al-layered double hydroxide (LDH)) was prepared and applied for the removal of borate. The properties of Ca-Al-LDH calcined at different temperatures were diverse, which affected the sorption density and mechanism of boron species. The sorption density increased with increase in calcined temperature and the sample calcined at 900°C (Ca-Al-LDH-900) showed the maximum sorption density in this work. The solid residues after sorption were characterized by (11)B NMR, (27)Al NMR, SEM, and XRD to investigate the sorption mechanism. Dissolution-reprecipitation was the main mechanism for sorption of borate in Ca-Al-LDH. For Ca-Al-LDH calcined at 300 and 500°C, regeneration occurred in a short time and the newly forming LDHs were decomposed to release Ca(2+) ions and formed ettringite with borate. Two stages occurred in the sorption of boron by Ca-Al-LDH calcined at 900°C. In the first stage, boron species adsorbed on the alumina gel resulting from the hydration of calcined products. In this stage, borate was included as an interlayer anion into the newly forming LDHs in the following stage, and then immobilized as HBO3(2-) into the interlayer, most the LDHs. PMID:25661174

  14. Shallow temperature differences along the Deep Creek Range front, Idaho

    NASA Astrophysics Data System (ADS)

    Ore, H. T.; Wiegand, G. H.

    1990-02-01

    The extent of the solvolysis reaction of a tertiary butyl chloride solution placed in vials buried about 1.2 m below the ground surface is dependent on average temperature at that depth over the period of burial. This method is herein used to indicate differences in shallow temperature from the western flank of the Basin and Range Deep Creek Range front, about 5 km westward into Rockland Valley in southeastern Idaho. Ninety-three samples, distributed to allow determination of lateral and vertical sample-site variation in total reaction amount, were analyzed after being in place for 3 months. Results from two sample lines, 3.5 km apart, show that subsurface total reaction amount declines slightly for the first 1.6 km away from the mountain front, rises abruptly to several times initial reaction, slowly declines for the next several km, then tends to slowly rise again. Plots of extent of reaction vs distance for the two traverses are nearly parallel; in both the abrupt increase in total reaction coincides with a line of springs, suggesting that hydrologic activity is at least related to the effects noted.

  15. Dielectric Behavior of Biomaterials at Different Frequencies on Room Temperature

    NASA Astrophysics Data System (ADS)

    Shrivastava, B. D.; Barde, Ravindra; Mishra, A.; Phadke, S.

    2014-09-01

    Propagation of electromagnetic (EM) waves in radiofrequency (RF) and microwave systems is described mathematically by Maxwell's equations with corresponding boundary conditions. Dielectric properties of lossless and lossy materials influence EM field distribution. For a better understanding of the physical processes associated with various RF and microwave devices, it is necessary to know the dielectric properties of media that interact with EM waves. For telecommunication and radar devices, variations of complex dielectric permittivity (referring to the dielectric property) over a wide frequency range are important. For RF and microwave applicators intended for thermal treatments of different materials at ISM (industrial, scientific, medical) frequencies, one needs to study temperature and moisture content dependencies of the Permittivity of the treated materials. Many techniques have been developed for the measurement of materials. In the present paper authors used Bones and scales of Fish taken from Narmada River (Rajghat Dist. Barwani) as biomaterials. Dielectric properties of Biomaterials with the frequency range from 1Hz to 10 MHz at room temperature with low water content were measured by in-situ performance dielectric kit. Analysis has been done by Alpha high performance impedance analyzer and LCR meters. The experimental work were carried out in Inter University Consortium UGC-DAE, CSR center Indore MP. Measured value indicates the dielectric constant (ɛ') dielectric loss (ɛ") decreases with increasing frequency while conductivity (σ) increases with frequency increased.

  16. Modeling soil temperatures at different depths by using three different neural computing techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Tombul, Mustafa; Kermani, Mohammad Zounemat

    2015-07-01

    This study compares the accuracy of three different neural computing techniques, multi-layer perceptron (MLP), radial basis neural networks (RBNN), and generalized regression neural networks (GRNN), in modeling soil temperatures (ST) at different depths. Climatic data of air temperature, wind speed, solar radiation, and relative humidity from Mersin Station, Turkey, were used as inputs to the models to estimate monthly ST values. In the first part of the study, the effect of each climatic variable on ST was investigated by using GRNN models. Air temperature was found to be the most effective variable in modeling monthly ST. In the second part of the study, the accuracy of GRNN models was compared with MLP, RBNN, and multiple linear regression (MLR) models. RBNN models were found to be better than the GRNN, MLP, and MLR models in estimating monthly ST at the depths of 5 and 10 cm while the MLR and GRNN models gave the best accuracy in the case of 50- and 100-cm depths, respectively. In the third part of the study, the effect of periodicity on the training, validation, and test accuracy of the applied models was investigated. The results indicated that the adding periodicity component significantly increase models' accuracies in estimating monthly ST at different depths. Root mean square errors of the GRNN, MLP, RBNN, and MLR models were decreased by 19, 15, 19, and 15 % using periodicity in estimating monthly ST at 5-cm depth.

  17. Fabrication and parameters calculation of room temperature terahertz detector with micro-bridge structure

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Weizhi; Gou, Jun; Wu, Zhiming; Jiang, Yadong

    2015-01-01

    Room temperature terahertz (THz) detector indicates great potentials in imaging application because of real-time, compact bulk and unique spectral characteristics. Different dimension THz detectors based on micro-bridge structure were designed and simulated to get optimizing microbolometer parameters from the simulation results of membrane temperature changing and THz absorption. Those microbolometers were fabricated with complex semiconductor process and three dimension deformations of micro-bridges were obtained by laser scanning confocal microscope to identify the focal plane array micro-bridge design. The noise equivalent power of THz detector achieves 123 pW/Hz1/2 and average response time of the detector is 6.7 ms, which is suitable for the application of active THz imaging.

  18. Measurement of relative permittivity of LTCC ceramic at different temperatures

    NASA Astrophysics Data System (ADS)

    Tan, Qiulin; Kang, Hao; Qin, Li; Xiong, Jijun; Zhou, Zhaoying; Zhang, Wendong; Luo, Tao; Xue, Chenyang; Liu, Jun

    2014-03-01

    Devices based on LTCC (low-temperature co-fired ceramic) technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C) with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  19. Considerations for modeling thin cirrus effects via brightness temperature differences

    NASA Technical Reports Server (NTRS)

    Schmidt, E. O.; Arduini, R. F.; Wielicki, B. A.; Stone, R. S.; Tsay, S.-C.

    1995-01-01

    Brightness temperature difference (BTD) values are calculated for selected Geostationary Operational Environmental Satellite (GOES-6) channels (3.9, 12.7 micrometer) and Advanced Very High Resolution Radiometer channels (3.7, 12.0 micrometer). Daytime and nighttime discrimination of particle size information is possible given the infrared cloud extinction optical depth and the BTD value. BTD values are presented and compared for cirrus clouds composed of equivalent ice spheres (volume, surface area) versus randomly oriented hexagonal ice crystals. The effect of the hexagonal ice crystals is to increase the magnitude of the BTD values calculated relative to equivalent ice sphere (volume, surface area) BTDs. Equivalent spheres (volume or surface area) do not do a very good job of modeling hexagonal ice crystal effects on BTDs; however, the use of composite spheres improves the simulation and offers interesting prospects. Careful consideration of the number of Legendre polynomial coefficients used to fit the scattering phase functions is crucial to realistic modeling of cirrus BTDs. Surface and view-angle effects are incorporated to provide more realistic simulation.

  20. Study on different characteristics of doped tri calcium phosphate at different sintering temperatures

    NASA Astrophysics Data System (ADS)

    Samanta, Sujan Krishna; Chanda, Abhijit

    2016-04-01

    Pure β-tricalcium phosphate (β-TCP), Zn-doped (3wt %) β-TCP and Mg- doped (3wt %) β-TCP samples were prepared by using a wet chemical precipitation synthesis technique, followed by calcination at 800 °C in air. The developed materials were subjected to sintering at different temperatures. Density and porosity were compared. The X-ray diffractometry (XRD) and Fourier-transformed infrared (FTIR) spectrometer were used to examine the changes in crystalline phases and presence of functional groups of TCP ceramics. The scanning electron microscopy (SEM) was used to study the pore formation, pore size, grain size.

  1. Storage of Steindachneridion parahybae oocytes at different temperatures.

    PubMed

    Sanches, Eduardo Antônio; Okawara, Renan Yoshiharu; Caneppele, Danilo; Neumann, Giovano; Bombardelli, Robie Allan; Romagosa, Elizabeth

    2014-12-30

    The objective of this study was to assess the influence of temperature and time on the storage of fresh Steindachneridion parahybae oocytes. Two experiments were carried out: (1) the fertilization rates of oocytes exposed to temperatures of 5, 15, 28 (room temperature) and 35°C were assessed 15min (control), 115, 235 and 355min after release; (2) the fertilization and hatching rates, as well as the percentage of normal larvae of oocytes exposed to 14, 17 or 20°C, 20min (control) were assessed 50, 80 and 110min after stripping. In the first experiment, the highest fertilization rates (P<0.05) were obtained in the control treatment (15min, 28°C), with 74.34±5.48% oocytes showing loss of viability over time. In the second experiment, there was a reduction (P<0.05) in the fertilization rates at the temperatures and times tested. The artificial fertilization of S. parahybae oocytes is recommended immediately after collection, and if storage is necessary, it should be conducted at temperatures between 17 and 20°C. PMID:25458322

  2. Human local and total heat losses in different temperature.

    PubMed

    Wang, Lijuan; Yin, Hui; Di, Yuhui; Liu, Yanfeng; Liu, Jiaping

    2016-04-01

    This study investigates the effects of operative temperature on the local and total heat losses, and the relationship between the heat loss and thermal sensation. 10 local parts of head, neck, chest, abdomen, upper arm, forearm, hand, thigh, leg and foot are selected. In all these parts, convection, radiation, evaporation, respiration, conduction and diffusion heat losses are analyzed when operative temperature is 23, 28, 33 and 37°C. The local heat losses show that the radiation and convection heat losses are mainly affected by the area of local body, and the heat loss of the thigh is the most in the ten parts. The evaporation heat loss is mainly affected by the distribution of sweat gland, and the heat loss of the chest is the most. The total heat loss of the local body shows that in low temperature, the thigh, leg and chest have much heat loss, while in high temperature, the chest, abdomen, thigh and head have great heat loss, which are useful for clothing design. The heat losses of the whole body show that as the operative temperature increases, the radiation and convection heat losses decrease, the heat losses of conduction, respiration, and diffusion are almost constant, and the evaporation heat loss increases. By comparison, the heat loss ratios of the radiation, convection and sweat evaporation, are in agreement with the previous researches. At last, the formula about the heat loss ratio of convection and radiation is derived. It's useful for thermal comfort evaluation and HVAC (heating, ventilation and air conditioning) design. PMID:26879106

  3. Benchmark analysis of forecasted seasonal temperature over different climatic areas

    NASA Astrophysics Data System (ADS)

    Giunta, G.; Salerno, R.; Ceppi, A.; Ercolani, G.; Mancini, M.

    2015-12-01

    From a long-term perspective, an improvement of seasonal forecasting, which is often exclusively based on climatology, could provide a new capability for the management of energy resources in a time scale of just a few months. This paper regards a benchmark analysis in relation to long-term temperature forecasts over Italy in the year 2010, comparing the eni-kassandra meteo forecast (e-kmf®) model, the Climate Forecast System-National Centers for Environmental Prediction (CFS-NCEP) model, and the climatological reference (based on 25-year data) with observations. Statistical indexes are used to understand the reliability of the prediction of 2-m monthly air temperatures with a perspective of 12 weeks ahead. The results show how the best performance is achieved by the e-kmf® system which improves the reliability for long-term forecasts compared to climatology and the CFS-NCEP model. By using the reliable high-performance forecast system, it is possible to optimize the natural gas portfolio and management operations, thereby obtaining a competitive advantage in the European energy market.

  4. Type-II InAs/GaSb photodiodes and focal plane arrays aimed at high operating temperatures

    NASA Astrophysics Data System (ADS)

    Razeghi, M.; Abdollahi Pour, S.; Huang, E. K.; Chen, G.; Haddadi, A.; Nguyen, B. M.

    2011-09-01

    Recent efforts to improve the performance of type II InAs/GaSb superlattice photodiodes and focal plane arrays (FPA) have been reviewed. The theoretical bandstructure models have been discussed first. A review of recent developments in growth and characterization techniques is given. The efforts to improve the performance of MWIR photodiodes and focal plane arrays (FPAs) have been reviewed and the latest results have been reported. It is shown that these improvements has resulted in background limited performance (BLIP) of single element photodiodes up to 180 K. FPA shows a constant noise equivalent temperature difference (NEDT) of 11 mK up to 120 K and it shows human body imaging up to 170 K.

  5. Temperature-induced plasticity in membrane and storage lipid composition: thermal reaction norms across five different temperatures.

    PubMed

    Van Dooremalen, Coby; Koekkoek, Jacco; Ellers, Jacintha

    2011-02-01

    Temperature is a key environmental factor inducing phenotypic plasticity in a wide range of behavioral, morphological, and life history traits in ectotherms. The strength of temperature-induced responses in fitness-related traits may be determined by plasticity of the underlying physiological or biochemical traits. Lipid composition may be an important trait underlying fitness response to temperature, because it affects membrane fluidity as well as availability of stored energy reserves. Here, we investigate the effect of temperature on lipid composition of the springtail Orchesella cincta by measuring thermal reaction norms across five different temperatures after four weeks of cold or warm acclimation. Fatty acid composition in storage and membrane lipids showed a highly plastic response to temperature, but the responses of single fatty acids revealed deviations from the expectations based on HVA theory. We found an accumulation of C(18:2n6) and C(18:3n3) at higher temperatures and the preservation of C(20:4n6) across temperatures, which is contrary to the expectation of decreased unsaturation at higher temperatures. The thermal response of these fatty acids in O. cincta differed from the findings in other species, and therefore shows there is interspecific variation in how single fatty acids contribute to HVA. Future research should determine the consequences of such variation in terms of costs and benefits for the thermal performance of species. PMID:21115015

  6. IMPLICATIONS OF RADIOMETRIC-AERODYNAMIC TEMPERATURE DIFFERENCES FOR HEAT FLUX ESTIMATION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the application of radiometric surface temperature observations for heat flux computations in numerical models, it is necessary to consider differences between the so-called “aerodynamic” temperature, which is the model-derived temperature that relates to the efficiency of heat exchange between t...

  7. The effect of different solar simulators on the measurement of short-circuit current temperature coefficients

    NASA Technical Reports Server (NTRS)

    Curtis, H. B.; Hart, R. E., Jr.

    1982-01-01

    Gallium arsenide solar cells are considered for several high temperature missions in space. Both near-Sun and concentrator missions could involve cell temperatures on the order of 200 C. Performance measurements of cells at elevated temperatures are usually made using simulated sunlight and a matched reference cell. Due to the change in bandgap with increasing temperature at portions of the spectrum where considerable simulated irradiance is present, there are significant differences in measured short circuit current at elevated temperatures among different simulators. To illustrate this, both experimental and theoretical data are presented for gallium arsenide cells.

  8. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A., Sr.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  9. Effect of saddle height on skin temperature measured in different days of cycling.

    PubMed

    Priego Quesada, Jose Ignacio; Carpes, Felipe P; Salvador Palmer, Rosario; Pérez-Soriano, Pedro; Cibrián Ortiz de Anda, Rosa M

    2016-01-01

    Infrared thermography can be useful to explore the effects of exercise on neuromuscular function. During cycling, it could be used to investigate the effects of saddle height on thermoregulation. The aim of this study was to examine whether different cycling postures, elicited by different knee flexion angles, could influence skin temperature. Furthermore, we also determined whether the reproducibility of thermal measurements in response to cycling differed in the body regions affected or not affected by saddle height. Sixteen cyclists participated in three tests of 45 min of cycling at their individual 50 % peak power output. Each test was performed in a different knee flexion position on the bicycle (20°, 30°, 40° knee flexion when the pedal crank was at 180°). Different knee angles were obtained by changing saddle height. Skin temperatures were determined by infrared thermography before, immediately after and 10 min after the cycling test, in 16 different regions of interest (ROI) in the trunk and lower limbs. Changes in saddle height did not result in changes in skin temperature in the ROI. However, lower knee flexion elicited higher temperature in popliteus after cycling than higher flexion (p = 0.008 and ES = 0.8), and higher knee flexion elicited lower temperature variation in the tibialis anterior than intermediate knee flexion (p = 0.004 and ES = 0.8). Absolute temperatures obtained good and very good intraday reproducibility in the different measurements (ICCs between 0.44 and 0.85), but temperature variations showed lower reproducibility (ICCs between 0.11 and 0.74). Different postures assumed by the cyclist due to different saddle height did not influence temperature measurements. Skin temperature can be measured on different days with good repeatability, but temperature variations can be more sensitive to the effects of an intervention. PMID:27026901

  10. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Castro, Sandra L.; Emery, William J.

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. During this one year grant, design and construction of an improved infrared radiometer was completed and testing was initiated. In addition, development of an improved parametric model for the bulk-skin temperature difference was completed using data from the previous version of the radiometer. This model will comprise a key component of an improved procedure for estimating the bulk SST from satellites. The results comprised a significant portion of the Ph.D. thesis completed by one graduate student and they are currently being converted into a journal publication.

  11. Different variation behaviors of resistivity for high-temperature-grown and low-temperature-grown p-GaN films

    NASA Astrophysics Data System (ADS)

    Jing, Yang; De-Gang, Zhao; De-Sheng, Jiang; Ping, Chen; Zong-Shun, Liu; Jian-Jun, Zhu; Ling-Cong, Le; Xiao-Jing, Li; Xiao-Guang, He; Li-Qun, Zhang; Hui, Yang

    2016-02-01

    Two series of p-GaN films grown at different temperatures are obtained by metal organic chemical vapor deposition (MOCVD). And the different variation behaviors of resistivity with growth condition for high- temperature(HT)-grown and low-temperature(LT)-grown p-GaN films are investigated. It is found that the resistivity of HT-grown p-GaN film is nearly unchanged when the NH3 flow rate or reactor pressure increases. However, it decreases largely for LT-grown p-GaN film. These different variations may be attributed to the fact that carbon impurities are easy to incorporate into p-GaN film when the growth temperature is low. It results in a relatively high carbon concentration in LT-grown p-GaN film compared with HT-grown one. Therefore, carbon concentration is more sensitive to the growth condition in these samples, ultimately, leading to the different variation behaviors of resistivity for HT- and LT-grown ones. Project supported by the National Natural Science Foundation of China (Grant Nos. 61474110, 61377020, 61376089, 61223005, and 61176126), the National Natural Science Fund for Distinguished Young Scholars, China (Grant No. 60925017), the One Hundred Person Project of the Chinese Academy of Sciences, and the Basic Research Project of Jiangsu Province, China (Grant No. BK20130362).

  12. The effect of imposed temperature difference on thermal conductivity in armchair single-walled carbon nanotube

    NASA Astrophysics Data System (ADS)

    Mehri, Ali; Jamaati, Maryam; Moradi, Moslem

    2015-02-01

    Thermal conductivity of carbon nanotubes depends on various factors. The simulation of heat transport in armchair single-walled carbon nanotube by direct nonequilibrium molecular dynamics (NEMD) method employing Tersoff-Brenner potential indicates that, thermal conductivity decreases with increase in temperature difference between two ends of the tube. Increasing the imposed temperature differential along the tube axis, leads to domination of Umklapp scattering and impacts the heat transport. The applied temperature difference does not influence the behavior of thermal conductivity vs. tube length, diameter and temperature, but changes its value.

  13. Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network

    USGS Publications Warehouse

    Gallo, K.P.

    2005-01-01

    Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.

  14. Wind effect on PV module temperature: Analysis of different techniques for an accurate estimation.

    NASA Astrophysics Data System (ADS)

    Schwingshackl, Clemens; Petitta, Marcello; Ernst Wagner, Jochen; Belluardo, Giorgio; Moser, David; Castelli, Mariapina; Zebisch, Marc; Tetzlaff, Anke

    2013-04-01

    In this abstract a study on the influence of wind to model the PV module temperature is presented. This study is carried out in the framework of the PV-Alps INTERREG project in which the potential of different photovoltaic technologies is analysed for alpine regions. The PV module temperature depends on different parameters, such as ambient temperature, irradiance, wind speed and PV technology [1]. In most models, a very simple approach is used, where the PV module temperature is calculated from NOCT (nominal operating cell temperature), ambient temperature and irradiance alone [2]. In this study the influence of wind speed on the PV module temperature was investigated. First, different approaches suggested by various authors were tested [1], [2], [3], [4], [5]. For our analysis, temperature, irradiance and wind data from a PV test facility at the airport Bolzano (South Tyrol, Italy) from the EURAC Institute of Renewable Energies were used. The PV module temperature was calculated with different models and compared to the measured PV module temperature at the single panels. The best results were achieved with the approach suggested by Skoplaki et al. [1]. Preliminary results indicate that for all PV technologies which were tested (monocrystalline, amorphous, microcrystalline and polycrystalline silicon and cadmium telluride), modelled and measured PV module temperatures show a higher agreement (RMSE about 3-4 K) compared to standard approaches in which wind is not considered. For further investigation the in-situ measured wind velocities were replaced with wind data from numerical weather forecast models (ECMWF, reanalysis fields). Our results show that the PV module temperature calculated with wind data from ECMWF is still in very good agreement with the measured one (R² > 0.9 for all technologies). Compared to the previous analysis, we find comparable mean values and an increasing standard deviation. These results open a promising approach for PV module temperature estimation using meteorological parameters. References: [1] Skoplaki, E. et al., 2008: A simple correlation for the operating temperature of photovoltaic modules of arbitrary mounting, Solar Energy Materials & Solar Cells 92, 1393-1402 [2] Skoplaki, E. et al., 2008: Operating temperature of photovoltaic modules: A survey of pertinent correlations, Renewable Energy 34, 23-29 [3] Koehl, M. et al., 2011: Modeling of the nominal operating cell temperature based on outdoor weathering, Solar Energy Materials & Solar Cells 95, 1638-1646 [4] Mattei, M. et al., 2005: Calculation of the polycrystalline PV module temperature using a simple method of energy balance, Renewable Energy 31, 553-567 [5] Kurtz, S. et al.: Evaluation of high-temperature exposure of rack-mounted photovoltaic modules

  15. Acclimation and acute temperature effects on population differences in oxidative phosphorylation.

    PubMed

    Baris, Tara Z; Crawford, Douglas L; Oleksiak, Marjorie F

    2016-01-15

    Temperature changes affect metabolism on acute, acclamatory, and evolutionary time scales. To better understand temperature's affect on metabolism at these different time scales, we quantified cardiac oxidative phosphorylation (OxPhos) in three Fundulus taxa acclimated to 12 and 28°C and measured at three acute temperatures (12, 20, and 28°C). The Fundulus taxa (northern Maine and southern Georgia F. heteroclitus, and a sister taxa, F. grandis) were used to identify evolved changes in OxPhos. Cardiac OxPhos metabolism was quantified by measuring six traits: state 3 (ADP and substrate-dependent mitochondrial respiration); E state (uncoupled mitochondrial activity); complex I, II, and IV activities; and LEAK ratio. Acute temperature affected all OxPhos traits. Acclimation only significantly affected state 3 and LEAK ratio. Populations were significantly different for state 3. In addition to direct effects, there were significant interactions between acclimation and population for complex I and between population and acute temperature for state 3. Further analyses suggest that acclimation alters the acute temperature response for state 3, E state, and complexes I and II: at the low acclimation temperature, the acute response was dampened at low assay temperatures, and at the high acclimation temperature, the acute response was dampened at high assay temperatures. Closer examination of the data also suggests that differences in state 3 respiration and complex I activity between populations were greatest between fish acclimated to low temperatures when assayed at high temperatures, suggesting that differences between the populations become more apparent at the edges of their thermal range. PMID:26582639

  16. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry.

    PubMed

    Raj, Vinay C; Prabhu, S V

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector. PMID:24387454

  17. Measurement of surface temperature and emissivity of different materials by two-colour pyrometry

    NASA Astrophysics Data System (ADS)

    Raj, Vinay C.; Prabhu, S. V.

    2013-12-01

    An experimental investigation is performed to substantiate the capability of a charge coupled device camera to measure local temperature and emissivity of different materials heated to temperatures above 500 °C by two-colour pyrometric technique using colorimetric method. Materials investigated are Inconel 718 with pyromark (high temperature paint), Inconel 718, stainless steel SS 304 and SS 316. Centerline temperature and emissivity distribution is obtained for target plates maintained at constant temperature by AC heating while complete temperature and emissivity distribution is provided for plates heated by flame impingement. The obtained results are compared with a calibrated infrared camera and thermocouples and the temperature distribution is found to be in close agreement. These results pertain to partially oxidized metal alloys covered in this study. Deviation in the measurement of emissivity can be attributed to its dependence on wavelength range, oxidation, and sensitivity of the image detector.

  18. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm situations, cloudy and windy situations). Based on hourly air temperature data from our measurements in the urban area of Augsburg distinct temperature differences between locations with different urban land use characteristics are revealed. Under clear and calm weather conditions differences between mean hourly air temperatures reach values around 8°C. Whereas during cloudy and windy weather maximum differences in mean hourly air temperatures do not exceed 5°C. Differences appear usually slightly more pronounced in summer than in winter. First results from the application of statistical modeling approaches reveal promising skill of the models in terms of explained variances reaching up to 60% in leave-one-out cross-validation experiments. The contribution depicts the methodology of our approach and presents and discusses first results.

  19. Effect of ultrasonic treatment of brown rice at different temperatures on cooking properties and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This research aimed at developing quick cooking brown rice by investigating the effect of ultrasonic treatment at different temperatures on cooking time and quality. The medium grain brown rice was ultrasonically treated in water at temperatures of 25°C, 40°C and 55°C for 30 min and then dried by ai...

  20. Comparing different reactor configurations for Partial Nitritation/Anammox at low temperatures.

    PubMed

    Gilbert, Eva M; Agrawal, Shelesh; Schwartz, Thomas; Horn, Harald; Lackner, Susanne

    2015-09-15

    Partial Nitritation/Anammox (PN/A) is a well-established technology for side-stream nitrogen removal from highly concentrated, warm wastewaters. The focus has now shifted to weakly concentrated municipal wastewaters with much lower concentrations and temperatures. The major challenge is the temperature, which ranges from moderate 20 °C in summer to cold 10 °C in winter. For this study, the most frequently used configurations for side-stream applications were exposed to a slow temperature reduction from 20 °C to 10 °C to simulate a realistic temperature gradient. To evaluate the behavior of the different biomasses based on their properties, four lab reactors were operated in two different configurations. Synthetic wastewater was used to avoid side effects of heterotrophic growth. Differences in the response of the different reactor systems to this temperature gradient clearly indicated, that the geometry of the biomass has a major impact on the overall PN/A performance at low temperatures: While anammox activity in suspended biomass suffered already at 15 °C, it persevered in granular biomass as well as in biofilms on carriers for temperatures down to <13 °C. Further, anammox activity in thicker biofilms was less affected than in thinner biofilms and even adaption to low temperatures was observed. PMID:26043375

  1. Sleep deprivation in the rat at different ambient temperatures: effect on sleep, EEG spectra and brain temperature.

    PubMed

    Tobler, I; Franken, P; Gao, B; Jaggi, K; Borbély, A A

    1994-01-01

    To investigate the relationship between thermoregulation and sleep regulation, rats were sleep-deprived for 3 hours at two different ambient temperatures. Sleep deprivations (SD) were performed at 23 degrees C (SD-23) and at 32 degrees C (SD-32) in the beginning of the 12-h light period in animals chronically implanted with ECoG and EMG electrodes, and with epidural and hypothalamic thermistors. SD-32 enhanced cerebral temperature more than SD-23 at both brain sites. The SD-induced hyperthermia was followed by a fall of brain temperature below baseline. During recovery from either SD procedure, waking was reduced and sleep continuity increased. REM sleep was increased after SD-32. EEG slow-wave activity (spectral power density in the 0.75-4.0 Hz band) exceeded the baseline level in the first 3-h interval of recovery; however, the effects of SD-23 and SD-32 did not differ. In the same time interval, power density in the 1.25-1.5 Hz bin as well as in some bins in the theta and alpha band was higher after SD-32 than after SD-23. The increase in hypothalamic temperature during SD did not correlate with the increase in SWA during recovery. It is concluded that even a brief SD has major repercussions on recovery sleep whereas the extent of cerebral hyperthermia during SD is only a minor factor. PMID:8147696

  2. Eleven years of ground-air temperature tracking over different land cover materials

    NASA Astrophysics Data System (ADS)

    Cermák, Vladimír; Dedecek, Petr; Bodri, Louise; Safanda, Jan; Kresl, Milan

    2015-04-01

    We have analyzed series of air, near surface and shallow ground temperatures under four different land covers, namely bare clayey soil, sand, grass and asphalt, collected between 2002 and 2013, monitored at the Geothermal Climate Change Observatory Sporilov. All obtained temperature series revealed a strong dependence of the subsurface thermal regime on the surface cover material. The ground "skin" temperatures are generally warmer than the surface air temperatures for all monitored surfaces; however they mutually differ significantly reflecting the nature of the land surface. Asphalt shows the highest temperatures, temperatures below the grassy surface are the lowest. A special interest was paid to the assessment of the "temperature offset", the difference between the surface ground temperature and the surface air temperature. Even when its instant value varies dramatically on both, daily and annual scale, by up to 30+ K, on a long time scale it is believed to be generally constant. The characteristic 2003-2013 mean offset values for the individual covers are following: asphalt 4.1 K, sand 1.6 K, clay 1.3 K and grass 0.2-0.3 K. All four surface covers revealed their daily and inter-annual cycles. Incident solar radiation is the primary variable in determining the amount of the temperature offset value and its time changes. A linear relationship between air-ground temperature differences and incident solar radiation was detected. The slope of the linear regression between both variables is clearly surface cover dependent. The greatest value of 3.3 K per 100 W.m-2 was found for asphalt, rates of 1.0 to 1.2 apply for bare soil and sand covers and negative slope of -0.44 K per 100 W.m-2 stands for grass, during the day or year the slope rates may vary extensively reflecting the periodic daily and/or annual cycle as well as the irregular instant deviations in solar radiation.

  3. Temperature dependence of properties of Mn-doped nanocrystals with different binding symmetry

    NASA Astrophysics Data System (ADS)

    Yang, Boping; Zhao, Qing; Zhang, Jiayu

    2016-02-01

    We report the temperature dependence of photoluminescent properties of Mn-doped nanocrystals (NCs) with different binding symmetry. The photoluminescence peaks of Mn2+ ions shift to shorter wavelength with increasing temperatures, resulting from the reduction of crystal field. Further evidence for temperature-dependent crystal field variety is demonstrated by electronic paramagnetic resonance (EPR) spectra. Additionally, the inflexion temperature of the excited state lifetimes increases from 170 K (Sample I) to 220 K (Sample IV), which is speculated to be resulted from the easily affected wave function overlap due to thermal lattice expansion in more symmetrical binding Mn-doped NCs.

  4. Tailoring biochars from different feedstock and produced at different temperature and time of pyrolysis for their use as soil amendments

    NASA Astrophysics Data System (ADS)

    Zornoza, Raul; Moreno, Fabian; Acosta, Jose A.; Gomez Lopez, Maria Dolores; Faz, Angel

    2015-04-01

    Biochar used as a soil amendment to improve soil quality and fertility and increase soil carbon sequestration has been the focus of much research in the recent past. Unlike most conventional soil organic materials, which are readily decomposed, the recalcitrant nature of biochar increases its potential value as a soil amending material for the longer term. However, many biochars can be hydrophobic, and added to soil can aggravate water availability in areas where water scarcity is a major limiting factor for agriculture or forestry. It has been shown that biochar characteristics are influenced by production variables, especially feedstock, pyrolysis temperature and time of pyrolysis. Although there have been different studies characterizing biochars prepared from different sources, there are few studies comparing different types of biochar produced from domestic residues, manures or crop residues pyrolysis; there are, in addition, fewer studies dealing with the hydrophobic properties of the biochars. The different feedstock can have different properties which would result into different biochars even produced at the same operational factors. The main objective of this experiment was to study the influence of feedstock properties and pyrolysis temperature and time on nutrient contents, heavy metals, recalcitrance, thermal stability and hydrophobicity of biochars from cotton crop residues (CR), pig manure (PM) and domestic waste (DW). Biochars were obtained by pyrolysis under oxygen-limited conditions in a muffle furnace. The temperature was increased at 5°C min-1 to 300°C, 400°C, 500°C and 700°C and then maintained for 1h, 2h, 4 and 5 h at this temperature. All biochar properties were strongly influenced by feedstock source except for pH, the recalcitrance index and hydrophobicity. Nutrient contents were normally higher in the PM biochar, except for Cu and Ca which were higher in the DW biochar and B in the CR biochar. Heavy metal contents were significantly higher in the DW biochar. Biochar yield was higher in the DW biochar owing to the higher content of ashes. The temperature of pyrolysis did not significantly influence the level of nutrients. However, biochar yield decreased with increasing temperature, while pH increased with increasing temperature. All biochars produced at 300°C and 400°C were highly hydrophobic. Hydrophobicity totally disappeared in all biochars produced over 500°C at 2 h. Thermal stability was highly influenced by pyrolysis temperature, increasing with increasing temperature. Biochar produced at 300°C and 400°C showed presence of different pools of labile and recalcitrant pools, while biochar produced over 500°C showed an acute recalcitrant phase, with low content of labile pools. The disappearance of hydrophobicity was associated with the decreased in the labile pools of the biochar and increased thermal stability. No significant influence of the pyrolysis time was observed in any of the properties studied except for hydrophobicity, which tended to decrease with decreasing the time of pyrolysis. Our results showed that biochars can be tailored for different purposes in terms of the needs of specific nutrients, C sequestration, reduction of the content of toxic heavy metals, or absence of hydrophobicity to avoid negative hydrological processes in the soil. Acknowledgements: This work has been funded by the Programme Young Leaders in Research from Fundación Séneca (Agency of Science and Technology of the Region of Murcia, Spain) through the Project 18920/JLI/13.

  5. Electrical transport in carbon black-epoxy resin composites at different temperatures

    NASA Astrophysics Data System (ADS)

    Macutkevic, J.; Kuzhir, P.; Paddubskaya, A.; Maksimenko, S.; Banys, J.; Celzard, A.; Fierro, V.; Bistarelli, S.; Cataldo, A.; Micciulla, F.; Bellucci, S.

    2013-07-01

    Results of broadband electric/dielectric properties of different surface area—carbon black/epoxy resin composites above the percolation threshold are reported in a wide temperature range (25-500 K). At higher temperatures (above 400 K), the electrical conductivity of composites is governed by electrical transport in polymer matrix and current carriers tunneling from carbon black clusters to polymer matrix. The activation energy of such processes decreases when the carrier concentration increases, i.e., with the increase of carbon black concentration. At lower temperatures, the electrical conductivity is governed by electron tunneling and hopping. The electrical conductivity and dielectric permittivity of composites strongly decrease after annealing composites at high temperatures (500 K); at the same time potential barrier for carriers tunneling strongly increases. All the observed peculiarities can be used for producing effective low-cost materials on the basis of epoxy resin working at different temperatures for electrical applications.

  6. Temperature dependent competition between different recombination channels in organic heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Linderl, Theresa; Hörmann, Ulrich; Beratz, Sergej; Gruber, Mark; Grob, Stefan; Hofmann, Alexander; Brütting, Wolfgang

    2016-02-01

    A modification of the Shockley-Queisser theory for organic heterojunctions is presented with a special focus on constellations, where a linear extrapolation of the temperature dependence of the open circuit voltage results in the optical gap of the absorber rather than in the intermolecular charge transfer (CT) gap. We demonstrate that, depending on the electronic coupling strength between donor and acceptor molecules, either singlet or CT recombination is dominant in different temperature regimes. The different regimes are separated by a transition temperature that is usually well above room temperature (RT). However, in the case of small energy level offset and weak electronic coupling, it can be around 300 K or even below. We point out that a linear extrapolation of the open circuit voltage V oc towards 0 K for measured temperatures larger than the transition temperature results in a photovoltaic gap that is close to the optical gap, whereas for values below the transition temperature the CT gap will be extracted. We show that for α-sexithiophene (6T)/diindenoperylene (DIP) solar cells heating the substrate during 6T deposition leads to a molecular configuration at the interface where the coupling between donor and acceptor molecules is strongly reduced. This leads to a transition temperature well below RT which is confirmed by temperature dependent electroluminescence measurements. By comparing the temperature dependent spectra of high temperature and RT grown 6T/DIP solar cells to the spectra of the individual materials, the different contributions from the CT gap and the optical gap are separated.

  7. Evaluation of steam sterilization processes: comparing calculations using temperature data and biointegrator reduction data and calculation of theoretical temperature difference.

    PubMed

    Lundahl, Gunnel

    2007-01-01

    When calculating of the physical F121.1 degrees c-value by the equation F121.1 degrees C = t x 10(T-121.1/z the temperature (T), in combination with the z-value, influences the F121.1 degrees c-value exponentially. Because the z-value for spores of Geobacillus stearothermophilus often varies between 6 and 9, the biological F-value (F(Bio) will not always correspond to the F0-value based on temperature records from the sterilization process calculated with a z-value of 10, even if the calibration of both of them are correct. Consequently an error in calibration of thermocouples and difference in z-values influences the F121.1 degrees c-values logarithmically. The paper describes how results from measurements with different z-values can be compared. The first part describes the mathematics of a calculation program, which makes it easily possible to compare F0-values based on temperature records with the F(BIO)-value based on analysis of bioindicators such as glycerin-water-suspension sensors. For biological measurements, a suitable bioindicator with a high D121-value can be used (such a bioindicator can be manufactured as described in the article "A Method of Increasing Test Range and Accuracy of Bioindicators-Geobacillus stearothermophilus Spores"). By the mathematics and calculations described in this macro program it is possible to calculate for every position the theoretical temperature difference (deltaT(th)) needed to explain the difference in results between the thermocouple and the biointegrator. Since the temperature difference is a linear function and constant all over the process this value is an indication of the magnitude of an error. A graph and table from these calculations gives a picture of the run. The second part deals with product characteristics, the sterilization processes, loading patterns. Appropriate safety margins have to be chosen in the development phase of a sterilization process to achieve acceptable safety limits. Case studies are discussed and experiences are shared. PMID:17390699

  8. Comparing different protocols of temperature selection in the parallel tempering method

    NASA Astrophysics Data System (ADS)

    Fiore, Carlos E.

    2011-09-01

    Parallel tempering Monte Carlo simulations have been applied to a variety of systems presenting rugged free-energy landscapes. Despite this, its efficiency depends strongly on the temperature set. With this query in mind, we present a comparative study among different temperature selection schemes in three lattice-gas models. We focus our attention in the constant entropy method (CEM), proposed by Sabo et al. In the CEM, the temperature is chosen by the fixed difference of entropy between adjacent replicas. We consider a method to determine the entropy which avoids numerical integrations of the specific heat and other thermodynamic quantities. Different analyses for first- and second-order phase transitions have been undertaken, revealing that the CEM may be an useful criterion for selecting the temperatures in the parallel tempering.

  9. Thermal deformation of a large space panel caused by temperature difference between front and rear sides

    NASA Astrophysics Data System (ADS)

    Ichikawa, Naoki; Kurokawa, Haruhisa; Yajima, Nobuyuki; Kokaji, Shigeru; Suzuki, Akio

    This paper describes the development of a ground test system for determining the thermal deformation of large antenna panels to be used in space. The system is designed to measure the deformation occurring as a result of temperature differences between the front and rear surfaces of the panel. In the experimental set-up, a symmetric honeycomb panel was used. The front surface of the panel was heated by IR radiation, and the deformation was determined using a fringe scanning moire system which measured the shape of the rear surface. It was found that the temperature difference realized by the system was of the same order as was estimated on the orbit. The variations in the temperature difference were less than 15 percent of the average value. The effects of temperature distribution on the deformation were evaluated to be negligible by an FEM calculation.

  10. Potential causes of differences between ground and surface air temperature warming across different ecozones in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Majorowicz, Jacek A.; Skinner, Walter R.

    1997-10-01

    Analysis and modelling of temperature anomalies from 25 selected deep wells in Alberta show that the differences between GST (ground surface temperature) warming for the northern Boreal Forest ecozone and the combined Prairie Grassland ecozone and Aspen Parkland transition region to the south occur during the latter half of this century. This corresponds with recent changes in surface albedo resulting from permanent land development in the northern areas and also to increases in natural forest fires in the past 20 years. Differences between GST and SAT (surface air temperature) warming are much higher in the Boreal Forest ecozone than in the Prairie Grassland ecozone and Aspen Parkland transition region. Various hypotheses which could account for the existing differences between the GST and SAT warming in the different ecozones of Alberta, and western Canada in general, are tested. Analysis of existing data on soil temperature, hydrological piezometric surfaces, snowfall and moisture patterns, and land clearing and forest fires, indicate that large areas of Alberta, characterised by anomalous GST warming, have experienced widespread changes to the surface landscape in this century. It is postulated that this has resulted in a lower surface albedo with a subsequent increase in the absorption of solar energy. Heat flow modelling shows that, after climatic SAT warming, permanent clearing of the land is the most effective and likely cause of the observed changes in the GST warming. The greater GST warming in the Boreal Forest ecozone in the latter half of this century is related to landscape change due to land development and increasing forest fire activity. It appears to account for a portion of the observed SAT warming in this region through a positive feedback loop with the overlying air. The anthropogenic effect on regional climatic warming through 20th century land clearing and landscape alteration requires further study. In future, more accurate quantification of these various forcings will be necessary in order to distinguish between, and to detect, the variety of natural and anthropogenic influences and on climate.

  11. Egg incubation temperature differently affects female and male hatching dynamics and larval fitness in a leafhopper

    PubMed Central

    Chuche, Julien; Thiéry, Denis

    2012-01-01

    Temperature effects on ectotherms are widely studied particularly in insects. However, the life-history effects of temperature experienced during a window of embryonic development, that is egg stage, have rarely been considered. We simulated fluctuating temperatures and examined how this affects the operational sex ratio (OSR) of hatching as well as nymph and adult fitness in a leafhopper, Scaphoideus titanus. Specifically, after a warm or cold incubation we compared males and females hatching dynamics with their consequences on the sex ratio in the course of time, body size, weight, and developmental rate of the two populations, all reared on the same posthatching temperature. Males and females eggs respond differently, with females more sensitive to variation in incubation temperature. The different responses of both sexes have consequences on the sex ratio dynamic of hatchings with a weaker protandry after warm incubation. Temperatures experienced by eggs have more complex consequences on posthatching development. Later nymphal instars that hatched from eggs exposed to warm temperature were larger and bigger but developmental rate of the two populations was not affected. Our study demonstrates how incubation temperature could affect operational sex ratio and posthatching development in an insect and how this may be critical for population growth. PMID:22837822

  12. Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures

    PubMed Central

    Tesei, Donatella; Marzban, Gorji; Zakharova, Kristina; Isola, Daniela; Selbmann, Laura; Sterflinger, Katja

    2012-01-01

    Rock inhabiting fungi are among the most stress tolerant organisms on Earth. They are able to cope with different stressors determined by the typical conditions of bare rocks in hot and cold extreme environments. In this study first results of a system biological approach based on two-dimensional protein profiles are presented. Protein patterns of extremotolerant black fungi – Coniosporium perforans, Exophiala jeanselmei – and of the extremophilic fungus – Friedmanniomyces endolithicus – were compared with the cosmopolitan and mesophilic hyphomycete Penicillium chrysogenum in order to follow and determine changes in the expression pattern under different temperatures. The 2D protein gels indicated a temperature dependent qualitative change in all the tested strains. Whereas the reference strain P. chrysogenum expressed the highest number of proteins at 40 °C, thus exhibiting real signs of temperature induced reaction, black fungi, when exposed to temperatures far above their growth optimum, decreased the number of proteins indicating a down-regulation of their metabolism. Temperature of 1 °C led to an increased number of proteins in all of the analysed strains, with the exception of P. chrysogenum. These first results on temperature dependent reactions in rock inhabiting black fungi indicate a rather different strategy to cope with non-optimal temperature than in the mesophilic hyphomycete P. chrysogenum. PMID:22862921

  13. Different effects of increased water temperature on egg production of Calanus finmarchicus and C. glacialis

    NASA Astrophysics Data System (ADS)

    Pasternak, A. F.; Arashkevich, E. G.; Grothe, U.; Nikishina, A. B.; Solovyev, K. A.

    2013-09-01

    Two copepod species, Calanus finmarchicus (a widespread North Atlantic species) and C. glacialis (an Arctic species), are dominant in the zooplankton of Arctic seas. We hypothesized that the anticipated warming in the Arctic might have different effects on the arctic and boreal species. The effect of temperature on egg production rate (EPR) in these species at temperatures of 0, 2.5, 5, 7.5, and 10°C under contrasting feeding conditions was assessed in 5-day-long experiments. The EPR of the fed C. finmarchicus increased with temperature over the entire tested range. On the contrary, the EPR of C. glacialis increased only in the range of 0-5°C and dropped with further temperature growth. The difference in the influence of temperature on reproduction of these two species is statistically significant. Feeding conditions have a considerable effect on the C. finmarchicus EPR. The EPRs of the female C. glacialis that fed or starved for 5 days displayed no significant difference. These results suggest that the C. finmarchicus EPR increases with temperature under favorable feeding conditions, whereas the C. glacialis EPR decreases at a temperature over 5°C independently of the feeding conditions. This allows for prediction of the shift in abundances of these two species in pelagic communities of Arctic seas in the case of a warming scenario.

  14. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations.

    PubMed

    Goh, H-H; Khairudin, K; Sukiran, N A; Normah, M N; Baharum, S N

    2016-01-01

    Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition. PMID:26417881

  15. Tolerance, oxygen consumption and ammonia excretion of Ophiopholis sarsii vadicola in different temperatures and salinities

    NASA Astrophysics Data System (ADS)

    Fang, Jinghui; Zhang, Jihong; Jiang, Zengjie; Zhao, Xuewei; Jiang, Xu; Du, Meirong; Gao, Yaping; Fang, Jianguang

    2015-06-01

    There are more than 2000 species of brittle stars in the world. For most of them, many scientific questions including basic characteristics of eco-physiology are still unknown. In the present study, Ophiopholis sarsii vadicola acclimated at 15°C, salinity 31, were assessed for temperature and salinity tolerance. Its oxygen consumption and ammonia excretion were studied at different temperatures (5, 10, 15, 20, 25°C) and salinities (25, 30, 35). O. sarsii vadicola could tolerate 0-24°C and no brittle star was dead in the salinity range of 19-48 in the experimental situation. Two-way ANOVA showed that the oxygen consumption and ammonia excretion normalized with both dry mass and wet mass, Q 10, which is used to describe the temperature sensitivity of respiration, and moisture content were significantly affected by temperature and salinity, and the combined effects of the two factors were significant. Stepwise multiple regression analysis revealed that logarithmic oxygen consumption and ammonia excretion showed a significant positive relationship with logarithmic temperature and salinity. The logarithmic moisture content of the brittle stars showed an inverse relationship with logarithmic salinity, but a positive relationship with logarithmic temperature. This suggests that the tolerance of temperature and salinity of brittle stars is closely related to their living environment, and that the effects of temperature on oxygen consumption are more significant at higher salinity, and that the ammonia excretion is less affected by salinity at lower temperatures.

  16. Electron temperature difference between the o-point and x-point of a magnetic island

    SciTech Connect

    Yang Jinhong; Zhu Sizheng; Yu Qingquan; Zhuang, G.

    2009-09-15

    The electron temperature difference between the o-point and the x-point of a magnetic island is studied numerically by solving the two-dimensional energy transport equation. It is found that, even without a localized radio-frequency heating at the island's o-point, there is usually a temperature difference between these two points. This difference depends on the radial profile of the heating power deposition, the ratio between the parallel and the perpendicular heat conductivity and the island width, and it takes a minimum when the island width is about twice the local heat diffusion layer width. The effect of the temperature difference on the island growth is further studied, and the peaked heating power density profile at magnetic axis is found be destabilizing.

  17. Improving the Accuracy of Satellite Sea Surface Temperature Measurements by Explicitly Accounting for the Bulk-Skin Temperature Difference

    NASA Technical Reports Server (NTRS)

    Wick, Gary A.; Emery, William J.; Castro, Sandra L.; Lindstrom, Eric (Technical Monitor)

    2002-01-01

    The focus of this research was to determine whether the accuracy of satellite measurements of sea surface temperature (SST) could be improved by explicitly accounting for the complex temperature gradients at the surface of the ocean associated with the cool skin and diurnal warm layers. To achieve this goal, work was performed in two different major areas. The first centered on the development and deployment of low-cost infrared radiometers to enable the direct validation of satellite measurements of skin temperature. The second involved a modeling and data analysis effort whereby modeled near-surface temperature profiles were integrated into the retrieval of bulk SST estimates from existing satellite data. Under the first work area, two different seagoing infrared radiometers were designed and fabricated and the first of these was deployed on research ships during two major experiments. Analyses of these data contributed significantly to the Ph.D. thesis of one graduate student and these results are currently being converted into a journal publication. The results of the second portion of work demonstrated that, with presently available models and heat flux estimates, accuracy improvements in SST retrievals associated with better physical treatment of the near-surface layer were partially balanced by uncertainties in the models and extra required input data. While no significant accuracy improvement was observed in this experiment, the results are very encouraging for future applications where improved models and coincident environmental data will be available. These results are included in a manuscript undergoing final review with the Journal of Atmospheric and Oceanic Technology.

  18. Cloacal and surface temperatures of tom turkeys exposed to different rearing temperature regimes during the first 12 weeks of growth.

    PubMed

    Mayes, S L; Strawford, M L; Noble, S D; Classen, H L; Crowe, T G

    2015-06-01

    Years of genetic selection have caused an increase in growth rate and market body mass in agricultural poultry species compared to earlier genetic strains, potentially altering their physiological requirements. The objective of this study was to expose Hybrid Converter tom turkeys on a weekly basis to the recommended rearing temperature regime (TCON: control) or 4°C below the recommended standard (TTRT: treatment) to determine their thermal responses. Once per week for 12 weeks, 12 turkeys were individually exposed to either TCON or TTRT for a 2-h period. Surface temperatures of the breast (TBREAST), wing (TWING), drumstick (TDRUM), head (THEAD), and shank (TSHANK) were measured at 20-min intervals using an infrared camera, while a thermal data logger measured the skin surface temperature under the wing (TLOGGER) at 30-s intervals. The cloacal temperature (TCORE) was measured using a medical thermometer at the start and end of the exposure period. Regardless of exposure temperature, the TBREAST (TCON: P<0.001 and TTRT: P<0.001), TWING (TCON: P<0.001 and TTRT: P<0.001), and TDRUM (TCON: P<0.001 and TTRT: P<0.001) decreased from weeks 4 to 6 and remained constant from weeks 1 to 3 and 8 to 12. THEAD was elevated in week 2 (TCON: P<0.001) or week 3 (TTRT: P<0.001), TSHANK increased slightly during week 3 for both TCON (P<0.001) and TTRT (P<0.001), and TLOGGER (TCON: P<0.001 and TTRT: P=0.001) and TCORE (TCON: P<0.001 and TTRT: P<0.001) were lower during the first week. Thereafter, THEAD, TSHANK, TLOGGER, and TCORE remained constant. Exposure to TTRT resulted in lower TBREAST, TWING, and TDRUM compared to TCON. Generally, THEAD, TSHANK, TLOGGER, and TCORE were not affected by the different exposure temperatures. The data demonstrated that the degree of thermal response expressed is dependent on the location of measurement, age, and exposure temperature. PMID:25589083

  19. High operating temperature interband cascade focal plane arrays

    SciTech Connect

    Tian, Z.-B.; Godoy, S. E.; Kim, H. S.; Schuler-Sandy, T.; Montoya, J. A.; Krishna, S.

    2014-08-04

    In this paper, we report the initial demonstration of mid-infrared interband cascade (IC) photodetector focal plane arrays with multiple-stage/junction design. The merits of IC photodetectors include low noise and efficient photocarrier extraction, even for zero-bias operation. By adopting enhanced electron barrier design and a total absorber thickness of 0.7 μm, the 5-stage IC detectors show very low dark current (1.10 × 10{sup −7} A/cm{sup 2} at −5 mV and 150 K). Even with un-optimized fabrication and standard commercial (mis-matched) read-out circuit technology, infrared images are obtained by the 320 × 256 IC focal plane array up to 180 K with f/2.3 optics. The minimum noise equivalent temperature difference of 28 mK is obtained at 120 K. These initial results indicate great potential of IC photodetectors, particularly for high operating temperature applications.

  20. Effects of inherent alkali and alkaline earth metallic species on biomass pyrolysis at different temperatures.

    PubMed

    Hu, Song; Jiang, Long; Wang, Yi; Su, Sheng; Sun, Lushi; Xu, Boyang; He, Limo; Xiang, Jun

    2015-09-01

    This work aimed to investigate effects of inherent alkali and alkaline earth metallic species (AAEMs) on biomass pyrolysis at different temperatures. The yield of CO, H2 and C2H4 was increased and that of CO2 was suppressed with increasing temperature. Increasing temperature could also promote depolymerization and aromatization reactions of active tars, forming heavier polycyclic aromatic hydrocarbons, leading to decrease of tar yields and species diversity. Diverse performance of inherent AAEMs at different temperatures significantly affected the distribution of pyrolysis products. The presence of inherent AAEMs promoted water-gas shift reaction, and enhanced the yield of H2 and CO2. Additionally, inherent AAEMs not only promoted breakage and decarboxylation/decarbonylation reaction of thermally labile hetero atoms of the tar but also enhanced thermal decomposing of heavier aromatics. Inherent AAEMs could also significantly enhance the decomposition of levoglucosan, and alkaline earth metals showed greater effect than alkali metals. PMID:26005925

  1. Effect of soil temperature on root resistance: implications for different trees under Mediterranean conditions.

    PubMed

    García-Tejera, Omar; López-Bernal, Álvaro; Villalobos, Francisco J; Orgaz, Francisco; Testi, Luca

    2016-04-01

    The effect of temperature on radial root hydraulic specific resistance (Rp) is a known phenomenon; however, the impact ofRpvariations expected from soil temperature changes over the tree root system is unknown. The present article analyses the relations hip ofRpwith temperature in olive 'Picual' and a hybrid rootstock, GF677, at five different temperatures, showing that a variation of 3- and 4.5-folds exists for olive 'Picual' and GF677 in the range from 10 to 20 °C. The functions obtained were scaled up to show the theoretical changes of total radial root system resistance in a common tree orchard in a Mediterranean climate at a daily and seasonal scale, using recorded soil temperature values: a difference between summer and winter of 3.5-fold for olive 'Picual' and 9-fold for GF677 was observed. Nevertheless,Rpchanges are not only related to temperature, as cavitation or circadian rhythms in aquaporin expression may also play a role. The results obtained from an experiment with the two cultivars submitted to constant pressure and temperature during several hours exhibited a variation inRp, but this was of lower magnitude than that observed due to temperature changes. Finally, a comparison ofRpat 25 °C between GF677 and GN15 (another rootstock obtained from the same parental as GF677) showed significant differences. According to our results, diurnal and seasonal changes inRpdue to temperature variations are of significant importance, and it would therefore be advisable to assess them explicitly into soil-plant-atmosphere continuum models. PMID:26769470

  2. Temperature Profiles Along the Root with Gutta-percha Warmed through Different Heat Sources

    PubMed Central

    Simeone, Michele; Santis, Roberto De; Ametrano, Gianluca; Prisco, Davide; Borrelli, Marino; Paduano, Sergio; Riccitiello, Francesco; Spagnuolo, Gianrico

    2014-01-01

    Objectives: To evaluate temperature profiles developing in the root during warm compaction of gutta-percha with the heat sources System B and System MB Obtura (Analityc Technology, Redmond, WA, USA). Thirty extracted human incisor teeth were used. Root canals were cleaned and shaped by means of Protaper rotary files (Dentsply-Maillefer, Belgium), and imaging was performed by micro-CT (Skyscan 1072, Aartselaar, Belgium). Methods: Teeth were instrumented with K-type thermocouples, and the roots were filled with thermoplastic gutta-percha. Vertical compaction was achieved through the heat sources System B and System MB, and temperature profiles were detect-ed by means of NI Dac Interface controlled by the LabView System. With both heat sources, higher temperature levels were recorded in the region of the root far from the apex. When the warm plugger tip was positioned at a distance of 3 mm from the root apex, temperature levels of about 180°C were used to soften gutta-percha, and no statistically significant differences were observed between peak temperatures developed by the two heating sources at the root apex. However, a temperature level higher than 40°C was maintained for a longer time with System MB. Results: Statistically significant differences were observed in peak temperature levels recorded far from the root apex. Thus, with a temperature of about 180°C and the warm plugger positioned at 3 mm from the root apex, both heating sources led to a temperature slightly higher than 40°C at the apex of the root, suggesting that the gutta-percha was properly softened. Significance: A temperature level higher than 40°C was maintained for a longer time with System MB, thus providing an ad-equate time for warm compaction of the gutta-percha. PMID:25614768

  3. The Shift of Thermoneutral Zone in Striped Hamster Acclimated to Different Temperatures

    PubMed Central

    Zhao, Zhi-Jun; Chi, Qing-Sheng; Liu, Quan-Sheng; Zheng, Wei-Hong; Liu, Jin-Song; Wang, De-Hua

    2014-01-01

    Temperature affects all biological functions and will therefore modulate ecologically significant interactions between animals and their environment. Here, we examined the effect of ambient temperature (Ta) on the thermal biology and energy budget in striped hamsters acclimated to cold (5°C), warm (21°C) and hot temperatures (31°C). Thermoneutral zone (TNZ) was 22.5–32.5°C, 25–32.5°C and 30–32.5°C in the cold-, warm- and hot-acclimated hamsters, respectively. The cold acclimation decreased the lower critical temperature and made the TNZ wider, and hot exposure elevated the lower critical temperature, resulting in a narrow TNZ. Within the TNZ, cold-acclimated hamsters showed a significantly higher rate of metabolism and thermogenesis than those acclimated to hot temperature. Digestive enzymes activities, including intestinal sucrase, maltase, L-alanine aminopeptidase-N and leucine aminopeptidase were higher in the cold than in the hot. The changes in metabolic rate and thermogenesis at different temperatures were in parallel with cytochrome c oxidase activity and uncoupling protein 1 gene expression of brown adipose tissue. This suggests that the shift of the lower critical temperature of TNZ is possibly associated with the rate of metabolism and thermogenesis, as well as with the digestive capacity of the gastrointestinal tract at different Ta. The upper critical temperature of TNZ may be independent of the changes in Ta. The changes of lower critical temperature of TNZ are an important strategy in adaption to variations of Ta. PMID:24400087

  4. Acclimation of Solea senegalensis to different ambient temperatures: implications for thyroidal status and osmoregulation.

    PubMed

    Arjona, Francisco J; Ruiz-Jarabo, Ignacio; Vargas-Chacoff, Luis; Martn Del Ro, Mara P; Flik, Gert; Mancera, Juan M; Klaren, Peter H M

    2010-01-01

    We have investigated the regulation of thyroidal status and osmoregulatory capacities in juveniles from the teleost Solea senegalensis acclimated to different ambient temperatures. Juveniles, raised in seawater at 19C, were acclimated for 3weeks to temperatures of 12, 19 and 26C. Since our preliminary observations showed that at 12C feed intake was suppressed, our experimental design controlled for this factor. The concentration of branchial Na(+),K(+)-ATPase, estimated by measurements of enzyme activity at the optimum temperature of this enzyme (37C), did not change. In contrast, an increase in Na(+),K(+)-ATPase activity (measured at 37C), was observed in the kidney of 12C-acclimated fish. In fish acclimated to 12C, the hepatosomatic index had increased, which correlated with increased plasma levels of triglycerides and non-esterified fatty acids. Plasma cortisol levels did not differ significantly between the experimental groups. In liver and gills, the amount of iodothyronine deiodinases that exhibit thyroid hormone outer ring deiodination was up-regulated only when fish did not feed. When assayed at the acclimation temperature, kidney deiodinase activities were similar, indicating a temperature-compensation strategy. 3,5,3'-triiodothyronine (T3) tissue concentrations in gills and kidney did not differ significantly between experimental groups. However, at 12C, lower T3 tissue levels were measured in plasma and liver. We conclude that S. senegalensis adjusts its osmoregulatory system to compensate for the effects of temperature on electrolyte transport capacity. The organ-specific changes in thyroid hormone metabolism at different temperatures indicate the involvement of thyroid hormones in temperature acclimation. PMID:24391247

  5. Recovery of Pasteurella hemolytica from aerosols at differing temperature and humidity.

    PubMed Central

    Jericho, K W; Langford, E V; Pantekoek, J

    1977-01-01

    A Pasteurella hemolytica suspension with fetal calf serum was aerosolized in a standard system with ambient temperature of 30 or 2 degrees C and relative humidity conditions of 90 or 60%. The number of organisms sprayed in five minutes and the number recovered from one third of the aerosol during these five minutes was determined. Recoveries were influenced by temperature difference between aerosol and collecting fluid. Recoveries ranged between 0.059--0.94%. Images Fig. 1. PMID:861840

  6. Lipase-catalyzed interesterification in packed bed reactor using 2 different temperatures.

    PubMed

    Chae, Mi-Hwa; Park, Hye-Kyung; Kwon, Kwang-Il; Kim, Jong-Wook; Hong, Seung In; Kim, Yangha; Kim, Byung Hee; Kim, In-Hwan

    2011-05-01

    Lipase-catalyzed interesterification of high oleic sunflower oil and fully hydrogenated soybean oil (70 : 30, wt/ wt) was carried out in a packed bed reactor using an immobilized lipase from Thermomyces lanuginosus (Lipozyme TL IM) and the effect of a stepwise temperature protocol involving the 2 different temperatures, 60 and 70 °C, was investigated. The melting point of a fat that was incubated at 70 °C for 9 min was 57 °C, which suggested that it should be to employ a lower reaction temperature of 60 °C, after the first 9 min of the reaction. There were no significant differences (P < 0.05) in the conversion degree, triacylglycerol profile, and solid fat content between a constant temperature protocol (70 °C) and a stepwise temperature protocol (a combination of 70 and 60 °C). After 50 cycles, the overall residual activities of enzymes employed in stepwise temperature protocol were significantly (P < 0.05) higher than those of enzymes employed in constant temperature protocol. PMID:22417335

  7. Influence trend of temperature distribution in skin tissue generated by different exposure dose pulse laser

    NASA Astrophysics Data System (ADS)

    Shan, Ning; Wang, Zhijing; Liu, Xia

    2014-11-01

    Laser is widely applied in military and medicine fields because of its excellent capability. In order to effectively defend excess damage by laser, the thermal processing theory of skin tissue generated by laser should be carried out. The heating rate and thermal damage area should be studied. The mathematics model of bio-tissue heat transfer that is irradiated by laser is analyzed. And boundary conditions of bio-tissue are discussed. Three layer FEM grid model of bio-tissue is established. The temperature rising inducing by pulse laser in the tissue is modeled numerically by adopting ANSYS software. The changing trend of temperature in the tissue is imitated and studied under the conditions of different exposure dose pulse laser. The results show that temperature rising in the tissue depends on the parameters of pulse laser largely. In the same conditions, the pulse width of laser is smaller and its instant power is higher. And temperature rising effect in the tissue is very clear. On the contrary, temperature rising effect in the tissue is lower. The cooling time inducing by temperature rising effect in the tissue is longer along with pulse separation of laser is bigger. And the temperature difference is bigger in the pulse period.

  8. Momentum and mass fluxes in a gas confined between periodically structured surfaces at different temperatures

    NASA Astrophysics Data System (ADS)

    Donkov, Alexander A.; Tiwari, Sudarshan; Liang, Tengfei; Hardt, Steffen; Klar, Axel; Ye, Wenjing

    2011-07-01

    It is well known that in a gas-filled duct or channel along which a temperature gradient is applied, a thermal creep flow is created. Here we show that a mass and momentum flux can also be induced in a gas confined between two parallel structured surfaces at different temperatures, i.e., orthogonal to the temperature gradient. We use both analytical and numerical methods to compute the resulting fluxes. The momentum flux assumes its maximum value in the free-molecular flow regime, the (normalized) mass flux in the transition flow regime. The discovered phenomena could find applications in methods for energy-conversion and thermal pumping of gases.

  9. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  10. Nonlinear optical parameters of nanocrystalline AZO thin film measured at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Jilani, Asim; Abdel-wahab, M. Sh; Al-ghamdi, Attieh A.; Dahlan, Ammar sadik; Yahia, I. S.

    2016-01-01

    The 2.2 wt% of aluminum (Al)-doped zinc oxide (AZO) transparent and preferential c-axis oriented thin films were prepared by using radio frequency (DC/RF) magnetron sputtering at different substrate temperature ranging from room temperature to 200 °C. For structural analysis, X-ray Diffraction (XRD) and Atomic Force Electron Microscope (AFM) was used for morphological studies. The optical parameters such as, optical energy gap, refractive index, extinction coefficient, dielectric loss, tangent loss, first and third order nonlinear optical properties of transparent films were investigated. High transmittance above 90% and highly homogeneous surface were observed in all samples. The substrate temperature plays an important role to get the best transparent conductive oxide thin films. The substrate temperature at 150 °C showed the growth of highly transparent AZO thin film. Energy gap increased with the increased in substrate temperature of Al doped thin films. Dielectric constant and loss were found to be photon energy dependent with substrate temperature. The change in substrate temperature of Al doped thin films also affect the non-liner optical properties of thin films. The value of χ(3) was found to be changed with the grain size of the thin films that directly affected by the substrate temperature of the pure and Al doped ZnO thin films.

  11. Experimental set up of a magnetoelectric measuring system operating at different temperatures

    NASA Astrophysics Data System (ADS)

    Gil, K.; Gil, J.; Cruz, B.; Ramirez, A.; Medina, M.; Torres, J.

    2016-02-01

    The magnetoelectric effect is the phenomenon whereby through a magnetic stimulation can be produced an electrical response or vice versa. We implement a magnetoelectric voltage measuring device through the dynamic method for a different range of temperatures. The system was split into an electric set and an instrumentation and control set. Design and element selection criteria that the experimenter must take into account are presented, with special emphasis in the design of the sample holder, which is the fundamental component that differentiates the system operating at high temperature and the one operating at room temperature. The experimental equipment consists of an electromagnet with DC magnetic flux density (B) in a range of (0.0 to 1.6) KOe, a Helmholtz coil which operates with a sinusoidal B between (0.0 and 0.016) KOe and a PT100 temperature sensor. A tubular heating resistance, a Checkman temperature control and an SSR 40A were used for controlling the temperature. As an application of the system, the transverse and longitudinal magnetoelectric coefficient was measured for a thin film of BiFeO3 at room temperature and 307K. It was observed that the behaviour of the longitudinal and transverse magnetoelectric coefficient matches the reported value and decreased with increasing temperature.

  12. Temperature Characterization of Different Urban Microhabitats of Aedes albopictus (Diptera Culicidae) in Central-Northern Italy.

    PubMed

    Vallorani, Roberto; Angelini, Paola; Bellini, Romeo; Carrieri, Marco; Crisci, Alfonso; Mascali Zeo, Silvia; Messeri, Gianni; Venturelli, Claudio

    2015-08-01

    Aedes albopictus (Skuse) is an invasive mosquito species that has spread to many countries in temperate regions bordering the Mediterranean basin, where it is becoming a major public health concern. A good knowledge of the thermal features of the most productive breeding sites for Ae. albopictus is crucial for a better estimation of the mosquitoes' life cycle and developmental rates. In this article, we address the problem of predicting air temperature in three microhabitats common in urban and suburban areas and the air and water temperature inside an ordinary catch basin, which is considered the most productive breeding site for Ae. albopictus in Italy. Temperature differences were statistically proven between the three microhabitats and between the catch basin external and internal temperature. The impacts on the developmental rates for each life stage of Ae. albopictus were tested through a parametric function of the temperature, and the aquatic stages resulted as being the most affected using the specific temperature inside a typical catch basin instead of a generic air temperature. The impact of snow cover on the catch basin internal temperature, and consequently on the mortality of diapausing eggs, was also evaluated. These data can be useful to improve epidemiological models for a better prediction of Ae. albopictus seasonal and population dynamics in central-northern Italian urban areas. PMID:26314064

  13. Genetically determined differences in ethanol sensitivity influenced by body temperature during intoxication

    SciTech Connect

    Alkana, R.L.; Finn, D.A.; Bejanian, M.; Crabbe, J.C.

    1988-01-01

    The present study investigated the importance of body temperature during intoxication in mediating differences between five inbred strains of mice (C57BL/6J; BALB/cJ; DBA/2J; A/HeJ; 129/J) in their acute sensitivity to the hypnotic effects of ethanol. Mice exposed to 22/degrees/C after ethanol injection became hypothermic and exhibited statistically significant differences between strains in rectal temperatures at the return of the righting reflex (RORR), duration of loss of the righting reflex (LORR), and blood and brain ethanol concentrations at RORR. Exposure to 34/degrees/C after injection offset ethanol-hypothermia and markedly reduced strain-related differences in rectal temperatures and blood and brain ethanol concentrations at RORR. Brain ethanol concentrations at RORR were significantly lower in C57, BALB, DBA and A/He mice exposed to 34/degrees/C compared to mice exposed to 22/degrees/C during intoxication suggesting that offsetting hypothermia increased ethanol sensitivity in these strains. Taken with previous in vitro studies, these results suggest that genetically determined differences in acute sensitivity to the behavioral effects of ethanol reflect differences in body temperature during intoxication as well as differences in sensitivity to the initial actions of ethanol at the cellular level.

  14. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES

    PubMed Central

    BADILLA-RAMÍREZ, Yanán; FALLAS-PADILLA, Karolina L.; FERNÁNDEZ-JARAMILLO, Heriberto; ARIAS-ECHANDI, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (104 CFU/mL and 107 CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  15. Rheological characterization of novel physically crosslinked terpolymeric hydrogels at different temperatures

    NASA Astrophysics Data System (ADS)

    Malana, Muhammad Aslam; Zohra, Rubab; Khan, Muhammad Saleem

    2012-09-01

    The main objective of this research work is to reveal the detailed and extensive rheological characterization of terpolymeric hydrogel formulations using a variety of monomers having different concentrations of acrylic acid and applying a range of temperatures. The hydrogels with the different concentrations of acrylic acid were prepared in the absence of air using three different monomers, by free radical polymerization, gradually increasing the temperature up to polymerization point, using ethyl alcohol as solvent. Different shear measurements were performed to study rheological properties, temperature dependence, and yield strength of acrylic acid pharmaceutical hydrogels. Various models were applied to analyze the rheological behavior of the gels. The acrylic acid pharmaceutical gels having physical cross links in the gel networks, exhibit remarkable temperature dependence especially with relatively higher concentration of acrylic acid at greater shear rate. Flow curves plotted at various temperatures indicate that these gels exhibit a reasonable pseudoplastic behavior. All these hydrogels require appropriate yield strength to break their network structures. The gel samples exhibit the best fit to the Modified Bingham model, which can explain the overall flow behavior of these topical gels. The rheological analysis indicates that these gels may be used as topical gels for targeted and controlled drug delivery at a specific site.

  16. SURVIVAL CAPACITY OF Arcobacter butzleri INOCULATED IN POULTRY MEAT AT TWO DIFFERENT REFRIGERATION TEMPERATURES.

    PubMed

    Badilla-Ramírez, Yanán; Fallas-Padilla, Karolina L; Fernández-Jaramillo, Heriberto; Arias-Echandi, María Laura

    2016-01-01

    Arcobacter spp. are emerging enteropathogens and potential zoonotic agents that can be transmitted by food and water, being considered a public health risk. The high isolation rate of these bacteria from poultry products suggests that it may be a major source of human infections. One hallmark for differentiating the genus Arcobacter fromCampylobacter includes their growing capacity at low temperatures (15-30 °C) under aerobic conditions. However, little is known about the population density variation of these bacteria at different refrigeration temperatures. The aim of this study was to determine the survival behavior of two different Arcobacter butzleri concentrations (104 CFU/mL and 107 CFU/mL) inoculated on chicken legs and held at two different refrigeration temperatures (4 and 10 °C) throughout storage time. Results have shown that A. butzleri had growing capacity both at 4 and 10 °C. No statistical difference between the survival trends was found for both bacterial concentrations and temperatures tested. This study shows that A. butzleri is a robust species with regard to storage temperature, and represents a potential health risk for poultry meat consumers. PMID:27007565

  17. Temperature and functional traits influence differences in nitrogen uptake capacity between native and invasive grasses.

    PubMed

    Leffler, A Joshua; James, Jeremy J; Monaco, Thomas A

    2013-01-01

    Performance differences between native and exotic invasive plants are often considered static, but invasive grasses may achieve growth advantages in western North America shrublands and steppe under only optimal growing conditions. We examine differences in N uptake and several morphological variables that influence uptake at temperatures between 5 and 25 °C. We contrast two native perennial grasses in western North America: Elymus elymoides and Pseudoroegneria spicata; two invasive annual grasses: Bromus tectorum and Taeniatherum caput-medusae; and one highly selected non-native perennial grass: Agropyron cristatum. The influence of temperature on N uptake is poorly characterized, yet these invasive annual grasses are known to germinate in warm soils in the autumn, and both experience cool soils during the short growing season following snowmelt in the spring. To further explore the influence of temperature on the correlation between morphological variables and N uptake, our data are applied to a previously published path model and one proposed here. Differences in N uptake between native and invasive grasses were small at the lowest temperature, but were large at the highest temperature. At lower temperatures, uptake of N by annuals and perennials was correlated with leaf N and mass. At higher temperatures, uptake by annuals was correlated only with these leaf traits, but uptake by perennials was correlated with these leaf traits as well as root N and mass. Consequently, our results imply that annual grasses face fewer morphological constraints on N uptake than perennial grasses, and annual grasses may gain further advantage in warmer temperature conditions or during more frequent warm periods. PMID:22744743

  18. Effects of Temperature on Solute Transport Parameters in Differently-Textured Soils at Saturated Condition

    NASA Astrophysics Data System (ADS)

    Hamamoto, S.; Arihara, M.; Kawamoto, K.; Nishimura, T.; Komatsu, T.; Moldrup, P.

    2014-12-01

    Subsurface warming driven by global warming, urban heat islands, and increasing use of shallow geothermal heating and cooling systems such as the ground source heat pump, potentially causes changes in subsurface mass transport. Therefore, understanding temperature dependency of the solute transport characteristics is essential to accurately assess environmental risks due to increased subsurface temperature. In this study, one-dimensional solute transport experiments were conducted in soil columns under temperature control to investigate effects of temperature on solute transport parameters, such as solute dispersion and diffusion coefficients, hydraulic conductivity, and retardation factor. Toyoura sand, Kaolin clay, and intact loamy soils were used in the experiments. Intact loamy soils were taken during a deep well boring at the Arakawa Lowland in Saitama Prefecture, Japan. In the transport experiments, the core sample with 5-cm diameter and 4-cm height was first isotropically consolidated, whereafter 0.01M KCl solution was injected to the sample from the bottom. The concentrations of K+ and Cl- in the effluents were analyzed by an ion chromatograph to obtain solute breakthrough curves. The solute transport parameters were calculated from the breakthrough curves. The experiments were conducted under different temperature conditions (15, 25, and 40 oC). The retardation factor for the intact loamy soils decreased with increasing temperature, while water permeability increased due to reduced viscosity of water at higher temperature. Opposite, the effect of temperature on solute dispersivity for the intact loamy soils was insignificant. The effects of soil texture on the temperature dependency of the solute transport characteristics will be further investigated from comparison of results from differently-textured samples.

  19. Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics.

    PubMed

    Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G

    2012-11-01

    Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485

  20. Evolution of microstructural defects with strain effects in germanium nanocrystals synthesized at different annealing temperatures

    SciTech Connect

    Zhang, Minghuan; Cai, Rongsheng; Zhang, Yujuan; Wang, Chao; Wang, Yiqian; Ross, Guy G.; Barba, David

    2014-07-01

    Ge nanocrystals (Ge-ncs) were produced by implantation of {sup 74}Ge{sup +} into a SiO{sub 2} film on (100) Si, followed by high-temperature annealing from 700 °C to 1100 °C. Transmission electron microscopy (TEM) studies show that the average size of Ge-ncs increases with the annealing temperature. High-resolution TEM (HRTEM) investigations reveal the presence of planar and linear defects in the formed Ge-ncs, whose relative concentrations are determined at each annealing temperature. The relative concentration of planar defects is almost independent of the annealing temperature up to 1000 °C. However, from 1000 °C to 1100 °C, its concentration decreases dramatically. For the linear defects, their concentration varies considerably with the annealing temperatures. In addition, by measuring the interplanar spacing of Ge-ncs from the HRTEM images, a strong correlation is found between the dislocation percentage and the stress field intensity. Our results provide fundamental insights regarding both the presence of microstructural defects and the origin of the residual stress field within Ge-ncs, which can shed light on the fabrication of Ge-ncs with quantified crystallinity and appropriate size for the advanced Ge-nc devices. - Highlights: • Growth of Ge nanocrystals at different annealing temperatures was investigated. • Strain field has great effects on the formation of dislocations. • Different mechanisms are proposed to explain growth regimes of Ge nanocrystals.

  1. Evaluation of the improved linear emissivity constraint temperature and emissivity separation method by using the simulated hyperspectral thermal infrared data

    NASA Astrophysics Data System (ADS)

    Wu, Hua; Li, Zhao-Liang; Tang, Bo-Hui; Tang, Rong-Lin

    2015-12-01

    In this study, an improved linear emissivity constraint temperature and emissivity separation (I-LECTES) method was first proposed to overcome the discontinuities problem of the retrieved land surface emissivities (LSEs) in the former linear emissivity constraint temperature and emissivity separation (LECTES) method. Consequently, the hyperspectral thermal infrared data were carefully simulated according to the configuration of Designs & Prototypes microFTIR Model 102, and were used to evaluate the performance of the I-LECTES method. Meanwhile, the I-LECTES method was also compared with the LECTES method. Different the atmosphere and surface circumstances were considered, as well as the different levels of noise equivalent temperature difference (NEΔT). The results showed that the proposed I-LECTES method is of a better accuracy compared with the LECTES method and has the characteristic of keeping the retrieved LSEs continuous, which sounds more reasonable. Because the noises in the ground measured radiance may have more effects on the accuracies of land surface temperature (LST) and LSEs than those in the atmospheric downwelling radiance, the noise in the ground measured radiance should be removed as much as possible to improve the accuracies of retrieved LST and LSEs. Furthermore, taken into account the lower retrieval accuracies for the cold and dry atmosphere, both the I-LECTES method and the LECTES method should be taken a full consideration. The proposed method is regarded to be promising because of its holding continuity and noise-immune.

  2. Microstructures and properties of titanium nitride films prepared by pulsed laser deposition at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Guo, Hongjian; Chen, Wenyuan; Shan, Yu; Wang, Wenzhen; Zhang, Zhenyu; Jia, Junhong

    2015-12-01

    The nanostructured titanium nitride (TiN) films were fabricated by pulsed laser deposition (PLD) technique at different substrate temperatures under residual vacuum, and the influence of substrate temperatures on the microstructure, mechanical and tribological properties of TiN films was investigated and discussed. The results shown that the consistent stoichiometric TiN films were obtained and the grain size increased from 10.5 to 38.7 nm with the increasing of substrate temperature. The hardness of films decreased with the substrate temperatures increasing, the highest hardness reached to 30.6 GPa at the substrate temperature of 25 °C, and the critical load increased first and decreased at 500 °C, the highest critical load was 23.8 N at the substrate temperature of 300 °C. The film deposited at the substrate temperature of 25 °C registered the lowest friction coefficient of 0.088 and wear rate of 7.8 × 10-7 mm3/(N m). The excellent tribological performance of the films was attributed to the small grain size, high hardness and smooth surface of the film.

  3. Piezoresistive Sensitivity, Linearity and Resistance Time Drift of Polysilicon Nanofilms with Different Deposition Temperatures

    PubMed Central

    Shi, Changzhi; Liu, Xiaowei; Chuai, Rongyan

    2009-01-01

    Our previous research work indicated that highly boron doped polysilicon nanofilms (≤100 nm in thickness) have higher gauge factor (the maximum is ∼34 for 80 nm-thick films) and better temperature stability than common polysilicon films (≥ 200nm in thickness) at the same doping levels. Therefore, in order to further analyze the influence of deposition temperature on the film structure and piezoresistance performance, the piezoresistive sensitivity, piezoresistive linearity (PRL) and resistance time drift (RTD) of 80 nm-thick highly boron doped polysilicon nanofilms (PSNFs) with different deposition temperatures were studied here. The tunneling piezoresistive model was established to explain the relationship between the measured gauge factors (GFs) and deposition temperature. It was seen that the piezoresistance coefficient (PRC) of composite grain boundaries is higher than that of grains and the magnitude of GF is dependent on the resistivity of grain boundary (GB) barriers and the weight of the resistivity of composite GBs in the film resistivity. In the investigations on PRL and RTD, the interstitial-vacancy (IV) model was established to model GBs as the accumulation of IV pairs. And the recrystallization of metastable IV pairs caused by material deformation or current excitation is considered as the prime reason for piezoresistive nonlinearity (PRNL) and RTD. Finally, the optimal deposition temperature for the improvement of film performance and reliability is about 620 °C and the high temperature annealing is not very effective in improving the piezoresistive performance of PSNFs deposited at lower temperatures. PMID:22399960

  4. Influence of Different Temperature Sensors on Measuring Energy Efficiency and Heating-Up Time of Hobs

    NASA Astrophysics Data System (ADS)

    Beges, G.; Drnovsek, J.; Ogorevc, J.; Bojkovski, J.

    2015-03-01

    Measuring performance, mainly temperature dependence, for electric cooking ranges, hobs, ovens, and grills for household use is essential for producers as low power consumption of appliances represents a powerful selling point and also in terms of ecodesign requirements. It is also important from a consumer perspective, as these appliances are responsible for the significant share of households' electricity bills. The aim of the paper was to highlight and clearly define possible ambiguities and weaknesses of standardized procedures for measuring hob performance. Differences between measurement/test results of testing laboratories are possible due to lack of detailed information in the standard, and it is difficult to obtain technical accessories required in the standard. An energy consumption comparison of three different hobs is presented (standard iron electrical hob, radiant-glass ceramic, and induction hob). Various temperature sensors (different types of thermocouples and a platinum resistance thermometer) and technical accessories (e.g., different cookware) were used to research differences or influences on final result of hobs' energy efficiency. Results show that temperature measurements with different sensors have an influence on the time difference in critical points for determination of hob energy efficiency.

  5. Temperature rise during polymerization of different cavity liners and composite resins

    PubMed Central

    Karatas, Ozcan; Turel, Verda; Bayindir, Yusuf Ziya

    2015-01-01

    Objective: The purpose of this study was to evaluate the thermal insulating properties of different light curing cavity liners and composite resins during light emitting diode (LED) curing. Materials and Methods: Sixty-four dentin discs, 1 mm thick and 8 mm in diameter, were prepared. Specimens were divided into four groups. Calcium hydroxide (Ca[OH]2), resin-modified glass ionomer cement, flowable composite and adhesive systems were applied to dentin discs according to the manufacturers’ instructions. The rise in temperature during polymerization with a LED curing unit (LCU) was measured using a K-type thermocouple connected to a data logger. Subsequently, all specimens were randomly divided into one of two groups. A silorane-based composite resin and a methacrylate-based composite resin were applied to the specimens. Temperature rise during polymerization of composite resins with LCU were then measured again. Data were analyzed using one-way ANOVA and post hoc Tukey analyses. Results: There were significant differences in temperature rise among the liners, adhesives, and composite resins (P < 0.05). Silorane-based composite resin exhibited significantly greater temperature rises than methacrylate-based resin (P < 0.05). The smallest temperature rises were observed in Ca(OH)2 specimens. Conclusion: Thermal insulating properties of different restorative materials are important factors in pulp health. Bonding agents alone are not sufficient to protect pulp from thermal stimuli throughout curing. PMID:26751112

  6. Phase-difference and spectroscopic imaging for monitoring of human brain temperature during cooling.

    PubMed

    Weis, Jan; Covaciu, Lucian; Rubertsson, Sten; Allers, Mats; Lunderquist, Anders; Ortiz-Nieto, Francisco; Ahlström, Håkan

    2012-12-01

    Decrease of the human brain temperature was induced by intranasal cooling. The main purpose of this study was to compare the two magnetic resonance methods for monitoring brain temperature changes during cooling: phase-difference and magnetic resonance spectroscopic imaging (MRSI) with high spatial resolution. Ten healthy volunteers were measured. Selective brain cooling was performed through nasal cavities using saline-cooled balloon catheters. MRSI was based on a radiofrequency spoiled gradient echo sequence. The spectral information was encoded by incrementing the echo time of the subsequent eight image records. Reconstructed voxel size was 1×1×5 mm(3). Relative brain temperature was computed from the positions of water spectral lines. Phase maps were obtained from the first image record of the MRSI sequence. Mild hypothermia was achieved in 15-20 min. Mean brain temperature reduction varied in the interval <-3.0; -0.6>°C and <-2.7; -0.7>°C as measured by the MRSI and phase-difference methods, respectively. Very good correlation was found in all locations between the temperatures measured by both techniques except in the frontal lobe. Measurements in the transversal slices were more robust to the movement artifacts than those in the sagittal planes. Good agreement was found between the MRSI and phase-difference techniques. PMID:22819582

  7. Behavior, metabolism and swimming physiology in juvenile Spinibarbus sinensis exposed to PFOS under different temperatures.

    PubMed

    Xia, Ji-Gang; Nie, Li-Juan; Mi, Xia-Mei; Wang, Wei-Zhen; Ma, Yi-Jie; Cao, Zhen-Dong; Fu, Shi-Jian

    2015-10-01

    The harmful effects of perfluorooctane sulfonate (PFOS) are of growing international concern. This paper aimed to gain an integrated understanding of fitness-related ecological end points, such as behavior, metabolism and swimming physiology, in juvenile Spinibarbus sinensis in response to PFOS toxicity at different temperatures. The fish were exposed to a range of PFOS concentrations (0, 0.32, 0.8, 2 and 5 mg/L) at different temperatures (18 and 28 °C) for 30 days. The effects on fish behavior, metabolic characteristics and aerobic swimming performance caused by PFOS at different temperatures were investigated. Our results showed that both PFOS and temperature had important influences on spontaneous swimming behavior, social interactions, routine metabolic rate (RMR), net energetic cost of transport (COTnet) and critical swimming speed (U crit) in fish. The lowest observed effect concentration for both U crit and RMR was 5 and 0.8 mg/L at 18 and 28 °C, respectively. We found that PFOS affected various behavioral and social end points and also appeared to affect metabolic rates and reduced U crit, likely as a result of increased COTnet, and that many of these effects also changed with respect to temperature. Our results further the understanding of the metabolic and behavioral toxicity of PFOS to aquatic organisms. PMID:26077224

  8. Metabolic flux and nodes control analysis of brewer's yeasts under different fermentation temperature during beer brewing.

    PubMed

    Yu, Zhimin; Zhao, Haifeng; Zhao, Mouming; Lei, Hongjie; Li, Huiping

    2012-12-01

    The aim of this work was to further investigate the glycolysis performance of lager and ale brewer's yeasts under different fermentation temperature using a combined analysis of metabolic flux, glycolytic enzyme activities, and flux control. The results indicated that the fluxes through glycolytic pathway decreased with the change of the fermentation temperature from 15 °C to 10 °C, which resulted in the prolonged fermentation times. The maximum activities (V (max)) of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) at key nodes of glycolytic pathway decreased with decreasing fermentation temperature, which was estimated to have different control extent (22-84 %) on the glycolytic fluxes in exponential or flocculent phase. Moreover, the decrease of V (max) of PFK or PK displayed the crucial role in down-regulation of flux in flocculent phase. In addition, the metabolic state of ale strain was more sensitive to the variation of temperature than that of lager strain. The results of the metabolic flux and nodes control analysis in brewer's yeasts under different fermentation temperature may provide an alternative approach to regulate glycolytic flux by changing V (max) and improve the production efficiency and beer quality. PMID:23065402

  9. Temperature-difference-driven mass transfer through the vapor from a cold to a warm liquid.

    PubMed

    Struchtrup, Henning; Kjelstrup, Signe; Bedeaux, Dick

    2012-06-01

    Irreversible thermodynamics provides interface conditions that yield temperature and chemical potential jumps at phase boundaries. The interfacial jumps allow unexpected transport phenomena, such as the inverted temperature profile [Pao, Phys. Fluids 14, 306 (1971)] and mass transfer from a cold to a warm liquid driven by a temperature difference across the vapor phase [Mills and Phillips, Chem. Phys. Lett. 372, 615 (2002)]. Careful evaluation of the thermodynamic laws has shown [Bedeaux et al., Physica A 169, 263 (1990)] that the inverted temperature profile is observed for processes with a high heat of vaporization. In this paper, we show that cold to warm mass transfer through the vapor from a cold to a warm liquid is only possible when the heat of evaporation is sufficiently small. A necessary criterium for the size of the mass transfer coefficient is given. PMID:23005078

  10. Surface acoustic wave velocity of gold films deposited on silicon substrates at different temperatures

    SciTech Connect

    Salas, E.; Jimenez Rioboo, R. J.; Prieto, C.; Every, A. G.

    2011-07-15

    Au thin films have been deposited by DC magnetron sputtering on Si (001) substrates at different substrate temperatures, ranging from 200 K to 450 K. With increasing temperature, the expected crystallinity and morphology of the Au thin film are clearly improved, as shown by x ray diffraction, atomic force microscopy and scanning electron microscopy experiments. Parallel to this, the surface acoustic wave propagation velocity shows a clear enhancement toward the ideal values obtained from numerical simulations of a Au thin film on Si (001) substrate. Moreover, a very thin and slightly rough interlayer between the Si (001) substrate and the Au thin film is developed for temperatures above 350 K. The composition and nature of this interlayer is not known. This interlayer may be responsible for the steep change in the structural and elastic properties of the Au thin films at the higher temperatures and possibly also for an improvement of the adhesion properties of the Au on the Si (001) substrate.

  11. CREST modelling of PBX 9502 corner turning experiments at different initial temperatures

    NASA Astrophysics Data System (ADS)

    Whitworth, N. J.

    2014-05-01

    Corner turning is an important problem in regard to detonation wave propagation in TATB-based explosives. Experimentally, a sudden change in the direction of the propagating wave, such as turning a sharp corner, can result in dead-zones being left behind in the corner turn region, with the observed behaviour being particularly sensitive to the initial temperature of the explosive. In this paper, the entropy-dependent CREST reactive burn model is used to simulate corner turning experiments on the TATB-based explosive PBX 9502. Calculated results of double cylinder tests at three different initial temperatures (-54C, ~23C, and 75C), and a "hockey puck" experiment at ambient temperature, are compared to the corresponding test measurements. The results show that the model is able to: (i) calculate persistent dead-zones in PBX 9502 without recourse to any shock desensitisation treatment, and (ii) predict changes in corner turning behaviour with initial temperature using one set of coefficients.

  12. CREST Modelling of PBX 9502 Corner Turning Experiments at Different Initial Temperatures

    NASA Astrophysics Data System (ADS)

    Whitworth, Nicholas

    2013-06-01

    Corner turning is an important problem in regard to detonation wave propagation in TATB-based explosives. Experimentally, a sudden change in direction of the propagating wave, such as turning a sharp corner, can result in dead-zones being left behind in the corner turn region, with the observed behaviour being particularly sensitive to the initial temperature of the explosive. In this paper, the entropy-dependent CREST reactive burn model is used to simulate corner turning experiments on the TATB-based explosive PBX 9502. Calculated results of double cylinder tests at three different initial temperatures (-54C, 25C, and 75C), and a ``hockey puck'' experiment at ambient temperature, are compared to the corresponding test measurements. The results show that the model is able to: (i) calculate persistent dead-zones in PBX 9502 without recourse to any shock desensitisation treatment, and (ii) predict changes in corner turning behaviour with initial temperature using one set of coefficients.

  13. Evaluation of AIRS, MODIS, and HIRS 11 Micron Brightness Temperature Difference Changes from 2002 through 2006

    NASA Technical Reports Server (NTRS)

    Broberg, Steven E.; Aumann, Hartmut H.; Gregorich, David T.; Xiong, X.

    2006-01-01

    In an effort to validate the accuracy and stability of AIRS data at low scene temperatures (200-250 K range), we evaluated brightness temperatures at 11 microns with Aqua MODIS band 31 and HIRS/3 channel 8 for Antarctic granules between September 2002 and May 2006. We found excellent agreement with MODIS (at the 0.2 K level) over the full emperature range in data from early in the Aqua mission. However, in more recent data, starting in April 2005, we found a scene temperature dependence in MODIS-AIRS brightness temperature differences, with a discrepancy of 1- 1.5 K at 200 K. The comparison between AIRS and HIRS/3 (channel 8) on NOAA 16 for the same time period yields excellent agreement. The cause and time dependence of the disagreement with MODIS is under evaluation, but the change was coincident with a change in the MODIS production software from collection 4 to 5.

  14. Effects of different sitting positions on skin temperature of the lower extremity

    PubMed Central

    Namkoong, Seung; Shim, JeMyung; Kim, SungJoong; Shim, JungMyo

    2015-01-01

    [Purpose] The purpose of this study was to identify the effect of different sitting positions on the skin temperature of the lower extremity. [Subjects] The subjects of this study were 23 healthy university students (8 males, 15 females). [Methods] Normal sitting (NS), upper leg cross (ULC) and ankle on knee (AOK) positions were conducted to measure the changes in skin temperature using digital infrared thermographic imaging (DITI). [Results] ULC upper ankle, NS upper shin, ULC upper shin and NS lower shin showed significant declines in temperature with time. [Conclusion] These finding suggest that the ULC and NS sitting positions cause decline of blood flow volume to the lower extremity resulting in decrease of temperature of the lower extremity. Especially, sitting with the legs crossed interferes with the circulation of blood flowing volume much more than just sitting in a chair. PMID:26355265

  15. Self-diffusion of lignite/water under different temperatures and pressure: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liu, Xinjian; Jin, Yu; Huang, Congliang; He, Jingfeng; Rao, Zhonghao; Zhao, Yuemin

    2016-01-01

    Temperature and pressure have direct and remarkable implications for drying and dewatering effect of low rank coals such as lignite. To understand the microenergy change mechanism of lignite, the molecular dynamics simulation method was performed to study the self-diffusion of lignite/water under different temperatures and pressure. The results showed that high temperature and high pressure can promote the diffusion of lignite/water system, which facilitates the drying and dewatering of lignite. The volume and density of lignite/water system will increase and decrease with temperature increasing, respectively. Though the pressure within simulation range can make lignite density increase, the increasing pressure showed a weak impact on variation of density.

  16. Antioxidant activity and free radical-scavenging capacity of Gynura divaricata leaf extracts at different temperatures

    PubMed Central

    Wan, Chunpeng; Yu, Yanying; Zhou, Shouran; Liu, Wei; Tian, Shuge; Cao, Shuwen

    2011-01-01

    Background: Extraction temperature influences the total phenolic content (TPC), total flavonoid content (TFC) of medicinal plant extracts to a great extend. TPC and TFC are the principle activity constituents present in the plant. The effects of extraction temperature on TPC, TFC and free radical-scavenging capacity of Gynura divaricata leaf extracts are worth to study. Materials and Methods: Folin–Ciocalteu and aluminum chloride colorimetric assay were used to determine the TPC and TFC of Gynura divaricata leaf extracts at different temperatures. The antioxidant and free radical-scavenging activity were measured by 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) and phosphomolybdenum methods. Results: TPC and TFC were significantly elevated with increasing extraction temperature (from 40°C to 100°C). However, TPC and TFC were not significantly different (P > 0.05) at the extraction temperatures 90°C and 100°C. Also, the extracts obtained at a higher temperature exhibited a significant free radical-scavenging activity compared with extraction at lower temperatures (P < 0.05). The TPCs (13.95-36.68 mg gallic acid equivalent/g dry material) were highly correlated with DPPH (R2 = 0.9229), ABTS (R2 = 0.9951) free radical-scavenging capacity, and total antioxidant activity (R2 = 0.9872) evaluated by phosphomolybdenum method. Conclusion: The TPC and TFC of G. divaricata leaf was significantly influenced by the extraction temperatures, which were the main antioxidant constituents present in the G. divaricata plant. PMID:21472078

  17. Vertical Magnetic Levitation Force Measurement on Single Crystal YBaCuO Bulk at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Celik, Sukru; Guner, Sait Baris; Ozturk, Kemal; Ozturk, Ozgur

    Magnetic levitation force measurements of HTS samples are performed with the use of liquid nitrogen. It is both convenient and cheap. However, the temperature of the sample cannot be changed (77 K) and there is problem of frost. So, it is necessary to build another type of system to measure the levitation force high Tc superconductor at different temperatures. In this study, we fabricated YBaCuO superconducting by top-seeding-melting-growth (TSMG) technique and measured vertical forces of them at FC (Field Cooling) and ZFC (Zero Field Cooling) regimes by using our new designed magnetic levitation force measurement system. It was used to investigate the three-dimensional levitation force and lateral force in the levitation system consisting of a cylindrical magnet and a permanent cylindrical superconductor at different temperatures (37, 47, 57, 67 and 77 K).

  18. Difference method for analysing infrared images in pigs with elevated body temperatures.

    PubMed

    Siewert, Carsten; Dänicke, Sven; Kersten, Susanne; Brosig, Bianca; Rohweder, Dirk; Beyerbach, Martin; Seifert, Hermann

    2014-03-01

    Infrared imaging proves to be a quick and simple method for measuring temperature distribution on the pig's head. The study showed that infrared imaging and analysis with a difference ROI (region of interest) method may be used for early detection of elevated body temperature in pigs (> 39.5°C). A high specificity of approx. 85% and a high sensitivity of 86% existed. The only prerequisite is that there are at least 2 anatomical regions which can be recognised as reproducible in the IR image. Noise suppression is guaranteed by averaging the temperature value within both of these ROI. The subsequent difference imaging extensively reduces the off-set error which varies in every thermal IR-image. PMID:24398117

  19. Resistivity Variation due to CO2 Migration in Different Temperature and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Y.; Onishi, K.; Yamada, Y.; Matsuoka, T.; Xue, Z.

    2007-12-01

    CO2 geological sequestration is one of the effective approaches solving the global warming problem. Captured CO2 is injected to the deep aquifers or depleted oil and gas fields. Injected CO2 migrates thorough the reservoir rock, however, the details behavior of injected CO2 under the ground at super critical phase is not yet fully understood. Migration of injected CO2 will change by the condition of the injected reservoir such as the temperature and pressure. Also density and permeability of the rock may be changed due to temperature or pressure variations. These changes control the migration behavior of injected CO2. In this study, experiments of resistivity measurements were conducted to detect the migration difference of CO2 in different temperature and pressure conditions by using sandstone core samples. Core sample was taken from Berea sandstone and processed to 5cm diameter and 12cm length. For the resistivity measurement, impression electrode was set on the both end and the measurement electrode of ring condition was set on the side of the rock sample. We stetted the core sample in the pressure vessel and recreated the condition of underground reservoir which is high pressure and high temperature. We injected supercritical CO2 in different pressure and temperature for each experiment. Pressure was changed in range of 8 to 11MPa and temperature was changed in range of 35° to 45°. This means that all the experiments were conducted in supercritical phase. From the measured resistivity variation, we verified the migration of CO2 and compared the migration behavior of CO2 in different conditions.

  20. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L.

    PubMed

    Chandra, Suman; Lata, Hemant; Khan, Ikhlas A; Elsohly, Mahmoud A

    2011-07-01

    The temperature response on gas and water vapour exchange characteristics of three medicinal drug type (HP Mexican, MX and W1) and four industrial fiber type (Felinq 34, Kompolty, Zolo 11 and Zolo 15) varieties of Cannabis sativa, originally from different agro-climatic zones worldwide, were studied. Among the drug type varieties, optimum temperature for photosynthesis (Topt) was observed in the range of 30-35 °C in high potency Mexican HPM whereas, it was in the range of 25-30 °C in W1. A comparatively lower value (25 °C) for Topt was observed in MX. Among fiber type varieties, Topt was around 30 °C in Zolo 11 and Zolo 15 whereas, it was near 25 °C in Felinq 34 and Kompolty. Varieties having higher maximum photosynthesis (PN max) had higher chlorophyll content as compared to those having lower PN max. Differences in water use efficiency (WUE) were also observed within and among the drug and fiber type plants. However, differences became less pronounced at higher temperatures. Both stomatal and mesophyll components seem to be responsible for the temperature dependence of photosynthesis (PN) in this species, however, their magnitude varied with the variety. In general, a two fold increase in dark respiration with increase in temperature (from 20 °C to 40 °C) was observed in all the varieties. However, a greater increase was associated with the variety having higher rate of photosynthesis, indicating a strong association between photosynthetic and respiratory rates. The results provide a valuable indication regarding variations in temperature dependence of PN in different varieties of Cannabis sativa L. PMID:23573022

  1. First year growth in the lithodids Lithodes santolla and Paralomis granulosa reared at different temperatures

    NASA Astrophysics Data System (ADS)

    Calcagno, J. A.; Lovrich, G. A.; Thatje, S.; Nettelmann, U.; Anger, K.

    2005-10-01

    The southern king crab, Lithodes santolla Molina, and stone crab, Paralomis granulosa Jacquinot, inhabit the cold-temperate waters of southernmost South America (southern Chile and Argentina), where stocks of both species are endangered by overfishing. Recent investigations have shown that these crabs show life-cycle adaptations to scarcity of food and low temperatures prevailing in subantarctic regions, including complete lecithotrophy of all larval stages and prolonged periods of brooding and longevity. However, growth and development to maturity are slow under conditions of low temperatures, which may explain the particular vulnerability of subpolar lithodids to fisheries. In the present study, juvenile L. santolla and P. granulosa were individually reared in the laboratory at constant temperatures ranging from 3-15 C, and rates of survival and development through successive instars were monitored throughout a period of about nine months from hatching. When the experiments were terminated, L. santolla had maximally reached juvenile instar IV (at 6 C), V (9 C), or VII (15 C). In P. granulosa the maximum crab instar reached was II (at 3 C), V (6 C), V (9 C), or VII (15 C). The intermoult period decreased with increasing temperature, while it increased in successively later instars. In consequence, growth rate showed highly significant differences among temperatures (P<0.001). Growth-at-moult was highest at 9 C. Rates of survival decreased significantly in juvenile P. granulosa with increasing temperature. Only at 15 C in L. santolla, was a significantly enhanced mortality found compared with lower temperatures. Our results indicate that juvenile stages of L. santolla and P. granulosa are well adapted to 5-10C, the range of temperatures typically prevailing in subantarctic marine environments. In spite of causing higher mortality rates, higher rearing temperatures (12-15 C) should accelerate the rates of growth and maturation, which may be favourable for projects aiming at aquaculture or repopulation of overexploited king crab stocks.

  2. Land Surface Temperature Measurements form EOS MODIS Data

    NASA Technical Reports Server (NTRS)

    Wan, Zhengming

    1996-01-01

    We have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NE(Delta)T) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4-0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10-12.5 micrometer IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2-3 K. Several issues related to the day/night LST algorithm (uncertainties in the day/night registration and in surface emissivity changes caused by dew occurrence, and the cloud cover) have been investigated. The LST algorithms have been validated with MODIS Airborne Simulator (MAS) dada and ground-based measurement data in two field campaigns conducted in Railroad Valley playa, NV in 1995 and 1996. The MODIS LST version 1 software has been delivered.

  3. Effects of foliage plants on human physiological and psychological responses at different temperatures

    NASA Astrophysics Data System (ADS)

    Jumeno, Desto; Matsumoto, Hiroshi

    2015-02-01

    Escalation of task demands and time pressures tends to make a worker run into work stress, which leads to mental fatigue and depression. The mental fatigue can be reduced when attention capacity is restored. Nature can serve as a source of fascination which can restore the attention capacity. People bring plants indoors so they can experience nature in their workplace. The stress and fatigue are also affected by air temperatures. The increase or decrease of temperatures from the comfort zone may induce the stress and fatigue. The objective of this study is to investigate the intervention of using foliage plants placed inside a building at different air temperature levels. The effects of foliage plants on human stress and fatigue were measured by human physiological responses such as heart rate, amylase level, electroencephalography (EEG), and the secondary task-reaction time. Several different tasks, namely typing, math and logical sequences are included in the investigation of these studies. Fifteen subjects, with the age ranged from 22 to 38 years old have participated in the study using within subject design. From the study, it is revealed that the presence of foliage plants at several temperatures have different effects on meditation, secondary task reaction time and typing accuracy. This study also revealed that the presence of plants on several types of tasks has different effects of attention which are useful for increasing work performance.

  4. Effect of temperature on the intrinsic viscosity and conformation of different pectins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of temperature on the intrinsic viscosity and on the conformation of different pectins obtained from citrus, apple and sunflower in a 0.17M NaCl solution were studied. The intrinsic viscosity and the flow activation energy of the polymer (Ea) derived from slope of d In [']/ d(l/T) as an ...

  5. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    ERIC Educational Resources Information Center

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40

  6. Metabolic and Cardiovascular Responses during Aquatic Exercise in Water at Different Temperatures in Older Adults

    ERIC Educational Resources Information Center

    Bergamin, Marco; Ermolao, Andrea; Matten, Sonia; Sieverdes, John C.; Zaccaria, Marco

    2015-01-01

    Purpose: The aim of this study was to investigate the physiological responses during upper-body aquatic exercises in older adults with different pool temperatures. Method: Eleven older men (aged 65 years and older) underwent 2 identical aquatic exercise sessions that consisted of 3 upper-body exercises using progressive intensities (30, 35, and 40…

  7. Physiological and antioxidant responses of two accessions of Arabidopsis thaliana in different light and temperature conditions.

    PubMed

    Szymańska, Renata; Nowicka, Beatrycze; Gabruk, Michał; Glińska, Sława; Michlewska, Sylwia; Dłużewska, Jolanta; Sawicka, Anna; Kruk, Jerzy; Laitinen, Roosa

    2015-06-01

    During their lifetime, plants need to adapt to a changing environment, including light and temperature. To understand how these factors influence plant growth, we investigated the physiological and antioxidant responses of two Arabidopsis accessions, Shahdara (Sha) from the Shahdara valley (Tajikistan, Central Asia) in a mountainous area and Lovvik-5 (Lov-5) from northern Sweden to different light and temperature conditions. These accessions originate from different latitudes and have different life strategies, both of which are known to be influenced by light and temperature. We showed that both accessions grew better in high-light and at a lower temperature (16°C) than in low light and at 23°C. Interestingly, Sha had a lower chlorophyll content but more efficient non-photochemical quenching than Lov-5. Sha, also showed a higher expression of vitamin E biosynthetic genes. We did not observe any difference in the antioxidant prenyllipid level under these conditions. Our results suggest that the mechanisms that keep the plastoquinone (PQ)-pool in more oxidized state could play a role in the adaptation of these accessions to their local climatic conditions. PMID:25214438

  8. The Effect of Storage at Three Different Temperatures on the Activity of Lipase Solution.

    ERIC Educational Resources Information Center

    Bradley, Karen; Mathewman, David

    1984-01-01

    Presented are procedures used to assay the activity of lipase during storage at three different temperatures. Since lipase solutions can decay even when refrigerated, it is recommended that the enzyme be freshly prepared prior to laboratory sessions in which they are used. (JN)

  9. Compositional and Mechanical Properties of Peanuts Roasted to Equivalent Colors using Different Time/Temperature Combinations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Peanuts in North America and Europe are primarily consumed after dry roasting. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be attained using different roast temperature/time combinations,...

  10. Drop Hammer Tests with Three Oleo Strut Models and Three Different Shock Strut Oils at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Kranz, M

    1954-01-01

    Drop hammer tests with different shock strut models and shock strut oils were performed at temperatures ranging to -40 C. The various shock strut models do not differ essentially regarding their springing and damping properties at low temperatures; however, the influence of the different shock strut oils on the springing properties at low temperatures varies greatly.

  11. Adaptive haemoglobin gene control in Daphnia pulex at different oxygen and temperature conditions.

    PubMed

    Gerke, Peter; Börding, Christina; Zeis, Bettina; Paul, Rüdiger J

    2011-05-01

    Hypoxia-induced haemoglobin (Hb) expression is a central regulatory mechanism in Daphnia in response to environmental hypoxia or warm temperatures. Changes in Hb concentration as well as Hb subunit composition, which modulate Hb oxygen affinity, guarantee the oxygen supply of tissues under these environmental conditions. Based on the sequenced D. pulex genome, Hb genes were related to the properties of haemolymph Hb, which included its concentration and oxygen affinity (both measured by spectrophotometry) as well as the Hb subunit composition (determined by 2-D gel electrophoresis and ESI-MS analysis). Permanent cultures of D. pulex acclimated to different oxygen conditions (normoxia and hypoxia) and temperatures (10°C, 20°C, and 24°C), showed characteristic changes in Hb concentration, subunit composition and oxygen affinity. Several subunits (Hb4, Hb7, Hb8, and Hb10) were obviously responsible for changes in oxygen affinity including those, which carry a number of hypoxia-responsive elements (HREs) upstream of the respective gene (hb4 and hb10). Analysing the effects of different oxygen- or temperature-acclimations on Hb subunit expression in D. pulex and D. magna on a common basis (Hb concentration or oxygen affinity) revealed a general pattern of oxygen and temperature effects on Hb, which implies that Hb quantity and quality are mostly influenced by the degree of tissue hypoxia. Differences between both species in the onset of hypoxia-induced differential Hb expression and Hb oxygen affinity, which are probably related to different HRE patterns and functionally important differences in the amino acid sequence of only a few subunits, cause a reduced ability of D. pulex to adjust Hb function to temperature changes in comparison to D. magna. PMID:21281731

  12. In vitro evaluation of temperature rise during different post space preparations

    PubMed Central

    Gokturk, Hakan; Ozkocak, Ismail; Taskan, Mehmet Murat; Aytac, Fatma; Karaarslan, Emine Sirin

    2015-01-01

    Objective: The aim of this study was to evaluate temperature alterations on the outer root surface during post space preparation with six different post drills by using an infrared thermometer. Materials and Methods: Sixty extracted single-rooted human mandibular incisor teeth were used. After root canal obturation, the specimens were divided into six groups (n = 10). During post space preparation, the temperature rises were measured in the middle third of the roots using a noncontact infrared thermometer with a sensitivity of 0.1°C. The temperature data were transferred from the thermometer to the computer and were observed graphically. Results: The maximum temperature rise was observed in Snowpost 2 (29.95 ± 10.2°C) (P < 0.001), but there were no significant differences among Snowpost 2 (29.95 ± 10.2°C), Snowpost 1 (24.6 ± 8.0°C), and Relyx 2 (17.68 ± 9.1°C) (P > 0.05). Conclusions: Although water coolant used, the critical temperature rise was observed on the outer root surface in all post drill systems. PMID:26929693

  13. Nutrient transformation during aerobic composting of pig manure with biochar prepared at different temperatures.

    PubMed

    Li, Ronghua; Wang, Quan; Zhang, Zengqiang; Zhang, Guangjie; Li, Zhonghong; Wang, Li; Zheng, Jianzhong

    2015-01-01

    The effects of the corn stalk charred biomass (CB) prepared at different pyrolysis temperatures as additives on nutrient transformation during aerobic composting of pig manure were investigated. The results showed that the addition of CB carbonized at different temperatures to pig manure compost significantly influenced the compost temperature, moisture, pH, electrical conductivity, organic matter degradation, total nitrogen, [Formula: see text] and NH3 variations during composting. Compared with control and adding CB charred at lower temperature treatments, the addition of CB prepared over 700°C resulted in higher pH (over 9.2) and NH3 emission and lower potherb mustard seed germination index value during the thermophilic phase. Peak temperatures of composts appeared at 7 days for control and 11 days for CB added treatments. During 90 days composting, the organic matter degradation could be increased over 14.8-29.6% after adding of CB in the compost mixture. The introduction of CB in pig manure could prolong the thermophilic phase, inhibit moisture reduce, facilitate the organic matter decomposition, reduce diethylene triamine pentaacetic acid (DTPA) extractable Zn and Cu contents in pig manure composts and increase ryegrass growth. The study indicated that the corn stalk CB prepared around 500°C was a suitable additive in pig manure composting. PMID:25209736

  14. Investigation of gender difference in human response to temperature step changes.

    PubMed

    Xiong, Jing; Lian, Zhiwei; Zhou, Xin; You, Jianxiong; Lin, Yanbing

    2015-11-01

    The purpose of this study was to examine gender difference in human response to temperature step changes. A total of three step-change conditions (S5: 32 °C-37 °C-32 °C, S11: 26 °C-37 °C-26 °C, and S15: 22 °C-37 °C-22 °C) were designed and a laboratory experiment with 12 males and 12 females was performed. Results of this study support our hypothesis that females differ from males in human response to sudden temperature changes from the perspectives of psychology, physiology and biomarkers. Females are more prone to show thermal dissatisfaction to cool environments while males are more likely to feel thermal discomfort in warm environments. It is logical that men have a stronger thermoregulation ability than women as male skin temperature change amplitude is smaller while the time to be stable for skin temperature is shorter than that of females after both up-steps and down-steps. In S15, males witnessed a more intensive decrease in RMSSD while females underwent a remarkable instant reduce in oral temperatures after the up-step. Marginal significance was observed in male IL-6 before and after the up-step in S15 while female IL-6 prominently increased after the down-step in S15. PMID:26265493

  15. Difference in ocular surface temperature by infrared thermography in phakic and pseudophakic patients

    PubMed Central

    Sniegowski, Matthew; Erlanger, Michael; Velez-Montoya, Raul; Olson, Jeffrey L

    2015-01-01

    Purpose To assess the change in ocular surface temperature between healthy phakic and pseudophakic patients. Methods We included patients with no history of ocular disease other than cataract. Patients were divided into three groups: clear lens, cataract, and pseudophakic. All patients had two ocular surface digital thermal scans. An average of five surface points was used as the mean ocular surface temperature. Results were analyzed with a one-way analysis of variance and a Tukey’s least significance difference test. The patients were further divided into phakic and pseudophakic groups. Correlation coefficients between several variables were done in order to assess dependencies. Results Fifty-six eyes (28 cataracts, 12 clear lenses, 16 pseudophakic) were enrolled. The mean ocular surface temperature in the cataract group was 34.14°C±1.51°C; clear lens: 34.43°C±2.27°C; and pseudophakic: 34.97°C±1.57°C. There were no statistical differences among the study groups (P=0.3). There was a nonsignificant negative correlation trend between age and surface temperature in the phakic group. The trend inverted in the pseudophakic group but without statistical significance. Conclusion Although cataract extraction and intraocular lens implantation seem to induce a mild increase in ocular surface temperature, the effect is not clear and not significant. PMID:25834383

  16. Simulation of a Supercritical Fluid Flow with Large Temperature Difference under the Assumption of Constant Pressure

    NASA Astrophysics Data System (ADS)

    Komurasaki, Satoko

    2015-11-01

    Eruption of geothermally heated water from the hydrothermal vent in deep oceans of depth over 2,000 meters is numerically simulated. The hydrostatic pressure of water is assumed to be over 200 atmospheres, and the temperature of heated water is occasionally more than 300°C. Under these conditions, a part of heated water can be in the supercritical state, and the physical properties can change significantly by the temperature. Particularly, thermal diffusivity at the critical temperature becomes so small, which prevents heat diffusion, and the temperature gradients can become high. Simulation of this kind of fluid flow can be carried out only by using a highly robust scheme. In this paper, a scheme for a highly-unsteady-flow computation is introduced, and a supercritical fluid flow with a large temperature difference is simulated at a constant pressure. In the computation, the compressible Navier-Stokes equations are solved using a method for the incompressible equations under constant pressure. The equations are approximated by the multidirectional finite difference method and KK scheme is used to stabilize the high-accuracy computation. This work was partially supported by Grant-in-Aid for Scientific Research from MEXT/JSPS (26610119).

  17. The influence of different acupuncture manipulations on the skin temperature of an acupoint.

    PubMed

    Huang, Tao; Huang, Xin; Zhang, Weibo; Jia, Shuyong; Cheng, Xinnong; Litscher, Gerhard

    2013-01-01

    This study was performed to observe the influence of sham and different verum acupuncture manipulations on skin temperature of the stimulated acupoint in healthy volunteers. Thirty-seven healthy volunteers with a mean age of 25.4 ± 2.2 years were enrolled in the study. All volunteers had experienced acupuncture before. They received sham acupuncture and two different kinds of verum acupuncture stimulation (lifting-thrusting and twisting-rotating) on Zusanli (ST36). The skin temperature of ST36 was measured before acupuncture, after needle insertion, after needle manipulation, immediately after removal of the needle, and as further control 5 minutes after removal of the needle using a FLIR i7 infrared thermal camera. During the measurement, the needling sensations of volunteers were enquired and recorded. During the sham acupuncture stimulation, the skin temperature of ST36 decreased in the first 5 minutes, when the point was exposed, and then increased gradually. During verum acupuncture stimulations, the skin temperature increased continually and then decreased in the last phase. The increase in temperature caused by lifting-thrusting stimulation was significantly higher than that of twisting-rotating manipulation, which may be related to the stimulation intensity. PMID:23476709

  18. Physiological and biochemical responses of Ricinus communis seedlings to different temperatures: a metabolomics approach

    PubMed Central

    2014-01-01

    Background Compared with major crops, growth and development of Ricinus communis is still poorly understood. A better understanding of the biochemical and physiological aspects of germination and seedling growth is crucial for the breeding of high yielding varieties adapted to various growing environments. In this context, we analysed the effect of temperature on growth of young R. communis seedlings and we measured primary and secondary metabolites in roots and cotyledons. Three genotypes, recommended to small family farms as cash crop, were used in this study. Results Seedling biomass was strongly affected by the temperature, with the lowest total biomass observed at 20°C. The response in terms of biomass production for the genotype MPA11 was clearly different from the other two genotypes: genotype MPA11 produced heavier seedlings at all temperatures but the root biomass of this genotype decreased with increasing temperature, reaching the lowest value at 35°C. In contrast, root biomass of genotypes MPB01 and IAC80 was not affected by temperature, suggesting that the roots of these genotypes are less sensitive to changes in temperature. In addition, an increasing temperature decreased the root to shoot ratio, which suggests that biomass allocation between below- and above ground parts of the plants was strongly affected by the temperature. Carbohydrate contents were reduced in response to increasing temperature in both roots and cotyledons, whereas amino acids accumulated to higher contents. Our results show that a specific balance between amino acids, carbohydrates and organic acids in the cotyledons and roots seems to be an important trait for faster and more efficient growth of genotype MPA11. Conclusions An increase in temperature triggers the mobilization of carbohydrates to support the preferred growth of the aerial parts, at the expense of the roots. A shift in the carbon-nitrogen metabolism towards the accumulation of nitrogen-containing compounds seems to be the main biochemical response to support growth at higher temperatures. The biochemical changes observed in response to the increasing temperature provide leads into understanding plant adaptation to harsh environmental conditions, which will be very helpful in developing strategies for R. communis crop improvement research. PMID:25109402

  19. Sex Differences in Behavioral Outcomes Following Temperature Modulation During Induced Neonatal Hypoxic Ischemic Injury in Rats

    PubMed Central

    Smith, Amanda L.; Garbus, Haley; Rosenkrantz, Ted S.; Fitch, Roslyn Holly

    2015-01-01

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen. PMID:26010486

  20. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone

    PubMed Central

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Purpose. Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. Materials and Methods. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Results. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Conclusion. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability. PMID:27110567

  1. Quantitative determination based on the differences between spectra-temperature relationships.

    PubMed

    Li, Zhe; Zhou, Mei; Luo, Yongshun; Li, Gang; Lin, Ling

    2016-08-01

    In the Near-infrared (NIR) spectral measurement it is not always possible to keep the experimental conditions constant. The fluctuations in external variables, such as temperature, will result in a nonlinear shift and a broadening of the spectral bands. In this study, the temperature-induced spectral variation coefficient (TSVC) was obtained by using loading space standardization (LSS). The relationship between TSVC and normalized squared temperature was quantitatively analyzed and applied to the quantitative determination of the compositions in mixtures. NIR spectra of peanut-soy-corn oil mixtures measured at seven temperatures were analyzed. It was found that, the relationship between TSVC and normalized squared temperature can be established by using LSS. Furthermore, the quantitative determination of the compositions in a mixture can be achieved by using the difference between the relationships, i.e., the slope of the relationship. The calibration curves between slope and composition volume are found to be reliable with the correlation coefficients (R(2)) as high as 0.9992. Quantitative determination by the calibration curves were also validated. Therefore, the method can be an effective tool for investigating the effect of temperature and quantitatively analysis. PMID:27216655

  2. Pressure-temperature phase diagrams of maize starches with different amylose contents.

    PubMed

    Buckow, Roman; Jankowiak, Lena; Knorr, Dietrich; Versteeg, Cornelis

    2009-12-23

    The amylose/amylopectin ratio in starch granules has a distinct impact on the physicochemical properties of starches. In this study the effects of high pressure and temperature combinations on the gelatinization of four maize starches with different amylose contents were investigated in an excess of water (90% w/w). Microscopy was used to determine the loss of birefringence in starch granules. Experiments were undertaken in the pressure range of 0.1-750 MPa and temperature range of 30-110 degrees C, holding the conditions constant for 5 min. Temperature and pressure stabilities of high amylose starches were found to be significantly higher than those of waxy and normal maize starch. Thermodynamic models are proposed to describe the loss in birefringence as a function of pressure and temperature. From the pressure-temperature phase diagrams constructed it was evident that maize starch gelatinization is not accelerated at pressures below 300-400 MPa. However, at higher pressures the threshold temperature to initiate starch granule hydration and gelatinization is significantly reduced for all starches investigated. This study extends the knowledge of the impact of high pressure on food components and will possibly make the technology more attractive to use as a substitute for or in combination with conventional food-processing methods. PMID:19916500

  3. Temperature Values Variability in Piezoelectric Implant Site Preparation: Differences between Cortical and Corticocancellous Bovine Bone.

    PubMed

    Lamazza, Luca; Garreffa, Girolamo; Laurito, Domenica; Lollobrigida, Marco; Palmieri, Luigi; De Biase, Alberto

    2016-01-01

    Purpose. Various parameters can influence temperature rise and detection during implant site preparation. The aim of this study is to investigate local temperature values in cortical and corticocancellous bovine bone during early stages of piezoelectric implant site preparation. Materials and Methods. 20 osteotomies were performed using a diamond tip (IM1s, Mectron Medical Technology, Carasco, Italy) on two different types of bovine bone samples, cortical and corticocancellous, respectively. A standardized protocol was designed to provide constant working conditions. Temperatures were measured in real time at a fixed position by a fiber optic thermometer. Results. Significantly higher drilling time (154.90 sec versus 99.00 sec; p < 0.0001) and temperatures (39.26°C versus 34.73°C; p = 0.043) were observed in the cortical group compared to the corticocancellous group. A remarkable variability of results characterized the corticocancellous blocks as compared to the blocks of pure cortical bone. Conclusion. Bone samples can influence heat generation during in vitro implant site preparation. When compared to cortical bone, corticocancellous samples present more variability in temperature values. Even controlling most experimental factors, the impact of bone samples still remains one of the main causes of temperature variability. PMID:27110567

  4. Analysing the Effects of Different Land Cover Types on Land Surface Temperature Using Satellite Data

    NASA Astrophysics Data System (ADS)

    Şekertekin, A.; Kutoglu, Ş. H.; Kaya, S.; Marangoz, A. M.

    2015-12-01

    Monitoring Land Surface Temperature (LST) via remote sensing images is one of the most important contributions to climatology. LST is an important parameter governing the energy balance on the Earth and it also helps us to understand the behavior of urban heat islands. There are lots of algorithms to obtain LST by remote sensing techniques. The most commonly used algorithms are split-window algorithm, temperature/emissivity separation method, mono-window algorithm and single channel method. In this research, mono window algorithm was implemented to Landsat 5 TM image acquired on 28.08.2011. Besides, meteorological data such as humidity and temperature are used in the algorithm. Moreover, high resolution Geoeye-1 and Worldview-2 images acquired on 29.08.2011 and 12.07.2013 respectively were used to investigate the relationships between LST and land cover type. As a result of the analyses, area with vegetation cover has approximately 5 ºC lower temperatures than the city center and arid land., LST values change about 10 ºC in the city center because of different surface properties such as reinforced concrete construction, green zones and sandbank. The temperature around some places in thermal power plant region (ÇATES and ZETES) Çatalağzı, is about 5 ºC higher than city center. Sandbank and agricultural areas have highest temperature due to the land cover structure.

  5. Sex differences in behavioral outcomes following temperature modulation during induced neonatal hypoxic ischemic injury in rats.

    PubMed

    Smith, Amanda L; Garbus, Haley; Rosenkrantz, Ted S; Fitch, Roslyn Holly

    2015-01-01

    Neonatal hypoxia ischemia (HI; reduced oxygen and/or blood flow to the brain) can cause various degrees of tissue damage, as well as subsequent cognitive/behavioral deficits such as motor, learning/memory, and auditory impairments. These outcomes frequently result from cardiovascular and/or respiratory events observed in premature infants. Data suggests that there is a sex difference in HI outcome, with males being more adversely affected relative to comparably injured females. Brain/body temperature may play a role in modulating the severity of an HI insult, with hypothermia during an insult yielding more favorable anatomical and behavioral outcomes. The current study utilized a postnatal day (P) 7 rodent model of HI injury to assess the effect of temperature modulation during injury in each sex. We hypothesized that female P7 rats would benefit more from lowered body temperatures as compared to male P7 rats. We assessed all subjects on rota-rod, auditory discrimination, and spatial/non-spatial maze tasks. Our results revealed a significant benefit of temperature reduction in HI females as measured by most of the employed behavioral tasks. However, HI males benefitted from temperature reduction as measured on auditory and non-spatial tasks. Our data suggest that temperature reduction protects both sexes from the deleterious effects of HI injury, but task and sex specific patterns of relative efficacy are seen. PMID:26010486

  6. Water temperature affects pathogenicity of different betanodavirus genotypes in experimentally challenged Dicentrarchus labrax.

    PubMed

    Toffan, Anna; Panzarin, Valentina; Toson, Marica; Cecchettin, Krizia; Pascoli, Francesco

    2016-05-26

    Betanodaviruses are the causative agents of a highly infectious disease of fish known as viral nervous necrosis (VNN). To date, 4 different nervous necrosis virus (NNV) genotypes have been described, but natural reassortant viruses have also been detected, which further increase viral variability. Water temperature plays an important role in determining the appearance and the severity of VNN disease. We assessed the effect of temperature (20°, 25° and 30°C) on mortality and virus load in the brain of European sea bass Dicentrarchus labrax experimentally infected with 4 genetically different betanodaviruses, namely red-spotted grouper NNV (RGNNV), striped jack NNV (SJNNV) and the reassortant strains RGNNV/SJNNV and SJNNV/RGNNV. The RGNNV/SJNNV virus possesses the polymerase gene of RGNNV and the coat protein gene of SJNNV, and vice versa for the SJNNV/RGNNV virus. The obtained results showed that the RGNNV strain is the most pathogenic for juvenile sea bass, but clinical disease and mortality appeared only at higher temperatures. The SJNNV strain is weakly pathogenic for D. labrax regardless of the temperature used, while virus replication was detected in the brain of survivors only at 20°C. Finally, reassortant strains caused low mortality, independent of the temperature used, but the viral load in the brain was strongly influenced by water temperature and the genetic type of the polymerase gene. Taken together, these data show that nodavirus replication in vivo is a composite process regulated by both the genetic features of the viral strain and water temperatures. PMID:27225206

  7. Effects of Urban Morphology on Intra-Urban Temperature Differences: Two Squares in Glasgow City Centre

    NASA Astrophysics Data System (ADS)

    Drach, P. R. C.; Emmanuel, R.

    2014-12-01

    The perspective of climate change increases the necessity of tackling the urban over heating effects, by developing strategies to mitigate/adapt to changes. Analysing the influence of urban form on intra-urban temperature dynamics could be a helpful way of reducing its negative consequences. Also, it would help untangle the urban effect from the effect caused by atmospheric conditions. The present paper presents the effect of atmospheric conditions as exemplified by atmospheric stability (modified Pasquill-Gifford-Turner classification system) and urban morphology as measured by the Sky View Factor (SVF) on intra-urban variations in air temperature in a cold climate city, in and around the mature urban area of Glasgow, UK (55° 51' 57.294"N, 4° 15' 0.2628"W). The aim is to highlight their combined importance and to make preliminary investigations on the local warming effect of urban morphology under specific atmospheric stability classes. The present work indicates that the maximum intra-urban temperature differences (i.e. temperature difference between the coolest and the warmest spots in a given urban region) is strongly correlated with atmospheric stability. The spatial patterns in local temperature variations consistently show that water bodies and urban parks have lower temperature variations. Thus, greenery and urban materials could play an important role in influencing the local climate in cold cities. The knowledge of urban morphology's influence on local temperature variations could be an important tool for devising appropriate planning/design strategies to face urban overheating in the coming years as the background climate continues to warm.

  8. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes.

    PubMed

    Mkiga, A M; Mwatawala, M W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  9. Developmental Biology of Zeugodacus cucurbitae (Diptera: Tephritidae) in Three Cucurbitaceous Hosts at Different Temperature Regimes

    PubMed Central

    Mkiga, A. M.; Mwatawala, M. W

    2015-01-01

    Fruit flies are key pests of cucurbits in many parts of the world, including Tanzania. Developmental biology of Zeugodacus cucurbitae (Coquillett) has been determined across temperature regimes in some cucurbitaceous hosts, in limited geographies. This study was conducted to determine duration and survival rates of immature stages of Z. cucurbitae in three cucurbitaceous hosts, at different temperature regimes. It was hypothesized that temperature and cucurbitaceous hosts influence duration and survival of immature stages of Z. cucurbitae. We conducted experiments in the environmental chamber set at 75 ± 10% RH and a photoperiod of 12:12 (L:D) h, at temperatures of 20, 25, and 30°. Our results showed that duration and survival of immature stages of Z. cucurbitae differed significantly among the temperature regimes but not among the hosts. Egg incubation period as well as larval and pupal stages were significantly longer (P < 0.0001) at low temperature in all three hosts Likewise, survival rate of all immature stages were significantly higher (P < 0.0001) at higher than lower temperatures. The three hosts, cucumber (Cucumis sativus), watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai), and pumpkin (Cucurbita pepo) did not significantly affect duration or survival rates of immature stages of Z. cucurbitae. The low developmental thresholds were estimated at 15.88, 13.44, and 12.62 for egg, larva and pupa, respectively. These results further confirm that Z. cucurbitae is well adapted to warm climate, which dominates many areas of Tanzania. PMID:26589874

  10. Egg Developmental Time and Survival of Chrysomya megacephala and Chrysomya putoria (Diptera: Calliphoridae) Under Different Temperatures.

    PubMed

    Alonso, M A; Souza, C M; Linhares, A X; Thyssen, P J

    2015-07-01

    Chrysomya megacephala (F.) and Chrysomya putoria (Wiedemann) (Diptera: Calliphoridae) are considered of forensic, medical, and veterinary importance in Brazil because of their necrophagous and synanthropic behaviour. The development of flies can be influenced by temperature, and species from the same genus usually have different responses to external variables. The egg development of blow fly can be a useful complementary technique to estimate the minimum postmortem interval. Thus, this study aimed to compare the egg developmental time and survival of C. megacephala and C. putoria at different temperatures to determine the optimal temperature for egg development and the linear regression for developmental time and temperature, thereby determining the minimum threshold (t) and thermal summation constant (K) for each species. Adults of both species were collected in the region of Campinas city, São Paulo state, Brazil. Eggs were incubated at eight constant temperatures between 05 ± 1°C and 35 ± 1°C and the egg developmental time and survival were evaluated. There was no egg survival at 5 and 10°C. The K for C. megacephala and C. putoria were 179.41 HD and 189.94 HD, respectively. The regression slopes and t (10°C) were similar for both species. The optimal temperature for egg survival was between 25 and 35°C, for C. megacephala and 20 and 30°C, for C. putoria. The present data were similar to most data available in the literature, but differences in the same species are a possibility. PMID:26335461

  11. Autotrophic Growth of Bacterial and Archaeal Ammonia Oxidizers in Freshwater Sediment Microcosms Incubated at Different Temperatures

    PubMed Central

    Wu, Yucheng; Ke, Xiubin; Hernández, Marcela; Wang, Baozhan; Dumont, Marc G.; Jia, Zhongjun

    2013-01-01

    Both bacteria and archaea potentially contribute to ammonia oxidation, but their roles in freshwater sediments are still poorly understood. Seasonal differences in the relative activities of these groups might exist, since cultivated archaeal ammonia oxidizers have higher temperature optima than their bacterial counterparts. In this study, sediment collected from eutrophic freshwater Lake Taihu (China) was incubated at different temperatures (4°C, 15°C, 25°C, and 37°C) for up to 8 weeks. We examined the active bacterial and archaeal ammonia oxidizers in these sediment microcosms by using combined stable isotope probing (SIP) and molecular community analysis. The results showed that accumulation of nitrate in microcosms correlated negatively with temperature, although ammonium depletion was the same, which might have been related to enhanced activity of other nitrogen transformation processes. Incubation at different temperatures significantly changed the microbial community composition, as revealed by 454 pyrosequencing targeting bacterial 16S rRNA genes. After 8 weeks of incubation, [13C]bicarbonate labeling of bacterial amoA genes, which encode the ammonia monooxygenase subunit A, and an observed increase in copy numbers indicated the activity of ammonia-oxidizing bacteria in all microcosms. Nitrosomonas sp. strain Is79A3 and Nitrosomonas communis lineages dominated the heavy fraction of CsCl gradients at low and high temperatures, respectively, indicating a niche differentiation of active bacterial ammonia oxidizers along the temperature gradient. The 13C labeling of ammonia-oxidizing archaea in microcosms incubated at 4 to 25°C was minor. In contrast, significant 13C labeling of Nitrososphaera-like archaea and changes in the abundance and composition of archaeal amoA genes were observed at 37°C, implicating autotrophic growth of ammonia-oxidizing archaea under warmer conditions. PMID:23455342

  12. Discriminating among different tea leaves using an operating temperature-modulated tin oxide gas sensor

    NASA Astrophysics Data System (ADS)

    Rastkhadiv, Ali; Jenabi, Amin; Souri, Asma

    2016-03-01

    We report distinguishing different types of tea leaves from each other based on their aroma using a thermal shock-induced generic tin oxide gas sensor. The sensor used in this work consists of a microheater and a tin oxide pellet, both connected to outside circuitry with noble metal contacts. The heater is powered with a series of narrow high magnitude voltage impulses of predetermined thermal impacts adjusted to produce step-like temperature rises of different magnitudes on the gas sensitive pellet. The sensor is exposed to aromas collected from various types of tea leaves at different concentrations. Within 4.5 s, nine 500 ms-wide voltage pulses, each as high as 9.3 V in magnitude, are applied to the microheater. Each pulse causes a step-like temperature jump on the pellet temperature. The transient responses recorded for different tea leaves look different even after amplitude normalization. The sensor profiles are recorded, digitized, and compared with the database of previous experiences. A heuristically defined high dimensional feature vector is automatically generated for each analyte. Classifications are graphically achieved in a 3-D feature space after applying principle component analysis for dimension reduction.

  13. Co-doped sodium chloride crystals exposed to different irradiation temperature

    SciTech Connect

    Ortiz-Morales, A.; Cruz-Zaragoza, E.; Furetta, C.; Kitis, G.; Flores J, C.; Hernandez A, J.; Murrieta S, H.

    2013-07-03

    Monocrystals of NaCl:XCl{sub 2}:MnCl{sub 2}(X = Ca,Cd) at four different concentrations have been analyzed. The crystals were exposed to different irradiation temperature, such as at room temperature (RT), solid water (SW), dry ice (DI) and liquid nitrogen (LN). The samples were irradiated with photon from {sup 60}Co irradiators. The co-doped sodium chloride crystals show a complex structure of glow curves that can be related to different distribution of traps. The linearity response was analyzed with the F(D) index. The F(D) value was less than unity indicating a sub-linear response was obtained from the TL response on the function of the dose. The glow curves were deconvoluted by using the CGCD program based on the first, second and general order kinetics.

  14. Grey water treatment in upflow anaerobic sludge blanket (UASB) reactor at different temperatures.

    PubMed

    Elmitwalli, Tarek; Otterpohl, Ralf

    2011-01-01

    The treatment of grey water in two upflow anaerobic sludge blanket (UASB) reactors, operated at different hydraulic retention times (HRTs) and temperatures, was investigated. The first reactor (UASB-A) was operated at ambient temperature (14-25 degrees C) and HRT of 20, 12 and 8 h, while the second reactor (UASB-30) was operated at controlled temperature of 30 degrees C and HRT of 16, 10 and 6 h. The two reactors were fed with grey water from 'Flintenbreite' settlement in Luebeck, Germany. When the grey water was treated in the UASB reactor at 30 degrees C, total chemical oxygen demand (CODt) removal of 52-64% was achieved at HRT between 6 and 16 h, while at lower temperature lower removal (31-41%) was obtained at HRT between 8 and 20 h. Total nitrogen and phosphorous removal in the UASB reactors were limited (22-36 and 10-24%, respectively) at all operational conditions. The results showed that at increasing temperature or decreasing HRT of the reactors, maximum specific methanogenic activity of the sludge in the reactors improved. As the UASB reactor showed a significantly higher COD removal (31-64%) than the septic tank (11-14%) even at low temperature, it is recommended to use UASB reactor instead of septic tank (the most common system) for grey water pre-treatment. Based on the achieved results and due to high peak flow factor, a HRT between 8 and 12 h can be considered the suitable HRT for the UASB reactor treating grey water at temperature 20-30 degrees C, while a HRT of 12-24 h can be applied at temperature lower than 20 degrees C. PMID:22097038

  15. Thermographic imaging of facial skin—gender differences and temperature changes over time in healthy subjects

    PubMed Central

    Christensen, J; Vaeth, M; Wenzel, A

    2012-01-01

    Objectives To assess changes in facial skin temperature over time, to identify sources of variation related to skin temperature and to evaluate interobserver reproducibility in measurements of the thermograms. Methods 62 volunteers (32 females, 30 males, mean age 23.4, range 19.5–29.5 years) underwent thermography of the face (left and right side lateral images) on four occasions with approximately 2 months between each session. Three observers recorded the images and marked regions of interest (ROIs) in each image using dedicated software. Smoking, exercise habits and use of oral contraceptives were recorded. Results A significant difference between sessions (≤1 °C, p < 0.001) and between observers (≤0.11 °C, p < 0.001) was identified. The difference between sides was not significant (≤0.07 °C, p = 0.7). None of the interactions between side, session and observer were significant. Smoking, exercise habits and oral contraceptive intake were not significant impact factors when included as covariates in the analysis (p > 0.1). ROI temperature was significantly higher in males than in females (0.7 °C, p < 0.001). A mixed model analysis of variance showed that observer had little impact on the expected standard deviation, whereas session and subject had a greater impact. Conclusions Face temperature is symmetrical and varies over time. The non-significant difference between sides is highly reproducible, even between observers. PMID:22554986

  16. Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings

    PubMed Central

    2013-01-01

    Background The survival of adult female Aedes mosquitoes is a critical component of their ability to transmit pathogens such as dengue viruses. One of the principal determinants of Aedes survival is temperature, which has been associated with seasonal changes in Aedes populations and limits their geographical distribution. The effects of temperature and other sources of mortality have been studied in the field, often via mark-release-recapture experiments, and under controlled conditions in the laboratory. Survival results differ and reconciling predictions between the two settings has been hindered by variable measurements from different experimental protocols, lack of precision in measuring survival of free-ranging mosquitoes, and uncertainty about the role of age-dependent mortality in the field. Methods Here we apply generalised additive models to data from 351 published adult Ae. aegypti and Ae. albopictus survival experiments in the laboratory to create survival models for each species across their range of viable temperatures. These models are then adjusted to estimate survival at different temperatures in the field using data from 59 Ae. aegypti and Ae. albopictus field survivorship experiments. The uncertainty at each stage of the modelling process is propagated through to provide confidence intervals around our predictions. Results Our results indicate that adult Ae. albopictus has higher survival than Ae. aegypti in the laboratory and field, however, Ae. aegypti can tolerate a wider range of temperatures. A full breakdown of survival by age and temperature is given for both species. The differences between laboratory and field models also give insight into the relative contributions to mortality from temperature, other environmental factors, and senescence and over what ranges these factors can be important. Conclusions Our results support the importance of producing site-specific mosquito survival estimates. By including fluctuating temperature regimes, our models provide insight into seasonal patterns of Ae. aegypti and Ae. albopictus population dynamics that may be relevant to seasonal changes in dengue virus transmission. Our models can be integrated with Aedes and dengue modelling efforts to guide and evaluate vector control, better map the distribution of disease and produce early warning systems for dengue epidemics. PMID:24330720

  17. Effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding.

    PubMed

    Secilmis, Asli; Bulbul, Mehmet; Sari, Tugrul; Usumez, Aslihan

    2013-01-01

    The neodymium/yttrium-aluminum-garnet (Nd/YAG) laser has been suggested to repair broken prostheses in the mouth. This study investigated the effects of different dentin thicknesses and air cooling on pulpal temperature rise during laser welding. Three intact human maxillary molars were prepared for full-veneer crown. For each tooth, dentin thicknesses in mesiobuccal cusp was 2, 3, or 4 mm. Twenty dies were duplicated from each of the prepared teeth. For metal copings with 0.5-mm thickness, wax patterns were prepared with dip wax technique directly onto each of dies. All patterns were sprued and invested. The castings were made using a nickel-chromium alloy (Nicromed Premium, Neodontics). A hole with 0.5-mm diameter was prepared on the mesiobuccal cusp of each crown. The Nd/YAG laser (9.85 W; 1 Hz repetition rate; fluence, 1.230 J/cm(2); Fidelis Plus 3, Fotona) was used for welding with or without air cooling (n = 10). The temperature rise was measured in pulpal chamber with a J-type thermocouple wire that was connected to a data logger. Differences between start and highest temperature reading were taken, and temperature rise values were compared using two-way analysis of variance and Tukey's honestly significant difference tests (α = .05). Pulpal temperature rise varied significantly depending on the dentin thickness and air cooling (p < 0.05). The non-air cooling group induced significantly the highest temperature increases. There were no significant differences between 2- and 3-mm dentin thicknesses groups (p > 0.05); however, pulpal temperature rise was the lowest for 4-mm dentin thickness group (p < 0.05). The highest values of thermal increase were found in the pulp chamber (6.8°C) when no air cooling was used in 2-mm dentin thickness group. Laser welding on base metal castings with Nd/YAG laser can be applied with air cooling to avoid temperature rises known to adversely affect pulpal health when dentin thickness is 2 or 3 mm. PMID:22562450

  18. Consideration of dielectric relaxation of pure DMSO liquid in different temperatures

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Jia, Guozhu

    2014-10-01

    This paper mainly analyzes the relaxation process of both CC model and Davidson-Cole (DC) model, depicting the process by relaxation time, broadening parameter and temperature dependent Kirkwood correlation factor. The Kirkwood correlation factor of CC model in adjustable infinite dielectric constant is more changeable with temperature than DC model. The Kirkwood factor with different conditions needs reinterpretation. CC model generally depicts molecular cooperative interactions with single channel and evaluates once relaxation act of DMSO cluster within a cutoff time. DC model couples multi-channels, including various relaxation modes such as monomeric, dimeric and cluster. So the relaxation time of DC model is higher than CC model.

  19. The effect of using different regions of interest on local and mean skin temperature.

    PubMed

    Maniar, Nirav; Bach, Aaron J E; Stewart, Ian B; Costello, Joseph T

    2015-01-01

    The dynamic nature of tissue temperature and the subcutaneous properties, such as blood flow, fatness, and metabolic rate, leads to variation in local skin temperature. Therefore, we investigated the effects of using multiple regions of interest when calculating weighted mean skin temperature from four local sites. Twenty-six healthy males completed a single trial in a thermonetural laboratory (mean ± SD): 24.0 (1.2)°C; 56 (8%) relative humidity; <0.1 m/s air speed). Mean skin temperature was calculated from four local sites (neck, scapula, hand and shin) in accordance with International Standards using digital infrared thermography. A 50 mm × 50 mm, defined by strips of aluminium tape, created six unique regions of interest, top left quadrant, top right quadrant, bottom left quadrant, bottom right quadrant, centre quadrant and the entire region of interest, at each of the local sites. The largest potential error in weighted mean skin temperature was calculated using a combination of a) the coolest and b) the warmest regions of interest at each of the local sites. Significant differences between the six regions interest were observed at the neck (P<0.01), scapula (P<0.001) and shin (P<0.05); but not at the hand (P = 0.482). The largest difference (± SEM) at each site was as follows: neck 0.2 (0.1)°C; scapula 0.2 (0.0)°C; shin 0.1 (0.0)°C and hand 0.1 (0.1)°C. The largest potential error (mean ± SD) in weighted mean skin temperature was 0.4 (0.1)°C (P<0.001) and the associated 95% limits of agreement for these differences was 0.2-0.5 °C. Although we observed differences in local and mean skin temperature based on the region of interest employed, these differences were minimal and are not considered physiologically meaningful. PMID:25774024

  20. Room-temperature terahertz detection based on CVD graphene transistor

    NASA Astrophysics Data System (ADS)

    Yang, Xin-Xin; Sun, Jian-Dong; Qin, Hua; Lv, Li; Su, Li-Na; Yan, Bo; Li, Xin-Xing; Zhang, Zhi-Peng; Fang, Jing-Yue

    2015-04-01

    We report the fabrication and characterization of a single-layer graphene field-effect terahertz detector, which is coupled with dipole-like antennas based on the self-mixing detector model. The graphene is grown by chemical vapor deposition and then transferred onto an SiO2/Si substrate. We demonstrate room-temperature detection at 237 GHz. The detector could offer a voltage responsivity of 0.1 V/W and a noise equivalent power of 207 nW/Hz1/2. Our modeling indicates that the observed photovoltage in the p-type gated channel can be well fit by the self-mixing theory. A different photoresponse other than self-mixing may apply for the n-type gated channel. Project supported by the National Natural Science Foundation of China (Grant Nos. 61271157, 61401456, and 11403084), Jiangsu Provincial Planned Projects for Postdoctoral Research Funds (Grant No. 1301054B), the Fund from Suzhou Industry Technology Bureau (Grant No. ZXG2012024), China Postdoctoral Science Foundation (Grant No. 2014M551678), the Graduate Student Innovation Program for Universities of Jiangsu Province (Grant No. CXLX12_0724), the Fundamental Research Funds for the Central Universities (Grant No. JUDCF 12032), and the Fund from National University of Defense Technology (Grant No. JC13-02-14).

  1. Development of the neotropical catfish Rhamdia quelen (Siluriformes, Heptapteridae) incubated in different temperature regimes.

    PubMed

    Rodrigues-Galdino, Alana Marielle; Maiolino, Camila Valente; Forgati, Mariana; Donatti, Lucélia; Mikos, Jorge Daniel; Carneiro, Paulo César Falanghe; Rios, Flavia Sant'Anna

    2010-05-01

    The developmental stages for the embryonic and larval periods of the silver catfish (Rhamdia quelen) kept at different temperatures (21, 24, 27 and 30 degrees C) are described. Fish were analysed under light and scanning electron microscopy. For embryonic development, we described 25 stages, which were grouped into seven periods named zygote, cleavage, blastula, gastrula, segmentation, pharyngula and hatching periods. For larval development, we defined three stages (early, mid, and late larvae). Additionally, the main ontogenetic events during the post-larvae and early juvenile periods were also described. This species presents a well developed lateral line and chemosensory systems that grow up during the larval period, maturing in the post-larvae. All tested temperatures are viable to R. quelen development, but a shorter incubation period was necessary to complete the development at lower temperatures. However, some malformations (heart edema) were verified at 30 degrees C. PMID:19857361

  2. Thermal performance of a heat storage module using PCM's with different melting temperature; Experimental

    SciTech Connect

    Farid, M.M. ); Kim, Y.; Kansawa, A. )

    1990-05-01

    A latent heat storage module was constructed, consisting of 45 cylindrical capsules fixed vertically in 15 rows. The capsules, made of 0.335-m long copper tubes having external diameters of 31.8 mm, were fixed in an insulated rectangular duct. Three commercial waxes having melting temperatures of 44{degrees}C, 53{degrees}C, and 64{degrees}C were selected. Each of the three sets of 15 tubes was filled with different wax. For comparison purposes, experiments were also done with a single commercial wax, having a melting temperature of 53{degrees}C, in all the tubes. During heat charge, hot air flowed across the capsules such that the melting temperature of the waxes decreased in the flow direction. Air flow direction was reversed during heat discharge. This paper reports that experimental measurements showed some improvement in the heat transfer rates during both heat charge and discharge when three types of PCM's were used.

  3. [Regularities of carbon monoxide outgassing from two nonmetallic materials at different temperatures].

    PubMed

    Zhang, X; Wei, Y; Yu, B

    1998-06-01

    To investigate the regularity of carbon monoxide outgassing from nonmetallic materials in air tight cabin, two nonmetallic materials was observed. 30-9304 foam plastics and aluminum-plated polyester adhesive film were sealed in airtight glass ampules, and outgassed for 70 days at four different temperatures. The outgassing CO was determined continuously with transform/gas chromatography. Curve fitting and regression were used in data analysis. The results showed that: (1) when temperature was kept constant, the relation between the outgassed CO and outgassing time appeared to be a "s" shaped or exponented curve; (2) at a fixed time the amount of outgassed CO increased with temperature exponentially; (3) the amount of CO outgassed in 12 h at 100 degrees C from the two materials corresponds those for 45 d at 50 degrees C, there is an iso-effect principle for CO outgassing. PMID:11541422

  4. Archaeal Community Structures in the Solfataric Acidic Hot Springs with Different Temperatures and Elemental Compositions

    PubMed Central

    Watanabe, Keiko; Yamamoto, Hideo; Yamamoto, Shuichi

    2013-01-01

    Archaeal 16S rRNA gene compositions and environmental factors of four distinct solfataric acidic hot springs in Kirishima, Japan were compared. The four ponds were selected by differences of temperature and total dissolved elemental concentration as follows: (1) Pond-A: 93°C and 1679 mg L−1, (2) Pond-B: 66°C and 2248 mg L−1, (3) Pond-C: 88°C and 198 mg L−1, and (4) Pond-D: 67°C and 340 mg L−1. In total, 431 clones of 16S rRNA gene were classified into 26 phylotypes. In Pond-B, the archaeal diversity was the highest among the four, and the members of the order Sulfolobales were dominant. The Pond-D also showed relatively high diversity, and the most frequent group was uncultured thermoacidic spring clone group. In contrast to Pond-B and Pond-D, much less diverse archaeal clones were detected in Pond-A and Pond-C showing higher temperatures. However, dominant groups in these ponds were also different from each other. The members of the order Sulfolobales shared 89% of total clones in Pond-A, and the uncultured crenarchaeal groups shared 99% of total Pond-C clones. Therefore, species compositions and biodiversity were clearly different among the ponds showing different temperatures and dissolved elemental concentrations. PMID:23710131

  5. Temperature Control During Therapeutic Hypothermia for Newborn Encephalopathy Using Different Blanketrol Devices

    PubMed Central

    Kilbride, Howard; Shepherd, Edward; McDonald, Scott A.; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D.

    2014-01-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33°C and 34°C (target 33.5°C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6°C±1.0°C for B2 vs. 33.9°C±1.2°C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33°C and 34°C was similar for B2 compared to B3 cohorts (94.8%±0.1% vs. 95.8%±0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia. PMID:25285767

  6. Antioxidant and oxidative stress responses of sojourners at high altitude in different climatic temperatures

    NASA Astrophysics Data System (ADS)

    Sinha, Sanchari; Singh, Som Nath; Saha, Mantu; Kain, T. C.; Tyagi, A. K.; Ray, Uday Sankar

    2010-01-01

    High altitude (HA) is a multi-stressor environment comprising hypobaric hypoxia and cold. Climatic temperature varies with seasonal variation at HA. The present study was undertaken to investigate the effect of ambient temperature on antioxidant profile among sojourners at HA. The study was conducted on sojourners exposed to an altitude of 4,560 m in two different seasons and categorized into two groups (SOJ 1, n = 63, ambient temp. at HA: -6º to +10ºC; SOJ 2, n = 81, ambient temp. at HA: 3º-22ºC). Blood was collected at sea level (SL) and after 4 weeks of HA exposure. Antioxidant enzymes showed significant upregulation in SOJ 2 at HA. In SOJ 1, superoxide dismutase and glutathione peroxidase showed significant upregulation but catalase and glutathione reductase showed significant decrease at HA. Non-enzymatic antioxidants showed significant reduction in SOJ 1 whereas a sustained antioxidant profile was observed in SOJ 2 at HA. Oxidative stress markers showed higher levels in SOJ 1 than SOJ 2 at HA. Differences observed between SOJ 1 and SOJ 2 at HA may be the consequence of different environmental temperatures. Cold stress was higher in SOJ 1 as evidenced from the significantly lower oral temperature in SOJ 1 as compared to SOJ 2. Cold- and hypoxia-induced increase in energy expenditure was significantly high in SOJ 1 than SOJ 2. To conclude, chronic exposure to hypoxia in moderate climatic temperature has a potential preconditioning effect on antioxidant system, but exposure to both cold and hypoxia causes greater oxidative stress due to altered metabolic rate.

  7. Effect of four different reflective barriers on black-globe temperatures in calf hutches

    NASA Astrophysics Data System (ADS)

    Friend, T. H.; Haberman, J. A.; Binion, W. R.

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher ( P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature.

  8. Temperature control during therapeutic hypothermia for newborn encephalopathy using different Blanketrol devices.

    PubMed

    Laptook, Abbot R; Kilbride, Howard; Shepherd, Edward; McDonald, Scott A; Shankaran, Seetha; Truog, William; Das, Abhik; Higgins, Rosemary D

    2014-12-01

    Therapeutic hypothermia improves the survival and neurodevelopmental outcome of infants with newborn encephalopathy of a hypoxic-ischemic origin. The NICHD Neonatal Research Network (NRN) Whole Body Cooling trial used the Cincinnati Sub-Zero Blanketrol II to achieve therapeutic hypothermia. The Blanketrol III is now available and provides additional cooling modes that may result in better temperature control. This report is a retrospective comparison of infants undergoing hypothermia using two different cooling modes of the Blanketrol device. Infants from the NRN trial were cooled with the Blanketrol II using the Automatic control mode (B2 cohort) and were compared with infants from two new NRN centers that adopted the NRN protocol and used the Blanketrol III in a gradient mode (B3 cohort). The primary outcome was the percent time the esophageal temperature stayed between 33C and 34C (target 33.5C) during maintenance of hypothermia. Cohorts had similar birth weight, gestational age, and level of encephalopathy at the initiation of therapy. Baseline esophageal temperature differed between groups (36.6C 1.0C for B2 vs. 33.9C 1.2C for B3, p<0.0001) reflecting the practice of passive cooling during transport prior to initiation of active device cooling in the B3 cohort. This difference prevented comparison of temperatures during induction of hypothermia. During maintenance of hypothermia the mean and standard deviation of the percent time between 33C and 34C was similar for B2 compared to B3 cohorts (94.8% 0.1% vs. 95.8% 0.1%, respectively). Both the automatic and gradient control modes of the Blanketrol devices appear comparable in maintaining esophageal temperature within the target range during maintenance of therapeutic hypothermia. PMID:25285767

  9. Effect of four different reflective barriers on black-globe temperatures in calf hutches.

    PubMed

    Friend, T H; Haberman, J A; Binion, W R

    2014-12-01

    Polyethylene hutches are a popular method of housing dairy calves from 0 to 60 or more days of age, although these hutches get hot when in full sun. This study characterized the relative differences in the ability of four different types of radiant barriers to reduce black-globe temperature within these hutches. Treatments included three different types of covers (two types of laminates (Cadpak P and Cadpak ESD) and an aluminized 3.0-mil white low-density polyethylene (LDPE)) and a reflective paint (LO/MIT-1). The reflective covers were 1.8 × 3 m finished size, and covered the top and sides of the hutch down to 0.15 m above the ground, leaving the front and back exposed. The LO/MIT-1 paint covered the entire sides and roof of the hutch. Two 24-h trials 1 week apart were conducted during relatively hot and clear days in early August. Black-globe temperatures were recorded in duplicate and averaged at 20-min intervals using blackened table tennis balls mounted 0.3 m above the floor in the center of each hutch. Ambient temperature (shade) during the hottest 2-h period for both trials averaged 39.9 °C while the uncovered control averaged 41.1 °C, and LO/MIT-1 averaged 39.9 °C; both of which were significantly higher (P < 0.01) than the Cadpak P (38.9 °C), Cadpak ESD (38.6 °C), and aluminized LDPE (38.7 °C). During periods of high solar radiation, the hutches with covers had lowest black-globe temperatures followed by hutches painted with reflective paint, while control hutches had the highest temperature. PMID:24619461

  10. Algorithm development for land surface temperature measurement from GOES-R satellite

    NASA Astrophysics Data System (ADS)

    Yu, Yunyue; Tarpley, Dan; Raja, M. K. Rama Varma; Xu, Hui; Privette, Jeffrey L.

    2007-10-01

    The Geostationary Operational Environmental Satellite (GOES) program is developing a new generation sensor, the Advanced Baseline Imager (ABI), to be carried on the GOES-R satellite to be lunched in approximately in 2014. Compared to the current GOES imager, ABI will have significant advantages for measuring land surface temperature as well as to providing qualitative and quantitative data for a wide range of applications. Specifically, spatial resolution of the ABI sensor is 2 km, and the infrared window noise equivalent temperature is 0.1 K, which are very close to the polarorbiting satellite sensors such as AVHRR. Most importantly, ABI observes the full disk every five minutes, which not only provides more cloud-free measurements but also makes daily temperature variation analysis possible. In this study we developed split window algorithms for the LST measurement from the ABI sensor. We generated the ABI sensor data using MODTRAN radiative transfer model and NOAA88 atmospheric profiles and ran regression analyses for the LST algorithm development. The algorithms are developed by optimizing existing split window LST algorithms and adding a path length correction term to minimize the retrieval errors due to difference atmospheric path absorption from nadir view to the edge-of-scan. The algorithm coefficients are stratified for dry and moist atmospheric conditions, as well as for the daytime and nighttime. The algorithm sensitivity to land surface emissivity uncertainty is analyzed to ensure the algorithm performance.

  11. Temperature measurements in plasmas generated by using lasers at different intensities

    NASA Astrophysics Data System (ADS)

    Picciotto, A.; Torrisi, L.; Gammino, S.; Mezzasalma, A. M.; Caridi, F.; Margarone, D.; Ando, L.; Krasa, J.; Laska, L.; Wolowski, J.

    2005-10-01

    The temperature of laser-generated pulsed plasmas is an important property that depends on many parameters, such as the particle species and the time elapsed from the laser interaction with the matter and the surface characteristics. Laser-generated plasmas with low intensity (< 10(10) W/cm(2)) at INFN-LNS of Catania and with high intensity (> 10(14) W/cm(2)) in PALS laboratory in Prague have been investigated in terms of temperatures relative to ions, electrons, and neutral species. Time-of-flight (ToF) measurements have been performed with an electrostatic ion energy analyzer (IEA) and with different Faraday cups, in order to measure the ion and electron average velocities. The IEA was also used to measure the ion energy, the ion charge state, and the ion energy distribution. The Maxwell-Boltzmann function permitted to fit the experimental data and to extrapolate the ion temperature of the plasma core. The velocity of the neutrals was measured with a special mass quadrupole spectrometer. The Nd:Yag laser operating at low intensity produced an ion temperature core of the order of 400 eV and a neutral temperature of the order of 100 eV for many ablated materials. The ToF of electrons indicates the presence of hot electron emission with an energy of similar to 1 keV.

  12. Intravaginal and in vitro temperature changes with tampons of differing composition and absorbency.

    PubMed

    Hill, Donna R; Davis, Catherine C; Osborn, Thomas W

    2010-02-01

    Vaginal tampons are Class II medical devices used by women to manage menstruation. The purpose of this study was to investigate intravaginal temperature changes with simulated and actual menstrual tampon use. Tampons (with varying absorbent compositions) embedded with a thermocouple sensor were used to study temperature effects in vitro in a model of the vagina (condom placed in a hollow glass tube, jacketed in a 37 degrees C water bath, and dosed with human menses to fluid saturation) and clinically during menstrual tampon wear under controlled conditions (up to 8 h in a stationary, supine position). Elevations in the temperature of the tampon core occurred upon menses fluid acquisition both in vitro and clinically. Temperature profile characteristics varied from a transient spike with commercial cotton-rayon blend tampons of two different absorbencies to a small but sustained rise (> or =6 h) with a carboxymethyl cellulose (CMC)-containing prototype. On the basis of the results from this study, fluid absorption by tampons generates an exothermic event whose characteristics vary with tampon design and composition. We speculate the small, sustained increased in tampon temperature noted during this study may enhance the production of a bacterial exotoxin associated with tampons composed of CMC. PMID:20024967

  13. Antioxidant activities of orange peel extract in ghee (butter oil) stored at different storage temperatures.

    PubMed

    Asha, A; Manjunatha, M; Rekha, R M; Surendranath, B; Heartwin, P; Rao, J; Magdaline, E; Sinha, Chitranayak

    2015-12-01

    Antioxidant activities of butylatedhydroxyanisole (BHA) and orange peel powder extract in ghee stored at different storage temperatures (T1:6 ± 2 °C; T2: 32 ± 2 °C; T3:60 ± 2 °C) were evaluated during storage period of 21 days. Peroxide value (PV), thiobarbituric acid (TBA), radical scavenging activity (RSA) and free fatty acids (FFA) of ghee samples were analyzed during the study. PV, TBA and FFA of ghee samples increased significantly while radical scavenging activity (RSA) of ghee samples decreased significantly at accelerated temperature (T3) as compared to the temperatures at T1 and T2. Effect of storage temperature on development of peroxides and TBA of ghee samples was significantly higher than the effect of treatment and storage period while treatment had more significant effect on the change in FFA and RSA as compared to storage temperature and storage period. Ghee incorporated with orange peel extract (OPE) showed stronger activity in quenching DPPH radicals and least development of PV, TBA and FFA than ghee incorporated with BHA and control. The study revealed that orange peel could be a good natural source of antioxidants which can be used in fat rich food products like ghee to retard oxidative deterioration. PMID:26604397

  14. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-01-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72C was investigated. Anaerobic sediment slurries prepared from local freshwater sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50C, although methane was formed up to 60C. In sediment samples from two sites and at all temperatures from 5 to 50C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25C, were essentially constant between 25 and 35C, and increased in the tubes incubated at temperatures between 35 and 40C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP.

  15. Experimental investigation of the influence of temperature differences on the precessing vortex core in swirling jets

    NASA Astrophysics Data System (ADS)

    Sieber, Moritz; Rukes, Lothar; Oberleithner, Kilian; Paschereit, C. Oliver

    2014-11-01

    Swirling jets undergoing vortex breakdown are commonly used in gas turbine combustors. The vortex breakdown is accompanied by a meandering motion of the vortex core around the jet axis. This is referred to as the precessing vortex core, or short PVC. Extensive research has been done on the occurrence of the PVC in isothermal swirling jets. It was demonstrated that the PVC is a global instability mode. Measurements of the isothermal flow in gas turbine combustors usually show the presence of the PVC. However, recent investigations at our institute revealed that the PVC may be supressed in the reacting flow, depending on the flame position. This feature of non-isothermal swirling jets is of particular interest, because the PVC is known to be a robust structure that is hard to suppress in general. A subsequent theoretical investigation of the flow showed that the suppression of the PVC is related to a change of the hydrodynamic stability. This is again related to the temperature distribution within the flow. In the presented work this phenomenon is experimentally investigated in a swirling jet, where temperature differences are generated by electric heating. Therefore, the influence of the temperature can be investigated separately from the combustion. The experimental investigations consistently show that the PVC is strongly reduced by imposing temperature differences on the flow field. These characteristics are obtained by particle image velocimetry and proper orthogonal decomposition.

  16. [IR spectral-analysis-based range estimation for an object with small temperature difference from background].

    PubMed

    Fu, Xiao-Ning; Wang, Jie; Yang, Lin

    2013-01-01

    It is a typical passive ranging technology that estimation of distance of an object is based on transmission characteristic of infrared radiation, it is also a hotspot in electro-optic countermeasures. Because of avoiding transmitting energy in the detection, this ranging technology will significantly enhance the penetration capability and infrared conceal capability of the missiles or unmanned aerial vehicles. With the current situation in existing passive ranging system, for overcoming the shortage in ranging an oncoming target object with small temperature difference from background, an improved distance estimation scheme was proposed. This article begins with introducing the concept of signal transfer function, makes clear the working curve of current algorithm, and points out that the estimated distance is not unique due to inherent nonlinearity of the working curve. A new distance calculation algorithm was obtained through nonlinear correction technique. It is a ranging formula by using sensing information at 3-5 and 8-12 microm combined with background temperature and field meteorological conditions. The authors' study has shown that the ranging error could be mainly kept around the level of 10% under the condition of the target and background apparent temperature difference equal to +/- 5 K, and the error in estimating background temperature is no more than +/- 15 K. PMID:23586223

  17. Analyzing the impact of ambient temperature indicators on transformer life in different regions of Chinese mainland.

    PubMed

    Bai, Cui-fen; Gao, Wen-Sheng; Liu, Tong

    2013-01-01

    Regression analysis is applied to quantitatively analyze the impact of different ambient temperature characteristics on the transformer life at different locations of Chinese mainland. 200 typical locations in Chinese mainland are selected for the study. They are specially divided into six regions so that the subsequent analysis can be done in a regional context. For each region, the local historical ambient temperature and load data are provided as inputs variables of the life consumption model in IEEE Std. C57.91-1995 to estimate the transformer life at every location. Five ambient temperature indicators related to the transformer life are involved into the partial least squares regression to describe their impact on the transformer life. According to a contribution measurement criterion of partial least squares regression, three indicators are conclusively found to be the most important factors influencing the transformer life, and an explicit expression is provided to describe the relationship between the indicators and the transformer life for every region. The analysis result is applicable to the area where the temperature characteristics are similar to Chinese mainland, and the expressions obtained can be applied to the other locations that are not included in this paper if these three indicators are known. PMID:23843729

  18. Impact of pH and temperature on phase diagrams of different aqueous biphasic systems.

    PubMed

    Chakraborty, Arabinda; Sen, Kamalika

    2016-02-12

    The phase diagrams of aqueous biphasic systems impart a distinct idea regarding the feasibility of biphase formation by different water soluble substances at their optimum concentrations. Depending on nature of the components viz., the water soluble polymers, surfactants, salts, amino acids or ionic liquids, a general trend of the biphase formation with varying temperature, pH and concentration has been studied over the recent years. This critical review is an endeavor to assess the general trends of these phase forming components to form biphasic systems with varying conditions of temperature and pH in light of the reported phase diagrams. Suitable explanations for the mechanisms of such behavior have been sorted out. The avenue yet to be explored has been addressed as these systems have a tremendous potential to be the future platform to solve different analytical issues. PMID:26795280

  19. Influence of Light Intensity at Different Temperatures on Rate of Respiration of Douglas-Fir Seedlings

    PubMed Central

    Brix, Holger

    1968-01-01

    The rate of photorespiration of Douglas-fir seedlings was measured under different light intensities by: (1) extrapolating the curve for CO2 uptake in relation to atmospheric CO2 content to zero CO2 content, and (2) measuring CO2 evolution of the plants into a CO2-free airstream. Different results, obtained from these techniques, were believed to be caused by a severe restriction of the photosynthetic activity when the latter was used. With the first method, CO2 evolution was lower than the dark respiration rate at low light intensity. For all temperatures studied (6, 20, 28) a further increase in light intensity raised the CO2 evolution above dark respiration before it leveled off. The rate of CO2 evolution was stimulated by increase in temperature at all light intensities. With the CO2-free air method, CO2 evolution in the light was less than dark respiration at all light intensities. PMID:16656775

  20. A dual-temperature-difference approach to estimate daytime sensible and latent heat fluxes under advective conditions during BEAREX08

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dual-Temperature-Difference (DTD) approach uses continuous radiometric surface temperature measurements in a two-source (soil + vegetation) energy balance model to solve for the daytime evolution of the sensible and latent heat fluxes. By using the surface-air temperature difference at two time...

  1. The ratios of partition functions at different temperatures - Sensitivity to potential energy shape II

    NASA Astrophysics Data System (ADS)

    Buchowiecki, Marcin

    2016-05-01

    The ratios of partition functions at different temperatures are calculated and its dependence on potential energy shape is analyzed. The role of anharmonicity and non-rigidity of rotations is discussed in the context of the angular frequency and the shape of potential energy curve. A role of inflection point of potential energy curve for the quality of rigid rotor harmonic oscillator and rigid rotor Morse oscillator is elucidated.

  2. Light responses and light adaptation in rat retinal rods at different temperatures

    PubMed Central

    Nymark, S; Heikkinen, H; Haldin, C; Donner, K; Koskelainen, A

    2005-01-01

    Rod responses to brief pulses of light were recorded as electroretinogram (ERG) mass potentials across isolated, aspartate-superfused rat retinas at different temperatures and intensities of steady background light. The objective was to clarify to what extent differences in sensitivity, response kinetics and light adaptation between mammalian and amphibian rods can be explained by temperature and outer-segment size without assuming functional differences in the phototransduction molecules. Corresponding information for amphibian rods from the literature was supplemented by new recordings from toad retina. All light intensities were expressed as photoisomerizations per rod (Rh*). In the rat retina, an estimated 34% of incident photons at the wavelength of peak sensitivity caused isomerizations in rods, as the (hexagonally packed) outer segments measured 1.7 μm × 22 μm and had specific absorbance of 0.016 μm−1 on average. Fractional sensitivity (S) in darkness increased with cooling in a similar manner in rat and toad rods, but the rat function as a whole was displaced to a ca 0.7 log unit higher sensitivity level. This difference can be fully explained by the smaller dimensions of rat rod outer segments, since the same rate of phosphodiesterase (PDE) activation by activated rhodopsin will produce a faster drop in cGMP concentration, hence a larger response in rat than in toad. In the range 15–25°C, the waveform and absolute time scale of dark-adapted dim-flash photoresponses at any given temperature were similar in rat and toad, although the overall temperature dependence of the time to peak (tp) was somewhat steeper in rat (Q10≈ 4 versus 2–3). Light adaptation was similar in rat and amphibian rods when measured at the same temperature. The mean background intensity that depressed S by 1 log unit at 12°C was in the range 20–50 Rh* s−1 in both, compared with ca 4500 Rh* s−1 in rat rods at 36°C. We conclude that it is not necessary to assume major differences in the functional properties of the phototransduction molecules to account for the differences in response properties of mammalian and amphibian rods. PMID:16037091

  3. Avoiding hypothermia in neonatal pigs: effect of duration of floor heating at different room temperatures.

    PubMed

    Pedersen, L J; Malmkvist, J; Kammersgaard, T; Jørgensen, E

    2013-01-01

    The effect of different farrowing room temperatures (15, 20, or 25°C), combined with floor heating (FH) at the birth site, on the postnatal rectal temperature of pigs, use of creep area, and latency to first colostrum uptake was investigated with 61 litters born by loose-housed sows. Pig rectal temperature was measured at birth, as well as at 0.25, 0.5, 1, 1.5, 2, 3, 4, 12, 24, and 48 h after birth. The drop in rectal temperature from birth to 0.5 h postpartum was less (P<0.05) at room temperature of 25°C compared with 20 and 15°C. Minimum rectal temperature was less (P<0.001) at 15°C than either 20 or 25°C, and the time it took for rectal temperature to increase above 37°C was longer (P<0.05) when room temperature was 15°C than 20 and 25°C. Rectal temperatures at 24 (P<0.001) and 48 h (P<0.05) postpartum were also lower at room temperature of 15°C than 20 and 25°C. Duration of FH (12 or 48 h) did not influence (P>0.28) the rectal temperature at 24 or 48 h after birth. More pigs used the creep area 12 to 60 h after birth of the first pig at a room temperature of 15°C with 12 h FH compared with all other treatments. During the latter part of this period, more pigs stayed in the creep area also at 20°C with 12 h FH. After 60 h, more pigs (P<0.01) used the creep area at low compared with high room temperatures (15°C>20°C>25°C). Odds ratio of pigs dying before they had suckled was 6.8 times greater (P=0.03) at 15 than 25°C (95% CI of 1.3 to 35.5), whereas the odds ratio of dying during the first 7 d was 1.6 greater (P=0.05) for 48 vs. 12 h of FH (95% CI of 1.0 to 2.57), mainly due to more pigs being crushed. In conclusion, FH for 48 h was no more favorable than 12 h for pigs because the risk of hypothermia was equal in the 2 treatments, and the risk of dying increased with the longer FH duration. Increasing the room temperature to 25°C reduced hypothermia and the risk of pigs dying before colostrum intake. PMID:23100591

  4. Effect of Different Cooling Regimes on the Mechanical Properties of Cementitious Composites Subjected to High Temperatures

    PubMed Central

    Yu, Jiangtao; Weng, Wenfang; Yu, Kequan

    2014-01-01

    The influence of different cooling regimes (quenching in water and cooling in air) on the residual mechanical properties of engineered cementitious composite (ECC) subjected to high temperature up to 800°C was discussed in this paper. The ECC specimens are exposed to 100, 200, 400, 600, and 800°C with the unheated specimens for reference. Different cooling regimens had a significant influence on the mechanical properties of postfire ECC specimens. The microstructural characterization was examined before and after exposure to fire deterioration by using scanning electron microscopy (SEM). Results from the microtest well explained the mechanical properties variation of postfire specimens. PMID:25161392

  5. Determination of the Effusivity of Different Scratched Coaxial Temperature Sensors Under Hypersonic Flow

    NASA Astrophysics Data System (ADS)

    Mohammed, H. A.; Salleh, H.; Yusoff, M. Z.

    2010-12-01

    This paper presents an experimental method for determining the effusivity values of different scratched coaxial temperature sensors. These sensors have a response time on the order of microseconds (50 μs) with a rise time of less than 0.3 μs. Two types of scratch were used, mainly abrasive papers with different grit sizes and scalpel blades with different thicknesses to form the sensor junctions. The effect of the scratch technique on the sensor's effusivity is also investigated. The sensors were tested and calibrated in the test section of a shock-tube facility at different operating conditions. It was observed that the effusivity of a particular sensor depends on the Mach number, scratch technique, scratch direction, junction location, as well as on the enthalpy condition. It was also noticed that a scratched sensor using the scalpel blade technique does not require an individual calibration. However, for a sensor scratched using the abrasive paper technique, a calibration for each sensor is likely to be required. The present results have provided useful and practical data of the effusivity values for different scratched temperature sensors. These data are beneficial to experimentalists in the field, and can be used for accurate transient heat transfer rate measurements.

  6. Absorption of crystalline water ice in the far infrared at different temperatures

    NASA Astrophysics Data System (ADS)

    Reinert, C.; Mutschke, H.; Krivov, A. V.; Löhne, T.; Mohr, P.

    2015-01-01

    The optical properties of ice in the far infrared are important for models of protoplanetary and debris disks. In this report, we derive a new set of data for the absorption (represented by the imaginary part of the refractive index κ) of crystalline water ice in this spectral range. The study includes a detailed inspection of the temperature dependence, which has not been conducted in such detail before. We measured the transmission of three ice layers with different thicknesses at temperatures ϑ = 10...250 K and present data at wavelengths λ = 80...625 μm. We found a change in the spectral dependence of κ at a wavelength of 175 ± 6 μm. At shorter wavelengths, κ exhibits a constant flat slope and no significant temperature dependence. Long-ward of that wavelength, the slope gets steeper and has a clear, approximately linear temperature dependence. This change in behaviour is probably caused by a characteristic absorption band of water ice. The measured data were fitted by a power-law model that analytically describes the absorption behaviour at an arbitrary temperature. This model can readily be applied to any object of interest, for instance a protoplanetary or debris disk. To illustrate how the model works, we simulated the spectral energy distribution (SED) of the resolved, large debris disk around the nearby solar-type star HD 207129. Replacing our ice model by another, commonly used data set for water ice results in a different SED slope at longer wavelengths. This leads to changes in the characteristic model parameters of the disk, such as the inferred particle size distribution, and affects the interpretation of the underlying collisional physics of the disk.

  7. Temperature dependence of far-infrared difference reflectivity of YBa2Cu3O7-y

    NASA Astrophysics Data System (ADS)

    Krenn, H.; Bauer, G.; Vogl, G.; Strasser, G.; Gornik, E.

    1989-04-01

    Far-infrared difference reflectivity spectra (50-450 cm-1) below, across and above the transition temperature on polycrystalline single-phase YBa2Cu3O7-y samples were measured. The data are compared with model fits using the explicit temperature dependence of the Mattis-Bardeen conductivity, an effective-medium approach and temperature-dependent phonon oscillator parameters and alternatively a plasma model. For the plasma model we alternatively use a generalized Drude-like expression with a frequency-dependent damping after Thomas et al. [Phys. Rev. B 36, 846 (1987)] or the original model with Orenstein et al. [Phys. Rev. B 36, 729 (1987)] and Sherwin, Richards, and Zettl [Phys. Rev. B 37, 1587 (1988)] with a Drude contribution plus a mid-infrared oscillator, but with constant carrier relaxation rates. The models explain the difference reflectivity data (precision <0.2%) with a fitting accuracy of 1-2 % (Mattis-Bardeen model) or 2-3 % (plasma model) over the full temperature range. In order to investigate their applicability, reflectivity, and conductivity data of a highly oriented YBa2Cu3O7-y sample, as recently published by Bonn et al. [Phys. Rev. Lett. 58, 2249 (1987)], were also fitted with both models. Because of the frequency dependence of the free-carrier damping rates, it was important to fulfill the Kramers-Kronig relations between the real and the imaginary part of the dynamic conductivity in the calculations. For both models the characteristic dependences of the conductivity on frequency and temperature are given. Whereas, naturally, the Mattis-Bardeen model yields a gaplike depression of the conductivity for frequencies below an assumed gap, the plasma model results in somewhat smoother dependences of Re(σ(ω)) and Im(σ(ω)) in the frequency region of interest.

  8. Temperature Rise Within the Pulp Chamber During Composite Resin Polymerisation Using Three Different Light Sources

    PubMed Central

    Santini, A; Watterson, C; Miletic, V

    2008-01-01

    The purpose of the study was to compare temperature rise during polymerisation of resin based composites (RBCs) with two LED light curing units (LCUs) compared to a halogen control light. Methods: Forty-five extracted molars, patients aging 11-18 years were used. Thermocouples (TCs) were placed in contact with the roof of the pulp chamber using a ‘split-tooth’ method. Teeth were placed in a water bath with the temperature of the pulp chamber regulated at 37°±1°C. Group 1 (control): Prismatics® Lite II (Dentsply Detrey, Konstanz, Germany), a halogen LCU, light intensity 500 mW/cm2. Group 2: Bluephase® ( Ivoclar Vivadent, Schaan, Liechtenstein), light intensity 1100 mW/cm2. Group 3:Elipar Freelight2 (3M ESPE, Seefeld, Germany), light intensity 1000 mW/cm2. Temperature changes were continuously recorded with a data logger connected to a PC. Results: Significantly higher temperature rise was recorded during bond curing than RBC curing in all 3 groups. (Halogen; p =0.0003: Bluephase; p=0.0043: Elipar; p=0.0002.). Higher temperatures were recorded during polymerisation of both Bond and RBC with both LED sources than with the halogen control. There was no significant difference between the two LED,LCUs (Bond:p=0.0279: RBC p=0.0562: Mann-Whitney). Conclusion: The potential risk of pulpal injury during RBC polymerisation is increased when using light-curing units with high energy output compared to low energy output light sources. The rise is greatest when curing bonding agent alone and clinicians are advised to be aware of the potential hazard of thermal trauma to the pulp when using high intensity light sources. However the mean temperature rise with all three units was below the limits normally associated with permanent pulp damage. PMID:19444316

  9. Microbiological impact of spray washing broiler carcasses using different chlorine concentrations and water temperatures.

    PubMed

    Northcutt, J K; Smith, D P; Musgrove, M T; Ingram, K D; Hinton, A

    2005-10-01

    A study was conducted to investigate the microbiological impact of spray washing broiler carcasses with chlorinated water (0 or 50 ppm) at different temperatures (21.1, 43.3, or 54.4 degrees C). A whole carcass rinse (WCR) was performed on each carcass before (control) and after spray washing (final). After the control WCR, carcasses were inoculated with 0.1 g of cecal material containing 2 x 10(5) cells per gram of Campylobacter and 2 x 10(5) cells per gram of nalidixic acid-resistant Salmonella. Carcasses were held at room temperature for 12 min before washing in an inside-outside bird washer (80 psi for 5 s). Chlorine level and water temperature had no effect on total aerobic bacteria, Escherichia coli, or Campylobacter numbers recovered from the final WCR. Levels of bacteria found on carcasses before and after washing were 4.6, 3.6, and 3.5 log10 cfu/mL rinse for total aerobic bacteria, E. coli, and Campylobacter, respectively. Average counts for nalidixic acid-resistant Salmonella after washing were 3.1 log10 cfu/ mL rinse irrespective of water temperature or chlorine level (P < 0.05). In addition, chlorine level and water temperature had no effect on the breast skin color, with average values of L* = 66.6; a* = -0.09; b* = -0.05 (P < 0.05). Under the conditions outlined in the present study, adding chlorine and/or elevating the water temperature during spray washing in an inside-outside bird washer did not enhance the removal of bacteria from broiler carcasses and had no effect on carcass skin color. PMID:16335135

  10. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures

    SciTech Connect

    Kohring, G.W.; Rogers, J.E.; Wiegel, J.

    1989-02-01

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72 degrees C was investigated. Anaerobic sediment slurries prepared from local freshwater pond sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. Reductive 2,4-DCP dechlorination occurred only in the temperature range between 5 and 50/degree/C, although methane was formed up to 60 degrees C. In sediment samples from two sites and at all tested temperatures from 5 to 50 degrees C, 2,4-DCP was transformed to 4-chlorophenol (4-CP). The 4-CP intermediate was subsequently degraded after an extended lag period in the temperature range from 15 to 40/degree/C. Adaptation periods for 2,4-DCP transformation decreased between 5 and 25/degree/C, were essentially constant between 25 and 35/degree/C, and increased in the tubes incubated at temperatures between 35 and 40/degree/C. The degradation rates increased exponentially between 15 and 30/degree/C, had a second peak at 35/degree/C, and decreased to about 5% of the peak activity by 40/degree/C. In tubes from one sediment sample, incubated at temperatures above 40/degree/C, an increase in the degradation rate was observed following the minimum at 40/degree/C. This suggests that at least two different organisms were involved in the transformation of 2,4-DCP to 4-CP. Storage of the original sediment slurries for 2 months at 12/degree/C resulted in increased adaptation times, but did not affect the degradation rates.

  11. Non-equilibrium melting processes of silicate melts with different silica content at low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Vlasov, V.; Volokitin, G.; Skripnikova, N.; Volokitin, O.; Shekhovtsov, V.; Pfuch, A.

    2015-11-01

    This article is devoted to research the possibility of high-temperature silicate melts producing from different silica content at low-temperature plasma taking into account nonequilibrium melting processes.

  12. A comparison of temperature and precipitation responses to different Earth radiation management geoengineering schemes

    NASA Astrophysics Data System (ADS)

    Crook, J. A.; Jackson, L. S.; Osprey, S. M.; Forster, P. M.

    2015-09-01

    Earth radiation management has been suggested as a way to rapidly counteract global warming in the face of a lack of mitigation efforts, buying time and avoiding potentially catastrophic warming. We compare six different radiation management schemes that use surface, troposphere, and stratosphere interventions in a single climate model in which we projected future climate from 2020 to 2099 based on RCP4.5. We analyze the surface air temperature responses to determine how effective the schemes are at returning temperature to its 1986-2005 climatology and analyze precipitation responses to compare side effects. We find crop albedo enhancement is largely ineffective at returning temperature to its 1986-2005 climatology. Desert albedo enhancement causes excessive cooling in the deserts and severe shifts in tropical precipitation. Ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection have the potential to cool more uniformly, but cirrus cloud thinning may not be able to cool by much more than 1 K globally. We find that of the schemes potentially able to return surface air temperature to 1986-2005 climatology under future greenhouse gas warming, none has significantly less severe precipitation side effects than other schemes. Despite different forcing patterns, ocean albedo enhancement, sea-spray geoengineering, cirrus cloud thinning, and stratospheric SO2 injection all result in large scale tropical precipitation responses caused by Hadley cell changes and land precipitation changes largely driven by thermodynamic changes. Widespread regional scale changes in precipitation over land are significantly different from the 1986-2005 climatology and would likely necessitate significant adaptation despite geoengineering.

  13. Optical temperature switch based on microstructured fibre filled with different chemical mixtures

    NASA Astrophysics Data System (ADS)

    Marc, P.; Piliszek, P.; Murawski, M.; Szymanski, M.; Nasilowski, T.; Jaroszewicz, L. R.

    2012-04-01

    Size, shape and location of the air holes allow to tailor microstructured fibre (MSF) parameters in a very wide range way beyond classical fibres what opens up many possibilities for various applications. Additionally, the propagation parameters of MSF can be actively tuned when the air-holes are filled with different gases, liquids (e.g., liquid crystals) or solid materials (e.g., polymers). The mode confinement in such a filled MSF can be affected by temperature dependent refractive index of material filling the fibre. This idea puts forward a new type of components for creating novel fibre devices such as switches, attenuators and others. Variable optical attenuators (VOAs) play an important role in optical communications as equalizers for dynamic channel power and wavelength division multiplexing in a transmission system. Controlling and monitoring of optical power are also necessary in sensing applications, and especially, in optical systems which require high power laser operation or critical temperature threshold monitoring. Various types of VOA have been developed based on different mechanisms, such as bending loss control, light leaking from the fibre cladding, temperature tuning of the polymer incorporated into the tapered microstructured fibre or electrical tuning of the liquid crystal layers. In this paper we would like to discuss the highly dynamic VOA based on a tuneable microstructured fibre filled with different chemical mixtures used as an on/off temperature switch. Furthermore, the technology of low loss coupling and splicing of the applied MSF with a standard single mode fibre has been developed. Therefore, in the proposed application an optical signal can be transmitted to and from the switch by a standard telecom fibre which considerably reduces transmission losses and allows for the use of standard off-the-shelf components reducing costs of the overall system.

  14. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies.

    PubMed

    Krüger, E L; Minella, F O; Matzarakis, A

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature T(mrt) are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine T(mrt) is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine T(mrt) is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature T(mrt) in terms of differences to a reference condition (T(mrt) calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The T(mrt) obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for T(mrt) calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate T(mrt) when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at the urban site or as a surrogate of missing SR data or globe temperature data recorded at the urban area on global radiation data measured at a rural location. PMID:24375056

  15. Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies

    NASA Astrophysics Data System (ADS)

    Krüger, E. L.; Minella, F. O.; Matzarakis, A.

    2014-10-01

    Correlations between outdoor thermal indices and the calculated or measured mean radiant temperature Tmrt are in general of high importance because of the combined effect on human energy balance in outdoor spaces. The most accurate way to determine Tmrt is by means of integral radiation measurements, i.e. measuring the short- and long-wave radiation from six directions using pyranometers and pyrgeometers, an expensive and not always an easily available procedure. Some studies use globe thermometers combined with air temperature and wind speed sensors. An alternative way to determine Tmrt is based on output from the RayMan model from measured data of incoming global radiation and morphological features of the monitoring site in particular sky view factor (SVF) data. The purpose of this paper is to compare different methods to assess the mean radiant temperature Tmrt in terms of differences to a reference condition (Tmrt calculated from field measurements) and to resulting outdoor comfort levels expressed as PET and UTCI values. The Tmrt obtained from field measurements is a combination of air temperature, wind speed and globe temperature data according to the forced ventilation formula of ISO 7726 for data collected in Glasgow, UK. Four different methods were used in the RayMan model for Tmrt calculations: input data consisting exclusively of data measured at urban sites; urban data excluding solar radiation, estimated SVF data and solar radiation data measured at a rural site; urban data excluding solar radiation with SVF data for each site; urban data excluding solar radiation and including solar radiation at the rural site taking no account of SVF information. Results show that all methods overestimate Tmrt when compared to ISO calculations. Correlations were found to be significant for the first method and lower for the other three. Results in terms of comfort (PET, UTCI) suggest that reasonable estimates could be made based on global radiation data measured at the urban site or as a surrogate of missing SR data or globe temperature data recorded at the urban area on global radiation data measured at a rural location.

  16. Thermal performance of a heat storage module using PCM's with different melting temperatures

    SciTech Connect

    Farid, M.M.; Kanzawa, A.

    1989-05-01

    The performance of a heat storage unit consisting of number of vertical cylindrical capsules filled with phase change materials, with air flowing across them for heat exchange has been analyzed. Earlier theoretical models did not consider temperature distribution in the radial direction within the capsules, an assumption that limits their applications for small diameter capsules. The mathematical model developed in this work is based on solving the heat conduction equation in both melt and solid phases in cylindrical coordinates, taking into account the radial temperature distribution in both phases. Heat flux was then evaluated at the surface of the first row of the capsules to determine the temperature of the air leaving that row by a simple heat balance. It was found that such computation may be carried out for every few rows rather than for a single row to minimize computer time. The simulation study showed a significant improvement in the rate of heat transfer during heat charge and discharge when phase change materials with different melting temperatures were used.

  17. Avian influenza virus H9N2 survival at different temperatures and pHs.

    PubMed

    Davidson, I; Nagar, S; Haddas, R; Ben-Shabat, M; Golender, N; Lapin, E; Altory, A; Simanov, L; Ribshtein, I; Panshin, A; Perk, S

    2010-03-01

    The H9N2 avian influenza virus (AIV) subtype has become endemic in Israel since its introduction in 2000. The disease has been economically damaging to the commercial poultry industry, in part because of the synergistic pathology of coinfection with other viral and/or bacterial pathogens. Avian influenza virus viability in the environment depends on the cumulative effects of chemical and physical factors, such as humidity, temperature, pH, salinity, and organic compounds, as well as differences in the virus itself. We sought to analyze the viability of AIV H9N2 strains at three temperatures (37, 20, and 4 C) and at 2 pHs (5.0 and 7.0). Our findings indicated that at 37 C AIV H9N2 isolate 1525 (subgroup IV) survived for a period of time 18 times shorter at 20 C, and 70 times shorter period at 4 C, as measured by a decrease in titer. In addition, the virus was sensitive to a lower pH (pH 5.0) with no detectable virus after 1 wk incubation at 20 C as compared to virus at pH 7.0, which was viable for at least 3 wk at that temperature. The temperature sensitivity of the virus corresponds to the occurrence of H9N2 outbreaks during the winter, and lower pH can greatly affect the viability of the virus. PMID:20521722

  18. Transformations in Sol-Gel Synthesized Nanoscale Hydroxyapatite Calcined Under Different Temperatures and Time Conditions

    NASA Astrophysics Data System (ADS)

    Seema, Kapoor; Uma, Batra; Suchita, Kohli

    2012-08-01

    Nano-hydroxyapatite (HAP) has been synthesized using sol-gel technique. Calcium nitrate tetrahydrate and potassium dihydrogen phosphate were used as precursors for calcium and phosphorus, respectively. A detailed study on its transformation during calcination at two crucial temperatures has been undertaken. The synthesized nanopowder was calcined at 600 and 800 °C for different time periods. The results revealed that the obtained powders after calcining at 600 and 800 °C are composed of hydroxyapatite nanoparticles. The nano-HAP powders were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, thermal gravimetric analysis (TGA), and BET surface area analyzer techniques. The results indicate that crystallite size as well as crystallinity of synthesized HAP nanopowders increase with increase in calcination temperature as well as calcination time, but the effect of temperature is more prominent as compared to that of calcination time. TEM micrograph revealed the presence of majority of HAP powder particles as agglomerates and a few as individual particles. It also revealed that HAP produced after sintering at 600 °C is 26-45 nm in size, which is well in agreement with the crystallite size calculated using XRD data. TGA study showed the thermal stability of the as-synthesized nano-HAP powder. The BET surface area decreased with increase in calcination temperature and time. The results clearly demonstrate the significant role of calcination parameters on the characteristics of nano-HAP powders.

  19. Sensitivity to chilling temperatures and distribution differ in the mangrove species Kandelia candel and Avicennia marina.

    PubMed

    Kao, Wen-Yuan; Shih, Chen-Ning; Tsai, Tyng-Tyng

    2004-07-01

    We compared the effects of short-term (hours) and long-term (days) exposure to chilling temperatures on the photosynthetic gas exchange, leaf characteristics and chlorophyll a fluorescence of seedlings of the mangrove species Kandelia candel Druce and Avicennia marina (Forsk.) Vierh. Both species occur along the west coast of Taiwan, but K. candel occurs further north than A. marina. We hypothesized that temperature was one of the major environmental factors limiting the northern distribution of A. marina. Avicennia marina was more sensitive to chilling temperatures than K. candel. Leaves of both species showed reductions in light-saturated photosynthetic rates (Amax), stomatal conductance (gs) and quantum yield of photosystem II after a 1-h exposure to 15 degrees C, with A. marina showing significantly greater reductions in Amax and gs than K. candel. No significant differences in Amax, gs and electron transport rate (ETR) were found between leaves of K. candel grown at 15 and 30 degrees C for 10 days. However, leaves of A. marina grown for 10 days at 15 degrees C had significantly lower Amax, gs and ETR than plants grown at 30 degrees C. After 20 days at 15 degrees C, leaf mass per area of both species was increased significantly, whereas area-based chlorophyll concentrations were reduced, with significantly greater changes in A. marina than in K. candel. We concluded that sensitivity to low winter temperatures is a primary limiting factor in the distribution of A. marina along the western coast of Taiwan. PMID:15123458

  20. Effects of elevated temperatures on different restorative materials: An aid to forensic identification processes

    PubMed Central

    Pol, Chetan A.; Ghige, Suvarna K.; Gosavi, Suchitra R.; Hazarey, Vinay K.

    2015-01-01

    Background: Heat-induced alterations to dental and restorative materials can be of great interest to forensic dentistry. Knowing the specific optical behavior of dental materials can be of high importance as recognition of changes induced by high temperatures can lead to the determination of material which was used in a dental restoration, facilitating identification of burned human remains. Aim: To observe the effects of predetermined temperatures (200°C–400°C–600°C–800°C–1000°C) on unrestored teeth and different restorative materials macroscopically and then examine them under a stereomicroscope for the purpose of identification. Materials and Methods: The study was conducted on 375 extracted teeth which were divided into five groups of 75 teeth each as follows: group 1- unrestored teeth, group 2- teeth restored with all-ceramic crowns, Group 3- with class I silver amalgam filling, group 4- with class I composite restoration, and group 5- with class I glass ionomer cement restoration. Results: Unrestored and restored teeth display a series of specific macroscopic & stereomicroscopic structural changes for each range of temperature. Conclusion: Dental tissues and restorative materials undergo a series of changes which correlate well with the various temperatures to which they were exposed. These changes are a consequence of the nature of the materials and their physicochemical characteristics. PMID:26005305

  1. Chemotactic behavior of Campylobacter spp. in function of different temperatures (37C and 42C).

    PubMed

    Baserisalehi, Majid; Bahador, Nima

    2011-12-01

    The chemotactic behaviour of Campylobacter strains was determined in the presence of different amino acids at two temperatures (37 C and 42 C). Two strains of catalase positive (Campylobacter jejuni) and negative (Campylobacter sputurum) Campylobacter were isolated from river water in Tonekabon, Iran and identified by phenotyping and 16srRNA Gene sequencing methods. Chemotactic responses of the isolates were assessed toward a variety of amino acids viz., L-cystine, L-asparagine, L-histidine, L-aspartic acid, L-serine, L-phenylalanine, L-leucine and L-tryptophan by disc and capillary methods at two temperatures: 37 C and 42 C. C. jejuni showed positive chemotactic response towards L-cystine,L-tryptophan, L-phenylalanine, - L-leucine, L-asparagine and L-Serine at both, 37 C and 42 C however, it was greater at 37 C. C. sputurum showed negative or weak response towards all of the amino acids. In addition, C. jejuni illustrated strong chemotactic response to L-asparagine follow by L-serine and weak chemotaxis response to L-phenylalanine and L-cysteine at 37 C. Overall, C. jejuni showed relatively strong chemotactic response to some amino acids, likewise it was greater at 37 C. Hence, the human body temperature (37 C) in compared to avian body temperature (42 C) probably promotes chemotactic response of C. jejuni, which it might be a reason for causing disease in human being compared to avian. PMID:21757020

  2. Interface interaction of Co atop Bepp2 with different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Li, Dong; Guo, Xiaobin; Wu, Kai; Cui, Baoshan; Zuo, Yalu; Wang, Jianbo; Xi, Li

    2015-12-01

    The interaction at organic-ferromagnetic interfaces in organic spin-valves has a considerable effect on efficient spin injection or detection. In this work, Al/Co films were deposited on the organic Bepp2 layers at two different substrate temperatures to investigate the interface interaction. The interaction including penetration, interdiffusion and chemical reaction has been studied by the surface morphology measurement, X-ray photoelectron spectroscopy combined with Argon ion etching technique and magnetic properties measurement. It was found that the interfacial penetration and chemical reaction were serious, forming plenty of holes and non-ferromagnetic metallic carbide and oxides owing to the high energy of sputtered Co atoms into the organic Bepp2 layer when depositing Co on Bepp2 layer at the substrate temperature of 24 °C. However, this phenomenon weakened when lowering the temperature to -13 °C. Our results show that the low substrate temperature can reduce the penetration of the top metal electrode into the organic layer and weaken the chemical reaction between the top electrode and organic layer, which could pave a way for obtaining high-spin injection and extraction efficiency in organic spin-valve devices.

  3. Thermal Band Characterization of LANDSAT-4 Thematic Mapper. [Buffalo, New York and water temperature in Lake Erie

    NASA Technical Reports Server (NTRS)

    Lansing, J. C.; Barker, J. L.

    1984-01-01

    A quick look monitor in the spacecraft control center was used to measure the TM Band 6 shutter background and the 34.7 C internal blackbody signal on over 50 dates. Comparison of relative internal gains between the four channels to prelaunch values showed changes over 9 months of up to 5%, while 512 x 512 subsections of the original 10 daytime scenes showed scene counts that ranged from 135 down to 62. A night scene of the Buffalo area was used to determine channel gain relative to the mean and to discern a systematic along scan pattern in a difference between forward and reverse scan counts of up to 0.5. A corrected digital image was produced and individual gains and offsets were calculated for the four channels. At satellite radiance was determine and noise equivalent temperature difference was calculated. The calibration data and the Buffalo scene, with the corrections and estimates of the atmospheric transmission and radiance, were used to make a temperature estimate for an area of Lake Erie of 21 C to 27 C. Local records of the temperature showed 21 C.

  4. On the large deformation behaviour of reinforced rubber at different temperatures

    NASA Astrophysics Data System (ADS)

    Lion, Alexander

    1997-11-01

    This essay investigates the temperature dependence of the mechanical properties of a filler-loaded tread compound experimentally and proposes a physically based method to represent this behaviour in the framework of non-linear continuum thermomechanics. To this end, we realise a series of monotonic and cyclic strain controlled tests on cylindrical specimens in tension at different temperature levels. The experimental data show the isothermal mechanical behaviour to be mainly influenced by non-linear elasticity in combination with non-linear rate dependence and weak equilibrium hysteresis. We observe that the rate sensitivity of the material depends strongly on the temperature : at low temperature levels, the rate sensitivity is essentially higher than at high temperatures. The elastic properties of the material depend comparatively less on the temperature. Nevertheless, higher temperature levels lead to higher equilibrium stresses. In order to represent the material behaviour, we start with a multiplicative split of the deformation gradient into a mechanical and a thermal part as proposed by Lu and Pister (1975). Physically, this idea corresponds to a stress-free thermal expansion followed by an isothermal stress-producing deformation. We suppose the thermal part of the deformation gradient to be isotropic. As a consequence of this, the velocity gradient decomposes additively into a pure thermal and a pure mechanical part. By using these elements, we exploit the Clausius Duhem inequality and assume the so-called 'mechanical second Piola Kirchhoff stress tensor' to be a functional of the 'mechanical Green's strain tensor'. In a further step, we define this functional by a system of constitutive equations which are based on a rheological model. The evolution equations for the internal variables are formulated by using the concept of dual variables proposed by Haupt and Tsakmakis (1989, 1996). The rate sensitivity is modelled by a stress and temperature dependent viscosity function. The elastic part of the equilibrium stress is described by entropy elasticity in combination with a modified Mooney Rivlin strain energy function. The equilibrium hysteresis effects are represented by rate independent plasticity in arclength representation as proposed by Valanis (1971). The constitutive model is compatible with the dissipation principle of thermodynamics and describes the general trend of the experimental data fairly well.

  5. Improvement of skin optical clearing efficacy by topical treatment of glycerol at different temperatures

    NASA Astrophysics Data System (ADS)

    Deng, Zijian; Liu, Caihua; Tao, Wei; Zhu, Dan

    2011-01-01

    In the past decades, laser has been widely used in clinical diagnosis and cosmetic therapy. However, there is limitation for further usage in deeper tissue for high scattering property. Skin optical clearing technique, by introducing optical clearing agents (OCAs) into tissue, will have a potential impact on optical diagnosis and therapy. In this work, anhydrous glycerol at different temperatures of 4, 25, 32 and 45°C were applied respectively to in vitro porcine skin, and reflectance and transmittance spectra were then measured dynamically using a spectrometry combined with integrating sphere system. Further, reduced scattering coefficient and penetration depth were obtained. Results showed that, glycerol at different temperatures could induce the reduced scattering coefficient of in vitro skin to decrease and the penetration depth to increase. 4 and 25°C glycerol had similar effect, decreasing the scattering by 48.2% and 49.7%, and increasing penetration depth by 37.9% and 39.5%, respectively. However, 32 and 45°C glycerol treatment could decrease scattering by 61.6% and 76.6%, and increase penetration depth by 53.3% and 84.1%, respectively. In conclusion, glycerol at higher temperature can induce greater and faster skin optical clearing efficacy.

  6. Antigenicity and viability of Anisakis larvae infesting hake heated at different time-temperature conditions.

    PubMed

    Vidacek, Sanja; de las Heras, Cristina; Solas, Maria Teresa; Mendizábal, Angel; Rodriguez-Mahillo, Ana I; Tejada, Margarita

    2010-01-01

    Heat treatments (40 to 94 degrees Celsius, 30 s to 60 min) were applied to different batches of Anisakis simplex L3 larvae isolated from hake ovaries and viscera to study the effect of heat on the viability of the larvae measured as mobility, emission of fluorescence under UV light, and changes in color after staining with specific dyes, and on A. simplex antigenic proteins. The aim was to determine the lowest time-temperature conditions needed to kill the larvae to avoid anisakiasis in consumers, and to evaluate whether high temperature modifies the antigenicity of A. simplex extracts. Heating at 60 degrees Celsius for 10 min (recommended by some authors) was considered unsafe, as differences in viability between batches were found, with some larvae presenting spontaneous movements in one batch. At higher temperatures (> or = 70 degrees Celsius for > or = 1 min), no movement of the larvae was observed. Antigenic protein Ani s 4 and A. simplex crude antigens were detected in the larvae heated at 94 + or - 1 degrees Celsius for 3 min. This indicates that allergic symptoms could be provoked in previously sensitized consumers, even if the larvae were killed by heat treatment. PMID:20051205

  7. Cell chip temperature measurements in different operation regimes of HCPV modules

    NASA Astrophysics Data System (ADS)

    Rumyantsev, V. D.; Chekalin, A. V.; Davidyuk, N. Yu.; Malevskiy, D. A.; Pokrovskiy, P. V.; Sadchikov, N. A.; Pan'chak, A. N.

    2013-09-01

    A new method has been developed for accurate measurements of the solar cell temperature in maximum power point (MPP) operation regime in comparison with that in open circuit (OC) regime (TMPP and TOC). For this, an electronic circuit has been elaborated for fast variation of the cell load conditions and for voltage measurements, so that VOC values could serve as an indicator of TMPP at the first moment after the load disconnection. The method was verified in indoor investigations of the single-junction AlGaAs/GaAs cells under CW laser irradiation, where different modifications of the heat spreaders were involved. PV modules of the "SMALFOC" design (Small-size concentrators; Multijunction cells; "All-glass" structure; Lamination technology; Fresnel Optics for Concentration) with triple-junction InGaP/GaAs/Ge cells were examined outdoors to evaluate temperature regimes of their operation.

  8. Temperature dependent electrical conductivity measurement of Qn-(TCNQ)2 grown by different methods

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2013-06-01

    We measured the temperature dependent electrical conductivity on single crystal of charge transfer complex (CTC), Qn-(TCNQ)2 grown by different methods. Where, Qn and TCNQ are representing qunolinium and tetracyanoquinodimethane. The room temperature conductivity is found 100 ohm-1 cm-1 with activation energy 0.021 eV in the sample grown by electrochemical method. Whereas it is found 22 ohm-1 cm-1 with activation energy 0.026 eV for the sample grown by solution growth method. In all conductivity measurements, the observations are carried out along high conducting chain direction, which happens to be needle direction of the single crystal and known as a-direction.

  9. Studies of Water Absorption Behavior of Plant Fibers at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Saikia, Dip

    2010-05-01

    Moisture absorption of natural fiber plastic composites is one major concern in their outdoor applications. The absorbed moisture has many detrimental effects on the mechanical performance of these composites. A knowledge of the moisture diffusivity, permeability, and solubility is very much essential for the application of natural fibers as an excellent reinforcement in polymers. An effort has been made to study the water absorption behavior of some natural fibers such as bowstring hemp, okra, and betel nut at different temperatures to improve the long-term performance of composites reinforced with these fibers. The gain in moisture content in the fibers due to water absorption was measured as a function of exposure time at temperatures ranging from 300 K to 340 K. The thermodynamic parameters of the sorption process, such as diffusion coefficients and corresponding activation energies, were estimated.

  10. Thermal Diffusivity for III-VI Semiconductor Melts at Different Temperatures

    NASA Technical Reports Server (NTRS)

    Ban, H.; Li, C.; Lin, B.; Emoto, K.; Scripa, R. N.; Su, C.-H.; Lehoczky, S. L.

    2004-01-01

    The change of the thermal properties of semiconductor melts reflects the structural changes inside the melts, and a fundamental understanding of this structural transformation is essential for high quality semiconductor crystal growth process. This paper focused on the technical development and the measurement of thermal properties of III-VI semiconductor melts at high temperatures. Our previous work has improved the laser flash method for the specialized quartz sample cell. In this paper, we reported the results of our recent progress in further improvements of the measurement system by minimizing the free convection of the melt, adding a front IR detector, and placing the sample cell in a vacuum environment. The results for tellurium and selenium based compounds, some of which have never been reported in the literature, were obtained at different temperatures as a function of time. The data were compared with other measured thermophysical properties to shed light on the structural transformations of the melt.

  11. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.

    PubMed

    García-Usach, F; Ferrer, J; Bouzas, A; Seco, A

    2006-01-01

    In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour. PMID:16889256

  12. Deformation and failure of bulk metallic glasses under different initial temperatures

    NASA Astrophysics Data System (ADS)

    Li, J. C.; Chen, X. W.; Huang, F. L.

    2015-09-01

    Based on the coupled thermo-mechanical model, a constitutive model for bulk metallic glasses (BMGs), which is generalized to the multi-axial stress state and considers the effects of free volume, heat and hydrostatic stress, has been modified in the present paper. Besides, a failure criterion of critical free volume concentration is introduced based on the coalescence mechanism of free volume. The constitutive model as well as the failure criterion is implemented into the LS-DYNA commercial software by user material subroutine (UMAT). Then FEM simulations for different initial material temperatures are conducted and the evolutions of material parameter as well as corresponding macroscopic mechanical behaviour of material are analyzed. Relative analysis shows that the initial material temperature significantly affects the deformation and failure of material.

  13. Temperature and Pressure Evolution during Al Alloy Solidification at Different Squeeze Pressures

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Zhao, Haidong; Chen, Zhenming

    2015-06-01

    Squeeze casting is an advanced and near net-shape casting process, in which external high pressure is applied to solidifying castings. The castings are characterized with fine grains and good mechanical properties. In this study, a series of experiments were carried out to measure the temperature and pressure histories in cavity of Al-Si-Mg direct squeeze castings with different applied solidification pressures of 0.1, 50, 75, and 100 MPa. The evolution of the measured temperatures and pressures was compared and discussed. The effect of pressure change on formation of shrinkage defects was analyzed. Further the friction between the castings and dies during solidification was calculated. It is shown that the applied squeeze pressure has significant influence on the friction at die and casting interfaces, which affects the pressure evolution and transmission. The results could provide some benchmark data for future thermal-mechanics coupled modeling of squeeze castings.

  14. The effects of caffeine administered at different temperatures on foetal development.

    PubMed

    Tomaszewski, Marek; Burdan, Franciszek; Olchowik, Grazyna; Tomaszewska, Monika

    2016-03-01

    An easy access to products containing caffeine makes it widely consumed to excess by the general population, including pregnant women. Beverages containing caffeine are consumed at different temperatures (iced, hot, room temperature). Caffeine easily passes through biological membranes, including the blood-brain barrier, the placental barrier, and can also enter the amniotic fluid, breast milk and semen. The aim of this study was to evaluate the relationship between caffeine's developmental toxicity, and the solution's temperature (both low and high) administered to pregnant female rats. Fertilized females were randomly divided into two main groups: an experimental (E) and a control group (C). The experimental groups received caffeine (30mg/day) in 10 (E1), 25 (E2) and 45(o)C (E3). The females in the control group were given water at the same temperature (C1, C2 and C3). On the day 21 of pregnancy, the pregnant females were killed by decapitation, using a specially prepared laboratory guillotine, after which the mothers' internal organs were weighed. Additionally, the offspring were examined using standard teratological methods. The study found that caffeine administered to pregnant females at a dose of 30mg/day and at the temperatures of 10°C, 25°C or 45°C did not produce any teratogenic effects. The only sign of its adverse effect was the appearance of developmental abnormalities in the form of haematomas and saturated bleeding in the internal organs. These changes most frequently occurred in foetuses of females which received caffeine at 10°C or 45°C. PMID:27007534

  15. Analysis of midgut gene expression profiles from different silkworm varieties after exposure to high temperature.

    PubMed

    Li, Qing Rong; Xiao, Yang; Wu, Fu Quan; Ye, Ming Qiang; Luo, Guo Qing; Xing, Dong Xu; Li, Li; Yang, Qiong

    2014-10-01

    The silkworm is a poikilothermic animal, whose growth and development is significantly influenced by environmental temperature. To identify genes and metabolic pathways involved in the heat-stress response, digital gene expression analysis was performed on the midgut of the thermotolerant silkworm variety '932' and thermosensitive variety 'HY' after exposure to high temperature (932T and HYT). Deep sequencing yielded 6,211,484, 5,898,028, 5,870,395 and 6,088,303 reads for the 932, 932T, HY and HYT samples, respectively. The annotated genes associated with these tags numbered 4357, 4378, 4296 and 4658 for the 932, 932T, HY and HYT samples, respectively. In the HY-vs-932, 932-vs-932T, and HY-vs-HYT comparisons, 561, 316 and 281 differentially expressed genes were identified, which could be assigned to 179, 140 and 123 biological pathways, respectively. It was found that some of the biological pathways, which included oxidative phosphorylation, related to glucose and lipid metabolism, are greatly affected by high temperature and may lead to a decrease in the ingestion of fresh mulberry. When subjected to an early period of continuous heat stress, HSP genes, such as HSP19.9, HSP23.7, HSP40-3, HSP70, HSP90 and HSP70 binding protein, are up-regulated but then reduced after 24h and the thermotolerant '932' strain has higher levels of mRNA of some HSPs, except HSP70, than the thermosensitive variety during continuous high temperature treatment. It is suggested that HSPs and the levels of their expression may play important roles in the resistance to high temperature stress among silkworm varieties. This study has generated important reference tools that can be used to further analyze the mechanisms that underlie thermotolerance differences among silkworm varieties. PMID:25046138

  16. The Statistical Differences Between the Gridded Temperature Datasets, and its Implications for Stochastic Modelling

    NASA Astrophysics Data System (ADS)

    Fredriksen, H. B.; Løvsletten, O.; Rypdal, M.; Rypdal, K.

    2014-12-01

    Several research groups around the world collect instrumental temperature data and combine them in different ways to obtain global gridded temperature fields. The three most well known datasets are HadCRUT4 produced by the Climatic Research Unit and the Met Office Hadley Centre in UK, one produced by NASA GISS, and one produced by NOAA. Recently Berkeley Earth has also developed a gridded dataset. All these four will be compared in our analysis. The statistical properties we will focus on are the standard deviation and the Hurst exponent. These two parameters are sufficient to describe the temperatures as long-range memory stochastic processes; the standard deviation describes the general fluctuation level, while the Hurst exponent relates the strength of the long-term variability to the strength of the short-term variability. A higher Hurst exponent means that the slow variations are stronger compared to the fast, and that the autocovariance function will have a stronger tail. Hence the Hurst exponent gives us information about the persistence or memory of the process. We make use of these data to show that data averaged over a larger area exhibit higher Hurst exponents and lower variance than data averaged over a smaller area, which provides information about the relationship between temporal and spatial correlations of the temperature fluctuations. Interpolation in space has some similarities with averaging over space, although interpolation is more weighted towards the measurement locations. We demonstrate that the degree of spatial interpolation used can explain some differences observed between the variances and memory exponents computed from the various datasets.

  17. Microbial biomass and activity in soils with different moisture content heated at high temperatures

    NASA Astrophysics Data System (ADS)

    Barreiro, Ana; Lombao, Alba; Martin, Angela; Cancelo-González, Javier; Carballas, Tarsy; Díaz-Raviña, Montserrat

    2015-04-01

    It is well known that soil properties determining the thermal transmissivity (moisture, texture, organic matter, etc.) and the duration and temperatures reached during soil heating are key factors driving the fire-induced changes in soil microbial communities. However, despite its interest, the information about this topic is scarce. The aim of the present study is to analyze, under laboratory conditions, the impact of the thermal shock (infrared lamps reaching temperatures of 100 °C, 200 °C and 400 °C) on microbial communities of three acid soils under different moisture level (0 %, 25 % and 50 % per soil volume). Soil temperature was measured with thermocouples and the impact of soil heating was evaluated by means of the analysis of the temperature-time curves calculating the maximum temperature reached (Tmax) and the degree-hours (GH) as an estimation of the amount of heat supplied to the samples (fire severity). The bacterial growth (leucine incorporation) and the total microbial biomass (PLFA) were measured immediately after the heating and one month after the incubation of reinoculated soils. The results showed clearly the importance of moisture level in the transmission of heat through the soil and hence in the further direct impact of high temperatures on microorganisms living in soil. In general, the values of microbial parameters analyzed were low, particularly immediately after soil heating at higher temperatures; the bacterial activity measurements (leucine incorporation technique) being more sensitive to detect the thermal shock showed than total biomass measurements (PLFA). After 1 month incubation, soil microbial communities tend to recover due to the proliferation of surviving population using as substrate the dead microorganisms (soil sterilization). Thus, time elapsed after the heating was found to be decisive when examining the relationships between the microbial properties and the soil heating parameters (GH, Tmax). Analysis of results also showed that the measurement of the heat supplied to the soil (GH) rather than Tmax is a useful parameter to interpret microbial changes induced by soil heating. Acknowledgements. This work was supported by Spanish Ministry of Economy and Competitiveness (AGL2012-39686-C02-01) and for the for the MAPFRE foundation. A. Barreiro and A. Lombao are recipients of FPU grant from Spanish Ministry of Education. Keywords: Degree-hour, soil heating, leucine incorporation, total PLFA biomass

  18. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures

    PubMed Central

    Arafa, Khalid A. O.

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  19. Effect of Different Denture Base Materials and Changed Mouth Temperature on Dimensional Stability of Complete Dentures.

    PubMed

    Arafa, Khalid A O

    2016-01-01

    Background. Type of materials used in fabrication of denture base has an effect on dimension during denture base material processing and other factors related to clinical use. Objective. The study aims were to assess the dimensional stability including thermal changes of three different denture base materials. Methods. Ninety patients were selected to construct complete dentures with different denture base materials. They were randomly divided into three groups: group 1, patients with cobalt chrome metallic base; group 2, patients with heat curing acrylic resin fabricated by injection moulding technique; and group 3, patients with denture bases fabricated by conventional heat curing acrylic resin. The dimensional changes were assessed using digital caliper. Results. After the twelfth month, injection moulding acrylic resin had significantly the highest dimensional change followed by the conventional heat curing acrylic resin. There were no significant differences in the dimensions between the three types of denture base materials at normal mouth temperature, while, after hot tea drinking at 45°C, the dimensional change was significantly the highest in cobalt chrome metallic denture base group. Conclusion. Cobalt chrome metallic denture base has stable dimension compared to denture bases fabricated of acrylic resin but it was more affected by altered mouth temperature. The study was registered in the International Standard Randomized Controlled Trials Number (ISRCTN) registry with study ID (ISRCTN94238244). PMID:27143970

  20. Fabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.

    PubMed

    Xiong, Yaoyang; Qian, Chao; Sun, Jian

    2012-01-01

    This study evaluated the feasibility of using three-dimensional printing (3DP) to fabricate porous titanium implants. Titanium powder was blended with a water-soluble binder material. Green, porous, titanium implants fabricated by 3DP were sintered under protective argon atmosphere at 1,200, 1,300, or 1,400°C. Sintered implant prototypes had uniform shrinkage and no obvious shape distortion after sintering. Evaluation of their mechanical properties revealed that titanium prototypes sintered at different temperatures had elastic modulus of 5.9-34.8 GPa, porosity of 41.06-65.01%, hardness of 115.2-182.8 VHN, and compressive strength of 81.3-218.6 MPa. There were significant differences in each type of these data among the different sintering temperatures (p<0.01). Results of this study confirmed the feasibility of fabricating porous titanium implants by 3DP: pore size and pore interconnectivity were conducive to bone cell ingrowth for implant stabilization, and the mechanical properties matched well with those of the human bone. PMID:23037845

  1. Response of largemouth bass (Micropterus salmoides) from different thermal environments to increased water temperature.

    PubMed

    Mulhollem, Joshua J; Suski, Cory D; Wahl, David H

    2015-08-01

    Due to concerns of global climate change, additional research is needed to quantify the thermal tolerance of species, and how organisms are able to adapt to changes in thermal regime. We quantified the thermal tolerance and thermal stress response of a temperate sportfish from two different thermal environments. One group of largemouth bass (Micropterus salmoides) inhabited thermally enhanced reservoirs (used for power plant cooling), with water temperatures typically 2-5°C warmer than nearby reservoirs. We tested fish for chronic thermal maxima and reaction to an 8°C heat shock using three common physiological indices of stress. We observed no evidence of differences between groups in thermal maxima. We observed no differences in thermal maxima between fish from artificially warmed and natural systems. Our results disagree with research, suggesting differences due to adaptation to different thermal environments. We speculate that behavioral modifications, lack of adequate time for genetic divergence, or the robust genetic plasticity of largemouth bass explain the lack of difference between treatment groups. PMID:25869216

  2. Evolutionary force in confamiliar marine vertebrates of different temperature realms: adaptive trends in zoarcid fish transcriptomes

    PubMed Central

    2012-01-01

    Background Studies of temperature-induced adaptation on the basis of genomic sequence data were mainly done in extremophiles. Although the general hypothesis of an increased molecular flexibility in the cold is widely accepted, the results of thermal adaptation are still difficult to detect at proteomic down to the genomic sequence level. Approaches towards a more detailed picture emerge with the advent of new sequencing technologies. Only small changes in primary protein structure have been shown to modify kinetic and thermal properties of enzymes, but likewise for interspecies comparisons a high genetic identity is still essential to specify common principles. The present study uses comprehensive transcriptomic sequence information to uncover general patterns of thermal adaptation on the RNA as well as protein primary structure. Results By comparing orthologous sequences of two closely related zoarcid fish inhabiting different latitudinal zones (Antarctica: Pachycara brachycephalum, temperate zone: Zoarces viviparus) we were able to detect significant differences in the codon usage. In the cold-adapted species a lower GC content in the wobble position prevailed for preserved amino acids. We were able to estimate 40-60% coverage of the functions represented within the two compared zoarcid cDNA-libraries on the basis of a reference genome of the phylogenetically closely related fish Gasterosteus aculeatus. A distinct pattern of amino acid substitutions could be identified for the non-synonymous codon exchanges, with a remarkable surplus of serine and reduction of glutamic acid and asparagine for the Antarctic species. Conclusion Based on the differences between orthologous sequences from confamiliar species, distinguished mainly by the temperature regimes of their habitats, we hypothesize that temperature leaves a signature on the composition of biological macromolecules (RNA, proteins) with implications for the transcription and translation level. As the observed pattern of amino acid substitutions only partly support the flexibility hypothesis further evolutionary forces may be effective at the global transcriptome level. PMID:23051706

  3. Analysis of normalized difference and surface temperature observations over southeastern Australia

    NASA Technical Reports Server (NTRS)

    Smith, R. C. G.; Choudhury, B. J.

    1991-01-01

    Relations between radiative surface temperature (TR) and visible and near-IR reflectances expressed as the normalized difference (ND) from a Landsat Thematic Mapper scene are analyzed to examine the heat balance of agriculture and native evergreen forests in southeastern Australia. Factors determining the residual scatter about, and slope of, the TR/ND relationships were analyzed using a coupled two-layer soil-vegetation model of the surface heat balance. Inverse linear relationships were observed between TR and ND for agriculture, but not for forests. This was due to a wide range of ND and TR values in agricultural regions caused by wide variations in fractional vegetation cover.

  4. Role of different scattering mechanisms on the temperature dependence of transport in graphene

    PubMed Central

    Sarkar, Suman; Amin, Kazi Rafsanjani; Modak, Ranjan; Singh, Amandeep; Mukerjee, Subroto; Bid, Aveek

    2015-01-01

    Detailed experimental and theoretical studies of the temperature dependence of the effect of different scattering mechanisms on electrical transport properties of graphene devices are presented. We find that for high mobility devices the transport properties are mainly governed by completely screened short range impurity scattering. On the other hand, for the low mobility devices transport properties are determined by both types of scattering potentials - long range due to ionized impurities and short range due to completely screened charged impurities. The results could be explained in the framework of Boltzmann transport equations involving the two independent scattering mechanisms. PMID:26608479

  5. Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures

    SciTech Connect

    Mabuchi, Akihiro; Tokumitsu, Katsuhisa; Fujimoto, Hiroyuki; Kasuh, Takahiro

    1995-04-01

    Mesocarbon microbeads (MCMB) is one of the promising carbon materials as anodes for rechargeable lithium batteries among commercially available carbon materials. have examined the correlation between carbon structures and charge-discharge characteristics of the MCMBs prepared at different heat-treatment temperatures. It was found that the MCMB heat-treated at 700 C possesses a tremendously high charge-discharge capacity of 750 Ah/kg. This suggests that there is another mechanism for the charge-discharge reaction besides a graphite intercalation compound mechanism which is well known. Therefore, the authors propose a cavity mechanism in which intercrystallite spaces in MCMB are capable of storing lithium species.

  6. Electrical resistance of CNT-PEEK composites under compression at different temperatures

    PubMed Central

    2011-01-01

    Electrically conductive polymers reinforced with carbon nanotubes (CNTs) have generated a great deal of scientific and industrial interest in the last few years. Advanced thermoplastic composites made of three different weight percentages (8%, 9%, and 10%) of multiwalled CNTs and polyether ether ketone (PEEK) were prepared by shear mixing process. The temperature- and pressure-dependent electrical resistance of these CNT-PEEK composites have been studied and presented in this paper. It has been found that electrical resistance decreases significantly with the application of heat and pressure. PMID:21711952

  7. Impact of different defects on the kinetics of negative bias temperature instability of hafnium stacks

    NASA Astrophysics Data System (ADS)

    Zhang, J. F.; Zhao, C. Z.; Chang, M. H.; Zahid, M. B.; Peaker, A. R.; Hall, S.; Groeseneken, G.; Pantisano, L.; De Gendt, S.; Heyns, M.

    2008-01-01

    For SiO2 or SiON, negative bias temperature instability (NBTI) generally follows a power law. There is less information available for the NBTI of Hf stacks and it will be studied and compared with that of SiO2 in this work. We found that the power factor for Hf stacks was substantially smaller and the NBTI kinetics has a "flat-then-rise" feature. The flat region at short stress time originates from the preexisting cyclic positive charge in Hf stacks, which is different from the defect responsible for the rising part at longer time and leads to the smaller power factor for Hf stacks.

  8. Cold perception and cutaneous microvascular response to local cooling at different cooling temperatures.

    PubMed

    Music, Mark; Finderle, Zarko; Cankar, Ksenija

    2011-05-01

    The aim of the present study was to investigate the effect of quantitatively measured cold perception (CP) thresholds on microcirculatory response to local cooling as measured by direct and indirect response of laser-Doppler (LD) flux during local cooling at different temperatures. The CP thresholds were measured in 18 healthy males using the Marstock method (thermode placed on the thenar). The direct (at the cooling site) and indirect (on contralateral hand) LD flux responses were recorded during immersion of the hand in a water bath at 20°C, 15°C, and 10°C. The cold perception threshold correlated (linear regression analysis, Pearson correlation) with the indirect LD flux response at cooling temperatures 20°C (r=0.782, p<0.01) and 15°C (r=0.605, p<0.01). In contrast, there was no correlation between the CP threshold and the indirect LD flux response during cooling in water at 10°C. The results demonstrate that during local cooling, depending on the cooling temperature used, cold perception threshold influences indirect LD flux response. PMID:21256855

  9. Texture and Mechanical Behavior of Zircaloy-2 Rolled at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Goel, Sunkulp; Keskar, Nachiket; Jayaganthan, R.; Singh, I. V.; Srivastava, D.; Dey, G. K.; Jha, S. K.; Saibaba, N.

    2015-02-01

    Zircaloy-2 was deformed by cryorolling (CR) and room-temperature rolling (RTR) with different true strains, and the effects of true strains on microstructural characteristics, texture, and mechanical properties of the alloy were investigated in the current study. The alloy was subjected to rolling at liquid nitrogen temperature and room temperature with the maximum true strain of 1.89 after the initial heat treatment of the alloy at 800 °C in inert atmosphere followed by quenching in mercury. The hardness and tensile properties of the CR, RTR, and annealed alloy upon rolling were systematically measured in rolling and transverse directions. The tensile strengths were found to be 891 and 679 MPa, while hardness values were found to be 282 and 269 VHN for the CR and RTR alloys, in the rolling direction, respectively. Texture results showed the activation of basal slip at higher strains in RTR zircaloy-2. In CR zircaloy-2, only activation of prism slip was observed. Grain refinement, substructures, and texture in the deformed alloy contribute to the improved mechanical properties observed in the current study.

  10. Stability and Function at High Temperature. What Makes a Thermophilic GTPase Different from Its Mesophilic Homologue.

    PubMed

    Katava, Marina; Kalimeri, Maria; Stirnemann, Guillaume; Sterpone, Fabio

    2016-03-17

    Comparing homologous enzymes adapted to different thermal environments aids to shed light on their delicate stability/function trade-off. Protein mechanical rigidity was postulated to secure stability and high-temperature functionality of thermophilic proteins. In this work, we challenge the corresponding-state principle for a pair of homologous GTPase domains by performing extensive molecular dynamics simulations, applying conformational and kinetic clustering, as well as exploiting an enhanced sampling technique (REST2). While it was formerly shown that enhanced protein flexibility and high temperature stability can coexist in the apo hyperthermophilic variant, here we focus on the holo states of both homologues by mimicking the enzymatic turnover. We clearly show that the presence of the ligands affects the conformational landscape visited by the proteins, and that the corresponding state principle applies for some functional modes. Namely, in the hyperthermophilic species, the flexibility of the effector region ensuring long-range communication and of the P-loop modulating ligand binding are recovered only at high temperature. PMID:26907829

  11. Impact response characteristics of a cyclotetramethylene tetranitramine based polymer-bonded explosives under different temperatures

    NASA Astrophysics Data System (ADS)

    Xiaogan, Dai; Yushi, Wen; Hui, Huang; Panjun, Zhang; Maoping, Wen

    2013-09-01

    The temperature-impact safety correlation of a cyclotetramethylene tetranitramine (HMX) based polymer-bonded explosive (PBX) was investigated. Matrix of tests was determined by projectile velocities in the range of 160 m/s-370 m/s and five temperature cases of 28 °C (room temperature), 75 °C, 105 °C, 160 °C, and 195 °C. The safety performance under thermal-impact combined environment was evaluated by high speed camera and air over-pressure gauges. The samples before and after impact were compared by the scanning electron microscope. The mechanical performance and thermal decomposition under different temperatures were also studied by mechanics machine and the thermo gravimetric analysis technique. The phase transition of PBX-2 is investigated by XRD spectrograph. The results show that the reaction threshold of unheated explosive is between 263.5 m/s and 269.9 m/s. While heated to 75 °C and 105 °C, the values are increased to 316 m/s-367 m/s and 286 m/s-298.3 m/s, respectively. However, the threshold is less than 176 m/s at 160 °C and the threshold at 195 °C is even lower, which is less than 166.7 m/s. According to the temperature histories, the pictures of wreckages, the over-pressures, the mechanical performance, the thermal decomposition, and phase transition properties, some conclusions can be drawn. First of all, compared with unheated case, the impact safety of PBX-2 is improved at both 75 °C and 105 °C by a softened, easy-flowing, and energy absorbing mechanical properties. Secondly, at 160 °C, the impact safety becomes worse due to the thermal decomposition. Thirdly, when the temperature reaches or exceeds the β → δ phase transition range, the impact safety of PBX-2 becomes significantly worse.

  12. Constructal thermodynamics combined with infrared experiments to evaluate temperature differences in cells

    PubMed Central

    Lucia, Umberto; Grazzini, Giuseppe; Montrucchio, Bartolomeo; Grisolia, Giulia; Borchiellini, Romano; Gervino, Gianpiero; Castagnoli, Carlotta; Ponzetto, Antonio; Silvagno, Francesca

    2015-01-01

    The aim of this work was to evaluate differences in energy flows between normal and immortalized cells when these distinct biological systems are exposed to environmental stimulation. These differences were considered using a constructal thermodynamic approach, and were subsequently verified experimentally. The application of constructal law to cell analysis led to the conclusion that temperature differences between cells with distinct behaviour can be amplified by interaction between cells and external fields. Experimental validation of the principle was carried out on two cellular models exposed to electromagnetic fields. By infrared thermography we were able to assess small changes in heat dissipation measured as a variation in cell internal energy. The experimental data thus obtained are in agreement with the theoretical calculation, because they show a different thermal dispersion pattern when normal and immortalized cells are exposed to electromagnetic fields. By using two methods that support and validate each other, we have demonstrated that the cell/environment interaction can be exploited to enhance cell behavior differences, in particular heat dissipation. We propose infrared thermography as a technique effective in discriminating distinct patterns of thermal dispersion and therefore able to distinguish a normal phenotype from a transformed one. PMID:26100383

  13. Mathematical modelling of microbial growth in packaged refrigerated beef stored at different temperatures.

    PubMed

    Giannuzzi, L; Pinotti, A; Zaritzky, N

    1998-01-01

    Gompertz and logistic models were fitted to experimental counts of microorganisms growing in beef stored at 0, 4, 7, 9 and 10 degrees C. Samples were packaged in polyethylene (high gaseous permeability) and in EVA/SARAN/EVA (low gaseous permeability) films, being EVA ethyl vinyl acetate and SARAN polyvinyl and polyvinylidene chloride copolymer. Lag phase duration (LPD) and specific growth rate (mu) were obtained as derived parameters for lactic acid bacteria, Enterobacteriaceae, Pseudomonas sp. and psychrotrophic microorganisms. The reciprocal of LPD was fitted to an Arrhenius type equation; LPD of lactic acid bacteria showed a marked dependence on temperature, with activation energy values (ELPD) of 222.2 and 216.9 kJ/mol for polyethylene and ESE respectively. The effect of initial microbial population at different storage temperatures on adaptation period was analyzed. As the initial microbial population increased, adaptation period decreased for all studied microorganisms and for both packaging films. The effect of temperature on specific growth rate was better interpreted by the Arrhenius model than by the linear or the square root equations. Psychrotrophic microorganisms in beef showed the highest activation energy values for specific growth rate (E mu) in both packaging films, being E mu 85.50 and 103.10 KJ/mol for polyethylene and ESE film respectively. In both films, Enterobacteriaceae showed the lowest E mu values, being 15.33 and 59.89 kJ/mol in ESE and polyethylene respectively. The final number of microorganisms (maximum population density) did not show significant changes with storage temperature. PMID:9562882

  14. Effects of high temperature stress at different development stages on soybean isoflavone and tocopherol concentrations.

    PubMed

    Chennupati, Pratyusha; Seguin, Philippe; Liu, Wucheng

    2011-12-28

    Soybean contains a range of compounds with putative health benefits including isoflavones and tocopherols. A study was conducted to determine the effects on these compounds of high temperature stress imposed at specific development stages [i.e., none, pre-emergence, vegetative, early reproductive (R1-4), late-reproductive (R5-8), or all stages]. Two cultivars (AC Proteina and OAC Champion) were grown in growth chambers set at contrasting temperatures [i.e., stress conditions of 33/25 °C (day/night temperature) and control conditions of 23/15 °C] in order to generate these treatments. Isoflavone and tocopherol concentrations in mature seeds were determined using high-performance liquid chromatography. In both cultivars isoflavone response was greatest when stress occurred during the R5-8 stages and during all development stages, these treatments reducing total isoflavone concentration by an average of 85% compared to the control. Stress imposed at other stages also affected isoflavone concentration although the response was smaller. For example, stress during the vegetative stages reduced total isoflavones by 33% in OAC Champion. Stress imposed pre-emergence had an opposite effect increasing daidzein concentration by 24% in AC Proteina. Tocopherol concentrations were affected the most when stress was imposed during all stages of development, followed by stress restricted to stages R5-8; response to stress during other stages was limited. The specific response of tocopherols differed, α-tocopherol being increased by high temperature by as much as 752%, the reverse being observed for δ-tocopherol and γ-tocopherol. The present study demonstrates that while isoflavone and tocopherol concentrations in soybeans are affected the most by stress occurring during seed formation, concentrations can also be affected by stress occurring at other stages including stages as early as pre-emergence. PMID:22098462

  15. Cardio-respiratory responses to cool ambient temperature differ with sleep state in neonatal lambs.

    PubMed Central

    Berger, P J; Horne, R S; Walker, A M

    1989-01-01

    1. Responses to cool ambient temperature were tested with reference to the sleep-wakefulness cycle in six chronically instrumented newborn lambs which were exposed to warm (20-25 degrees C) and cool (10-15 degrees C) ambient temperatures (Ta) in fifteen studies. 2. We measured cardio-respiratory variables (cardiac output, heart rate, stroke volume, arteriovenous O2 difference and O2 consumption) together with body temperature (Tb) during behavioural states of quiet wakefulness (QW), quiet sleep (QS) and rapid-eye-movement sleep (REM). 3. In cool Ta, significant increases (P less than 0.05) occurred in cardiac output, O2 uptake and O2 consumption in QW (10 +/- 3%, 23 +/- 4% and 35 +/- 6%, respectively, mean +/- S.E.M.) and QS (12 +/- 3%, 21 +/- 7% and 35 +/- 8%, respectively), but these responses were absent in REM. Increases in heart rate (6 +/- 2%) and stroke volume (6 +/- 3%) were present during QS, but not during REM. 4. In REM, Tb was dependent upon the prevailing Ta, increasing in the warm Ta and tending to decrease in the cool Ta. 5. In cool Ta, REM sleep epochs were shorter and more frequent with no changes in total REM time. These changes were not seen in QS. 6. Thus, the behavioural state determines both the thermogenic and the associated cardio-respiratory responses to cool stress in lambs. The consequences of disrupted thermogenesis during REM sleep include dependence of Tb upon the prevailing ambient temperature, and abbreviation of the REM epoch by arousal, possibly as a defence against falls in Tb in cool Ta. PMID:2600835

  16. Changes in exercise and post-exercise core temperature under different clothing conditions

    NASA Astrophysics Data System (ADS)

    Kenny, Glen P.; Reardon, Francis D.; Thoden, Jim S.; Giesbrecht, Gordon G.; Kenny, G.

    This study evaluates the effect of different levels of insulation on esophageal (Tes) and rectal (Tre) temperature responses during and following moderate exercise. Seven subjects completed three 18-min bouts of treadmill exercise (75% VO2max, 22°C ambient temperature) followed by 30 min of recovery wearing either: (1) jogging shoes, T-shirt and shorts (athletic clothing); (2) single-knit commercial coveralls worn over the athletic clothing (coveralls); or (3) a Canadian Armed Forces nuclear, bacteriological and chemical warfare protective overgarment with hood, worn over the athletic clothing (NBCW overgarment). Tes was similar at the start of exercise for each condition and baseline Tre was 0.4°C higher than Tes. The hourly equivalent rate of increase in Tes during the final 5 min of exercise was 1.8°C, 3.0°C and 4.2°C for athletic clothing, coveralls and NBCW overgarment respectively (P<0.05). End-exercise Tes was significantly different between conditions [37.7°C (SEM 0.1°C), 38.2°C (SEM 0.2°C and 38.5°C (SEM 0.2°C) for athletic clothing, coveralls and NBCW overgarment respectively)] (P<0.05). No comparable difference in the rate of temperature increase for Tre was demonstrated, except that end-exercise Tre for the NBCW overgarment condition was significantly greater (0.5°C) than that for the athletic clothing condition. There was a drop in Tes during the initial minutes of recovery to sustained plateaus which were significantly (P<0.05) elevated above pre-exercise resting values by 0.6°C, 0.8°C and 1.0°C, for athletic clothing, coveralls, and NBCW overgarment, respectively. Post-exercise Tre decreased very gradually from end-exercise values during the 30-min recovery. Only the NBCW overgarment condition Tre was significantly elevated (0.3°C) above the athletic clothing condition (P<0.05). In conclusion, Tes is far more sensitive in reflecting the heat stress of different levels of insulation during exercise and post-exercise than Tre. Physiological mechanisms are discussed as possible explanations for the differences in response.

  17. Effect of different post mortem temperatures on carcass quality of suckling lamb.

    PubMed

    Rubio, Begoña; Vieira, Ceferina; Martínez, Beatriz; Fernández, Ana M

    2013-08-01

    The effect of post mortem treatment on microbiological lamb carcass quality was studied. Suckling lambs carcasses were assigned to three different post mortem treatments: conventional (2  for 24 h), ultra-rapid (-20  for 3.5 h then 2  until 24 h post mortem) and slow (12   for 7 h then 2  until 24 h post mortem). Carcass pH and temperature were measured at 0, 3.5, 7 and 24 h post slaughter. Lamb carcasses were sampled for total aerobic viable and Enterobacteriaceae counts just after dressing and 24 h post mortem. A significant effect (p < 0.05) of post mortem treatment on carcasses temperature and pH was found corresponding the faster pH fall to slowly chilled muscles. However, no differences were found at 24 h post mortem among treatments in both parameters. Regarding microbiological results, carcasses of ultra-rapid treatment had the lowest total aerobic viable and Enterobacteriaceae counts and those belonging to conventional treatment had the highest total aerobic viable counts. From 0 to 24 h post mortem, an increase of total aerobic viable was observed in conventional and slow treatments whilst Enterobacteriaceae counts remained constant in all cases. From a microbiological point of view, the ultra-rapid treatment was the only one allowed to maintain the hygienic carcasses quality. However, according to pH and temperature results the carcasses subjected to this treatment may be susceptible to cold shortening. PMID:23733807

  18. The different effects of sea surface temperature and aerosols on climate in East Asia during spring

    NASA Astrophysics Data System (ADS)

    Hu, Haibo; Liu, Chao; Zhang, Yuan; Yang, Xiuqun

    2015-08-01

    In this study, we used the NCAR CAM3.0 model to study the climate effects of both decadal global Sea Surface Temperature (SST) changing and the increasing aerosol concentration in East Asia in boreal spring. In the decadal SST changing experiment, a prominent sea surface cyclone anomaly occurred west of the Northwest Pacific warming SST. The cyclone anomaly is conductive to anomalous rising motion and more rainfall over the Northwest Pacific and southeast coast areas of China, but less rainfall in central China. Caused by the only aerosol concentration increasing, the change of climate in East Asia is totally different from that induced by the regime shift of SST around 1976/77 with the same model. The sulfate and black carbon aerosol concentrations were doubled respectively and synchronously in East Asia (20-50N, 100-150E) to investigate the climate effects of these two major aerosol types in three experiments. The results show that, in all three aerosol concentration changing experiments, the rainfall during boreal spring increases in North China and decreases in central China. It's worth noting that in the DTWO experiment, the rainfall diminishes in central China while it increases in the north and southeast coast areas of China, which is similar to observations. From the vertical profile between 110E and 120E, it is found that sulfate and black carbon aerosols first change the temperature of lower troposphere owing to their direct radiative effect, and then induce secondary meridional circulation anomaly through the different dynamic mechanisms involved, and at last generate precipitation and surface temperature anomalous patterns mentioned above.

  19. Effects of high temperature on different restorations in forensic identification: Dental samples and mandible

    PubMed Central

    Patidar, Kalpana A; Parwani, Rajkumar; Wanjari, Sangeeta

    2010-01-01

    Introduction: The forensic odontologist strives to utilize the charred human dentition throughout each stage of dental evaluation, and restorations are as unique as fingerprints and their radiographic morphology as well as the types of filling materials are often the main feature for identification. The knowledge of detecting residual restorative material and composition of unrecovered adjacent restoration is a valuable tool-mark in the presumptive identification of the dentition of a burned victim. Gold, silver amalgam, silicate restoration, and so on, have a different resistance to prolonged high temperature, therefore, the identification of burned bodies can be correlated with adequate qualities and quantities of the traces. Most of the dental examination relies heavily on the presence of the restoration as well as the relationship of one dental structure to another. This greatly narrows the research for the final identification that is based on postmortem data. Aim: The purpose of this study is to examine the resistance of teeth and different restorative materials, and the mandible, to variable temperature and duration, for the purpose of identification. Materials and Methods: The study was conducted on 72 extracted teeth which were divided into six goups of 12 teeth each based on the type of restorative material. (Group 1 - unrestored teeth, group 2 - teeth restored with Zn3(PO4)2, group 3 - with silver amalgam, group 4 with glass ionomer cement, group 5 - Ni-Cr-metal crown, group 6 - metal ceramic crown) and two specimens of the mandible. The effect of incineration at 400°C (5 mins, 15 mins, 30 mins) and 1100°C (15 mins) was studied. Results: Damage to the teeth subjected to variable temperatures and time can be categorized as intact (no damage), scorched (superficially parched and discolored), charred (reduced to carbon by incomplete combustion) and incinerated (burned to ashes). PMID:21189989

  20. Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures.

    PubMed

    Zamiri, Reza; Ahangar, Hossein Abbastabar; Kaushal, Ajay; Zakaria, Azmi; Zamiri, Golnoosh; Tobaldi, David; Ferreira, J M F

    2015-01-01

    A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution. The average crystalline domain diameter was found to be 5.2 nm, with a very narrow size distribution. UV-visible absorbance spectrum was used to calculate the optical energy band gap of the prepared CeO2 nanoparticles. The FT-IR spectrum of prepared CeO2 nanoparticles showed absorption bands at 400 cm(-1) to 450 cm(-1) regime, which correspond to CeO2 stretching vibration. The dielectric constant (εr) and dielectric loss (tan δ) values of sintered CeO2 compact consolidated from prepared nanoparticles were measured at different temperatures in the range from 298 K (room temperature) to 623 K, and at different frequencies from 1 kHz to 1 MHz. PMID:25910071

  1. Surface induces different crystal structures in a room temperature switchable spin crossover compound.

    PubMed

    Gentili, Denis; Liscio, Fabiola; Demitri, Nicola; Schäfer, Bernhard; Borgatti, Francesco; Torelli, Piero; Gobaut, Benoit; Panaccione, Giancarlo; Rossi, Giorgio; Degli Esposti, Alessandra; Gazzano, Massimo; Milita, Silvia; Bergenti, Ilaria; Ruani, Giampiero; Šalitroš, Ivan; Ruben, Mario; Cavallini, Massimiliano

    2016-01-01

    We investigated the influence of surfaces in the formation of different crystal structures of a spin crossover compound, namely [Fe(L)2] (LH: (2-(pyrazol-1-yl)-6-(1H-tetrazol-5-yl)pyridine), which is a neutral compound thermally switchable around room temperature. We observed that the surface induces the formation of two different crystal structures, which exhibit opposite spin transitions, i.e. on heating them up to the transition temperature, one polymorph switches from high spin to low spin and the second polymorph switches irreversibly from low spin to high spin. We attributed this inversion to the presence of water molecules H-bonded to the complex tetrazolyl moieties in the crystals. Thin deposits were investigated by means of polarized optical microscopy, atomic force microscopy, X-ray diffraction, X-ray absorption spectroscopy and micro Raman spectroscopy; moreover the analysis of the Raman spectra and the interpretation of spin inversion were supported by DFT calculations. PMID:26575005

  2. Crude oil degradation by bacterial consortia under four different redox and temperature conditions.

    PubMed

    Xiong, Shunzi; Li, Xia; Chen, Jianfa; Zhao, Liping; Zhang, Hui; Zhang, Xiaojun

    2015-02-01

    There is emerging interest in the anaerobic degradation of crude oil. However, there is limited knowledge about the geochemical effects and microbiological activities for it. A mixture of anaerobic sludge and the production water from an oil well was used as an inoculum to construct four consortia, which were incubated under sulfate-reducing or methanogenic conditions at either mesophilic or thermophilic temperatures. Significant degradation of saturated and aromatic hydrocarbons and the changing quantities of some marker compounds, such as pristane, phytane, hopane and norhopane, and their relative quantities, suggested the activity of microorganisms in the consortia. Notably, the redox conditions and temperature strongly affected the diversity and structure of the enriched microbial communities and the oil degradation. Although some specific biomarker showed larger change under methanogenic condition, the degradation efficiencies for total aromatic and saturated hydrocarbon were higher under sulfate-reducing condition. After the 540-day incubation, bacteria of unknown classifications were dominant in the thermophilic methanogenic consortia, whereas Clostridium dominated the mesophilic methanogenic consortia. With the exception of the dominant phylotypes that were shared with the methanogenic consortia, the sulfate-reducing consortia were predominantly composed of Thermotogae, Deltaproteobacteria, Spirochaeta, and Synergistetes phyla. In conclusion, results in this study demonstrated that the different groups of degraders were responsible for degradation in the four constructed crude oil degrading consortia and consequently led to the existence of different amount of marker compounds under these distinct conditions. There might be distinct metabolic mechanism for degrading crude oil under sulfate-reducing and methanogenic conditions. PMID:25216580

  3. Dielectrical Properties of CeO2 Nanoparticles at Different Temperatures

    PubMed Central

    Zamiri, Reza; Abbastabar Ahangar, Hossein; Kaushal, Ajay; Zakaria, Azmi; Zamiri, Golnoosh; Tobaldi, David; Ferreira, J. M. F.

    2015-01-01

    A template-free precipitation method was used as a simple and low cost method for preparation of CeO2 nanoparticles. The structure and morphology of the prepared nanoparticle samples were studied in detail using X-ray diffraction, Raman spectroscopy and Scanning Electron Microscopy (SEM) measurements. The whole powder pattern modelling (WPPM) method was applied on XRD data to accurately measure the crystalline domain size and their size distribution. The average crystalline domain diameter was found to be 5.2 nm, with a very narrow size distribution. UV-visible absorbance spectrum was used to calculate the optical energy band gap of the prepared CeO2 nanoparticles. The FT-IR spectrum of prepared CeO2 nanoparticles showed absorption bands at 400 cm-1 to 450 cm-1 regime, which correspond to CeO2 stretching vibration. The dielectric constant (εr) and dielectric loss (tan δ) values of sintered CeO2 compact consolidated from prepared nanoparticles were measured at different temperatures in the range from 298 K (room temperature) to 623 K, and at different frequencies from 1 kHz to 1 MHz. PMID:25910071

  4. Nickel response in function of temperature differences: effects at different levels of biological organization in Daphnia magna.

    PubMed

    Vandenbrouck, Tine; Dom, Nathalie; Novais, Sara; Soetaert, Anneleen; Ferreira, Abel L G; Loureiro, Susana; Soares, Amadeu M V M; De Coen, Wim

    2011-09-01

    In this study, gene transcription profiling in combination with the assessment of systemic parameters at individual and population levels were applied to study the (toxic) effects induced through temperature stress in the presence or the absence of an additional chemical stressor (nickel) in Daphnia magna. It was illustrated that lower temperatures were mainly characterized by a reduction of growth and lipid content, while higher temperatures caused an increase of both endpoints. Many of the differentially regulated transcripts could be correlated with processes affected at higher hierarchical levels of biological organization. Gene clusters with probable roles in producing offspring (peak expression at 22°C), enhancing the metabolic rate (temperature related expression) and translational processes (increased expression at 14°C) were identified. However, it was not possible to pinpoint a specific subset of genes, exclusively responding to temperature or nickel and allowing a retrospective identification of the particular stressor. Overall, extreme temperatures caused a higher level of stress in the organisms in comparison to nickel exposure. Moreover, organisms subjected to the natural stressor appeared to be less capable of dealing with the additional chemical stressor and as a result activate or repress more gene pathways. PMID:21741888

  5. Ballistics ordnance gelatine - How different concentrations, temperatures and curing times affect calibration results.

    PubMed

    Maiden, Nicholas R; Fisk, Wesley; Wachsberger, Christian; Byard, Roger W

    2015-08-01

    A study was undertaken to determine whether different concentrations of ordnance gelatine, water types, temperatures and curing times would have an effect on projectile penetration of a gelatine tissue surrogate. Both Federal Bureau of Investigation (FBI) and North Atlantic Treaty Organization (NATO) specified gelatines were compared against the FBI calibration standard. 10% w/w and 20% w/w concentrations of gelatine with Bloom numbers of 250 and 285 were prepared and cured at variable temperatures (3-20°C) for 21 hours-3 weeks. Each block was shot on four occasions on the same range using steel calibre 4.5 mm BBs fired from a Daisy(®) air rifle at the required standard velocity of 180 ± 4.5 m/s, to ascertain the mean penetration depth. The results showed no significant difference in mean penetration depth using the three different water types (p > 0.05). Temperature changes and curing times did affect penetration depth. At 10°C, mean penetration depth with 20% gelatine 285 Bloom for the two water types tested was 49.7 ± 1.5 mm after 21 h curing time, whereas the same formulation at 20°C using two different water types was 79.1 ± 2.1 mm after 100 h curing time (p < 0.001). Neither of the NATO 20% concentrations of gelatine at 10°C or a 20% concentration of 285 Bloom gelatine at 10°C met the same calibration standard as the FBI recommended 10% formulation at 4°C. A 20% concentration of 285 Bloom at 20°C met the same calibration/penetration criteria as a 10% concentration of 250 Bloom at 4 °C after 100 h of curing, therefore matching the FBI calibration standard for a soft tissue simulant for wound ballistics research. These results demonstrate significant variability in simulant properties. Failure to standardise ballistic simulants may invalidate experimental results. PMID:26165674

  6. [Effects of nighttime temperature increase at different growth stages on double season rice grain yield].

    PubMed

    Wei, Jin-Lian; Pan, Xiao-Hua; Deng, Qiang-Hui

    2010-02-01

    Two experimental glass-houses were utilized to study the effects of nighttime temperature increase (NTI) at different growth stages on the grain yield of double season rice. The NTI from the stage of sowing to panicle differentiation (primary branch differentiation) improved the tillering of rice, and increased the effective panicles. An average 1 degrees C rise in the minimum nighttime temperature (MNT) at this stage increased the grain yield of early and late rice by 10.02% - 13.18% and 6.52% - 7.78% (P < 0.01), respectively. The NTI from the stage of panicle differentiation to heading (10% panicle heading from flag leaf sheath) promoted the spikelet abortion, and reduced the number of developed spikelet. An average 1 degrees C rise in MNT at this stage decreased the grain yield of early and late rice by 3.76% - 6.67% and 3.66% - 6.94% (P < 0.01), respectively. NTI from the stage of heading to maturity decreased the filled grain rate of early rice remarkably, but had an opposite effect on late rice. An average 1 degrees C rise in MNT at this stage induced a grain yield loss by 2.07% - 5.61% (P < 0.05) and a grain yield gain by 1.63% - 2.28% (P < 0.05) for early and late rice, respectively. All the results illustrated that there existed obvious differences in the effects of NTI at different growth stages on the grain yield of double season rice. PMID:20462002

  7. The Effect of Different Water Immersion Temperatures on Post-Exercise Parasympathetic Reactivation

    PubMed Central

    de Oliveira Ottone, Vinícius; de Castro Magalhães, Flávio; de Paula, Fabrício; Avelar, Núbia Carelli Pereira; Aguiar, Paula Fernandes; da Matta Sampaio, Pâmela Fiche; Duarte, Tamiris Campos; Costa, Karine Beatriz; Araújo, Tatiane Líliam; Coimbra, Cândido Celso; Nakamura, Fábio Yuzo; Amorim, Fabiano Trigueiro; Rocha-Vieira, Etel

    2014-01-01

    Purpose We evaluated the effect of different water immersion (WI) temperatures on post-exercise cardiac parasympathetic reactivation. Methods Eight young, physically active men participated in four experimental conditions composed of resting (REST), exercise session (resistance and endurance exercises), post-exercise recovery strategies, including 15 min of WI at 15°C (CWI), 28°C (TWI), 38°C (HWI) or control (CTRL, seated at room temperature), followed by passive resting. The following indices were assessed before and during WI, 30 min post-WI and 4 hours post-exercise: mean R-R (mR-R), the natural logarithm (ln) of the square root of the mean of the sum of the squares of differences between adjacent normal R–R (ln rMSSD) and the ln of instantaneous beat-to-beat variability (ln SD1). Results The results showed that during WI mRR was reduced for CTRL, TWI and HWI versus REST, and ln rMSSD and ln SD1 were reduced for TWI and HWI versus REST. During post-WI, mRR, ln rMSSD and ln SD1 were reduced for HWI versus REST, and mRR values for CWI were higher versus CTRL. Four hours post exercise, mRR was reduced for HWI versus REST, although no difference was observed among conditions. Conclusions We conclude that CWI accelerates, while HWI blunts post-exercise parasympathetic reactivation, but these recovery strategies are short-lasting and not evident 4 hours after the exercise session. PMID:25437181

  8. Improving the energy efficiency of refrigeration plants by decreasing the temperature difference in air-cooled condensers

    NASA Astrophysics Data System (ADS)

    Shishov, V. V.; Talyzin, M. S.

    2015-09-01

    The electric energy consumption efficiency is estimated in comparing the real refrigeration machine cycle with the theoretical inverse Carnot cycle. The potential for saving electricity in using aircooled condensers with different values of temperature difference is shown. A procedure for calculating a refrigerating system with the evaporation temperature equal to -10°C, which corresponds at this temperature level to the thermal load of a standard supermarket, is described. The calculation was carried out taking into account the annual profile of temperatures in the indicated locality and based on the possibility of adjusting the condenser capacity for maintaining constant condensation temperature. The payback period in case of using condensers with different values of temperature difference is calculated; for example, in using condensers with a temperature difference of less than 15 K, the payback period will be less than one year. Decreasing the temperature difference results, on one hand, in a larger annual consumption of electric energy by the condenser fans, and on the other hand, it results in a lower condensation pressure, which leads to a smaller annual consumption of energy by the compressor unit. As a result, the total amount of energy consumed by the refrigeration system decreases so that despite a higher cost of condensers designed to operate at lower values of temperature difference, it becomes possible to achieve the above-mentioned payback period. Additionally, the payback period in case of using an air-cooled microchannel aluminum condenser was calculated: in case of using such a condenser with a temperature difference of 8 K instead of the condenser with the temperature difference equal to 15 K, the payback period will be less than half a year. Recommendations for designing new refrigeration systems equipped with air-cooled condensers are given.

  9. Absorption, Fluorescence and Emission Anisotropy Spectra of 4-Cyano-N,N-dimethylaniline in Different Media and at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Kawski, A.; Piszczek, G.

    1997-05-01

    The effect of temperature on fluorescence and emission anisotropy spectra of 4-cyano-N,N-dimethylaniline (CDMA) was investigated in viscous (glycerol and paraffin oil) and rigid (polyvinyl alcohol) PVA and polyvinyl chloride) PVC) media. A strong effect of temperature on the intensity of a and b emission bands was observed. It was also found that the emission anisotropy, r, does not vary in the longwave emission band a at a fixed temperature but decreases in the emission band b together with the decreasing wavelength. The latter effect is due to the fact that the transition moment in this band is perpendicular to the long axis of the CDMA molecule. For CDMA in paraffin oil, a normal b band with negative emission anisotropy only occurs. In all other media used, the emission anisotropy has lower values, approaching zero, which results from the considerable covering of band b with a broad emission band a.

  10. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    PubMed

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (p<0.05). In contrast, we observed that both SLA and Tb were higher during the dark-phase (p<0.01). Notably, the correlation analysis between the amount of SLA and the running capacity observed at each phase of the daily cycle revealed that, regardless of the time of the day, both types of locomotor physical activity have an important inherent component (r=0.864 and r=0.784, respectively, p<0.01) without a direct relationship between them. This finding provides further support for the existence of specific control mechanisms for each type of physical activity. In conclusion, our data indicate that the relationship between the body temperature and different types of physical activity might be affected by the light/dark cycle. These results mean that, although exercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  11. Muscle fatigue examined at different temperatures in experiments on intact mammalian (rat) muscle fibers

    PubMed Central

    Roots, H.; Ball, G.; Talbot-Ponsonby, J.; King, M.; McBeath, K.; Ranatunga, K. W.

    2009-01-01

    In experiments on small bundles of intact fibers from a rat fast muscle, in vitro, we examined the decline in force in repeated tetanic contractions; the aim was to characterize the effect of shortening and of temperature on the initial phase of muscle fatigue. Short tetanic contractions were elicited at a control repetition rate of 1/60 s, and fatigue was induced by raising the rate to 1/5 s for 23 min, both in isometric mode (no shortening) and in shortening mode, in which each tetanic contraction included a ramp shortening at a standard velocity. In experiments at 20C (n = 12), the force decline during a fatigue run was 25% in the isometric mode but was significantly higher (35%) in the shortening mode. In experiments at different temperatures (1030C, n = 11), the tetanic frequency and duration were adjusted as appropriate, and for shortening mode, the velocity was adjusted for maximum power output. In isometric mode, fatigue of force was significantly less at 30C (?20%) than at 10C (?30%); the power output (force velocity) was >10 higher at 30C than at 10C, and power decline during a fatigue run was less at 30C (?2030%) than at 10C (?50%). The finding that the extent of fatigue is increased with shortening contractions and is lower at higher temperatures is consistent with the view that force depression by inorganic phosphate, which accumulates within fibers during activity, may be a primary cause of initial muscle fatigue. PMID:19057001

  12. Anaerobic oxidation of methane at different temperature regimes in Guaymas Basin hydrothermal sediments

    PubMed Central

    Biddle, Jennifer F; Cardman, Zena; Mendlovitz, Howard; Albert, Daniel B; Lloyd, Karen G; Boetius, Antje; Teske, Andreas

    2012-01-01

    Anaerobic oxidation of methane (AOM) was investigated in hydrothermal sediments of Guaymas Basin based on δ13C signatures of CH4, dissolved inorganic carbon and porewater concentration profiles of CH4 and sulfate. Cool, warm and hot in-situ temperature regimes (15–20 °C, 30–35 °C and 70–95 °C) were selected from hydrothermal locations in Guaymas Basin to compare AOM geochemistry and 16S ribosomal RNA (rRNA), mcrA and dsrAB genes of the microbial communities. 16S rRNA gene clone libraries from the cool and hot AOM cores yielded similar archaeal types such as Miscellaneous Crenarchaeotal Group, Thermoproteales and anaerobic methane-oxidizing archaea (ANME)-1; some of the ANME-1 archaea formed a separate 16S rRNA lineage that at present seems to be limited to Guaymas Basin. Congruent results were obtained by mcrA gene analysis. The warm AOM core, chemically distinct by lower porewater sulfide concentrations, hosted a different archaeal community dominated by the two deep subsurface archaeal lineages Marine Benthic Group D and Marine Benthic Group B, and by members of the Methanosarcinales including ANME-2 archaea. This distinct composition of the methane-cycling archaeal community in the warm AOM core was confirmed by mcrA gene analysis. Functional genes of sulfate-reducing bacteria and archaea, dsrAB, showed more overlap between all cores, regardless of the core temperature. 16S rRNA gene clone libraries with Euryarchaeota-specific primers detected members of the Archaeoglobus clade in the cool and hot cores. A V6-tag high-throughput sequencing survey generally supported the clone library results while providing high-resolution detail on archaeal and bacterial community structure. These results indicate that AOM and the responsible archaeal communities persist over a wide temperature range. PMID:22094346

  13. The effect of quenching from different temperatures on Bi0.88Sb0.12 alloy

    NASA Astrophysics Data System (ADS)

    Malik, K.; Das, Diptasikha; Neogi, S. K.; Deb, A. K.; Dasgupta, Arup; Bandyopadhyay, S.; Banerjee, Aritra

    2016-04-01

    Structural, thermal, resistive and magnetic properties of melt quenched Bi0.88Sb0.12 alloys are reported. The samples are heated at three different temperatures, followed by rapid quenching in liquid nitrogen. Large temperature difference between liquidus and solidus lines, led to microscopic in-homogeneity in the alloy. The effect of quenching from different temperatures in polycrystalline Bi0.88Sb0.12 alloy has been studied. The parameters such as strain, unit cell volume, and resistivity are found to increase with temperature. Thermal variation of resistivity depicts non-monotonic temperature dependence. The total negative susceptibility increases and band gap of semiconducting Bi0.88Sb0.12 samples decreases with increasing temperature.

  14. Influence of orientation on the size effect in BCC pillars with different critical temperatures.

    SciTech Connect

    Arzt, Eduard; Gruber, Patrick A.; Clark, Blythe G.; Frick, Carl P.; Schneider, Andreas S.

    2010-09-01

    The size effect in body-centered cubic metals is comprehensively investigated through micro/nano-compression tests performed on focused ion beam machined tungsten (W), molybdenum (Mo) and niobium (Nb) pillars, with single slip [2 3 5] and multiple slip [0 0 1] orientations. The results demonstrate that the stress-strain response is unaffected by the number of activated slip systems, indicating that dislocation-dislocation interaction is not a dominant mechanism for the observed diameter dependent yield strength and strain hardening. Furthermore, the limited mobility of screw dislocations, which is different for each material at ambient temperature, acts as an additional strengthening mechanism leading to a material dependent size effect. Nominal values and diameter dependence of the flow stress significantly deviate from studies on face-centered cubic metals. This is demonstrated by the correlation of size dependence with the material specific critical temperature. Activation volumes were found to decrease with decreasing pillar diameter further indicating that the influence of the screw dislocations decreases with smaller pillar diameter.

  15. Differences and Similarities between Summer and Winter Temperatures and Winds during MaCWAVE

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2008-01-01

    The Mountain and Convective Waves Ascending Vertically Experiment (MaCWAVE) was carried out in two sequences: one during the summer from the Andoya Rocket Range (69N) during July 2002 to examine convective initiation of gravity waves. The second was a winter sequence from ESRANGE (68N) during January 2003 to examine mountain-initiated waves. Inflatable falling spheres released from small meteorological rockets provided significant information about the variation of temperature and wind from 50 km and higher. The small rocket launch activity was restricted to 12-hour periods that inhibited observing a full diurnal cycle, nonetheless, the time-history of the measurements have provided information about tidal motion. During summer, temperature variation was smaller than observed during winter when peak differences reached 15-20 K at 80-85 km. variation in zonal winds varied up to more than 100 mps in summer and winter. Times of wind vs. altitude showed that the peak zonal component occurred approximately two hours ahead of the peak meridional wind. Measurement details and the observed variations are discussed.

  16. Differences and Similarities in MaCWAVE Summer and Winter Temperatures and Winds

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2008-01-01

    Small meteorological rockets released inflatable falling spheres during the MaCWAVE Campaign. The Mountain and Convective Waves Ascending Vertically Experiment (MaCWAVE) was carried out in two parts, a summer sequence from Andoya Rocket Range (69N) during July 2002 to examine convective initiation of gravity waves and a winter sequence from ESRANGE (68N) during January 2003 to examine mountain-terrain initiated gravity waves. The sphere-tracked data provided significant information about the variation of temperature and wind from 70 km and above. The changes observed may be considered akin to tidal motion; unfortunately the launch activity was restricted to 12-hour periods, thus the observation of a full diurnal cycle was not possible. During summer, temperature variation was smaller than that observed during winter when peak to null differences reached 15-20 K at 80-85 km. Variation in the zonal winds varied up to 100+mps in summer and winter. Examination of the times of peak wind vs altitude showed that the peak zonal wind occurred approximately two hours ahead of the peak meridional wind. We provide details about the measurements and observed variations.

  17. Changes in the quality of superchilled rabbit meat stored at different temperatures.

    PubMed

    Lan, Yang; Shang, Yongbiao; Song, Ying; Dong, Quan

    2016-07-01

    This work studied the effects of a superchilling process at two different temperatures on the shelf life and selected quality parameters of rabbit meat. As the storage time increased, the rates at which the total aerobic count, total volatile basic nitrogen, thiobarbituric acid-reactive substances and pH value increased were significantly lower in superchilled rabbit meat stored at -4°C compared to those in rabbit meat stored at -2.5°C and 4°C. SDS-PAGE analysis indicated that the decrease in storage temperature could significantly reduce the degree of protein degradation. The lightness, redness, shear force, the integrity of muscle microstructure and water holding capacity decreased with increasing storage time. Compared with the samples frozen at -18°C, superchilled rabbit meat shows a marked reduction in microstructure deterioration. These results suggest that shelf life of good-quality rabbit meat was 20d under superchilling at -2.5°C and at least 36d under superchilling at -4°C, compared with less than 6d under traditional chilled storage. PMID:26990070

  18. Integrity of piezoceramic patch transducers under cyclic loading at different temperatures

    NASA Astrophysics Data System (ADS)

    Gall, Monika; Thielicke, Bärbel; Schmidt, Ingo

    2009-10-01

    In this study the loading limits, damage behavior and long-term integrity of piezoceramic patch transducers, based on monolithic PZT (lead zirconium titanate) wafers (PIC 255), were investigated. The study involved quasi-static and long-term cyclic testing under tensile and compressive mechanical loading of the patches, at different temperatures. A strain-cycle lifetime diagram was established for tensile loading at room temperature, and +60, +100 and -40 °C. In all cases of tensile loading, cracking in the PZT ceramic was found to be the relevant failure mechanism which was shown to be correlated with the observed degradation of sensor performance of the patches. No mechanical damage was found under compressive loading at strain levels of up to -0.6%. Finite element (FE) analyses were performed using 3D material modeling with electromechanical coupling, achieving very good predictability of the sensor and actuator performance. Analytical calculations and numerical simulation were used to interpret experimental findings and to allow the transfer of results to various applications. Based on micro-structural investigations of the cracked PZT wafers and FE simulation, fracture mechanics analyses of the local stress situation in the PZT ceramic were carried out.

  19. Proteomic responses to hypoxia at different temperatures in the great scallop (Pecten maximus)

    PubMed Central

    Lacroix, Camille; Richard, Joëlle; Flye-Sainte-Marie, Jonathan; Bargelloni, Luca; Pichereau, Vianney

    2015-01-01

    Hypoxia and hyperthermia are two connected consequences of the ongoing global change and constitute major threats for coastal marine organisms. In the present study, we used a proteomic approach to characterize the changes induced by hypoxia in the great scallop, Pecten maximus, subjected to three different temperatures (10 °C, 18 °C and 25 °C). We did not observe any significant change induced by hypoxia in animals acclimated at 10 °C. At 18 °C and 25 °C, 16 and 11 protein spots were differentially accumulated between normoxia and hypoxia, respectively. Moreover, biochemical data (octopine dehydrogenase activity and arginine assays) suggest that animals grown at 25 °C switched their metabolism towards anaerobic metabolism when exposed to both normoxia and hypoxia, suggesting that this temperature is out of the scallops’ optimal thermal window. The 11 proteins identified with high confidence by mass spectrometry are involved in protein modifications and signaling (e.g., CK2, TBK1), energy metabolism (e.g., ENO3) or cytoskeleton (GSN), giving insights into the thermal-dependent response of scallops to hypoxia. PMID:25861557

  20. Definition of predictor variables for MAP poultry filets stored under different temperature conditions.

    PubMed

    Herbert, Ulrike; Albrecht, Antonia; Kreyenschmidt, Judith

    2015-03-01

    Storage tests under different temperatures (2, 4, 10, and 15°C) were conducted to identify the best predictor variable that is most effective to explain the loss of the shelf life and quality of modified atmosphere packed (MAP) poultry, and constitutes the basis for the prediction of the remaining shelf life. The samples were packed in 70% O2 and 30% CO2, which is the common used gas atmosphere for poultry filets in Germany. Typical spoilage microorganisms (Pseudomonas spp., Brochothrix thermosphacta, Enterobacteriaceae, and Lactobacillus spp.) and total viable count (TVC) were enumerated frequently. Additionally, samples were analyzed for sensory changes, pH, and gas concentration. The data extraction and selections by stepwise regression and principle component analysis (PCA) was carried out to identify a variable which has the main influence on shelf life and freshness loss. The results accentuate that the spoilage is caused by a wide range of microorganisms. No specific microorganism could be identified as the dominant originator for the deteriorative changes. Solely TVC showed significant correlations between the development of the sensory decay and the development of the TVC for each single storage temperature. PMID:25638474

  1. Histological features of respiratory epithelium of calves held at differing temperature and humidity.

    PubMed Central

    Jericho, K W; Magwood, S E

    1977-01-01

    The effect of ambient temperature and humidity on the structure of respiratory epithelium of calves was studied. Four calves of each of three experiments were acclimatized to a nonoperational environmental chamber for six days and then exposed to constant extremes of temperatures and relative humidity of one of 30 degrees C --35%, or 27 degrees C--92%, or 5 degrees C--92% respectively in this chamber for eight days each. Five calves (3 and 2) were similarly acclimatized then exposed to 1 degrees C--40%. Nasal swabs were taken from all animals at regular intervals. Swabs of three animals yielded Mycoplasma spp. and one swab yielded the virus of infectious bovine rhinotracheitis. Detailed histological studies of respiratory epithelium of nose, trachea, major bronchus and terminal bronchioli were conducted at four sites. Goblet cells were least in calves held in hot and dry air; calves held in dry air had the least polymorphonuclear cells and the greatest prevalence of hypochromatic cell layers and vacuolation of epithelial cells. Differences between experiments were evident most for sites of trachea and major bronchus. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 1. Fig. 2. Fig. 3. PMID:922554

  2. Use Of Minimum Resolvable Temperature Difference (MRTD) For The Evaluation And Specification Of Thermal Imaging Systems

    NASA Astrophysics Data System (ADS)

    Newbery, A. R.; McMahon, R.

    1981-10-01

    Minimum Resolvable Temperature Difference (MRTD) is now the most widely used parameter for describing both the temperature sensitivity, and spatial resolution of thermal imaging systems. It can be measured in the laboratory, using fairly simple equipment, it can be calculated from component parameters, and a good correlation has been established between MRTD and the field performance of systems, eg detection and recognition ranges of targets. However, both the strength, and the weakness of MRTD lies in the fact that it is a subjective parameter. It is measured by an observer viewing standard bar targets, and so it combines the spatial resolution and noise characteristics (thermal resolution) in the correct way. It also takes account of the performance degradations due for example to cosmetic defects. On the other hand, being a subjective measurement, there is bound to be some variations in measured values, particularly from one laboratory to another. This causes problems, if only from an administrative point of view, when testing a system against a given specification.

  3. Transcription profiles of the bacterium Mycoplasma pneumoniae grown at different temperatures

    PubMed Central

    Weiner, J.; Zimmerman, C.-U.; Ghlmann, H. W. H.; Herrmann, R.

    2003-01-01

    Applying microarray technology, we have investigated the transcriptome of the small bacterium Mycoplasma pneumoniae grown at three different temperature conditions: 32, 37 and 32C followed by a heat shock for 15 min at 43C, before isolating the RNA. From 688 proposed open-reading frames, 676 were investigated and 564 were found to be expressed (P < 0.001; 606 with P < 0.01) and at least 33 (P < 0.001; 77 at P < 0.01) regulated. By quantitative real-time PCR of selected mRNA species, the expression data could be linked to absolute molecule numbers. We found M.pneumoniae to be regulated at the transcriptional level. Forty-seven genes were found to be significantly up-regulated after heat shock (P < 0.01). Among those were the conserved heat shock genes like dnaK, lonA and clpB, but also several genes coding for ribosomal proteins and 10 genes of unassigned functions. In addition, 30 genes were found to be down-regulated under the applied heat shock conditions. Further more, we have compared different methods of cDNA synthesis (random hexamer versus gene-specific primers, different RNA concentrations) and various normalization strategies of the raw microarray data. PMID:14576319

  4. Effect of Different Mn-doping Types on BLFG-PT High-temperature Piezoelectric Ceramics

    NASA Astrophysics Data System (ADS)

    Jin, Guoxi; Chen, Jianguo; Dai, Rui; Zhang, Haiyan; Cheng, Jinrong

    Mn-doped 0.63(Bi0.94La0.06)(Fe0.95Ga0.05)-0.37PbTiO3 ceramics with exactly stoichiometric ratio in lattice for substituting Ti-site induced large microstructure distortion and internal stress. However, for the specimens of Mn introduction as sintering aids, distinct relaxation characteristic transforming from pure BLFG-PT can be obtained. Moreover, little difference could be classified according to the selected raw materials of MnCO3 and MnO2 on the properties of BLFG-PT ceramics. They both could effectively improve the density and make the high-temperature phase transition become more diffused, revealing relaxor ferroelectrics characteristic. In addition, all the Mn-doped samples, greatly decreased dielectric loss were observed which indicates the potential use of Mn-doping in high power piezoelectric device application and modification.

  5. Simulated sea surface temperature and heat fluxes in different climates of the Baltic Sea.

    PubMed

    Döscher, Ralf; Meier, H E Markus

    2004-06-01

    The physical state of the Baltic Sea in possible future climates is approached by numerical model experiments with a regional coupled ocean-atmosphere model driven by different global simulations. Scenarios and recent climate simulations are compared to estimate changes. The sea surface is clearly warmer by 2.9 degrees C in the ensemble mean. The horizontal pattern of average annual mean warming can largely be explained in terms of ice-cover reduction. The transfer of heat from the atmosphere to the Baltic Sea shows a changed seasonal cycle: a reduced heat loss in fall, increased heat uptake in spring, and reduced heat uptake in summer. The interannual variability of surface temperature is generally increased. This is associated with a smoothed frequency distribution in northern basins. The overall heat budget shows increased solar radiation to the sea surface, which is balanced by changes of the other heat flux components. PMID:15264603

  6. Rarefied Gas Flows Induced through a Pair of Parallel Meshes with Different Temperatures

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Kawakami, S.; Moriuchi, K.

    2008-12-01

    A simple method to form micro-channels that induce a rarefied gas flow by the effect of the temperature field is proposed. A pair of parallel wire meshes, one is heated and the other is unheated, induces a gas flow through the pair of meshes in the direction from unheated mesh to heated mesh. Three test devices with different diameters, 1 mm, 100 μm, and 25 μm, of the wire of the mesh, have been devised and the flow through the device is detected by a thin film or a small windmill for various pressures of the gas. The flow is observed in a range of the pressure where the mean free path of gas molecules is close to the scale of the mesh structure, e.g., the diameter of the wire. It is extended to a wider range of the pressure in the device using combined meshes consisting of coarser and finer mesh.

  7. Abrupt reduction of the critical temperature difference of a thermoacoustic engine by adding water

    NASA Astrophysics Data System (ADS)

    Tsuda, K.; Ueda, Y.

    2015-09-01

    The critical temperature difference (ΔTcri) that causes a thermoacoustic spontaneous oscillation is reduced by the presence of water in the working fluid of a thermoacoustic engine. This letter introduces the effects of two design parameters on the reduction of ΔTcri: one is the mass of water added as the working fluid and the other is the characteristic length of the stack, which is the heart of a thermoacoustic engine. The experimental results show that when the mass of added water exceeds the threshold value, ΔTcri decreases abruptly; however, the decreased ΔTcri changes slightly with further increase in the added mass. Moreover, the characteristic length of the stack was found to have little effect on ΔTcri when water is added. These results provide a design guide for a thermoacoustic engine that includes water as the working fluid.

  8. Terahertz absorption spectrum of water vapor at different humidity at room temperature

    NASA Astrophysics Data System (ADS)

    Xin, Xuying; Altan, Hakan; Matten, David; Saint, Angelamaria; Alfano, Robert

    2006-03-01

    We measured the absorption spectrum of water vapor in 0.2-2.4THz range at different humidity from 17% to 98% at room temperature using Er: doped fiber laser (IMRA America Inc.) based terahertz time-domain spectroscopy. The experiments were performed in a nitrogen-purged cage at atmosphere environment to obtain the reference and water absorption information. The seventeen absorption lines were observed due to water molecular rotations in the ground vibration state. The first three absorption lines at low frequencies increase with humidity, following the Beer-Lambert Law, while some of high frequency lines were found to decrease with humidity. These effects will be discussed. The observed line broadening is due to collisions occurring among water and nitrogen molecules.

  9. Low-temperature micro-photoluminescence spectroscopy on laser-doped silicon with different surface conditions

    NASA Astrophysics Data System (ADS)

    Han, Young-Joon; Franklin, Evan; Fell, Andreas; Ernst, Marco; Nguyen, Hieu T.; Macdonald, Daniel

    2016-04-01

    Low-temperature micro-photoluminescence spectroscopy (μ-PLS) is applied to investigate shallow layers of laser-processed silicon for solar cell applications. Micron-scale measurement (with spatial resolution down to 1 μm) enables investigation of the fundamental impact of laser processing on the electronic properties of silicon as a function of position within the laser-processed region, and in particular at specific positions such as at the boundary/edge of processed and unprocessed regions. Low-temperature μ-PLS enables qualitative analysis of laser-processed regions by identifying PLS signals corresponding to both laser-induced doping and laser-induced damage. We show that the position of particular luminescence peaks can be attributed to band-gap narrowing corresponding to different levels of subsurface laser doping, which is achieved via multiple 248 nm nanosecond excimer laser pulses with fluences in the range 1.5-4 J/cm2 and using commercially available boron-rich spin-on-dopant precursor films. We demonstrate that characteristic defect PL spectra can be observed subsequent to laser doping, providing evidence of laser-induced crystal damage. The impact of laser parameters such as fluence and number of repeat pulses on laser-induced damage is also analyzed by observing the relative level of defect PL spectra and absolute luminescence intensity. Luminescence owing to laser-induced damage is observed to be considerably larger at the boundaries of laser-doped regions than at the centers, highlighting the significant role of the edges of laser-doped region on laser doping quality. Furthermore, by comparing the damage signal observed after laser processing of two different substrate surface conditions (chemically-mechanically polished and tetramethylammonium hydroxide etched), we show that wafer preparation can be an important factor impacting the quality of laser-processed silicon and solar cells.

  10. Effects of experimental reheating of natural basaltic ash at different temperatures and redox conditions

    NASA Astrophysics Data System (ADS)

    D'Oriano, C.; Pompilio, M.; Bertagnini, A.; Cioni, R.; Pichavant, M.

    2013-05-01

    A set of experiments have been performed on volcanic materials from Etna, Stromboli and Vesuvius in order to evaluate how the exposure to thermal and redox conditions close to that of active craters affects the texture and composition of juvenile pyroclasts. Selected samples were placed within a quartz tube, in presence of air or under vacuum, and kept at T between 700 and 1,130 °C, for variable time (40 min to 12 h). Results show that reheating reactivates the melt, which, through processes of chemical and thermal diffusion, reaches new equilibrium conditions. In all the experiments performed at T = 700-750 °C, a large number of crystal nuclei and spherulites grows in the groundmass, suggesting conditions of high undercooling. This process creates textural heterogeneities at the scale of few microns but only limited changes of groundmass composition, which remains clustered around that of the natural glasses. Reheating at T = 1,000-1,050 °C promotes massive groundmass crystallization, with a different mineral assemblage as a function of the redox conditions. Morphological modifications of clasts, from softening to sintering as temperature increases, occur under these conditions, accompanied by progressive smoothing of external surfaces, and a reduction in size and abundance of vesicles, until the complete obliteration of the pre-existing vesicularity. The transition from sintering to welding, characteristic of high temperature, is influenced by redox conditions. Experiments at T = 1,100-1,130 °C and under vacuum produce groundmass textures and glass compositions similar to that of the respective starting material. Collapse and welding of the clasts cause significant densification of the whole charge. At the same temperature, but in presence of air, experimental products at least result sintered and show holocrystalline groundmass. In all experiments, sublimates grow on the external surfaces of the clasts or form a lining on the bubble walls. Their shape and composition is a function of temperature and fO2 and the abundance of sublimates shows a peak at 1,000 °C. The identification of the features recorded by pyroclasts during complex heating-cooling cycles allows reconstructing the complete clasts history before their final emplacement, during weakly explosive volcanic activity. This has a strong implication on the characterization of primary juvenile material and on the interpretation of eruption dynamics.

  11. Response of fish to different simulated rates of water temperature increase

    SciTech Connect

    Wike, L.D.; Tuckfield, R.C.

    1992-08-01

    We initiated this study to define the limits of effluent-temperature rate increases during reactor restart, which will help minimize fish kills. We constructed an apparatus for exposing fish to various temperature-increase regimens and conducted two experiments based on information from system tests and scoping runs. In the rate experiment, we acclimated the fish to 20{degree}C, and then raised the temperature to 40{degree}C at varying rates. Because scoping runs and literature suggested that acclimation temperature may affect temperature-related mortality, we conducted an acclimation experiment. We acclimated the fish to various temperatures, then raised the temperatures to 39--40{degree}C at a rate of 2{degree}C every 12 hours. Based on the analysis of the data, we recommend temperature-increase rates during reactor restart of 2.5{degree}C every nine hours if ambient water temperatures are over 20{degree}C. If water temperatures are at or below 20{degree}C, we recommend temperature-increase rates of 2.5{degree}C every 12 hours. No regulation of temperature is required after effluent temperatures reach 40{degree}C. We recommend further studies, including expanded testing with the simulation system and behavioral and bioenergetic investigations that may further refine acceptable rates of effluent-temperature increases.

  12. Estimates of the difference between thermodynamic temperature and the International Temperature Scale of 1990 in the range 118 K to 303 K.

    PubMed

    Underwood, R; de Podesta, M; Sutton, G; Stanger, L; Rusby, R; Harris, P; Morantz, P; Machin, G

    2016-03-28

    Using exceptionally accurate measurements of the speed of sound in argon, we have made estimates of the difference between thermodynamic temperature, T, and the temperature estimated using the International Temperature Scale of 1990, T90, in the range 118 K to 303 K. Thermodynamic temperature was estimated using the technique of relative primary acoustic thermometry in the NPL-Cranfield combined microwave and acoustic resonator. Our values of (T-T90) agree well with most recent estimates, but because we have taken data at closely spaced temperature intervals, the data reveal previously unseen detail. Most strikingly, we see undulations in (T-T90) below 273.16 K, and the discontinuity in the slope of (T-T90) at 273.16 K appears to have the opposite sign to that previously reported. PMID:26903104

  13. Acute effects of ozone on heart rate and body temperature in the unanesthetized, unrestrained rat maintained at different ambient temperatures

    SciTech Connect

    Watkinson, W.P.; Aileru, A.A.; Dowd, S.M.; Doerfler, D.L.; Tepper, J.S.

    1993-01-01

    The present studies were conducted to investigate the concentration-response characteristics of acute ozone (O3) exposure on the cardiovascular and thermoregulatory function of the unanesthetized, unrestrained rat, and to examine the modulating effects produced by changes in ambient temperature (T[sub a]) on the induced toxic response. For all studies, groups of male Fischer 344 rats (n=4-6/group) were implanted with radiotelemetry transmitters and allowed to recover overnight. The transmitters permitted continuous monitoring of electrocardiogram (ECG) and body core temperature (T[sub co]); heart rate (HR) was derived from the ECG signal. Frequency of breathing (f) was obtained in selected experiments by means of a Fenn box. All animals were monitored according to the following protocol: control (filtered air; 0.25 h); exposure (O3; 2 h); recovery (filtered air; 3-18 h). For the concentration-response experiments, O3 concentration was varied from 0.25-1.0 ppm and all exposures were conducted at an T[sub a] of 18-20 C. Significant decreases in HR and T[sub co] were demonstrated at O3 concentrations as low as 0.37 ppm.

  14. The influence of internal and skin temperatures on active cutaneous vasodilation under different levels of exercise and ambient temperatures in humans

    NASA Astrophysics Data System (ADS)

    Demachi, Koichi; Yoshida, Tetsuya; Kume, Masashi; Tsuji, Michio; Tsuneoka, Hideyuki

    2013-07-01

    To clarify the influence of internal and skin temperature on the active cutaneous vasodilation during exercise, the body temperature thresholds for the onset of active vasodilation during light or moderate exercise under different ambient temperature conditions were compared. Seven male subjects performed 30 min of a cycling exercise at 20 % or 50 % of peak oxygen uptake in a room maintained at 20, 24, or 28 °C. Esophageal (Tes) and mean skin temperature (Tsk) as measured by a thermocouple, deep thigh temperature (Tdt) by the zero-heat-flow (ZHF) method, and forearm skin blood flow by laser-Doppler flowmetry (LDF) were monitored. The mean arterial pressure (MAP) was also monitored non-invasively, and the cutaneous vascular conductance (CVC) was calculated as the LDF/MAP. Throughout the experiment, the Tsk at ambient temperatures of 20, 24, and 28 °C were approximately 30, 32, and 34 °C, respectively, for both 20 % and 50 % exercise. During 50 % exercise, the Tes or Tdt thresholds for the onset of the increase in CVC were observed to be similar among the 20, 24, and 28 °C ambient conditions. During 20 % exercise, the increase in Tes and Tdt was significantly lower than those found at 50 %, and the onset of the increase in CVC was only observed at 28 °C. These results suggest that the onset of active vasodilation was affected more strongly by the internal or exercising tissue temperatures than by the skin temperatures during exercise performed at a moderate load in comparison to a light load under Tsk variations ranging from 30 °C to 34 °C. Therefore, the modification by skin temperature of the central control on cutaneous vasomotor tone during exercise may differ between different exercise loads.

  15. Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Zveryaev, Igor I.

    2015-04-01

    Sea surface temperature (SST) data from the NOAA OI SST data set for 1982-2011 are used to investigate intraseasonal and interannual variability of Mediterranean SST during winter and summer seasons. It is shown that during winter the intraseasonal SST fluctuations are larger than the interannual SST variations in the western Mediterranean (e.g., the Tyrrhenian Sea), but smaller in the central and eastern Mediterranean Sea. In summer, the intraseasonal SST fluctuations are larger in almost the entire Mediterranean basin. Also summertime intraseasonal SST fluctuations are larger (up to three times near the Gulf of Lions) than their wintertime counterparts in the entire Mediterranean basin. The interannual SST variations are larger during summer in the western and central Mediterranean Sea and during winter in its eastern part. The leading empirical orthogonal functions (EOFs) of the Mediterranean SST and of the intensities of its intraseasonal fluctuations are characterized by the differing spatial-temporal structures both during winter and summer implying that their interannual variability is driven by different physical mechanisms. During winter, the EOF-1 of SST is associated with the East Atlantic teleconnection, whereas EOF-1 of the intensity of intraseasonal fluctuations is not linked significantly to regional atmospheric dynamics. The second EOFs of these variables are associated, respectively, with the East Atlantic/West Russia and the North Atlantic teleconnections. While during summer the atmospheric influence on Mediterranean SST is generally weaker, it is revealed that the EOF-1 of the intensity of intraseasonal SST fluctuations is linked to the Polar teleconnection.

  16. Assessment of acute toxicity of carbofuran in Macrobrachium olfersii (Wiegmann, 1836) at different temperature levels.

    PubMed

    Barbieri, Edison; Moreira, Priscila; Luchini, Luiz Alberto; Hidalgo, Karla Ruiz; Muñoz, Alejandro

    2016-01-01

    Carbofuran (2,3-dihydro-2,2-dimethyl-7-benzofuranyl methylcarbamate; C12H15NO3) is one of the most toxic carbamate pesticides. For acute toxicity of carbofuran, juveniles of Macrobrachium olfersii were exposed to different concentrations of carbofuran using the static renewal method at different temperature levels (15, 20 and 25°C) at pH 7.0. The main purpose of the present study was to detect the acute toxicity of carbofuran to M. olfersii and investigate its effects on oxygen consumption and ammonium excretion; these tests have not been carried out in this species before. First, the acute toxicity - median lethal concentration - of carbofuran to M. olfersii for 24, 48, 72 and 96 h was examined, which resulted in the following values: 1.64, 1.22, 0.86 and 0.42 mg L(-1), respectively. Furthermore, we also found that carbofuran caused an inhibition in oxygen consumption of 60.6, 65.3 and 66.2% with respect to the control. In addition, after separate exposures to carbofuran, elevations in ammonium excretion were more than 500% with respect to the control. PMID:23847016

  17. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  18. Growth and heavy metal removal by Klebsiella aerogenes at different pH and temperature

    SciTech Connect

    Al-Shahwani, M.F.; Jazrawi, S.F.; Al-Rawi, E.H.; Ayar, N.S.

    1984-01-01

    A strain of Klebsiella aerogenes isolated from Rustamiyah Station for treatment of wastewater was examined for its ability to grow in a media supplemented with maximum tolerance concentrations of Pb/sup + +/, Zn/sup + +/, Ni/sup + +/, and Cd/sup + +/, separately, at different temperatures and initial pH. The results indicated that at 28/sup 0/C during the first 24 hr, Pb/sup + +/ and Ni/sup + +/ had no effect on the growth of the bacteria, while the presence of Zn/sup + +/ and Cd/sup + +/ decreased the cell count. The growth reached a maximum level after the second day and started to decrease gradually. The bacterial count at 37/sup 0/C was less than that at 28/sup 0/C. No bacterial multiplication occurred at 44/sup 0/C. There was little difference between heavy metal removal at 28 and 37/sup 0/C. At 44/sup 0/C, little removal took place. In general, slightly acidic or neutral medium was better for both bacterial growth and metal removal.

  19. Noninvasive assessment of muscle temperature during rest, exercise, and postexercise recovery in different environments

    PubMed Central

    Flouris, Andreas D.; Webb, Paul

    2015-01-01

    We introduced noninvasive and accurate techniques to estimate muscle temperature (Tm) of vastus lateralis (VL), triceps brachii (TB), and trapezius (TRAP) during rest, exercise, and postexercise recovery using the insulation disk (iDISK) technique. Thirty-six volunteers (24 men, 12 women; 73.0 ± 12.2 kg; 1.75 ± 0.07 m; 24.4 ± 5.5 yr; 49.2 ± 6.8 ml·kg−1·min−1 peak oxygen uptake) underwent periods of rest, cycling exercise at 40% of peak oxygen uptake, and postexercise recovery in three environments: Normal (24°C, 56% relative humidity), Hot-Humid (30°C, 60% relative humidity), and Hot-Dry (40°C, 24% relative humidity). Participants were randomly allocated into the “model” and the “validation” groups. Results in the model group demonstrated that Tm (VL: 36.65 ± 1.27°C; TB: 35.76 ± 1.73°C; TRAP: 36.53 ± 0.96°C) was increased compared with iDISK (VL: 35.67 ± 1.71°C; TB: 34.77 ± 2.27°C; TRAP: 35.98 ± 1.34°C) across all environments (P < 0.001). Stepwise regression analysis generated models that accurately predicted Tm (predTm) of VL (R2 = 0.73-0.91), TB (R2 = 0.85–0.93), and TRAP (R2 = 0.84–0.86) using iDISK and the difference between the current iDISK temperature and that recorded between 1 and 4 min before. Cross-validation analyses in the validation group demonstrated small differences (P < 0.05) of no physiological significance, small effect size of the differences, and strong associations (r = 0.85–0.97; P < 0.001) between Tm and predTm. Moreover, narrow 95% limits of agreement and low percent coefficient of variation were observed between Tm and predTm. It is concluded that the developed noninvasive, practical, and inexpensive techniques provide accurate estimations of VL, TB, and TRAP Tm during rest, cycling exercise, and postexercise recovery. PMID:25814638

  20. Small change, big difference: Sea surface temperature distributions for tropical coral reef ecosystems, 1950-2011

    NASA Astrophysics Data System (ADS)

    Lough, J. M.

    2012-09-01

    Changes in tropical sea surface temperature (SST) are examined over the period 1950-2011 during which global average temperature warmed by 0.4°C. Average tropical SST is warming about 70% of the global average rate. Spatially, significant warming between the two time periods, 1950-1980 and 1981-2011, has occurred across 65% of the tropical oceans. Coral reef ecosystems occupy 10% of the tropical oceans, typically in regions of warmer (+1.8°C) and less variable SST (80% of months within 3.3°C range) compared to non-reef areas (80% of months within 7.0°C range). SST is a primary controlling factor of coral reef distribution and coral reef organisms have already shown their sensitivity to the relatively small amount of warming observed so far through, for example, more frequent coral bleaching events and outbreaks of coral disease. Experimental evidence is also emerging of possible thermal thresholds in the range 30°C-32°C for some physiological processes of coral reef organisms. Relatively small changes in SST have already resulted in quite large differences in SST distribution with a maximum ‘hot spot’ of change in the near-equatorial Indo-Pacific which encompasses both the Indo-Pacific warm pools and the center of coral reef biodiversity. Identification of this hot spot of SST change is not new but this study highlights its significance with respect to tropical coral reef ecosystems. Given the modest amount of warming to date, changes in SST distribution are of particular concern for coral reefs given additional local anthropogenic stresses on many reefs and ongoing ocean acidification likely to increasingly compromise coral reef processes.

  1. Migration of DEHP and DINP into dust from PVC flooring products at different surface temperature.

    PubMed

    Jeon, Seunghwan; Kim, Ki-Tae; Choi, Kyungho

    2016-03-15

    Phthalates are important endocrine disrupting chemicals that have been linked to various adverse human health effects. Phthalates are ubiquitously present in indoor environment and could enter humans. Vinyl or PVC floorings have been recognized as one of important sources of phthalate release to indoor environment including house dust. In the present study, we estimated the migration of di(2-ethylhexyl)phthalate (DEHP) and di-isononyl phthalate (DINP) from the flooring materials into the dust under different heating conditions. For this purpose, a small chamber specifically designed for the present study and a Field and Laboratory Emission Cell (FLEC) were used, and four major types of PVC flooring samples including two UV curing paint coated, an uncoated residential, and a wax-coated commercial type were tested. Migration of DEHP was observed for an uncoated residential type and a wax-coated commercial type flooring. After 14days of incubation, the levels of DEHP in the dust sample was determined at room temperature on average (standard deviation) at 384±19 and 481±53μg/g, respectively. In contrast, migration of DINP was not observed. The migration of DEHP was strongly influenced by surface characteristics such as UV curing coating. In the residential flooring coated with UV curing paint, migration of DEHP was not observed at room temperature. But under the heated condition, the release of DEHP was observed in the dust in the FLEC. Migration of DEHP from flooring materials increased when the flooring was heated (50°C). In Korea, heated flooring system, or 'ondol', is very common mode of heating in residential setting, therefore the contribution of PVC flooring to the total indoor DEHP exposure among general population is expected to be greater especially during winter season when the floor is heated. PMID:26824397

  2. Decontamination treatments for psychrotrophic microorganisms on chicken meat during storage at different temperatures.

    PubMed

    Alonso-Hernando, Alicia; Capita, Rosa; Alonso-Calleja, Carlos

    2013-11-01

    The antimicrobial effectiveness of five chemical decontaminants (12 % trisodium phosphate [TSP], 1,200 ppm acidified sodium chlorite [ASC], 2 % citric acid [CA], 220 ppm of peroxyacids [PA], or 50 ppm of chlorine dioxide [CD]) against psychrotrophic populations on skinned chicken legs was assessed throughout 120 h of storage under various temperature abuse scenarios. Three different simulated cold chain disruptions were used: T1 (12 h at 1 ± 1 °C, 6 h at 15 ± 1 °C, and 102 h at 4 ± 1 °C), T2 (18 h at 1 ± 1 °C, 6 h at 15 ± 1 °C, and 96 h at 10 ± 1 °C), or T3 (18 h at 4 ± 1 °C, 6 h at 20 ± 1 °C, and 96 h at 7 ± 1 °C). Microbiological analyses were carried out at 0, 24, 72, and 120 h of storage. Substantial microbial reductions, with respect to control (untreated) samples, were obtained in legs treated with TSP, ASC, and CA, with average values ranging from 1.54 ± 1.52 to 2.02 ± 2.19 log CFU/cm(2). TSP was the most effective compound under mild abuse temperature conditions (T1), with mean reductions of 2.01 ± 1.67 log CFU/cm(2), whereas ASC, followed by CA, proved to be particularly useful under moderate abuse conditions (T3; average reductions of 2.99 ± 2.27 and 1.98 ± 1.65 log CFU/cm(2), respectively). Treatment with PA or CD resulted in minimal microbial reductions. PMID:24215705

  3. Role of temperature differences between surface and deep reservoirs in geyser dynamics: Insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Munoz Saez, C.; Shteinberg, A.; Manga, M.

    2012-12-01

    Geysers are springs that produce episodic eruptions of steam, liquid water, and non-condensable gases. Their eruptions are smaller and more frequent than other eruptive processes (volcanic, or hydrothermal eruptions), providing a feasible natural laboratory to understand eruptive processes. Moreover, the fluid dynamics of geysers probe processes that operate in more inaccessible geothermal systems. We developed laboratory experiments to understand the role of the surface temperature on geyser dynamics. For the experimental model, we followed to model developed by Steinberg et al. (1982), which produced periodic eruptions. In this experimental model, eruptions are driven by the ascent of bubbles. The "explosive" ejection of fluid occurs when bubbles reach the surface of the conduit. The eruption of a bubble influences the nucleation on the next bubble through the pressure changes in the conduit. The experimental apparatus consists of a bottom reservoir and a vertical conduit that opens into an upper chamber that collects and returns liquid to the reservoir after the eruption. The reservoir was heated from below at a constant rate. The fluid used was Freon 113, which has a boiling point of 48C. Temperature in the upper part of the tube was varied between 0 to 20C. As we increase the temperature difference between the reservoir and the surface of the tube we find (1) that vapor contained in the upper part of bubble tends condense, impeding its ascent to the surface, (2) an increase the number of bubbles generated during the time between eruptions, (3) that the volume of vapor in the tube remain almost constant during the period between eruptions (4) an increase the frequency of eruptions, (5) an increase the escape speed of fluid from the tube, and (6) an increase in Reynolds number. We interpret these results in terms of heat transport by the rising bubbles. Bubbles transport the heat as latent heat of evaporation. Because the amount of heating was the same in all cases, to transport the same amount of heat with bubbles that tend to condense in the upper conduit, they must be generated more rapidly and hence eruptions occur more frequently. Even though, natural eruptive systems are much more complex that these experiments, our model allows us to study the coupling between bubble nucleation, bubble growth and ascent, and surface eruption. Reference: Steinberg, G.S., Merzhanov, G.S., and Steinberg, A.S. (1982) Geyser process: Theory, modeling, and field experiments. Part 3.Theory of the geyser process, Modern Geology, 8, 67-70.

  4. Understanding Differences in Upper Stratospheric Ozone Response to Changes in Chlorine and Temperature as Computed Using CCMVal Models

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Strahan, S. E.; Oman, L. D.

    2012-01-01

    Projections of future ozone levels are made using models that couple a general circulation model with a representation of atmospheric photochemical processes, allowing interactions among photochemical processes, radiation, and dynamics. Such models are known as chemistry and climate models (CCMs). Although developed from common principles and subject to the same boundary conditions, simulated ozone time series vary for projections of changes in ozone depleting substances (ODSs) and greenhouse gases. In the upper stratosphere photochemical processes control ozone level, and ozone increases as ODSs decrease and temperature decreases due to greenhouse gas increase. Simulations agree broadly but there are quantitative differences in the sensitivity of ozone to chlorine and to temperature. We obtain insight into these differences in sensitivity by examining the relationship between the upper stratosphere annual cycle of ozone and temperature as produced by a suite of models. All simulations conform to expectation in that ozone is less sensitive to temperature when chlorine levels are highest because chlorine catalyzed loss is nearly independent of temperature. Differences in sensitivity are traced to differences in simulated temperature, ozone and reactive nitrogen when chlorine levels are close to background. This work shows that differences in the importance of specific processes underlie differences in simulated sensitivity of ozone to composition change. This suggests a) the multi-model mean is not a best estimate of the sensitivity of upper ozone to changes in ODSs and temperature; b) the spread of values is not an appropriate measure of uncertainty.

  5. CMOS-Compatible Room-Temperature Rectifier Toward Terahertz Radiation Detection

    NASA Astrophysics Data System (ADS)

    Varlamava, Volha; De Amicis, Giovanni; Del Monte, Andrea; Perticaroli, Stefano; Rao, Rosario; Palma, Fabrizio

    2016-03-01

    In this paper, we present a new rectifying device, compatible with the technology of CMOS image sensors, suitable for implementing a direct-conversion detector operating at room temperature for operation at up to terahertz frequencies. The rectifying device can be obtained by introducing some simple modifications of the charge-storage well in conventional CMOS integrated circuits, making the proposed solution easy to integrate with the existing imaging systems. The rectifying device is combined with the different elements of the detector, composed of a 3D high-performance antenna and a charge-storage well. In particular, its position just below the edge of the 3D antenna takes maximum advantage of the high electric field concentrated by the antenna itself. In addition, the proposed structure ensures the integrity of the charge-storage well of the detector. In the structure, it is not necessary to use very scaled and costly technological nodes, since the CMOS transistor only provides the necessary integrated readout electronics. On-wafer measurements of RF characteristics of the designed junction are reported and discussed. The overall performances of the entire detector in terms of noise equivalent power (NEP) are evaluated by combining low-frequency measurements of the rectifier with numerical simulations of the 3D antenna and the semiconductor structure at 1 THz, allowing prediction of the achievable NEP.

  6. Effect of Different Arbuscular Mycorrhizal Fungi on Growth and Physiology of Maize at Ambient and Low Temperature Regimes

    PubMed Central

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai; Tian, Chunjie; Liu, Shengqun; Xu, Hongwen; Zhu, Xiancan

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress. PMID:24895680

  7. Effect of different arbuscular mycorrhizal fungi on growth and physiology of maize at ambient and low temperature regimes.

    PubMed

    Chen, Xiaoying; Song, Fengbin; Liu, Fulai; Tian, Chunjie; Liu, Shengqun; Xu, Hongwen; Zhu, Xiancan

    2014-01-01

    The effect of four different arbuscular mycorrhizal fungi (AMF) on the growth and lipid peroxidation, soluble sugar, proline contents, and antioxidant enzymes activities of Zea mays L. was studied in pot culture subjected to two temperature regimes. Maize plants were grown in pots filled with a mixture of sandy and black soil for 5 weeks, and then half of the plants were exposed to low temperature for 1 week while the rest of the plants were grown under ambient temperature and severed as control. Different AMF resulted in different root colonization and low temperature significantly decreased AM colonization. Low temperature remarkably decreased plant height and total dry weight but increased root dry weight and root-shoot ratio. The AM plants had higher proline content compared with the non-AM plants. The maize plants inoculated with Glomus etunicatum and G. intraradices had higher malondialdehyde and soluble sugar contents under low temperature condition. The activities of catalase (CAT) and peroxidase of AM inoculated maize were higher than those of non-AM ones. Low temperature noticeably decreased the activities of CAT. The results suggest that low temperature adversely affects maize physiology and AM symbiosis can improve maize seedlings tolerance to low temperature stress. PMID:24895680

  8. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    USGS Publications Warehouse

    Osborne, Brooke B; Baron, Jill S.; Wallenstein, Matthew D.

    2015-01-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many high elevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidizer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  9. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs

    NASA Astrophysics Data System (ADS)

    Eagle, Robert A.; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J.; Ramirez, Pedro; Tripati, Aradhna K.; Kohn, Matthew J.; Cerling, Thure E.; Chiappe, Luis M.; Eiler, John M.

    2015-10-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ~6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds.

  10. Moisture and temperature controls on nitrification differ among ammonia oxidizer communities from three alpine soil habitats

    NASA Astrophysics Data System (ADS)

    Osborne, Brooke B.; Baron, Jill S.; Wallenstein, Matthew D.

    2016-03-01

    Climate change is altering the timing and magnitude of biogeochemical fluxes in many highelevation ecosystems. The consequent changes in alpine nitrification rates have the potential to influence ecosystem scale responses. In order to better understand how changing temperature and moisture conditions may influence ammonia oxidizers and nitrification activity, we conducted laboratory incubations on soils collected in a Colorado watershed from three alpine habitats (glacial outwash, talus, and meadow). We found that bacteria, not archaea, dominated all ammonia oxidizer communities. Nitrification increased with moisture in all soils and under all temperature treatments. However, temperature was not correlated with nitrification rates in all soils. Site-specific temperature trends suggest the development of generalist ammonia oxidzer communities in soils with greater in situ temperature fluctuations and specialists in soils with more steady temperature regimes. Rapidly increasing temperatures and changing soil moisture conditions could explain recent observations of increased nitrate production in some alpine soils.

  11. Effects of rapid temperature changes on HK, PK and HSP70 of Litopenaeus vannamei in different seasons

    NASA Astrophysics Data System (ADS)

    Guo, Biao; Wang, Fang; Dong, Shuanglin; Hou, Chunqiang

    2010-09-01

    Activities of hexokinase (HK), pyruvate kinase (PK) and levels of HSP70 were measured to evaluate the response of Litopenaeus vannamei to rapid temperature changes under controlled laboratory conditions. Shrimps were subjected to a quick temperature change from 27°C to 17°C for the summer case (Cold temperature treatment), or from 17°C to 27°C for the winter case (Warm temperature treatment). After 0.5, 1, 3, 6, 12, 24, 48, and 72 h of exposure time, shrimps were sampled and prepared for further analysis. The results showed that the effect of acute temperature changes on activities of HK was significant. Patterns of variations of the two glycolytic enzymes suggested that enzymes in the glycolysis cycle could adjust their activities to meet the acute temperature change. The HSP70 level increased in both cold and warm temperature treatments, suggesting that the rapid temperature changes activated the process of body’s self-protection. But the difference in expression peak of HSP70 might be related to the different body size and the higher thermal sensitivity to temperature increase than to temperature decrease of L. vannamei.

  12. Developing a Heatwave Early Warning System for Sweden: Evaluating Sensitivity of Different Epidemiological Modelling Approaches to Forecast Temperatures

    PubMed Central

    Åström, Christofer; Ebi, Kristie L.; Langner, Joakim; Forsberg, Bertil

    2014-01-01

    Over the last two decades a number of heatwaves have brought the need for heatwave early warning systems (HEWS) to the attention of many European governments. The HEWS in Europe are operating under the assumption that there is a high correlation between observed and forecasted temperatures. We investigated the sensitivity of different temperature mortality relationships when using forecast temperatures. We modelled mortality in Stockholm using observed temperatures and made predictions using forecast temperatures from the European Centre for Medium-range Weather Forecasts to assess the sensitivity. We found that the forecast will alter the expected future risk differently for different temperature mortality relationships. The more complex models seemed more sensitive to inaccurate forecasts. Despite the difference between models, there was a high agreement between models when identifying risk-days. We find that considerations of the accuracy in temperature forecasts should be part of the design of a HEWS. Currently operating HEWS do evaluate their predictive performance; this information should also be part of the evaluation of the epidemiological models that are the foundation in the HEWS. The most accurate description of the relationship between high temperature and mortality might not be the most suitable or practical when incorporated into a HEWS. PMID:25546283

  13. Error correction of the Normalized Difference Vegetation Index and Brightness Temperature calculated from the AVHRR observations

    NASA Astrophysics Data System (ADS)

    Rahman, Mohammed Zahidur

    This thesis investigates Normalized Difference Vegetation Index (NDVI) and Brightness Temperature (BT) stability in the NOAA/NESDIS Global Vegetation Index (GVI) data during 1982-2003. This data was collected from five NOAA series satellites. We have proposed to apply Empirical distribution function (EDF) to improve the stability of the NDVI and BT data derived from the AVHRR sensor on NOAA polar orbiting satellite. The instability of data results from orbit degradation as well as the circuit drifts over the life or a satellite. Degradation of NDVI and BT over time and shifts of NDVI and BT between the satellites was estimated China data set, for it includes a wide variety or different ecosystems represented globally. It was found that data for the years 1988, 1992, 1993, 1994, 1995 and 2000 are not stable enough compared to other years because of satellite orbit drift, AVHRR sensor degradation, and also Mt Pinatubo volcanic eruption in 1992. We assume data from NOAA-7(1982, 1983), NOAA-9 (1985, 1986), NOAA-11(1989, 1990), NOAA-14(1996, 1997), and NOAA-16 (2001, 2002) to be standard because theses satellite's equator crossing time falls between 1330 and 1500. Data from this particular period of the day maximized the value of coefficients. The crux of the proposed correction procedure consists of dividing standard year's data sets into two subsets. The subset 1(standard data correction sets) is used for correcting unstable years and then corrected data for this years compared with the standard data in the subset 2 (standard data validation sets). In this dissertation, we apply EDF to correct this deficiency of data for the affected years. We normalize or correct data by the method of empirical distribution functions compared with the standard. Using these normalized values, we estimate new NDVI and BT time series which provides NDVI and BT data for these years that match in subset 2 that is used for data validation.

  14. Tympanic temperature and heart rate changes in firefighters during treadmill runs performed with different fireproof jackets.

    PubMed

    Ftaiti, F; Duflot, J C; Nicol, C; Grlot, L

    2001-04-15

    Six well-trained firefighters performed six treadmill runs at 70% of the velocity at VO2max (Maximal aerobic velocity MAV = 13.2+/-0.3 km h(-1)). A recovery time of 1 week was allowed between trials. The first session was performed by subjects wearing only shorts (i.e. no fire jacket, J0). A similar protocol was applied subsequently to test the physiological effects associated with the wearing of one of five different fire jackets: one leather (J1) and four textile-type jackets: VTN with membrane (J2), VTN without membrane (J3), Vidal with Kermel HTA (Haute Teneur en Aramide i.e. high density in Aramide) (J4); and Rolland with Kermel HTA (J5). All sessions were performed in a randomized order and in laboratory conditions. Exercise with the fireproof jackets resulted in higher tympanic temperature (Tty), heart rate (HR) and body mass loss (BML) changes compared to J0 (p<0.001). The magnitudes of these changes depended on the type of the jacket. Exercise in the leather jacket (J1) resulted in the highest Tty and HR, which differed significantly from values in all other conditions (p<0.001). The exercise-induced increases in Tty wearing jackets J3 and J5 were also significantly (p < 0.05) higher than those observed with jackets J2 and J4. In conclusion, textile jackets induced less HR and Tty stresses than the leather one. The magnitude of the physiological responses induced by textile jackets were correlated to jacket weight. J2 and J4 jackets were more effective in limiting hyperthermia and any potential detrimental effect on the exercise capacity. PMID:11345493

  15. On model differences and skill in predicting sea surface temperature in the Nordic and Barents Seas

    NASA Astrophysics Data System (ADS)

    Langehaug, H. R.; Matei, D.; Eldevik, T.; Lohmann, K.; Gao, Y.

    2016-04-01

    The Nordic Seas and the Barents Sea is the Atlantic Ocean's gateway to the Arctic Ocean, and the Gulf Stream's northern extension brings large amounts of heat into this region and modulates climate in northwestern Europe. We have investigated the predictive skill of initialized hindcast simulations performed with three state-of-the-art climate prediction models within the CMIP5-framework, focusing on sea surface temperature (SST) in the Nordic Seas and Barents Sea, but also on sea ice extent, and the subpolar North Atlantic upstream. The hindcasts are compared with observation-based SST for the period 1961-2010. All models have significant predictive skill in specific regions at certain lead times. However, among the three models there is little consistency concerning which regions that display predictive skill and at what lead times. For instance, in the eastern Nordic Seas, only one model has significant skill in predicting observed SST variability at longer lead times (7-10 years). This region is of particular promise in terms of predictability, as observed thermohaline anomalies progress from the subpolar North Atlantic to the Fram Strait within the time frame of a couple of years. In the same model, predictive skill appears to move northward along a similar route as forecast time progresses. We attribute this to the northward advection of SST anomalies, contributing to skill at longer lead times in the eastern Nordic Seas. The skill at these lead times in particular beats that of persistence forecast, again indicating the potential role of ocean circulation as a source for skill. Furthermore, we discuss possible explanations for the difference in skill among models, such as different model resolutions, initialization techniques, and model climatologies and variance.

  16. Novel Low Temperature Co-Fired Ceramic Material System Composed of Dielectrics with Different Dielectric Constants

    NASA Astrophysics Data System (ADS)

    Sakamoto, Sadaaki; Adachi, Hiroshige; Kaneko, Kazuhiro; Sugimoto, Yasutaka; Takada, Takahiro

    2013-09-01

    We found that the co-firing low temperature co-fired ceramic (LTCC) materials of different dielectric constants (ɛr) with Cu wiring is achievable using a novel, original design. It was confirmed that the dielectric characteristics of the dielectrics designed in this study are very suitable for the use of the dielectrics in electronic components such as filters mounted in high-speed radio communication equipment. The dielectric constants of the lower- and higher-dielectric-coefficient materials were 8.1 and 44.5, respectively, which are sufficiently effective for downsizing LTCC components. Observing the co-fired interface, it was confirmed that excellent co-firing conditions resulted in no mechanical defects such as delamination or cracks. On the basis of the results of wavelength dispersive X-ray spectrometry (WDX) and X-ray diffractometry (XRD), it was confirmed that co-firing with minimal interdiffusion was realized using the same glass for both dielectrics. It is concluded that the materials developed are good for co-firing in terms of the mechanical defects and interdiffusion that appear in them.

  17. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-01

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  18. Soil temperature modeling at different depths using neuro-fuzzy, neural network, and genetic programming techniques

    NASA Astrophysics Data System (ADS)

    Kisi, Ozgur; Sanikhani, Hadi; Cobaner, Murat

    2016-05-01

    The applicability of artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), and genetic programming (GP) techniques in estimating soil temperatures (ST) at different depths is investigated in this study. Weather data from two stations, Mersin and Adana, Turkey, were used as inputs to the applied models in order to model monthly STs. The first part of the study focused on comparison of ANN, ANFIS, and GP models in modeling ST of two stations at the depths of 10, 50, and 100 cm. GP was found to perform better than the ANN and ANFIS-SC in estimating monthly ST. The effect of periodicity (month of the year) on models' accuracy was also investigated. Including periodicity component in models' inputs considerably increased their accuracies. The root mean square error (RMSE) of ANN models was respectively decreased by 34 and 27 % for the depths of 10 and 100 cm adding the periodicity input. In the second part of the study, the accuracies of the ANN, ANFIS, and GP models were compared in estimating ST of Mersin Station using the climatic data of Adana Station. The ANN models generally performed better than the ANFIS-SC and GP in modeling ST of Mersin Station without local climatic inputs.

  19. CO{sub 2}-gasification reactivity of different carbonaceous materials at elevated temperatures

    SciTech Connect

    Gu, J.; Wu, S.; Wu, Y.; Gao, J.

    2009-07-01

    At the atmospheric pressure and at the temperatures between 1,223 and 1,673 K, the CO{sub 2} gasification reactivity of seven different carbonaceous materials comprising coal tar pitch coke, petroleum coke, natural graphite, carbon black and three coal chars was investigated by using thermogravimetric analysis. Their crystalline structures were analyzed by X-ray diffraction (XRD). It is found that the reactivity of the chars, pitch coke and petroleum coke produced from liquid phase carbonization, is several times poorer than that of the coal chars produced from solid phase carbonization and even lower than that of natural graphite. At the same time, it is obtained that under the condition of the chemical reaction control, the apparent activation energies of the former are in the range of 135.82-174.92 kJ/mol, while those of the latter are between 89.95 kJ/mol and 110.05 kJ/mol. Besides, the reactivity of the sample has a certain correlation with the crystalline structure of the sample, i.e., the larger the fraction of the relatively better crystalline structure is, the poorer the reactivity of the sample is.

  20. Investigation of potential waste material insulating properties at different temperature for thermal storage application

    NASA Astrophysics Data System (ADS)

    Ali, T. Z. S.; Rosli, A. B.; Gan, L. M.; Billy, A. S.; Farid, Z.

    2013-12-01

    Thermal energy storage system (TES) is developed to extend the operation of power generation. TES system is a key component in a solar energy power generation plant, but the main issue in designing the TES system is its thermal capacity of storage materials, e.g. insulator. This study is focusing on the potential waste material acts as an insulator for thermal energy storage applications. As the insulator is used to absorb heat, it is needed to find suitable material for energy conversion and at the same time reduce the waste generation. Thus, a small-scale experimental testing of natural cooling process of an insulated tank within a confined room is conducted. The experiment is repeated by changing the insulator from the potential waste material and also by changing the heat transfer fluid (HTF). The analysis presented the relationship between heat loss and the reserved period by the insulator. The results show the percentage of period of the insulated tank withstands compared to tank insulated by foam, e.g. newspaper reserved the period of 84.6% as much as foam insulated tank to withstand the heat transfer of cooking oil to the surrounding. The paper finally justifies the most potential waste material as an insulator for different temperature range of heat transfer fluid.

  1. Detection of significant differences between absorption spectra of neutral helium and low temperature photoionized helium plasmas

    SciTech Connect

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Fok, T.; Jarocki, R.; Szczurek, M.

    2013-11-15

    In this work, spectral investigations of photoionized He plasmas were performed. The photoionized plasmas were created by irradiation of helium stream, with intense pulses from laser-plasma extreme ultraviolet (EUV) source. The EUV source was based on a double-stream Xe/Ne gas-puff target irradiated with 10 ns/10 J Nd:YAG laser pulses. The most intense emission from the source spanned a relatively narrow spectral region below 20 nm, however, spectrally integrated intensity at longer wavelengths was also significant. The EUV radiation was focused onto a gas stream, injected into a vacuum chamber synchronously with the EUV pulse. The long-wavelength part of the EUV radiation was used for backlighting of the photoionized plasmas to obtain absorption spectra. Both emission and absorption spectra in the EUV range were investigated. Significant differences between absorption spectra acquired for neutral helium and low temperature photoionized plasmas were demonstrated for the first time. Strong increase of intensities and spectral widths of absorption lines, together with a red shift of the K-edge, was shown.

  2. Establishment of Three Francisella Infections in Zebrafish Embryos at Different Temperatures

    PubMed Central

    Brudal, Espen; Ulanova, Lilia S.; O. Lampe, Elisabeth; Rishovd, Anne-Lise; Winther-Larsen, Hanne C.

    2014-01-01

    Francisella spp. are facultative intracellular pathogens identified in increasingly diverse hosts, including mammals. F. noatunensis subsp. orientalis and F. noatunensis subsp. noatunensis infect fish inhabiting warm and cold waters, respectively, while F. tularensis subsp. novicida is highly infectious for mice and has been widely used as a model for the human pathogen F. tularensis. Here, we established zebrafish embryo infection models of fluorescently labeled F. noatunensis subsp. noatunensis, F. noatunensis subsp. orientalis, and F. tularensis subsp. novicida at 22, 28, and 32°C, respectively. All infections led to significant bacterial growth, as shown by reverse transcription-quantitative PCR (RT-qPCR), and to a robust proinflammatory immune response, dominated by increased transcription of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β). F. noatunensis subsp. orientalis was the most virulent, F. noatunensis subsp. noatunensis caused chronic infection, and F. tularensis subsp. novicida showed moderate virulence and led to formation of relatively small granuloma-like structures. The use of transgenic zebrafish strains with enhanced green fluorescent protein (EGFP)-labeled immune cells revealed their detailed interactions with Francisella species. All three strains entered preferentially into macrophages, which eventually assembled into granuloma-like structures. Entry into neutrophils was also observed, though the efficiency of this event depended on the route of infection. The results demonstrate the usefulness of the zebrafish embryo model for studying infections caused by different Francisella species at a wide range of temperatures and highlight their interactions with immune cells. PMID:24614659

  3. Evolution of morphology and structure of Pb thin films grown by pulsed laser deposition at different substrate temperatures

    SciTech Connect

    Lorusso, Antonella Maiolo, Berlinda; Perrone, Alessio; Gontad, Francisco; Maruccio, Giuseppe; Tasco, Vittorianna

    2014-03-15

    Pb thin films were prepared by pulsed laser deposition on a Si (100) substrate at different growth temperatures to investigate their morphology and structure. The morphological analysis of the thin metal films showed the formation of spherical submicrometer grains whose average size decreased with temperature. X-ray diffraction measurements confirmed that growth temperature influences the Pb polycrystalline film structure. A preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C and became increasingly pronounced along the Pb (200) plane as the substrate temperature increased. These thin films could be used to synthesize innovative materials, such as metallic photocathodes, with improved photoemission performances.

  4. Embryonic development of Aedes aegypti (Diptera: Culicidae): influence of different constant temperatures.

    PubMed

    Farnesi, Luana Cristina; Martins, Ademir Jesus; Valle, Denise; Rezende, Gustavo Lazzaro

    2009-02-01

    Despite its vector importance little attention is given to Aedes aegypti embryonic development. In this study, temperature influence on time course of Ae. aegypti larvae hatching and egg viability were evaluated. The dormancy state at the end of embryogenesis could be interrupted with a proper stimulus. Temperatures tested ranged between 12-36 degrees C; the maximum temperature limit is 35 degrees C and the minimum one is below 12 degrees C. Egg viability between 16-31 degrees C was above 80%. The definition of physiological embryonic parameters at this temperature range corroborates Ae. aegypti presence on tropical and subtropical world regions. PMID:19274388

  5. Patterns of surface temperatures in two mole-rats (Bathyergidae) with different social systems as revealed by IR-thermography.

    PubMed

    Sumbera, Radim; Zelov, Jitka; Kunc, Petr; Knzkov, Ivana; Burda, Hynek

    2007-10-22

    Furred subterranean mammals face the problem of dissipating heat to the environment because high humidity and absence of air flow in sealed belowground tunnels constrain heat loss from body by convection and evaporation. In order to detect body areas responsible for heat loss, surface temperatures in two species of African mole-rats were measured at different ambient air temperatures by infrared thermography. Fur characteristics were also evaluated. Thinner pelage of the ventrum, its moderate temperature and large size suggest that ventral side of the body is the main thermal avenue for heat loss in both species. Interspecific differences could be explained by different fur characteristics connected with social thermoregulation. Compared to the social Fukomys mechowii, the solitary Heliophobius argenteocinereus has denser and longer fur on most of its body; its surface temperature was thus lower than in F. mechowii at lowered ambient temperatures. On the other hand, the denser and longer hair cover in H. argenteocinereus impedes heat dissipation at highest ambient temperatures (and probably also during digging activity) resulting in increase of core body temperature. H. argenteocinereus seems to be more sensitive to overheating than F. mechowii. At lower air temperatures, the social species may uses huddling to combat hypothermia. PMID:17544016

  6. Internal neutronics-temperature coupling in Serpent 2 - Reactivity differences resulting from choice of material property correlations

    SciTech Connect

    Valtavirta, V.

    2013-07-01

    This paper describes the unique way of simultaneously solving the power and temperature distributions of a nuclear system with the Monte Carlo neutron transport code Serpent 2. The coupled solution is achieved through the implementation of an internal temperature solver and material property correlations in the code. The program structure is reviewed concerning the temperature solver and the internal correlations as well as the internal coupling between these two and the neutron transport part. To estimate the reactivity differences resulting from correlation choices a simple pin-cell case has been calculated. It is established, that some correlation choices may result in difference in reactivity of approximately 100 pcm. (authors)

  7. Cochliobolus lunatus colonizes potato by adopting different invasion strategies on cultivars: New insights on temperature dependent-virulence.

    PubMed

    Louis, Bengyella; Waikhom, Sayanika D; Jose, Robinson C; Goyari, Sailendra; Talukdar, Narayan C; Roy, Pranab

    2015-10-01

    Extreme temperature fluctuations affect the interaction dynamics of Cochliobolus lunatus through temperature-dependent virulence, virulence differentiation and induced-virulence which poses a major threat to global food security. The relationship between higher temperature and pathogenicity of C. lunatus on reported hosts are poorly understood. In this study, temperature stress was applied on C. lunatus to investigate the correlation among the different types of conidia. Additionally, a comparative dissection of the invasion process, infection structures and conidial germination pattern on four different Solanum tuberosum L. (potato) cultivars were performed. Based on microscopic examination, it was found that C. lunatus adopts different hyphae morphology and septation pattern at different temperature regimes and produce different types of conidia. The study showed that four-celled conidia are overproduced at elevated temperature (>30 °C) than one, two, three and five-celled conidia. Our finding revealed that C. lunatus conidia exhibit bipolar germination (>14.67%, P<0.05), unipolar germination (>35.33%, P<0.05), penetrate subcutaneously via epidermal anticlinal cell wall (>0.33%, P < 0.05) and differentially form appressoria-like structures during colonization of four different potato cultivars. Importantly, it is shown that unipolar germination and bipolar germination in C. lunatus are independently occurring phenomenon irrespective of the host. It is confirmed that C. lunatus adopt different but highly successful strategies on four different potato cultivars to incite brown-to-black leaf spot disease. Altogether, our data showed that increase in temperature enhances C. lunatus virulence on different potato cultivars irrespective of their inherent thermotolerant traits. PMID:26205908

  8. Growth and lipid accumulation in three Chlorella strains from different regions in response to diurnal temperature fluctuations.

    PubMed

    Yang, Weinan; Zou, Shanmei; He, Meilin; Fei, Cong; Luo, Wei; Zheng, Shiyan; Chen, Bo; Wang, Changhai

    2016-02-01

    It was economically feasible to screen strains adaptive to wide temperature fluctuation for outdoor cultivation without temperature control. In this research, three Chlorella strains from arctic glacier, desert soil and temperate native lake were isolated and identified. The growth, biochemical composition, lipid content and fatty acid composition of each strain cultured under the mode of diurnal temperature fluctuations were compared. All the three Chlorella strains showed desirable abilities of accumulating lipid under diurnal temperature fluctuations and their fatty acid profiles were suitable for biodiesel production, although the growth and biochemical composition were seemed to be region-specific. The highest lipid content was at 51.832.49% DW, 42.802.97% DW and 36.132.27% DW under different temperature fluctuation of 11C, 25C, 7C, respectively. The results indicated that the three Chlorella strains could be promising biodiesel feedstock for outdoor cultivation by the cultural mode of diurnal temperature fluctuations. PMID:26700754

  9. How does low temperature coupled with different pressures affect initiation mechanisms and subsequent decompositions in nitramine explosive HMX?

    PubMed

    Wu, Qiong; Xiong, Guolin; Zhu, Weihua; Xiao, Heming

    2015-09-21

    We have performed ab initio molecular dynamics simulations to study coupling effects of temperature (534-873 K) and pressure (1-20 GPa) on the initiation mechanisms and subsequent chemical decompositions of nitramine explosive 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX). A new initiation decomposition mechanism of HMX was found to be the unimolecular C-H bond breaking, and this mechanism was independent of the coupling effects of different temperatures and pressures. The formed hydrogen radicals could promote subsequent decompositions of HMX. Subsequent decompositions were very sensitive to the pressure at low temperatures (534 and 608 K), while the temperature became the foremost factor that affected the decomposition at a high temperature (873 K) instead of the pressure. Our study may provide a new insight into understanding the coupling effects of the temperature and pressure on the initiation decomposition mechanisms of nitramine explosives. PMID:26264421

  10. Oxidative damage in different tissues of neonatal chicks exposed to low environmental temperature.

    PubMed

    Mujahid, Ahmad; Furuse, Mitsuhiro

    2009-04-01

    Maintenance of body temperature in a cold environment is crucial for survival in homeotherms. However, we have previously reported that on exposure to low environmental temperature, neonatal chicks (Gallus gallus) show hypothermia, decreased behavioral activity, and absence of gene transcript enhancement of putative thermogenic proteins, as well as no change in mitochondrial substrate oxidation enzymes. Various metabolic abnormalities and/or tissue damage may also decline the thermogenic capacity of low-temperature-exposed neonatal chicks. Therefore, to investigate oxidative damage in low-temperature-exposed (20 degrees C for 12 h) neonatal chicks, we studied lipid peroxidation when compared to the control chicks kept at thermoneutral temperature (30 degrees C). Malondialdehyde (MDA), was measured in plasma, brain, heart, liver and skeletal muscle (pectoralis superficialis and gastrocnemius). Weight gain and feed consumption did not change when chicks were exposed to low-temperature as compared to that of control chicks. On low-temperature exposure, body temperature was significantly decreased and plasma non-esterified fatty acid level was 1.3-fold higher than that of control chicks. In low-temperature exposed chicks, brain and heart MDA levels were 2.1- and 1.2-fold higher, respectively, than that of control chicks. This increase in MDA levels was not observed in plasma, liver and muscle of low-temperature-exposed chicks. In conclusion, there is evidence of increased lipid peroxidation in brain and heart of neonatal chicks exposed to low-temperature. We hypothesize that this oxidative damage in brain and heart may contribute to the impaired physiological, behavioral and thermoregulatory responses that potentiate the sensitivity to cold exposure. PMID:19256080

  11. Temperature effect on proliferation and differentiation of satellite cells from turkeys with different growth rates.

    PubMed

    Clark, D L; Coy, C S; Strasburg, G M; Reed, K M; Velleman, S G

    2016-04-01

    Poultry selected for growth have an inefficient thermoregulatory system and are more sensitive to temperature extremes. Satellite cells are precursors to skeletal muscle and mediate all posthatch muscle growth. Their physiological functions are affected by temperature. The objective of the current study was to determine how temperature affects satellite cells isolated from the pectoralis major (p. major) muscle (breast muscle) of turkeys selected for increased 16 wk body weight (F line) in comparison to a randombred control line (RBC2) from which the F line originated. Pectoralis major muscle satellite cells were thermally challenged by culturing between 33°C and 43°C to analyze the effects of cold and heat on proliferation and differentiation as compared to control temperature of 38°C. Expression levels of myogenic regulatory factors: myogenic differentiation factor 1 (MYOD1) and myogenin (MYOG) were quantified by quantitative polymerase chain reaction (qPCR). At all sampling times, proliferation increased at a linear rate across temperature in both the RBC2 and F lines. Differentiation also increased at a linear rate across temperature from 33 to 41°C at all sampling times in both the F and RBC2 lines. Satellite cells isolated from F line turkeys were more sensitive to both hot and cold temperatures as proliferation and differentiation increased to a greater extent across temperature (33 to 43°C) when compared with the RBC2 line. Expression of MYOD1 and MYOG increased as temperatures increased from 33 to 41°C at all sampling times in both the F and RBC2 lines. These results demonstrate that satellite cell function is sensitive to both cold and hot temperatures and p. major muscle satellite cells from F line turkeys are more sensitive to temperature extremes than RBC2 satellite cells. PMID:26769270

  12. Effect of biochar produced at different pyrolysis temperature on the soil respiration of abandoned mine soil

    NASA Astrophysics Data System (ADS)

    Kim, Yong Seong; Kim, Juhee; Hwang, Wonjae; Hyun, Seunghun

    2015-04-01

    Contaminated soils near an abandoned mine site included the high acidic mine tailing have received great interest due to potential risk to human health, because leachable elements in low pH continuously release from mine site soil with ground water and precipitation event. Biochar, which is the obtained pyrolysis process of biomass, is used as a soil amendments and carbon storage. Especially, many researchers report that the biochar application to soil show increasing soil pH, CEC, adsorption capacity of various elements, as well as, enhanced microbial activity. Therefore, biochar application to contaminated soil near abandoned mine site is expected to have a positive effects on management of these site and soils through the decreased leachability of contaminants. However, effects of biochar application to these site on the soil respiration, as a common measure of soil health, are poorly understood. The objective of this study is to evaluate the effects of biochar application to abandoned mine site soil on the microbial activity with soil respiration test. Biochar was obtained from giant Miscanthus in a slow pyrolysis process (heating rate of 10° C min-1 and N2 gas flow rate of 1.2 L min-1) at the temperature of 400° C (BC4) and 700° C (BC7), respectively. All biochar samples were prepared with grinding and sieving for particle size control (150~500μm). Soil sample was collected from abandoned mine site at Korea (36° 58'N, 128° 10'E). Main contaminants of this soil were As (12.5 g kg-1), Pb (7.3 g kg-1), and Zn (1.1 g kg-1). Biochars were applied (5% by dry weight) to the soil (final mixture weight were 800g), and then moisture contents were adjusted to 100% field capacity (-0.33 bar) in the respirometer with vacuum pump. CO2 efflux of each samples was continuously assessed using continuous aeration system (air flow rate 25 cc min-1) using air cylinder during 130hr (at 20° C and darkness condition). The CO2 emitted from the samples were carried to the infrared gas sensor, and these data were sent to a data logger. During the measuring periods, the cumulative CO2 emission were similar between the control (516.8 mg-CO2 kg-1-soil) and BC4 5% mixture (519.3 mg-CO2 kg-1-soil), while BC7 5% mixture was significantly decreased (356.1 mg-CO2 kg-1-soil) compared to other treatment and control. Because the degradation rate of biochar generally increased with decreasing pyrolysis temperature, this result suggest that the soil respiration rates of biochar amended soils are affected by physico-chemical properties of biochar during early incubation periods (about 1 weeks), For example, surface properties of used biochars, which are related to adsorption of soil organic matter and CO2, have different properties with pyrolysis temperature such as specific surface area (BC4=5.08 m2g-1; BC7=260.75 m2 g-1, respectively), average pore diameter (BC4=4,673 nm; BC7=2,606 nm, respectively), and functional groups of biochar surface. However, there was not clear evidence of biochar-mine soil interaction process, because of the short observation periods. Future work should focus on the adsorption of CO2 and soil organic matter of biochar and soil-biochar interaction with long time periods and various biological test.

  13. Molecular analysis of the microbial community structures in water-flooding petroleum reservoirs with different temperatures

    NASA Astrophysics Data System (ADS)

    Wang, L.-Y.; Duan, R.-Y.; Liu, J.-F.; Yang, S.-Z.; Gu, J.-D.; Mu, B.-Z.

    2012-11-01

    Analyses of microbial communities from six water-flooding petroleum reservoirs at temperatures from 21 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In samples originating from high-temperature petroleum reservoirs, most of the archaeal sequences belong to thermophiles affiliated with members of the genera Thermococcus, Methanothermobacter and the order Thermoplasmatales, whereas bacterial sequences predominantly belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria. In contrast to high-temperature petroleum reservoirs, microorganisms belonging to the Proteobacteria, Methanobacteriales and Methanomicrobiales were the most encountered in samples collected from low-temperature petroleum reservoirs. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures, in particular members of the Firmicutes and the genus Methanothermobacter showed positive correlation with temperature and the concentration of acetate. Overall, these data indicate the large occurrence of hydrogenotrophic methanogens in petroleum reservoirs and imply that acetate metabolism via syntrophic oxidation may represent the main methanogenic pathway in high-temperature petroleum reservoirs.

  14. Densities of mixtures containing n-alkanes with sunflower seed oil at different temperatures

    SciTech Connect

    Gonzalez, C.; Resa, J.M.; Ruiz, A.; Gutierrez, J.I.

    1996-07-01

    Densities for mixtures containing sunflower seed oil with pentane, hexane, heptane, and octane have been determined at various temperatures between 298.15 K and 313.15 K using a vibrating tube densimeter. The derived excess volumes have been correlated by the Redlich-Kister equation. All the systems showed negative deviations from ideality. The excess volumes increased with an increase in temperature.

  15. Characteristics and nutrient values of biochars produced from giant reed at different temperatures.

    PubMed

    Zheng, Hao; Wang, Zhenyu; Deng, Xia; Zhao, Jian; Luo, Ye; Novak, Jeff; Herbert, Stephen; Xing, Baoshan

    2013-02-01

    To investigate the effect of pyrolysis temperature on properties and nutrient values, biochars were produced from giant reed (Arundo donax L.) at 300-600°C and their properties such as elemental and mineral compositions, release of N, P and K, and adsorption of N and P were determined. With increasing temperatures, more N was lost and residual N was transformed into heterocyclic-N, whereas no P and K losses were observed. P was transformed to less soluble minerals, resulting in a reduction in available-P in high-temperature biochars. A pH of⩽5 favored release of NH(4)(+), PO(4)(3-) and K(+) into water. Low-temperature biochars (⩽ 400°C) showed appreciable NH(4)(+) adsorption (2102mgkg(-1)). These results indicate that low-temperatures may be optimal for producing biochar from giant reed to improve the nutrient availability. PMID:23313694

  16. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features.

    PubMed

    Luoto, Tomi P; Nevalainen, Liisa

    2013-01-01

    Long-term water temperature records are necessary for better understanding climate change impacts on freshwaters. We reconstruct summer water temperatures from three climatically sensitive mountain lakes in Austria using paleolimnological methods aiming to examine long-term thermal dynamics and lakes' responses to regional climate variability since the Little Ice Age. Our results indicate divergent trends for the lakes. In two of the lakes, which are located at the sunny southern slope of mountains, water temperature has increased several degrees concurrent with the observed air temperature increase. In contrast, no change is observed in the reconstructed water temperatures of a shaded lake, located at the northern slope, where also the ecological and thermal changes are most subtle. The results indicate the importance of cold water inputs, such as snowmelt and groundwater, on lakes' thermal conditions and suggest that watershed characteristics and lake stratification play a major role in defining the lake-specific thermal regime. PMID:23965988

  17. Critical currents of YBCO tapes and Bi-2212 wires at different temperatures and magnetic fields

    SciTech Connect

    Lombardo, V.; Barzi, e.; Turrioni, D.; Zlobin, A.V.; /Fermilab

    2010-08-01

    Design studies for the cooling channel of a Muon Collider call for straight and helical solenoids generating field well in excess of the critical fields of state of the art Low Temperature Superconductors (LTS) such as Nb{sub 3}Sn or NbTi. Therefore, High Temperature Superconductors (HTS) will need to be used for the manufacturing of all or certain sections of such magnets to be able to generate and withstand the field levels at the cryogenic temperatures required by the new machine. In this work, two major High Temperature Superconductors - Bi2212 round wires and YBCO coated conductor tapes - are investigated to understand how critical current density of such conductors scales as a function of external field and operating temperature. This is vital information to make conductor choices depending on the application and to proceed with the design of such magnets.

  18. Long-term water temperature reconstructions from mountain lakes with different catchment and morphometric features

    PubMed Central

    Luoto, Tomi P.; Nevalainen, Liisa

    2013-01-01

    Long-term water temperature records are necessary for better understanding climate change impacts on freshwaters. We reconstruct summer water temperatures from three climatically sensitive mountain lakes in Austria using paleolimnological methods aiming to examine long-term thermal dynamics and lakes' responses to regional climate variability since the Little Ice Age. Our results indicate divergent trends for the lakes. In two of the lakes, which are located at the sunny southern slope of mountains, water temperature has increased several degrees concurrent with the observed air temperature increase. In contrast, no change is observed in the reconstructed water temperatures of a shaded lake, located at the northern slope, where also the ecological and thermal changes are most subtle. The results indicate the importance of cold water inputs, such as snowmelt and groundwater, on lakes' thermal conditions and suggest that watershed characteristics and lake stratification play a major role in defining the lake-specific thermal regime. PMID:23965988

  19. Changes in Temperature Sensitivity and Activation Energy of Soil Organic Matter Decomposition in Different Qinghai-Tibet Plateau Grasslands

    PubMed Central

    Li, Jie; He, Nianpeng; Wei, Xuehong; Gao, Yang; Zuo, Yao

    2015-01-01

    Qinghai-Tibet Plateau grasslands are unique geographical regions and store substantial soil organic matter (SOM) in the soil surface, which make them very sensitive to global climate change. Here, we focused on three main grassland types (alpine meadow, steppe, and desert) and conducted a soil incubation experiment at five different temperatures (5, 10, 15, 20, and 25°C) to investigate SOM decomposition rates (R), temperature sensitivity (Q10), and activation energy (Ea). The results showed that grassland type and incubation temperature had significant impact on R (P < 0.001), and the values of R were exponential correlated with incubation temperature in three alpine grasslands. At the same temperature, R was in the following order: alpine meadow > alpinesteppe > alpine desert. The Q10 values differed significantly among different grasslands, and the overall trends were as follows: alpine meadow (1.56 ± 0.09) < alpine steppe (1.88 ± 0.23) < alpine desert (2.39 ± 0.32). Moreover, the Ea values differed significantly across different grassland types (P < 0.001) and increased with increasing incubation time. The exponential negative correlations between Ea and R at 20°C across all grassland types (all Ps < 0.001) indicated that the substrate-quality temperature hypothesis is applicable to the alpine grasslands. Our findings provide new insights for understanding the responses of SOM decomposition and storage to warming scenarios in this Plateau. PMID:26176705

  20. Temperature

    NASA Technical Reports Server (NTRS)

    Berenson, P. J.; Robertson, W. G.

    1973-01-01

    The problems in human comfort in heat stress are emphasized, with less emphasis placed upon cold exposure problems. Physiological parameters related to human thermal interactions are discussed, as well as data concerning thermal protective clothing. The energy balance equation, heat transfer equation, thermal comfort, heat stress, and cold stress are also considered. A two node model of human temperature regulation in FORTRAN is appended.

  1. Fungal Communities Associated with the Biodegradation of Polyester Polyurethane Buried under Compost at Different Temperatures

    PubMed Central

    Zafar, Urooj; Houlden, Ashley

    2013-01-01

    Plastics play an essential role in the modern world due to their low cost and durability. However, accumulation of plastic waste in the environment causes wide-scale pollution with long-lasting effects, making plastic waste management expensive and problematic. Polyurethanes (PUs) are heteropolymers that made up ca. 7% of the total plastic production in Europe in 2011. Polyester PUs in particular have been extensively reported as susceptible to microbial biodegradation in the environment, particularly by fungi. In this study, we investigated the impact of composting on PUs, as composting is a microbially rich process that is increasingly being used for the processing of green waste and food waste as an economically viable alternative to landfill disposal. PU coupons were incubated for 12 weeks in fresh compost at 25°C, 45°C, and 50°C to emulate the thermophilic and maturation stages of the composting process. Incubation at all temperatures caused significant physical deterioration of the polyester PU coupons and was associated with extensive fungal colonization. Terminal restriction fragment length polymorphism (TRFLP) analysis and pyrosequencing of the fungal communities on the PU surface and in the surrounding compost revealed that the population on the surface of PU was different from the surrounding compost community, suggesting enrichment and selection. The most dominant fungi identified from the surfaces of PU coupons by pyrosequencing was Fusarium solani at 25°C, while at both 45°C and 50°C, Candida ethanolica was the dominant species. The results of this preliminary study suggest that the composting process has the potential to biodegrade PU waste if optimized further in the future. PMID:24056469

  2. Natural populations of Arabidopsis thaliana differ in seedling responses to high-temperature stress.

    PubMed

    Zhang, Nana; Belsterling, Brian; Raszewski, Jesse; Tonsor, Stephen J

    2015-01-01

    Little is known about adaptive within-species variation in thermotolerance in wild plants despite its likely role in both functional adaptation at range limits and in predicting response to climate change. Heat shock protein Hsp101, rapidly heat induced in Arabidopsis thaliana, plays a central role in thermotolerance in laboratory studies, yet little is known about variation in its expression in natural populations. We explored variation in thermotolerance and Hsp101 expression in seedlings from 16 natural populations of A. thaliana sampled along an elevation and climate gradient. We tested both naive controls (maintained at 22 °C until heat stress) and thermally pre-acclimated plants (exposed to a 38 °C 3-h acclimation treatment). After acclimation, seedlings were exposed to one of two heat stresses: 42 or 45 °C. Thermotolerance was measured as post-stress seedling survival and root growth. When stressed at 45 °C, both thermotolerance and Hsp101 expression were significantly increased by pre-acclimation. However, thermotolerance did not differ between pre-acclimation and control when followed by a 42 °C stress. Immediately after heat stress, pre-acclimated seedlings contained significantly more Hsp101 than control seedlings. At 45 °C, Hsp101 expression was positively associated with survival (r(2) = 0.37) and post-stress root growth (r(2) = 0.15). Importantly, seedling survival, post-stress root growth at 45 °C and Hsp101 expression at 42 °C were significantly correlated with the home sites' first principal component of climate variation. This climate gradient mainly reflects a temperature and precipitation gradient. Thus, the extent of Hsp101 expression modulation and thermotolerance appear to be interrelated and to evolve adaptively in natural populations of A. thaliana. PMID:26286225

  3. Long-term rearing of Arctic charr Salvelinus alpinus under different salinity regimes at constant temperature.

    PubMed

    Arnason, T; Gunnarsson, S; Imsland, A K; Thorarensen, H; Smradttir, H; Steinarsson, A; Gstavsson, A; Johansson, M; Bjrnsson, B Th

    2014-10-01

    Arctic charr Salvelinus alpinus of the Hlar strain (mean s.e. body mass = 1521 31 g) were reared at four different salinity regimes at a constant temperature of 74 C. Two groups were given a three-month acclimation in salinity 18 before the salinity was increased to either 25 or 29 (groups called A25 and A29), and two groups were reared in salinities 25 or 29 over the full experimental period of 409 days (groups called F25 and F29). In the first 3 months, the A25 and A29 groups had the highest growth rates. By October 2011, there were no significant differences (two-way nested ANOVA, P > 005) in the mean body masses among A25, F25 and F29 (c. 1450 g), whereas A29 had a lower mean mass (1282 g). The growth in the last period from October 2011 to January 2012 was reduced by sexual maturation in the highest salinity regimes (A29 and F29), whereas fish in groups A25 and F25 showed high growth throughout the study. Males in all salinity groups had higher growth rates than females for the most part of the study, but the divergence between the sexes was most pronounced in the highest salinity regimes. All salinity groups showed distinct changes in Na(+) , K(+) -ATPase activity, with high activity in spring and summer, and lower activity in the autumn. Plasma sodium (Na(+) ) levels were stable indicating that none of the experimental groups had problems in maintaining hydromineral balance during the study. While plasma leptin levels were not affected by salinity regimes, it was noted that these levels were 13-30% higher in fish with empty guts compared with those having food in their gut at the time of sampling. This suggests a link between leptin levels and food intake, indicating that this hormone may play a role in food intake and energy allocation in fishes. PMID:25053158

  4. Isotopic ordering in eggshells reflects body temperatures and suggests differing thermophysiology in two Cretaceous dinosaurs.

    PubMed

    Eagle, Robert A; Enriquez, Marcus; Grellet-Tinner, Gerald; Pérez-Huerta, Alberto; Hu, David; Tütken, Thomas; Montanari, Shaena; Loyd, Sean J; Ramirez, Pedro; Tripati, Aradhna K; Kohn, Matthew J; Cerling, Thure E; Chiappe, Luis M; Eiler, John M

    2015-01-01

    Our understanding of the evolutionary transitions leading to the modern endothermic state of birds and mammals is incomplete, partly because tools available to study the thermophysiology of extinct vertebrates are limited. Here we show that clumped isotope analysis of eggshells can be used to determine body temperatures of females during periods of ovulation. Late Cretaceous titanosaurid eggshells yield temperatures similar to large modern endotherms. In contrast, oviraptorid eggshells yield temperatures lower than most modern endotherms but ∼ 6 °C higher than co-occurring abiogenic carbonates, implying that this taxon did not have thermoregulation comparable to modern birds, but was able to elevate its body temperature above environmental temperatures. Therefore, we observe no strong evidence for end-member ectothermy or endothermy in the species examined. Body temperatures for these two species indicate that variable thermoregulation likely existed among the non-avian dinosaurs and that not all dinosaurs had body temperatures in the range of that seen in modern birds. PMID:26462135

  5. DEVELOPMENT OF THE EGG OF THE MACKEREL AT DIFFERENT CONSTANT TEMPERATURES

    PubMed Central

    Worley, Leonard G.

    1933-01-01

    1. Mackerel egg development was followed to hatching at constant temperatures of 10°, 11°, 12°, 13°, 14°, 15°, 16°, 17°, 18°, 19°, 20°, 21°, 22°, and 24°C. Experiment showed that typical development could be realized only between 11° and 21°. 2. The length of the developmental period increases from 49.5 hours to 207 hours when the temperature is lowered from 21° to 10°C. 3. The calculated µ for the development of the mackerel egg is about 19,000 at temperatures above 15° and approximately 24,900 for temperatures below 15°C. 15° is, apparently, a critical temperature for this process. 4. The calculated values of µ for eight stages of development preceding hatching, i.e. 6 somites, 12 somites, 18 somites, 24 somites, three-quarters circles, four-fifths circles, five-sixths circles, and full circles, are essentially the same as the µ's for hatching, indicating that the rate of differentiation up to hatching is governed by one process throughout. Critical temperatures for these stages approximate 15°. 5. The total mortality during the incubation period was least at 16°C. where it amounted to 43 per cent. At temperatures above and below this there was a steady increase in the percentage of mortality which reached 100 per cent at 10° and 21°. PMID:19872743

  6. Explicit formula of finite difference method to estimate human peripheral tissue temperatures during exposure to severe cold stress.

    PubMed

    Khanday, M A; Hussain, Fida

    2015-02-01

    During cold exposure, peripheral tissues undergo vasoconstriction to minimize heat loss to preserve the maintenance of a normal core temperature. However, vasoconstricted tissues exposed to cold temperatures are susceptible to freezing and frostbite-related tissue damage. Therefore, it is imperative to establish a mathematical model for the estimation of tissue necrosis due to cold stress. To this end, an explicit formula of finite difference method has been used to obtain the solution of Pennes' bio-heat equation with appropriate boundary conditions to estimate the temperature profiles of dermal and subdermal layers when exposed to severe cold temperatures. The discrete values of nodal temperature were calculated at the interfaces of skin and subcutaneous tissues with respect to the atmospheric temperatures of 25 C, 20 C, 15 C, 5 C, -5 C and -10 C. The results obtained were used to identify the scenarios under which various degrees of frostbite occur on the surface of skin as well as the dermal and subdermal areas. The explicit formula of finite difference method proposed in this model provides more accurate predictions as compared to other numerical methods. This model of predicting tissue temperatures provides researchers with a more accurate prediction of peripheral tissue temperature and, hence, the susceptibility to frostbite during severe cold exposure. PMID:25660630

  7. Properties of boron-doped ZnO thin films deposited by pulsed DC magnetron sputtering at different substrate temperatures

    NASA Astrophysics Data System (ADS)

    Wen, B.; Liu, C. Q.; Wang, N.; Wang, H. L.; Liu, S. M.; Jiang, W. W.; Ding, W. Y.; Fei, W. D.; Chai, W. P.

    2015-11-01

    By pulsed DC magnetron sputtering, boron-doped ZnO (BZO) thin films were deposited on normal glass substrates at different substrate temperatures. The effect of substrate temperature on the properties of the BZO films was systematically investigated. Based on XRD data, the crystallization behaviors and the grain growth kinetics of the BZO films were analyzed. It was found that the substrate temperature of 300 °C is a critical temperature in the grain growth process of the BZO films. That is to say, the grain growth mechanism of the BZO films was different at the substrate temperature range of exceeding 300 °C or not. The morphological, electrical, and optical properties of the BZO films were studied by atomic force microscopy, Hall effect measurement system, and UV-Vis transmission spectroscopy, respectively. With increasing the substrate temperature, the carrier concentration and the carrier mobility increase, and the minimum resistivity (3.4 × 10-3 Ω cm) is observed at the substrate temperature of 400 °C. Moreover, the transmittance for every film is over 90 % in the visible range, and the optical band edge of the BZO films exhibits blueshift with increasing the substrate temperature.

  8. Transcriptome analysis of the Bombyx mori fat body after constant high temperature treatment shows differences between the sexes.

    PubMed

    Wang, Hua; Fang, Yan; Wang, Lipeng; Zhu, Wenjuan; Ji, Haipeng; Wang, Haiying; Xu, Shiqing; Sima, Yanghu

    2014-09-01

    Ambient temperature plays a large role in insect growth, development and even their distribution. The elucidation of the associated molecular mechanism that underlies the effect of constant high temperature will enables us to further understand the stress responses. We constructed four digital gene expression libraries from the fat body of female and male Bombyx mori. Differential gene expression was analyzed after constant high temperature treatment. The results showed that there were significant changes to the gene expression in the fat body after heat treatment, especially in binding, catalytic, cellular and metabolic processes. Constant high temperature may induce more traditional cryoprotectants, such as glycerol, glycogen, sorbitol and lipids, to protect cells from damage, and induce heat oxidative stress in conjunction with the heat shock proteins. The data also indicated a difference between males and females. The heat shock protein-related genes were up-regulated in both sexes but the expression of Hsp25.4 and DnaJ5 were down-regulated in the male fat body of B. mori. This is the first report of such a result. Constant high temperature also affected the expression of other functional genes and differences were observed between male and female fat bodies in the expression of RPS2, RPL37A and MREL. These findings provide abundant data on the effect of high temperature on insects at the molecular level. The data will also be beneficial to the study of differences between the sexes, manifested in variations in gene expression under high temperature. PMID:24972568

  9. Regional differences in the surface temperature of Naked Neck laying hens in a semi-arid environment

    NASA Astrophysics Data System (ADS)

    de Souza, Joo Batista Freire; de Arruda, Alex Martins Varela; Domingos, Hrica Girlane Tertulino; de Macedo Costa, Leonardo Lelis

    2013-05-01

    The aim of this study was to evaluate the regional differences in the surface temperature of Naked Neck hens that were subjected to different temperatures in a semi-arid environment. The surface temperature was measured in four body regions (face, neck, legs and feathered area) of 60 Naked Neck hens. The following environmental variables were measured at the center of the shed: the black globe temperature ( T G ), air temperature ( T A ), wind speed ( U) and relative humidity ( R H ). The T A was divided into three classes: 1 (24.0-26.0 C), 2 (26.1-28.9 C) and 3 (29.0-31.0 C). An analysis of variance was performed by the least squares method and a comparison of the means by the Tukey-Kramer test. The results showed a significant effect of T A class, the body region and the interaction between these two effects on the surface temperature. There was no significant difference between the T A classes for the face and neck. The legs and feathered area showed significant differences between the T A classes. Regarding the effect of body regions within each T A class, there was a significant difference among all regions in the three T A classes. In all T A classes the neck had the highest average followed by the face and legs. The feathered area showed the lowest average of the different T A classes. In conclusion, this study showed that there are regional differences in the surface temperature of Naked Neck hens, with the legs acting as thermal windows.

  10. R/D task plan: Response of fish to different simulated temperature rate limits

    SciTech Connect

    Wike, L.D.

    1991-01-01

    The objective of the program is to determine the maximum temperature rate increase that can be tolerated by fish without loss of the ability to escape rising water temperatures. These data will form the basis for recommended power ascension rates during reactor restart. Activities required to meet the program objective include the task of simulating a range of possible temperature rate increases in the laboratory and analyzing the response of fish in an experimental environment. In addition to the primary task, scoping activities will be conducted to evaluate laboratory process control equipment, behavioral data collection equipment, and collect specific behavioral energetics data. 2 refs.

  11. [The effect of low temperatures on the viability of human epidermal keratinocytes found at different stages of differentiation].

    PubMed

    Raĭdan, M; Shubin, N A; Blinova, M I; Prokhorov, G G; Pinaev, G P

    2011-01-01

    The aim of this study was a comparative analysis to the degree of stability of human epidermal cells found at different stages of differentiation to low temperatures. The effect of different subzero temperatures of liquid nitrogen vapor on keratinocytes found both in human skin fragments and as isolated cells extracted from skin fragments has been studied. The degree of stability of epidermal cells low temperatures was evaluated by their ability to form a multilayer stratum in culture; hence this phenomenon explains the survival of a sufficient amount of proliferative cells after exposure to subzero temperatures. Quantitative analysis of the ratio of epidermal stem, transitory and differentiated cells in a population of viable cells before and after exposure to low temperatures were determined using antibodies corresponding to their different stages of differentiation. The results of this research show that the stability of human epidermal cells to low temperature differs depending on their stage of differentiation both in situ and in vitro. Epidermal stem cells and transitory cells are more stable than differentiated cells. PMID:21473115

  12. Foot model for tracking temperature of safety boot insoles: application to different insole materials in firefighter boots.

    PubMed

    García-Hernández, César; Sánchez-Álvarez, Eduardo J; Huertas-Talón, José-Luis

    2016-01-01

    This research is based on the development of a human foot model to study the temperature conditions of a foot bottom surface under extreme external conditions. This foot model is made by combining different manufacturing techniques to enable the simulation of bones and tissues, allowing the placement of sensors on its surface to track the temperature values of different points inside a shoe. These sensors let researchers capture valuable data during a defined period of time, making it possible to compare the features of different safety boots, socks or soles, among others. In this case, it has been applied to compare different plantar insole materials, placed into safety boots on a high-temperature surface. PMID:26651242

  13. Low-temperature production of silicon carbide films of different polytypes

    SciTech Connect

    Semenov, A. V. Puzikov, V. M.; Golubova, E. P.; Baumer, V. N.; Dobrotvorskaya, M. V.

    2009-05-15

    The study is concerned with the effect of temperature on the structure of SiC films formed by deposition of the C and Si ions with the energy 120 eV. On the basis of the X-ray structural studies, it is unambiguously established that the structure of the growing polytype is finely dependent on the substrate temperature. In the temperature range from 1080 deg. C to 1510 deg. C, the sequence of films involving the 21R, 51R, 27R, and 6H polytypes is produced for the first time. The effect of temperature on the silicon-carbon atomic content ratio [Si]/[C] in the deposited films is determined. At optimized parameters of deposition the film structured as the 51R rhombohedral polytype is grown.

  14. The interaction between peripheral and central fatigue at different muscle temperatures during sustained isometric contractions.

    PubMed

    Lloyd, Alex; Hodder, Simon; Havenith, George

    2015-08-15

    Changes in central fatigue have been linked to active and passive changes in core temperature, as well as integration of sensory feedback from thermoreceptors in the skin. However, the effects of muscle temperature (Tm), and thereby metaboreceptor and local afferent nerve temperature, on central fatigue (measured using voluntary activation percentage) during sustained, high muscle fatigue exercise remain unexamined. In this study, we investigated Tm across the range of cold to hot, and its effect on voluntary activation percentage during sustained isometric contractions of the knee extensors. The results suggest that contrary to brief contractions, during a sustained fatiguing contraction Tm significantly (P < 0.001) influences force output (-0.7%/°C increase) and central fatigue (-0.5%/°C increase), showing a negative relationship across the Tm continuum in moderately trained individuals. The negative relationship between voluntary activation percentage and Tm indicates muscle temperature may influence central fatigue during sustained and high muscle fatigue exercise. On the basis of on an integrative analysis between the present data and previous literature, the impact of core and muscle temperature on voluntary muscle activation is estimated to show a ratio of 5.5 to 1, respectively. Accordingly, Tm could assume a secondary or tertiary role in the reduction of voluntary muscle activation when body temperature leaves a thermoneutral range. PMID:26041110

  15. Physical characterization of Rhipsalis (Cactaceae) fruits and seeds germination in different temperatures and light regimes.

    PubMed

    Lone, A B; Colombo, R C; Andrade, B L G; Takahashi, L S A; Faria, R T

    2016-06-01

    The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable. PMID:26934150

  16. [Effects of temperature on organic carbon mineralization in paddy soils with different clay content].

    PubMed

    Ren, Xiu-E; Tong, Cheng-Li; Sun, Zhong-Lin; Tang, Guo-Yong; Xiao, He-Ai; Wu, Jin-Shui

    2007-10-01

    An incubation test with three kinds of paddy soil (sandy loam, clay loam, and silty clay soils) in subtropical region was conducted at 10, 15, 20, 25 and 30 degrees C to examine the response of the mineralization of soil organic carbon (SOC) to temperature change. The results showed that during the period of 160 d incubation, the accumulative mineralized amount of SOC in sandy loam, clay loam, and silty clay soils at 30 degrees C was 3.5, 5.2 and 4.7 times as much as that at 10 degrees C, respectively. The mineralization rate was lower and relatively stable at lower temperatures (< or = 20 C), but was higher at the beginning of incubation and decreased and became stable as the time prolonged at higher temperatures (> or = 25 degrees C). During incubation, the temperature coefficient (Q10) of SOC mineralization in test soils fluctuated, with an average Q10 in sandy loam, clay loam, and silty clay soils being 1.92, 2.37 and 2.32, respectively. There was a positive exponential correlation between SOC mineralization constant k and temperature (P < 0.01), and the response of SOC mineralization to temperature change was in the order of clay loam soil > silty clay soil > sandy loam soil. PMID:18163305

  17. Critical Temperature Differences of a Standing Wave Thermoacoustic Prime Mover with Various Helium-Based Binary Mixture Working Gases

    NASA Astrophysics Data System (ADS)

    Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi

    2015-06-01

    Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest critical temperature difference for He-Armixture gas is around 66 °C which is achieved in pressure range of 1.5 MPa - 2.0 MPa and mole fractions of helium of 0.55 - 0.65. The He-N2 and He-O2 mixture gases demonstrate almost the same performances, both have the lowest critical temperature difference around 59 °C atpressures of 1.0 MPa - 1.5 MPa and helium's mole fractions of 0.35 - 0.55. For all tested gases, the lowest critical temperature difference of around 51 °C is provided by He-CO2 mixture gas at pressures of 0.5 MPa - 1.0 MPa with helium's mole fractions of 0.15 - 0.40.

  18. Performance of TFET and FinFET devices applied to current mirrors for different dimensions and temperatures

    NASA Astrophysics Data System (ADS)

    Martino, M. D. V.; Martino, J. A.; Agopian, P. G. D.; Vandooren, A.; Rooyackers, R.; Simoen, E.; Thean, A.; Claeys, C.

    2016-05-01

    The goal of this work is to compare the behavior of a current mirror designed with Tunnel-FET and FinFET devices. The suitability of these technologies in such a basic circuit has been analyzed focusing on the susceptibility to output bias conditions, dimensions mismatching and temperature variations. In the experimental part, results revealed a similar channel width dependence, but a much more relevant channel length dependence for the circuit with FinFETs. Meanwhile, varying the output bias, it was observed that a wider range of output drain voltage results in a suitable mirrored current for the circuit with tunnel field effect transistors (TFETs). In the second part of this work, numerical simulations have been performed for different temperatures. The opposite trends observed for higher temperatures could be justified based on the different dominant transport mechanism in each circuit. Globally, current mirrors with TFETs presented the best results, with lower output current susceptibility to dimensions mismatching and temperature variation.

  19. Investigation of effective base transit time and current gain modulation of light-emitting transistors under different ambient temperatures

    SciTech Connect

    Yang, Hao-Hsiang; Tu, Wen-Chung; Wang, Hsiao-Lun; Wu, Chao-Hsin

    2014-11-03

    In this report, the modulation of current gain of InGaP/GaAs light-emitting transistors under different ambient temperatures are measured and analyzed using thermionic emission model of quantum well embedded in the transistor base region. Minority carriers captured by quantum wells gain more energy at high temperatures and escape from quantum wells resulting in an increase of current gain and lower optical output, resulting in different I-V characteristics from conventional heterojunction bipolar transistors. The effect of the smaller thermionic lifetime thus reduces the effective base transit time of transistors at high temperatures. The unique current gain enhancement of 27.61% is achieved when operation temperature increase from 28 to 85 °C.

  20. Possibility of passive THz camera using for a temperature difference observing of objects placed inside the human body

    NASA Astrophysics Data System (ADS)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. We demonstrate new possibility of the passive THz camera using for a temperature difference observing on the human skin if this difference is caused by different temperatures inside the body. We discuss some physical experiments, in which a person drinks hot, and warm, and cold water and he eats. After computer processing of images captured by passive THz camera TS4 we may see the pronounced temperature trace on skin of the human body. For proof of validity of our statement we make the similar physical experiment using the IR camera. Our investigation allows to increase field of the passive THz camera using for the detection of objects concealed in the human body because the difference in temperature between object and parts of human body will be reflected on the human skin. However, modern passive THz cameras have not enough resolution in a temperature to see this difference. That is why, we use computer processing to enhance the camera resolution for this application. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp.

  1. Differences in the catalytic mechanisms of mesophilic and thermophilic indole-3-glycerol phosphate synthase enzymes at their adaptive temperatures

    SciTech Connect

    Zaccardi, Margot J.; Mannweiler, Olga; Boehr, David D.

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Catalytic mechanisms of thermophilic-mesophilic enzymes may differ. Black-Right-Pointing-Pointer Product release is rate-determining for thermophilic IGPS at low temperatures. Black-Right-Pointing-Pointer But at higher temperatures, proton transfer from the general acid is rate-limiting. Black-Right-Pointing-Pointer Rate-determining step is different still for mesophilic IGPS. Black-Right-Pointing-Pointer Both chemical and physical steps of catalysis are important for temperature adaptation. -- Abstract: Thermophilic enzymes tend to be less catalytically-active at lower temperatures relative to their mesophilic counterparts, despite having very similar crystal structures. An often cited hypothesis for this general observation is that thermostable enzymes have evolved a more rigid tertiary structure in order to cope with their more extreme, natural environment, but they are also less flexible at lower temperatures, leading to their lower catalytic activity under mesophilic conditions. An alternative hypothesis, however, is that complementary thermophilic-mesophilic enzyme pairs simply operate through different evolutionary-optimized catalytic mechanisms. In this communication, we present evidence that while the steps of the catalytic mechanisms for mesophilic and thermophilic indole-3-glycerol phosphate synthase (IGPS) enzymes are fundamentally similar, the identity of the rate-determining step changes as a function of temperature. Our findings indicate that while product release is rate-determining at 25 Degree-Sign C for thermophilic IGPS, near its adaptive temperature (75 Degree-Sign C), a proton transfer event, involving a general acid, becomes rate-determining. The rate-determining steps for thermophilic and mesophilic IGPS enzymes are also different at their respective, adaptive temperatures with the mesophilic IGPS-catalyzed reaction being rate-limited before irreversible CO{sub 2} release, and the thermophilic IGPS-catalyzed reaction being rate limited afterwards.

  2. Effect of Different Temperatures on Consumption of Two Spotted Mite, Tetranychus urticae, Eggs by the Predatory Thrips, Scolothrips longicornis

    PubMed Central

    Pakyari, Hajar; Enkegaard, Annie

    2012-01-01

    Environmental variables such as temperature are important factors affecting the efficacy of biological control agents. This study evaluated the predation rate of the predatory thrips Scolothrips longicornis Priesner (Thysanoptera: Thripidae) against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Based on daily and total prey consumption of different life stages of S. longicornis on spider mite eggs at temperatures covering the range suitable for development and survival of the predator (15° C to 37° C, 60 ± 10% RH, 16:8 L:D), there was a significant effect of temperature on prey consumption. The number of prey consumed daily by first and second instar larvae increased linearly with increasing temperature from 15 °C to 37 °C, whereas daily consumption of preovipositing and postovipositing females was uninfluenced by temperature. Lower temperature thresholds for consumption by first and second instar larvae of S. longicornis was estimated to be 6.8 ± 0.04° C and 4.6 ± 0.03° C, respectively. The daily consumption of ovipositing females followed a nonlinear pattern, with maximum daily predation estimated at 32.8° C. From the model used to describe consumption of ovipositing females, an upper threshold for consumption of 41.4° C was estimated. The performance of S. longicornis at the different temperatures is discussed in relation to its practical use in integrated pest control programs. PMID:23425212

  3. Effect of different temperatures on consumption of two spotted mite, Tetranychus urticae, eggs by the predatory thrips, Scolothrips longicornis.

    PubMed

    Pakyari, Hajar; Enkegaard, Annie

    2012-01-01

    Environmental variables such as temperature are important factors affecting the efficacy of biological control agents. This study evaluated the predation rate of the predatory thrips Scolothrips longicornis Priesner (Thysanoptera: Thripidae) against the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) under laboratory conditions. Based on daily and total prey consumption of different life stages of S. longicornis on spider mite eggs at temperatures covering the range suitable for development and survival of the predator (15 C to 37 C, 60 10% RH, 16:8 L:D), there was a significant effect of temperature on prey consumption. The number of prey consumed daily by first and second instar larvae increased linearly with increasing temperature from 15 ()C to 37 ()C, whereas daily consumption of preovipositing and postovipositing females was uninfluenced by temperature. Lower temperature thresholds for consumption by first and second instar larvae of S. longicornis was estimated to be 6.8 0.04 C and 4.6 0.03 C, respectively. The daily consumption of ovipositing females followed a nonlinear pattern, with maximum daily predation estimated at 32.8 C. From the model used to describe consumption of ovipositing females, an upper threshold for consumption of 41.4 C was estimated. The performance of S. longicornis at the different temperatures is discussed in relation to its practical use in integrated pest control programs. PMID:23425212

  4. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines.

    PubMed

    Şener, Hasan; Yildirim, Hatice Kalkan

    2013-12-01

    Maceration and fermentation time and temperatures are important factors affecting wine quality. In this study different maceration times (3 and 6 days) and temperatures (15  and 25 ) during production of red wine (Vitis vinifera L. Cabernet Sauvignon) were investigated. In all wines standard wine chemical parameters and some specific parameters as total phenols, tartaric esters, total flavonols and colour parameters (CD, CI, T, dA%, %Y, %R, %B, CIELAB values) were determined. Sensory evaluation was performed by descriptive sensory analysis. The results demonstrated not only the importance of skin contact time and temperature during maceration but also the effects of transition temperatures (different maceration and fermentation temperatures) on wine quality as a whole. The results of sensory descriptive analyses revealed that the temperature significantly affected the aroma and flavour attributes of wines. The highest scores for 'cassis', 'clove', 'fresh fruity' and 'rose' characters were obtained in wines produced at low temperature (15 ) of maceration (6 days) and fermentation. PMID:23703104

  5. Use of palm mid-fraction in dark chocolate as base filling centre at different storage temperatures.

    PubMed

    Jinap, S; Ali, A A; Man, Y B; Suria, A M

    2000-11-01

    Dark chocolates filled with palm mid-fraction (PMF) were stored at different temperatures to evaluate the physical and chemical changes. Storage at low temperature (18 degrees C) reduces the PMF migration to negligible extent. Higher storage temperatures (30 and 35 degrees C) increased the PMF migration from the filling centre into the chocolate coating. As a consequence of fat migration, fatty acid composition, triglyceride composition, hardness, solid fat content, melting point and polymorphic structure changed, leading to bloom formation, which started by fat migration and was influenced by recrystallization tendency within the chocolate coating. PMID:11271851

  6. Fracture Surface Analysis in HDPE Pipe Material Fatigued at Different Temperatures and Loading Frequencies

    NASA Astrophysics Data System (ADS)

    Khan, Zafarullah

    2012-07-01

    Effect of temperature and loading frequency on the fatigue fracture process in high-density polyethylene (HDPE) pipe material has been investigated in this study via optical and scanning electron microscopy. Fatigue tests were performed using rectangular coupons obtained by slitting and flattening 50-mm-wide ring sections from 4-inch schedule 80 HDPE pipes. The flattening was carried out in a specially designed compression fixture at a temperature of 105 °C. Fatigue tests were conducted at temperatures of 0, 23, and 40 °C and loading frequencies of 0.1, 1, and 50 Hz. Fracture surface examinations reveal that the fatigue crack-growth process at all the test temperatures and loading frequencies involved mechanisms of shear yielding and crazing. Crack growth via crazing was found to be the dominant mechanism at higher temperature of 40 °C, while at 0 °C, a small amount of initial shear yielding precede the crazing process. Filler material particles contained in the HDPE pipe material play an important role of stress concentrators and help in micro-void nucleation, which promotes crack growth via crazing. The fatigue resistance of HDPE may thus be improved by addressing the stress concentration effect of filler particles.

  7. First Electrical Characterization of Prototype 600 A HTS Twisted-pair Cables at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Young, E. A.; Bailey, W. O. S.; Beduz, C.; Ballarino, A.

    Following the development of twisted-pair cables prepared with High Temperature Superconducting (HTS) tapes and their initial tests at 4.2 K in liquid helium at CERN, the cable samples of 2 m lengths were subsequently tested in flowing helium gas at temperatures between 10 K and 77 K at University of Southampton. A cryostat with optimized hybrid HTS current leads was purposely built for the tests up to 2.5 kA. The cryostat has two separate helium flow conduits, each accommodating a twisted pair and allowing independent temperature control. With the completion of the tests on the twisted-pair cables, a 5 m long semi-flexible Nexans cryostat was also set up for the testing of prototype HTS links assembled at CERN. The link, which is optimized for application to the remote powering of LHC 600 A electrical circuits, consists of a compact multi-cable assembly with up to 25 twisted-pair 600 A HTS tapes. The cables are cooled by a forced-flow of helium gas the inlet temperature of which can be changed in order to compare the electrical performance over a range of temperatures. The paper reports on the results of powering tests performed on the individual cables and the integration process for the forthcoming tests of the prototype links.

  8. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2013-05-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  9. HA/Bioglass composite films deposited by pulsed laser with different substrate temperature

    NASA Astrophysics Data System (ADS)

    Wang, D. G.; Chen, C. Z.; Jin, Q. P.; Li, H. C.; Pan, Y. K.

    2014-03-01

    In this experiment, the HA/Bioglass composite films on Ti-6Al-4V were deposited by a pulsed laser at Ar atmosphere, and the influence of substrate temperature on the morphology, phase constitutions, bonding configurations and adhesive strength of the films was studied. The obtained films were characterized by an electron probe microanalyzer (EPMA), scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FTIR), scratch apparatus, and so on. The results show that the amount of the droplets, the crystallinity, and the critical load of the deposited films all increase with the increase of the substrate temperature; however, the substrate temperature has little influence on the functional groups of the films.

  10. [Study on the vacuum ultraviolet transmittance of barium fluoride crystals at different temperature].

    PubMed

    Peng, Ru-Yi; Fu, Li-Ping; Tao, Ye

    2014-03-01

    Two VUV-grade BaF2 windows with 0.5 mm-thick and 1 mm-thick respectively were selected to study the transmittance variety with the temperature. The results show that the cutoff wavelength of BaF2 crystals will shift towards the long wave with the increase in temperature. In a certain temperature range, BaF2 crystals can depress 130.4 nm radiation well, and also has a high transmittance at 135.6 nm. Compared with the reported method in which SrF2 crystals can be applied to suppress 130.4 nm stray light by heating, BaF2 crystal can inhibit the 130. 4 nm emission line completely, and thus reduce the power consumption of the device at the same time. This indicates that BaF2 crystals can play an important role in the ionosphere optical remote sensing detection. PMID:25208398

  11. [Development and reproduction of Sipha flava (Forbes) (Hemiptera: Aphididae) at different temperatures].

    PubMed

    de Oliveira, Simone A; Souza, Brígida; Auad, Alexander M; da Silva, Daniela M; Souza, Lívia S; Carvalho, Caio A

    2009-01-01

    The aphid Sipha flava (Forbes) is a pest on elephant grass, but little is known about its biology. The objective of this work was to evaluate the temperature effects on the development, survival and reproduction of S. flava fed on Pennisetum purpureum. Twelve-hour-old nymphs were individualized on sections of elephant grass blades and maintained at 12, 16, 20, 24, 28 and 32 degrees C+/-1 degrees C, UR 70+/-10% and 12 h photophase. A total of 150 nymphs were used per treatment divided in 30 replicates, using a totally random design. The lower threshold temperatures (LTT) for first, second, third and fourth instars were 0.83, 1.05, 3.01 and 4.98 degrees C, respectively, indicating a change in thermal requirements as the development progress. The LTT for the whole nymphal stage was 2.08 degrees C, pointing to the tolerance of this species to low temperatures. A significant reduction in survival was observed at high temperatures (28 and 32 degrees C). Although the reproductive periods were longer and insects lived longer at 12 degrees C as compared with those at higher temperatures, the total fecundity was substantially reduced. The overall life cycle duration was almost twice as long at 12 degrees C than at 24 degrees C. The greatest daily production of nymphs and greatest number of nymphs produced overall occurred at 24 degrees C. The temperatures of 20 degrees C and 24 degrees C were more suitable to S. flava development and reproduction. PMID:19618044

  12. Uncovering different masking factors on wrist skin temperature rhythm in free-living subjects.

    PubMed

    Martinez-Nicolas, Antonio; Ortiz-Tudela, Elisabet; Rol, Maria Angeles; Madrid, Juan Antonio

    2013-01-01

    Most circadian rhythms are controlled by a major pacemaker located in the hypothalamic suprachiasmatic nucleus. Some of these rhythms, called marker rhythms, serve to characterize the timing of the internal temporal order. However, these variables are susceptible to masking effects as the result of activity, body position, light exposure, environmental temperature and sleep. Recently, wrist skin temperature (WT) has been proposed as a new index for evaluating circadian system status. In light of previous evidence suggesting the important relationship between WT and core body temperature regulation, the aim of this work was to purify the WT pattern in order to obtain its endogenous rhythm with the application of multiple demasking procedures. To this end, 103 subjects (18-24 years old) were recruited and their WT, activity, body position, light exposure, environmental temperature and sleep were recorded under free-living conditions for 1 week. WT demasking by categories or intercepts was applied to simulate a "constant routine" protocol (awakening, dim light, recumbent position, low activity and warm environmental temperature). Although the overall circadian pattern of WT was similar regardless of the masking effects, its amplitude was the rhythmic parameter most affected by environmental conditions. The acrophase and mesor were determined to be the most robust parameters for characterizing this rhythm. In addition, a circadian modulation of the masking effect was found for each masking variable. WT rhythm exhibits a strong endogenous component, despite the existence of multiple external influences. This was evidenced by simultaneously eliminating the influence of activity, body position, light exposure, environmental temperature and sleep. We therefore propose that it could be considered a valuable and minimally-invasive means of recording circadian physiology in ambulatory conditions. PMID:23577201

  13. Telenomus remus Nixon egg parasitization of three species of Spodoptera under different temperatures.

    PubMed

    Pomari, A F; Bueno, A F; Bueno, R C O F; Menezes, A O

    2013-08-01

    Telenomus remus Nixon is a promising biocontrol agent as an egg parasitoid of Spodoptera spp., but the lack of information on the host-parasitoid interactions in this system precludes its applied use in agriculture. Therefore, we studied the parasitism capacity of T. remus on eggs of Spodoptera cosmioides (Walker), Spodoptera eridania (Cramer), and Spodoptera frugiperda (Smith) in a range of temperatures (19, 22, 25, 28, 31, and 34 ± 1°C) under controlled conditions (70 ± 10% RH and 12 h photophase). Egg masses of Spodoptera spp. were offered to a single-mated T. remus female on a daily basis. More than 80% lifetime parasitism on eggs of S. cosmioides, S. frugiperda, and S. eridania was reached from 1 to 5, 1 to 7, and 1 to 9 days, respectively, at temperatures from 19 to 34°C. More than 80% parasitization was obtained at extreme temperatures for all hosts studied. Lifetime parasitization of S. frugiperda, S. cosmioides, and S. eridania was affected by temperature, with the lowest values for S. frugiperda (34°C) and S. cosmioides (19 and 34°C). Parasitization of S. eridania eggs was reduced around 18% at 28 and 31°C, but dropped more severely at 34°C. Parasitoid longevity was reduced as temperature increased. Thus, our data indicated that T. remus might be suitable as a biocontrol agent against S. eridania, S. cosmioides, and S. frugiperda in geographical areas that fit the temperature range studied here, even though T. remus parasitism was reduced at 34°C. PMID:23949860

  14. Temperature imaging of laser-induced thermotherapy (LITT) by MRI: evaluation of different sequences in phantom.

    PubMed

    Bazrafshan, Babak; Hübner, Frank; Farshid, Parviz; Hammerstingl, Renate; Paul, Jijo; Vogel, Vitali; Mäntele, Werner; Vogl, Thomas J

    2014-01-01

    The purpose of this study was to evaluate magnetic resonance (MR) temperature imaging of the laser-induced thermotherapy (LITT) comparing the proton resonance frequency (PRF) and T 1 thermometry methods. LITT was applied to a liver-mimicking acrylamide gel phantom. Temperature rise up to 70 °C was measured using a MR-compatible fiber-optic thermometer. MR imaging was performed by a 1.5-T scanner utilizing fast gradient echo sequences including a segmented echo planar imaging (seg-EPI) sequence for PRF and the following sequences for T 1 method: fast low-angle shot (FLASH), inversion recovery turbo flash (IRTF), saturation recovery turbo flash (SRTF), and true fast imaging (TRUFI). Temperature-induced change of the pixel values in circular regions of interest, selected on images under the temperature probe tip, was recorded. For each sequence, a calibration constant could be determined to be -0.0088 ± 0.0002 ppm °C(-1) (EPI), -1.15 ± 0.03 °C(-1) (FLASH), -1.49 ± 0.03 °C(-1) (IRTF), -1.21 ± 0.03 °C(-1) (SRTF), and -2.52 ± 0.12 °C(-1) (TRUFI). These constants were evaluated in further LITT experiments in phantom comparing the calculated temperatures with the fiber optic-measured ones; temperature precisions of 0.60 °C (EPI), 0.81 °C (FLASH), 1.85 °C (IRTF), 1.95 °C (SRTF), and 3.36 °C (TRUFI) were obtained. Furthermore, performing the Bland-Altman analysis, temperature accuracy was determined to be 0.23 °C (EPI), 0.31 °C (FLASH), 1.66 °C (IRTF), 1.19 °C (SRTF), and 3.20 °C (TRUFI). In conclusion, the seg-EPI sequence was found to be more convenient for MR temperature imaging of LITT due to its relatively high precision and accuracy. Among the T 1 method sequences, FLASH showed the highest accuracy and robustness. PMID:23535892

  15. Differential Listeria monocytogenes strain survival and growth in Katiki, a traditional Greek soft cheese, at different storage temperatures.

    PubMed

    Kagkli, Dafni-Maria; Iliopoulos, Vassilios; Stergiou, Virginia; Lazaridou, Anna; Nychas, George-John

    2009-06-01

    Katiki Domokou is a traditional Greek cheese, which has received the Protected Designation of Origin recognition since 1994. Its microfloras have not been studied although its structure and composition may enable (or even favor) the survival and growth of several pathogens, including Listeria monocytogenes. The persistence of L. monocytogenes during storage at different temperatures has been the subject of many studies since temperature abuse of food products is often encountered. In the present study, five strains of L. monocytogenes were aseptically inoculated individually and as a cocktail in Katiki Domokou cheese, which was then stored at 5, 10, 15, and 20 degrees C. Pulsed-field gel electrophoresis was used to monitor strain evolution or persistence during storage at different temperatures in the case of the cocktail inoculum. The results suggested that strain survival of L. monocytogenes was temperature dependent since different strains predominated at different temperatures. Such information is of great importance in risk assessment studies, which typically consider only the presence or absence of the pathogen. PMID:19376914

  16. Effects of 17α-ethinylestradiol at different water temperatures on zebrafish sex differentiation and gonad development.

    PubMed

    Luzio, Ana; Santos, Dércia; Fontaínhas-Fernandes, António A; Monteiro, Sandra M; Coimbra, Ana M

    2016-05-01

    In the current climate change scenario, studies combining effects of water contaminants with environmental parameters, such as temperature, are essential to predict potentially harmful impacts on aquatic organisms. In zebrafish (Danio rerio), sex determination seems to have a polygenic genetic basis, which can be secondarily influenced by environmental factors, such as temperature and endocrine disrupting chemicals (EDCs). The present study aimed to evaluate the effects of the EDC 17α-ethinylestradiol (EE2), a potent synthetic estrogen, on zebrafish sex differentiation and gonad development at different water temperatures. Therefore, zebrafish raised at three distinct water temperatures (23, 28 or 33±0.5°C), were exposed to 4ng/L of EE2, from 2hours to 60days post-fertilization (dpf). Subsequently, a quantitative (stereological) assessment of zebrafish gonads was performed, at 35 and 60dpf, to identify alterations on gonadal development and differentiation. The results show that low temperature delayed general growth of zebrafish, as well as gonad differentiation and maturation, while high temperature induced an opposite effect. Moreover, sex ratio was skewed toward males when zebrafish were exposed to the high temperature. In general, EE2 exposure promoted gonad maturation in both genders, independently of the temperature. However, at the high temperature condition, exposure to EE2 induced a delay in the male gonad development, with some individuals still showing differentiating gonads at 60dpf. The findings of this study support the notion that zebrafish has a genetic sex determination mechanism highly sensitive to environmental factors and show that it is essential to study the effects of water contaminants at different climate scenarios in order to understand potential future impacts on organisms. PMID:26897088

  17. Impact of different temperatures on survival and energy metabolism in the Asian citrus psyllid, Diaphorina citri Kuwayama.

    PubMed

    El-Shesheny, Ibrahim; Hijaz, Faraj; El-Hawary, Ibrahim; Mesbah, Ibrahim; Killiny, Nabil

    2016-02-01

    Temperature influences the life history and metabolic parameters of insects. Asian citrus psyllid (ACP), Diaphorina citri is a tropical and subtropical pest. ACP invaded new regions around the world and threatened the citrus industry as a vector for Huanglongbing (HLB) disease. ACP is widely distributed and can survive high (up to 45 °C) and low temperatures (as low as -6 °C). The precise mechanism of temperature tolerance in ACP is poorly understood. We investigated adult survival, cellular energy balance, gene expression, and nucleotide and sugar-nucleotide changes under the effect of different temperature regimes (0 °C to 45 °C with 5 °C intervals). The optimum temperatures for survival were 20 and 25 °C. Low temperatures of 0 °C and 5 °C caused 50% mortality after 2 and 4 days respectively, while one day at high temperature (40 °C and 45 °C) caused more than 95% mortality. The lowest quantity of ATP (3.69 ± 1.6 ng/insect) and the maximum ATPase enzyme activities (57.43 ± 7.6 μU/insect) were observed at 25 °C. Correlation between ATP quantities and ATPase activity was negative. Gene expression of hsp 70, V-type proton ATPase catalytic subunit A and ATP synthase α subunit matched these results. Twenty-four nucleotides and sugar-nucleotides were quantified using HPLC in ACP adults maintained at low, high, and optimum temperatures. The nucleotide profiles were different among treatments. The ratios between AMP:ATP and ADP:ATP were significantly decreased and positively correlated to adults survival, whereas the adenylate energy charge was increased in response to low and high temperatures. Exploring energy metabolic regulation in relation with adult survival might help in understanding the physiological basis of how ACP tolerates newly invaded regions. PMID:26603556

  18. Cold-start emissions of modern passenger cars at different low ambient temperatures and their evolution over vehicle legislation categories

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Favez, Jean-Yves; Alvarez, Robert

    The emissions of modern gasoline and diesel passenger cars are reduced by catalysts except in cold-starting. Since catalysts require a certain temperature (typically above 300 °C) to work to full efficiency, emissions are significantly higher during the warm-up phase of the car. The duration of this period and the emissions produced depend on the ambient temperature as well as on the initial temperature of the car's propulsion systems. The additional emissions during a warm-up phase, known as "cold-start extra emissions" (CSEEs) for emission inventory modelling, are mostly assessed by emission measurements at an ambient temperature of 23 °C. However, in many European countries average ambient temperatures are below 23 °C. This necessitates emission measurements at lower temperatures in order to model and assess cold-start emissions for real-world temperature conditions. This paper investigates the influence of regulated pollutants and CO 2 emissions of recent gasoline and diesel car models (Euro-4 legislation) at different ambient temperatures, 23, -7 and -20 °C. We present a survey and model of the evolution of cold-start emissions as a function of different car generations (pre-Euro-1 to Euro-4 legislations). In addition the contribution of CSEEs to total fleet running emissions is shown to highlight their increasing importance. For gasoline cars, it turns out that in average real-world driving the majority of the CO (carbon monoxide) and HC (hydrocarbon) total emissions are due to cold-start extra emissions. Moreover, the cold-start emissions increase considerably at lower ambient temperatures. In contrast, cold-start emissions of diesel cars are significantly lower than those of gasoline cars. Furthermore, the transition from Euro-3 to Euro-4 gasoline vehicles shows a trend for a smaller decline for cold-start extra emissions than for legislative limits. Particle and NO x emission of cold-starts are less significant.

  19. The effect of temperature on apoptosis and adipogenesis on skeletal muscle satellite cells derived from different muscle types

    PubMed Central

    Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G

    2015-01-01

    Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged. PMID:26341996

  20. Vulnerability of lodging risk to elevated CO2 and increased soil temperature differs between rice cultivars

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Anthropogenic increases in atmospheric carbon dioxide concentration, [CO2], and subsequent increases in surface temperatures, are likely to impact the growth and yield of cereal crops. One means for yield reduction is for climate parameters to increase the occurrence of lodging. Using an in situ f...

  1. TEMPERATURE QUOTIENTS OF AMMONIA EMISSION OF DIFFERENT NITROGEN SOURCES APPLIED TO FOUR AGRICULTURAL SOILS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Emitted ammonia (NH3) is the primary gaseous form of nitrogen (N) loss from N sources applied to soils, which contain instant or transformable ammonium (NH4+). However, our knowledge of NH3 volatilization in relation to temperature is incomplete. This research was conducted using Biscayne Marl Soil ...

  2. RESPONSES OF LARGEMOUTH BASS FROM DIFFERENT LATITUDES TO ELEVATED WATER TEMPERATURES

    EPA Science Inventory

    The effects of elevated temperatures on largemouth bass (Micropterus s. salmoides), from Minnesota and Wisconsin (our northern stock) and from Tennessee (our southern stock), were compared at four first-year life stages. The purpose of these tests was to determine the degree of a...

  3. Time-temperature-sensitization diagrams and critical cooling rates of different nitrogen containing austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Parvathavarthini, N.; Dayal, R. K.

    2010-04-01

    Nitrogen-alloyed 316L stainless steel is being used as structural material for high temperature fast breeder reactor components with a design life of 40 years. With a view to increase the design life to 60 years and beyond, high nitrogen stainless steels are being considered for certain critical components which may be used at high temperatures. Since carbon and nitrogen have major influence on the sensitization kinetics, investigations were carried out to establish the sensitization behaviour of four heats of 316L SS containing (i) 0.07%N and 0.035%C, (ii) 0.120%N and 0.030%C, (iii) 0.150%N and 0.025%C and (iv) 0.22%N and 0.035%C. These stainless steels were subjected to heat treatments in the temperature range of 823-1023 K for various durations ranging from 1 h to 500 h. Using ASTM standard A262 Practice A and E tests, time-temperature-sensitization diagrams were constructed and from these diagrams, critical cooling rate above which there is no risk of sensitization was calculated. The data established in this work can be used to select optimum heat treatment parameters during heat treatments of fabricated components for fast reactors.

  4. ANAEROBIC BIODEGRADATION OF 2,4-DICHLOROPHENOL IN FRESHWATER LAKE SEDIMENTS AT DIFFERENT TEMPERATURES

    EPA Science Inventory

    Anaerobic degradation of 2,4-dichlorophenol (2,4-DCP) between 5 and 72C was investigated. naerobic sediment slurries prepared from local freshwater sediments were partitioned into anaerobic tubes or serum vials, which then were incubated separately at the various temperatures. ed...

  5. Photosynthesis and growth response of different switchgrass ecotypes to fluctuating growth temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Switchgrass (Panicum virgatum L.), a warm-season C4 grass that shows good potential as a bioenergy feedstock and conservation crop, is widely adapted throughout North America. However, its productivity tends to decline with increasing latitude. In northern regions where growing season temperatures c...

  6. DIFFERENCES IN THE TEMPERATURE QUOTIENTS OF AMMONIA EMISSION ON THE FERTILIZED SOILS FROM FLORIDA AND WASHINGTON

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is a very important factor for ammonia emission but not well understood yet. This research was conducted with Biscayne Marl Soil and Krome Gravelly Loam from Florida and Quincy Fine Sand and Warden Silt Loam from Washington. The soils were weighed (300 g dry weight) and placed in a 500 m...

  7. Small differences in temperature interact with solar radiation to alter anthocyanin in grapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite a century of research, we still lack a concrete, mechanistic understanding of solar radiation and temperature effects on anthocyanin accumulation and composition, crucial for red wine grapes. Our aim was to elucidate the mechanistic response to microclimate of anthocyanin metabolism in Viti...

  8. BIOMASS ACCUMULATION AND PARTITIONING OF EASTERN GAMMAGRASS GROWN UNDER DIFFERENT TEMPERATURE AND CO2 LEVELS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eastern gamagrass has been reported to have one of the highest photosynthetic rates of any C4 species but data on temperature x CO2 interactions are lacking. This study was conducted to determine the potential effects of future increases of atmospheric carbon dioxide on growth, biomass accumulation...

  9. Catalytic activity of beta-amylase from barley in different pressure/temperature domains.

    PubMed

    Heinz, Volker; Buckow, Roman; Knorr, Dietrich

    2005-01-01

    The depolymerization of starch by beta-amylase during exposure to hydrostatic pressure up to 700 MPa and within a temperature range from 20 to 70 degrees C has been investigated. Inactivation of the enzyme as well as alterations in conversion speed in response to combined pressure-temperature treatments were assessed by analyzing the kinetic rate constants. At 200 MPa a significant stabilization of the enzyme against heat inactivation was observed. However, high pressure also impedes the catalytic reaction and a progressive reduction of the conversion rate constants with increasing pressure was found at all temperatures investigated. For the overall reaction of maltose liberation from soluble starch in ACES buffer at pH 5.6 an optimum was identified at 106 MPa and at 63 degrees C, which is approximately 7 degrees C above the local maximum at ambient pressure (0.1 MPa). Gelatinization of nonsoluble starch granules in response to pressure-temperature (p-T) treatment has been inspected by phase-contrast microscopy and yielded circular curves of identical effect in the p-T plane. PMID:16321045

  10. Association of Weekly Suicide Rates with Temperature Anomalies in Two Different Climate Types

    PubMed Central

    Dixon, P. Grady; Sinyor, Mark; Schaffer, Ayal; Levitt, Anthony; Haney, Christa R.; Ellis, Kelsey N.; Sheridan, Scott C.

    2014-01-01

    Annual suicide deaths outnumber the total deaths from homicide and war combined. Suicide is a complex behavioral endpoint, and a simple cause-and-effect model seems highly unlikely, but relationships with weather could yield important insight into the biopsychosocial mechanisms involved in suicide deaths. This study has been designed to test for a relationship between air temperature and suicide frequency that is consistent enough to offer some predictive abilities. Weekly suicide death totals and anomalies from Toronto, Ontario, Canada (19862009) and Jackson, Mississippi, USA (19802006) are analyzed for relationships by using temperature anomaly data and a distributed lag nonlinear model. For both analysis methods, anomalously cool weeks show low probabilities of experiencing high-end suicide totals while warmer weeks are more likely to experience high-end suicide totals. This result is consistent for Toronto and Jackson. Weekly suicide totals demonstrate a sufficient association with temperature anomalies to allow some prediction of weeks with or without increased suicide frequency. While this finding alone is unlikely to have immediate clinical implications, these results are an important step toward clarifying the biopsychosocial mechanisms of suicidal behavior through a more nuanced understanding of the relationship between temperature and suicide. PMID:25402561

  11. Temperature Quotients of Ammonia Emission for Different Nitrogen Sources Applied to Four Agricultural Soils

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Temperature is an important factor influencing ammonia (NH3) emission from nitrogen (N) sources containing ammonium (NH4+) or other N sources transformed into NH4+ form applied to soils. This research was conducted using Biscayne Marl Soil (BMS), Krome Gravelly Loam (KGL) soils from Florida, Quincy ...

  12. SEASONAL DIFFERENCES IN CLEAR-SKY NIGHTTIME FORAGE TEMPERATURE IN PROXIMITY TO DECIDUOUS TREES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Considerable research has been done on daytime forage shading by silvopasture trees since solar radiation is required for photosynthesis. However, trees also impact nighttime temperature on clear nights when trees also effectively shade forages from cold skies. Appalachia has a temperate climate a...

  13. Comparison of diesel spray combustion in different high-temperature, high-pressure facilities.

    SciTech Connect

    Christiansen, Caspar; Hermant, Laurent; Malbec, Louis-Marie; Bruneaux, Gilles; Genzale, Caroline L.; Pickett, Lyle M.; Schramm, Jesper

    2010-05-01

    Diesel spray experiments at controlled high-temperature and high-pressure conditions offer the potential for an improved understanding of diesel combustion, and for the development of more accurate CFD models that will ultimately be used to improve engine design. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but uncertainties about their operation exist because of the uniqueness of each facility. For the IMEM meeting, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP. Targeting the same ambient gas conditions (900 K, 60 bar, 22.8 kg/m{sup 3}, 15% oxygen) and sharing the same injector (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K), we describe detailed measurements of the temperature and pressure boundary conditions at each facility, followed by observations of spray penetration, ignition, and combustion using high-speed imaging. Performing experiments at the same high-temperature, high-pressure operating conditions is an objective of the Engine Combustion Network (http://www.ca.sandia.gov/ECN/), which seeks to leverage the research capabilities and advanced diagnostics of all participants in the ECN. We expect that this effort will generate a high-quality dataset to be used for advanced computational model development at engine conditions.

  14. Characteristics and nutrient values of biochars produced from giant reed at different temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Application of biochars to soils is suggested as an effective way for improving soil quality. To investigate the effect of pyrolysis temperature on properties and nutrients value, biochars were produced from giant reed [Arundo donax L.] at 300-600 degrees Celsius and characterized for their physical...

  15. Clearance of yellow pigments lutein and zeathanxin in channel catfish reared at different water temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted to determine clearance time of yellow pigments lutein and zeaxanthin in channel catfish at various temperatures. Fish of initial weight of 13.4 g were stocked into flow-through aquaria and fed once daily with a yellow pigment enhanced diet for 11 weeks when the yellow color be...

  16. CHANGES IN THE RAT EEG SPECTRA AND CORE TEMPERATURE AFTER EXPOSURE TO DIFFERENT DOSES OF CHLORPYRIFOS.

    EPA Science Inventory

    Our previous study showed that single exposure to 25 mg/kg (p.o.) of organophsphate pesticide chlorpyrifos (CHP) led to significant alterations in all EEG frequency bands within 0.1-50 Hz range, reduction in core temperature (Tc) and motor activity (MA). The alterations in EEG pe...

  17. Determination of volatile aroma compounds in beef using differences in steak thickness and cook surface temperature.

    PubMed

    Kerth, Chris

    2016-07-01

    Top loin steaks with a United States Department of Agriculture (USDA) grade of Select were cut 1.3cm, 2.5cm, or 3.8cm thick and cooked on a skillet at 177°C, 204°C, or 232°C. Aroma compounds described as fatty, tallow, and oily are highly related to the identity of beef flavor. These compounds are produced in the highest quantity when steaks are cooked either at low temperatures (177°C) or for short periods of time. Whereas, aroma compounds described as roasted, nutty, or fruity are developed from browning the surface of the steak as a result of cooking at high skillet surface temperatures (232°C) or for long periods of time, as would be seen cooking thick steaks (3.8cm). This study shows that the amount of specific aroma compounds can be predicted (r(2) values up to 0.62) from measured cooking times and temperatures. It may be possible to develop beef steak flavor by recommending steak thickness and cooking temperatures. PMID:26937587

  18. Growth of Salmonella and Listeria monocytogenes on fresh-cut cantaloupe under different temperature abuse scenarios

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Effective cold chain management is a critical component of food safety practice. In this study, we examined the impact of commonly encountered temperature abuse scenarios on the proliferation of Salmonela enterica and Listeria monocytogenes on fresh-cut cantaloupe. During one week of storage, Salmon...

  19. Dramatic difference in the responses of phosphoenolpyruvate carboxylase to temperature in leaves of C3 and C4 plants.

    PubMed

    Chinthapalli, Bhaskarrao; Murmu, Jhadeswar; Raghavendra, Agepati S

    2003-02-01

    Temperature caused phenomenal modulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaf discs of Amaranthus hypochondriacus (NAD-ME type C(4) species), compared to the pattern in Pisum sativum (a C(3) plant). The optimal incubation temperature for PEPC in A. hypochondriacus (C(4)) was 45 degrees C compared to 30 degrees C in P. sativum (C(3)). A. hypochondriacus (C(4)) lost nearly 70% of PEPC activity on exposure to a low temperature of 15 degrees C, compared to only about a 35% loss in the case of P. sativum (C(3)). Thus, the C(4) enzyme was less sensitive to supra-optimal temperature and more sensitive to sub-optimal temperature than that of the C(3) species. As the temperature was raised from 15 degrees C to 50 degrees C, there was a sharp decrease in malate sensitivity of PEPC. The extent of such a decrease in C(4) plants (45%) was more than that in C(3) species (30%). The maintenance of high enzyme activity at warm temperatures, together with a sharp decrease in the malate sensitivity of PEPC was also noticed in other C(4) plants. The temperature-induced changes in PEPC of both A. hypochondriacus (C(4)) and P. sativum (C(3)) were reversible to a large extent. There was no difference in the extent of phosphorylation of PEPC in leaves of A. hypochondriacus on exposure to varying temperatures, unlike the marked increase in the phosphorylation of enzyme on illumination of the leaves. These results demonstrate that (i) there are marked differences in the temperature sensitivity of PEPC in C(3) and C(4) plants, (ii) the temperature induced changes are reversible, and (iii) these changes are not related to the phosphorylation state of the enzyme. The inclusion of PEG-6000, during the assay, dampened the modulation by temperature of malate sensitivity of PEPC in A. hypochondriacus. It is suggested that the variation in temperature may cause significant conformational changes in C(4)-PEPC. PMID:12554714

  20. Compressive behavior of bulk metallic glass under different conditions --- Coupled effect of temperature and strain rate

    NASA Astrophysics Data System (ADS)

    Yin, Weihua

    Metallic glass was first reported in 1960 by rapid quenching of Au-Si alloys. But, due to the size limitation, this material did not attract remarkable interest until the development of bulk metallic glasses (BMGs) with specimen sizes in excess of 1 mm. BMGs are considered to be promising engineering materials because of their ultrahigh strength, high elastic limit and wear resistance. However, they usually suer from a strong tendency for localized plastic deformation with catastrophic failure. Many basic questions, such as the origin of shear softening and the strain rate eect remain unclear. In this thesis, the mechanical behavior of the Zr55Al 10Ni5Cu30 bulk metallic glass and a metallic glass composite is investigated. The stress-strain relationship for Zr55Al10Ni 5Cu30 over a wide range of strain rate (5x10 --5 to 2x103 s--1) was investigated in uniaxial compression loading using both MTS servo-hydraulic system (quasi-static) and compression Kolsky bar system (dynamic). The effect of the strain rate on the fracture stress at room temperature was discussed. Based on the experimental results, the strain rate sensitivity of the bulk metallic glass changes from a positive value to a negative value at high strain rate, which is a consequence of the significant adiabatic temperature rise during the dynamic testing. In order to characterize the temperature eect on the mechanical behavior of the metallic glass, a synchronically assembled heating unit was designed to be attached onto the Kolsky bar system to perform high temperature and high strain rate mechanical testing. A transition from inhomogeneous deformation to homogeneous deformation has been observed during the quasi-static compressive experiments at testing temperatures close to the glass transition temperature. However, no transition has been observed at high strain rates at all the testing temperatures. A free volume based model is applied to analyze the stress-strain behavior of the homogeneous deformation. To further examine the inelastic deformation of the Zr-based bulk metallic glasses, instrumented nanoindentation experiments were performed. A transition from discrete plastic deformation to continuous plastic deformation was found when strain rate is increased but still within the quasi-static strain rate region. Motivated by the metal matrix composite material, a tungsten reinforced BMG composite was investigated at quasi-static and dynamic strain rates. The mechanical behavior of the metallic glass matrix was improved significantly by the addition of W particles.

  1. Elevated temperature differently affects foliar nitrogen partitioning in seedlings of diverse Douglas fir provenances.

    PubMed

    Du, Baoguo; Jansen, Kirstin; Junker, Laura Verena; Eiblmeier, Monika; Kreuzwieser, Jürgen; Gessler, Arthur; Ensminger, Ingo; Rennenberg, Heinz

    2014-10-01

    Global climate change causes an increase in ambient air temperature, a major environmental factor influencing plant physiology and growth that already has been perceived at the regional scale and is expected to become even more severe in the future. In the present study, we investigated the effect of elevated ambient air temperature on the nitrogen metabolism of two interior provenances of Douglas fir (Pseudotsuga menziesii var. glauca) originating from contrasting habitats, namely the provenances Monte Creek (MC) from a drier environment and Pend Oreille (PO) from a more humid environment. Three- to four-year-old seedlings of the two provenances were grown for 3 months in controlled environments under either control temperature (day 20 °C, night 15 °C) or high temperature (HT, 30/25 °C) conditions. Total nitrogen (N), soluble protein, chlorophyll and total amino acid (TAA) contents as well as individual amino acid concentrations were determined in both current-year and previous-year needles. Our results show that the foliar total N contents of the two provenances were unaffected by HT. Arginine, lysine, proline, glutamate and glutamine were the most abundant amino acids, which together contributed ∼88% to the TAA pool of current- and previous-year needles. High temperature decreased the contents of most amino acids of the glutamate family (i.e., arginine, proline, ornithine and glutamine) in current-year needles. However, HT did not affect the concentrations of metabolites related to the photorespiratory pathway, such as [Formula: see text], glycine and serine. In general, current-year needles were considerably more sensitive to HT than previous-year needles. Moreover, provenance PO originating from a mesic environment showed stronger responses to HT than provenance MC. Our results indicate provenance-specific plasticity in the response of Douglas fir to growth temperature. Provenance-specific effects of elevated temperature on N-use efficiency suggest that origin might determine the sensitivity and growth potential of Douglas fir trees in a future warmer climate. PMID:25240727

  2. Handling Temperature Bursts Reaching 464°C: Different Microbial Strategies in the Sisters Peak Hydrothermal Chimney

    PubMed Central

    Kurtz, Stefan; LaRoche, Julie

    2014-01-01

    The active venting Sisters Peak (SP) chimney on the Mid-Atlantic Ridge holds the current temperature record for the hottest ever measured hydrothermal fluids (400°C, accompanied by sudden temperature bursts reaching 464°C). Given the unprecedented temperature regime, we investigated the biome of this chimney with a focus on special microbial adaptations for thermal tolerance. The SP metagenome reveals considerable differences in the taxonomic composition from those of other hydrothermal vent and subsurface samples; these could be better explained by temperature than by other available abiotic parameters. The most common species to which SP genes were assigned were thermophilic Aciduliprofundum sp. strain MAR08-339 (11.8%), Hippea maritima (3.8%), Caldisericum exile (1.5%), and Caminibacter mediatlanticus (1.4%) as well as to the mesophilic Niastella koreensis (2.8%). A statistical analysis of associations between taxonomic and functional gene assignments revealed specific overrepresented functional categories: for Aciduliprofundum, protein biosynthesis, nucleotide metabolism, and energy metabolism genes; for Hippea and Caminibacter, cell motility and/or DNA replication and repair system genes; and for Niastella, cell wall and membrane biogenesis genes. Cultured representatives of these organisms inhabit different thermal niches; i.e., Aciduliprofundum has an optimal growth temperature of 70°C, Hippea and Caminibacter have optimal growth temperatures around 55°C, and Niastella grows between 10 and 37°C. Therefore, we posit that the different enrichment profiles of functional categories reflect distinct microbial strategies to deal with the different impacts of the local sudden temperature bursts in disparate regions of the chimney. PMID:24837379

  3. Development and survival of embryos of lake herring at different constant oxygen concentrations and temperatures

    USGS Publications Warehouse

    Brooke, L.T.; Colby, P.J.

    1980-01-01

    Eggs of lake herring (Coregonus artedii) were incubated in a continuous-flow system at four constant water temperatures (2-8°C) and five dissolved oxygen (DO) concentrations (1-12 mg/L). In comparison with incubation time at 12 mg/L DO, time to median hatch was significantly longer (P<0.05) at 2 mg/L at 6°C (no hatch at 1 mg/L), at 3 mg/L or less at 4°C, and at 4 mg/L or less at 2°C. The time between hatching of the first and last eggs varied inversely with temperature. Mean total lengths of newly hatched fry were significantly shortened (P < 0.05) at 1 and 2 mg/L DO. At 6 and 8°C, percent survival through hatching was greater than at 2 and 4°C at DO of 4 mg/L or more, but fell to zero at 1 mg/L. The percentage of normal fry produced decreased noticeably below 4 mg/L DO. The optimum temperature for highest percentage survival of normal fry decreased directly with the level of dissolved oxygen. The temperatures at which the highest percentages of normal fry hatched from eggs incubated at DO concentrations of 4 or 8, 2, and 1 mg/L, were 6, 4, and 2°C, respectively-indicating a decreasing DO demand by embryos incubated at the lower temperatures. Our findings supported a previously published hypothesis that DO concentrations below 4 mg/L can be adverse to survival and development of coregonid embryos in nature.

  4. Development, Survival, and Reproduction of Megacopta cribraria (Heteroptera: Plataspidae) at Different Constant Temperatures.

    PubMed

    Shi, Shu-Sen; Cui, Juan; Zang, Lian-Sheng

    2014-12-01

    The plataspid Megacopta cribraria (F.), an economic pest of soybeans, Glycine max (L.) Merrill, in Asia recently invaded North America and has become not only an important pest of soybean but also a nuisance pest. Although much is reported about M. cribraria in its native and invasive range, little information has been documented on the effect of temperatures on its development, longevity, and reproduction. We evaluated the influence of five constant temperatures (17-33C) on the development, survival, fecundity, and population growth of M. cribraria in the laboratory. The developmental time for egg and nymph stages was shortened significantly with increasing temperature. The developmental time from egg to adult emergence was 114.81, 76.26, 44.54, and 38.54 d at 17, 21, 25, and 29C, respectively. The nymphs of M. cribraria could not complete full development at a constant 33C. The developmental threshold temperature estimated for egg to adult was 14.25C, with a thermal constant of 849.56 degree-days. Females had the longest preoviposition period at 21C (54.33 d), and the preoviposition period was shortened significantly as the temperature increased. Females had the longest oviposition period (35.33 d) and the highest fecundity (159.67 eggs per female) at 25C and did not lay any eggs at 17C. Female longevity was found to be shortest (44.0 d) at 29C, and similar (75.67-81.50 d) at 17-25C. The population trend index of M. cribraria was the highest (46.47) at 25C, followed by 29C (10.84) and 21C (6.70). The results will be useful for predicting the phenology and population dynamics of M. cribraria and will provide some biological information on the invasive species in its nonnative range. PMID:26470070

  5. [Diagnostic value of the rectal examination and the difference in axillo-rectal temperatures in acute appendicitis in childhood].

    PubMed

    Koudelka, J; Preis, J; Králová, M

    1991-02-01

    The authors deal with the importance of pain in the Douglas space during rectal examination and the contribution of the axillo- rectal difference in temperature in the diagnosis of acute appendicitis in a group of 402 children operated on who had the above preoperative diagnosis. Marked pain in the Douglas space was recorded in 53.6% children and complete absence of pain in 31.2% of the children with acute appendicitis proved at operation. In children where so-called negative laparotomy was performed this ratio was reversed. When evaluating the axillo-rectal difference in temperature the authors reached the paradoxical conclusion that an obviously physiological difference in the axillo-rectal temperature (up to 0.5 degrees C) was slightly more frequent in acute appendicitis than in negative laparotomy. An obviously pathological difference (1 degrees C or more) was three times more frequent in patients with negative laparotomies than in acute appendicitis. Next the authors discuss views reported in the literature where data on the asset of rectal examination in acute appendicitis vary between 2.9-73%. In the conclusion the authors recommend rectal examinations in all children with suspicion of any type of acute abdomen, however, taking into account that pain in the Douglas space will contribute only little to the reduction of the number of negative laparotomies. They consider assessment of the axillo-rectal difference in temperature practically useless. PMID:1925781

  6. An experimental study of the influence of the temperature difference field uniformity on cross-flow heat exchanger performance

    SciTech Connect

    Lu, B.; Lloyd, J.R.; Guo, Z.Y.; Zhou, S.Q.

    1996-12-31

    An experimental study of heat exchanger performance has been conducted utilizing a basic cross-flow heat exchanger configuration. Six different cross-flow, finned-tube heat exchanger flow configurations were tested in a specially designed wind tunnel system to investigate the importance of the Temperature Difference Uniformity on the effectiveness of heat exchanger performance. The Temperature Difference Field (TDF) and the Temperature Difference Uniformity Factor, {Phi}, were employed as design factors to characterize and evaluate heat exchanger thermal performance. A base heat exchanger configuration was established, and then five modifications on the base configuration were made in a systematic study to enhance the performance. The fluids were air on the outside, and hot water inside the tubes. The basic configurations included either 28 or 56 tubes in the bank. The results of the experiments have clearly demonstrated the importance of flow distribution and how it can be used to control the Temperature Difference Field; which, as a design parameter, is an important component of heat exchanger performance optimization. Heat exchanger effectiveness for the best flow distribution was found to increase by 4.3% over that of the conventional flow distribution with no associated increase in pressure drop. This promotes a new path for them to increase heat exchanger heat transfer effectiveness. Comments on further possible performance enhancement strategies are presented.

  7. Proposal of quantitative temperature measurements using two-color technique combined with several infrared radiometers having different detection wavelength bands

    NASA Astrophysics Data System (ADS)

    Inagaki, Terumi; Ishii, Toshimitsu

    2001-03-01

    Infrared thermography has been widely used to visualize a 2D temperature field for various engineering applications. However, in general, conventional infrared thermography cannot directly be applied to quantitative temperature measurement on glossy metal surfaces under near-ambient conditions, because of the severe influence of the reflected energy incident from the surroundings on the measurement. When it is necessary to measure the temperature quantitatively, an appropriate calibration involving complicated procedures must be performed. In this paper, therefore, a new technique of measuring temperature is proposed for near-ambient conditions, by combining simultaneously several infrared radiometers having different detection wavelength bands to enable a two-color technique, which does not require any temperature calibrations. The sensors concerned have a selective wavelength band of several micrometers in width in the range of 2 to 13 micrometers . The applicability of the method, including a series of proposed equations, has been confirmed by an investigation; the numerical simulation presented merely allows a parametric study of how the result varies for different values of emissivity corresponding to a pair of infrared radiometers. An experimental investigation is also performed to estimate or correct the measurement error pertaining to the present technique. This technique has the feature that a 2D temperature field can be evaluated quantitatively, nondestructively, and simultaneously at each picture element without presuming any emissivity and reflectivity, even though the object has a complicated shape; so that it may be useful in various medical or engineering applications.

  8. Temperature sensitivity of extracellular enzyme kinetics in subtropical wetland soils under different nutrient and water level conditions

    NASA Astrophysics Data System (ADS)

    Goswami, S.; Inglett, K.; Inglett, P.

    2012-12-01

    Microbial extracellular enzymes play an important role in the initial steps of soil organic matter decomposition and are involved in regulating nutrient cycle processes. Moreover, with the recent concern of climate change, microbial extracellular enzymes may affect the functioning (C losses, C sequestration, greenhouse gas emissions, vegetation changes) of different ecosystems. Hence, it is imperative to understand the biogeochemical processes that may be climate change sensitive. Here, we have measured the Michaelis Menten Kinetics [maximal rate of velocity (Vmax) and half-saturation constant (Km)] of 6 enzymes involved in soil organic matter decomposition (phosphatase, phosphodiesterase, β-D-glucosidase, cellobiohydrolase, leucine aminopeptidase, N-Acetyl-β-D glucosaminidase) in different nutrient(P) concentration both aerobically and anaerobically in Everglade water conservation area 2A (F1, F4-slough and U3-slough). Temperature sensitivity of different enzymes is assessed within soil of different P concentrations. We hypothesized that the temperature sensitivity of the enzyme changes with the biogeochemical conditions including water level and nutrient condition. Furthermore, we have tested specific hypothesis that higher P concentration will initiate more C demand for microbes leading to higher Vmax value for carbon processing enzymes in high P site. We found temperature sensitivity of all enzymes for Vmax and Km under both aerobic and anaerobic condition ranges from 0.6 to 3.2 for Vmax and 0.5 to 2.5 for Km. Q10 values of Km for glucosidase indicate more temperature sensitivity under anaerobic condition. Under aerobic condition higher temperature showed significant effect on Vmax for bisphosphatase between high P and low P site. Decreasing P concentration from F1 site to U3-S site had showed significant effect in all temperature on carbon processing enzyme. This suggests that in high P site, microbes will use more carbon-processing enzyme to get more carbon due to easily available P. N-Acetyl-β-D glucosaminidase, cellobiohydrolase, phosphatase showed significant site effect in 25°C and 30°C. Anaerobic condition also showed significant site effect on carbon processing enzyme's temperature sensitivity for Vmax. No enzyme showed significant interaction between sites and temperatures for Km. Only phosphatase showed significant interaction between site and temperature sensitivity for Km. Our results showed higher Q10 values for Vmax over Km; indicating more decomposition at higher temperature. In summary, the results suggest that increasing concentration of P will increase carbon processing enzyme activity that leads to higher decomposition rate.

  9. Laser-induced breakdown spectroscopy on metallic samples at very low temperature in different ambient gas pressures

    NASA Astrophysics Data System (ADS)

    El-Saeid, R. H.; Abdelhamid, M.; Harith, M. A.

    2016-02-01

    Analysis of metals at very low temperature adopting laser-induced breakdown spectroscopy (LIBS) is greatly beneficial in space exploration expeditions and in some important industrial applications. In the present work, the effect of very low sample temperature on the spectral emission intensity of laser-induced plasma under both atmospheric pressure and vacuum has been studied for different bronze alloy samples. The sample was cooled down to liquid nitrogen (LN) temperature 77 K in a special vacuum chamber. Laser-induced plasma has been produced onto the sample surface using the fundamental wavelength of Nd:YAG laser. The optical emission from the plasma is collected by an optical fiber and analyzed by an echelle spectrometer combined with an intensified CCD camera. The integrated intensities of certain spectral emission lines of Cu, Pb, Sn, and Zn have been estimated from the obtained LIBS spectra and compared with that measured at room temperature. The laser-induced plasma parameters (electron number density Ne and electron temperature Te) were investigated at room and liquid nitrogen temperatures for both atmospheric pressure and vacuum ambient conditions. The results suggest that reducing the sample temperature leads to decrease in the emission line intensities under both environments. Plasma parameters were found to decrease at atmospheric pressure but increased under vacuum conditions.

  10. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature

    PubMed Central

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  11. Different Transcriptional Responses from Slow and Fast Growth Rate Strains of Listeria monocytogenes Adapted to Low Temperature.

    PubMed

    Cordero, Ninoska; Maza, Felipe; Navea-Perez, Helen; Aravena, Andrés; Marquez-Fontt, Bárbara; Navarrete, Paola; Figueroa, Guillermo; González, Mauricio; Latorre, Mauricio; Reyes-Jara, Angélica

    2016-01-01

    Listeria monocytogenes has become one of the principal foodborne pathogens worldwide. The capacity of this bacterium to grow at low temperatures has opened an interesting field of study in terms of the identification and classification of new strains of L. monocytogenes with different growth capacities at low temperatures. We determined the growth rate at 8°C of 110 strains of L. monocytogenes isolated from different food matrices. We identified a group of slow and fast strains according to their growth rate at 8°C and performed a global transcriptomic assay in strains previously adapted to low temperature. We then identified shared and specific transcriptional mechanisms, metabolic and cellular processes of both groups; bacterial motility was the principal process capable of differentiating the adaptation capacity of L. monocytogenes strains with different ranges of tolerance to low temperatures. Strains belonging to the fast group were less motile, which may allow these strains to achieve a greater rate of proliferation at low temperature. PMID:26973610

  12. Effect of temperature difference between manikin and wet fabric skin surfaces on clothing evaporative resistance: how much error is there?

    NASA Astrophysics Data System (ADS)

    Wang, Faming; Kuklane, Kalev; Gao, Chuansi; Holmr, Ingvar

    2012-01-01

    Clothing evaporative resistance is one of the inherent factors that impede heat exchange by sweating evaporation. It is widely used as a basic input in physiological heat strain models. Previous studies showed a large variability in clothing evaporative resistance both at intra-laboratory and inter-laboratory testing. The errors in evaporative resistance may cause severe problems in the determination of heat stress level of the wearers. In this paper, the effect of temperature difference between the manikin nude surface and wet textile skin surface on clothing evaporative resistance was investigated by both theoretical analysis and thermal manikin measurements. It was found that the temperature difference between the skin surface and the manikin nude surface could lead to an error of up to 35.9% in evaporative resistance of the boundary air layer. Similarly, this temperature difference could also introduce an error of up to 23.7% in the real clothing total evaporative resistance ( R et_real < 0.1287 kPa m2/W). Finally, it is evident that one major error in the calculation of evaporative resistance comes from the use of the manikin surface temperature instead of the wet textile fabric skin temperature.

  13. Local Piezoelectric Properties and Polarity Distribution of ZnO Films Deposited at Different Substrate Temperatures

    NASA Astrophysics Data System (ADS)

    Li, Cuiping; Dai, Wei; Xu, Sheng; Li, Xiaowei; Gao, Chengyao; Chen, Ximing; Yang, Baohe

    2015-04-01

    In this work we deposited c-axis-oriented ZnO films using radiofrequency magnetron sputtering at substrate temperatures from 200°C to 500°C. We then characterized their local piezoelectric properties and polarity distributions using piezoresponse force microscopy, revealing that these ZnO films contained grains with opposite polarities: O-face and Zn-face. The grains with O-face polarity exhibited larger piezoresponse magnitude than those with Zn-face polarity. As the substrate temperature was increased, the predominant polarization orientation of the films changed from O-face to Zn-face. The film deposited at 300°C showed uniform polarization orientation together with higher piezoresponse magnitude.

  14. Geometrical Scaling of an Ablative Bluff Body under Different Outer Flow Velocity and Temperature Configurations

    NASA Astrophysics Data System (ADS)

    Allard, Michael; White, Christopher M.; Dubief, Yves

    2015-11-01

    Experimental results investigating the geometrical scaling and local properties of an eroding low temperature ablator (para-dichlorobenzene) are presented. The bluff body is placed in a heated open-circuit wind tunnel and the effects of incoming outer flow velocity (uniform and spatially varying) and temperature on the ablation process are investigated. Image sequencing of the projected area in the streamwise-spanwise and streamwise-wall normal flow direction are used to quantify the time evolution of the geometrical shape and compute local recession rates and curvature. The geometrical self-similarity and local recession rates are evaluated and compared to Moore et al. and Huang et al. who investigated erosion under the action of fluid shear force and dissolution, respectively. This work is supported by the NSF (CBET-0967224).

  15. Molecular and Cellular Effects Induced in Mytilus galloprovincialis Treated with Oxytetracycline at Different Temperatures

    PubMed Central

    Banni, Mohamed; Sforzini, Susanna; Franzellitti, Silvia; Oliveri, Caterina; Viarengo, Aldo; Fabbri, Elena

    2015-01-01

    The present study evaluatedthe interactive effects of temperature (16°C and 24°C) and a 4-day treatment with the antibiotic oxytetracycline (OTC) at 1 and 100μg/L on cellular and molecular parameters in the mussel Mytilus galloprovincialis. Lysosomal membrane stability (LMS), a sensitive biomarker of impaired health status in this organism, was assessed in the digestive glands. In addition, oxidative stress markers and the expression of mRNAs encoding proteins involved in antioxidant defense (catalase (cat) and glutathione-S-transferase (gst)) and the heat shock response (hsp90, hsp70, and hsp27) were evaluated in the gills, the target tissue of soluble chemicals. Finally, cAMP levels, which represent an important cell signaling pathway related to oxidative stress and the response to temperature challenges, were also determined in the gills. Exposure to heat stress as well as to OTC rendered a decrease in LMS and an increase in malonedialdehyde accumulation (MDA). CAT activity was not significantly modified, whereas GST activity decreased at 24°C. Cat and gst expression levels were reduced in animals kept at 24°C compared to 16°C in the presence or absence of OTC. At 16°C, treatment with OTC caused a significant increase in cat and gst transcript levels. Hsp27 mRNA was significantly up-regulated at all conditions compared to controls at 16°C. cAMP levels were increased at 24°C independent of the presence of OTC. PCA analysis showed that 37.21% and 25.89% of the total variance was explained by temperature and OTC treatment, respectively. Interestingly, a clear interaction was observed in animals exposed to both stressors increasing LMS and MDA accumulation and reducing hsp27 gene expression regulation. These interactions may suggest a risk for the organisms due to temperature increases in contaminated seawaters. PMID:26067465

  16. GROWTH AND SURVIVAL OF YOUNG-OF-THE-YEAR EMERALD SHINERS ('NOTROPIS ATHERINOIDES') AT DIFFERENT TEMPERATURES

    EPA Science Inventory

    Young-of-the-year emerald shiners (Notropis atherinoides) were exposed to mean constant temperatures of 6.9, 11.9, 16.0, 19.8, 24.0, 26.9, 28.9, 311.0, 32.8, 34.9, and 36.7C for 6 wk. Maximum rates of growth and net biomass gain occurred at 28.9C, but these rates were not statist...

  17. Measurements of Sr/Ca in bones to evaluate differences in temperature

    NASA Astrophysics Data System (ADS)

    Santos, P. R.; Added, N.; Aburaya, J. H.; Rizzutto, M. A.

    2008-04-01

    Analysis of aragonite from sea shells and coral skeletons showed a clear correlation between the strontium and calcium concentrations for these crystals (Sr/Ca ratio) and seawater temperature obtained by satellites and ship readings. In this work we present the results of a study that correlates Sr/Ca ratio with formation temperature of another calcium crystal, the hydroxyapatite (Ca10(PO4)6(OH)2), main mineral compound of teeth and bones from vertebrates. These animals, independent of its thermoregulation pattern (endothermic or ectothermic) have variations of internal temperature along the body. One interesting application of this work is to differentiate warm-blooded animals from cold-blooded ones just by measuring Sr/Ca ratio in their bones. Bones from a crocodile from Caiman yacare species and two dogs, a poodle and a non defined race, were analyzed using PIXE technique and thick target correction. A 1.78 (18) MeV external proton beam was used in LAMFI-USP with an accumulated charge of about 10 μC for probing the samples. Emitted X-rays were collected using Si-PIN detectors (140 keV for Fe). As in coral skeletons, the Sr/Ca ratio of animals is lower in the body's warmer parts and higher in colder parts.

  18. Differential stability of TATA box binding proteins from archaea with different optimal growth temperatures

    NASA Astrophysics Data System (ADS)

    Kopitz, Annette; Soppa, Jörg; Krejtschi, Carsten; Hauser, Karin

    2009-09-01

    The TATA box binding protein (TBP) is involved in promoter recognition, the first step of transcription initiation. TBP is universally conserved and essential in archaea and eukaryotes. In archaea, TBPs have to be stable and to function in species that cover an extremely wide range of optimal growth temperatures (OGTs), from below 0 °C to more than 100 °C. Thus, the archaeal TBP family is ideally suited to study the evolutionary adaptation of proteins to an extremely wide range of temperatures. We characterized the thermostability of one mesophilic and one thermophilic TBP by infrared spectroscopy. Transition temperatures ( Tms) of thermal unfolding have been determined using TBPs from Methanosarcina mazei (OGT 37 °C) and from Methanothermobacter thermautotrophicus (OGT 65 °C). Furthermore, the influence of protein and salt concentration on thermostability has been characterized. Together with previous studies, our results reveal that the Tms of archaeal TBPs are closely correlated with the OGTs of the respective species. Noteworthy, this is also true for the TBP from M. mazei representing the first characterized TBP from a mesophilic archaeon. In contrast, the only characterized eukaryotic TBP of the mesophilic plant Arabidopsis thaliana has a Tm more than 40 °C above the OGT.

  19. Rock weathering by indigenous heterotrophic bacteria of Bacillus spp. at different temperature: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Štyriaková, I.; Štyriak, I.; Oberhänsli, H.

    2012-07-01

    The bio-weathering of basalt, granite and gneiss was experimentally investigated in this study. These rock-forming minerals weathered more rapidly via the ubiquitous psychrotrophic heterotrophic bacteria . With indigenous bacteria of Bacillus spp. from sediments of Lake Baikal, we traced the degradation process of silicate minerals to understand the weathering processes occurring at the change temperature in the subsurface environment with organic input. The bacteria mediated dissolution of minerals was monitored with solution and solid chemistry, X-ray analyses as well as microscopic techniques. We determined the impact of the bacteria on the mineral surface and leaching of K, Ca, Mg, Si, Fe, and Al from silicate minerals. In the samples the release of major structural elements of silicates was used as an overall indicator of silicate mineral degradation at 4°C and 18°C from five medium exchanges over 255 days of rock bioleaching. The increase of temperature importantly affected the efficiency of Fe extraction from granite and basalt as well as Si extraction from granite and gneiss. In comparison with elemental extraction order at 4°C, Ca was substituted first by Fe or Si. It is evident that temperature influences rock microbial weathering and results in a change of elements extraction.

  20. Solubility of cyclooctasulfur in pure water and sea water at different temperatures

    NASA Astrophysics Data System (ADS)

    Kamyshny, A., Jr.

    2009-10-01

    The solubility of cyclooctasulfur in water and sea water at various temperatures in the range between 4 and 80 °C was determined. Cyclooctasulfur in equilibrium with rhombic sulfur reacted with hot acidic aqueous potassium cyanide to form thiocyanate anion which was measured by anion chromatography. Sulfur solubility in pure water was found to increase with temperature by more than 78 times: from 6.1 nM S 8 at 4 °C to 478 nM S 8 at 80 °C. The following thermodynamic values for solubilisation of S 8 in water were calculated from the experimental data: K° = 3.01 ± 1.04 × 10 -8, Δ G r° = 42.93 ± 0.73 kJ mol -1, Δ H r° = 47.4 ± 3.6 kJmol -1, Δ S r° = 15.0 ± 11.7 J mol -1 K -1). Solubility of cyclooctasulfur in sea water was found to be 61 ± 13% of the solubility in pure water regardless of the temperature.

  1. Regulated and nonregulated diesel and gasoline cold start emissions at different temperatures

    NASA Astrophysics Data System (ADS)

    Weilenmann, Martin; Soltic, Patrik; Saxer, Christian; Forss, Anna-Maria; Heeb, Norbert

    The emissions of modern cars are usually reduced in warm engine conditions by catalysts. Consequently emissions are significantly higher during the cold start, i.e. the warm-up phase of the car. The duration of this period and the emissions produced during it depend on the ambient temperature as well as on the initial temperature of the car's systems. The cold start emissions of Euro-3 gasoline cars, Euro-2 diesel cars and old pre-Euro-1 gasoline cars were investigated at cold ambient temperatures. Since the goal was to get real-world emissions, the measurements were done with cars belonging to private owners taken straight from the road with no maintenance. The chassis dynamometer tests were carried out at +23, -7 and -20 °C. The test cycle employed is a representative urban ride from a real-world driving behaviour study. Besides the regulated pollutants, methane, benzene and toluene were also measured online by chemical ionisation mass spectrometry.

  2. [Biological efficacy and persistence of biphenthrin sprayed on maize at different grain temperatures].

    PubMed

    Silveira, Rodrigo D; Faroni, Lda R A; Pimentel, Marco A G; Peternelli, Luiz A; Zocolo, Guilherme

    2006-01-01

    The objective of this work was to evaluate the immediate and latent effects of the grain temperature, during the spraying process, on the persistence and biological efficacy of the biphenthrin insecticide against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae) and Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). For such, biphenthrin was sprayed on the grain at the temperatures: 25, 30, 35, 40 and 45 degrees C. To access the persistence of biphenthrin, insecticide residue analyses were carried out monthly, just after spraying until 90 days of storage. To evaluate the biological efficacy of biphenthrin, 20 adults of each species were placed in petri dishes with sprayed grain, and kept in climate cabinets under 27 degrees C and 55% of RH, during 48h. Evaluations were done every 15 days, starting just after spraying and finishing at 90 days of storage. Both persistence and biological efficacy of biphenthrin reduced as storage time and grain temperatures increased. Additionally, S. zeamais was more tolerant to biphenthrin than T. castaneum. PMID:17348140

  3. Continuous microwave saturation of EPR spectra of melanin complexes at different temperatures

    NASA Astrophysics Data System (ADS)

    Zdybel, Magdalena; Pilawa, Barbara; Buszman, Ewa; Wrzesniok, Dorota; Krzyminiewski, Ryszard; Kruczynski, Zdzislaw

    2011-01-01

    Paramagnetic centers in DOPA-melanin and complexes of DOPA-melanin with netilmicin and Cu(II) were studied by the use of an X-band (9.3 GHz) electron paramagnetic resonance (EPR) spectroscopy. Measurements of continuous microwave saturation of EPR spectra at temperatures: 125 K, 175 K, 225 K, 275 K, were performed. Homogeneous broadening of all the examined EPR spectra was observed. EPR spectra of DOPA-melanin-Cu(II) complexes saturated at higher microwave powers than the others tested melanin samples. Fast spin-lattice relaxation exists in DOPA-melanin-Cu(II) complexes. Slow spin-lattice relaxation processes exist in melanin's paramagnetic centers of DOPA-melanin and its complexes with netilmicin, and its complexes with both netilimicin and Cu(II). EPR spectra of all the tested samples saturated at higher microwave powers with increasing of the measuring temperature. Faster spin-lattice relaxation processes occurs in DOPA-melanin and its complexes with netilmicin and Cu(II) at higher temperature.

  4. Growth of AlInN films via elemental layers annealing at different temperatures

    NASA Astrophysics Data System (ADS)

    Afzal, Naveed; Devarajan, Mutharasu; Ibrahim, Kamarulazizi

    2015-09-01

    This work investigates the growth of AlInN films on Si (100) substrates through the annealing of Al and InN stacking layers in the temperature range 200∘C to 800∘C. The Al/InN layers were prepared on Si (100) substrates using RF magnetron sputtering technique at 100∘C. The layers were annealed in a quartz tube furnace at 200∘C, 400∘C, 600∘C and 800∘C for six hours. Structural features of the films were examined through XRD whereas the surface morphology and composition of the films were studied through FESEM and EDS, respectively. The FESEM and EDS cross-sectional analyses of the films were also conducted to observe the mixing of Al/InN stacking layers. XRD patterns revealed the formation of polycrystalline AlInN films whereas the FESEM and EDS cross-sectional results indicated that the mixing of Al/InN stacked layers became more prominent with increase of the annealing temperature. Surface roughness of the films studied through AFM also exhibited an increasing trend with increase of the annealing temperature.

  5. Growth behavior of titanium dioxide thin films at different precursor temperatures

    PubMed Central

    2012-01-01

    The hydrophilic TiO2 films were successfully deposited on slide glass substrates using titanium tetraisopropoxide as a single precursor without carriers or bubbling gases by a metal-organic chemical vapor deposition method. The TiO2 films were employed by scanning electron microscopy, Fourier transform infrared spectrometry, UV-Visible [UV-Vis] spectroscopy, X-ray diffraction, contact angle measurement, and atomic force microscopy. The temperature of the substrate was 500°C, and the temperatures of the precursor were kept at 75°C (sample A) and 60°C (sample B) during the TiO2 film growth. The TiO2 films were characterized by contact angle measurement and UV-Vis spectroscopy. Sample B has a very low contact angle of almost zero due to a superhydrophilic TiO2 surface, and transmittance is 76.85% at the range of 400 to 700 nm, so this condition is very optimal for hydrophilic TiO2 film deposition. However, when the temperature of the precursor is lower than 50°C or higher than 75°C, TiO2 could not be deposited on the substrate and a cloudy TiO2 film was formed due to the increase of surface roughness, respectively. PMID:22280933

  6. Sub-10 pW/Hz0.5 room temperature Ni nano-bolometer

    NASA Astrophysics Data System (ADS)

    Yang, Hyun-Ho; Rebeiz, Gabriel M.

    2016-02-01

    In this letter, we report on room temperature Ni nano-bolometers with a measured electrical noise equivalent power of 8.7 pW/Hz0.5 based on air-suspended and self-aligned nano-stack (SiO2/Ni/SiO2) structures, which is an outstanding electrical performance among uncooled micro/nano-bolometers. This result, together with electrical resistances of 172.6 Ω and modulation frequencies of 15-30 kHz, shows that Ni nano-bolometers can be easily coupled to terahertz antennas and are appropriate for fast passive imaging applications.

  7. Influence of temperature on measurements of the CO2 compensation point: differences between the Laisk and O2-exchange methods.

    PubMed

    Walker, Berkley J; Cousins, Asaph B

    2013-04-01

    The CO2 compensation point in the absence of day respiration (?*) is a key parameter for modelling leaf CO2 exchange. ?* links the kinetics of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) with the stoichiometry of CO2 released per Rubisco oxygenation from photorespiration (?), two essential components of biochemical models of photosynthesis. There are two main gas-exchange methods for measuring ?*: (i) the Laisk method, which requires estimates of mesophyll conductance to CO2 (g m) and (ii) measurements of O2 isotope exchange, which assume constant values of ? and a fixed stoichiometry between O2 uptake and Rubisco oxygenation. In this study, the temperature response of ?* measured using the Laisk and O2-exchange methods was compared under ambient (25 C) and elevated (35 C) temperatures to determine whether both methods yielded similar results. Previously published temperature responses of ?* estimated with the Laisk and O2-exchange methods in Nicotiana tabacum demonstrated that the Laisk-derived model of ?* was more sensitive to temperature compared with the O2-exchange model. Measurements in Arabidopsis thaliana indicated that the Laisk and O2-exchange methods produced similar ?* at 25 C; however, ?* values from O2 exchange were lower at 35 C compared with the Laisk method. Compared with a photorespiratory mutant (pmdh1pmdh2hpr) with increased ?, wild-type (WT) plants had lower Laisk values of ?* at 25 C but were not significantly different at 35 C. These differences between Laisk and O2 exchange values of ?* at 35 C could be explained by temperature sensitivity of ? in WT and/or errors in the assumptions of O2 exchange. The differences between ?* measured using the Laisk and O2-exchange method with temperature demonstrate that assumptions used to measure ?*, and possibly the species-specific validity of these assumptions, need to be considered when modelling the temperature response of photosynthesis. PMID:23630324

  8. Pharmacokinetics of sulphadimidine in carp (Cyprinus carpio L.) and rainbow trout (Salmo gairdneri Richardson) acclimated at two different temperature levels.

    PubMed

    van Ginneken, V J; Nouws, J F; Grondel, J L; Driessens, F; Degen, M

    1991-04-01

    The influence of temperature (10 degrees C and 20 degrees C) on pharmacokinetics and metabolism of sulphadimidine (SDM) in carp and trout was studied. At 20 degrees C a significantly lower level of distribution (Vdarea) and a significantly shorter elimination half-life (T(1/2)beta) was achieved in both species compared to the 10 degrees C level. In carp the body clearance parameter (ClB(SDM)) was significantly higher at 20 degrees C compared to the value at 10 degrees C, whereas for trout this parameter was in the same order of magnitude for both temperatures. N4-acetylsulphadimidine (N4-SDM) was the main metabolite of SDM in both species at the two temperature levels. The relative N4-SDM plasma percentage in carp was significantly higher at 20 degrees C than at 10 degrees C, whereas there was in trout no significant difference. In neither species was the peak plasma concentration of N4-SDM (Cmax(N4-SDM)) significantly different at two temperatures. The corresponding peak time of this metabolite (Tmax(N4-SDM)) was significantly shorter at 20 degrees C compared to 10 degrees C in both carp and trout. In carp at both temperatures, acetylation occurs to a greater extent than hydroxylation. Only the 6-hydroxymethyl-metabolite (SCH2OH) was detected in carp, at a significant different level at the two temperatures. Concentrations of hydroxy metabolites in trout were at the detection level of the HPLC-method (0.02-micrograms/ml). The glucuronide metabolite (SOH-gluc.) was not detected in either species at the two temperatures. PMID:1882494

  9. Antenna noise temperatures of the 34-meter beam-waveguide antenna with horns of different gains installed at F1

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.; Lee, P. R.; Franco, M. M.

    1994-01-01

    This article presents a set of theoretical and measured zenith-antenna noise temperatures at 8.45 GHz for the DSS-13 34-m beam-waveguide antenna when horns of different gains are installed at F1. The methodology for calculations is shown in detail. The major differences between calculated and measured values are attributed to changes in subreflector support leg scattering when illuminated by the various horns.

  10. The effect of temperature on different Salmonella serotypes during warm seasons in a Mediterranean climate city, Adelaide, Australia.

    PubMed

    Milazzo, A; Giles, L C; Zhang, Y; Koehler, A P; Hiller, J E; Bi, P

    2016-04-01

    Changing trends in foodborne disease are influenced by many factors, including temperature. Globally and in Australia, warmer ambient temperatures are projected to rise if climate change continues. Salmonella spp. are a temperature-sensitive pathogen and rising temperature can have a substantial effect on disease burden affecting human health. We examined the relationship between temperature and Salmonella spp. and serotype notifications in Adelaide, Australia. Time-series Poisson regression models were fit to estimate the effect of temperature during warmer months on Salmonella spp. and serotype cases notified from 1990 to 2012. Long-term trends, seasonality, autocorrelation and lagged effects were included in the statistical models. Daily Salmonella spp. counts increased by 1·3% [incidence rate ratio (IRR) 1·013, 95% confidence interval (CI) 1·008-1·019] per 1 °C rise in temperature in the warm season with greater increases observed in specific serotype and phage-type cases ranging from 3·4% (IRR 1·034, 95% CI 1·008-1·061) to 4·4% (IRR 1·044, 95% CI 1·024-1·064). We observed increased cases of S. Typhimurium PT9 and S. Typhimurium PT108 notifications above a threshold of 39 °C. This study has identified the impact of warm season temperature on different Salmonella spp. strains and confirms higher temperature has a greater effect on phage-type notifications. The findings will contribute targeted information for public health policy interventions, including food safety programmes during warmer weather. PMID:26522685

  11. A two-dimensional finite-difference solution for the temperature distribution in a radial gas turbine guide vane blade

    NASA Technical Reports Server (NTRS)

    Hosny, W. M.; Tabakoff, W.

    1975-01-01

    A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial guide vane. A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.

  12. Effect of Different Time/Temperature Roast Combinations on Peanut Flavor-Descriptive Sensory, Electronic Nose and Electronic Eye Characterization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Roasting is of central importance to peanut flavor. Standard industry practice is to roast peanuts to a specific surface color (Hunter L-value) for a given application; however, equivalent surface colors can be generated using different temperature/time roast combinations. To better understand the e...

  13. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    NASA Astrophysics Data System (ADS)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-12-01

    The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25-200 °C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface materials investigated include stainless steel (reference), PTFE (polytetrafluoroethylene), silicone, quasicrystalline (Al, Fe, Cr) and ceramic coatings: zirconium oxide (ZrO2), zirconium nitride (ZrN) and titanium aluminum nitride (TiAlN). The ceramic coatings were deposited on stainless steel with two different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cos θ values. Studies of the effect of roughness and surface flaws on wettability revealed that the cos θ values increases with increasing roughness and surface flaws. Correlation analysis indicates that the measured contact angle values gave useful information for grouping easy-clean polymer materials from the other materials; for the latter group, there is no direct relation between contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability.

  14. Patterns of Substrate Utilization During Long-Term Incubations at Different Temperatures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Microorganisms play key roles in biogeochemical cycling by facilitating the release of nutrients from organic compounds. In doing so, microbial communities use different organic substrates that yield different amounts of energy for maintenance and growth of the community. Carbon utilization efficien...

  15. Quality Changes and Biogenic Amines Accumulation of Black Carp (Mylopharyngodon piceus) Fillets Stored at Different Temperatures.

    PubMed

    Fan, Hongbing; Liu, Xiaochang; Hong, Hui; Shen, Song; Xu, Qian; Feng, Ligeng; Luo, Yongkang

    2016-04-01

    Postmortem quality changes of black carp (Mylopharyngodon piceus) fillets stored at 20, 4, and 0°C (in ice) were determined in terms of pH value, K value, total volatile basic nitrogen, free amino acids, biogenic amines, drip loss, electrical conductivity (EC), sensory score, and microbial growth. The results showed that black carp fillets could maintain a good quality for 2, 9, and 12 days when stored at 20, 4, and 0°C, respectively. Pseudomonads, Aeromonas, and Enterobacteriaceae were the main spoilage bacteria in black carp. Tryptamine, 2-phenylethylamine, putrescine, cadaverine, and tyramine increased significantly (P < 0.05) during storage at the three temperatures, but not spermidine and spermine, among which tyramine and putrescine were the main biogenic amines in black carp fillets. A significantly higher concentration of histamine (132.05 mg/kg on the third day) was detected in the samples stored at 20°C (P < 0.01) than at 4 and 0°C (0.62 to 3.28 mg/kg) throughout storage, indicating storage of samples at 20°C favored the formation of histamine. The accumulations of tyramine, cadaverine, and histamine were highly correlated with the productions of tyrosine, lysine, and histidine, respectively. Correlations between EC and sensory, physical, chemical, and microbial parameters at the three storage temperatures showed that EC could be used as a better quality indicator to assess the overall quality of fish stored at 4 and 0°C (low temperature) than at 20°C. PMID:27052869

  16. Carbon mineralization of flooded boreal soil and vegetation under different temperature and oxygen conditions

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ullah, S.; Roulet, N.; Moore, T.

    2009-05-01

    Flooding of terrestrial ecosystems significantly alters carbon (C) mineralization rates, which results in increasing emissions of carbon dioxide (CO2) and methane (CH4). To better understand the changes after water impoundment, C mineralization under flooded conditions needs to be investigated. This study investigates CO2 and CH4 fluxes from flooded boreal soil and vegetation, compares them to the fluxes of non- flooded treatment, and examines how environmental factors affect the fluxes. We conducted short-term in vitro experiments using boreal forest soil (FH layer), peat soil (0 to 5 and 5 to 15 cm) layer, and black spruce needles and small twigs, and shrub, sedge, lichen, and moss tissues. Flooded samples were incubated in 1- L Mason jars without light, under three temperatures (5, 12, and 24degC) and 0 and 50 percent of ambient oxygen (O2) concentration, and non-flooded ones were incubated in 1-L plastic containers under same light and temperature conditions to those of flooded samples and ambient oxygen concentration. We collected gas samples after flushing with nitrogen gas and air, and the fluxes of CO2 and CH4 were determined by gas chromatography. The average CO2 and CH4 fluxes in all materials were 200 and 0.8 microgram C/g organic matter/day, with smaller CO2 fluxes and larger CH4 fluxes than the fluxes of non-flooding (CO2 and CH4: 370 and 0.2 microgram C/g organic matter/day). Among the flooded samples, forest and peatland ground vegetation showed much high CO2 fluxes, and peat soils released more CH4 than other materials. Higher temperatures increased emissions of both CO2 and CH4, and the lower O2 concentration increased CH4 emissions. These results suggest the flooded vegetation and peat soil largely contribute to the total C emission in the flooded ecosystem and that spatial and temporal variability in CO2 and CH4 emissions can be related to substrate type, temperature and O2 concentration.

  17. Lower stratospheric temperature differences between meteorological analyses in two cold Arctic winters and their impact on polar processing studies

    NASA Astrophysics Data System (ADS)

    Manney, Gloria L.; Sabutis, Joseph L.; Pawson, Steven; Santee, Michelle L.; Naujokat, Barbara; Swinbank, Richard; Gelman, Melvyn E.; Ebisuzaki, Wesley

    2003-03-01

    A quantitative comparison of six meteorological analyses is presented for the cold 1999/2000 and 1995/1996 Arctic winters. Using different analyzed data sets to obtain temperatures and temperature histories can have significant consequences. The area with temperatures below a polar stratospheric cloud (PSC) formation threshold commonly varies by ˜25% between the analyses, with some differences over 50%. Biases between analyses vary from year to year; in January 2000, Met Office analyses were coldest and National Centers for Environmental Prediction (NCEP) analyses were warmest, while NCEP analyses were usually coldest in 1995/1996 and NCEP/National Center for Atmospheric Research Reanalysis (REAN) were usually warmest. Freie Universität Berlin analyses are often colder than others at T ≲ 205 K. European Centre for Medium-Range Weather Forecasts (ECMWF) temperatures agreed better with other analyses in 1999/2000, after improvements in the assimilation system, than in 1995/1996. Temperature history case studies show substantial differences using Met Office, NCEP, REAN, ECMWF, and NASA Data Assimilation Office (DAO) analyses. In January 2000 (when a large cold region was centered in the polar vortex), all analyses gave qualitatively similar results. However, in February 2000 (a much warmer period) and in January and February 1996 (comparably cold to January 2000 but with the cold region near the polar vortex edge), distributions of "potential PSC lifetimes" and total time spent below a PSC formation threshold varied significantly between the analyses. Largest peaks in "PSC lifetime" distributions in January 2000 were at 4-6 and 11-14 days, while in 1996 they were at 1-3 days. Different meteorological conditions in comparably cold winters have a large impact on expectations for PSC formation and on the effects of discrepancies between different meteorological analyses. Met Office, NCEP, REAN, ECMWF, and DAO analyses are commonly used in modeling polar processes; the choice of analysis can strongly influence the results of such studies.

  18. Synthesis of zeolite from Italian coal fly ash: Differences in crystallization temperature using seawater instead of distilled water

    SciTech Connect

    Belviso, Claudia; Cavalcante, Francesco; Fiore, Saverio

    2010-05-15

    In this study Italian coal fly ash was converted into several types of zeolite in laboratory experiments with temperatures of crystallization ranging from 35 up to 90 deg. C. Distilled and seawater were used during the hydrothermal synthesis process in separate experiments, after a pre-treatment fusion with NaOH. The results indicate that zeolites could be formed from different kind of Italian coal fly ash at low temperature of crystallization using both distilled and seawater. SEM data and the powder patterns of X-ray diffraction analysis show that faujasite, zeolite ZK-5 and sodalite were synthesized when using both distilled and seawater; zeolite A crystallized only using distilled water. In particular the experiments indicate that the synthesis of zeolite X and zeolite ZK-5 takes place at lower temperatures when using seawater (35 and 45 deg. C, respectively). The formation of sodalite is always competitive with zeolite X which shows a metastable behaviour at higher temperatures (70-90 deg. C). The chemical composition of the fly ash source could be responsible of the differences on the starting time of synthesized zeolite with distilled water, in any case our data show that the formation of specific zeolites takes place always at lower temperatures when using seawater.

  19. Difference in Rotational Temperatures between Neutral Molecules and Molecular Ions of Low-Pressure Discharge N2-O2 Plasmas

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Kawano, Hirokazu; Naoi, Koichi; Tan, Hao; Nezu, Atsushi; Matsuura, Haruaki

    2014-10-01

    For a microwave discharge nitrogen plasma with its discharge pressure about 1 Torr, our OES measurement showed that the rotational temperature of N2+ B state by the first negative system (1NS) is about 1.5 times higher than that of N2 C state by the second positive system (2PS). Meanwhile, it is found that the rotational temperature of O2+ b state by 1NS is almost the same as that of O2 b state by the atmospheric absorption band, which is quite different from N2 plasma. We consider that the rotational temperature of the ground state O2+ X ion should be higher than that of O2+ b state due to difference in the internuclear distance, where that of the O2+ b state is much larger than that of the ground state O2+ X. The angular momentum of both X and b states are almost conserved before and after the electron impact excitation due to small mass of an electron. Therefore, the rotational temperature of the X state of O2+ ion should be estimated to be about 1.3 times of that of O2+ b state. This value gives a similar result with that of nitrogen plasma, where the internuclear distances of B and X states of N2+ are almost the same. It is considered that the ground-state molecular ion has higher rotational temperature than neutral molecule.

  20. Changes in the temperature of a dental light-cured composite resin by different light-curing units

    NASA Astrophysics Data System (ADS)

    Rastelli, A. N. S.; Jacomassi, D. P.; Bagnato, V. S.

    2008-08-01

    The purpose of this study was to evaluate the temperature increase during the polymerization process through the use of three different light-curing units with different irradiation times. One argon laser (Innova, Coherent), one halogen (Optilight 501, Demetron), and one blue LED (LEC 1000, MM Optics) LCU with 500 mW/cm2 during 5, 10, 20, 30, 40, 50, and 60 s of irradiation times were used in this study. The composite resin used was a microhybrid Filtek Z-250 (3M/ESPE) at color A2. The samples were made in a metallic mold 2 mm in thickness and 4 mm in diameter and previously light-cured during 40 s. A thermocouple (Model 120 202 EAJ, Fenwal Electronic, Milford, MA, USA) was introduced in the composite resin to measure the temperature increase during the curing process. The highest temperature increase was recorded with a Curing Light 2500 halogen LCU (5 and 31°C after 5 and 60 s, respectively), while the lowest temperature increase was recorded for the Innova LCU based on an argon laser (2 and 11°C after 5 and 60 s, respectively). The temperature recorded for LCU based on a blue LED was 3 and 22°C after 5 and 60 s, respectively. There was a quantifiable amount of heat generated during the visible light curing of a composite resin. The amount of heat generated was influenced by the characteristics of the light-curing units used and the irradiation times.

  1. Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions

    NASA Astrophysics Data System (ADS)

    Ghadiri, Majid; Shafiei, Navvab

    2016-04-01

    In this study, thermal vibration of rotary functionally graded Timoshenko microbeam has been analyzed based on modified couple stress theory considering temperature change in four types of temperature distribution on thermal environment. Material properties of FG microbeam are supposed to be temperature dependent and vary continuously along the thickness according to the power-law form. The axial forces are also included in the model as the thermal and true spatial variation due to the rotation. Governing equations and boundary conditions have been derived by employing Hamiltonian's principle. The differential quadrature method is employed to solve the governing equations for cantilever and propped cantilever boundary conditions. Validations are done by comparing available literatures and obtained results which indicate accuracy of applied method. Results represent effects of temperature changes, different boundary conditions, nondimensional angular velocity, length scale parameter, different boundary conditions, FG index and beam thickness on fundamental, second and third nondimensional frequencies. Results determine critical values of temperature changes and other essential parameters which can be applicable to design micromachines like micromotor and microturbine.

  2. Influence of seasonal temperature fluctuations on two different partial nitritation-anammox reactors treating mainstream municipal wastewater.

    PubMed

    Lackner, Susanne; Welker, Samuel; Gilbert, Eva M; Horn, Harald

    2015-01-01

    Partial nitritation-anammox (PN-A) has gained increasing interest for municipal wastewater treatment in recent years due to its high energy-saving potential. Moving the PN-A technology from side- to mainstream exhibited a set of challenges. Conditions are quite different, with much lower ammonium concentrations and temperatures. Biomass retention becomes highly important due to the even lower growth rates. This study compared two laboratory-scale reactors, a sequencing batch reactor (SBR) and a moving bed biofilm reactor (MBBR), employing realistic seasonal temperature variations over a 1-year period. The results revealed that both systems had to face decreasing ammonium conversion rates and nitrite accumulation at temperatures lower than 12°C. The SBR did not recover from the loss in anammox activity even when the temperature increased again. The MBBR only showed a short nitrite peak and recovered its initial ammonium turnover when the temperature rose back to >15°C. The SBR had higher biomass specific rates, indicating that suspended sludge is less diffusion-limited but also more susceptible to biomass wash-out. However, the MBBR showed the more stable performance also at low temperatures and managed to recover. Ex situ batch activity tests supported reactor operation data by providing additional insight with respect to specific biomass activities. PMID:26465306

  3. Evaluation of the accuracy of different methods of monitoring body temperature in anesthetized brown bears (Ursus arctos).

    PubMed

    Ozeki, Larissa Mourad; Fahlman, Asa; Stenhouse, Gordon; Arnemo, Jon M; Caulkett, Nigel

    2014-12-01

    There is some evidence that the handheld rectal thermometer does not accurately measure core temperature in bears. The objective of this study was to compare body temperature measured by the handheld digital thermometer (HDT), deep rectally inserted core temperature capsules (CTCs), and gastrically inserted CTCs in anesthetized brown bears (Ursus arctos). Twenty-two brown bears were immobilized with a combination of zolazepam-tiletamine and xylazine or medetomidine. After immobilization, one CTC was inserted 15 cm deep into the animal's rectum (DRTC) with a standard applicator, and another CTC was inserted into the stomach (GTC) via a gastric tube inserted orally. Temperature was measured every 5-10 min with an HDT. Paired temperature data points were analyzed with the Bland-Altman technique for repeated measurements and regression analysis with a significance level of 0.05. The mean difference SD of the difference between HDT and GTC readings was 0.27 0.47 degrees C and the 95% limits of agreement (LoA) were 1.20 and -0.66 degrees C. The determination coefficient (r2) found between these methods was 0.68 (P < 0.0001). The mean difference SD of the difference between HDT and DRTC readings was 0.36 0.32 degreesC and the 95% LoA were 1.0 and -0.28 degrees C. The r2 between HDT and DRTC was 0.83 (P < 0.0001). The mean difference SD of the difference between the two insertions of the VitalSense capsules was -0.06 0.24 degrees C and the 95% LoA were 0.42 and -0.54 degrees C. The r2 found between GTC and DRTC was 0.91 (P < 0.0001). This study demonstrates that DRTC provided accurate measurement of core temperature and that HDT did not accurately measure core temperature, compared with GTC in anesthetized brown bears. PMID:25632668

  4. Nitrous oxide and methane emissions from food waste composting at different temperatures.

    PubMed

    Ermolaev, Evgheni; Jarvis, Åsa; Sundberg, Cecilia; Smårs, Sven; Pell, Mikael; Jönsson, Håkan

    2015-12-01

    Emissions of methane (CH₄) and nitrous oxide (N₂O) from composting of source-sorted food waste were studied at set temperatures of 40, 55 and 67°C in 10 trials performed in a controlled environment 200L compost reactor. CH₄ and N₂O concentrations were generally low. In trials with 16% O₂, the mean total CH₄ emission at all temperatures was 0.007% of the mineralized carbon (C), while at 67°C this fraction was 0.001%. Total CH₄ production was higher in the 40°C trial and the limited oxygen (1% O₂) trial, with emissions of 0.029 and 0.132% of the mineralized C respectively. An early increase in N₂O production was observed in trials with higher initial nitrate contents. Increased CH₄ and N₂O production in trials at 40 and 55°C after 50% of the initial C was mineralized resulted in higher total greenhouse gas emissions. Overall, the global warming potentials in CO₂-equivalents from CH₄ emissions were higher than from N₂O, except for composts run at 67°C. PMID:26321382

  5. Thermophysical Properties of Ionic Liquid, 1-Pentyl-3-methylimidazolium Chloride in Water at Different Temperatures

    NASA Astrophysics Data System (ADS)

    Shekaari, Hemayat; Mousavi, Sedighehnaz S.; Mansoori, Yagoub

    2009-04-01

    Osmotic coefficients, {φ}, electrical conductance data, Λ, and refractive indices, n D, of aqueous solutions of the ionic liquid, 1-pentyl-3-methylimidazolium chloride [PnMIm]Cl have been measured at T = (298.15, 308.15, 318.15, and 328.15) K. Measurements of osmotic coefficients were carried out by the vapor-pressure osmometry method (VPO). Osmotic coefficient values show that ion-solvent interactions are stronger at lower temperature. The osmotic coefficients were correlated to the Pitzer-ion interaction and modified NRTL (MNRTL) models. From these data, mean molal activity coefficients, γ±, and excess Gibbs free energies, G E, have been calculated. Electrical conductance data have been applied for determination of association constants, K a, and limiting molar conductances, Λ 0, using the low concentration chemical model (lcCM). Calculated ion-association constant, K a, values show that ion-association effects increase at high temperatures which is in agreement with osmotic coefficient results. Experimental results of refractive indices for the binary system are reported, and have been fitted by a polynomial expansion.

  6. Evaluating different machine learning approaches for the interpolation of ambient air temperature at Mt. Kilimajaro, Tanzania

    NASA Astrophysics Data System (ADS)

    Appelhans, Tim; Mwangomo, Ephraim; Hardy, Douglas; Hemp, Andreas; Nauss, Thomas

    2015-04-01

    Spatially high resolution climate information is required for a variety of applications in but not limited to functional biodiversity research. In order to scale the generally plot-based research findings to a landscape level, spatial interpolation methods of meteorological variables are required. Based on a network of 60 observation plots across the southern slopes of Mt. Kilimanjaro, the skill of 14 machine learning algorithms in predicting spatial temperature patterns is tested and evaluated against the heavily utilized kriging approach. Based on a leave-many-out testing design, regression trees generally perform better than linear and non-linear regression models. The best individual performance has been observed by the Cubist model followed by stochastic gradient boosting, random forest and model averaged neural networks which except for the latter are all regression tree-based algorithms. While these machine learning algorithms perform better than kriging in this quantitative evaluation, the overall visual interpretation of the resulting air temperature maps is ambiguous. Here, a combined Cubist and residual kriging approach might be the best solution.

  7. Dissolution thermodynamics and solubility of silymarin in PEG 400-water mixtures at different temperatures.

    PubMed

    Shakeel, Faiyaz; Anwer, Md Khalid

    2015-01-01

    An isothermal method was used to measure the solubility of silymarin in binary polyethylene glycol 400 (PEG 400) + water co-solvent mixtures at temperatures T = 298.15-333.15 K and pressure p = 0.1 MPa. Apelblat and Yalkowsky models were used to correlate experimental solubility data. The mole fraction solubility of silymarin was found to increase with increasing the temperature and mass fraction of PEG 400 in co-solvent mixtures. The root mean square deviations were observed in the range of 0.48-5.32% and 1.50-9.65% for the Apelblat equation and Yalkowsky model, respectively. The highest and lowest mole fraction solubility of silymarin was observed in pure PEG 400 (0.243 at 298.15 K) and water (1.46 × 10(-5) at 298.15 K). Finally, thermodynamic parameters were determined by Van't Hoff and Krug analysis, which indicated an endothermic and spontaneous dissolution of silymarin in all co-solvent mixtures. PMID:25698078

  8. Regulation of branchial Na(+)/K(+)-ATPase in common carp Cyprinus carpio L. acclimated to different temperatures.

    PubMed

    Metz, Juriaan R; van den Burg, Erwin H; Bonga, Sjoerd E Wendelaar; Flik, Gert

    2003-07-01

    Isogenic carp Cyprinus carpio L. were acclimated to water temperatures of 15, 22 and 29 degrees C for at least 8 weeks. The acclimations consistently resulted in slightly, but significantly, different plasma osmolality, sodium, potassium and chloride concentrations between the groups studied. Plasma total and ionic calcium levels were unaffected, indicating successful adaptation. The apparent changes in set point for plasma ion levels are explained by altered sodium pump activity and hormonal control of branchial permeability to water and ions. It appears that in 15 degrees C-acclimated fish, a lower apparent Na(+)/K(+)-ATPase activity is compensated by strongly enhanced Na(+)/K(+)-ATPase expression (determined biochemically and immunohistochemically). In 29 degrees C-acclimated fish, the higher ambient temperature activates the enzyme. Arrhenius plots for branchial Na(+)/K(+)-ATPase preparations of the three groups of fish suggest the occurrence of different enzyme isoforms or protein (in)stability as explanations for differences in apparent enzyme activities, rather than temperature-dependent changes in membrane fluidity. As for hormonal control over permeability, prolactin mRNA expression (and anticipated production and release) is lower in fish kept at 29 degrees C, suggesting that control over branchial permeability to water and ions needs to be downregulated at higher temperatures. In so doing, enhanced sodium pump activity is balanced by a controlled passive ion loss to fine-tune plasma sodium levels. Basal plasma cortisol levels did not correlate positively with Na(+)/K(+)-ATPase expression, but doubling plasma cortisol levels in control fish by administering exogenous cortisol (for 7 days, using implanted minipumps and thus stress-free) enhanced Na(+)/K(+)-ATPase expression. This effect must be the result of a glucocorticoid action of the steroid: in fish, mineralocorticoid receptors have higher affinity for cortisol than glucocorticoid receptors. At a lower ambient temperature, branchial Na(+)/K(+)-ATPase expression is upregulated to counteract the temperature-inhibited activity of the sodium pump, perhaps via a mineralocorticoid receptor. PMID:12771175

  9. Environmental systems biology of cold-tolerant phenotype in Saccharomyces species adapted to grow at different temperatures

    PubMed Central

    Paget, Caroline Mary; Schwartz, Jean-Marc; Delneri, Daniela

    2014-01-01

    Temperature is one of the leading factors that drive adaptation of organisms and ecosystems. Remarkably, many closely related species share the same habitat because of their different temporal or micro-spatial thermal adaptation. In this study, we seek to find the underlying molecular mechanisms of the cold-tolerant phenotype of closely related yeast species adapted to grow at different temperatures, namely S. kudriavzevii CA111 (cryo-tolerant) and S. cerevisiae 96.2 (thermo-tolerant). Using two different systems approaches, i. thermodynamic-based analysis of a genome-scale metabolic model of S. cerevisiae and ii. large-scale competition experiment of the yeast heterozygote mutant collection, genes and pathways important for the growth at low temperature were identified. In particular, defects in lipid metabolism, oxidoreductase and vitamin pathways affected yeast fitness at cold. Combining the data from both studies, a list of candidate genes was generated and mutants for two predicted cold-favouring genes, GUT2 and ADH3, were created in two natural isolates. Compared with the parental strains, these mutants showed lower fitness at cold temperatures, with S. kudriavzevii displaying the strongest defect. Strikingly, in S. kudriavzevii, these mutations also significantly improve the growth at warm temperatures. In addition, overexpression of ADH3 in S. cerevisiae increased its fitness at cold. These results suggest that temperature-induced redox imbalances could be compensated by increased glycerol accumulation or production of cytosolic acetaldehyde through the deletion of GUT2 or ADH3, respectively. PMID:25243355

  10. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau.

    PubMed

    Sun, Jian; Qin, Xiaojing; Yang, Jun

    2016-01-01

    The spatiotemporal variability of the Normalized Difference Vegetation Index (NDVI) of three vegetation types (alpine steppe, alpine meadow, and alpine desert steppe) across the Tibetan Plateau was analyzed from 1982 to 2013. In addition, the annual mean temperature (MAT) and annual mean precipitation (MAP) trends were quantified to define the spatiotemporal climate patterns. Meanwhile, the relationships between climate factors and NDVI were analyzed in order to understand the impact of climate change on vegetation dynamics. The results indicate that the maximum of NDVI increased by 0.3 and 0.2 % per 10 years in the entire regions of alpine steppe and alpine meadow, respectively. However, no significant change in the NDVI of the alpine desert steppe has been observed since 1982. A negative relationship between NDVI and MAT was found in all these alpine grassland types, while MAP positively impacted the vegetation dynamics of all grasslands. Also, the effects of temperature and precipitation on different vegetation types differed, and the correlation coefficient for MAP and NDVI in alpine meadow is larger than that for other vegetation types. We also explored the percentages of precipitation and temperature influence on NDVI variation, using redundancy analysis at the observation point scale. The results show that precipitation is a primary limiting factor for alpine vegetation dynamic, rather than temperature. Most importantly, the results can serve as a tool for grassland ecosystem management. PMID:26661956

  11. Accumulation of trace metals in the embryos and hatchlings of Chelonia mydas from Peninsular Malaysia incubated at different temperatures.

    PubMed

    Ikonomopoulou, Maria P; Olszowy, Henry; Francis, Rod; Ibrahim, Kamarruddin; Whittier, Joan

    2013-04-15

    A variety of trace metals were measured in the egg contents of three clutches of Chelonia mydas collected from Kuala Terengganu state in Peninsular Malaysia. We quantified Mn, Cu, Zn, Se (essential trace metals) and As (anthropogenic pollutant) at several developmental stages obtained by incubating eggs at two different temperatures (27 °C and 31 °C). The incubation temperatures were chosen because they produce predominantly male or predominantly female hatchlings, respectively. The eggs were removed from the sand and washed before being placed in incubators, to ensure that the only possible source of the detected metals was maternal transfer. Other metals: Mo, Co, Ni, Cd, Sn, Sb, Hg, Tl and Pb (all non-essential metals) were detected at concentrations below the lower limit of quantitation (LLOQ). Trace metal concentrations, particularly [Zn], increased during development, other metals (Cu, As, Se and Cr) accumulated to a lesser degree than zinc but no significant differences were observed between the incubation temperatures at any stage of incubation. To date, only a few studies on trace metals in turtle embryos and hatchlings have been reported; this study will provide basic knowledge on the accumulation of trace metals during development at two different incubation temperatures. PMID:23500829

  12. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures.

    PubMed

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-01-01

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by (13)C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition-results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities. PMID:26916902

  13. Genetically distinct populations of northern shrimp, Pandalus borealis, in the North Atlantic: adaptation to different temperatures as an isolation factor.

    PubMed

    Jorde, Per Erik; Søvik, Guldborg; Westgaard, Jon-Ivar; Albretsen, Jon; André, Carl; Hvingel, Carsten; Johansen, Torild; Sandvik, Anne Dagrun; Kingsley, Michael; Jørstad, Knut Eirik

    2015-04-01

    The large-scale population genetic structure of northern shrimp, Pandalus borealis, was investigated over the species' range in the North Atlantic, identifying multiple genetically distinct groups. Genetic divergence among sample localities varied among 10 microsatellite loci (range: FST = -0.0002 to 0.0475) with a highly significant average (FST = 0.0149; P < 0.0001). In contrast, little or no genetic differences were observed among temporal replicates from the same localities (FST = 0.0004; P = 0.33). Spatial genetic patterns were compared to geographic distances, patterns of larval drift obtained through oceanographic modelling, and temperature differences, within a multiple linear regression framework. The best-fit model included all three factors and explained approximately 29% of all spatial genetic divergence. However, geographic distance and larval drift alone had only minor effects (2.5-4.7%) on large-scale genetic differentiation patterns, whereas bottom temperature differences explained most (26%). Larval drift was found to promote genetic homogeneity in parts of the study area with strong currents, but appeared ineffective across large temperature gradients. These findings highlight the breakdown of gene flow in a species with a long pelagic larval phase (up to 3 months) and indicate a role for local adaptation to temperature conditions in promoting evolutionary diversification and speciation in the marine environment. PMID:25782085

  14. Effects of changes in straw chemical properties and alkaline soils on bacterial communities engaged in straw decomposition at different temperatures

    PubMed Central

    Zhou, Guixiang; Zhang, Jiabao; Zhang, Congzhi; Feng, Youzhi; Chen, Lin; Yu, Zhenghong; Xin, Xiuli; Zhao, Bingzi

    2016-01-01

    Differences in the composition of a bacterial community engaged in decomposing wheat straw in a fluvo-aquic soil at 15 °C, 25 °C, and 35 °C were identified using barcode pyrosequencing. Functional carbon groups in the decomposing wheat straw were evaluated by 13C-NMR (nuclear magnetic resonance). Actinobacteria and Firmicutes were more abundant, whereas Alphaproteobacteria and Bacteroidetes were less abundant, at higher temperatures during the later stages of decomposition. Differences in the chemical properties of straw accounted for 19.3% of the variation in the community composition, whereas soil properties accounted for more (24.0%) and temperature, for less (7.4%). Carbon content of the soil microbial biomass and nitrogen content of straw were significantly correlated with the abundance of Alphaproteobacteria, Actinobacteria, and Bacteroidetes. The chemical properties of straw, especially the NCH/OCH3, alkyl O-C-O, and O-alkyl functional groups, exercised a significant effect on the composition of the bacterial community at different temperatures during decomposition—results that extend our understanding of bacterial communities associated with the decomposition of straw in agro-ecosystems and of the effects of temperature and chemical properties of the decomposing straw and soil on such communities. PMID:26916902

  15. Evaluation of shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique

    NASA Astrophysics Data System (ADS)

    Franco, Ana Paula G. O.; Karam, Leandro Z.; Galvão, José R.; Kalinowski, Hypolito J.

    2015-09-01

    The aim of the present study was evaluate the shrinkage polymerization and temperature of different acrylic resins used to splinting transfer copings in indirect impression technique. Two implants were placed in an artificial bone, with the two transfer copings joined with dental floss and acrylic resins; two dental resins are used. Measurements of deformation and temperature were performed with Fiber Braggs grating sensor for 17 minutes. The results revealed that one type of resin shows greater values of polymerization shrinkage than the other. Pattern resins did not present lower values of shrinkage, as usually reported by the manufacturer.

  16. Structural Changes of Carbon Nanotubes Prepared by Fermented Glutinous Rice at Different Vaporization and Deposition Temperatures of Thermal-CVD

    NASA Astrophysics Data System (ADS)

    Nik, S. F.; Zainal, N. F. A.; Azira, A.; Rusop, M.

    2009-06-01

    A series of carbon nanotubes (CNTs) with different vaporization and deposition temperature deposited on nickel coated silicon were prepared by two-system thermal chemical vapor deposition (Thermal-CVD) method. The CNTs were prepared using fermented glutinous rice, a new approach of starting material that may create new market on nanotechnology fabrication. The purpose of this paper is to optimize the temperature of thermal-CVD method with intention it can be suitable used for the fermented glutinous rice as the starting material. The prepared samples were characterized using scanning electron microscopy (SEM) at various spots and magnification.

  17. The proton temperature and the total hourly variance of the magnetic field components in different solar wind speed regions

    NASA Technical Reports Server (NTRS)

    Tu, Chuan-Yi; Freeman, John W.; Lopez, R. E.

    1989-01-01

    A comparison has been made between the predictions of the theory for radial variations of both Alfvenic fluctuations and solar wind proton temperatures proposed by Tu (1987, 1988) and the statistical results of hourly averaged plasma and magnetic field data observed by Helios 1 and 2 from launch through 1980 for different solar wind speed regimes. The comparison shows that for speed ranges between 500-800 km/s, the radial variation of the proton temperature between 0.3 and 1 AU can be explained by heating from the cascade energy which is determined by the radial variation of the total variance of magnetic field vector.

  18. Raynaud's phenomenon following long-term repeated action of great differences of temperature.

    PubMed

    Mackiewicz, Z; Piskorz, A

    1977-01-01

    The aim of these investigations was to study the effects of chronic thermal trauma on the development of vasomotor disturbances of the hands. The investigations were performed on 597 workers of the Fishing Company. The incidence of vasomotor disturbances of the hands was compared in: (1) workers not exposed to thermal trauma; (2) workers with long-term exposure to cold; (3) workers exposed to alternating influence of cold and heat. Superficial temperature was determined, finger plethysmography, capillaroscopy and hand arteriography were carried out. The investigations demonstrated that long-term alternating exposure to thermal trauma causes development of vasomotor disturbances. Clinical manifestations of Raynaud's syndrome were found in nearly 50% of female workers in fish processing plant whose hands were exposed to the action of ice and hot water. The incidence of vasomotor disturbances in workers exposed to long-term effects of cold was low. PMID:856825

  19. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations.

    PubMed

    Zhu, Yue C; Uradu, Henry; Majeed, Zana R; Cooper, Robin L

    2016-02-01

    Optogenetics is a revolutionary technique that enables noninvasive activation of electrically excitable cells. In mammals, heart rate has traditionally been modulated with pharmacological agents or direct stimulation of cardiac tissue with electrodes. However, implanted wires have been known to cause physical damage and damage from electrical currents. Here, we describe a proof of concept to optically drive cardiac function in a model organism, Drosophila melanogaster. We expressed the light sensitive channelrhodopsin protein ChR2.XXL in larval Drosophila hearts and examined light-induced activation of cardiac tissue. After demonstrating optical stimulation of larval heart rate, the approach was tested at low temperature and low calcium levels to simulate mammalian heart transplant conditions. Optical activation of ChR2.XXL substantially increased heart rate in all conditions. We have developed a system that can be instrumental in characterizing the physiology of optogenetically controlled cardiac function with an intact heart. PMID:26834237

  20. High-pressure high-temperature synthesis of magnesium diboride with different additions

    NASA Astrophysics Data System (ADS)

    Prikhna, Tatiana; Gawalek, Wolfgang; Savchuk, Yaroslav; Sergienko, Nina; Moshchil, Viktor; Dub, Sergey; Sverdun, Vladimir; Kovalev, Leo; Penkin, Vladimir; Zeisberger, Matthias; Wendt, Michael; Fuchs, Gunter; Habisreuther, Tobias; Litzkendorf, Doris; Nagorny, Peter; Melnikov, Vladimir

    2007-09-01

    An increase of the critical current density in high-pressure synthesized (at 2 GPa, 800-900 °C) MgB2 was observed when some amount (2-10%) of powdered Ta, Ti or Zr was added to the initial mixture of Mg and B. As a result of high-pressure synthesis, the metallic additives transformed into hydrides, so the absorbed impurity hydrogen coming most likely from the materials of a high-pressure cell surrounded the synthesized samples. Blocks of high-pressure synthesized MgB2 (with Ti additions) were for the first time used in an SC electromotor that demonstrated the efficiency similar to that of MT-YBCO bulk (at the same working temperature 15-20 K).

  1. Biodegradation of dispersed Macondo oil in seawater at low temperature and different oil droplet sizes.

    PubMed

    Brakstad, Odd G; Nordtug, Trond; Throne-Holst, Mimmi

    2015-04-15

    During the Deepwater Horizon (DWH) accident in 2010 a dispersant (Corexit 9500) was applied at the wellhead to disperse the Macondo oil and reduce the formation of surface slicks. A subsurface plume of small oil droplets was generated near the leaking well at 900-1300 m depth. A novel laboratory system was established to investigate biodegradation of small droplet oil dispersions (10 μm or 30 μm droplet sizes) of the Macondo oil premixed with Corexit 9500, using coastal Norwegian seawater at a temperature similar to the DWH plume (4-5°C). Biotransformation of volatile and semivolatile hydrocarbons and oil compound groups was generally faster in the 10 μm than in the 30 μm dispersions, showing the importance of oil droplet size for biodegradation. These data therefore indicated that dispersant treatment to reduce the oil droplet size may increase the biodegradation rates of oil compounds in the deepwater oil droplets. PMID:25746198

  2. Ocean surface temperature variability: Large model–data differences at decadal and longer periods

    PubMed Central

    Laepple, Thomas; Huybers, Peter

    2014-01-01

    The variability of sea surface temperatures (SSTs) at multidecadal and longer timescales is poorly constrained, primarily because instrumental records are short and proxy records are noisy. Through applying a new noise filtering technique to a global network of late Holocene SST proxies, we estimate SST variability between annual and millennial timescales. Filtered estimates of SST variability obtained from coral, foraminifer, and alkenone records are shown to be consistent with one another and with instrumental records in the frequency bands at which they overlap. General circulation models, however, simulate SST variability that is systematically smaller than instrumental and proxy-based estimates. Discrepancies in variability are largest at low latitudes and increase with timescale, reaching two orders of magnitude for tropical variability at millennial timescales. This result implies major deficiencies in observational estimates or model simulations, or both, and has implications for the attribution of past variations and prediction of future change. PMID:25385623

  3. Cavitation erosion of silver plated coating at different temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Hattori, Shuji; Motoi, Yoshihiro; Kikuta, Kengo; Tomaru, Hiroshi

    2014-04-01

    Cavitation often occurs in inducer pumps used for space rockets. Silver plated coating on the inducer liner faces the damage of cavitation. Therefore, it is important to study about the cavitation erosion resistance for silver plated coating at several operating conditions in the inducer pumps. In this study, the cavitation erosion tests were carried for silver plated coating in deionized water and ethanol at several liquid temperatures (273K-400K) and pressures (0.10MPa-0.48MPa). The mass loss rate is evaluated in terms of thermodynamic parameter ? proposed by Brennen [9], suppression pressure p-pv (pv: saturated vapor pressure) and acoustic impedance ?c (?: density and c: sound speed). Cavitation bubble behaviors depending on the thermodynamic effect and the liquid type were observed by high speed video camera. The mass loss rate is formulated by thermodynamic parameter ?, suppression pressure p-pv and acoustic impedance ?c.

  4. The fate of two Listeria monocytogenes serotypes in "cig kofte" at different storage temperatures.

    PubMed

    Durmaz, Hisamettin; Sagun, Emrullah; Sancak, Hakan; Sagdic, Osman

    2007-05-01

    Cig kofte is a traditional Turkish food prepared from minced beef, bulgur, onions, garlic and varieties of spices. It is generally consumed within a few hours. However, leftovers can be kept in refrigerator or in room temperature up to 24h until they are consumed. In this study, survival and growth of two Listeria monocytogenes serotypes were investigated in cig kofte during the storage. For this purpose, the prepared samples were separately contaminated with serotypes 1/2b or 4b of L. monocytogenes at the level of 10(4)CFU/g and stored at 4°C and 21°C. L. monocytogenes colonies were counted at the beginning, 3rd, 6th, 12th and 24th hours of the storage. At 4°C, L. monocytogenes 4b significantly increased (P<0.05) from 4.12 to 5.49log(10)CFU/g but L. monocytogenes 1/2b remained constant (P>0.05) during the storage period. At 21°C, both L. monocytogenes 1/2b and 4b increased significantly (P<0.05) from 4.56 to 5.16log(10)CFU/g and from 4.23 to 5.65log(10)CFU/g, respectively. The physicochemical and microbiological characteristics of the cig kofte did not inhibit the growths of L. monocytogenes serotypes during the storage. These results indicated that L. monocytogenes was able to survive and grow in cig kofte at the both storage temperatures of 4°C and 21°C and cig kofte seemed to be a suitable medium for this pathogen. PMID:22064198

  5. Structure and Spectroscopy of Hydrated Sodium Ions at Different Temperatures and the Cluster Stability Rules.

    PubMed

    Fifen, Jean Jules; Agmon, Noam

    2016-04-12

    The sodium cation plays an important role in several physiological processes. Understanding its solvation may help understanding ion selectivity in sodium channels that are pivotal for nerve impulses. This paper presents a thorough investigation of over 75 isomers of gas-phase Na(+)(H2O)n=1-8 clusters, whose optimized structures, energies, and (harmonic) vibrational frequencies were computed quantum mechanically at the full MP2/6-31++G(d,p) level of theory. From these data, we have calculated the temperature effects on the cluster thermodynamic functions, and thus the equilibrium Boltzmann distribution for each n. For a selected number of isomers, we have corrected the calculations for basis set superposition error (BSSE) to obtain accurate clustering energies, in excellent agreement with experiment. The computed clusters are overwhelmingly 4-coordinated, as opposed to bulk liquid water, where sodium cations are believed to be mostly 5- or 6-coordinated. To explain this, we suggest the "cluster stability rules", a set of coordination-number-dependent hydrogen-bond (HB) strengths that can be obtained using a single BSSE correction. Assuming additivity and transferability, these reproduce the relative stability of most of our computed isomers. These rules enable us to elucidate the trends in HB strengths, outlining the major determinants of cluster stability. For n = 4 and 5, we have also performed anharmonic vibrational calculations (VPT2) to compare with available photodissociation infrared spectra of these gas-phase clusters. The comparison suggests that the experiments actually monitor a mixture of predominantly 3-coordinated isomers, which is quite remote from the computed Boltzmann distribution, particularly at low temperatures. Surprisingly, for these experiments, water evaporation pathways can rationalize the non-equilibrium isomer distribution. The equilibrium isomer distribution is, in turn, rationalized by the entropy of internal rotations of "dangling" water molecules. PMID:26913993

  6. Microbial dynamics in acetate-enriched ballast water at different temperatures.

    PubMed

    Stehouwer, Peter Paul; van Slooten, Cees; Peperzak, Louis

    2013-10-01

    The spread of invasive species through ships' ballast water is considered as a major ecological threat to the world's oceans. For that reason, the International Maritime Organization (IMO) has set performance standards for ballast water discharge. Ballast water treatment systems have been developed that employ either UV-radiation or 'active substances' to reduce the concentration of living cells to below the IMOs standards. One such active substance is a chemical mixture known as Peraclean() Ocean. The residual of Peraclean() Ocean is acetate that might be present at high concentrations in discharged ballast water. In cold coastal waters the breakdown of acetate might be slow, causing a buildup of acetate concentrations in the water if regularly discharged by ships. To study the potential environmental impact, microbial dynamics and acetate degradation were measured in discharge water from a Peraclean() Ocean treatment system in illuminated microcosms. In addition, microbial dynamics and acetate degradation were studied at -1, 4, 10, 15 and 25C in dark microcosms that simulated enclosed ballast water tanks. Acetate breakdown indeed occurred faster at higher temperatures. At 25C the highest bacteria growth, fastest nutrient and oxygen consumption and highest DOC reduction occurred. On the other hand, at -1C bacterial growth was strongly delayed, only starting to increase after 12 days. Furthermore, at 25C the acetate pool was not depleted, probably due to nutrient and oxygen limitation. This means that not all acetate will be broken down in ballast water tanks, even during long voyages in warm waters. In addition, at low temperatures acetate breakdown in ballast water tanks and in discharged water will be extremely slow. Therefore, regular discharge of acetate enriched ballast water in harbors and bays may cause eutrophication and changes in the microbial community, especially in colder regions. PMID:23871568

  7. Generalized Thermoelastic Medium with Temperature-Dependent Properties for Different Theories under the Effect of Gravity Field

    NASA Astrophysics Data System (ADS)

    Othman, Mohamed I. A.; Elmaklizi, Yassmin D.; Said, Samia M.

    2013-03-01

    The problem of the generalized thermoelastic medium for three different theories under the effect of a gravity field is investigated. The Lord-Shulman (L-S), Green-Lindsay (G-L), and classical-coupled (CD) theories are discussed. The modulus of the elasticity is given as a linear function of the reference temperature. The exact expressions for the displacement components, temperature, and stress components are obtained by using normal mode analysis. Numerical results for the field quantities are given in the physical domain and illustrated graphically in the absence and presence of gravity. A comparison also is made between the three theories for the results with and without a temperature dependence.

  8. Evaluation of bioactive compounds of black mulberry juice after thermal, microwave, ultrasonic processing, and storage at different temperatures.

    PubMed

    Jiang, Bo; Mantri, Nitin; Hu, Ya; Lu, Jiayin; Jiang, Wu; Lu, Hongfei

    2015-07-01

    The effect of different sterilization methods (thermal, microwave, and ultrasonic processing) on the main bioactive compounds and antioxidant activity of black mulberry juice during selected storage time (8 days) and temperatures (5, 15, and 25 ℃) was investigated. The antioxidant activity of thermal-treated juice depleted with storage time, whilst both ultrasound- and microwave-treated juices showed transient increase in antioxidant activity during the first 2 days that later decreased with storage time. Lower temperature storage preserved more bioactive compounds and antioxidant activity, especially in ultrasound sterilized samples. The activation energy values were 15.99, 13.07, and 12.81 kJ/mol for ultrasonic, microwave, and thermal pasteurization processes, respectively. In general, ultrasound-sterilized samples showed higher total phenolics, anthocyanin, and antioxidant activity compared to the microwave- and thermal-processed juice during the storage time especially at lower temperatures. PMID:24917651

  9. Transformation of Synthetic Allicin: The Influence of Ultrasound, Microwaves, Different Solvents and Temperatures, and the Products Isolation

    PubMed Central

    Ili?, Duica; Nikoli?, Vesna; Stankovi?, Mihajlo; Nikoli?, Ljubia; Stanojevi?, Ljiljana; Mladenovi?-Ranisavljevi?, Ivana; melcerovi?, Andrija

    2012-01-01

    The transformation of the synthesized allicin, using conventional method, the influence of ultrasound and microwaves, in different organic solvents (acetonitrile, acetone, methanol, and chloroform), at various temperatures (room temperature, 45C, and 55C) was investigated. Allicin degradation kinetic was monitored by HPLC. Allicin transformation under the effect of microwaves is faster than transformations performed under the influence of ultrasound or by conventional method. Increase of the temperature accelerates allicin transformation. Pharmacologically active compounds of (E)-ajoene, (Z)-ajoene, 3-vinyl-4H-1,2-dithiin, 2-vinyl-4H-1,3-dithiin, and diallyl disulfide were isolated from the mixture of transformation products of allicin under the influence of microwaves in methanol at 55C, which is according to kinetic parameters (highest values of the order of reaction and the lowest activation energy) the optimal method. PMID:22629145

  10. Sustained Attention to Local and Global Target Features Is Different: Performance and Tympanic Membrane Temperature

    ERIC Educational Resources Information Center

    Helton, William S.; Hayrynen, Lauren; Schaeffer, David

    2009-01-01

    Vision researchers have investigated the differences between global and local feature perception. No one has, however, examined the role of global and local feature discrimination in sustained attention tasks. In this experiment participants performed a sustained attention task requiring either global or local letter target discriminations or…

  11. Effect of Sodium Bicarbonate Supplementation on Carcass Characteristics of Lambs Fed Concentrate Diets at Different Ambient Temperature Levels

    PubMed Central

    Jallow, Demba B.; Hsia, Liang Chou

    2014-01-01

    The objective of this study was to investigate the influence of ambient temperatures on carcass characteristics of lambs fed concentrate diets with or without NaHCO3 supplementation. A slaughter study was carried on 12 male Black Belly Barbados lambs randomly drawn from a growth trial (35 weeks). The lambs were divided into four equal groups and allotted in a 2×2 factorial design. The lambs were allotted at random to two dietary treatments of a basal diet (35:65 roughage:concentrate) or basal diet supplemented with 4% NaHCO3 at different ambient temperatures (20°C and 30°C) in an environment controlled chamber for 10 days. Lambs were slaughtered for carcass evaluation at about 262 days of age (245 days of growth trial, 7 days adaptation and 10 days of experimental period). Ambient temperature had significant (p<0.05, p<0.05, p<0.01, and p<0.001) effects on meat color from the ribeye area (REA), fat, leg and longissimus dorsi muscles with higher values recorded for lambs in the lower temperature group than those from the higher ambient temperature group. Significant differences (p<0.05) in shear force value (kg/cm2) recorded on the leg muscles showed higher values (5.32 vs 4.16) in lambs under the lower ambient temperature group compared to the other group. Dietary treatments had significant (p<0.01, p<0.01, and p<0.05) effects on meat color from the REA, fat, and REA fat depth (cm2) with higher values recorded for lambs in the NaHCO3 supplementation group than the non supplemented group. Similarly, dietary treatments had significant differences (p<0.05) in shear force value (kg/cm2) of the leg muscles with the NaHCO3 groups recording higher (5.30 vs 4.60) values than those from the other group. Neither ambient temperature nor dietary treatments had any significant (p>0.05) effects on pH, and water holding capacity on both muscles. These results indicated that NaHCO3 supplementation at low ambient temperatures had caused an increase in carcass characteristics leading to significant effect on meat quality. PMID:25083103

  12. The routine metabolic rate of mulloway (Argyrosomus japonicus: Sciaenidae) and yellowtail kingfish (Seriola lalandi: Carangidae) acclimated to six different temperatures.

    PubMed

    Pirozzi, Igor; Booth, Mark A

    2009-04-01

    This study compared the mass-specific routine metabolic rate (RMR) of similar sized mulloway (Argyrosomus japonicus), a sedentary species, and yellowtail kingfish (Seriola lalandi), a highly active species, acclimated at one of several temperatures ranging from 10-35 degrees C. Respirometry was carried out in an open-top static system and RMR corrected for seawater-atmosphere O2 exchange using mass-balance equations. For both species RMR increased linearly with increasing temperature (T). RMR for mulloway was 5.78T-29.0 mg O2 kg(-0.8) h(-1) and for yellowtail kingfish was 12.11T-39.40 mg O2 kg(-0.8) h(-1). The factorial difference in RMR between mulloway and yellowtail kingfish ranged from 2.8 to 2.2 depending on temperature. The energetic cost of routine activity can be described as a function of temperature for mulloway as 1.93T-9.68 kJ kg(-0.8) day(-1) and for yellowtail kingfish as 4.04T-13.14 kJ kg(-0.8) day(-1). Over the full range of temperatures tested Q10 values were approximately 2 for both species while Q10 responses at each temperature increment varied considerably with mulloway and yellowtail kingfish displaying thermosensitivities indicative of each species respective niche habitat. RMR for mulloway was least thermally dependent at 28.5 degrees C and for yellowtail kingfish at 22.8 degrees C. Activation energies (Ea) calculated from Arrhenius plots were not significantly different between mulloway (47.6 kJ mol(-1) and yellowtail kingfish (44.1 kJ mol(-1). PMID:19256082

  13. Influence of light history on the photosynthetic and motility responses of Gymnodinium chlorophorum exposed to UVR and different temperatures.

    PubMed

    Häder, Donat-P; Richter, Peter R; Villafañe, Virginia E; Helbling, E Walter

    2014-09-01

    In the wake of global climate change, phytoplankton productivity and species composition is expected to change due to altered external conditions such as temperature, nutrient accessibility, pH and exposure to solar visible (PAR) and ultraviolet radiation (UVR). The previous light history is also of importance for the performance of phytoplankton cells. In order to assess the combined impacts of UVR and temperature on the dinoflagellate Gymnodinium chlorophorum we analyzed the effective photochemical quantum yield (Y), relative electron transport rate vs. irradiance curves (rETR vs. I), percentage of motile cells and swimming velocity. Cells were grown at three different temperatures (15, 20 and 25 °C) and two PAR intensities: low light (LL, 100 μmol photons m(-2) s(-1)) and high light (HL, 250 μmol photons m(-2) s(-1)). Pre-acclimated cells were then exposed to either PAR only (P), PAR+UV-A (PA) or PAR+UV-A+UV-B (PAB) radiation at two different irradiances, followed by a recovery period in darkness. The Y decreased during exposure, being least inhibited in P and most in PAB treatments. Inhibition was higher and recovery slower in LL-grown cells than in HL-grown cells at 15° and 20 °C, but the opposite occurred at 25 °C, when exposed to high irradiances. Maximal values of rETR were determined at t0 as compared to the different (before and after exposure) radiation treatments. The effects of temperature and UVR on rETR were antagonistic in LL-grown cells (i.e., less UVR inhibition at higher temperature), while it was synergistic in HL cells. Swimming velocity and percentage of motile cells were not affected at all tested temperatures and exposure regimes, independent of the light history. Our results indicate that, depending on the previous light history, increased temperature and UVR as predicted under climate change conditions, can have different interactions thus conditioning the photosynthetic response of G. chlorophorum. PMID:24998868

  14. Assessing the Total Mortality Caused by Two Species of Trichogramma on Its Natural Host Plutella xylostella (L.) at Different Temperatures.

    PubMed

    Marchioro, C A; Krechemer, F S; Foerster, L A

    2015-06-01

    Trichogramma pretiosum Riley and Trichogramma atopovirilia Oatman & Platner are natural enemies of Plutella xylostella (L.) in Southern Brazil. Laboratory studies to evaluate parasitoids performance under different conditions, such as temperature regimes, are necessary to assess their potential as biocontrol agents of P. xylostella. In most studies involving Trichogramma, parasitism rate is the main parameter used to evaluate parasitoid performance, ignoring that parasitoids can cause egg mortality by feeding on the host content and/or to multiple drilling without laying eggs. This study was conducted to investigate three main issues: how temperature affects T. pretiosum and T.atopovirilia development on eggs of P. xylostella, whether or not these species respond differently to temperature, and how important is the mortality they cause besides parasitism on P. xylostella. Temperature effects (from 10 to 30°C) on development, survival, parasitism rate, mortality, and total mortality caused by T. pretiosum and T. atopovirilia on eggs of P. xylostella were evaluated. Temperature affected the development time, female longevity, parasitism rate, mortality not directly related to parasitoid larval development, and total mortality caused on the host. No significant differences were recorded for the estimated thermal requirements for T. pretiosum and T. atopovirilia. However, the higher mortality caused by T. pretiosum indicates that this parasitoid is the most suitable to be used against P. xylostella. Also, the results suggest that the use of parasitism rate as the only parameter to evaluate the performance of T. pretiosum and T. atopovirilia may underestimate the potential of these parasitoids in regulating pest populations. PMID:26013271

  15. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Liu, Yuanbo

    2015-12-01

    Soil moisture is a key variable in hydrological processes. Although the combined effects of multiple climatic factors in different land cover conditions are highly valuable for water resource management, a complete understanding of these effects remains unclear. This study used a cluster analysis approach to investigate the combined effects of precipitation and air temperature, rather than a single factor, in different land covers for an area over the Poyang Lake Basin in China from 2003 to 2009. Specifically, monthly soil moisture was classified into eight clusters according to the change in precipitation and air temperature; the clusters describe a range of climates from the extreme of wet-hot to that of dry-cold. For an individual climate factor, our results showed that the contribution of air temperature to soil moisture is greater than that of precipitation, and the effect of air temperature is more sensitive in different land covers. When considering the combined effects of precipitation and air temperature, soil moisture varies with land cover; however, the variation in a normal climate cluster is greater than in an extreme climate cluster. This indicated that land cover is the dominant factor in soil moisture variation in normal climatic conditions, whereas climate is the dominant factor in extreme conditions. As climate shifts from the wet-hot to the dry-cold cluster, soil moisture decreases for all land covers, with the minimum rate occurring in forest conditions. Meanwhile, soil moisture deficit and saturation are more likely to occur in grassland and forest areas, indicating that